WO2013075574A1 - 阵列基板和掩模板 - Google Patents
阵列基板和掩模板 Download PDFInfo
- Publication number
- WO2013075574A1 WO2013075574A1 PCT/CN2012/083765 CN2012083765W WO2013075574A1 WO 2013075574 A1 WO2013075574 A1 WO 2013075574A1 CN 2012083765 W CN2012083765 W CN 2012083765W WO 2013075574 A1 WO2013075574 A1 WO 2013075574A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- width value
- electrode pattern
- opaque
- array substrate
- value
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 39
- 239000010408 film Substances 0.000 description 54
- 238000005530 etching Methods 0.000 description 19
- 239000004973 liquid crystal related substance Substances 0.000 description 12
- 229920002120 photoresistant polymer Polymers 0.000 description 11
- 238000000034 method Methods 0.000 description 9
- 238000000059 patterning Methods 0.000 description 6
- 239000013078 crystal Substances 0.000 description 5
- 230000005684 electric field Effects 0.000 description 5
- 238000002834 transmittance Methods 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 210000002858 crystal cell Anatomy 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F1/00—Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
- G03F1/50—Mask blanks not covered by G03F1/20 - G03F1/34; Preparation thereof
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1337—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
- G02F1/133707—Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1343—Electrodes
- G02F1/134309—Electrodes characterised by their geometrical arrangement
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0274—Optical details, e.g. printed circuits comprising integral optical means
Definitions
- the present invention is directed to a seed array array substrate substrate and a mask template plate. .
- Back background technology
- the high-level ultra-super-dimensional ultra-dimensional field-field conversion ((AAddvvaanncceedd SSuuppeerr DDiimmeennssiioonn SSwwiittcchh, AADDSS)) mode-type liquid crystal display device ((LLCCDD)) is used to improve the high-flat plane
- the inner LLCCDD is equipped with a transparent light transmittance rate. .
- the field of the electric electric field generated between the layers of the electrode layer is formed into a multi-dimensional multi-dimensional electric field field, so that the inner slit of the liquid crystal cell box is interposed between the electrodes, and the electrode is extremely positive. All the molecules in the upper and upper directions can be produced in the liquid crystal crystal molecules, which can produce the spin rotation, thereby improving the efficiency of the liquid crystal crystal work and increasing the increase.
- the light transmission efficiency rate is transparent. .
- High-grade ultra-super-dimensional ultra-dimensional UW field field switching technology can improve the product of high-thin film film crystal tube liquid crystal display device ((TTFFTT--LLCCDD))
- the quality of the picture is high quality, with high resolution, high and high transmission rate, low power consumption, wide viewing angle, and high opening. Rate rate, low and low color difference, no squeezing pressure water wave ripple ((ppuusshh MMuurraa)) 1155 and so on. .
- the package includes a matrix array substrate board, a color film substrate substrate board, and a clip on the base substrate board.
- a liquid crystal layer between the liquid crystal layers.
- Each of the image pixel regions is defined on the array substrate substrate board by the gate gate lines and the data line line limits formed in an interdigitated manner, and The open switch device device is disposed at the intersection of the gate line and the data line.
- the image pixel region package includes a first transparent transparent electrode and a second transparent transparent electrode, and the second transparent transparent electrode is a slit slit The first electrode plate 2200 and the second second transparent electrode electrode are separated by a layer of insulating edges. .
- the first transparent transparent electrode electrode and the second second transparent transparent electrode electrode together produce an electric field for generating liquid crystal crystal molecules in the liquid crystal layer
- the field with this control to control the transmittance of the light transmittance rate, the shape is formed into a good and good picture effect. .
- the AADDSS mode-type LLCCDD is properly localized to generate a bioelectric field in the boundary region between the narrow slit slit of the second transparent transparent electrode and the long boundary strip.
- Field the electric electric field field is used for performing a smooth and stable operation of the liquid liquid crystal crystal molecules of the liquid crystal liquid crystal layer.
- the width of the long strip of the second and second 255 transparent transparent electrode electrodes is kept close to the standard value of 44 ⁇ . , can be able to control the light transmittance rate better than the better control, try to avoid avoiding the visually unsatisfactory effect, for example, for example, the image of the image is bright The brightness is too high, the color color deviation is too large, and so on. .
- the second second transparent transparent electrode electrode is patterned, and the second transparent transparent electrode electrode is obtained. Long strips with seams with narrow slits. .
- the specific art composition drawing technique is:
- step 11 Forming a layer of transparent transparent electro-electrode thin film on the array substrate substrate; 3. placing a mask above the substrate after step 2 (the mask includes a light-transmitting portion and an opaque portion) for exposure, and a portion of the photoresist is denatured by illumination;
- the substrate is developed, and part of the photoresist is removed
- the substrate is etched, and the transparent electrode film without photoresist protection is removed to obtain a pattern.
- the exposed photoresist is denatured and removed during development, and the transparent electrode film under the photoresist that is not illuminated is not etched and retained. Therefore, for the second transparent electrode, the corresponding mask plate at the slit is a light-transmitting region, and the long strip corresponds to an opaque region. If a negative photoresist is used, the corresponding areas of the light-transmitting area and the opaque area are opposite.
