WO2013071074A1 - Methods of producing butadiene - Google Patents
Methods of producing butadiene Download PDFInfo
- Publication number
- WO2013071074A1 WO2013071074A1 PCT/US2012/064407 US2012064407W WO2013071074A1 WO 2013071074 A1 WO2013071074 A1 WO 2013071074A1 US 2012064407 W US2012064407 W US 2012064407W WO 2013071074 A1 WO2013071074 A1 WO 2013071074A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- erythritol
- host cell
- recombinant host
- phosphate
- butadiene
- Prior art date
Links
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 title claims abstract description 215
- 238000000034 method Methods 0.000 title claims abstract description 102
- 239000002243 precursor Substances 0.000 claims abstract description 48
- 230000037361 pathway Effects 0.000 claims description 142
- 102000004190 Enzymes Human genes 0.000 claims description 95
- 108090000790 Enzymes Proteins 0.000 claims description 95
- 239000004386 Erythritol Substances 0.000 claims description 67
- 229940009714 erythritol Drugs 0.000 claims description 67
- QRDCEYBRRFPBMZ-IUYQGCFVSA-N D-erythritol 4-phosphate Chemical compound OC[C@H](O)[C@H](O)COP(O)(O)=O QRDCEYBRRFPBMZ-IUYQGCFVSA-N 0.000 claims description 62
- UNXHWFMMPAWVPI-UHFFFAOYSA-N butane-1,2,3,4-tetrol Chemical compound OCC(O)C(O)CO UNXHWFMMPAWVPI-UHFFFAOYSA-N 0.000 claims description 60
- KJTLQQUUPVSXIM-UHFFFAOYSA-N DL-mevalonic acid Natural products OCCC(O)(C)CC(O)=O KJTLQQUUPVSXIM-UHFFFAOYSA-N 0.000 claims description 52
- 229910019142 PO4 Inorganic materials 0.000 claims description 46
- 239000010452 phosphate Substances 0.000 claims description 43
- 239000001177 diphosphate Substances 0.000 claims description 42
- 102000039446 nucleic acids Human genes 0.000 claims description 41
- 108020004707 nucleic acids Proteins 0.000 claims description 41
- 150000007523 nucleic acids Chemical class 0.000 claims description 41
- -1 4-hydroxy-3-methylbut- 2-en-l-yl Chemical group 0.000 claims description 37
- 108010075483 isoprene synthase Proteins 0.000 claims description 33
- UHDGCWIWMRVCDJ-UHFFFAOYSA-N 1-beta-D-Xylofuranosyl-NH-Cytosine Natural products O=C1N=C(N)C=CN1C1C(O)C(O)C(CO)O1 UHDGCWIWMRVCDJ-UHFFFAOYSA-N 0.000 claims description 32
- UHDGCWIWMRVCDJ-PSQAKQOGSA-N Cytidine Natural products O=C1N=C(N)C=CN1[C@@H]1[C@@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-PSQAKQOGSA-N 0.000 claims description 32
- 235000011180 diphosphates Nutrition 0.000 claims description 29
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 26
- 229910052799 carbon Inorganic materials 0.000 claims description 26
- XMWHRVNVKDKBRG-CRCLSJGQSA-N [(2s,3r)-2,3,4-trihydroxy-3-methylbutyl] dihydrogen phosphate Chemical compound OC[C@](O)(C)[C@@H](O)COP(O)(O)=O XMWHRVNVKDKBRG-CRCLSJGQSA-N 0.000 claims description 25
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical compound [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 claims description 23
- 235000019414 erythritol Nutrition 0.000 claims description 23
- 102100031515 D-ribitol-5-phosphate cytidylyltransferase Human genes 0.000 claims description 22
- 101000994204 Homo sapiens D-ribitol-5-phosphate cytidylyltransferase Proteins 0.000 claims description 22
- 235000000346 sugar Nutrition 0.000 claims description 22
- UNXHWFMMPAWVPI-ZXZARUISSA-N erythritol Chemical compound OC[C@H](O)[C@H](O)CO UNXHWFMMPAWVPI-ZXZARUISSA-N 0.000 claims description 19
- 108030005203 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthases Proteins 0.000 claims description 17
- 101100453077 Botryococcus braunii HDR gene Proteins 0.000 claims description 16
- 101100397457 Plasmodium falciparum (isolate 3D7) LytB gene Proteins 0.000 claims description 16
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 15
- 102100024279 Phosphomevalonate kinase Human genes 0.000 claims description 15
- 108091000116 phosphomevalonate kinase Proteins 0.000 claims description 15
- 108010068049 1-deoxy-D-xylulose 5-phosphate reductoisomerase Proteins 0.000 claims description 14
- 108700040132 Mevalonate kinases Proteins 0.000 claims description 14
- 230000000694 effects Effects 0.000 claims description 14
- 101150018742 ispF gene Proteins 0.000 claims description 14
- 102000002678 mevalonate kinase Human genes 0.000 claims description 14
- 108090000769 Isomerases Proteins 0.000 claims description 13
- 102000004195 Isomerases Human genes 0.000 claims description 13
- 101710166309 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase Proteins 0.000 claims description 10
- GJXWDTUCERCKIX-UHFFFAOYSA-N fosmidomycin Chemical compound O=CN(O)CCCP(O)(O)=O GJXWDTUCERCKIX-UHFFFAOYSA-N 0.000 claims description 10
- 150000008163 sugars Chemical class 0.000 claims description 10
- XMWHRVNVKDKBRG-UHNVWZDZSA-N 2-C-Methyl-D-erythritol 4-phosphate Natural products OC[C@@](O)(C)[C@H](O)COP(O)(O)=O XMWHRVNVKDKBRG-UHNVWZDZSA-N 0.000 claims description 9
- 101710184086 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase Proteins 0.000 claims description 9
- 239000003112 inhibitor Substances 0.000 claims description 9
- 101710201168 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase Proteins 0.000 claims description 8
- 101710195531 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase, chloroplastic Proteins 0.000 claims description 8
- 102000057412 Diphosphomevalonate decarboxylases Human genes 0.000 claims description 8
- 102000004286 Hydroxymethylglutaryl CoA Reductases Human genes 0.000 claims description 8
- 108090000895 Hydroxymethylglutaryl CoA Reductases Proteins 0.000 claims description 8
- 230000002950 deficient Effects 0.000 claims description 8
- 229950006501 fosmidomycin Drugs 0.000 claims description 8
- 238000011534 incubation Methods 0.000 claims description 8
- 108010000775 Hydroxymethylglutaryl-CoA synthase Proteins 0.000 claims description 7
- 102100028888 Hydroxymethylglutaryl-CoA synthase, cytoplasmic Human genes 0.000 claims description 7
- 101000958906 Panax ginseng Diphosphomevalonate decarboxylase 2 Proteins 0.000 claims description 7
- 108060008225 Thiolase Proteins 0.000 claims description 7
- 102000002932 Thiolase Human genes 0.000 claims description 7
- 108090000854 Oxidoreductases Proteins 0.000 claims description 6
- 102000004316 Oxidoreductases Human genes 0.000 claims description 6
- 102000001253 Protein Kinase Human genes 0.000 claims description 5
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 4
- 229930006000 Sucrose Natural products 0.000 claims description 4
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 claims description 4
- UHDGCWIWMRVCDJ-ZAKLUEHWSA-N cytidine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-ZAKLUEHWSA-N 0.000 claims description 4
- 239000008103 glucose Substances 0.000 claims description 4
- 239000005720 sucrose Substances 0.000 claims description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 2
- 108060006633 protein kinase Proteins 0.000 claims description 2
- KJTLQQUUPVSXIM-ZCFIWIBFSA-M (R)-mevalonate Chemical compound OCC[C@](O)(C)CC([O-])=O KJTLQQUUPVSXIM-ZCFIWIBFSA-M 0.000 claims 8
- HGVJFBSSLICXEM-UHNVWZDZSA-N (2s,3r)-2-methylbutane-1,2,3,4-tetrol Chemical compound OC[C@@](O)(C)[C@H](O)CO HGVJFBSSLICXEM-UHNVWZDZSA-N 0.000 claims 2
- HGVJFBSSLICXEM-UHFFFAOYSA-N L-2-methyl-erythritol Natural products OCC(O)(C)C(O)CO HGVJFBSSLICXEM-UHFFFAOYSA-N 0.000 claims 2
- CABVTRNMFUVUDM-VRHQGPGLSA-N (3S)-3-hydroxy-3-methylglutaryl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C[C@@](O)(CC(O)=O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 CABVTRNMFUVUDM-VRHQGPGLSA-N 0.000 claims 1
- 108010031246 erythritol kinase Proteins 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 4
- 102100023072 Neurolysin, mitochondrial Human genes 0.000 description 58
- NUHSROFQTUXZQQ-UHFFFAOYSA-N isopentenyl diphosphate Chemical compound CC(=C)CCO[P@](O)(=O)OP(O)(O)=O NUHSROFQTUXZQQ-UHFFFAOYSA-N 0.000 description 45
- CBIDRCWHNCKSTO-UHFFFAOYSA-N prenyl diphosphate Chemical compound CC(C)=CCO[P@](O)(=O)OP(O)(O)=O CBIDRCWHNCKSTO-UHFFFAOYSA-N 0.000 description 43
- KJTLQQUUPVSXIM-ZCFIWIBFSA-N (R)-mevalonic acid Chemical compound OCC[C@](O)(C)CC(O)=O KJTLQQUUPVSXIM-ZCFIWIBFSA-N 0.000 description 35
- 238000006243 chemical reaction Methods 0.000 description 30
- 230000015572 biosynthetic process Effects 0.000 description 23
- 238000004519 manufacturing process Methods 0.000 description 21
- 108090000623 proteins and genes Proteins 0.000 description 18
- 239000000543 intermediate Substances 0.000 description 14
- 239000000758 substrate Substances 0.000 description 13
- NGHMDNPXVRFFGS-IUYQGCFVSA-N D-erythrose 4-phosphate Chemical compound O=C[C@H](O)[C@H](O)COP(O)(O)=O NGHMDNPXVRFFGS-IUYQGCFVSA-N 0.000 description 10
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 10
- 101150118992 dxr gene Proteins 0.000 description 10
- 238000012217 deletion Methods 0.000 description 9
- 230000037430 deletion Effects 0.000 description 9
- 230000037353 metabolic pathway Effects 0.000 description 8
- 108090001001 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferases Proteins 0.000 description 7
- 101150056470 dxs gene Proteins 0.000 description 7
- 229920001184 polypeptide Polymers 0.000 description 7
- 108090000765 processed proteins & peptides Proteins 0.000 description 7
- 102000004196 processed proteins & peptides Human genes 0.000 description 7
- 241000894006 Bacteria Species 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 6
- 235000021317 phosphate Nutrition 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 108030003683 4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol kinases Proteins 0.000 description 4
- 241000196324 Embryophyta Species 0.000 description 4
- 241000192134 Oenococcus oeni Species 0.000 description 4
- 108010060155 deoxyxylulose-5-phosphate synthase Proteins 0.000 description 4
- 230000005764 inhibitory process Effects 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 102000004169 proteins and genes Human genes 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 150000003505 terpenes Chemical class 0.000 description 4
- 230000035899 viability Effects 0.000 description 4
- MDSIZRKJVDMQOQ-GORDUTHDSA-N (2E)-4-hydroxy-3-methylbut-2-en-1-yl diphosphate Chemical compound OCC(/C)=C/COP(O)(=O)OP(O)(O)=O MDSIZRKJVDMQOQ-GORDUTHDSA-N 0.000 description 3
- 206010056474 Erythrosis Diseases 0.000 description 3
- 241000222292 [Candida] magnoliae Species 0.000 description 3
- 238000007792 addition Methods 0.000 description 3
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 3
- 230000007812 deficiency Effects 0.000 description 3
- 230000002255 enzymatic effect Effects 0.000 description 3
- 230000014509 gene expression Effects 0.000 description 3
- 239000002207 metabolite Substances 0.000 description 3
- 239000006225 natural substrate Substances 0.000 description 3
- 230000036961 partial effect Effects 0.000 description 3
- MDSIZRKJVDMQOQ-GORDUTHDSA-K (2E)-4-hydroxy-3-methylbut-2-enyl diphosphate(3-) Chemical compound OCC(/C)=C/COP([O-])(=O)OP([O-])([O-])=O MDSIZRKJVDMQOQ-GORDUTHDSA-K 0.000 description 2
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- AJPADPZSRRUGHI-RFZPGFLSSA-N 1-deoxy-D-xylulose 5-phosphate Chemical compound CC(=O)[C@@H](O)[C@H](O)COP(O)(O)=O AJPADPZSRRUGHI-RFZPGFLSSA-N 0.000 description 2
- SFRQRNJMIIUYDI-UHNVWZDZSA-N 2-C-Methyl-D-erythritol 2,4-cyclodiphosphate Natural products OC[C@]1(C)OP(O)(=O)OP(O)(=O)OC[C@H]1O SFRQRNJMIIUYDI-UHNVWZDZSA-N 0.000 description 2
- SFRQRNJMIIUYDI-RFZPGFLSSA-N 2c-methyl-d-erythritol 2,4-cyclodiphosphate Chemical compound OC[C@@]1(C)O[P@@](O)(=O)O[P@](O)(=O)OC[C@H]1O SFRQRNJMIIUYDI-RFZPGFLSSA-N 0.000 description 2
- 108010080376 3-Deoxy-7-Phosphoheptulonate Synthase Proteins 0.000 description 2
- YFAUKWZNPVBCFF-XHIBXCGHSA-N 4-CDP-2-C-methyl-D-erythritol Chemical compound O[C@@H]1[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H](O)[C@@](O)(CO)C)O[C@H]1N1C(=O)N=C(N)C=C1 YFAUKWZNPVBCFF-XHIBXCGHSA-N 0.000 description 2
- HTJXTKBIUVFUAR-XHIBXCGHSA-N 4-CDP-2-C-methyl-D-erythritol 2-phosphate Chemical compound O[C@@H]1[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H](O)[C@](CO)(OP(O)(O)=O)C)O[C@H]1N1C(=O)N=C(N)C=C1 HTJXTKBIUVFUAR-XHIBXCGHSA-N 0.000 description 2
- 108030004173 4-hydroxy-3-methylbut-2-enyl diphosphate reductases Proteins 0.000 description 2
- PJWIPEXIFFQAQZ-PUFIMZNGSA-N 7-phospho-2-dehydro-3-deoxy-D-arabino-heptonic acid Chemical compound OP(=O)(O)OC[C@@H](O)[C@@H](O)[C@H](O)CC(=O)C(O)=O PJWIPEXIFFQAQZ-PUFIMZNGSA-N 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 2
- 241000589155 Agrobacterium tumefaciens Species 0.000 description 2
- 241001044223 Alkalilimnicola ehrlichii Species 0.000 description 2
- 241001626813 Anoxybacillus Species 0.000 description 2
- 241000223651 Aureobasidium Species 0.000 description 2
- 241001148534 Brachyspira Species 0.000 description 2
- 241000223205 Coccidioides immitis Species 0.000 description 2
- 241001491638 Corallina Species 0.000 description 2
- 241000186216 Corynebacterium Species 0.000 description 2
- YTBSYETUWUMLBZ-UHFFFAOYSA-N D-Erythrose Natural products OCC(O)C(O)C=O YTBSYETUWUMLBZ-UHFFFAOYSA-N 0.000 description 2
- GSXOAOHZAIYLCY-UHFFFAOYSA-N D-F6P Natural products OCC(=O)C(O)C(O)C(O)COP(O)(O)=O GSXOAOHZAIYLCY-UHFFFAOYSA-N 0.000 description 2
- YTBSYETUWUMLBZ-IUYQGCFVSA-N D-erythrose Chemical compound OC[C@@H](O)[C@@H](O)C=O YTBSYETUWUMLBZ-IUYQGCFVSA-N 0.000 description 2
- 241000588697 Enterobacter cloacae Species 0.000 description 2
- 241001465328 Eremothecium gossypii Species 0.000 description 2
- 108030004509 Erythrose-4-phosphate dehydrogenases Proteins 0.000 description 2
- 101001078008 Escherichia coli (strain K12) 4-hydroxy-3-methylbut-2-enyl diphosphate reductase Proteins 0.000 description 2
- 241000187809 Frankia Species 0.000 description 2
- 108010068561 Fructose-Bisphosphate Aldolase Proteins 0.000 description 2
- 102000001390 Fructose-Bisphosphate Aldolase Human genes 0.000 description 2
- 241000589989 Helicobacter Species 0.000 description 2
- 241000862974 Hyphomicrobium Species 0.000 description 2
- 102100027665 Isopentenyl-diphosphate Delta-isomerase 1 Human genes 0.000 description 2
- 241000186612 Lactobacillus sakei Species 0.000 description 2
- 241000589902 Leptospira Species 0.000 description 2
- 241000192132 Leuconostoc Species 0.000 description 2
- 241000186781 Listeria Species 0.000 description 2
- 241000186806 Listeria grayi Species 0.000 description 2
- 241000186805 Listeria innocua Species 0.000 description 2
- 241000908267 Moniliella Species 0.000 description 2
- 241000186359 Mycobacterium Species 0.000 description 2
- 241000320412 Ogataea angusta Species 0.000 description 2
- 241000179039 Paenibacillus Species 0.000 description 2
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 2
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 2
- 108091000080 Phosphotransferase Proteins 0.000 description 2
- 239000005062 Polybutadiene Substances 0.000 description 2
- 241000178315 Polynucleobacter Species 0.000 description 2
- 241000222180 Pseudozyma tsukubaensis Species 0.000 description 2
- 244000184734 Pyrus japonica Species 0.000 description 2
- 241000232299 Ralstonia Species 0.000 description 2
- 241000316848 Rhodococcus <scale insect> Species 0.000 description 2
- 241001134718 Rhodoferax Species 0.000 description 2
- 241001453443 Rothia <bacteria> Species 0.000 description 2
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 2
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 2
- 241001670248 Saccharophagus degradans Species 0.000 description 2
- 241000863430 Shewanella Species 0.000 description 2
- 241000589196 Sinorhizobium meliloti Species 0.000 description 2
- 241000194017 Streptococcus Species 0.000 description 2
- 244000057717 Streptococcus lactis Species 0.000 description 2
- 235000014897 Streptococcus lactis Nutrition 0.000 description 2
- 241001164579 Sulfurimonas Species 0.000 description 2
- MUMGGOZAMZWBJJ-DYKIIFRCSA-N Testostosterone Chemical compound O=C1CC[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 MUMGGOZAMZWBJJ-DYKIIFRCSA-N 0.000 description 2
- 108020004530 Transaldolase Proteins 0.000 description 2
- 108010043652 Transketolase Proteins 0.000 description 2
- 102000014701 Transketolase Human genes 0.000 description 2
- 241000235013 Yarrowia Species 0.000 description 2
- 241001656794 [Clostridium] saccharolyticum Species 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000001651 autotrophic effect Effects 0.000 description 2
- IAQRGUVFOMOMEM-UHFFFAOYSA-N but-2-ene Chemical compound CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- RXKJFZQQPQGTFL-UHFFFAOYSA-N dihydroxyacetone Chemical compound OCC(=O)CO RXKJFZQQPQGTFL-UHFFFAOYSA-N 0.000 description 2
- 238000000855 fermentation Methods 0.000 description 2
- 230000004151 fermentation Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 230000004077 genetic alteration Effects 0.000 description 2
- 231100000118 genetic alteration Toxicity 0.000 description 2
- 101150017044 ispH gene Proteins 0.000 description 2
- 102000020233 phosphotransferase Human genes 0.000 description 2
- 229920002857 polybutadiene Polymers 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- WTFXTQVDAKGDEY-UHFFFAOYSA-N (-)-chorismic acid Natural products OC1C=CC(C(O)=O)=CC1OC(=C)C(O)=O WTFXTQVDAKGDEY-UHFFFAOYSA-N 0.000 description 1
- LXJXRIRHZLFYRP-VKHMYHEASA-L (R)-2-Hydroxy-3-(phosphonooxy)-propanal Natural products O=C[C@H](O)COP([O-])([O-])=O LXJXRIRHZLFYRP-VKHMYHEASA-L 0.000 description 1
- 101710201507 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase, apicoplast Proteins 0.000 description 1
- 101710161384 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase, chloroplastic Proteins 0.000 description 1
- WVMWZWGZRAXUBK-SYTVJDICSA-N 3-dehydroquinic acid Chemical compound O[C@@H]1C[C@](O)(C(O)=O)CC(=O)[C@H]1O WVMWZWGZRAXUBK-SYTVJDICSA-N 0.000 description 1
- WVMWZWGZRAXUBK-UHFFFAOYSA-N 3-dehydroquinic acid Natural products OC1CC(O)(C(O)=O)CC(=O)C1O WVMWZWGZRAXUBK-UHFFFAOYSA-N 0.000 description 1
- 102100029077 3-hydroxy-3-methylglutaryl-coenzyme A reductase Human genes 0.000 description 1
- LJUQGASMPRMWIW-UHFFFAOYSA-N 5,6-dimethylbenzimidazole Chemical compound C1=C(C)C(C)=CC2=C1NC=N2 LJUQGASMPRMWIW-UHFFFAOYSA-N 0.000 description 1
- UHPMCKVQTMMPCG-UHFFFAOYSA-N 5,8-dihydroxy-2-methoxy-6-methyl-7-(2-oxopropyl)naphthalene-1,4-dione Chemical compound CC1=C(CC(C)=O)C(O)=C2C(=O)C(OC)=CC(=O)C2=C1O UHPMCKVQTMMPCG-UHFFFAOYSA-N 0.000 description 1
- 241000193451 Acetoanaerobium sticklandii Species 0.000 description 1
- 241000589212 Acetobacter pasteurianus Species 0.000 description 1
- 241001135192 Acetohalobium arabaticum Species 0.000 description 1
- 241000203022 Acholeplasma laidlawii Species 0.000 description 1
- 241000590020 Achromobacter Species 0.000 description 1
- 241000604450 Acidaminococcus fermentans Species 0.000 description 1
- 241000521595 Acidimicrobium ferrooxidans Species 0.000 description 1
- 241000588853 Acidiphilium Species 0.000 description 1
- 241000588849 Acidiphilium cryptum Species 0.000 description 1
- 241000266272 Acidithiobacillus Species 0.000 description 1
- 241000605222 Acidithiobacillus ferrooxidans Species 0.000 description 1
- 241001468182 Acidobacterium Species 0.000 description 1
- 241001464782 Acidobacterium capsulatum Species 0.000 description 1
- 241001134630 Acidothermus cellulolyticus Species 0.000 description 1
- 241000726119 Acidovorax Species 0.000 description 1
- 241001600124 Acidovorax avenae Species 0.000 description 1
- 241000589291 Acinetobacter Species 0.000 description 1
- 241000588626 Acinetobacter baumannii Species 0.000 description 1
- 241000606750 Actinobacillus Species 0.000 description 1
- 241000606748 Actinobacillus pleuropneumoniae Species 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 241000123665 Actinosynnema mirum Species 0.000 description 1
- 241000193795 Aerococcus urinae Species 0.000 description 1
- 241000607534 Aeromonas Species 0.000 description 1
- 241000607528 Aeromonas hydrophila Species 0.000 description 1
- 241000607525 Aeromonas salmonicida Species 0.000 description 1
- 241001024600 Aggregatibacter Species 0.000 description 1
- 241000606828 Aggregatibacter aphrophilus Species 0.000 description 1
- 241000589158 Agrobacterium Species 0.000 description 1
- 102000016912 Aldehyde Reductase Human genes 0.000 description 1
- 108010053754 Aldehyde reductase Proteins 0.000 description 1
- 241001156619 Alicycliphilus Species 0.000 description 1
- 241000640374 Alicyclobacillus acidocaldarius Species 0.000 description 1
- 241000122170 Aliivibrio salmonicida Species 0.000 description 1
- 241000197729 Alkaliphilus Species 0.000 description 1
- 241001245444 Alkaliphilus metalliredigens Species 0.000 description 1
- 241000190857 Allochromatium vinosum Species 0.000 description 1
- 241000590031 Alteromonas Species 0.000 description 1
- 241001135315 Alteromonas macleodii Species 0.000 description 1
- 241000147155 Ammonifex degensii Species 0.000 description 1
- 241001468213 Amycolatopsis mediterranei Species 0.000 description 1
- 241001464890 Anaerococcus prevotii Species 0.000 description 1
- 241000337031 Anaeromyxobacter Species 0.000 description 1
- 241000337032 Anaeromyxobacter dehalogenans Species 0.000 description 1
- 241000606646 Anaplasma Species 0.000 description 1
- 241000606665 Anaplasma marginale Species 0.000 description 1
- 241000219194 Arabidopsis Species 0.000 description 1
- 241000610258 Arabidopsis lyrata Species 0.000 description 1
- 241001135700 Arcanobacterium haemolyticum Species 0.000 description 1
- 241001135163 Arcobacter Species 0.000 description 1
- 241001135164 Arcobacter butzleri Species 0.000 description 1
- 241000470051 Aromatoleum aromaticum Species 0.000 description 1
- 241000186063 Arthrobacter Species 0.000 description 1
- 241000238421 Arthropoda Species 0.000 description 1
- 241000251557 Ascidiacea Species 0.000 description 1
- 241000228212 Aspergillus Species 0.000 description 1
- 241001507865 Aspergillus fischeri Species 0.000 description 1
- 241000228197 Aspergillus flavus Species 0.000 description 1
- 241001225321 Aspergillus fumigatus Species 0.000 description 1
- 241000228245 Aspergillus niger Species 0.000 description 1
- 241001313491 Asticcacaulis excentricus Species 0.000 description 1
- 241000193838 Atopobium parvulum Species 0.000 description 1
- 241000271566 Aves Species 0.000 description 1
- 241000726110 Azoarcus Species 0.000 description 1
- 241000894009 Azorhizobium caulinodans Species 0.000 description 1
- 241000589941 Azospirillum Species 0.000 description 1
- 241000206761 Bacillariophyta Species 0.000 description 1
- 241000193830 Bacillus <bacterium> Species 0.000 description 1
- 241000193738 Bacillus anthracis Species 0.000 description 1
- 241000193755 Bacillus cereus Species 0.000 description 1
- 241000193749 Bacillus coagulans Species 0.000 description 1
- 241000194108 Bacillus licheniformis Species 0.000 description 1
- 241000194107 Bacillus megaterium Species 0.000 description 1
- 244000063299 Bacillus subtilis Species 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- 241000606124 Bacteroides fragilis Species 0.000 description 1
- 241001148536 Bacteroides sp. Species 0.000 description 1
- 241000606660 Bartonella Species 0.000 description 1
- 241001518086 Bartonella henselae Species 0.000 description 1
- 241000588883 Beijerinckia indica Species 0.000 description 1
- 241001661339 Beutenbergia cavernae Species 0.000 description 1
- 241000186000 Bifidobacterium Species 0.000 description 1
- 241000186018 Bifidobacterium adolescentis Species 0.000 description 1
- 241001134770 Bifidobacterium animalis Species 0.000 description 1
- 241001608472 Bifidobacterium longum Species 0.000 description 1
- 241000588807 Bordetella Species 0.000 description 1
- 241000588832 Bordetella pertussis Species 0.000 description 1
- 241000589968 Borrelia Species 0.000 description 1
- 241000276440 Borrelia burgdorferi B31 Species 0.000 description 1
- 241000448699 Borrelia burgdorferi ZS7 Species 0.000 description 1
- 241001148605 Borreliella garinii Species 0.000 description 1
- 241000123650 Botrytis cinerea Species 0.000 description 1
- 241000157894 Brachybacterium faecium Species 0.000 description 1
- 241000743776 Brachypodium distachyon Species 0.000 description 1
- 241000589173 Bradyrhizobium Species 0.000 description 1
- 241000589174 Bradyrhizobium japonicum Species 0.000 description 1