- the mask has a structure as shown in FIG. 1 including a strip 11 and a slit 12 through which the second transparent electrode is exposed, after other patterning processes, A structure as shown in Fig. 1 was formed on the second transparent electrode, including a strip having a width of 4 ⁇ m and a slit having a width of 6 ⁇ m.
- the inventors have found that in the prior art, when patterning a second transparent electrode by a patterning process, for some reasons, for example, unstable exposure control, unstable development conditions, inaccurate etching time, and change in etching solution concentration Etc., over-etching may occur, or the etching may be insufficient, so that the width of the strip on the second transparent electrode cannot be accurately maintained near 4 ⁇ m, which will excessively deviate the strip width of the second transparent electrode.
- a change in the standard value does not result in a good light transmittance.
- the shape and size of the electrode pattern of the array substrate in the prior art can be seen in FIG.
- One embodiment of the present invention provides an array substrate.
- the array substrate includes: a plurality of electrode patterns having a predetermined shape sequentially arranged in a predetermined direction, each of the two adjacent electrode patterns having a slit; a part or all of the electrode patterns of the plurality of electrode patterns being in the predetermined direction
- the preset width value on the value is a value different from the standard width value of the electrode pattern.
- the mask includes: a plurality of opaque portions having a predetermined shape sequentially arranged in a predetermined direction, each of the two adjacent opaque portions having a light transmissive portion; a width value of a part or all of the plurality of opaque portions in the predetermined direction is a value different from a standard width value of the opaque portion.
- FIG. 1 is a schematic structural view of an array substrate in the prior art
- FIG. 2 is a schematic structural view of a first structure of an array substrate according to an embodiment of the present invention
- FIG. 3 is a schematic structural view of a second structure of the array substrate according to an embodiment of the present invention.
- the embodiment of the present invention provides an array substrate, and a preset width value of a part or all of the plurality of transparent electrode films on the array substrate is different from a standard width value of the transparent electrode film. In this case, after passing through the patterning process including exposure and etching, it is possible to ensure that the width of part or all of the transparent electrode film is just kept near the standard width value.
- the standard width value of the transparent electrode film means the desired width value of the transparent electrode film which is desired in the final product.
- the slits between the transparent electrode films also have slit standard width values, which refer to the desired width values of the slits desired in the final product.
- the transparent electrode film may have a standard width value of 4 ⁇ m; and the slit standard width value may be 6 ⁇ m.
- embodiments of the invention are not limited to the above standard width values.
- An embodiment of the present invention provides an array substrate, comprising: a plurality of electrode patterns having a predetermined shape sequentially arranged in a predetermined direction, each of the two adjacent electrode patterns having a slit; a portion of the plurality of electrode patterns or a preset width value of the entire electrode pattern in the predetermined direction and an electrode pattern
- the standard width values are different values.
- the transparent electrode film is alternately disposed with the slit.
- the preset width value of each of the transparent electrode films except for the last transparent electrode film, and the preset width value of the next adjacent slit of the transparent electrode film in the predetermined direction The sum is equal to the sum of the standard width value of the transparent electrode film and the standard width value of the slit.
- the predetermined shape of the transparent electrode film may be a circle, a rectangle or the like. For convenience of description, a rectangular transparent electrode film will be described here as an example.
- the preset width of the first rectangular transparent electrode film 21 is 3.5 ⁇ m, the preset width of the first slit 24 is 6.5 ⁇ m; and the preset width of the second rectangular transparent electrode film 22 is 4.2. ⁇ , the preset width value of the second slit 25 is 5.8 ⁇ m; the preset width value of the third rectangular transparent electrode film 23 is 4.5, and the preset width value of the third slit 26 is 5.5 ⁇ m.
- the first rectangular transparent electrode film 21, the first slit 24, the second rectangular transparent electrode film 22, the second slit 25, the third rectangular transparent electrode film 23, and the third slit 26 may be repeated according to the rule shown in FIG. appear.
- the array substrate of the structure can ensure that the width of the rectangular transparent electrode film in a partial region, that is, the transparent electrode film after etching is kept at a standard value of about 4 ⁇ m, thereby greatly reducing the degree of overetching or insufficient etching. Minimize the impact on the vision.
- the preset width of the first rectangular transparent electrode film 21 is 3.5 ⁇ m
- the preset width of the first slit 24 is 6.5 ⁇ m
- the preset width of the second rectangular transparent electrode film 22 is 4.2.
- the preset width value of the second slit 25 is 5.8 ⁇ m.
- the first rectangular transparent electrode film 21, the first slit 24, the second rectangular transparent electrode film 22, and the second slit 25 may be repeated in accordance with the rule shown in Fig. 3.
- the array substrate of the structure can ensure that the width of the rectangular transparent electrode film in a partial region, that is, the transparent electrode film after etching is kept at a standard value of about 4 ⁇ m, thereby greatly reducing the degree of overetching or insufficient etching. Minimize the impact on the vision.
- the width of the first rectangular transparent electrode film is 3.5 ⁇ m, the slit width of the first slit is 6.5 ⁇ m, and the width of the second rectangular transparent electrode film is 4.5 ⁇ m, in the direction along which the transparent electrode film is arranged.