- 241000193764 Brevibacillus brevis Species 0.000 description 1
- 241001261626 Brevundimonas subvibrioides Species 0.000 description 1
- 241000589562 Brucella Species 0.000 description 1
- 241001148106 Brucella melitensis Species 0.000 description 1
- 241000195940 Bryophyta Species 0.000 description 1
- 241001453698 Buchnera <proteobacteria> Species 0.000 description 1
- 241000894010 Buchnera aphidicola Species 0.000 description 1
- 241001453380 Burkholderia Species 0.000 description 1
- 241000722910 Burkholderia mallei Species 0.000 description 1
- 101100233616 Burkholderia pseudomallei (strain K96243) ispH1 gene Proteins 0.000 description 1
- 101100180240 Burkholderia pseudomallei (strain K96243) ispH2 gene Proteins 0.000 description 1
- 241000168061 Butyrivibrio proteoclasticus Species 0.000 description 1
- 241000253373 Caldanaerobacter subterraneus subsp. tengcongensis Species 0.000 description 1
- 241000178334 Caldicellulosiruptor Species 0.000 description 1
- 241000178335 Caldicellulosiruptor saccharolyticus Species 0.000 description 1
- 241000589876 Campylobacter Species 0.000 description 1
- 241000589875 Campylobacter jejuni Species 0.000 description 1
- 241000222120 Candida <Saccharomycetales> Species 0.000 description 1
- 241000222122 Candida albicans Species 0.000 description 1
- 241000144583 Candida dubliniensis Species 0.000 description 1
- 241000222128 Candida maltosa Species 0.000 description 1
- 241000222178 Candida tropicalis Species 0.000 description 1
- 241000016691 Candidatus Accumulibacter phosphatis Species 0.000 description 1
- 241000226559 Candidatus Arthromitus Species 0.000 description 1
- 241000672129 Candidatus Azobacteroides pseudotrichonymphae Species 0.000 description 1
- 241001115169 Candidatus Baumannia cicadellinicola Species 0.000 description 1
- 241001459354 Candidatus Blochmannia pennsylvanicus Species 0.000 description 1
- 241001496649 Candidatus Desulforudis audaxviator Species 0.000 description 1
- 241000263904 Candidatus Koribacter versatilis Species 0.000 description 1
- 241001518977 Candidatus Pelagibacter ubique Species 0.000 description 1
- 241001426758 Candidatus Protochlamydia amoebophila Species 0.000 description 1
- 241000327160 Candidatus Puniceispirillum marinum Species 0.000 description 1
- 241000530577 Candidatus Ruthia magnifica Species 0.000 description 1
- 241000328888 Candidatus Solibacter usitatus Species 0.000 description 1
- 241000620137 Carboxydothermus hydrogenoformans Species 0.000 description 1
- 241000206594 Carnobacterium Species 0.000 description 1
- 241000919932 Catenulispora acidiphila Species 0.000 description 1
- 241000863012 Caulobacter Species 0.000 description 1
- 241000186321 Cellulomonas Species 0.000 description 1
- 241000186220 Cellulomonas flavigena Species 0.000 description 1
- 241001147794 Cellulosilyticum lentocellum Species 0.000 description 1
- 241000863387 Cellvibrio Species 0.000 description 1
- 241000010977 Cellvibrio japonicus Species 0.000 description 1
- 241000251522 Cephalochordata Species 0.000 description 1
- 241001325302 Chitinophaga pinensis Species 0.000 description 1
- 241000606161 Chlamydia Species 0.000 description 1
- 241001647371 Chlamydia caviae Species 0.000 description 1
- 241001647367 Chlamydia muridarum Species 0.000 description 1
- 241001647372 Chlamydia pneumoniae Species 0.000 description 1
- 241000606153 Chlamydia trachomatis Species 0.000 description 1
- 241000588923 Citrobacter Species 0.000 description 1
- 241000588917 Citrobacter koseri Species 0.000 description 1
- 241000186650 Clavibacter Species 0.000 description 1
- 241001508813 Clavispora lusitaniae Species 0.000 description 1
- DBPRUZCKPFOVDV-UHFFFAOYSA-N Clorprenaline hydrochloride Chemical compound O.Cl.CC(C)NCC(O)C1=CC=CC=C1Cl DBPRUZCKPFOVDV-UHFFFAOYSA-N 0.000 description 1
- 241001112695 Clostridiales Species 0.000 description 1
- 241000193163 Clostridioides difficile Species 0.000 description 1
- 241000193403 Clostridium Species 0.000 description 1
- 241000193401 Clostridium acetobutylicum Species 0.000 description 1
- 241001656809 Clostridium autoethanogenum Species 0.000 description 1
- 241000193454 Clostridium beijerinckii Species 0.000 description 1
- 241001509415 Clostridium botulinum A Species 0.000 description 1
- 241000193169 Clostridium cellulovorans Species 0.000 description 1
- 241000186570 Clostridium kluyveri Species 0.000 description 1
- 241000186566 Clostridium ljungdahlii Species 0.000 description 1
- 241000186581 Clostridium novyi Species 0.000 description 1
- 241000193468 Clostridium perfringens Species 0.000 description 1
- 241000193449 Clostridium tetani Species 0.000 description 1
- 241000243321 Cnidaria Species 0.000 description 1
- 241000223203 Coccidioides Species 0.000 description 1
- 241001522757 Coccidioides posadasii Species 0.000 description 1
- 241001135745 Colwellia psychrerythraea Species 0.000 description 1
- 241000589519 Comamonas Species 0.000 description 1
- 241001425835 Conexibacter woesei Species 0.000 description 1
- 244000251987 Coprinus macrorhizus Species 0.000 description 1
- 235000001673 Coprinus macrorhizus Nutrition 0.000 description 1
- 241001467498 Coriobacterium glomerans Species 0.000 description 1
- 241001644925 Corynebacterium efficiens Species 0.000 description 1
- 241000186226 Corynebacterium glutamicum Species 0.000 description 1
- 241000938605 Crocodylia Species 0.000 description 1
- 241001657377 Cryptobacterium Species 0.000 description 1
- 201000007336 Cryptococcosis Diseases 0.000 description 1
- 241000221204 Cryptococcus neoformans Species 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- 241001528480 Cupriavidus Species 0.000 description 1
- 241000252867 Cupriavidus metallidurans Species 0.000 description 1
- 229910052685 Curium Inorganic materials 0.000 description 1
- 241000186427 Cutibacterium acnes Species 0.000 description 1
- 241000190106 Cyanidioschyzon merolae Species 0.000 description 1
- LXJXRIRHZLFYRP-VKHMYHEASA-N D-glyceraldehyde 3-phosphate Chemical compound O=C[C@H](O)COP(O)(O)=O LXJXRIRHZLFYRP-VKHMYHEASA-N 0.000 description 1
- 241000235036 Debaryomyces hansenii Species 0.000 description 1
- 241001245615 Dechloromonas Species 0.000 description 1
- 101710088194 Dehydrogenase Proteins 0.000 description 1
- 241001600129 Delftia Species 0.000 description 1
- 241001600125 Delftia acidovorans Species 0.000 description 1
- 241000776608 Desulfarculus baarsii Species 0.000 description 1
- 241001421462 Desulfatibacillum alkenivorans Species 0.000 description 1
- 241000205142 Desulfobacterium autotrophicum Species 0.000 description 1
- 241000605800 Desulfobulbus propionicus Species 0.000 description 1
- 241001062005 Desulfococcus oleovorans Species 0.000 description 1
- 241000605826 Desulfomicrobium Species 0.000 description 1
- 241000605823 Desulfomicrobium baculatum Species 0.000 description 1
- 241001662504 Desulfotalea psychrophila Species 0.000 description 1
- 241000186541 Desulfotomaculum Species 0.000 description 1
- 241000610754 Desulfotomaculum reducens Species 0.000 description 1
- 241000605716 Desulfovibrio Species 0.000 description 1
- 241000605758 Desulfovibrio vulgaris str. Hildenborough Species 0.000 description 1
- 241000302755 Desulfurispirillum indicum Species 0.000 description 1
- 241001391468 Desulfurivibrio alkaliphilus Species 0.000 description 1
- 241001187099 Dickeya Species 0.000 description 1
- 241001187100 Dickeya dadantii Species 0.000 description 1
- 241001187077 Dickeya zeae Species 0.000 description 1
- 241000168726 Dictyostelium discoideum Species 0.000 description 1
- 241001595867 Dinoroseobacter shibae Species 0.000 description 1
- 108700040484 Diphosphomevalonate decarboxylases Proteins 0.000 description 1
- 241000258955 Echinodermata Species 0.000 description 1
- 241000607473 Edwardsiella <enterobacteria> Species 0.000 description 1
- 241001657509 Eggerthella Species 0.000 description 1
- 241001657508 Eggerthella lenta Species 0.000 description 1
- 241000605314 Ehrlichia Species 0.000 description 1
- 241000606675 Ehrlichia ruminantium Species 0.000 description 1
- 241000243212 Encephalitozoon cuniculi Species 0.000 description 1
- 241000588914 Enterobacter Species 0.000 description 1
- 241000194032 Enterococcus faecalis Species 0.000 description 1
- 241000588698 Erwinia Species 0.000 description 1
- 241000400604 Erwinia tasmaniensis Species 0.000 description 1
- 241000186810 Erysipelothrix rhusiopathiae Species 0.000 description 1
- 241001534811 Erythrobacter litoralis Species 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 241001350691 Ethanoligenens harbinense Species 0.000 description 1
- 241000186394 Eubacterium Species 0.000 description 1
- 241001468125 Exiguobacterium Species 0.000 description 1
- 241000326311 Exiguobacterium sibiricum Species 0.000 description 1
- 241000178317 Ferrimonas balearica Species 0.000 description 1
- 241000192016 Finegoldia magna Species 0.000 description 1
- 241000947662 Fontinalis antipyretica Species 0.000 description 1
- 241000589601 Francisella Species 0.000 description 1
- 241000589602 Francisella tularensis Species 0.000 description 1
- 108010052764 Fructose-6-phosphate phosphoketolase Proteins 0.000 description 1
- 241000223218 Fusarium Species 0.000 description 1
- 241000606562 Gallibacterium anatis Species 0.000 description 1
- 241000102723 Gallionella capsiferriformans Species 0.000 description 1
- 241000207201 Gardnerella vaginalis Species 0.000 description 1
- 241000726221 Gemma Species 0.000 description 1
- 241000626621 Geobacillus Species 0.000 description 1
- 241000193419 Geobacillus kaustophilus Species 0.000 description 1
- 241001135750 Geobacter Species 0.000 description 1
- 241001494297 Geobacter sulfurreducens Species 0.000 description 1
- 241000187832 Geodermatophilus obscurus Species 0.000 description 1
- 241000224467 Giardia intestinalis Species 0.000 description 1
- 241000032147 Glaciecola Species 0.000 description 1
- 241001468096 Gluconacetobacter diazotrophicus Species 0.000 description 1
- 241000589232 Gluconobacter oxydans Species 0.000 description 1
- 241001444440 Granulibacter bethesdensis Species 0.000 description 1
- 241000606790 Haemophilus Species 0.000 description 1
- 241000606768 Haemophilus influenzae Species 0.000 description 1
- 241000045411 Hahella chejuensis Species 0.000 description 1
- 241000243488 Halanaerobium hydrogeniformans Species 0.000 description 1
- 241000204483 Haliscomenobacter hydrossis Species 0.000 description 1
- 241000206595 Halomonas elongata Species 0.000 description 1
- 241001655879 Halorhodospira Species 0.000 description 1
- 241001430395 Halothermothrix orenii Species 0.000 description 1
- 241000605178 Halothiobacillus neapolitanus Species 0.000 description 1
- 241000590017 Helicobacter felis Species 0.000 description 1
- 241000590002 Helicobacter pylori Species 0.000 description 1
- 241001494520 Heliobacterium modesticaldum Species 0.000 description 1
- 241000605014 Herbaspirillum seropedicae Species 0.000 description 1
- 241001196613 Herminiimonas arsenicoxydans Species 0.000 description 1
- 241001659634 Hippea maritima Species 0.000 description 1
- 241000207189 Hirschia baltica Species 0.000 description 1
- 241001185777 Hoyosella subflava Species 0.000 description 1
- 241001619535 Hyphomonas neptunium Species 0.000 description 1
- 241000948245 Idiomarina loihiensis Species 0.000 description 1
- 241000520155 Intrasporangium calvum Species 0.000 description 1
- 241000992451 Isoptericola variabilis Species 0.000 description 1
- 241001139251 Jannaschia Species 0.000 description 1
- 241000157919 Jonesia Species 0.000 description 1
- 241000048245 Kangiella koreensis Species 0.000 description 1
- 241000320429 Ketogulonicigenium vulgare Species 0.000 description 1
- 241000902907 Kineococcus radiotolerans Species 0.000 description 1
- 241000588748 Klebsiella Species 0.000 description 1
- 201000008225 Klebsiella pneumonia Diseases 0.000 description 1
- 241000588747 Klebsiella pneumoniae Species 0.000 description 1
- 235000014663 Kluyveromyces fragilis Nutrition 0.000 description 1
- 241001138401 Kluyveromyces lactis Species 0.000 description 1
- 241001247311 Kocuria rhizophila Species 0.000 description 1
- 241000235058 Komagataella pastoris Species 0.000 description 1
- 241001063987 Kribbella flavida Species 0.000 description 1
- 241001468178 Kyrpidia tusciae Species 0.000 description 1
- 241000191946 Kytococcus sedentarius Species 0.000 description 1
- 241001149568 Laccaria Species 0.000 description 1
- 241000481961 Lachancea thermotolerans Species 0.000 description 1
- 241000235651 Lachancea waltii Species 0.000 description 1
- 241000933069 Lachnoclostridium phytofermentans Species 0.000 description 1
- 241000186660 Lactobacillus Species 0.000 description 1
- 240000001046 Lactobacillus acidophilus Species 0.000 description 1
- 235000013956 Lactobacillus acidophilus Nutrition 0.000 description 1
- 241000186713 Lactobacillus amylovorus Species 0.000 description 1
- 240000001929 Lactobacillus brevis Species 0.000 description 1
- 235000013957 Lactobacillus brevis Nutrition 0.000 description 1
- 241000186679 Lactobacillus buchneri Species 0.000 description 1
- 244000199866 Lactobacillus casei Species 0.000 description 1
- 235000013958 Lactobacillus casei Nutrition 0.000 description 1
- 241000186673 Lactobacillus delbrueckii Species 0.000 description 1
- 241000186840 Lactobacillus fermentum Species 0.000 description 1
- 241000186606 Lactobacillus gasseri Species 0.000 description 1
- 241001468157 Lactobacillus johnsonii Species 0.000 description 1
- 240000006024 Lactobacillus plantarum Species 0.000 description 1
- 235000013965 Lactobacillus plantarum Nutrition 0.000 description 1
- 241000186604 Lactobacillus reuteri Species 0.000 description 1
- 241000218588 Lactobacillus rhamnosus Species 0.000 description 1
- 241000186869 Lactobacillus salivarius Species 0.000 description 1
- 241000425899 Laribacter hongkongensis Species 0.000 description 1
- 241001148567 Lawsonia intracellularis Species 0.000 description 1
- 241000611348 Leifsonia xyli subsp. xyli Species 0.000 description 1
- 241000222740 Leishmania braziliensis Species 0.000 description 1
- 241000222697 Leishmania infantum Species 0.000 description 1
- 241000222732 Leishmania major Species 0.000 description 1
- 241000589927 Leptospira borgpetersenii Species 0.000 description 1
- 241001478313 Leptothrix cholodnii Species 0.000 description 1
- 241000201465 Leuconostoc gelidum subsp. gasicomitatum Species 0.000 description 1
- 241000965142 Leuconostoc kimchii Species 0.000 description 1
- 241000186780 Listeria ivanovii Species 0.000 description 1
- 241000186779 Listeria monocytogenes Species 0.000 description 1
- 241001508814 Lodderomyces elongisporus Species 0.000 description 1
- 208000016604 Lyme disease Diseases 0.000 description 1
- 241000193386 Lysinibacillus sphaericus Species 0.000 description 1
- 101150027668 LytB gene Proteins 0.000 description 1
- 241000973043 Macrococcus caseolyticus Species 0.000 description 1
- 241001344133 Magnaporthe Species 0.000 description 1
- 241000342361 Magnetococcus Species 0.000 description 1
- 241001657388 Magnetospirillum magneticum Species 0.000 description 1
- 241001346813 Mahella australiensis Species 0.000 description 1
- 241001291474 Malassezia globosa Species 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 241001261604 Maricaulis maris Species 0.000 description 1
- 241000206597 Marinobacter hydrocarbonoclasticus Species 0.000 description 1
- 241001135624 Marinomonas Species 0.000 description 1
- 241000266740 Marinomonas mediterranea Species 0.000 description 1
- 241000219828 Medicago truncatula Species 0.000 description 1
- 241001468189 Melissococcus Species 0.000 description 1
- 241000970829 Mesorhizobium Species 0.000 description 1
- 241000589195 Mesorhizobium loti Species 0.000 description 1
- 241001512042 Methylibium petroleiphilum Species 0.000 description 1
- 241000589325 Methylobacillus Species 0.000 description 1
- 241000589323 Methylobacterium Species 0.000 description 1
- 241000589308 Methylobacterium extorquens Species 0.000 description 1
- 241001533549 Methylocella silvestris Species 0.000 description 1
- 241000589346 Methylococcus capsulatus Species 0.000 description 1
- 241000589348 Methylomonas methanica Species 0.000 description 1
- 241001132050 Methylotenera Species 0.000 description 1
- 241001132049 Methylotenera mobilis Species 0.000 description 1
- 241001608865 Methylovorus Species 0.000 description 1
- 241000096533 Methylovorus glucosotrophus Species 0.000 description 1
- 241000311506 Meyerozyma Species 0.000 description 1
- 241000203815 Microbacterium testaceum Species 0.000 description 1
- 241000191938 Micrococcus luteus Species 0.000 description 1
- 241001148172 Microlunatus phosphovorus Species 0.000 description 1
- 241000187708 Micromonospora Species 0.000 description 1
- 241000218953 Micromonospora aurantiaca Species 0.000 description 1
- 241000203734 Mobiluncus curtisii Species 0.000 description 1
- 241000237852 Mollusca Species 0.000 description 1
- 241000908250 Moniliella nigrescens Species 0.000 description 1
- 241000723128 Moniliella pollinis Species 0.000 description 1
- 241001656512 Moniliophthora perniciosa Species 0.000 description 1
- 241001609148 Monosiga brevicollis Species 0.000 description 1
- 241000193459 Moorella thermoacetica Species 0.000 description 1
- 241000588655 Moraxella catarrhalis Species 0.000 description 1
- 241001467553 Mycobacterium africanum Species 0.000 description 1
- 241000186366 Mycobacterium bovis Species 0.000 description 1
- 241000186362 Mycobacterium leprae Species 0.000 description 1
- 241000187479 Mycobacterium tuberculosis Species 0.000 description 1
- 241000204031 Mycoplasma Species 0.000 description 1
- 241000204022 Mycoplasma gallisepticum Species 0.000 description 1
- 241001135743 Mycoplasma penetrans Species 0.000 description 1
- 241000224437 Naegleria gruberi Species 0.000 description 1
- 241000520669 Nakamurella multipartita Species 0.000 description 1
- 241000167285 Natranaerobius thermophilus Species 0.000 description 1
- 241001012440 Nautilia profundicola Species 0.000 description 1
- 241000588653 Neisseria Species 0.000 description 1
- 241000588650 Neisseria meningitidis Species 0.000 description 1
- 240000002853 Nelumbo nucifera Species 0.000 description 1
- 235000006508 Nelumbo nucifera Nutrition 0.000 description 1
- 235000006510 Nelumbo pentapetala Nutrition 0.000 description 1
- 241000244206 Nematoda Species 0.000 description 1
- 241000604969 Neorickettsia sennetsu Species 0.000 description 1
- 241000221961 Neurospora crassa Species 0.000 description 1
- 241000135933 Nitratifractor salsuginis Species 0.000 description 1
- 241000135924 Nitratiruptor Species 0.000 description 1
- 241000605159 Nitrobacter Species 0.000 description 1
- 241000192147 Nitrosococcus Species 0.000 description 1
- 241000192146 Nitrosococcus oceani Species 0.000 description 1
- 241000605122 Nitrosomonas Species 0.000 description 1
- 241000605121 Nitrosomonas europaea Species 0.000 description 1
- 241001503673 Nocardia farcinica Species 0.000 description 1
- 241000187580 Nocardioides Species 0.000 description 1
- 241000122990 Nosema ceranae Species 0.000 description 1
- 241000383839 Novosphingobium Species 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- 241001135232 Odoribacter splanchnicus Species 0.000 description 1
- 241001452677 Ogataea methanolica Species 0.000 description 1
- 241000121201 Oligotropha Species 0.000 description 1
- 241000121202 Oligotropha carboxidovorans Species 0.000 description 1
- 241000927555 Olsenella uli Species 0.000 description 1
- 241000987906 Ostreococcus 'lucimarinus' Species 0.000 description 1
- 241001221668 Ostreococcus tauri Species 0.000 description 1
- 241000157908 Paenarthrobacter aurescens Species 0.000 description 1
- 241000194105 Paenibacillus polymyxa Species 0.000 description 1
- 241001099939 Paludibacter propionicigenes Species 0.000 description 1
- 241000520272 Pantoea Species 0.000 description 1
- 241000588696 Pantoea ananatis Species 0.000 description 1
- 241000606210 Parabacteroides distasonis Species 0.000 description 1
- 241001647381 Parachlamydia acanthamoebae Species 0.000 description 1
- 241000589597 Paracoccus denitrificans Species 0.000 description 1
- 241000223792 Paramecium tetraurelia Species 0.000 description 1
- 241000736122 Parastagonospora nodorum Species 0.000 description 1
- 241001386755 Parvibaculum lavamentivorans Species 0.000 description 1
- 241001245248 Parvularcula bermudensis Species 0.000 description 1
- 241000606856 Pasteurella multocida Species 0.000 description 1
- 241000531155 Pectobacterium Species 0.000 description 1
- 241001148142 Pectobacterium atrosepticum Species 0.000 description 1
- 241000191996 Pediococcus pentosaceus Species 0.000 description 1
- 241001660097 Pedobacter Species 0.000 description 1
- 241000605114 Pedobacter heparinus Species 0.000 description 1
- 241000863392 Pelobacter Species 0.000 description 1
- 241000863394 Pelobacter carbinolicus Species 0.000 description 1
- 241000142651 Pelotomaculum thermopropionicum Species 0.000 description 1
- 241000228150 Penicillium chrysogenum Species 0.000 description 1
- 241000206744 Phaeodactylum tricornutum Species 0.000 description 1
- 241000222393 Phanerochaete chrysosporium Species 0.000 description 1
- 241000799869 Phenylobacterium zucineum Species 0.000 description 1
- 241001148062 Photorhabdus Species 0.000 description 1
- 241001148064 Photorhabdus luminescens Species 0.000 description 1
- 241000195887 Physcomitrella patens Species 0.000 description 1
- 241000233622 Phytophthora infestans Species 0.000 description 1
- 241000700683 Placozoa Species 0.000 description 1
- 241000224017 Plasmodium berghei Species 0.000 description 1
- 241000224024 Plasmodium chabaudi Species 0.000 description 1
- 241000223960 Plasmodium falciparum Species 0.000 description 1
- 241000223801 Plasmodium knowlesi Species 0.000 description 1
- 241000223810 Plasmodium vivax Species 0.000 description 1
- 241000223830 Plasmodium yoelii Species 0.000 description 1
- 241000242594 Platyhelminthes Species 0.000 description 1
- 229910052778 Plutonium Inorganic materials 0.000 description 1
- 206010035664 Pneumonia Diseases 0.000 description 1
- 206010035717 Pneumonia klebsiella Diseases 0.000 description 1
- 241000221946 Podospora anserina Species 0.000 description 1
- 241000512220 Polaromonas Species 0.000 description 1
- 241001599925 Polaromonas naphthalenivorans Species 0.000 description 1
- 241000768489 Polymorphum gilvum Species 0.000 description 1
- 241000195877 Polytrichum commune Species 0.000 description 1
- 241000243142 Porifera Species 0.000 description 1
- 241000605894 Porphyromonas Species 0.000 description 1
- 241000605862 Porphyromonas gingivalis Species 0.000 description 1
- 241001492489 Postia placenta Species 0.000 description 1
- 241000157304 Prauserella rugosa Species 0.000 description 1
- 241000605861 Prevotella Species 0.000 description 1
- 241000605860 Prevotella ruminicola Species 0.000 description 1
- 241000186428 Propionibacterium freudenreichii Species 0.000 description 1
- 241000588770 Proteus mirabilis Species 0.000 description 1
- 241000519590 Pseudoalteromonas Species 0.000 description 1
- 241000590028 Pseudoalteromonas haloplanktis Species 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- 241000589517 Pseudomonas aeruginosa Species 0.000 description 1
- 241000589540 Pseudomonas fluorescens Species 0.000 description 1
- 241000589776 Pseudomonas putida Species 0.000 description 1
- 241000588671 Psychrobacter Species 0.000 description 1
- 241000355705 Psychrobacter arcticus Species 0.000 description 1
- 241001104683 Psychromonas ingrahamii Species 0.000 description 1
- 241000939704 Pusillimonas Species 0.000 description 1
- 241000520648 Pyrenophora teres Species 0.000 description 1
- 241000358078 Ramlibacter tataouinensis Species 0.000 description 1
- 241000186812 Renibacterium salmoninarum Species 0.000 description 1
- 241000589180 Rhizobium Species 0.000 description 1
- 241001148115 Rhizobium etli Species 0.000 description 1
- 241000191025 Rhodobacter Species 0.000 description 1
- 241000191043 Rhodobacter sphaeroides Species 0.000 description 1
- 241000158504 Rhodococcus hoagii Species 0.000 description 1
- 241000191033 Rhodomicrobium vannielii Species 0.000 description 1
- 241000190932 Rhodopseudomonas Species 0.000 description 1
- 241000190950 Rhodopseudomonas palustris Species 0.000 description 1
- 241000190967 Rhodospirillum Species 0.000 description 1
- 241000190984 Rhodospirillum rubrum Species 0.000 description 1
- 241001148569 Rhodothermus Species 0.000 description 1
- 241001148570 Rhodothermus marinus Species 0.000 description 1
- 240000000528 Ricinus communis Species 0.000 description 1
- 235000004443 Ricinus communis Nutrition 0.000 description 1
- 241000228162 Rubrobacter xylanophilus Species 0.000 description 1
- 241000379619 Ruegeria Species 0.000 description 1
- 241000030574 Ruegeria pomeroyi Species 0.000 description 1
- 241000193448 Ruminiclostridium thermocellum Species 0.000 description 1
- 241000192029 Ruminococcus albus Species 0.000 description 1
- 241000235072 Saccharomyces bayanus Species 0.000 description 1
- 244000253911 Saccharomyces fragilis Species 0.000 description 1
- 235000018368 Saccharomyces fragilis Nutrition 0.000 description 1
- 241000198072 Saccharomyces mikatae Species 0.000 description 1
- 241001123228 Saccharomyces paradoxus Species 0.000 description 1
- 241000187560 Saccharopolyspora Species 0.000 description 1
- 241000187559 Saccharopolyspora erythraea Species 0.000 description 1
- 241001312748 Salinibacter Species 0.000 description 1
- 241001312746 Salinibacter ruber Species 0.000 description 1
- 241000426682 Salinispora Species 0.000 description 1
- 241000426681 Salinispora tropica Species 0.000 description 1
- 241000607142 Salmonella Species 0.000 description 1
- 241001138501 Salmonella enterica Species 0.000 description 1
- 241000869103 Sanguibacter keddieii Species 0.000 description 1
- 241000222481 Schizophyllum commune Species 0.000 description 1
- 241000235347 Schizosaccharomyces pombe Species 0.000 description 1
- 241000221662 Sclerotinia Species 0.000 description 1
- 241000556404 Sediminispirochaeta smaragdinae Species 0.000 description 1
- 241000823037 Segniliparus rotundus Species 0.000 description 1
- 241000985259 Selenomonas sputigena Species 0.000 description 1
- 241000607720 Serratia Species 0.000 description 1
- 241000607768 Shigella Species 0.000 description 1
- 241000607762 Shigella flexneri Species 0.000 description 1
- 241000894749 Sideroxydans lithotrophicus Species 0.000 description 1
- 241001647368 Simkania negevensis Species 0.000 description 1
- 241001135312 Sinorhizobium Species 0.000 description 1
- 241001657510 Slackia heliotrinireducens Species 0.000 description 1
- 241000894536 Sodalis glossinidius Species 0.000 description 1
- 241000221950 Sordaria macrospora Species 0.000 description 1
- 240000006394 Sorghum bicolor Species 0.000 description 1
- 235000011684 Sorghum saccharatum Nutrition 0.000 description 1
- 241001136275 Sphingobacterium Species 0.000 description 1
- 241000383873 Sphingopyxis Species 0.000 description 1
- 241000237098 Sphingopyxis alaskensis Species 0.000 description 1
- 241000589973 Spirochaeta Species 0.000 description 1
- 241000794707 Stackebrandtia nassauensis Species 0.000 description 1
- 241000191940 Staphylococcus Species 0.000 description 1
- 241001134656 Staphylococcus lugdunensis Species 0.000 description 1
- 241001147691 Staphylococcus saprophyticus Species 0.000 description 1
- 241000191978 Staphylococcus simulans Species 0.000 description 1
- 241000605219 Starkeya novella Species 0.000 description 1
- 241000122971 Stenotrophomonas Species 0.000 description 1
- 241000122973 Stenotrophomonas maltophilia Species 0.000 description 1
- 241000193985 Streptococcus agalactiae Species 0.000 description 1
- 241000194042 Streptococcus dysgalactiae Species 0.000 description 1
- 241000194048 Streptococcus equi Species 0.000 description 1
- 241001134658 Streptococcus mitis Species 0.000 description 1
- 241000194025 Streptococcus oralis Species 0.000 description 1
- 241000193991 Streptococcus parasanguinis Species 0.000 description 1
- 241000194055 Streptococcus parauberis Species 0.000 description 1
- 241001403829 Streptococcus pseudopneumoniae Species 0.000 description 1
- 241000193996 Streptococcus pyogenes Species 0.000 description 1
- 241000194024 Streptococcus salivarius Species 0.000 description 1
- 241000194023 Streptococcus sanguinis Species 0.000 description 1
- 241000194021 Streptococcus suis Species 0.000 description 1
- 241000194054 Streptococcus uberis Species 0.000 description 1
- 241000187747 Streptomyces Species 0.000 description 1
- 241000187432 Streptomyces coelicolor Species 0.000 description 1
- 101100126492 Streptomyces coelicolor (strain ATCC BAA-471 / A3(2) / M145) ispG1 gene Proteins 0.000 description 1
- 241000203587 Streptosporangium roseum Species 0.000 description 1
- 241000521591 Sulfobacillus acidophilus Species 0.000 description 1
- 241000921365 Sulfurospirillum deleyianum Species 0.000 description 1
- 241000091581 Sulfurovum Species 0.000 description 1
- 241000207197 Symbiobacterium thermophilum Species 0.000 description 1
- 241000264843 Syntrophobacter fumaroxidans Species 0.000 description 1
- 241000498535 Syntrophobotulus glycolicus Species 0.000 description 1
- 241000606014 Syntrophomonas wolfei Species 0.000 description 1
- 241001670075 Syntrophothermus lipocalidus Species 0.000 description 1
- 241001303801 Syntrophus aciditrophicus Species 0.000 description 1
- 241001148458 Taylorella equigenitalis Species 0.000 description 1
- 241000658698 Tepidanaerobacter Species 0.000 description 1
- 241000319103 Terriglobus saanensis Species 0.000 description 1
- 241000248384 Tetrahymena thermophila Species 0.000 description 1
- 241001491687 Thalassiosira pseudonana Species 0.000 description 1
- 241001464942 Thauera Species 0.000 description 1
- 241001265508 Thermaerobacter marianensis Species 0.000 description 1
- 241001657755 Thermincola potens Species 0.000 description 1
- 241000186339 Thermoanaerobacter Species 0.000 description 1
- 241001137870 Thermoanaerobacterium Species 0.000 description 1
- 241001147773 Thermoanaerobacterium xylanolyticum Species 0.000 description 1
- 241000203600 Thermobispora bispora Species 0.000 description 1
- 241001087612 Thermodesulfobium narugense Species 0.000 description 1
- 241001133197 Thermosediminibacter oceani Species 0.000 description 1
- 241001528280 Thioalkalivibrio Species 0.000 description 1
- 241000605118 Thiobacillus Species 0.000 description 1
- 241000605179 Thiomonas intermedia Species 0.000 description 1
- 241000159619 Tolumonas auensis Species 0.000 description 1
- 241000006364 Torula Species 0.000 description 1
- 102100028601 Transaldolase Human genes 0.000 description 1
- 241000589886 Treponema Species 0.000 description 1
- 241000589884 Treponema pallidum Species 0.000 description 1
- 241000589903 Treponema succinifaciens Species 0.000 description 1
- 241000224527 Trichomonas vaginalis Species 0.000 description 1
- 241000893969 Trichophyton benhamiae Species 0.000 description 1
- 241000893966 Trichophyton verrucosum Species 0.000 description 1
- 241000908249 Trichosporonoides Species 0.000 description 1
- 241000203826 Tropheryma whipplei Species 0.000 description 1
- 241000223105 Trypanosoma brucei Species 0.000 description 1
- 241000223109 Trypanosoma cruzi Species 0.000 description 1
- 241000204063 Tsukamurella paurometabola Species 0.000 description 1
- 244000223977 Tuber melanosporum Species 0.000 description 1
- 235000002777 Tuber melanosporum Nutrition 0.000 description 1
- 241001465202 Uncinocarpus reesii Species 0.000 description 1
- 244000301083 Ustilago maydis Species 0.000 description 1
- 235000015919 Ustilago maydis Nutrition 0.000 description 1
- 241001489220 Vanderwaltozyma polyspora Species 0.000 description 1
- 241001478283 Variovorax Species 0.000 description 1
- 241001478284 Variovorax paradoxus Species 0.000 description 1
- 241001148135 Veillonella parvula Species 0.000 description 1
- 241001447269 Verminephrobacter eiseniae Species 0.000 description 1
- 241001531292 Verrucosispora maris Species 0.000 description 1
- 241000607598 Vibrio Species 0.000 description 1
- 241000607626 Vibrio cholerae Species 0.000 description 1
- 240000006365 Vitis vinifera Species 0.000 description 1
- 235000014787 Vitis vinifera Nutrition 0.000 description 1
- 241000195615 Volvox Species 0.000 description 1
- 241000384856 Weissella koreensis Species 0.000 description 1
- 241000498987 Wigglesworthia glossinidia Species 0.000 description 1
- 241000604961 Wolbachia Species 0.000 description 1
- 241000604957 Wolbachia pipientis Species 0.000 description 1
- 241000605939 Wolinella succinogenes Species 0.000 description 1
- 241000589494 Xanthobacter autotrophicus Species 0.000 description 1
- 241000589634 Xanthomonas Species 0.000 description 1
- 241000589636 Xanthomonas campestris Species 0.000 description 1
- 241000607757 Xenorhabdus Species 0.000 description 1
- 241001105590 Xylanimonas cellulosilytica Species 0.000 description 1
- 241000204366 Xylella Species 0.000 description 1
- 241000204362 Xylella fastidiosa Species 0.000 description 1
- 241000235015 Yarrowia lipolytica Species 0.000 description 1
- 241000607734 Yersinia <bacteria> Species 0.000 description 1
- 241000607479 Yersinia pestis Species 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000007244 Zea mays Nutrition 0.000 description 1
- 241000235033 Zygosaccharomyces rouxii Species 0.000 description 1
- 241000588901 Zymomonas Species 0.000 description 1
- 241000588902 Zymomonas mobilis Species 0.000 description 1
- 241000222126 [Candida] glabrata Species 0.000 description 1
- 241000512905 [Candida] sonorensis Species 0.000 description 1
- 241000193453 [Clostridium] cellulolyticum Species 0.000 description 1
- 241001531273 [Eubacterium] eligens Species 0.000 description 1
- 241001231403 [Nectria] haematococca Species 0.000 description 1
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000009056 active transport Effects 0.000 description 1
- BTGRAWJCKBQKAO-UHFFFAOYSA-N adiponitrile Chemical compound N#CCCCCC#N BTGRAWJCKBQKAO-UHFFFAOYSA-N 0.000 description 1
- 230000003281 allosteric effect Effects 0.000 description 1
- 229940011158 alteromonas macleodii Drugs 0.000 description 1
- 150000001413 amino acids Chemical group 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 229940065181 bacillus anthracis Drugs 0.000 description 1
- 229940054340 bacillus coagulans Drugs 0.000 description 1
- 229940092524 bartonella henselae Drugs 0.000 description 1
- BGWGXPAPYGQALX-ARQDHWQXSA-N beta-D-fructofuranose 6-phosphate Chemical compound OC[C@@]1(O)O[C@H](COP(O)(O)=O)[C@@H](O)[C@@H]1O BGWGXPAPYGQALX-ARQDHWQXSA-N 0.000 description 1
- 229940118852 bifidobacterium animalis Drugs 0.000 description 1
- 230000006696 biosynthetic metabolic pathway Effects 0.000 description 1
- 229940038698 brucella melitensis Drugs 0.000 description 1
- 229940074375 burkholderia mallei Drugs 0.000 description 1
- NTXGQCSETZTARF-UHFFFAOYSA-N buta-1,3-diene;prop-2-enenitrile Chemical compound C=CC=C.C=CC#N NTXGQCSETZTARF-UHFFFAOYSA-N 0.000 description 1
- OWBTYPJTUOEWEK-UHFFFAOYSA-N butane-2,3-diol Chemical compound CC(O)C(C)O OWBTYPJTUOEWEK-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229940095731 candida albicans Drugs 0.000 description 1
- 208000032343 candida glabrata infection Diseases 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000033077 cellular process Effects 0.000 description 1
- 229940038705 chlamydia trachomatis Drugs 0.000 description 1
- WTFXTQVDAKGDEY-HTQZYQBOSA-N chorismic acid Chemical compound O[C@@H]1C=CC(C(O)=O)=C[C@H]1OC(=C)C(O)=O WTFXTQVDAKGDEY-HTQZYQBOSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 230000030609 dephosphorylation Effects 0.000 description 1
- 238000006209 dephosphorylation reaction Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229940120503 dihydroxyacetone Drugs 0.000 description 1
- XNMQEEKYCVKGBD-UHFFFAOYSA-N dimethylacetylene Natural products CC#CC XNMQEEKYCVKGBD-UHFFFAOYSA-N 0.000 description 1
- 206010013023 diphtheria Diseases 0.000 description 1
- 238000009510 drug design Methods 0.000 description 1
- 229940032049 enterococcus faecalis Drugs 0.000 description 1
- 229940125532 enzyme inhibitor Drugs 0.000 description 1
- 239000002532 enzyme inhibitor Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 229940118764 francisella tularensis Drugs 0.000 description 1
- 238000012239 gene modification Methods 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 230000005017 genetic modification Effects 0.000 description 1
- 235000013617 genetically modified food Nutrition 0.000 description 1
- 229940085435 giardia lamblia Drugs 0.000 description 1
- 235000002532 grape seed extract Nutrition 0.000 description 1
- 229940047650 haemophilus influenzae Drugs 0.000 description 1
- 229940037467 helicobacter pylori Drugs 0.000 description 1
- 150000002402 hexoses Chemical class 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 101150081094 ispG gene Proteins 0.000 description 1
- GSXOAOHZAIYLCY-HSUXUTPPSA-N keto-D-fructose 6-phosphate Chemical compound OCC(=O)[C@@H](O)[C@H](O)[C@H](O)COP(O)(O)=O GSXOAOHZAIYLCY-HSUXUTPPSA-N 0.000 description 1
- 229940031154 kluyveromyces marxianus Drugs 0.000 description 1
- 229940039696 lactobacillus Drugs 0.000 description 1
- 229940039695 lactobacillus acidophilus Drugs 0.000 description 1
- 229940017800 lactobacillus casei Drugs 0.000 description 1
- 229940012969 lactobacillus fermentum Drugs 0.000 description 1
- 229940072205 lactobacillus plantarum Drugs 0.000 description 1
- 229940001882 lactobacillus reuteri Drugs 0.000 description 1
- 229940035901 lactobacillus sp Drugs 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 238000012269 metabolic engineering Methods 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229940051027 pasteurella multocida Drugs 0.000 description 1
- 230000007918 pathogenicity Effects 0.000 description 1
- 230000004108 pentose phosphate pathway Effects 0.000 description 1
- 150000002972 pentoses Chemical class 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- OYEHPCDNVJXUIW-UHFFFAOYSA-N plutonium atom Chemical compound [Pu] OYEHPCDNVJXUIW-UHFFFAOYSA-N 0.000 description 1
- 229940055019 propionibacterium acne Drugs 0.000 description 1
- NGVDGCNFYWLIFO-UHFFFAOYSA-N pyridoxal 5'-phosphate Chemical compound CC1=NC=C(COP(O)(O)=O)C(C=O)=C1O NGVDGCNFYWLIFO-UHFFFAOYSA-N 0.000 description 1
- 235000007682 pyridoxal 5'-phosphate Nutrition 0.000 description 1
- 239000011589 pyridoxal 5'-phosphate Substances 0.000 description 1
- 238000002708 random mutagenesis Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- JDTUMPKOJBQPKX-GBNDHIKLSA-N sedoheptulose 7-phosphate Chemical compound OCC(=O)[C@@H](O)[C@H](O)[C@H](O)[C@H](O)COP(O)(O)=O JDTUMPKOJBQPKX-GBNDHIKLSA-N 0.000 description 1
- 229940037648 staphylococcus simulans Drugs 0.000 description 1
- 238000004230 steam cracking Methods 0.000 description 1
- 229940115920 streptococcus dysgalactiae Drugs 0.000 description 1
- 229940115922 streptococcus uberis Drugs 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 108010008005 sugar-phosphatase Proteins 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- 229960003604 testosterone Drugs 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 229940055035 trichophyton verrucosum Drugs 0.000 description 1
- 229940118696 vibrio cholerae Drugs 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P5/00—Preparation of hydrocarbons or halogenated hydrocarbons
- C12P5/02—Preparation of hydrocarbons or halogenated hydrocarbons acyclic
- C12P5/026—Unsaturated compounds, i.e. alkenes, alkynes or allenes
Definitions
- aspects of the invention relate to methods for the production of butadiene in engineered host cells while maintaining the viability of the host.
- aspects of the invention describe the use of metabolic pathways, components of metabolic pathways, enzymes and genes associated with the production of butadiene from carbohydrate and other feedstocks in metabolically engineered host cells such that the host maintains the ability to produce the essential metabolites isopentenyl diphosphate (IPP) and dimethylallyl pyrophosphate (DMAPP).
- IPP isopentenyl diphosphate
- DMAPP dimethylallyl pyrophosphate
- Embodiments of the invention describe the use of metabolic pathways in engineered host cells for the production of butadiene via a tetritol 4-phosphate utilizing enzymes in the 2-C-methyl-D-erythritol- 4-phosphate/l-deoxy-D-xylulose-5-phosphate pathway (MEP/DOXP pathway or non- mevalonate pathway) while maintaining the ability to produce IPP and DMAPP via the mevalonate pathway.
- tetritol-4-phosphates include but are not limited to erythritol-4-phosphate.
- butadiene is an important monomer for synthetic rubbers including styrene-butadiene rubber (SBR), plastics including polybutadiene (PB), acrylonitrile butadiene styrene (ABS), acrylonitrile butadiene (NBR), and as a raw material for adiponitrile for Nylon-66 and other chemicals.
- SBR styrene-butadiene rubber
- PB polybutadiene
- ABS acrylonitrile butadiene styrene
- NBR acrylonitrile butadiene
- Butadiene is typically produced as a byproduct in the steam cracking process and isolated from the cracker streams via extraction.
- On-purpose butadiene has been prepared among other methods by dehydrogenation of n-butane, oxydehydrogenation of 1-butene or 2- butene, and chemical dehydrolysis of 1,4-, 1,3- and 2,3-butanediol.
- Industrially, butadiene has been synthesized using petrochemical-based feedstocks.
- the current commercial practices for producing on-purpose butadiene have several drawbacks including high cost of production and low yield processes.
- methods for the production of on-purpose butadiene rely on petro-chemical feedstocks and on energy intensive catalytic steps. Accordingly, it is clear that there is a need for sustainable methods for producing intermediates, in particular butadiene.
- biotechnology offers an alternative approach through metabolic pathway engineering of host organisms to utilize non-petrochemically derived feedstocks and milder process conditions to produce chemicals.
- butadiene there are no known naturally occurring metabolic pathways in which butadiene is formed either as an intermediate or product.
- the inventors have now discovered for the first time a method to exploit naturally occurring pathways to construct metabolically engineered host strains to produce butadiene.
- aspects of the invention relate to methods for the production of butadiene and non-2-C-methylated butadiene precursors in engineered host cells while maintaining the viability of the host.
- aspects of the invention describe the use of metabolic pathways, components of metabolic pathways, enzymes and genes associated with the production of butadiene and butadiene precursors from
- aspects of the invention describe the use of metabolic pathways in engineered host cells for the production of butadiene via a tetritol-4-phosphate such as erythritol-4-phosphate utilizing enzymes in the 2-C-methyl-D-erythritol-4-phosphate/l-deoxy-D-xylulose-5- phosphate pathway (MEP/DOXP pathway or non-mevalonate pathway) while maintaining the ability to produce IPP and DMAPP via the mevalonate pathway
- this document features a method of producing a butadiene or a butadiene precursor in a recombinant host cell having a 2-C-methyl-D-erythritol-4- phosphate/ l-deoxy-D-xylulose-5 -phosphate (MEP/DOXP) pathway and a mevalonate pathway, where the recombinant host cell includes an exogenous nucleic acid encoding an isoprene synthase.
- MEP/DOXP 2-C-methyl-D-erythritol-4- phosphate/ l-deoxy-D-xylulose-5 -phosphate
- the method includes incubating the recombinant host cell with a tetritol or a fermentable carbon source under conditions that the recombinant host cell i) produces a tetritol-4-phosphate from the tetritol or the fermentable carbon source and ii) converts at least some of the tetritol- 4-phosphate into butadiene or a non-2-C-methylated butadiene precursor.
- the non-2-C- methylated butadiene precursor can be selected from the group consisting of 4- diphospocytidyl-tetritol, 2-phospho-4-(cytidine 5' diphospho)-tetritol, 2-tetritol-2,4- cyclopyrophosphate, l-hydroxy-2-butenyl-4-pyrophosphate, methylallyl diphosphate, and butenylpyrophosphate (e.g., 4-diphosphocytidyl-erythritol, 2-phospho-4-(cytidine 5' diphospho)-erythritol, or 2-erythritol-2,4-cyclopyrophosphate).
- the tetritol can be erythritol, and the recombinant host cell can produce erythritol 4-phosphate from erythritol.
- the MEP/DOXP pathway can be endogenous to the recombinant host cell.
- the MEP/DOXP pathway can be heterologous to the recombinant host cell, and can include, for example, at least one exogenous nucleic acid encoding a 4-diphosphocytidyl-2-C-methyl-D-erythritol synthase (IspD), a 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase (IspE), a 2-C- methyl-D-erythritol 2,4-cyclodiphosphate synthase (IspF), a 4-hydroxy-3-methylbut- 2-en-l-yl (HMB) diphosphate synthase (IspG), a HMB-PP reductase (IspH), and an isopentenyl diphospate isomerase.
- IspD 4-diphosphocytidyl-2-C-methyl-D-erythritol synthase
- the mevalonate pathway can be endogenous to the recombinant host cell.
- the mevalonate pathway can be heterologous to the recombinant host cell, and can include, for example, at least one exogenous nucleic acid encoding a mevalonate kinase (MVK), a phosphomevalonate kinase (PMK), and a mevalonate-5 -pyrophosphate decarboxylase (PMD).
- the recombinant host also can include at least one exogenous nucleic acid encoding a thiolase, a HMG-CoA synthase, and a HMG-CoA reductase.
- the recombinant host cell can be deficient in l-deoxy-D-xylulose-5 -phosphate (DXP) reductoisomerase activity and/or l-deoxy-D-xylulose-5-phosphate (DOXP) synthase activity.
- DXP l-deoxy-D-xylulose-5 -phosphate
- DOXP l-deoxy-D-xylulose-5-phosphate
- the recombinant host cell can be incubated with the tetritol or the fermentable carbon source in the presence of an inhibitor.
- the inhibitor can be FR-900098, fosmidomycin or a fosmidomycin analog, or an aryl phosphonate.
- This document also features a recombinant host cell having a MEP/DOXP pathway and a mevalonate pathway, wherein the cell is deficient in 1-deoxy-D- xylulose-5 -phosphate (DXP) reductoisomerase activity and DOXP synthase activity, and includes an exogenous nucleic acid encoding an isoprene synthase.
- the recombinant host cell can produce a butadiene or a non-2 -C-methylated butadiene precursor from a tetritol.
- the MEP/DOXP pathway can be endogenous to the recombinant host cell.
- the MEP/DOXP pathway can be heterologous to the recombinant host cell, and can include, for example, at least one exogenous nucleic acid encoding a 4-diphosphocytidyl-2-C-methyl-D-erythritol synthase (IspD), a 4- diphosphocytidyl-2-C-methyl-D-erythritol kinase (IspE), a 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase (IspF), a 4-hydroxy-3-methylbut-2-en-l-yl (HMB) diphosphate synthase (IspG), a HMB-PP reductase (IspH), and an isopentenyl diphospate isomerase.
- IspD 4-diphosphocytidyl-2-C-methyl-D-erythritol synthase
- the mevalonate pathway can be endogenous to the recombinant host cell.
- the mevalonate pathway can be heterologous to the recombinant host cell, and can include, for example, at least one exogenous nucleic acid encoding a mevalonate kinase (MVK), a phosphomevalonate kinase (PMK), and a mevalonate-5 -pyrophosphate decarboxylase (PMD).
- the recombinant host also can include at least one exogenous nucleic acid encoding a thiolase, a HMG-CoA synthase, and a HMG-CoA reductase.
- This document also features a method of producing a butadiene or a butadiene precursor in a recombinant host cell having an endogenous mevalonate (MEV) pathway, where the recombinant host cell includes at least one exogenous nucleic acid encoding a 4-diphosphocytidyl-2-C-methyl-D-erythritol synthase (IspD), a 4- diphosphocytidyl-2-C-methyl-D-erythritol kinase (IspE), a 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase (IspF), a 4-hydroxy-3-methylbut-2-en-l-yl (HMB) diphosphate synthase (IspG), a HMB-PP reductase (IspH), an isopentenyl diphospate isomerase, and an isoprene synthase
- the method includes incubating the recombinant host cell with a tetritol or a fermentable carbon source under conditions that the host cell (i) produces a tetritol-4-phosphate from the tetritol or said fermentable carbon source; and (ii) converts at least some of the tetritol- 4-phosphate into butadiene or a non-2-C-methylated butadiene precursor.