- the slit width of the two slits is 5.5 ⁇ m.
- the first rectangular transparent electrode film, the first slit, the second rectangular transparent electrode film, and the second slit may be repeatedly formed.
- the array substrate of the structure can It is ensured that the width of the rectangular transparent electrode film in the partial region, that is, the transparent electrode film after etching is kept at a standard value of about 4 ⁇ m, thereby greatly reducing the degree of overetching or etching, and reducing as much as possible. The impact on the visual.
- each of the three rectangular transparent electrode films constitutes one group (e.g., 21, 22, and 23 in Fig. 2).
- the preset width values of the transparent conductive film are sequentially increased.
- the predetermined width value of the partially transparent conductive film e.g., the transparent conductive film 21
- the predetermined width value of the partially transparent conductive film e.g., 22 and 23
- the width value of at least part of the transparent conductive film may be made to be a standard width value. .
- each of the two rectangular transparent electrode films constitutes one group, and the other design is similar to the example shown in Fig. 2, and therefore, the description will not be repeated here.
- the number of the transparent electrode films in each of the transparent electrode film groups in the embodiment of the present invention is not limited to the above two or three, but may be any suitable number of two or more.
- the preset width value of the electrode pattern is set to be larger or smaller than the standard width value.
- the difference between the preset width value of the electrode pattern and the standard width value of the electrode pattern accounts for no more than 20% of the standard width value of the electrode pattern.
- the preset width value of some or all of the transparent electrode films in the plurality of transparent electrode films is different from the standard value width value.
- This size design ensures that the width of some or all of the transparent electrode film after etching is kept near the standard value, thereby improving the problem of insufficient overetching/etching and minimizing the visual effect.
- the width value of the pattern in the mask for exposure may be designed as The standard width value is different from the mask pattern.
- the opaque portion of the reticle will correspond to the portion of the electrode pattern, and the light transmissive portion of the reticle will correspond to a slit portion between the electrode patterns.
- the standard width value of the opaque portion of the reticle corresponds to the standard width value of the electrode pattern (but not necessarily equal), and the standard width value of the transparent portion of the reticle corresponds to the standard width value of the slit ( But the two are not necessarily equal).
- a mask is provided in accordance with an embodiment of the present invention.
- the mask includes a plurality of opaque portions having a predetermined shape sequentially arranged in a predetermined direction, and a light transmitting portion between each two adjacent opaque portions; part or all of the plurality of opaque portions
- the width value of the opaque portion in the predetermined direction is a value different from the standard width value of the opaque portion.
- the predetermined shape is a rectangle.
- the opaque portion is alternately disposed with the light transmissive portion in the predetermined direction, and each of the plurality of opaque portions is opaque except for the last opaque portion.
- the sum of the width value of the light portion and the width value of the next adjacent light transmitting portion of the opaque portion in the predetermined direction is equal to the standard width value of the opaque portion and the standard width value of the light transmitting portion. with.
- each of the two or more opaque portions serves as a group of opaque portions, and in the group of opaque portions, the width values of the opaque portions are sequentially increased, and portions of the group are not a width value of the light transmitting portion is smaller than a standard width value of the opaque portion, a width value of the partially opaque portion is greater than a width value of the opaque portion, and a plurality of the opaque portions are in a predetermined direction Arranged in order.
- a difference between a width value of the opaque portion and a standard width value of the opaque portion is less than 20% of a standard width value of the opaque portion.
- the above mask can also be applied to a case where a negative type photoresist is used.
- embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can be embodied in the form of one or more computer program products embodied on a computer-usable storage medium (including but not limited to disk storage, CD-ROM, optical storage, etc.) in which computer usable program code is embodied.
- a computer-usable storage medium including but not limited to disk storage, CD-ROM, optical storage, etc.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Geometry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Engineering & Computer Science (AREA)
- Preparing Plates And Mask In Photomechanical Process (AREA)
- Liquid Crystal (AREA)
Abstract
一种阵列基板,该阵列基板包括:按预定方向依次排列的具有预定形状的多个电极图案(21,22,23),每两个相邻电极图案之间具有狭缝(24,25,26)。电极图案的部分或全部在所述预定方向上的预设宽度值为与电极图案的标准宽度值不同的值。
Description
阵列基板和掩模板 技技术术领领域域
55 本本发发明明的的实实施施例例涉涉及及一一种种阵阵列列基基板板和和掩掩模模板板。。 背背景景技技术术
高高级级超超维维场场转转换换 (( AAddvvaanncceedd SSuuppeerr DDiimmeennssiioonn SSwwiittcchh,, AADDSS ))模模式式的的液液晶晶 显显示示器器((LLCCDD ))用用来来提提高高平平面面内内 LLCCDD设设备备的的透透光光率率。。 通通过过同同一一平平面面内内狭狭缝缝 1100 电电极极边边缘缘所所产产生生的的电电场场以以及及狭狭缝缝电电极极层层与与板板状状电电极极层层间间产产生生的的电电场场形形成成多多维维 电电场场,, 使使液液晶晶盒盒内内狭狭缝缝电电极极间间、、 电电极极正正上上方方所所有有取取向向液液晶晶分分子子都都能能够够产产生生旋旋 转转,, 从从而而提提高高了了液液晶晶工工作作效效率率并并增增大大了了透透光光效效率率。。 高高级级超超维维场场开开关关技技术术可可以以 提提高高薄薄膜膜晶晶体体管管液液晶晶显显示示器器((TTFFTT--LLCCDD ))产产品品的的画画面面品品质质,, 具具有有高高分分辨辨率率、、 高高透透过过率率、、低低功功耗耗、、 宽宽视视角角、、 高高开开口口率率、、低低色色差差、、 无无挤挤压压水水波波紋紋((ppuusshh MMuurraa )) 1155 等等优优点点。。
具具体体说说明明如如下下:: 在在 AADDSS模模式式的的 LLCCDD中中包包括括阵阵列列基基板板、、 彩彩膜膜基基板板以以及及夹夹 于于基基板板之之间间的的液液晶晶层层。。 每每个个像像素素区区在在阵阵列列基基板板上上由由以以交交叉叉方方式式形形成成的的栅栅线线和和 数数据据线线限限定定,, 且且开开关关器器件件设设置置在在所所述述栅栅线线和和数数据据线线的的交交叉叉处处。。 所所述述像像素素区区包包 括括第第一一透透明明电电极极和和第第二二透透明明电电极极,, 第第二二透透明明电电极极为为狭狭缝缝状状电电极极,, 并并且且第第一一透透 2200 明明电电极极和和第第二二透透明明电电极极之之间间由由绝绝缘缘层层隔隔开开。。 第第一一透透明明电电极极和和第第二二透透明明电电极极一一 起起产产生生作作用用于于液液晶晶层层中中液液晶晶分分子子的的电电场场,, 以以此此控控制制透透光光率率,, 形形成成良良好好的的画画面面 效效果果。。
AADDSS模模式式的的 LLCCDD恰恰当当地地在在第第二二透透明明电电极极的的狭狭缝缝与与长长条条之之间间的的边边界界区区产产 生生电电场场,, 该该电电场场用用于于对对液液晶晶层层的的液液晶晶分分子子进进行行平平稳稳操操作作。。 在在刻刻蚀蚀时时,, 将将第第二二 2255 透透明明电电极极中中的的长长条条的的宽宽度度保保持持在在标标准准值值 44μμππιι附附近近,, 能能够够较较好好的的控控制制透透光光率率,, 尽尽量量避避免免视视觉觉上上的的不不良良效效果果,, 例例如如,, 图图像像亮亮度度过过高高,, 颜颜色色偏偏差差过过大大等等等等。。
目目前前,, 通通过过构构图图工工艺艺对对第第二二透透明明电电极极进进行行构构图图,, 获获得得第第二二透透明明电电极极中中的的 长长条条与与狭狭缝缝。。 具具体体构构图图工工艺艺为为::
11、、 在在阵阵列列基基板板上上形形成成一一层层透透明明电电极极薄薄膜膜;;
3、在步骤 2之后的基板上方放置掩模板(掩模板包括透光部分和不透光 部分)进行曝光, 部分光刻胶被光照而变性;
4、 将基板进行显影, 部分光刻胶被去除;
5、将基板进行刻蚀, 没有光刻胶保护的透明电极薄膜被去除,从而得到 图案。 以正性光刻胶为例, 被光照的光刻胶变性, 显影时被去除, 没有被光 照的光刻胶下方的透明电极薄膜不会被刻蚀而被保留。 所以针对第二透明电 极, 狭缝处对应的掩模板是透光区域, 长条处对应的是不透光区域。 如果是 使用负性光刻胶, 透光区域和不透光区域对应的位置正好相反。
以使用正性光刻胶为例, 该掩模板具有如图 1所示的结构, 其中包括长 条 11和狭缝 12, 通过该掩模板对第二透明电极进行曝光, 经过其他构图工 艺后, 在第二透明电极上形成如图 1所示的结构, 包括宽度为 4μπι的长条, 宽度为 6μπι的狭缝。
而发明人发现, 现有技术中通过构图工艺对第二透明电极进行构图时, 由于某一些原因, 例如: 曝光量控制不稳定、 显影条件不稳定、 刻蚀时间不 准确、 刻蚀液浓度变化等等, 可能会出现过刻蚀, 或者刻蚀不充分, 使得无 法准确的将第二透明电极上长条的宽度保持在 4μπι附近,将会使第二层透明 电极的长条宽度发生过度偏离标准值的变化,无法获得良好的透光率。例如, 现有技术中阵列基板的电极图案形状和尺寸 (对应于所使用的掩模板的电极 图案形状和尺寸)可参见图 1 , 其中包括宽度为 4μπι的长条, 和宽度为 6μπι 的狭缝。 当曝光过程中过度曝光, 导致被去除的光刻胶过多, 那么没有被保 护起来的透明电极薄膜都会被刻蚀掉, 会产生过刻现象, 即第二透明电极上 的长条的宽度小于 4μπι; 反之第二透明电极上的长条的宽大于 4μπι。 发明内容