- the document features a method of producing a butadiene or a butadiene precursor in a recombinant host cell having an endogenous MEP/DOXP pathway, wherein the recombinant host cell includes at least one exogenous nucleic acid encoding a mevalonate kinase (MVK), a phosphomevalonate kinase (PMK), and a mevalonate-5 -pyrophosphate decarboxylase (PMD), a thiolase, a HMG-CoA synthase, a HMG-CoA reductase, and an isoprene synthase.
- MVK mevalonate kinase
- PMK phosphomevalonate kinase
- PMD mevalonate-5 -pyrophosphate decarboxylase
- the method includes incubating the recombinant host cell with a tetritol or a fermentable carbon source under conditions that the host cell (i) produces a tetritol-4-phosphate from the tetritol or the fermentable carbon source; and (ii) converts at least some of the tetritol- 4- phosphate into butadiene or a non-2-C-methylated butadiene precursor.
- the fermentable carbon source can be selected from the group comprising: glycerol, a sugar from a foodstuff; and sugar from a non- foodstuff.
- the sugar from foodstuff can be sucrose or glucose.
- the sugar from the non- foodstuff can becellulosic or hemicellulosic derived sugars.
- This document also features a method of converting erythritol 4-phosphate to 4-diphospocytidyl-D-erythritol.
- the method includes contacting erythritol 4- phosphate with a cytidylyltransferase or a recombinant host cell expressing the cytidylyltransferase, wherein the incubation converts erythritol 4-phosphate to 4- diphospocytidyl-D-erythritol.
- This document also features a method of converting 4-diphospocytidyl-D- erythritol to 2-phospho-4-(cytidine 5 ' diphospho)-D-erythritol.
- the method includes contacting 4-diphospocytidyl-d-erythritol with a 4-(cytidine 5'-diphospho)-2-C- methyl-D -erythritol kinase or a recombinant host cell expressing the 4-(cytidine 5'- diphospho)-2-C-methyl-D-erythritol kinase, wherein the incubation converts 4- diphospocytidyl-D-erythritol to 2-phospho-4-(cytidine 5' diphospho)-D-erythritol.
- this document features a method of converting 2-phospho-4- (cytidine 5' diphospho)-D-erythritol to D-erythritol-2,4-cyclodiphosphate.
- the method includes contacting 2-phospho-4-(cytidine 5' diphospho)-D-erythritol with a 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase or a recombinant host cell expressing the 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase, wherein the incubation converts 2-phospho-4-(cytidine 5' diphospho)-D-erythritol to erythritol- 2,4-cyclodiphosphate.
- This document also features a method of converting erythritol-2,4- cyclodiphosphate to 1 -hydroxy -2 -butenyl-4-diphosphate.
- the method includes contacting erythritol-2,4-cyclodiphosphate with a l-hydroxy-2-methyl-2-butenyl 4- diphosphate synthase or a recombinant host cell expressing the 1 -hydroxy-2-methyl- 2-butenyl 4-diphosphate synthase, wherein the incubation converts erythritol-2,4- cyclodiphosphate to 1 -hydroxy -2 -butenyl-4-diphosphate.
- the method can include recovering butadiene or the non-2-C-methylated butadiene precursor.
- this document features a method of producing butadiene or a butadiene precursor using a recombinant host cell.
- the method includes incubating the recombinant host with a feedstock, wherein the host (i) converts at least some of the feedstock to a tetritol or a tetritol 4-phosphate; and (ii) converts the tetritol or the tetritol 4-phosphate to butadiene.
- the recombinant host can be deficient in DOXP synthase activity and/or DXP reductoisomerase activity.
- the recombinant host can include one or more of an exogenous nucleic acid encoding an enzyme classified under EC 2.7.7.60, an exogenous nucleic acid encoding an enzyme classified under EC 2.7.1.14, an exogenous nucleic acid encoding an enzyme classified under EC 4.6.1.12, an exogenous nucleic acid encoding an enzyme classified under EC 1.17.7.1, or an exogenous nucleic acid encoding an enzyme classified under EC 1.17.1.2.
- this document features a method of producing a butadiene or a butadiene precursor in an organism having a partial 2-C-methyl-D-erythritol 4- phosphate/l-deoxy-D-xylulose 5-phosphate pathway (MEP/DOXP pathway) and a mevalonate pathway to produce IPP and DMAPP, comprising the steps of : a. a supplying an organism with a tetritol such as erythritol or a fermentable carbon source that can be utilized by that organism to produce a tetritol-4-phosphate such as erythritol-4-phosphate, b.
- a supplying an organism with a tetritol such as erythritol or a fermentable carbon source that can be utilized by that organism to produce a tetritol-4-phosphate such as erythritol-4-phosphate
- b a supplying an organism with a tetritol
- IspS isoprene synthase
- the butadiene precursor can be selected from a group comprising 4-diphospocytidyl- tetritol, 4-diphospocytidyl-tetritol-2-phosphate, 2-tetritol-2,4 cyclopyrophosphate, 1- hydroxy-2-butenyl-4-pyrophosphate, methylallyl diphosphate,or
- This document also features an organism having a partial MEP/DOXP pathway which produces a butadiene or a butadiene precursor from tetritol- or erythritol-4-phosphate, but is unable to produce l-deoxy-D-xylulose-5-phosphate and/or 2-C-methyl-D-erythritol -4-phosphate.
- the host organism further has a mevalonate pathway which produces isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphosphate (DMAPP) in the biosynthesis of isoprenoids.
- the host organism can also produce tertritol 4-phosphate such as erythritol-4-phosphate.
- this document features a non-natural organism which produces butadiene from a feedstock via a tetritol- or erythritol-4-phosphate intermediate.
- the host cell organism can be an erythritol producing organism which contains a mevalonate isoprenoid pathway.
- the host cell organism can be a eurkaryote organism which contains a mevalonate isoprenoid pathway but does not contain a complete non-mevalonate isoprenoid pathway (MEP/DOXP pathway).
- the host cell organism can be a prokaryote organism which contains a mevalonate isoprenoid pathway but does not contain a complete non-mevalonate isoprenoid pathway (MEP/DOXP pathway).
- the host cell organism can be an organism which contains a non-mevalonate isoprenoid pathway (MEP/DOXP pathway) but does not contain a complete mevalonate isoprenoid pathway.
- the host cell organism can contain both a complete non-mevalonate isoprenoid pathway (MEP/DOXP pathway) and a complete mevalonate isoprenoid pathway.
- MEP/DOXP pathway a prokaryote organism which contains a mevalonate isoprenoid pathway but does not contain a complete non-mevalonate isoprenoid pathway
- MEP/DOXP pathway an organism which contains a non-mevalonate isoprenoid pathway
- the host cell organism can contain both a complete non-mevalonate
- the host is then engineered to be able to produce butadiene via a partial MEP/DOXP pathway (i.e. not able to produce the precursors l-deoxy-D-xylulose-5-phosphate and/or 2-C-methyl- D-erythritol -4-phosphate) and IspS from erythritol-4-phosphate while producing IPP and DMAPP via a complete mevalonate pathway (See, Figure 3).
- a partial MEP/DOXP pathway i.e. not able to produce the precursors l-deoxy-D-xylulose-5-phosphate and/or 2-C-methyl- D-erythritol -4-phosphate
- IspS from erythritol-4-phosphate while producing IPP and DMAPP via a complete mevalonate pathway
- This document also features a method of producing butadiene utilizing a non- naturally occurring organism comprising the steps of a) converting feedstocks to tetritol- or erythritol 4-phosphate; and b) converting tetritol- or erythritol-4-phosphate into butadiene.
- the feedstock can be any fermentable carbon source such as glycerol, sugars from foodstuffs, such as sucrose or glucose; or sugars from non- foodstuffs such as cellulosic or hemicellulosic derived sugars or sugars produced by the Calvin cycle in plants or autotrophic bacteria, a CI carbon source such as syngas (comprised of CO/CO 2 /H 2 ), methane, or C2 fermentable carbon sources such as acetate or ethanol.
- the feedstock can also be carbon rich waste streams derived from petrochemical based processes or from the paper and pulp industry.
- this document features a method of producing a butadiene intermediate utilizing a non-naturally occurring organism comprising the steps of: a) converting feedstocks to erythritol-4-phosphate; and b) converting erythritol-4- phosphate into butadiene intermediate.
- the feedstock can be any fermentable carbon source such as glycerol, sugars from foodstuffs, such as sucrose or glucose; or sugars from non-foodstuffs such as cellulosic or hemicellulosic derived sugars or sugars produced by the Calvin cycle in plants or autotrophic bacteria, a CI carbon source such as syngas (comprised of CO/CO 2 /H 2 ), methane, or C2 fermentable carbon sources such as acetate or ethanol.
- the feedstock can also be carbon rich waste streams derived from petrochemical based processes or from the paper and pulp industry. This document also features a method of converting erythritol-4-phosphate to 4-diphospocytidyl-d-erythritol via a cytidylyltransferase enzyme.
- This document also features a method of converting erythritol-4-phosphate to 4-diphospocytidyl-d-erythritol via a cytidylyltransferase enzyme.
- This document also features a method of converting 4-diphospocytidyl-d- erythritol to 2-phospho-4-(cytidine 5' diphospho)-D-erythritol via a cdp-me kinase enzyme.
- This document also features a method of converting 2-phospho-4-(cytidine 5' diphospho)-D-erythritol to 2-erythritol-2,4- cyclopyrophosphate via a mecdp synthase enzyme.
- This document also features a method of converting 2-erythritol-2,4- cyclopyrophosphate to 1 -hydroxy -2 -butenyl-4-pyrophosphate via ISPH enzyme.
- this document features a genetically modified host containing an enzyme for producing a butadiene intermediate utilizing a non-naturally occurring organism comprising the steps of: a) converting feedstocks to tetritol 4- phosphate such as erythritol 4-phosphate; and b) converting tetritol 4-phosphate such as erythritol 4-phosphate into butadiene intermediate.
- This document also features a genetically modified host containing an enzyme for producing a butadiene intermediate utilizing a non-naturally occurring organism comprising the steps of converting tetritol-4-phosphate such as erythritol-4-phosphate into butadiene intermediate.
- this document features a genetically modified host containing an enzyme from the enzyme class 2,7,7.-. such as 2-C-methyl-D-erythritol- 4-phosphate cytidylyltransferase enzyme (EC 2.7.7.60) which converts erythritol-4- phosphate to 4-diphospocytidyl-d-erythritol.
- an enzyme from the enzyme class 2,7,7.-. such as 2-C-methyl-D-erythritol- 4-phosphate cytidylyltransferase enzyme (EC 2.7.7.60) which converts erythritol-4- phosphate to 4-diphospocytidyl-d-erythritol.
- This document also features a genetically modified host containing an enzyme from the enzyme class 2,7,1.-. such as 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase (EC-2.7.1.14) enzyme which converts 4-diphospocytidyl-d-erythritol to 2- phospho-4-(cytidine 5' diphospho)-D-erythritol.
- an enzyme from the enzyme class 2,7,1.-. such as 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase (EC-2.7.1.14) enzyme which converts 4-diphospocytidyl-d-erythritol to 2- phospho-4-(cytidine 5' diphospho)-D-erythritol.
- This document also features a genetically modified host containing an enzyme from the enzyme class 4.6.1.-. such as 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase enzyme (EC-4.6.1.12) which converts 2-phospho-4-(cytidine 5' diphospho)- D-erythritol to 2-erythritol-2,4- cyclopyrophosphate.
- an enzyme from the enzyme class 4.6.1.-. such as 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase enzyme (EC-4.6.1.12) which converts 2-phospho-4-(cytidine 5' diphospho)- D-erythritol to 2-erythritol-2,4- cyclopyrophosphate.
- this document features a genetically modified host containing an enzyme from the enzyme class 1.17.7.-. such as (E)-4-hydroxy-3- methylbut-2-enyl-diphosphate synthase enzyme (EC-1.17.7.1) which converts 2- erythritol-2,4-cyclopyrophosphate to 1 -hydroxy-2-butenyl-4-pyrophosphate.
- an enzyme from the enzyme class 1.17.7.-. such as (E)-4-hydroxy-3- methylbut-2-enyl-diphosphate synthase enzyme (EC-1.17.7.1) which converts 2- erythritol-2,4-cyclopyrophosphate to 1 -hydroxy-2-butenyl-4-pyrophosphate.
- a genetically modified host also is described containing an enzyme from the enzyme class 1.17.1.-. such as 4-hydroxy-3-methylbut-2-enyl-diphosphate reductase enzyme (EC- 1.17.1.2) which converts 1 -hydroxy -2 -butenyl-4-pyrophosphate to methylallyl diphosphate, or butenylpyrophosphate.
- an enzyme from the enzyme class 1.17.1.-. such as 4-hydroxy-3-methylbut-2-enyl-diphosphate reductase enzyme (EC- 1.17.1.2) which converts 1 -hydroxy -2 -butenyl-4-pyrophosphate to methylallyl diphosphate, or butenylpyrophosphate.
- Any of the genetically modified hosts described herein can include one or more of the enzymes described above (e.g., any two of the enzymes).
- This document also features a method to increase the uptake of a tetritol phosphate by a non-mevalonate pathway in a host organism with a native
- MEP/DOXP pathway via deletion of one or more enzymatic steps in terpenoid backbone synthesis pathway such that the organism has an impaired ability to produce 2-C-methyl-D-erythritol 4-phosphate.
- the deletion of the at least one enzymatic step can be due to the deletion of the dxs gene (EC 2.2.1.7, l-deoxy-D-xylulose-5- phosphate synthase) or the dxr gene (EC 1.1.1.267, l-deoxy-D-xylulose-5-phosphate reductoisomerase).
- FIG. 1A is a schematic of reactions 1 and 2 in the MEP/DOXP pathway.
- Reaction 1 converts 2-C-methyl-D-erythritol-4-phosphate to 4-(cytidine 5'- diphospho)-2-C-methyl-D-erythritol using 2-C-methyl-D-erythritol-4-phsophate cytidylyltransferase (also known as 4-diphosphocytidyl-2C-methyl-D-erythritol synthase), classified under EC 2.7.7.60 (IspD).
- Reaction 2 converts 4-(cytidine 5'- diphospho)-2-C-methyl-D-erythritol to 2-phospho-4-(cytidine 5'-diphospho)-2-C- methyl-D-erythritol using 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase, classified under EC 2.7.1.148 (IspE).
- FIG. IB is a schematic of reactions 3 and 4 in the MEP/DOXP pathway.
- Reaction 3 converts 2-phospho-4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol to
- FIG. 1C is a schematic of reactions 5 and 6 in the MEP/DOXP pathway, and an additional reaction, reaction 7, that can be performed.
- Reaction 5 converts 1- hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate to dimethylallyl diphosphate
- DMAPP dimethyl-2-(E)- butenyl 4-diphosphate reductase
- IspH 1 -hydroxy -2-methyl-2-(E)- butenyl 4-diphosphate reductase
- Reaction 6 converts IPP to DMAPP using isopenteny diphosphate isomerase, classified under EC 5.3.3.2.
- Reaction 7 converts DMAPP to isoprene using isoprene synthase, classified under EC 4.2.3.27 (IspS).
- FIG. 2A is a schematic of reactions 1 and 2 in the production of 1 ,3 butadiene and butadiene precursors.
- 2-C-methyl-D-erythritol-4-phsophate cytidylyltransferase also known as 4-diphosphocytidyl-2C-methyl-D-erythritol synthase
- IspD EC 2.7.7.60
- FIG. 2B is a schematic of reactions 3 and 4 in the production of 1 ,3 butadiene and butadiene precursors.
- reaction 3 2-phospho-4-(cytidine 5'-diphospho)-D- erythritol is converted to D-erythritol-2,4-cyclodiphosphate using 2-C-methyl-D- erythritol 2,4-cyclodiphosphate synthase, classified under EC 4.6.1.12 (IspF).
- D-erythritol-2,4-cyclodiphosphate is converted to l-hydroxy-2-(E)-butenyl 4-diphosphate using l-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase, classified under EC 1.17.7.1 (IspG).
- FIG. 2C is a schematic of reactions 5, 6, and 7 in the production of 1,3 butadiene and butadiene precursors.
- reaction 5 1 -hydroxy -2 -(E)-butenyl 4- diphosphate is converted to methylallyl diphosphate and butenyl diphosphate using 1- hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase, classified under EC 1.17.1.2 (IspH).
- reaction 6 methylallyl diphosphate is converted to butenyl diphosphate using isopentenyl diphosphate isomerase, classified under EC 5.3.3.2.
- reaction 7 methyallyl diphosphate is converted to 1,3 -butadiene using isoprene synthase, classified under EC 4.2.3.27 (IspS).
- FIG. 3 is a schematic of isoprene synthesis using the MEP/DOXP pathway and mevalonate (MEV) pathway.
- MEP/DOXP pathway the reactions catalyzed by the endogenous dxr gene (EC 1.1.1.267, l-deoxy-D-xylulose-5-phosphate reductoisomerase) and/or dxs gene (l-deoxy-D-xylulose-5-phosphate synthase, EC 2.2.1.7) can be disrupted.
- the present invention includes the use of enzymes in the MEP/DOXP pathway (e.g., IspD, IspE, IspF, IspG, IspH, and isopentenyl diphosphate isomerase) and isoprene synthase (IspS) as shown in FIGs. 1A-1C to act on substrate analogs in which the 2-C-methyl group is absent to produce butadiene and non-2-C-methylated butadiene precursors from a tetritol-4-phosphate such as erythritol-4-phosphate instead of producing isoprene from 2-C-methyl-D-erythritol 4-phosphate.
- enzymes in the MEP/DOXP pathway e.g., IspD, IspE, IspF, IspG, IspH, and isopentenyl diphosphate isomerase
- IspS isoprene synthase
- non 2-C-methylated butadiene precursors refers to isoprene precursors formed in the MEP pathway by IspD, IspE, IspF, IspG, IspH & isopentenyl diphosphate isomerase.
- Non-2-C-methylated butadiene precursors include 4-diphospocytidyl-tetritol, 4- diphospocytidyl-tetritol-2-phosphate, 2-tetritol-2,4- cyclopyrophosphate, 1 -hydroxy - 2-butenyl-4-pyrophosphate, methylallyl diphosphate or butenylpyrophosphate.
- the non-2-C methylated butadiene precursor can be one or more of 4-diphospocytidyl-d-erythritol, 2-phospho-4-(cytidine 5' diphospho)-D-erythritol, 2-erythritol-2,4-cyclopyrophosphate, l-hydroxy-2-butenyl-4-pyrophosphate, methylallyl diphosphate, or butenylpyrophosphate.
- the tetritol-4-phosphate is erythritol-4-phosphate
- the host organism produces erythritol-4-phosphate through either an endogenous or an engineered pathway as described herein.
- an organism containing an endogenous pathway indicates that the organism naturally expresses all of the enzymes catalyzing the reactions within the pathway (e.g., the MEP/DOX pathway or mevalonate pathway).
- An organism containing an engineered pathway does not naturally express all of the enzymes catalyzing the reactions within the pathway but has been engineered such that all of the enzymes within the pathway are expressed in the organism.
- engineered organisms can naturally express none or some (e.g., one or more, two or more, three or more, four or more, five or more, or six or more) of the enzymes of the pathway. Endogenous genes of the engineered organisms can also be disrupted to prevent the formation of undesirable metabolites such as substrate analogs of erythritol-4-phosphate such as 2-C methyl-D-erythritol-4-phosphate or to prevent the loss of intermediates in the pathway through other enzymes acting on such intermediates. Such engineered organisms also can be referred to as recombinant host cells.
- Another aspect of the invention provides methods to ensure that the host cell retains the ability to produce the isoprenoid precursors isopentenylpyrophosphate (IPP) and dimethylallyl diphosphate (DMAPP), which are essential for the biosynthesis of molecules used in diverse cellular processes and are thus required for host organism viability.
- IPP isopentenylpyrophosphate
- DMAPP dimethylallyl diphosphate
- a host organism with an endogenous functional mevalonate pathway for the production of IPP and DMAPP is engineered to express the heterologous enzymes IspD, IspE, IspF, IspG, IspH ,and isopentenyl diphosphate isomerase of the MEP/DOXP pathway & IspS as a route to produce butadiene or non- 2-C methylated butadiene precursor such as 4-diphospocytidyl-D-erythritol, 2- phospho-4-(cytidine 5' diphospho)-D-erythritol, 2-erythritol-2,4-cyclopyrophosphate, l-hydroxy-2-butenyl-4-pyrophosphate, methylallyl diphosphate, or
- butenylpyrophosphate butenylpyrophosphate. If the host organism has an endogenous dxr gene (EC 1.1.1.267, l-deoxy-D-xylulose-5-phosphate reductoisomerase) or dxs gene (1-deoxy- D-xylulose-5-phosphate synthase, EC 2.2.1.7) present (see FIG. 3), one or both of the genes can be disrupted (e.g., knocked out) to produce a deficiency in the activity of the enzyme and decreased formation of the competing substrate, 2-C-methyl-D- erythritol 4-phosphate.
- endogenous dxr gene EC 1.1.1.267, l-deoxy-D-xylulose-5-phosphate reductoisomerase
- dxs gene (1-deoxy- D-xylulose-5-phosphate synthase, EC 2.2.1.7
- an enzyme inhibitor such as FR-900098, fosmidomycin or a fosmidomycin-related analog, or a non-fosmidomycin-like inhibitor such as an aryl phosphonate can be used to reduce the formation of 2-C- methyl-D-erythritol 4-phosphate, that could enter the engineered MEP pathway.
- a tetritol-4-phosphate such as D-erythritol-4-phosphate can serve as a substrate analog of 2-C-methyl-D-erythritol 4-phosphate for IspD.
- the enzymes in the MEP pathway thus convert erythritol-4-phosphate to the non-2-C-methylated analog of IPP & DMAPP, ultimately producing butadiene via the enzyme product of IspS.
- the host is also able to produce erythritol-4-phosphate from erythrose-4-phosphate or erythritol through endogenous or engineered pathways.
- organisms capable of producing erythritol-4-phosphate that are useful as host organisms or as a source of genes to construct a metabolically engineered host capable of producing erythritol-4-phosphate include eukaryotic organisms such as Arthroderma benhamiae, Ashbya gossypii (eremothecium gossypii), Aspergillus flavus, Aspergillus fumigates, Aspergillus niger, Aspergillus spp., Asperigillus clavatus, Asperigillus nidulans, Asperigillus orza, Aureobasidium sp, Botryotinia fuckeliana, Candida albicans, Candida bordini, Candida dubliniensis,
- Coccidioides immitis Coccidioides pasadasii, Coccidioides posadasii, Coprinopsis cinerea, Cryptococcus neoformans, Debaryomyces hansenii, Encephalitozoon cuniculi, Fusarium gramiearum, Hansenula polymorpha (Pichia angusta),
- Moniliophthora perniciosa Nectria haematococca, Neosartorya fischeri, Neurospora crassa, Nosema ceranae, Penicillium chrysogenum, Phaeosphaeria nodorum, Phanerochaete chrysosporium, Pichia methanolica, Pichia pastoris, Podospora anserina, Postia placenta, Pseudozyma tsukubaensis, Pyrenophora teres,
- Saccharomyces paradoxus Saccharomyces mikatae, Saccharomyces bayanus, Schefferosmyces stipitis, Schizophyllum commune, Schizosaccharomyces pombe, Sclerotinia sclerotoirum, Sordaria macrospora, Torula corallina, Trichophyton verrucosum, Tuber melanosporum, Uncinocarpus reesii, Ustilago maydis,
- Bacillus bacteria such as Acholeplasma laidlawii, Aerococcus urinae, Borrelia burgdorferi B31, Borrelia burgdorferi ZS7, Borrelia spp (e.g., Borrelia garinii), Carnobacterium sp, Enterococcus faecalis, Erysipelothrix rhusiopathiae, Gardnerella vaginalis, Haliscomenobacter hydrossis, Lactibacukkys crispatu , Lactobacillus acidophilus, Lactobacillus amylovorus, Lactobacillus brevis, Lactobacillus buchneri,
- Lactobacillus casei Lactobacillus delbrueckii
- Lactobacillus fermentum Lactobacillus fermentum
- Lactobacillus gasseri Lactobacillus johnsonii, Lactobacillus keflranofaciens, Lactobacillus plantarum, Lactobacillus reuteri, Lactobacillus rhamnosus,
- Lactobacillus sake Lactobacillus salivarius, Lactoccus garvieae, Lactococcus lactis sub lactis, Lactococcus lactis subs. Cremoris, Leuconostoc gasicomitatum,
- Leuconostoc kimchii Leuconostoc oenos (Oenococcus oeni), Leuconostoc sp C2 , Melissococcus plutonium, Pediococcus pentosaceus, Staphyloccus aureus,
- Staphylococcus lugdunensis Staphylococcus saprophyticus, Staphylococcus simulans, Staphylococcus spp, Steptococcus pneumonia, Steptocococcus mutans, Streptococcus agalactiae, Streptococcus dysgalactiae, Streptococcus equi subs., Streptococcus gallolyticusm Streptococcus mitis, Streptococcus oralis, Streptococcus parasanguinis, Streptococcus parauberis, Streptococcus pseudopneumoniae, Streptococcus pyogenes, Streptococcus salivarius, Streptococcus sanguis, Streptococcus suis, Streptococcus uberis, Streptocococcus thermophilus, Weissella koreensis protists such as Dictyostelium discoideum
- a host organism with an endogenous functional MEP/DOXP pathway for the production of IPP and DMAPP is engineered to express genes in the mevalonate pathway to allow it to produce IPP and DMAPP via the mevalonate pathway while the MEP/DOXP pathway is exploited to produce butadiene or a non-2-C methylated butadiene precursor such as 4-diphospocytidyl-D- erythritol, 2-phospho-4-(cytidine 5' diphospho)-D-erythritol, 2-erythritol-2,4- cyclopyrophosphate, l-hydroxy-2-butenyl-4-pyrophosphate, methylallyl diphosphate, or butenylpyrophosphate. If the host organism produces mevalonic acid
- mevalonate kinase MVK, EC 2.7.1.36
- PMK phosphomevalonate kinase
- PMD mevalonate-5-pyrophosphate decarboxylase
- additional enzymes that may be required include a thiolase (EC:2.3.1.9), a HMG-CoA synthase (EC 2.3.3.10), and a HMG-CoA reductase (EC 1.1.1.88 or EC 1.1.1.34).