本发明的一个实施例提供一种阵列基板。 该阵列基板包括: 按预定方向 依次排列的具有预定形状的多个电极图案, 每两个相邻电极图案之间具有狭 缝; 所述多个电极图案的部分或全部电极图案在所述预定方向上的预设宽度 值为与电极图案的标准宽度值不同的值。
本发明的另一个实施例提供一种掩模板。 该掩模板包括: 按预定方向依 次排列的具有预定形状的多个不透光部分, 每两个相邻不透光部分之间具有
透光部分; 所述多个不透光部分中的部分或全部不透光部分在所述预定方向 上的宽度值为与不透光部分的标准宽度值不同的值。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例的附图作 简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例, 而非对本发明的限制。
图 1为现有技术中阵列基板结构示意图;
图 2为根据本发明实施例的阵列基板的第一种结构的结构示意图; 以及 图 3为根据本发明实施例的阵列基板的第二种结构的结构示意图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例的附图,对本发明实施例的技术方案进行清楚、 完整地描述。显然, 所描述的实施例是本发明的一部分实施例, 而不是全部的实施例。 基于所描 述的本发明的实施例, 本领域普通技术人员在无需创造性劳动的前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
本发明实施例提供了一种阵列基板, 该阵列基板上的多个透明电极薄膜 中的部分或全部透明电极薄膜的预设宽度值为与透明电极薄膜的标准宽度值 不同的值。 在这种情况下, 在经过包括曝光和蚀刻的图案化工艺之后, 可以 保证部分或全部透明电极薄膜的宽度恰好保持在标准宽度值附近。
在本说明书中, 透明电极薄膜的标准宽度值是指在最终产品中期望得到 的透明电极薄膜的理想宽度值。 另外, 透明电极薄膜之间的狭缝也具有狭缝 标准宽度值, 其是指在最终产品中期望得到的狭缝的理想宽度值。 例如, 在 一个示例中, 透明电极薄膜标准宽度值可以为 4μπι; 所述狭缝标准宽度值可 以为 6μπι。 然而, 本发明的实施例并不限制于上述标准宽度值。
第一实施例
本发明的实施例提供一种阵列基板, 包括: 按预定方向依次排列的具有 预定形状的多个电极图案, 每两个相邻电极图案之间具有狭缝; 所述多个电 极图案的部分或全部电极图案在所述预定方向上的预设宽度值为与电极图案
的标准宽度值不同的值。
在上述预定方向上, 透明电极薄膜与狭缝交替设置。 所述多个透明电极 薄膜除中除最后一个透明电极薄膜外, 每个透明电极薄膜的预设宽度值与该 透明电极薄膜在上述预定方向上的下一个相邻的狭缝的预设宽度值之和等于 透明电极薄膜的标准宽度值与狭缝的标准宽度值之和。 透明电极薄膜的预定 形状可以为圓形, 矩形等。 为了方便叙述, 此处以矩形透明电极薄膜为例进 行描述。
示例 1 :
如图 2所示, 第一矩形透明电极薄膜 21的预设宽度值为 3.5μπι, 第一狭 缝 24 的预设宽度值为 6.5μπι; 第二矩形透明电极薄膜 22 的预设宽度值为 4.2μπι, 第二狭缝 25的预设宽度值为 5.8μπι; 第三矩形透明电极薄膜 23的预 设宽度值为 4.5 , 第三狭缝 26的预设宽度值为 5.5μπι。 可使第一矩形透明电 极薄膜 21、 第一狭缝 24、 第二矩形透明电极薄膜 22、 第二狭缝 25、 第三矩 形透明电极薄膜 23和第三狭缝 26按照图 2所示规则重复出现。 该结构的阵 列基板可以保证部分区域内的矩形透明电极薄膜、 即刻蚀后的透明电极薄膜 的宽度保持在标准值 4μπι附近,从而很大程度上降低了过刻蚀或者刻蚀不充 分的程度, 尽可能的减小了对视觉的影响。
示例 2:
如图 3所示, 第一矩形透明电极薄膜 21的预设宽度值为 3.5μπι, 第一狭 缝 24 的预设宽度值为 6.5μπι; 第二矩形透明电极薄膜 22 的预设宽度值为 4.2μπι,第二狭缝 25的预设宽度值为 5.8μηι。可使第一矩形透明电极薄膜 21、 第一狭缝 24、第二矩形透明电极薄膜 22和第二狭缝 25按照图 3所示规则重 复出现。 该结构的阵列基板可以保证部分区域内的矩形透明电极薄膜、 即刻 蚀后的透明电极薄膜的宽度保持在标准值 4μπι附近,从而很大程度上降低了 过刻蚀或者刻蚀不充分的程度, 尽可能的减小了对视觉的影响。
示例 3:
在沿透明电极薄膜的排列方向上, 第一矩形透明电极薄膜的宽度值为 3.5μπι, 第一狭缝的狭缝宽度值为 6.5μπι; 第二矩形透明电极薄膜的宽度值为 4.5μπι, 第二狭缝的狭缝宽度值为 5.5μπι。 可使第一矩形透明电极薄膜、 第一 狭缝、 第二矩形透明电极薄膜和第二狭缝重复出现。 该结构的阵列基板可以
保证部分区域内的矩形透明电极薄膜、 即刻蚀后的透明电极薄膜的宽度保持 在标准值 4μπι附近, 从而很大程度上降低了过刻蚀或者刻蚀不充分的程度, 尽可能的减小了对视觉的影响。
从图 2可以看到, 每三个矩形透明电极薄膜构成一个组(例如图 2中的 21、 22和 23 )。 在该透明电极薄膜组中, 透明导电薄膜的预设宽度值依次增 大。 并且, 部分透明导电薄膜(例如透明导电膜 21 )的预设宽度值小于标准 宽度值, 而部分透明导电薄膜 (例如 22和 23 ) 的预设宽度值大于标准宽度 值。 因此, 当按以上预设宽度值设计时, 经过包括曝光和刻蚀的图案化步骤 之后, 如果发生过度刻蚀或刻蚀不足的问题, 可以使得至少部分透明导电膜 的宽度值为标准宽度值。
对于图 3 ,每两个矩形透明电极薄膜构成一个组,而其他设计方式与图 2 所示示例类似, 因此, 这里不再重复描述。 然而, 本发明实施例中每个透明 电极薄膜组中的透明电极薄膜的个数不限于以上的两个或三个, 而是可以为 两个以上的任何合适数量。
另外, 以上以透明导电薄膜的图案进行了描述。 然而, 才艮据本发明的实 施例可以应用于各种透明或不透明的电极图案。
在以上实施例中,电极图案的预设宽度值设定为大于或小于标准宽度值。 例如, 电极图案的预设宽度值与电极图案的标准宽度值的差值占电极图案的 标准宽度值的比例不大于 20%。
本发明实施例提供的阵列基板, 其上的多个透明电极薄膜 (电极图案) 中的部分或全部透明电极薄膜的预设宽度值为与标准值宽度值不同的值。 这 样的尺寸设计可以保证刻蚀后的部分或全部透明电极薄膜的宽度保持在标准 值附近, 进而改善了了过刻蚀 /刻蚀不充分的问题, 尽可能的减小了对视觉的 影响。
第二实施例
在制备以上电极图案的过程中, 需要执行图案化工艺。 考虑到曝光和刻 蚀过程中的偏差(过度刻蚀或刻蚀不足) , 为了使得制造的部分或全部电极 图案的宽度为标准宽度值, 可以将曝光用的掩模板中图案的宽度值设计为与 掩模板图案的标准宽度值不同。 例如, 在使用正型光致抗蚀剂的情况下, 掩 模板的不透光部分将对应于电极图案的部分, 而掩模板的透光部分将对应于
电极图案之间的狭缝部分。 因此, 掩模板的不透光部分的标准宽度值对应于 电极图案的标准宽度值(但两者不一定相等) , 而掩模板的透光部分的标准 宽度值对应于狭缝的标准宽度值(但两者不一定相等) 。 为此, 根据本发明 的实施例提供了一种掩模板。
该掩模板包括按预定方向依次排列的具有预定形状的多个不透光部分, 每两个相邻不透光部分之间具有透光部分; 所述多个不透光部分中的部分或 全部不透光部分在所述预定方向上的宽度值为与不透光部分的标准宽度值不 同的值。
在一个实施例中, 上述预定形状为矩形。
在一个实施例中, 在所述预定方向上, 所述不透光部分与所述透光部分 交替设置, 所述多个不透光部分中除最后一个不透光部分外, 每个不透光部 分的所述宽度值与该不透光部分在该预定方向上的下一个相邻的透光部分的 宽度值之和等于不透光部分的标准宽度值与透光部分的标准宽度值之和。
在一个实施例中, 每两个以上的不透光部分作为一个不透光部分组, 在 该不透光部分组中, 不透光部分的宽度值依次增大, 且在该组中部分不透光 部分的宽度值小于所述不透光部分的标准宽度值, 部分不透光部分的宽度值 大于所述不透光部分的宽度值, 且多个所述不透光部分组在预定方向上依次 排列。
在一个实施例中, 所述不透光部分的宽度值与所述不透光部分的标准宽 度值的差值占所述不透光部分的标准宽度值的比例不大于 20%。
另外, 上述掩模板也可以应用在使用负性型光致抗蚀剂的场合。
本领域内的技术人员应明白, 本发明的实施例可提供为方法、 系统、 或 计算机程序产品。 因此, 本发明可釆用完全硬件实施例、 完全软件实施例、 或结合软件和硬件方面的实施例的形式。 而且, 本发明可釆用在一个或多个 其中包含有计算机可用程序代码的计算机可用存储介质 (包括但不限于磁盘 存储器、 CD-ROM、 光学存储器等)上实施的计算机程序产品的形式。
Claims
1、 一种阵列基板, 包括:
按预定方向依次排列的具有预定形状的多个电极图案, 每两个相邻电极 图案之间具有狭缝; 所述多个电极图案的部分或全部电极图案在所述预定方 向上的预设宽度值为与电极图案的标准宽度值不同的值。
2、如权利要求 1所述的阵列基板,其中所述电极图案由透明电极薄膜形 成。
3、 如权利要求 1所述的阵列基板, 其中, 所述预定形状为矩形。
4、 如权利要求 1所述的阵列基板, 其中, 在所述预定方向上, 所述电极 图案与所述狭缝交替设置, 所述多个电极图案中除最后一个电极图案外, 每 个电极图案的所述预设宽度值与该电极图案在该预定方向上的下一个相邻的 狭缝的宽度预设值之和等于电极图案标准宽度值与狭缝标准宽度值之和。
5、如权利要求 4所述的阵列基板, 其中,每两个以上的电极图案构成一 个电极图案组, 在该电极图案组中, 电极图案的预设宽度值依次增大, 且在 该组中部分电极图案的预设宽度值小于所述电极图案的标准宽度值, 部分电 极图案的预设宽度值大于所述电极图案的标准宽度值, 且多个所述电极图案 组在所述预定方向上依次排列。
6、如权利要求 5所述的阵列基板, 其中, 所述电极图案的预设宽度值与 所述电极图案的标准宽度值的差值占所述电极图案的标准宽度值的比例不大 于 20%。
7、 如权利要求 5 所述的阵列基板, 其中, 所述电极图案标准宽度值为 4μπι, 所述狭缝标准宽度值为 6μπι。
8、 如权利要求 7所述的阵列基板, 其中, 在每个电极图案组中, 其中一 个电极图案的预设宽度值为 3.5μπι。
9、 如权利要求 7所述的阵列基板, 其中, 在每个电极图案组中, 其中一 个电极图案的预设宽度值为 4.8μπι。
10、 如权利要求 7所述的阵列基板, 其中, 在每个电极图案组中, 其中 一个电极图案的预设宽度值为 4.5μπι。
11、 一种掩模板, 包括: 按预定方向依次排列的具有预定形状的多个不透光部分, 每两个相邻不 透光部分之间具有透光部分; 所述多个不透光部分中的部分或全部不透光部 分在所述预定方向上的宽度值为与不透光部分的标准宽度值不同的值。
12、 如权利要求 11所述的掩模板, 其中, 所述预定形状为矩形。
13、 如权利要求 11所述的掩模板, 其中, 在所述预定方向上, 所述不透 光部分与所述透光部分交替设置, 所述多个不透光部分中除最后一个不透光 部分外, 每个不透光部分的所述宽度值与该不透光部分在该预定方向上的下 一个相邻的透光部分的宽度值之和等于不透光部分的标准宽度值与透光部分 的标准宽度值之和。