- reductoisomerase in this pathway, or inhibition of the enzyme using an inhibitor such as FR-900098, fosmidomycin or a fosmidomycin-related analog, or a non- fosmidomycin-like inhibitor such as an aryl phosphonate can reduce or eliminate the formation of the competing substrate for IspD, 2-C-methyl-D-erythritol 4-phosphate. Instead, erythritol-4-phosphate then serves as a substrate analog of 2-C-methyl-D- erythritol 4-phosphate for IspD.
- the enzymes in the disrupted MEP pathway thus convert a tetritol-4-phosphate such as erythritol-4-phosphate to the non-2-C- methylated analogs of IPP and DMAPP.
- the host can be further engineered to express IspS to convert the non-2-C-methylated analogs of IPP and DMAPP, i.e., methylallyl-diphosphate and butenyl-diphsophate, to butadiene.
- Non-limiting examples of such organisms with an endogenous functional MEP/DOXP pathway for the production of IPP and DMAPP that are useful as host organisms or as a source of genes to construct a metabolically engineered host capable of producing IPP and DMAPP via the MEP/DOXP pathway enzymes include bacteria such as Accumulibacter phosphatis, Acetobacter pasteurianus,
- Acetohalobium arabaticum e.g., Achromobacter spp. (e.g., Archromobacter
- Acidiphilium spp. e.g., Acidiphilium cryptum
- Acidithiobacillus spp e.g., Acidiphilium cryptum
- Acidithiobacillus ferrooxidans Acidobacterium spp (e.g., Acidobacterium capsulatum), Acidothermus cellulolyticus, Acidovorax spp (e.g., Acidovorax avenae), Acinetobacter spp (e.g., Acinetobacter baumannii), Actinobacillus spp (e.g., Actinobacillus pleuropneumoniae), Actinosynnema mirum, Aeromonas hydrophila, Aeromonas spp (e.g., Aeromonas salmonicida) , Aggregatibacter spp (e.g.,
- Agrobacterium spp e.g., Agrobacterium radiobacter
- Agrobacterium tumefaciens Aicanivorax borkumensis
- Alicycliphilus denitriflcans Alicyclobacillus acidocaldarius
- Aliivibrio salmonicida Alkalilimnicola ehrlichei
- Alkalilimnicola ehrlichei Alkalilimnicola ehrlichei
- Alkaliphilus spp e.g., Alkaliphilus metalliredigens
- Allochromatium vinosum Alteromonas spp (Alteromonas macleodii), Ammonifex degensii, Amycolatopsis mediterranei, Amycolicicoccus subflavus, Anaerococcus prevotii, Anaeromyxobacter spp. (e.g., Anaeromyxobacter dehalogenans), Anaplasma spp (e.
- Arcanobacterium haemolyticum, Arcobacter spp. e.g., Arcobacter butzleri
- Aromatoleum aromaticum Arthrobacter spp (e.g., Arthrobacter aurescens), Asticcacaulis excentricus, Atopobium parvulum, Azoarcus sp, Azorhizobium caulinodans, Azospirillum sp, Bacillulus cellulosilyticus, Bacillus cereus, Bacillus coagulans, Bacillus licheniformis, Bacillus spp (e.g., Bacillus anthracis), Bacillus subtilis, Bacillus tusciae, Bacteroides spp. (e.g., Bacteroides fragilis), Bartonella spp. (e.g., Bartonella henselae), Baumannia cicadellinicola, Beijerinckia indica,
- Bradyrhizobium spp e.g., Bradyrhizobium japonicum
- Brevibacillus brevis Brevundimonas subvibrioides
- Brucella spp e.g., Brucella melitensis
- Buchnera spp e.g., Buchnera aphidicola
- Burkholderia spp e.g., Burkholderia mallei
- Butyrivibrio proteoclasticus Caldicellulosiruptor spp (e.g., Caldicellulosiruptor saccharolyticus), Campylobacter spp (e.g., Campylobacter jejuni)
- Candidatus azobacteroides pseudotrichonymphae Candidatus desulfococcus oleovorans, Candidatus desulforudis audaxviator, Candidatus koribacter versatilis, Candidatus protochlamydia amoebophila, Candidatus puniceispirillum marinum, Candidatus solibacter
- Corynebacterium efficiens Corynebacterium glutamicum, Corynebacterium spp (e.g., Corynebacterium diphtheria), Cryptobacterium curium, Cupriavidus spp (e.g., Cupriavidus metallidurans), , Dechloromonas aromatic, Delftia spp (e.g., Delftia acidovorans), Delsulfobacca acetoxidans, Desulfarculus baarsii, Desulfatibacillum alkenivorans, Desulfltobacterium hafniense, Desulfobacterium autotrophicum, Desulfobulbus propionicus, Desulfomicrobium spp. (e.g., Desulfomicrobium baculatum), Desulfotalea psychrophila, Desulfotomaculum spp (e.g.,
- Desulfotomaculum reducens Desulfovibrio spp (e.g., Desulfovibrio vulgaris Hildenborough), Desulfurispirillum indicum, Desulfurivibrio alkaliphilus, Dickeya spp (e.g., Dickeya dadantii, or Dickeya zeae), Dinoroseobacter shibae, Edwardsiella spp (e.g., Edwardiella ictaluri), Eggerthella spp (e.g., Eggerthella lenta), Ehrlichia spp (e.g., Ehrlichia ruminantium Welgevonden), Enterobacter cloacae, Enterobacter spp (e.g., Enterobacter cloacae), Erwinia spp (e.g., Erwinia tasmaniensis),
- Desulfovibrio spp e.g., Desulfovibrio vulgaris Hildenborough
- Erythrobacter litoralis Escherichia coli, Ethanoligenens harbinense, Eubacterium spp (e.g., Eubacterium eligens), Exiguobacterium spp. (e.g., Exiguobacterium sibiricum), Ferrimonas balearica, Finegoldia magna, Francisella spp (e.g.,
- Francisella tularensis Francisella tularensis
- Frankia spp e.g., Frankia symbiont
- Gallibacterium anatis Gallionella capsiferriformans
- Gemma proteobacterium e.g., Geobacillus kaustophilus
- Geobacter spp. e.g., Geobacter sulfurreducens
- Geodermatophilus obscurus Glaciecola sp, Gluconacetobacter diazotrophicus, Gluconobacter oxydans, Granulibacter bethesdensis, Haemophilus spp (e.g., Haemophilus influenzae), Hahella chejuensis, Halanaerobium hydrogeniformans, Halomonas elongata, Halorhodospira haiophiia, Halothermothrix orenii,
- Halothiobacillus neapolitanus Helicobacter spp (e.g., Helicobacter felis),
- Helicobacter spp e.g., Helicobacter pylori
- Heliobacterium modesticaldum Herbaspirillum seropedicae
- Herminiimonas arsenicoxydans Hippea maritima
- Hirschia baltica Hyphomicrobium spp (e.g., Hyphomicrobium denitriflcans), Hyphomonas neptunium, Idiomarina loihiensis, Intrasporangium calvum, Isoptericola variabilis, Jannaschia sp, Jonesia denitriflcans, Kangiella koreensis,
- Neisseria spp e.g., Neisseria meningitidis
- Neorickettsia sennetsu Nitratifractor salsuginis
- Nitratiruptor sp Nitrobacter spp.(e.g., Nitrobactaer winogradskyi), Nitrosococcus spp (e.g., Nitrosococcus oceani), Nitrosomonas spp. (e.g.,
- Nitrosomonas europaea Nocardioides sp, Novosphingobium spp (e.g.,
- Novosphigobium aromaticivorans Ochrobacterum anthropi, Odoribacter splanchnicus, Oligotropha spp (e.g., Oligotropha carboxidovorans), Olsenella uli, Ostreococcus lucimarinus, Ostreococcus tauri, Paenibacillus sp, Paenibacillus spp (e.g., Paenibacillus polymyxa), Paludibacter propionicigenes, Pantoea spp (e.g., Pantoea ananatis), Parabacteroides distasonis, Parachlamydia acanthamoebae, Paracoccus denitrificans, Parvibaculum lavamentivorans, Parvularcula bermudensis, Pasteurella multocida, Pectobacterium spp (e.g., Pectobacterium atrosepticum), Pedobacter spp (e
- Pseudomonas e.g., Pseudomonas aeruginosa
- Pseudomonas fluorescens e.g., Pseudomonas fluorescens
- solanaerarum Ramlibacter tataouinensis, Renibacterium salmoninarum, Rhizobium spp (e.g., Rhizobium etli), Rhodobacter spp (e.g., Rhodobacter sphaeroides),
- Rhodococcus Rhodococcus spp (e.g., Rhodococcus equi), Rhodoferax spp (e.g., Rhodoferax ferrieducens), Rhodomicrobium vannielii, Rhodopseudomonas spp (e.g., Rhodopseudomonas palustris), Rhodospirillum spp (e.g., Rhodospirillum rubrum), Rhodothermus spp (e.g., Rhodothermus marinus), Rosebacter spp (e.g., Rosebacter denitrificans), Rothia spp (e.g., Rothia mucillaginosa), Rubrobacter xylanophilus, Ruegeria sp, Ruminococcus albus, Saccharophagus degradans (Microbulbifer degradans), Saccharopolyspora spp (e.g
- Salinibacter spp e.g., Salinibacter ruber
- Salinispora spp e.g., Salinispora tropica
- Salmonella sp Sanguibacter keddieii, Segniliparus rotundus
- Selenomonas sproda Serratia spp (e.g., Serrtia proteamaculans)
- Shewanella spp e.g., Shewanella denitrificano
- Shigella spp e.g., Shigella flexneri
- Silicibacter pomeroyi Simkania negevensis
- Sinorhizobium spp e.g., Sinorhizobium meliloti
- Slackia heliotrinireducens Sodalis glossinidius
- Sphingobacterium sp e.g., Sphingopyxis al
- Stenotrophomonas spp e.g., Stenotrophomonas maltophilia
- Streptococcus sp Streptomyces spp
- Streptomyces spp e.g., Streptomyces coelicolor
- Streptosporangium roseum Sulfobacillus acidophilus
- Sulfurimonas spp e.g., Sulfurimonas denitriflcans
- Sulfurospirillum deleyianum Sulfurovum sp
- Symbiobacterium thermophilum Syntrophobacter fumaroxidans, Syntrophobotulus glycolicus, Syntrophomonas wolfei, Syntrophothermus lipocalidus
- Syntrophus aciditrophicus Taylorella equigenitalis
- Tepidanaerobacter sp Triggerobacter sasis
- Thauera sp Thermaerobacter marian
- thermosaccharolyticum Thermoanaerobacterium xylanolyticum, Thermobispora bispora, Thermodesulfobium narugense, Thermobiflda fusca, Thermosediminibacter oceani, Thioalkalivibrio sp, Thiobacillus denitriflcans, Thiomonas intermedia, Tolumonas auensis, Treponema spp (e.g., Treponema pallidum), Treponema succinifaciens, Tropheryma whipplei, Tsukamurella paurometabola, Variovorax spp (e.g., Variovorax paradoxus), Veillonella parvula, Verminephrobacter eiseniae, Verrucosispora maris, Vibrio spp (e.g., Vibrio cholerae), Wigglesworthia glossinidia, Wolbachia
- Xylanimonas cellulosilytica e.g., Xylella fastidiosa
- Yersinia spp e.g., Yersinia pestis
- Zymomonas mobilis e.g., Zymomonas mobilis
- Zymomonas sp algae such as Chlamydormonas reinhardtii, Volvox carter f.
- the host is also able to produce erythritol-4-phosphate via endogenous or engineered pathways.
- the host organism has both an endogenous functional mevalonate pathway and a functional endogenous MEP/DOXP pathway for the production of IPP and DMAPP.
- the mevalonate pathway can be used to produce IPP and DMAPP, while the MEP/DOXP pathway can be exploited for the production of butadiene and non-2-C methylated butadiene precursors such as 4-diphospocytidyl-D-erythritol, 2-phospho-4-(cytidine 5' diphospho)-D-erythritol, 2- erythritol-2,4-cyclopyrophosphate, l-hydroxy-2-butenyl-4-pyrophosphate, methylallyl diphosphate, or butenylpyrophosphate.
- reductoisomerase EC 1.1.1.267
- deletion of the endogenous dxr gene (EC 1.1.1.267, l-deoxy-D-xylulose-5- phosphate reductoisomerase) in this pathway, or inhibition of the enzyme by the addition of inhibitors such as fosmidomycin would reduce or eliminate the formation of the competing substrate for IspD, 2-C-methyl-D-erythritol 4-phosphate.
- erythritol-4-phosphate can serve as a substrate analog of 2-C-methyl-D-erythritol 4- phosphate for IspD.
- the enzymes in the disrupted MEP pathway thus convert a tetritol-4-phosphate such as erythritol-4-phosphate to the non-2-C-methylated analogs of IPP and DMAPP.
- the host can be further engineered to express IspS to convert these non-2-C-methylated analogs of IPP and DMAPP, i.e., methylallyl-diphosphate and butenyl-diphosphate, to butadiene or precursors of butadiene.
- the interruption of the early steps of the MEP pathway may advantageously also attenuate the pathogenicity of the organism.
- the host is also able to produce erythritol-4-phosphate via endogenous or engineered pathways.
- organisms with both an endogenous functional mevalonate pathway and an endogenous functional MEP/DOXP pathway for the production of IPP and DMAPP that are useful as host organisms or as a source of genes to construct a metabolically engineered host capable of producing IPP and DMAPP via the mevalonate pathway and butadiene via enzymes in the MEP/DOXP pathway enzymes include bacteria such as Listeria monocytogenes, Listeria grayi, Listeria innocua, Listeria ivanovii, Listeria murrayi, Listeria seeiigeri, Listeria weishimeri, Nocardia farcinica; plants such as Arabidopsis lyrata, Arabidopsis thaiiana, Brachypodium distachyon, Lotus japonicas, Medicago truncatula, Orzya sativa japonica, Pop
- the host organism has an endogenous functional mevalonate pathway and an endogenous MEP/DOXP pathway, which may lack one or more genes encoding one or more of the enzymes IspD, IspE, IspF, IspG, or IspH.
- the mevalonate pathway can be used to produce IPP and DMAPP, while the MEP pathway can be exploited for the production of butadiene after engineering the MEP pathway to express the enzymes in the pathway that are absent in the native host.
- Listeria innocua lacks IspG & IspH, and the MEP pathway in this organism can be augmented to be fully functional by expression of the genes gcpE and lytB, encoding IspG and IspH respectively.
- interruption of the early steps in the MEP pathway catalyzed by dxs (1-deoxy-D- xylulose-5 -phosphate synthase, EC 2.2.1.7) or IspC (dxr or l-deoxy-D-xylulose-5- phosphate reductoisomerase, EC 1.1.1.267) can reduce or eliminate the formation of 2-C-methyl-D-erythritol 4-phosphate.
- erythritol-4-phosphate then serves as a substrate analog of 2-C-methyl-D-erythritol 4-phosphate for IspD.
- the enzymes in the disrupted MEP pathway thus convert a tetritol-4-phosphate such as erythritol-4- phosphate to the non-2-C-methylated analogs of IPP and DMAPP.
- the host is further engineered to express IspS to convert these non-2-C-methylated analogs of IPP and DMAPP, i.e., methylallyl-diphosphate and butenyl-diphosphate, to butadiene.
- butadiene or a non-2-C methylated butadiene precursor such as 4-diphospocytidyl-D-erythritol, 2-phospho-4-(cytidine 5' diphospho)-D-erythritol, 2-erythritol-2,4-cyclopyrophosphate, 1 -hydroxy-2-butenyl- 4-pyrophosphate, methylallyl diphosphate, or butenylpyrophosphate
- an organism having an MEP/DOXP pathway by supplying an organism with an excess of a tetritol under conditions that the organism can produce tetritol 4-phosphate from the tetritol and convert at least some of the tetritol 4-phosphate into butadiene or a butadiene precursor such as a non-methylated analog of the MEP/DOXP pathway precursor.
- the organism can convert at least 20%, 21%, 22%, 23%, 24%, or 25% of the t
- the pathway for the production of butadiene from a tetritol 4-phosphate using the MEP pathway consisting of the IspD, IspE, IspF, IspG, IspH enzymes, and isopentenyl diphosphate isomerase, in combination with isoprene synthase (IspS) can be engineered to produce butadiene more efficiently.
- Flux through the pathway can be improved by increasing the level of expression of each of the individual enzymes or by improving the catalytic efficiency of each of the enzymes in the pathway by techniques known to persons skilled in the art.
- a host organism expressing the enzymes in the MEP pathway and IspS can be adapted via classical selection techniques or mutagenesis techniques to catalyze the respective reactions of the analog substrates lacking a 2-C methyl group more efficiently and thus to produce each intermediate in the pathway and finally butadiene from a tetritol-4-phosphate such as erythritol-4-phospahte.
- Enzyme levels in the host cells can also be increased by genetic modification of the host to express more copies of the genes encoding the enzymes IspD, IspE, IspF, IspG, IspH, IspS, and isopentenyl diphosphate isomerase or combinations thereof, under strong promoters or by inserting the heterologous genes in loci with high transcriptional efficiency in the genome of the host.
- Enzymes which convert non-methylated analogs of the MEP/DOXP pathway precursors to other butadienes or non-2-C methylated butadiene precursor such as 4- diphospocytidyl-D-erythritol, 2-phospho-4-(cytidine 5' diphospho)-D-erythritol, 2- erythritol-2,4-cyclopyrophosphate, l-hydroxy-2-butenyl-4-pyrophosphate, methylallyl diphosphate, or butenylpyrophosphate can be useful in the production of butadiene through the above described pathways, as shown in FIGs. 2A-2C.
- the document provides an enzyme from the enzyme class 2,7,7.-.
- the document provides an enzyme from the enzyme class EC 2,7, 1.-., such as 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase (EC-2.7.1.14) enzyme, which converts 4-diphospocytidyl-d-erythritol to 2-phospho-4-(cytidine 5' diphospho)-D-erythritol.
- an enzyme from the enzyme class EC 2,7, 1.-. such as 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase (EC-2.7.1.14) enzyme, which converts 4-diphospocytidyl-d-erythritol to 2-phospho-4-(cytidine 5' diphospho)-D-erythritol.
- the document provides an enzyme from the enzyme class EC 4.6.1.-., such as 2-C-methyl-D-erythritol 2,4- cyclodiphosphate synthase enzyme (EC-4.6.1.12), which converts 2-phospho-4-
- the document provides an enzyme from the enzyme class EC 1.17.7.-, such as (E)-4-hydroxy-3-methylbut-2-enyl-diphosphate synthase enzyme (EC- 1.17.7.1), which converts 2-erythritol-2,4-cyclopyrophosphate to l-hydroxy-2- butenyl-4-pyrophosphate.
- enzyme class EC 1.17.7.- such as (E)-4-hydroxy-3-methylbut-2-enyl-diphosphate synthase enzyme (EC- 1.17.7.1), which converts 2-erythritol-2,4-cyclopyrophosphate to l-hydroxy-2- butenyl-4-pyrophosphate.
- the document provides an enzyme from the enzyme class EC 1.17.1.-., such as 4-hydroxy-3-methylbut-2-enyl diphosphate reductase enzyme (EC-1.17.1.2), which converts l-hydroxy-2-butenyl-4- pyrophosphate to methylallyl diphosphate, or butenylpyrophosphate.
- the document provides an enzyme from the enzyme class EC 4.2.3.-., such as Isoprene synthase (EC-4.2.3.27), which converts methylallyl diphosphate or butenylpyrophosphate to butadiene.
- the document provides an enzyme capable of carrying two or more enzymatic conversions of butadiene precursors derived from erythritol-4-phosphate.
- the recombinant host can include a nucleic acid encoding one or more enzymes from such classes. Nucleic acids encoding isoprene synthase or enzymes in the MEP/DOXP pathway have been identified from various organisms and are readily available in publicly available databases such as GenBank or EMBL.
- Protein engineering techniques known to those skilled in the art can be applied to improve the substrate selectivity, substrate affinity and kinetic constants K m and max Or other properties such as stability of the enzymes. Where structural information is available for the enzymes, rational design approaches can be used to predict advantageous amino acid substitutions. Directed evolution of the enzymes can be applied to improve the enzymes, using techniques such as random mutagenesis, DNA shuffling and the like.
- IspD can be engineered to have a lower K m or higher V max for a tetritol-4-phosphate such as erythritol-4-phosphate than for the natural substrate 2-C-methyl-D-erythritol-4- phosphate.
- the IspS enzyme that is expressed in the host organism can be engineered to have a lower K m or higher V max for a methylallyl diphosphate than for the natural substrate dimethylallyl diphosphate (DMAPP), thereby reducing or eliminating the formation of isoprene from IPP and DMAPP formed in the mevalonate pathway of the host by the engineered IspS.
- DMAPP natural substrate dimethylallyl diphosphate
- erythritol-4-phosphate can be produced in the host organism from erythrose-4-phosphate, which in turn may be derived from any fermentable carbon source such as hexoses, pentoses, or glycerol.
- Tetritol-4- phosphates include the isomers erythritol-4-phosphate or threitol-4-phosphate.
- the sugar alcohol erythritol-4-phosphate is formed from the sugar aldehyde erythrose-4- phosphate by the enzyme EPDH (erythritol-4-phosphate dehydrogenase).
- Erythrose- 4-phosphate is formed in the Bifidobacterium shunt present in organisms such as Bifidobacterium animalis, B. longum, and Leuconostoc msenteroides from D- fructose-6-phosphate via a fructose-6-phosphate phosphoketolase (EC4.1.2.22), during 5,6-dimethylbenzimidazole biosynthesis in organisms such as Bacillus megaterium, Prauserella rugosa, Propionibacterium freudenreichii, Salmonella enterica enterica serovar Typhimurium, and Sinorhizobium meliloti.
- Erythrose-4-phosphate also is an intermediate in the non-oxidative branch of the pentose phosphate pathway and is formed from glyceraldehydes-3 -phosphate and D-sedoheptulose-7-phosphate by a transaldolase B (EC 2.2.1.2), in the 3- dehydroquinate biosynthesis I and chorisrmate biosynthesis I pathways where it is formed from 3-deoxy-D-arabino-heptulosonate-7-phosphate by an aldolase (EC 4.1.2.15), the Calvin-Benson-Brasham cycle, formaldehyde assimilation II (RuMP Cycle), formaldehyde assimilation II (dihydroxyacetone cycle) and Rubsco shunt where it is formed from glyceraldehyde-3 -phosphate and fructose-6-phosphate via a transketolase (EC 2.2.1.1), or from D-sedoheptulose-l,7-bisphosphate by an aldolase (f
- erythrose-4-phosphate is a precursor to erythritol-4-phosphate
- erythrose-4-phosphate such as erythrose-4-phosphate dehydrogenase (EC 1.2.1.72) in the pyridoxal-5 'phosphate biosynthesis pathway
- sugar phosphatases involved in the hydrolysis of the phospho-ester bond of sugar phosphates, such as phosphatises and kinases, such as erythrose-4-phosphate-kinase or erythritol-4-phosphate phosphatase.
- Nucleic acids encoding such enzymes have been identified from various organisms and are readily available in publicly available databases such as GenBank or EMBL.
- erythritol-4-phosphate is produced in the host organism from erythritol.
- erythrose-4-phosphate can be
- erythritol may be added to the fermentation broth, or produced in situ through a co- fermentation by any host organism able to secrete erythritol. Erythritol is then taken up into the cells by facilitated diffusion or active transport by sugar transporters and phosphorylated by a kinase to erythritol-4-phosphate.
- the uptake of erythritol can be increased by protein engineering of sugar transporters to improve the rate of uptake and affinity for erythritol. It also is advantageous to prevent the consumption or degradation of erythritol-4-phosphate by phosphatases in order to maximize the flux of erythritol-4-phosphate into the MEP pathway for conversion to butadiene.
- Host organisms useful for the production of erythritol include for example yeast strains belonging to the genera Yarrowia, Moniliella and Trichosporonoides, such as Yarrowia Upolytica, Moniliella poiiinis, M.
- acetobuten Trichosporonoides nigrescens, T. oedocephaiis, T. megachiiiienses as well as other microorganisms such as Toruia corallina, Aureobasidium sp, Pseudozyma tsukubaensis, Candida magnoliae, Leuconostoc oenos (Oenococcus oeni).
- non-naturally occurring when used in reference to a recombinant host cell is intended to mean that the host cell has at least one genetic alteration not normally found in a naturally occurring strain of the referenced species, including wild type strains of the referenced species. Genetic alterations include, for example, modifications introducing expressible nucleic acids encoding polypeptides (e.g., enzymes or metabolic polypeptides), other nucleic acid additions, nucleic acid deletions and/or other functional disruption of the microbial genetic material.
- polypeptides e.g., enzymes or metabolic polypeptides
- a recombinant host can express a plurality of polypeptides (e.g., one, two, three, four, five, or six polypeptides) from one or more exogenous nucleic acids.
- an exogenous nucleic acid encodes multiple polypeptides of interest (e.g., multiple enzymes).
- an exogenous nucleic acid encodes a single polypeptide of interest (e.g., a single enzyme).
- a recombinant host includes a plurality of different exogenous nucleic acids, where each exogenous nucleic acid encodes a single polypeptide of interest (e.g., one enzyme). Additional modifications include, for example, non-coding regulatory regions in which the modifications alter expression of a gene or operon, as explained in more detail below.
- a method of using the genetic engineering of a host to increase tetritol-4-phosphate conversion in the non-mevalonate (MEP/DOXP) pathway For instance, a method to increase the uptake of tetritol-4-phosphate, such as erythritol-4- phosphate, into a non-mevalonate pathway comprising the deletion of one or more of the genes that encode one or more enzymes catalyzing one or more steps in the terpenoid backbone synthesis pathway (see FIG. 3).
- deletion of either the dxs gene (EC 2.2.1.7, 1 -deoxy-D-xylulose-5 -phosphate synthase) or the dxr gene (EC 1.1.1.267, l-deoxy-D-xylulose-5-phosphate reductoisomerase) would disable the complete MEP/DOXP pathway, and force the engineered host to use the alternative substrate, erythritol-4-Phosphate (EP), as the 2-C-methyl-D-erythritol-4-phosphate would not be produced.
- EP erythritol-4-Phosphate
Landscapes
- Organic Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Microbiology (AREA)
- General Chemical & Material Sciences (AREA)
- Biotechnology (AREA)
- Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Methods and materials for producing butadiene and butadiene precursors in recombinant host cells are described.