14、如权利要求 13所述的掩模板, 其中,每两个以上的不透光部分作为 一个不透光部分组, 在该不透光部分组中, 不透光部分的宽度值依次增大, 且在该组中部分不透光部分的宽度值小于所述不透光部分的标准宽度值, 部 分不透光部分的宽度值大于所述不透光部分的标准宽度值, 且多个所述不透 光部分组在预定方向上依次排列。
15、如权利要求 14所述的掩模板, 其中, 所述不透光部分的宽度值与所 述不透光部分的标准宽度值的差值占所述不透光部分的标准宽度值的比例不 大于 20%。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/704,820 US9442367B2 (en) | 2011-11-22 | 2012-10-30 | Array substrate and mask plate |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201120467808.2 | 2011-11-22 | ||
CN2011204678082U CN202383394U (zh) | 2011-11-22 | 2011-11-22 | 一种阵列基板 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013075574A1 true WO2013075574A1 (zh) | 2013-05-30 |
Family
ID=46631886
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/083765 WO2013075574A1 (zh) | 2011-11-22 | 2012-10-30 | 阵列基板和掩模板 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9442367B2 (zh) |
CN (1) | CN202383394U (zh) |
WO (1) | WO2013075574A1 (zh) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202383394U (zh) * | 2011-11-22 | 2012-08-15 | 北京京东方光电科技有限公司 | 一种阵列基板 |
CN104487889B (zh) * | 2012-07-25 | 2017-03-08 | 夏普株式会社 | 液晶显示装置 |
TWI553379B (zh) | 2014-06-25 | 2016-10-11 | 群創光電股份有限公司 | 顯示面板和應用其之顯示裝置 |
CN105223748B (zh) * | 2014-06-25 | 2018-07-13 | 群创光电股份有限公司 | 显示面板和应用其显示面板的显示装置 |
CN104216178B (zh) * | 2014-09-09 | 2017-09-15 | 京东方科技集团股份有限公司 | 一种阵列基板及液晶显示装置 |
CN105487307B (zh) | 2015-12-31 | 2017-05-24 | 京东方科技集团股份有限公司 | 阵列基板、显示面板以及显示装置 |
CN107463040B (zh) * | 2017-08-28 | 2020-11-10 | 京东方科技集团股份有限公司 | 一种显示基板、显示面板及显示装置 |
CN112234124A (zh) * | 2020-10-30 | 2021-01-15 | 南昌凯迅光电有限公司 | 一种改善led芯片多金异常的方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1403859A (zh) * | 2001-08-31 | 2003-03-19 | 富士通株式会社 | 液晶显示器及其制造方法 |
US20050255390A1 (en) * | 2004-05-14 | 2005-11-17 | Innolux Display Corp. | Photomask for the manufacturing of reflective bumps |
CN101324750A (zh) * | 2007-06-14 | 2008-12-17 | Lg化学株式会社 | 液晶显示元件用光掩膜及使用该光掩膜的彩色滤光片的制造方法 |
CN101542323A (zh) * | 2007-03-30 | 2009-09-23 | Lg化学株式会社 | 其上具有微图案的膜的制备方法及由该方法制备的膜 |
JP2010169750A (ja) * | 2009-01-20 | 2010-08-05 | Hoya Corp | フォトマスクの製造方法、及び表示デバイスの製造方法 |
CN202383394U (zh) * | 2011-11-22 | 2012-08-15 | 北京京东方光电科技有限公司 | 一种阵列基板 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100429879B1 (ko) * | 2001-09-19 | 2004-05-03 | 삼성전자주식회사 | 포토마스크 제조시 현상 단계에서 발생하는 선폭 변화를보정하여 노광하는 방법 및 이를 기록한 기록매체 |
JP5092298B2 (ja) * | 2006-07-21 | 2012-12-05 | 富士通セミコンダクター株式会社 | フォトマスク、焦点計測装置及び方法 |
JP2008083189A (ja) * | 2006-09-26 | 2008-04-10 | Matsushita Electric Ind Co Ltd | 位相シフトマスクおよび集光素子の製造方法 |
-
2011
- 2011-11-22 CN CN2011204678082U patent/CN202383394U/zh not_active Expired - Lifetime
-
2012
- 2012-10-30 US US13/704,820 patent/US9442367B2/en active Active
- 2012-10-30 WO PCT/CN2012/083765 patent/WO2013075574A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1403859A (zh) * | 2001-08-31 | 2003-03-19 | 富士通株式会社 | 液晶显示器及其制造方法 |
US20050255390A1 (en) * | 2004-05-14 | 2005-11-17 | Innolux Display Corp. | Photomask for the manufacturing of reflective bumps |
CN101542323A (zh) * | 2007-03-30 | 2009-09-23 | Lg化学株式会社 | 其上具有微图案的膜的制备方法及由该方法制备的膜 |
CN101324750A (zh) * | 2007-06-14 | 2008-12-17 | Lg化学株式会社 | 液晶显示元件用光掩膜及使用该光掩膜的彩色滤光片的制造方法 |
JP2010169750A (ja) * | 2009-01-20 | 2010-08-05 | Hoya Corp | フォトマスクの製造方法、及び表示デバイスの製造方法 |
CN202383394U (zh) * | 2011-11-22 | 2012-08-15 | 北京京东方光电科技有限公司 | 一种阵列基板 |
Also Published As
Publication number | Publication date |
---|---|
US20140076615A1 (en) | 2014-03-20 |
US9442367B2 (en) | 2016-09-13 |
CN202383394U (zh) | 2012-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013075574A1 (zh) | 阵列基板和掩模板 | |
US20150253473A1 (en) | Color filter array substrate, method for fabricating the same and display device | |
CN104576761A (zh) | 薄膜晶体管及其制造方法、显示基板和显示装置 | |
WO2016095404A1 (zh) | 液晶显示面板、其制作方法及显示装置 | |
CN103715138B (zh) | 一种阵列基板及其制造方法、显示装置 | |
CN104091761B (zh) | 一种图案化薄膜的制备方法、显示基板及显示装置 | |
CN102148259A (zh) | 薄膜晶体管、阵列基板及其制造方法和液晶显示器 | |
CN107479292A (zh) | 阵列基板、阵列基板的制作方法及液晶显示面板 | |
CN103926752B (zh) | 一种液晶显示器、平面转换模式的阵列基板及其制造方法 | |
CN110047804A (zh) | 阵列基板及制作方法、显示面板、拼接屏 | |
WO2017031924A1 (zh) | 薄膜晶体管阵列基板、其制作方法及显示装置 | |
WO2019184324A1 (zh) | 显示装置及其显示方法、显示设备 | |
KR20150089708A (ko) | 모기판 어셈블리 제조방법 | |
CN105655289B (zh) | 一种阵列基板、其制作方法及显示装置 | |
CN103197501A (zh) | 一种阵列基板及其制备方法和显示装置 | |
CN106094366A (zh) | Ips型阵列基板的制作方法及ips型阵列基板 | |
WO2015085772A1 (zh) | 基板的制作方法 | |
CN103698894B (zh) | 一种被动偏光式三维显示装置及其制作方法 | |
CN107170760A (zh) | 显示基板的制备方法、显示基板和显示装置 | |
WO2014205987A1 (zh) | 一种阵列基板及其制造方法、显示装置 | |
WO2013155843A1 (zh) | 阵列基板及其制造方法和液晶显示面板 | |
US20160041316A1 (en) | Display substrate and manufacturing method thereof, and display apparatus | |
TW200835988A (en) | Liquid crystal display device | |
TW201629589A (zh) | 帶有電極之彩色濾光片基板、含有該基板之顯示裝置、以及該基板之製造方法 | |
TWI494670B (zh) | 藍相液晶顯示面板之電極製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 13704820 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12852277 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12852277 Country of ref document: EP Kind code of ref document: A1 |