Description
METHODS OF PRODUCING BUTADIENE
CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims priority from U.S. Application No. 61/558,700, filed November 1 1, 201 1, and U.S. Application No. 61/558,712, filed November 1 1, 2011, the disclosures of which are incorporated by reference in their entirety.
TECHNICAL FIELD
Aspects of the invention relate to methods for the production of butadiene in engineered host cells while maintaining the viability of the host. In particular, aspects of the invention describe the use of metabolic pathways, components of metabolic pathways, enzymes and genes associated with the production of butadiene from carbohydrate and other feedstocks in metabolically engineered host cells such that the host maintains the ability to produce the essential metabolites isopentenyl diphosphate (IPP) and dimethylallyl pyrophosphate (DMAPP). Embodiments of the invention describe the use of metabolic pathways in engineered host cells for the production of butadiene via a tetritol 4-phosphate utilizing enzymes in the 2-C-methyl-D-erythritol- 4-phosphate/l-deoxy-D-xylulose-5-phosphate pathway (MEP/DOXP pathway or non- mevalonate pathway) while maintaining the ability to produce IPP and DMAPP via the mevalonate pathway. Examples of tetritol-4-phosphates include but are not limited to erythritol-4-phosphate.
BACKGROUND
1,3 -Butadiene (hereinafter butadiene) is an important monomer for synthetic rubbers including styrene-butadiene rubber (SBR), plastics including polybutadiene (PB), acrylonitrile butadiene styrene (ABS), acrylonitrile butadiene (NBR), and as a raw material for adiponitrile for Nylon-66 and other chemicals. Butadiene is typically produced as a byproduct in the steam cracking process and isolated from the cracker streams via extraction. On-purpose butadiene has been prepared among other methods by dehydrogenation of n-butane, oxydehydrogenation of 1-butene or 2- butene, and chemical dehydrolysis of 1,4-, 1,3- and 2,3-butanediol. Industrially, butadiene has been synthesized using petrochemical-based feedstocks. The current
commercial practices for producing on-purpose butadiene have several drawbacks including high cost of production and low yield processes. Currently, methods for the production of on-purpose butadiene rely on petro-chemical feedstocks and on energy intensive catalytic steps. Accordingly, it is clear that there is a need for sustainable methods for producing intermediates, in particular butadiene. In this regard, biotechnology offers an alternative approach through metabolic pathway engineering of host organisms to utilize non-petrochemically derived feedstocks and milder process conditions to produce chemicals. In the case of butadiene, however, there are no known naturally occurring metabolic pathways in which butadiene is formed either as an intermediate or product. Surprisingly, the inventors have now discovered for the first time a method to exploit naturally occurring pathways to construct metabolically engineered host strains to produce butadiene.
SUMMARY
Aspects of the invention relate to methods for the production of butadiene and non-2-C-methylated butadiene precursors in engineered host cells while maintaining the viability of the host. In particular, aspects of the invention describe the use of metabolic pathways, components of metabolic pathways, enzymes and genes associated with the production of butadiene and butadiene precursors from
carbohydrate and other feedstocks in metabolically engineered host cells such that the host maintains the ability to produce the essential metabolites isopentenyl diphosphate (IPP) and dimethylallyl pyrophosphate (DMAPP). More specifically, aspects of the invention describe the use of metabolic pathways in engineered host cells for the production of butadiene via a tetritol-4-phosphate such as erythritol-4-phosphate utilizing enzymes in the 2-C-methyl-D-erythritol-4-phosphate/l-deoxy-D-xylulose-5- phosphate pathway (MEP/DOXP pathway or non-mevalonate pathway) while maintaining the ability to produce IPP and DMAPP via the mevalonate pathway
In one aspect, this document features a method of producing a butadiene or a butadiene precursor in a recombinant host cell having a 2-C-methyl-D-erythritol-4- phosphate/ l-deoxy-D-xylulose-5 -phosphate (MEP/DOXP) pathway and a mevalonate pathway, where the recombinant host cell includes an exogenous nucleic acid encoding an isoprene synthase. The method includes incubating the recombinant host cell with a tetritol or a fermentable carbon source under conditions that the
recombinant host cell i) produces a tetritol-4-phosphate from the tetritol or the fermentable carbon source and ii) converts at least some of the tetritol- 4-phosphate into butadiene or a non-2-C-methylated butadiene precursor. The non-2-C- methylated butadiene precursor can be selected from the group consisting of 4- diphospocytidyl-tetritol, 2-phospho-4-(cytidine 5' diphospho)-tetritol, 2-tetritol-2,4- cyclopyrophosphate, l-hydroxy-2-butenyl-4-pyrophosphate, methylallyl diphosphate, and butenylpyrophosphate (e.g., 4-diphosphocytidyl-erythritol, 2-phospho-4-(cytidine 5' diphospho)-erythritol, or 2-erythritol-2,4-cyclopyrophosphate). The tetritol can be erythritol, and the recombinant host cell can produce erythritol 4-phosphate from erythritol.
In any of the methods described herein, the MEP/DOXP pathway can be endogenous to the recombinant host cell.
In any of the methods described herein, the MEP/DOXP pathway can be heterologous to the recombinant host cell, and can include, for example, at least one exogenous nucleic acid encoding a 4-diphosphocytidyl-2-C-methyl-D-erythritol synthase (IspD), a 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase (IspE), a 2-C- methyl-D-erythritol 2,4-cyclodiphosphate synthase (IspF), a 4-hydroxy-3-methylbut- 2-en-l-yl (HMB) diphosphate synthase (IspG), a HMB-PP reductase (IspH), and an isopentenyl diphospate isomerase.
In any of the methods described herein, the mevalonate pathway can be endogenous to the recombinant host cell.
In any of the methods described herein, the mevalonate pathway can be heterologous to the recombinant host cell, and can include, for example, at least one exogenous nucleic acid encoding a mevalonate kinase (MVK), a phosphomevalonate kinase (PMK), and a mevalonate-5 -pyrophosphate decarboxylase (PMD). The recombinant host also can include at least one exogenous nucleic acid encoding a thiolase, a HMG-CoA synthase, and a HMG-CoA reductase.
In any of the methods described herein, the recombinant host cell can be deficient in l-deoxy-D-xylulose-5 -phosphate (DXP) reductoisomerase activity and/or l-deoxy-D-xylulose-5-phosphate (DOXP) synthase activity.
In any of the methods described herein, the recombinant host cell can be incubated with the tetritol or the fermentable carbon source in the presence of an
inhibitor. For example, the inhibitor can be FR-900098, fosmidomycin or a fosmidomycin analog, or an aryl phosphonate.
This document also features a recombinant host cell having a MEP/DOXP pathway and a mevalonate pathway, wherein the cell is deficient in 1-deoxy-D- xylulose-5 -phosphate (DXP) reductoisomerase activity and DOXP synthase activity, and includes an exogenous nucleic acid encoding an isoprene synthase. The recombinant host cell can produce a butadiene or a non-2 -C-methylated butadiene precursor from a tetritol. The MEP/DOXP pathway can be endogenous to the recombinant host cell. The MEP/DOXP pathway can be heterologous to the recombinant host cell, and can include, for example, at least one exogenous nucleic acid encoding a 4-diphosphocytidyl-2-C-methyl-D-erythritol synthase (IspD), a 4- diphosphocytidyl-2-C-methyl-D-erythritol kinase (IspE), a 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase (IspF), a 4-hydroxy-3-methylbut-2-en-l-yl (HMB) diphosphate synthase (IspG), a HMB-PP reductase (IspH), and an isopentenyl diphospate isomerase. The mevalonate pathway can be endogenous to the recombinant host cell. The mevalonate pathway can be heterologous to the recombinant host cell, and can include, for example, at least one exogenous nucleic acid encoding a mevalonate kinase (MVK), a phosphomevalonate kinase (PMK), and a mevalonate-5 -pyrophosphate decarboxylase (PMD). The recombinant host also can include at least one exogenous nucleic acid encoding a thiolase, a HMG-CoA synthase, and a HMG-CoA reductase.
This document also features a method of producing a butadiene or a butadiene precursor in a recombinant host cell having an endogenous mevalonate (MEV) pathway, where the recombinant host cell includes at least one exogenous nucleic acid encoding a 4-diphosphocytidyl-2-C-methyl-D-erythritol synthase (IspD), a 4- diphosphocytidyl-2-C-methyl-D-erythritol kinase (IspE), a 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase (IspF), a 4-hydroxy-3-methylbut-2-en-l-yl (HMB) diphosphate synthase (IspG), a HMB-PP reductase (IspH), an isopentenyl diphospate isomerase, and an isoprene synthase. The method includes incubating the recombinant host cell with a tetritol or a fermentable carbon source under conditions that the host cell (i) produces a tetritol-4-phosphate from the tetritol or said
fermentable carbon source; and (ii) converts at least some of the tetritol- 4-phosphate into butadiene or a non-2-C-methylated butadiene precursor.
In another aspect, the document features a method of producing a butadiene or a butadiene precursor in a recombinant host cell having an endogenous MEP/DOXP pathway, wherein the recombinant host cell includes at least one exogenous nucleic acid encoding a mevalonate kinase (MVK), a phosphomevalonate kinase (PMK), and a mevalonate-5 -pyrophosphate decarboxylase (PMD), a thiolase, a HMG-CoA synthase, a HMG-CoA reductase, and an isoprene synthase. The method includes incubating the recombinant host cell with a tetritol or a fermentable carbon source under conditions that the host cell (i) produces a tetritol-4-phosphate from the tetritol or the fermentable carbon source; and (ii) converts at least some of the tetritol- 4- phosphate into butadiene or a non-2-C-methylated butadiene precursor.
In any of the methods described herein, the fermentable carbon source can be selected from the group comprising: glycerol, a sugar from a foodstuff; and sugar from a non- foodstuff. The sugar from foodstuff can be sucrose or glucose. The sugar from the non- foodstuff can becellulosic or hemicellulosic derived sugars.
This document also features a method of converting erythritol 4-phosphate to 4-diphospocytidyl-D-erythritol. The method includes contacting erythritol 4- phosphate with a cytidylyltransferase or a recombinant host cell expressing the cytidylyltransferase, wherein the incubation converts erythritol 4-phosphate to 4- diphospocytidyl-D-erythritol.
This document also features a method of converting 4-diphospocytidyl-D- erythritol to 2-phospho-4-(cytidine 5 ' diphospho)-D-erythritol. The method includes contacting 4-diphospocytidyl-d-erythritol with a 4-(cytidine 5'-diphospho)-2-C- methyl-D -erythritol kinase or a recombinant host cell expressing the 4-(cytidine 5'- diphospho)-2-C-methyl-D-erythritol kinase, wherein the incubation converts 4- diphospocytidyl-D-erythritol to 2-phospho-4-(cytidine 5' diphospho)-D-erythritol.
In another aspect, this document features a method of converting 2-phospho-4- (cytidine 5' diphospho)-D-erythritol to D-erythritol-2,4-cyclodiphosphate. The method includes contacting 2-phospho-4-(cytidine 5' diphospho)-D-erythritol with a 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase or a recombinant host cell expressing the 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase, wherein the
incubation converts 2-phospho-4-(cytidine 5' diphospho)-D-erythritol to erythritol- 2,4-cyclodiphosphate.
This document also features a method of converting erythritol-2,4- cyclodiphosphate to 1 -hydroxy -2 -butenyl-4-diphosphate. The method includes contacting erythritol-2,4-cyclodiphosphate with a l-hydroxy-2-methyl-2-butenyl 4- diphosphate synthase or a recombinant host cell expressing the 1 -hydroxy-2-methyl- 2-butenyl 4-diphosphate synthase, wherein the incubation converts erythritol-2,4- cyclodiphosphate to 1 -hydroxy -2 -butenyl-4-diphosphate.
In any of the methods described herein, the method can include recovering butadiene or the non-2-C-methylated butadiene precursor.
In another aspect, this document features a method of producing butadiene or a butadiene precursor using a recombinant host cell. The method includes incubating the recombinant host with a feedstock, wherein the host (i) converts at least some of the feedstock to a tetritol or a tetritol 4-phosphate; and (ii) converts the tetritol or the tetritol 4-phosphate to butadiene. The recombinant host can be deficient in DOXP synthase activity and/or DXP reductoisomerase activity. The recombinant host can include one or more of an exogenous nucleic acid encoding an enzyme classified under EC 2.7.7.60, an exogenous nucleic acid encoding an enzyme classified under EC 2.7.1.14, an exogenous nucleic acid encoding an enzyme classified under EC 4.6.1.12, an exogenous nucleic acid encoding an enzyme classified under EC 1.17.7.1, or an exogenous nucleic acid encoding an enzyme classified under EC 1.17.1.2.
In one aspect, this document features a method of producing a butadiene or a butadiene precursor in an organism having a partial 2-C-methyl-D-erythritol 4- phosphate/l-deoxy-D-xylulose 5-phosphate pathway (MEP/DOXP pathway) and a mevalonate pathway to produce IPP and DMAPP, comprising the steps of : a. a supplying an organism with a tetritol such as erythritol or a fermentable carbon source that can be utilized by that organism to produce a tetritol-4-phosphate such as erythritol-4-phosphate, b. utilizing enzymes in the MEP/DOXP pathway and isoprene synthase (IspS) to convert at least some of the tetritol- or erythritol-4-phosphate into butadiene or a non-2-C-methylated analog of a pathway intermediate and c. utilizing the mevalonate pathway to maintain viability by producing IPP and DMAPP . The butadiene precursor can be selected from a group comprising 4-diphospocytidyl-
tetritol, 4-diphospocytidyl-tetritol-2-phosphate, 2-tetritol-2,4 cyclopyrophosphate, 1- hydroxy-2-butenyl-4-pyrophosphate, methylallyl diphosphate,or
butenylpyrophosphate.
This document also features an organism having a partial MEP/DOXP pathway which produces a butadiene or a butadiene precursor from tetritol- or erythritol-4-phosphate, but is unable to produce l-deoxy-D-xylulose-5-phosphate and/or 2-C-methyl-D-erythritol -4-phosphate. The host organism further has a mevalonate pathway which produces isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphosphate (DMAPP) in the biosynthesis of isoprenoids. The host organism can also produce tertritol 4-phosphate such as erythritol-4-phosphate.
In another aspect, this document features a non-natural organism which produces butadiene from a feedstock via a tetritol- or erythritol-4-phosphate intermediate. The host cell organism can be an erythritol producing organism which contains a mevalonate isoprenoid pathway. The host cell organism can be a eurkaryote organism which contains a mevalonate isoprenoid pathway but does not contain a complete non-mevalonate isoprenoid pathway (MEP/DOXP pathway). The host cell organism can be a prokaryote organism which contains a mevalonate isoprenoid pathway but does not contain a complete non-mevalonate isoprenoid pathway (MEP/DOXP pathway). The host cell organism can be an organism which contains a non-mevalonate isoprenoid pathway (MEP/DOXP pathway) but does not contain a complete mevalonate isoprenoid pathway. The host cell organism can contain both a complete non-mevalonate isoprenoid pathway (MEP/DOXP pathway) and a complete mevalonate isoprenoid pathway. Depending on the host cell background, i.e. native pathways to produce IPP and DMAPP, the host is then engineered to be able to produce butadiene via a partial MEP/DOXP pathway (i.e. not able to produce the precursors l-deoxy-D-xylulose-5-phosphate and/or 2-C-methyl- D-erythritol -4-phosphate) and IspS from erythritol-4-phosphate while producing IPP and DMAPP via a complete mevalonate pathway (See, Figure 3).
This document also features a method of producing butadiene utilizing a non- naturally occurring organism comprising the steps of a) converting feedstocks to tetritol- or erythritol 4-phosphate; and b) converting tetritol- or erythritol-4-phosphate into butadiene. The feedstock can be any fermentable carbon source such as
glycerol, sugars from foodstuffs, such as sucrose or glucose; or sugars from non- foodstuffs such as cellulosic or hemicellulosic derived sugars or sugars produced by the Calvin cycle in plants or autotrophic bacteria, a CI carbon source such as syngas (comprised of CO/CO2/H2), methane, or C2 fermentable carbon sources such as acetate or ethanol. The feedstock can also be carbon rich waste streams derived from petrochemical based processes or from the paper and pulp industry.
In another aspect, this document features a method of producing a butadiene intermediate utilizing a non-naturally occurring organism comprising the steps of: a) converting feedstocks to erythritol-4-phosphate; and b) converting erythritol-4- phosphate into butadiene intermediate. The feedstock can be any fermentable carbon source such as glycerol, sugars from foodstuffs, such as sucrose or glucose; or sugars from non-foodstuffs such as cellulosic or hemicellulosic derived sugars or sugars produced by the Calvin cycle in plants or autotrophic bacteria, a CI carbon source such as syngas (comprised of CO/CO2/H2), methane, or C2 fermentable carbon sources such as acetate or ethanol. The feedstock can also be carbon rich waste streams derived from petrochemical based processes or from the paper and pulp industry. This document also features a method of converting erythritol-4-phosphate to 4-diphospocytidyl-d-erythritol via a cytidylyltransferase enzyme.
This document also features a method of converting erythritol-4-phosphate to 4-diphospocytidyl-d-erythritol via a cytidylyltransferase enzyme.
This document also features a method of converting 4-diphospocytidyl-d- erythritol to 2-phospho-4-(cytidine 5' diphospho)-D-erythritol via a cdp-me kinase enzyme.
This document also features a method of converting 2-phospho-4-(cytidine 5' diphospho)-D-erythritol to 2-erythritol-2,4- cyclopyrophosphate via a mecdp synthase enzyme.
This document also features a method of converting 2-erythritol-2,4- cyclopyrophosphate to 1 -hydroxy -2 -butenyl-4-pyrophosphate via ISPH enzyme.
In another aspect, this document features a genetically modified host containing an enzyme for producing a butadiene intermediate utilizing a non-naturally occurring organism comprising the steps of: a) converting feedstocks to tetritol 4-
phosphate such as erythritol 4-phosphate; and b) converting tetritol 4-phosphate such as erythritol 4-phosphate into butadiene intermediate.
This document also features a genetically modified host containing an enzyme for producing a butadiene intermediate utilizing a non-naturally occurring organism comprising the steps of converting tetritol-4-phosphate such as erythritol-4-phosphate into butadiene intermediate.
In another aspect, this document features a genetically modified host containing an enzyme from the enzyme class 2,7,7.-. such as 2-C-methyl-D-erythritol- 4-phosphate cytidylyltransferase enzyme (EC 2.7.7.60) which converts erythritol-4- phosphate to 4-diphospocytidyl-d-erythritol.
This document also features a genetically modified host containing an enzyme from the enzyme class 2,7,1.-. such as 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase (EC-2.7.1.14) enzyme which converts 4-diphospocytidyl-d-erythritol to 2- phospho-4-(cytidine 5' diphospho)-D-erythritol.
This document also features a genetically modified host containing an enzyme from the enzyme class 4.6.1.-. such as 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase enzyme (EC-4.6.1.12) which converts 2-phospho-4-(cytidine 5' diphospho)- D-erythritol to 2-erythritol-2,4- cyclopyrophosphate.
In yet another aspect, this document features a genetically modified host containing an enzyme from the enzyme class 1.17.7.-. such as (E)-4-hydroxy-3- methylbut-2-enyl-diphosphate synthase enzyme (EC-1.17.7.1) which converts 2- erythritol-2,4-cyclopyrophosphate to 1 -hydroxy-2-butenyl-4-pyrophosphate..
A genetically modified host also is described containing an enzyme from the enzyme class 1.17.1.-. such as 4-hydroxy-3-methylbut-2-enyl-diphosphate reductase enzyme (EC- 1.17.1.2) which converts 1 -hydroxy -2 -butenyl-4-pyrophosphate to methylallyl diphosphate, or butenylpyrophosphate.
Any of the genetically modified hosts described herein can include one or more of the enzymes described above (e.g., any two of the enzymes).
This document also features a method to increase the uptake of a tetritol phosphate by a non-mevalonate pathway in a host organism with a native
MEP/DOXP pathway via deletion of one or more enzymatic steps in terpenoid backbone synthesis pathway such that the organism has an impaired ability to produce
2-C-methyl-D-erythritol 4-phosphate. The deletion of the at least one enzymatic step can be due to the deletion of the dxs gene (EC 2.2.1.7, l-deoxy-D-xylulose-5- phosphate synthase) or the dxr gene (EC 1.1.1.267, l-deoxy-D-xylulose-5-phosphate reductoisomerase).
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention pertains. Although methods and materials similar or equivalent to those described herein can be used to practice the invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.
The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims. The word "comprising" in the claims may be replaced by
"consisting essentially of or with "consisting of," according to standard practice in patent law.
DESCRIPTION OF DRAWINGS
FIG. 1A is a schematic of reactions 1 and 2 in the MEP/DOXP pathway. Reaction 1 converts 2-C-methyl-D-erythritol-4-phosphate to 4-(cytidine 5'- diphospho)-2-C-methyl-D-erythritol using 2-C-methyl-D-erythritol-4-phsophate cytidylyltransferase (also known as 4-diphosphocytidyl-2C-methyl-D-erythritol synthase), classified under EC 2.7.7.60 (IspD). Reaction 2 converts 4-(cytidine 5'- diphospho)-2-C-methyl-D-erythritol to 2-phospho-4-(cytidine 5'-diphospho)-2-C- methyl-D-erythritol using 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase, classified under EC 2.7.1.148 (IspE).
FIG. IB is a schematic of reactions 3 and 4 in the MEP/DOXP pathway.
Reaction 3 converts 2-phospho-4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol to
2-C-methyl-D-erythritol-2,4-cyclodiphosphate using 2-C-methyl-D-erythritol 2,4- cyclodiphosphate synthase, classified under EC 4.6.1.12 (IspF). Reaction 4 converts
2-C-methyl-D-erythritol-2,4-cyclodiphosphate to 1 -hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate using l-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase, classified under EC 1.17.7.1 (IspG).
FIG. 1C is a schematic of reactions 5 and 6 in the MEP/DOXP pathway, and an additional reaction, reaction 7, that can be performed. Reaction 5 converts 1- hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate to dimethylallyl diphosphate
(DMAPP) and isopentenyl pyrophosphate (IPP) using 1 -hydroxy -2-methyl-2-(E)- butenyl 4-diphosphate reductase, classified under EC 1.17.1.2 (IspH). Reaction 6 converts IPP to DMAPP using isopenteny diphosphate isomerase, classified under EC 5.3.3.2. Reaction 7 converts DMAPP to isoprene using isoprene synthase, classified under EC 4.2.3.27 (IspS).
FIG. 2A is a schematic of reactions 1 and 2 in the production of 1 ,3 butadiene and butadiene precursors. In reaction 1, 2-C-methyl-D-erythritol-4-phsophate cytidylyltransferase (also known as 4-diphosphocytidyl-2C-methyl-D-erythritol synthase), classified under EC 2.7.7.60 (IspD), converts D-erythritol-4-phosphate to 4-(cytidine 5'-diphospho)-D-erythritol. In reaction 2, 4-(cytidine 5'-diphospho)-D- erythritol is converted to 2-phospho-4-(cytidine 5'-diphospho)-D-erythritol using 4- diphosphocytidyl-2-C-methyl-D-erythritol kinase, classified under EC 2.7.1.148 (IspE).
FIG. 2B is a schematic of reactions 3 and 4 in the production of 1 ,3 butadiene and butadiene precursors. In reaction 3, 2-phospho-4-(cytidine 5'-diphospho)-D- erythritol is converted to D-erythritol-2,4-cyclodiphosphate using 2-C-methyl-D- erythritol 2,4-cyclodiphosphate synthase, classified under EC 4.6.1.12 (IspF). In reaction 4, D-erythritol-2,4-cyclodiphosphate is converted to l-hydroxy-2-(E)-butenyl 4-diphosphate using l-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase, classified under EC 1.17.7.1 (IspG).
FIG. 2C is a schematic of reactions 5, 6, and 7 in the production of 1,3 butadiene and butadiene precursors. In reaction 5, 1 -hydroxy -2 -(E)-butenyl 4- diphosphate is converted to methylallyl diphosphate and butenyl diphosphate using 1- hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase, classified under EC 1.17.1.2 (IspH). In reaction 6, methylallyl diphosphate is converted to butenyl diphosphate using isopentenyl diphosphate isomerase, classified under EC 5.3.3.2. In
reaction 7, methyallyl diphosphate is converted to 1,3 -butadiene using isoprene synthase, classified under EC 4.2.3.27 (IspS).
FIG. 3 is a schematic of isoprene synthesis using the MEP/DOXP pathway and mevalonate (MEV) pathway. In the MEP/DOXP pathway, the reactions catalyzed by the endogenous dxr gene (EC 1.1.1.267, l-deoxy-D-xylulose-5-phosphate reductoisomerase) and/or dxs gene (l-deoxy-D-xylulose-5-phosphate synthase, EC 2.2.1.7) can be disrupted.
DETAILED DESCRIPTION
The present invention includes the use of enzymes in the MEP/DOXP pathway (e.g., IspD, IspE, IspF, IspG, IspH, and isopentenyl diphosphate isomerase) and isoprene synthase (IspS) as shown in FIGs. 1A-1C to act on substrate analogs in which the 2-C-methyl group is absent to produce butadiene and non-2-C-methylated butadiene precursors from a tetritol-4-phosphate such as erythritol-4-phosphate instead of producing isoprene from 2-C-methyl-D-erythritol 4-phosphate. The term non 2-C-methylated butadiene precursors refers to isoprene precursors formed in the MEP pathway by IspD, IspE, IspF, IspG, IspH & isopentenyl diphosphate isomerase. Non-2-C-methylated butadiene precursors include 4-diphospocytidyl-tetritol, 4- diphospocytidyl-tetritol-2-phosphate, 2-tetritol-2,4- cyclopyrophosphate, 1 -hydroxy - 2-butenyl-4-pyrophosphate, methylallyl diphosphate or butenylpyrophosphate. In some embodiments, the non-2-C methylated butadiene precursor can be one or more of 4-diphospocytidyl-d-erythritol, 2-phospho-4-(cytidine 5' diphospho)-D-erythritol, 2-erythritol-2,4-cyclopyrophosphate, l-hydroxy-2-butenyl-4-pyrophosphate, methylallyl diphosphate, or butenylpyrophosphate.
In some embodiments, the tetritol-4-phosphate is erythritol-4-phosphate, and the host organism produces erythritol-4-phosphate through either an endogenous or an engineered pathway as described herein. As used herein, an organism containing an endogenous pathway indicates that the organism naturally expresses all of the enzymes catalyzing the reactions within the pathway (e.g., the MEP/DOX pathway or mevalonate pathway). An organism containing an engineered pathway does not naturally express all of the enzymes catalyzing the reactions within the pathway but has been engineered such that all of the enzymes within the pathway are expressed in
the organism. These engineered organisms can naturally express none or some (e.g., one or more, two or more, three or more, four or more, five or more, or six or more) of the enzymes of the pathway. Endogenous genes of the engineered organisms can also be disrupted to prevent the formation of undesirable metabolites such as substrate analogs of erythritol-4-phosphate such as 2-C methyl-D-erythritol-4-phosphate or to prevent the loss of intermediates in the pathway through other enzymes acting on such intermediates. Such engineered organisms also can be referred to as recombinant host cells.
Another aspect of the invention provides methods to ensure that the host cell retains the ability to produce the isoprenoid precursors isopentenylpyrophosphate (IPP) and dimethylallyl diphosphate (DMAPP), which are essential for the biosynthesis of molecules used in diverse cellular processes and are thus required for host organism viability.
In one embodiment, a host organism with an endogenous functional mevalonate pathway for the production of IPP and DMAPP, is engineered to express the heterologous enzymes IspD, IspE, IspF, IspG, IspH ,and isopentenyl diphosphate isomerase of the MEP/DOXP pathway & IspS as a route to produce butadiene or non- 2-C methylated butadiene precursor such as 4-diphospocytidyl-D-erythritol, 2- phospho-4-(cytidine 5' diphospho)-D-erythritol, 2-erythritol-2,4-cyclopyrophosphate, l-hydroxy-2-butenyl-4-pyrophosphate, methylallyl diphosphate, or
butenylpyrophosphate. If the host organism has an endogenous dxr gene (EC 1.1.1.267, l-deoxy-D-xylulose-5-phosphate reductoisomerase) or dxs gene (1-deoxy- D-xylulose-5-phosphate synthase, EC 2.2.1.7) present (see FIG. 3), one or both of the genes can be disrupted (e.g., knocked out) to produce a deficiency in the activity of the enzyme and decreased formation of the competing substrate, 2-C-methyl-D- erythritol 4-phosphate. Alternatively, an enzyme inhibitor such as FR-900098, fosmidomycin or a fosmidomycin-related analog, or a non-fosmidomycin-like inhibitor such as an aryl phosphonate can be used to reduce the formation of 2-C- methyl-D-erythritol 4-phosphate, that could enter the engineered MEP pathway. Instead, a tetritol-4-phosphate such as D-erythritol-4-phosphate can serve as a substrate analog of 2-C-methyl-D-erythritol 4-phosphate for IspD. The enzymes in the
MEP pathway thus convert erythritol-4-phosphate to the non-2-C-methylated analog of IPP & DMAPP, ultimately producing butadiene via the enzyme product of IspS.
In some embodiments, the host is also able to produce erythritol-4-phosphate from erythrose-4-phosphate or erythritol through endogenous or engineered pathways. Examples of organisms capable of producing erythritol-4-phosphate that are useful as host organisms or as a source of genes to construct a metabolically engineered host capable of producing erythritol-4-phosphate include eukaryotic organisms such as Arthroderma benhamiae, Ashbya gossypii (eremothecium gossypii), Aspergillus flavus, Aspergillus fumigates, Aspergillus niger, Aspergillus spp., Asperigillus clavatus, Asperigillus nidulans, Asperigillus orza, Aureobasidium sp, Botryotinia fuckeliana, Candida albicans, Candida bordini, Candida dubliniensis, Candida glabrata, Candida magnoliae, Candida maltosa, Candida sonorensis, Saccharomyces cerevisiae, Candida tropicalis, Clavispora lusitaniae, Coccidioides immitis,
Coccidioides immitis, Coccidioides pasadasii, Coccidioides posadasii, Coprinopsis cinerea, Cryptococcus neoformans, Debaryomyces hansenii, Encephalitozoon cuniculi, Fusarium gramiearum, Hansenula polymorpha (Pichia angusta),
Kluyveromyces lactis, Kluyveromyces marxianus, Kluyveromyces waltii, Laccaria bicolour, Lachancea thermotolerans, Lodderomyces elongisporus, Magnaporthe orzae, Malassezia globosa, Meyerozyma guiliermondii, Moniliella pollinis,
Moniliophthora perniciosa, Nectria haematococca, Neosartorya fischeri, Neurospora crassa, Nosema ceranae, Penicillium chrysogenum, Phaeosphaeria nodorum, Phanerochaete chrysosporium, Pichia methanolica, Pichia pastoris, Podospora anserina, Postia placenta, Pseudozyma tsukubaensis, Pyrenophora teres,
Saccharomyces paradoxus, Saccharomyces mikatae, Saccharomyces bayanus, Schefferosmyces stipitis, Schizophyllum commune, Schizosaccharomyces pombe, Sclerotinia sclerotoirum, Sordaria macrospora, Torula corallina, Trichophyton verrucosum, Tuber melanosporum, Uncinocarpus reesii, Ustilago maydis,
Vanderwaltozyma polyspora, Yarrowia lipolytica, Zygosaccharomyces rouxii;
bacteria such as Acholeplasma laidlawii, Aerococcus urinae, Borrelia burgdorferi B31, Borrelia burgdorferi ZS7, Borrelia spp (e.g., Borrelia garinii), Carnobacterium sp, Enterococcus faecalis, Erysipelothrix rhusiopathiae, Gardnerella vaginalis, Haliscomenobacter hydrossis, Lactibacukkys crispatu , Lactobacillus acidophilus,
Lactobacillus amylovorus, Lactobacillus brevis, Lactobacillus buchneri,
Lactobacillus casei, Lactobacillus delbrueckii, Lactobacillus fermentum ,
Lactobacillus gasseri, Lactobacillus johnsonii, Lactobacillus keflranofaciens, Lactobacillus plantarum, Lactobacillus reuteri, Lactobacillus rhamnosus,
Lactobacillus sake, Lactobacillus salivarius, Lactoccus garvieae, Lactococcus lactis sub lactis, Lactococcus lactis subs. Cremoris, Leuconostoc gasicomitatum,
Leuconostoc kimchii, Leuconostoc oenos (Oenococcus oeni), Leuconostoc sp C2 , Melissococcus plutonium, Pediococcus pentosaceus, Staphyloccus aureus,
Staphylococcus lugdunensis, Staphylococcus saprophyticus, Staphylococcus simulans, Staphylococcus spp, Steptococcus pneumonia, Steptocococcus mutans, Streptococcus agalactiae, Streptococcus dysgalactiae, Streptococcus equi subs., Streptococcus gallolyticusm Streptococcus mitis, Streptococcus oralis, Streptococcus parasanguinis, Streptococcus parauberis, Streptococcus pseudopneumoniae, Streptococcus pyogenes, Streptococcus salivarius, Streptococcus sanguis, Streptococcus suis, Streptococcus uberis, Streptocococcus thermophilus, Weissella koreensis protists such as Dictyostelium discoideum, Giardia lamblia, Leishmania braziliensis, Leishmania infantum, Leishmania major, Monosiga brevicollis, Naegleria gruberi, Paramecium tetraurelia, Phytophthora infestans, Tetrahymena thermophila, Trichomonas vaginalis, Trypanosoma brucei, Trypanosoma cruzi and other organisms such as mammals, birds, reptiles, lancelets, fish, ascidians, echinoderms, arthropods, molluscs nematodes, flatworms, cnidarians, sponges, plants, and placozoans.
In another embodiment of the invention, a host organism with an endogenous functional MEP/DOXP pathway for the production of IPP and DMAPP, is engineered to express genes in the mevalonate pathway to allow it to produce IPP and DMAPP via the mevalonate pathway while the MEP/DOXP pathway is exploited to produce butadiene or a non-2-C methylated butadiene precursor such as 4-diphospocytidyl-D- erythritol, 2-phospho-4-(cytidine 5' diphospho)-D-erythritol, 2-erythritol-2,4- cyclopyrophosphate, l-hydroxy-2-butenyl-4-pyrophosphate, methylallyl diphosphate, or butenylpyrophosphate. If the host organism produces mevalonic acid
endogenously, it may only be required to express some of the enzymes in the mevalonate pathway to allow the host organism to produce IPP and DMAPP, e.g., mevalonate kinase (MVK, EC 2.7.1.36), phosphomevalonate kinase (PMK, EC
2.7.4.2) and mevalonate-5-pyrophosphate decarboxylase (PMD, EC 4.1.1.33). If the host organism does not produce mevalonic acid endogenously, additional enzymes that may be required include a thiolase (EC:2.3.1.9), a HMG-CoA synthase (EC 2.3.3.10), and a HMG-CoA reductase (EC 1.1.1.88 or EC 1.1.1.34).
The early steps in the endogenous MEP/DOXP pathway catalyzed by dxs (1- deoxy-D-xylulose-5 -phosphate synthase, EC 2.2.1.7) or IspC (dxr or 1-deoxy-D- xylulose-5-phosphate reductoisomerase, EC 1.1.1.267) can be disrupted to produce a deficiency in the activity of the enzymes such that the formation of 2-C-methyl-D- erythritol 4-phosphate can be reduced or eliminated. For example, deletion of the endogenous dxr gene (EC 1.1.1.267, l-deoxy-D-xylulose-5-phosphate
reductoisomerase) in this pathway, or inhibition of the enzyme using an inhibitor such as FR-900098, fosmidomycin or a fosmidomycin-related analog, or a non- fosmidomycin-like inhibitor such as an aryl phosphonate can reduce or eliminate the formation of the competing substrate for IspD, 2-C-methyl-D-erythritol 4-phosphate. Instead, erythritol-4-phosphate then serves as a substrate analog of 2-C-methyl-D- erythritol 4-phosphate for IspD. The enzymes in the disrupted MEP pathway thus convert a tetritol-4-phosphate such as erythritol-4-phosphate to the non-2-C- methylated analogs of IPP and DMAPP. The host can be further engineered to express IspS to convert the non-2-C-methylated analogs of IPP and DMAPP, i.e., methylallyl-diphosphate and butenyl-diphsophate, to butadiene.
Non-limiting examples of such organisms with an endogenous functional MEP/DOXP pathway for the production of IPP and DMAPP that are useful as host organisms or as a source of genes to construct a metabolically engineered host capable of producing IPP and DMAPP via the MEP/DOXP pathway enzymes include bacteria such as Accumulibacter phosphatis, Acetobacter pasteurianus,
Acetohalobium arabaticum, Achromobacter spp. (e.g., Archromobacter
xylosoxidans), Acidaminococcus fermentans, Acidimicrobium ferrooxidans,
Acidiphilium spp. (e.g., Acidiphilium cryptum), Acidithiobacillus spp (e.g.,
Acidithiobacillus ferrooxidans), Acidobacterium spp (e.g., Acidobacterium capsulatum), Acidothermus cellulolyticus, Acidovorax spp (e.g., Acidovorax avenae), Acinetobacter spp (e.g., Acinetobacter baumannii), Actinobacillus spp (e.g., Actinobacillus pleuropneumoniae), Actinosynnema mirum, Aeromonas hydrophila,
Aeromonas spp (e.g., Aeromonas salmonicida) , Aggregatibacter spp (e.g.,
Aggregatibacter aphrophilus), Agrobacterium spp (e.g., Agrobacterium radiobacter), Agrobacterium tumefaciens, Aicanivorax borkumensis, Alicycliphilus denitriflcans, Alicyclobacillus acidocaldarius, Aliivibrio salmonicida, Alkalilimnicola ehrlichei, Alkalilimnicola ehrlichei, Alkaliphilus spp (e.g., Alkaliphilus metalliredigens), Allochromatium vinosum, Alteromonas spp (Alteromonas macleodii), Ammonifex degensii, Amycolatopsis mediterranei, Amycolicicoccus subflavus, Anaerococcus prevotii, Anaeromyxobacter spp. (e.g., Anaeromyxobacter dehalogenans), Anaplasma spp (e.g., Anaplasma marginale), Anoxybacillus spp (e.g., Anoxybacillus
flavithermus), Arcanobacterium haemolyticum, Arcobacter spp. (e.g., Arcobacter butzleri), Aromatoleum aromaticum, Arthrobacter spp (e.g., Arthrobacter aurescens), Asticcacaulis excentricus, Atopobium parvulum, Azoarcus sp, Azorhizobium caulinodans, Azospirillum sp, Bacillulus cellulosilyticus, Bacillus cereus, Bacillus coagulans, Bacillus licheniformis, Bacillus spp (e.g., Bacillus anthracis), Bacillus subtilis, Bacillus tusciae, Bacteroides spp. (e.g., Bacteroides fragilis), Bartonella spp. (e.g., Bartonella henselae), Baumannia cicadellinicola, Beijerinckia indica,
Beutenbergia cavernae, Bifidobacterium adolescentis, Bordetella spp (e.g., Bordetella pertussis), Brachybacterium faecium, Brachyspira spp (e.g., Brachyspira
hyodysenteriae), Bradyrhizobium spp (e.g., Bradyrhizobium japonicum),
Brevibacillus brevis, Brevundimonas subvibrioides, Brucella spp (e.g., Brucella melitensis), Buchnera spp (e.g., Buchnera aphidicola), Burkholderia spp (e.g., Burkholderia mallei), Butyrivibrio proteoclasticus, Caldicellulosiruptor spp (e.g., Caldicellulosiruptor saccharolyticus), Campylobacter spp (e.g., Campylobacter jejuni), Candidatus azobacteroides pseudotrichonymphae, Candidatus desulfococcus oleovorans, Candidatus desulforudis audaxviator, Candidatus koribacter versatilis, Candidatus protochlamydia amoebophila, Candidatus puniceispirillum marinum, Candidatus solibacter usitatus, Candidatus spp (e.g., Candidatus blochmannia pennsylvanicus), Candidatus spp (e.g., Cadidatus ruthia magnifica), Candidatus spp (e.g., Candidatus pelagibacter ubique), Candidatus arthromitus, Carboxydothermus hydrogenoformans, Catenulispora acidiphila, Caulobacter spp (e.g., Caulobactaer crescenthus), Cellulomonas spp (e.g., Cellulomonas flavigena), Cellvibrio (e.g., Cellvibrio japonicus), Chitinophaga pinensis, Chlamydia muridarum, Chlamydia
trachomatis, Chlamydophila pneumoniae, Chlamydophila spp (e.g., Chlamydophila caviae), Chromobacteriumvioiaceum, Chromohaibacter saiexigens, Citrobacter spp (e.g., Citrobacter Koseri), Clavibacter michiganesis subs michiganesis, Clostridiales genomosp, Clostridium acetobutylicum, Clostridium autoethanogenum, Clostridium beijerinckii, Clostridium botulinum A, Clostridium cellulolyticum, Clostridium cellulovorans, Clostridium difficile, Clostridium kluyveri, Clostridium lentocellum, Clostridium ljungdahlii, Clostridium novyi, Clostridium perfringens, Clostridium phytofermentans, Clostridium saccharolyticum, Clostridium saccharolyticum, Clostridium sp, Clostridium tetani, Clostridium thermocellum, Clostridium sticklandii, Colwellia psychrerythraea, Comamonas testosterone, Conexibacter woesei, Coprotheromobacter proteolyticus, Coriobacterium glomerans,
Corynebacterium efficiens, Corynebacterium glutamicum, Corynebacterium spp (e.g., Corynebacterium diphtheria), Cryptobacterium curium, Cupriavidus spp (e.g., Cupriavidus metallidurans), , Dechloromonas aromatic, Delftia spp (e.g., Delftia acidovorans), Delsulfobacca acetoxidans, Desulfarculus baarsii, Desulfatibacillum alkenivorans, Desulfltobacterium hafniense, Desulfobacterium autotrophicum, Desulfobulbus propionicus, Desulfomicrobium spp. (e.g., Desulfomicrobium baculatum), Desulfotalea psychrophila, Desulfotomaculum spp (e.g.,
Desulfotomaculum reducens), Desulfovibrio spp (e.g., Desulfovibrio vulgaris Hildenborough), Desulfurispirillum indicum, Desulfurivibrio alkaliphilus, Dickeya spp (e.g., Dickeya dadantii, or Dickeya zeae), Dinoroseobacter shibae, Edwardsiella spp (e.g., Edwardiella ictaluri), Eggerthella spp (e.g., Eggerthella lenta), Ehrlichia spp (e.g., Ehrlichia ruminantium Welgevonden), Enterobacter cloacae, Enterobacter spp (e.g., Enterobacter cloacae), Erwinia spp (e.g., Erwinia tasmaniensis),
Erythrobacter litoralis, Escherichia coli, Ethanoligenens harbinense, Eubacterium spp (e.g., Eubacterium eligens), Exiguobacterium spp. (e.g., Exiguobacterium sibiricum), Ferrimonas balearica, Finegoldia magna, Francisella spp (e.g.,
Francisella tularensis), Frankia spp (e.g., Frankia symbiont), Gallibacterium anatis, Gallionella capsiferriformans, Gemma proteobacterium, Geobacillus spp (e.g., Geobacillus kaustophilus), Geobacter spp. (e.g., Geobacter sulfurreducens),
Geodermatophilus obscurus, Glaciecola sp, Gluconacetobacter diazotrophicus, Gluconobacter oxydans, Granulibacter bethesdensis, Haemophilus spp (e.g.,
Haemophilus influenzae), Hahella chejuensis, Halanaerobium hydrogeniformans, Halomonas elongata, Halorhodospira haiophiia, Halothermothrix orenii,
Halothiobacillus neapolitanus, Helicobacter spp (e.g., Helicobacter felis),
Helicobacter spp (e.g., Helicobacter pylori), Heliobacterium modesticaldum, Herbaspirillum seropedicae, Herminiimonas arsenicoxydans, Hippea maritima, Hirschia baltica, Hyphomicrobium spp (e.g., Hyphomicrobium denitriflcans), Hyphomonas neptunium, Idiomarina loihiensis, Intrasporangium calvum, Isoptericola variabilis, Jannaschia sp, Jonesia denitriflcans, Kangiella koreensis,
Ketogulonicigenium vulgare, Kineococcus radiotolerans, Klebsiella spp (e.g., Klebsiella pneumonia), Kocuria rhizophila, Kribbella flavida, Kytococcus sedentarius, Lactobacillus sakei, Lactobacillus sp, Laribacter hongkongensis, Lawsonia intracellularis, Leifsonia xyli xyli, Leptospira interrrogans serovar lai, Leptospira spp (e.g., Leptospira borgpetersenii), Leptothrix cholodnii, Lysinibacillus sphaericus, Macrococcus caseolyticus, Magnetococcus sp, Magnetospirillum magneticum, Mahella australiensis, Maricaulis maris, Marinobacter aquaeolei, Marinomonas spp (e.g., Marinomonas mediterranea), Mesorhizobium spp (e.g., Mesorhizobium loti), Methylibium petroleiphilum, Methylobacillus flagellates, Methylobacterium spp (e.g., Methylobacterium extorquens), Methylocella silvestris, Methylococcus capsulatus, Methylomonas methanica, Methylotenera spp (e.g., Methylotenera mobilis), Methylovorus spp (e.g., Methylovorus glucosetrophus), Microbacterium testaceum, Micrococcus luteus, Microlunatus phosphovorus, Micromonospora spp (e.g., Micromonospora aurantiaca), Minibacterium
massiliensis, Mobiluncus curtisii, Moorella thermoacetica, Moraxella catarrhalis, Mycobacterium africanum, Mycobacterium bovis, Mycobacterium smegamatis, Mycobacterium spp (e.g., Mycobacterium leprae), Mycobacterium tuberculosis, Mycoplasma gallisepticum, Mycoplasma spp (e.g, Mycoplasma penetrans),
Nakamurella multipartita, Natranaerobius thermophilus, Nautilia profundicola, Neisseria spp (e.g., Neisseria meningitidis), Neorickettsia sennetsu, Nitratifractor salsuginis, Nitratiruptor sp, Nitrobacter spp.(e.g., Nitrobactaer winogradskyi), Nitrosococcus spp (e.g., Nitrosococcus oceani), Nitrosomonas spp. (e.g.,
Nitrosomonas europaea), Nocardioides sp, Novosphingobium spp (e.g.,
Novosphigobium aromaticivorans), Ochrobacterum anthropi, Odoribacter
splanchnicus, Oligotropha spp (e.g., Oligotropha carboxidovorans), Olsenella uli, Ostreococcus lucimarinus, Ostreococcus tauri, Paenibacillus sp, Paenibacillus spp (e.g., Paenibacillus polymyxa), Paludibacter propionicigenes, Pantoea spp (e.g., Pantoea ananatis), Parabacteroides distasonis, Parachlamydia acanthamoebae, Paracoccus denitrificans, Parvibaculum lavamentivorans, Parvularcula bermudensis, Pasteurella multocida, Pectobacterium spp (e.g., Pectobacterium atrosepticum), Pedobacter spp (e.g., Pedobacter heparinus), Pelobacter spp (e.g., Pelobacter carbinolicus), Pelotomaculum thermopropionicum, Phenylobacterium zucineum, Photorhabdus spp (e.g., Photorhabdus luminescens), Polaromonas spp (e.g., Polaromonas naphthalenivorans), Polymorphum gilvum, Polynucleobacter spp (e.g., Polynucleobacter necessaries), Porphyromonas spp (e.g., Porphyromonas gingivalis), Prevotella spp (e.g., Prevotella ruminicola), Propionibacterium acnes, Proteus mirabilis, Pseudoalteromonas spp (e.g., Pseudoalteromonas haloplanktis),
Pseudomonas (e.g., Pseudomonas aeruginosa), Pseudomonas fluorescens,
Pseudomonas putida, Psychrobacter spp (e.g., Psychrobacter arcticum),
Psychromonas ingrahamii, Pusillimonas sp, Ralstonia spp (e.g. Ralstonia
solanaerarum), Ramlibacter tataouinensis, Renibacterium salmoninarum, Rhizobium spp (e.g., Rhizobium etli), Rhodobacter spp (e.g., Rhodobacter sphaeroides),
Rhodococcus, Rhodococcus spp (e.g., Rhodococcus equi), Rhodoferax spp (e.g., Rhodoferax ferrieducens), Rhodomicrobium vannielii, Rhodopseudomonas spp (e.g., Rhodopseudomonas palustris), Rhodospirillum spp (e.g., Rhodospirillum rubrum), Rhodothermus spp (e.g., Rhodothermus marinus), Rosebacter spp (e.g., Rosebacter denitrificans), Rothia spp (e.g., Rothia mucillaginosa), Rubrobacter xylanophilus, Ruegeria sp, Ruminococcus albus, Saccharophagus degradans (Microbulbifer degradans), Saccharopolyspora spp (e.g., Saccharopolyspora erythraea),
Salinibacter spp (e.g., Salinibacter ruber), Salinispora spp (e.g., Salinispora tropica), Salmonella sp, Sanguibacter keddieii, Segniliparus rotundus, Selenomonas sputigena, Serratia spp (e.g., Serrtia proteamaculans), Shewanella spp (e.g., Shewanella denitrificano), Shigella spp (e.g., Shigella flexneri), Sideroxydans lithotrophicus, Silicibacter pomeroyi, Simkania negevensis, Sinorhizobium spp (e.g., Sinorhizobium meliloti), Slackia heliotrinireducens, Sodalis glossinidius, Sphingobacterium sp, Sphingopyxis spp (e.g., Sphingopyxis alaskensis), Spirochaeta smaragdinae,
Spirochaeta spp (e.g., Stackebrandtia nassauensis, Starkeya novella,
Stenotrophomonas spp (e.g., Stenotrophomonas maltophilia), Streptococcus sp, Streptomyces spp (e.g., Streptomyces coelicolor), Streptosporangium roseum, Sulfobacillus acidophilus, Sulfurimonas spp (e.g., Sulfurimonas denitriflcans), Sulfurospirillum deleyianum, Sulfurovum sp, Symbiobacterium thermophilum, Syntrophobacter fumaroxidans, Syntrophobotulus glycolicus, Syntrophomonas wolfei, Syntrophothermus lipocalidus, Syntrophus aciditrophicus, Taylorella equigenitalis, Tepidanaerobacter sp, Terriglobus saanensis, Thauera sp, Thermaerobacter marianensis, Thermincolapotens, Thermoanaerobacter spp (e.g.,
Thermoanaerobacter tengcongensis), Thermoanaerobacterium
thermosaccharolyticum, Thermoanaerobacterium xylanolyticum, Thermobispora bispora, Thermodesulfobium narugense, Thermobiflda fusca, Thermosediminibacter oceani, Thioalkalivibrio sp, Thiobacillus denitriflcans, Thiomonas intermedia, Tolumonas auensis, Treponema spp (e.g., Treponema pallidum), Treponema succinifaciens, Tropheryma whipplei, Tsukamurella paurometabola, Variovorax spp (e.g., Variovorax paradoxus), Veillonella parvula, Verminephrobacter eiseniae, Verrucosispora maris, Vibrio spp (e.g., Vibrio cholerae), Wigglesworthia glossinidia, Wolbachia spp (e.g., Wolbachia pipientis), Wolinella succinogenes, Xanthomonas spp (Xanthomonas campestris), Xanthobacter autotrophicus, Xenorhabdus (e.g.,
Eexnohabdus bovienii), Xylanimonas cellulosilytica, Xylella spp (e.g., Xylella fastidiosa), Yersinia spp (e.g., Yersinia pestis), Zymomonas mobilis, or Zymomonas sp, algae such as Chlamydormonas reinhardtii, Volvox carter f. Nagariensis and Cyanidioschyzon merolae, and protozoans such as Plasmodium berghei, Plasmodium chabaudi, Plasmodium falciparum, Plasmodium knowlesi, Plasmodium vivax and Plasmodium yoelii
In some embodiments, the host is also able to produce erythritol-4-phosphate via endogenous or engineered pathways.
In another embodiment, the host organism has both an endogenous functional mevalonate pathway and a functional endogenous MEP/DOXP pathway for the production of IPP and DMAPP. In these host organisms, the mevalonate pathway can be used to produce IPP and DMAPP, while the MEP/DOXP pathway can be exploited for the production of butadiene and non-2-C methylated butadiene precursors such as
4-diphospocytidyl-D-erythritol, 2-phospho-4-(cytidine 5' diphospho)-D-erythritol, 2- erythritol-2,4-cyclopyrophosphate, l-hydroxy-2-butenyl-4-pyrophosphate, methylallyl diphosphate, or butenylpyrophosphate. The early steps in the endogenous MEP/DOXP pathway that are catalyzed by dxs (l-deoxy-D-xylulose-5 -phosphate synthase, EC 2.2.1.7) or IspC (dxr or l-deoxy-D-xylulose-5-phosphate
reductoisomerase, EC 1.1.1.267) can be disrupted to produce an enzyme deficiency, and reduce or eliminate the formation of 2-C-methyl-D-erythritol 4-phosphate. For example, deletion of the endogenous dxr gene (EC 1.1.1.267, l-deoxy-D-xylulose-5- phosphate reductoisomerase) in this pathway, or inhibition of the enzyme by the addition of inhibitors such as fosmidomycin, would reduce or eliminate the formation of the competing substrate for IspD, 2-C-methyl-D-erythritol 4-phosphate. Instead, erythritol-4-phosphate can serve as a substrate analog of 2-C-methyl-D-erythritol 4- phosphate for IspD. The enzymes in the disrupted MEP pathway thus convert a tetritol-4-phosphate such as erythritol-4-phosphate to the non-2-C-methylated analogs of IPP and DMAPP. The host can be further engineered to express IspS to convert these non-2-C-methylated analogs of IPP and DMAPP, i.e., methylallyl-diphosphate and butenyl-diphosphate, to butadiene or precursors of butadiene. The interruption of the early steps of the MEP pathway may advantageously also attenuate the pathogenicity of the organism.
In some embodiments, the host is also able to produce erythritol-4-phosphate via endogenous or engineered pathways. Non-limiting examples of organisms with both an endogenous functional mevalonate pathway and an endogenous functional MEP/DOXP pathway for the production of IPP and DMAPP that are useful as host organisms or as a source of genes to construct a metabolically engineered host capable of producing IPP and DMAPP via the mevalonate pathway and butadiene via enzymes in the MEP/DOXP pathway enzymes include bacteria such as Listeria monocytogenes, Listeria grayi, Listeria innocua, Listeria ivanovii, Listeria murrayi, Listeria seeiigeri, Listeria weishimeri, Nocardia farcinica; plants such as Arabidopsis lyrata, Arabidopsis thaiiana, Brachypodium distachyon, Lotus japonicas, Medicago truncatula, Orzya sativa japonica, Populous trichocarpa, Ricinus communis, Seiagineiia moellendorffli, Sorghum bicolour, Vitis vinifera, Zea mays, mosses such
as Fontinalis antipyretica, Physcomitrella patens, Polytrichum commune, and diatoms such as Phaeodactylum tricornutum, Thalassiosira pseudonana.
In another embodiment, the host organism has an endogenous functional mevalonate pathway and an endogenous MEP/DOXP pathway, which may lack one or more genes encoding one or more of the enzymes IspD, IspE, IspF, IspG, or IspH. In these host organisms, the mevalonate pathway can be used to produce IPP and DMAPP, while the MEP pathway can be exploited for the production of butadiene after engineering the MEP pathway to express the enzymes in the pathway that are absent in the native host. For example, Listeria innocua lacks IspG & IspH, and the MEP pathway in this organism can be augmented to be fully functional by expression of the genes gcpE and lytB, encoding IspG and IspH respectively. In addition, interruption of the early steps in the MEP pathway catalyzed by dxs (1-deoxy-D- xylulose-5 -phosphate synthase, EC 2.2.1.7) or IspC (dxr or l-deoxy-D-xylulose-5- phosphate reductoisomerase, EC 1.1.1.267) can reduce or eliminate the formation of 2-C-methyl-D-erythritol 4-phosphate. Instead, erythritol-4-phosphate then serves as a substrate analog of 2-C-methyl-D-erythritol 4-phosphate for IspD. The enzymes in the disrupted MEP pathway thus convert a tetritol-4-phosphate such as erythritol-4- phosphate to the non-2-C-methylated analogs of IPP and DMAPP. The host is further engineered to express IspS to convert these non-2-C-methylated analogs of IPP and DMAPP, i.e., methylallyl-diphosphate and butenyl-diphosphate, to butadiene.
In another embodiment, butadiene or a non-2-C methylated butadiene precursor such as 4-diphospocytidyl-D-erythritol, 2-phospho-4-(cytidine 5' diphospho)-D-erythritol, 2-erythritol-2,4-cyclopyrophosphate, 1 -hydroxy-2-butenyl- 4-pyrophosphate, methylallyl diphosphate, or butenylpyrophosphate can be produced in an organism having an MEP/DOXP pathway by supplying an organism with an excess of a tetritol under conditions that the organism can produce tetritol 4-phosphate from the tetritol and convert at least some of the tetritol 4-phosphate into butadiene or a butadiene precursor such as a non-methylated analog of the MEP/DOXP pathway precursor. For example, the organism can convert at least 20%, 21%, 22%, 23%, 24%, or 25% of the tetritol 4-phosphate to butadiene.
It is understood by those skilled in the art that the pathway for the production of butadiene from a tetritol 4-phosphate (e.g., erythritol 4-phosphate) using the MEP pathway consisting of the IspD, IspE, IspF, IspG, IspH enzymes, and isopentenyl
diphosphate isomerase, in combination with isoprene synthase (IspS) can be engineered to produce butadiene more efficiently. Flux through the pathway can be improved by increasing the level of expression of each of the individual enzymes or by improving the catalytic efficiency of each of the enzymes in the pathway by techniques known to persons skilled in the art.
For example, a host organism expressing the enzymes in the MEP pathway and IspS can be adapted via classical selection techniques or mutagenesis techniques to catalyze the respective reactions of the analog substrates lacking a 2-C methyl group more efficiently and thus to produce each intermediate in the pathway and finally butadiene from a tetritol-4-phosphate such as erythritol-4-phospahte.
Enzyme levels in the host cells can also be increased by genetic modification of the host to express more copies of the genes encoding the enzymes IspD, IspE, IspF, IspG, IspH, IspS, and isopentenyl diphosphate isomerase or combinations thereof, under strong promoters or by inserting the heterologous genes in loci with high transcriptional efficiency in the genome of the host.
Enzymes which convert non-methylated analogs of the MEP/DOXP pathway precursors to other butadienes or non-2-C methylated butadiene precursor such as 4- diphospocytidyl-D-erythritol, 2-phospho-4-(cytidine 5' diphospho)-D-erythritol, 2- erythritol-2,4-cyclopyrophosphate, l-hydroxy-2-butenyl-4-pyrophosphate, methylallyl diphosphate, or butenylpyrophosphate can be useful in the production of butadiene through the above described pathways, as shown in FIGs. 2A-2C. In some embodiments, the document provides an enzyme from the enzyme class 2,7,7.-. such as 2-C-methyl-D-erythritol-4-phosphate cytidylyltransferase enzyme (EC 2.7.7.60), which converts erythritol-4-phosphate to 4-diphospocytidyl-d-erythritol. In some embodiments, the document provides an enzyme from the enzyme class EC 2,7, 1.-., such as 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase (EC-2.7.1.14) enzyme, which converts 4-diphospocytidyl-d-erythritol to 2-phospho-4-(cytidine 5' diphospho)-D-erythritol. In some embodiments, the document provides an enzyme from the enzyme class EC 4.6.1.-., such as 2-C-methyl-D-erythritol 2,4- cyclodiphosphate synthase enzyme (EC-4.6.1.12), which converts 2-phospho-4-
(cytidine 5' diphospho)-D-erythritol to 2-erythritol-2,4-cyclopyrophosphate. In some embodiments, the document provides an enzyme from the enzyme class EC 1.17.7.-, such as (E)-4-hydroxy-3-methylbut-2-enyl-diphosphate synthase enzyme (EC-
1.17.7.1), which converts 2-erythritol-2,4-cyclopyrophosphate to l-hydroxy-2- butenyl-4-pyrophosphate. In some embodiments, the document provides an enzyme from the enzyme class EC 1.17.1.-., such as 4-hydroxy-3-methylbut-2-enyl diphosphate reductase enzyme (EC-1.17.1.2), which converts l-hydroxy-2-butenyl-4- pyrophosphate to methylallyl diphosphate, or butenylpyrophosphate. In some embodiments, the document provides an enzyme from the enzyme class EC 4.2.3.-., such as Isoprene synthase (EC-4.2.3.27), which converts methylallyl diphosphate or butenylpyrophosphate to butadiene. In further embodiments, the document provides an enzyme capable of carrying two or more enzymatic conversions of butadiene precursors derived from erythritol-4-phosphate. In any of the embodiments described herein, the recombinant host can include a nucleic acid encoding one or more enzymes from such classes. Nucleic acids encoding isoprene synthase or enzymes in the MEP/DOXP pathway have been identified from various organisms and are readily available in publicly available databases such as GenBank or EMBL.
Protein engineering techniques known to those skilled in the art can be applied to improve the substrate selectivity, substrate affinity and kinetic constants Km and max Or other properties such as stability of the enzymes. Where structural information is available for the enzymes, rational design approaches can be used to predict advantageous amino acid substitutions. Directed evolution of the enzymes can be applied to improve the enzymes, using techniques such as random mutagenesis, DNA shuffling and the like.
It is understood by those skilled in the art, that for instance, IspD can be engineered to have a lower Km or higher Vmax for a tetritol-4-phosphate such as erythritol-4-phosphate than for the natural substrate 2-C-methyl-D-erythritol-4- phosphate. In such a case, it may not be necessary to disrupt the early MEP pathway by deletion of for example the endogenous dxr gene (EC 1.1.1.267, 1-deoxy-D- xylulose-5 -phosphate reductoisomerase) in this pathway, or inhibition of the enzyme by the addition of inhibitors for example fosmidomycin, so as to avoid the formation of the natural substrates 2-C-methyl-D-erythritol- 4-phosphate that competes with a tetritol-4-phosphate such as erythritol-4-phosphate for binding in the active site of IspD.
Similarly, the IspS enzyme that is expressed in the host organism can be engineered to have a lower Km or higher Vmax for a methylallyl diphosphate than for the natural substrate dimethylallyl diphosphate (DMAPP), thereby reducing or eliminating the formation of isoprene from IPP and DMAPP formed in the mevalonate pathway of the host by the engineered IspS.
In one embodiment, erythritol-4-phosphate can be produced in the host organism from erythrose-4-phosphate, which in turn may be derived from any fermentable carbon source such as hexoses, pentoses, or glycerol. Tetritol-4- phosphates include the isomers erythritol-4-phosphate or threitol-4-phosphate. The sugar alcohol erythritol-4-phosphate is formed from the sugar aldehyde erythrose-4- phosphate by the enzyme EPDH (erythritol-4-phosphate dehydrogenase). Erythrose- 4-phosphate is formed in the Bifidobacterium shunt present in organisms such as Bifidobacterium animalis, B. longum, and Leuconostoc msenteroides from D- fructose-6-phosphate via a fructose-6-phosphate phosphoketolase (EC4.1.2.22), during 5,6-dimethylbenzimidazole biosynthesis in organisms such as Bacillus megaterium, Prauserella rugosa, Propionibacterium freudenreichii, Salmonella enterica enterica serovar Typhimurium, and Sinorhizobium meliloti.
Erythrose-4-phosphate also is an intermediate in the non-oxidative branch of the pentose phosphate pathway and is formed from glyceraldehydes-3 -phosphate and D-sedoheptulose-7-phosphate by a transaldolase B (EC 2.2.1.2), in the 3- dehydroquinate biosynthesis I and chorisrmate biosynthesis I pathways where it is formed from 3-deoxy-D-arabino-heptulosonate-7-phosphate by an aldolase (EC 4.1.2.15), the Calvin-Benson-Brasham cycle, formaldehyde assimilation II (RuMP Cycle), formaldehyde assimilation II (dihydroxyacetone cycle) and Rubsco shunt where it is formed from glyceraldehyde-3 -phosphate and fructose-6-phosphate via a transketolase (EC 2.2.1.1), or from D-sedoheptulose-l,7-bisphosphate by an aldolase (f aA, EC 4.1.2.-), or in the chorismate biosynthesis 1 pathway from 3-deoxy-D- arabino-heptulosonate-7-phosphate by the action of 3-deoxy-7-phosphoheptulonate synthase (EC 2.5.1.54).
It is understood by persons skilled in the art that, since erythrose-4-phosphate is a precursor to erythritol-4-phosphate, it is advantageous to engineer the various pathways present in the host organism so as to maximize the formation of erythrose-
4-phosphate. This can be achieved by classical selection techniques or for example by overexpression of the genes involved in its formation, or through protein engineering of the enzymes involved in its formation to shift the equilibrium of the reversible reactions towards erythrose-4-phosphate synthesis or through alleviating feedback inhibition of allosteric enzymes. It is also understood by those skilled in the art of metabolic engineering that it may be advantageous to delete or inhibit enzymes involved in the consumption of erythrose-4-phosphate, such as erythrose-4-phosphate dehydrogenase (EC 1.2.1.72) in the pyridoxal-5 'phosphate biosynthesis pathway, and to prevent the dephosphorylation of erythrose-4-phosphate and erythritol-4-phosphate by sugar phosphatases involved in the hydrolysis of the phospho-ester bond of sugar phosphates, such as phosphatises and kinases, such as erythrose-4-phosphate-kinase or erythritol-4-phosphate phosphatase. Nucleic acids encoding such enzymes have been identified from various organisms and are readily available in publicly available databases such as GenBank or EMBL.
In another embodiment, erythritol-4-phosphate is produced in the host organism from erythritol. For example, erythrose-4-phosphate can be
dephosphorylated to erythrose, and the erythrose thus formed is reduced to erythritol by erythrose reductase in a host such as Candida magnoliae. In another example, erythritol may be added to the fermentation broth, or produced in situ through a co- fermentation by any host organism able to secrete erythritol. Erythritol is then taken up into the cells by facilitated diffusion or active transport by sugar transporters and phosphorylated by a kinase to erythritol-4-phosphate. It is understood by people skilled in the art that the uptake of erythritol can be increased by protein engineering of sugar transporters to improve the rate of uptake and affinity for erythritol. It also is advantageous to prevent the consumption or degradation of erythritol-4-phosphate by phosphatases in order to maximize the flux of erythritol-4-phosphate into the MEP pathway for conversion to butadiene. Host organisms useful for the production of erythritol include for example yeast strains belonging to the genera Yarrowia, Moniliella and Trichosporonoides, such as Yarrowia Upolytica, Moniliella poiiinis, M. acetobuten, Trichosporonoides nigrescens, T. oedocephaiis, T. megachiiiienses as well as other microorganisms such as Toruia corallina, Aureobasidium sp,
Pseudozyma tsukubaensis, Candida magnoliae, Leuconostoc oenos (Oenococcus oeni).
The present document provides methods and means to convert a range of molecules detailed herein into butadiene. As used herein, the term "non-naturally occurring" when used in reference to a recombinant host cell is intended to mean that the host cell has at least one genetic alteration not normally found in a naturally occurring strain of the referenced species, including wild type strains of the referenced species. Genetic alterations include, for example, modifications introducing expressible nucleic acids encoding polypeptides (e.g., enzymes or metabolic polypeptides), other nucleic acid additions, nucleic acid deletions and/or other functional disruption of the microbial genetic material. It is understand that a recombinant host can express a plurality of polypeptides (e.g., one, two, three, four, five, or six polypeptides) from one or more exogenous nucleic acids. In some embodiments, an exogenous nucleic acid encodes multiple polypeptides of interest (e.g., multiple enzymes). In some embodiments, an exogenous nucleic acid encodes a single polypeptide of interest (e.g., a single enzyme). In some embodiments, a recombinant host includes a plurality of different exogenous nucleic acids, where each exogenous nucleic acid encodes a single polypeptide of interest (e.g., one enzyme). Additional modifications include, for example, non-coding regulatory regions in which the modifications alter expression of a gene or operon, as explained in more detail below.
Provided is a method of using the genetic engineering of a host to increase tetritol-4-phosphate conversion in the non-mevalonate (MEP/DOXP) pathway. For instance, a method to increase the uptake of tetritol-4-phosphate, such as erythritol-4- phosphate, into a non-mevalonate pathway comprising the deletion of one or more of the genes that encode one or more enzymes catalyzing one or more steps in the terpenoid backbone synthesis pathway (see FIG. 3). For example, deletion of either the dxs gene (EC 2.2.1.7, 1 -deoxy-D-xylulose-5 -phosphate synthase) or the dxr gene (EC 1.1.1.267, l-deoxy-D-xylulose-5-phosphate reductoisomerase) would disable the complete MEP/DOXP pathway, and force the engineered host to use the alternative substrate, erythritol-4-Phosphate (EP), as the 2-C-methyl-D-erythritol-4-phosphate would not be produced.
OTHER EMBODIMENTS
It is to be understood that while the invention has been described in conjunction with the detailed description thereof, the foregoing description is intended to illustrate and not limit the scope of the invention, which is defined by the scope of the appended claims. Other aspects, advantages, and modifications are within the scope of the following claims.
Claims
1. A method of producing a butadiene or a butadiene precursor in a recombinant host cell having a 2-C-methyl-D-erythritol-4-phosphate/l-deoxy-D-xylulose-5- phosphate (MEP/DOXP) pathway and a mevalonate pathway, wherein said recombinant host cell comprises an exogenous nucleic acid encoding an isoprene synthase, said method comprising incubating said recombinant host cell with a tetritol or a fermentable carbon source under conditions that said recombinant host cell i) produces a tetritol-4-phosphate from said tetritol or said fermentable carbon source and ii) converts at least some of the tetritol- 4-phosphate into butadiene or a non-2-C- methylated butadiene precursor.
2. The method of claim 1, wherein said MEP/DOXP pathway is endogenous to said recombinant host cell.
3. The method of claim 1, wherein said MEP/DOXP pathway is heterologous to said recombinant host cell.
4. The method of claim 3, wherein said recombinant host comprises at least one exogenous nucleic acid encoding a 4-diphosphocytidyl-2-C-methyl-D-erythritol synthase (IspD), a 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase (IspE), a 2-C- methyl-D-erythritol 2,4-cyclodiphosphate synthase (IspF), a 4-hydroxy-3-methylbut- 2-en-l-yl (HMB) diphosphate synthase (IspG), a HMB-PP reductase (IspH), and an isopentenyl diphospate isomerase.
5. The method of any one of claims 1-4, wherein said mevalonate pathway is endogenous to said recombinant host cell.
6. The method of any one of claims 1-4, wherein said mevalonate pathway is heterologous to said recombinant host cell.
7. The method of claim 6, wherein said recombinant host cell comprises at least one exogenous nucleic acid encoding a mevalonate kinase (MVK), a
phosphomevalonate kinase (PMK), and a mevalonate-5 -pyrophosphate decarboxylase (PMD).
8. The method of claim 6 or claim 7, said recombinant host cell comprising at least one exogenous nucleic acid encoding a thiolase, a HMG-CoA synthase, and a HMG-CoA reductase.
9. The method of anyone of claims 1-8, wherein said tetritol is erythritol, and said recombinant host cell produces erythritol 4-phosphate from erythritol.
10. The method of anyone of claims 1-9, wherein said recombinant host cell is deficient in l-deoxy-D-xylulose-5-phosphate (DXP) reductoisomerase activity.
1 1. The method of anyone of claims 1-10, wherein said recombinant host cell is incubated with said tetritol or said fermentable carbon source in the presence of an inhibitor.
12. The method of claim 11, wherein said inhibitor is FR-900098, fosmidomycin or a fosmidomycin analog, or an aryl phosphonate.
13. The method of any one of claims 1-11, wherein said recombinant host cell is deficient in l-deoxy-D-xylulose-5-phosphate (DOXP) synthase activity.
14. The method of any one of claims 1-13, wherein said non-2-C-methylated butadiene precursor is selected from the group consisting of 4-diphospocytidyl- tetritol, 2-phospho-4-(cytidine 5' diphospho)-tetritol, 2-tetritol-2,4- cyclopyrophosphate, l-hydroxy-2-butenyl-4-pyrophosphate, methylallyl diphosphate, and butenylpyrophosphate.
15. The method of claim 14 wherein said non-2-C-methylated butadiene precursor is 4-diphosphocytidyl-erythritol, 2-phospho-4-(cytidine 5' diphospho)-erythritol, or 2- erythritol-2,4-cyclopyrophosphate.
16. A recombinant host cell having a MEP/DOXP pathway and a mevalonate pathway, wherein said cell is deficient in l-deoxy-D-xylulose-5-phosphate (DXP) reductoisomerase activity and DOXP synthase activity, and comprises an exogenous nucleic acid encoding an isoprene synthase, wherein said cell produces a butadiene or a non-2-C-methylated butadiene precursor from a tetritol.
17. The recombinant host cell of claim 16, wherein said MEP/DOXP pathway is endogenous to said host cell.
18. The recombinant host cell of claim 16, wherein said MEP/DOXP pathway is heterologous to said host cell.
19. The recombinant host cell of claim 18, wherein said recombinant host comprises at least one exogenous nucleic acid encoding a 4-diphosphocytidyl-2-C- methyl-D-erythritol synthase (IspD), a 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase (IspE), a 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase (IspF), a 4- hydroxy-3-methylbut-2-en-l-yl (HMB) diphosphate synthase (IspG), a HMB-PP reductase (IspH), and an isopentenyl diphospate isomerase.
20. The recombinant host cell of any one of claims 16-19, wherein said mevalonate pathway is endogenous to said recombinant host cell.
21. The recombinant host cell of anyone of claims 16-19, wherein said mevalonate pathway is heterologous to said recombinant host cell.
22. The recombinant host cell of claim 21, said host cell comprising an exogenous nucleic acid encoding a MVK, a phosphomevalonate kinase (PMK), and a mevalonate-5 -pyrophosphate decarboxylase (PMD).
23. The recombinant host cell of claim 22, further comprising an exogenous nucleic acid encoding a thiolase, a HMG-CoA synthase, and a HMG-CoA reductase.
24. A method of producing a butadiene or a butadiene precursor in a recombinant host cell having an endogenous mevalonate (MEV) pathway,
said recombinant host cell comprising at least one exogenous nucleic acid encoding a 4-diphosphocytidyl-2-C-methyl-D-erythritol synthase (IspD), a 4- diphosphocytidyl-2-C-methyl-D-erythritol kinase (IspE), a 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase (IspF), a 4-hydroxy-3-methylbut-2-en-l-yl (HMB) diphosphate synthase (IspG), a HMB-PP reductase (IspH), an isopentenyl diphospate isomerase, and an isoprene synthase,
said method comprising incubating said recombinant host cell with a tetritol or a fermentable carbon source under conditions that said host cell (i) produces a tetritol- 4-phosphate from said tetritol or said fermentable carbon source; and (ii) converts at least some of the tetritol- 4-phosphate into butadiene or a non-2-C-methylated butadiene precursor.
90 25. A method of producing a butadiene or a butadiene precursor in a recombinant
91 host cell having an endogenous MEP/DOXP pathway,
92 said recombinant host cell comprising at least one exogenous nucleic acid
93 encoding a mevalonate kinase (MVK), a phosphomevalonate kinase (PMK), and a
94 mevalonate-5 -pyrophosphate decarboxylase (PMD), a thiolase, a HMG-CoA
95 synthase, a HMG-CoA reductase, and an isoprene synthase,
96 said method comprising incubating said recombinant host cell with a tetritol or
97 a fermentable carbon source under conditions that said host cell (i) produces a tetritol-
98 4-phosphate from said tetritol or said fermentable carbon source; and (ii) converts at
99 least some of the tetritol- 4-phosphate into butadiene or a non-2-C-methylated
100 butadiene precursor.
101
102 26. The method of anyone of claims 1-15, 24, or 25, wherein said fermentable
103 carbon source is selected from the group comprising: glycerol, a sugar from a
104 foodstuff; and sugar from a non- foodstuff.
105 27. The method of claim 26, wherein said sugar from foodstuff is sucrose or
106 glucose.
107 28. The method of claim 26, wherein said sugar from said non- foodstuff is
108 cellulosic or hemicellulosic derived sugars.
109 29. A method of converting erythritol 4-phosphate to 4-diphospocytidyl-D-
I I o erythritol, said method comprising contacting erythritol 4-phosphate with a
I I I cytidylyltransferase or a recombinant host cell expressing said cytidylyltransferase,
1 12 wherein the incubation converts erythritol 4-phosphate to 4-diphospocytidyl-D-
1 1 3 erythritol.
1 14 30. A method of converting 4-diphospocytidyl-D-erythritol to 2-phospho-4-
1 15 (cytidine 5' diphospho)-D-erythritol, said method comprising contacting 4-
1 16 diphospocytidyl-d-erythritol with a 4-(cytidine 5 ' -diphospho)-2-C-methyl-D-
1 1 7 erythritol kinase or a recombinant host cell expressing said 4-(cytidine 5'-diphospho)-
1 1 8 2-C-methyl-D-erythritol kinase, wherein the incubation converts 4-diphospocytidyl-
1 1 9 D-erythritol to 2-phospho-4-(cytidine 5' diphospho)-D-erythritol.
120 31. A method of converting 2-phospho-4-(cytidine 5' diphospho)-D-erythritol to
121 D-erythritol-2,4-cyclodiphosphate, said method comprising contacting 2-phospho-4-
122 (cytidine 5' diphospho)-D-erythritol with a 2-C-methyl-D-erythritol 2,4-
123 cyclodiphosphate synthase or a recombinant host cell expressing said 2-C-methyl-D-
124 erythritol 2,4-cyclodiphosphate synthase, wherein the incubation converts 2-phospho-
125 4-(cytidine 5' diphospho)-D-erythritol to erythritol-2,4-cyclodiphosphate.
126 32. A method of converting erythritol-2,4-cyclodiphosphate to l-hydroxy-2-
127 butenyl-4-diphosphate, said method comprising contacting erythritol-2,4-
128 cyclodiphosphate with a l-hydroxy-2-methyl-2-butenyl 4-diphosphate synthase or a
129 recombinant host cell expressing said l-hydroxy-2-methyl-2-butenyl 4-diphosphate
130 synthase, wherein the incubation converts erythritol-2,4-cyclodiphosphate to 1-
131 hydroxy-2-butenyl-4-diphosphate.
132 33. The method of any of the preceding claims, comprising recovering butadiene or
133 said non-2-C-methylated butadiene precursor.
134 34. A method of producing butadiene or a butadiene precursor using a recombinant
135 host cell, said method comprising incubating said recombinant host with a feedstock,
136 wherein said host (i) converts at least some of the feedstock to a tetritol or a tetritol 4-
137 phosphate; and (ii) converts said tetritol or said tetritol 4-phosphate to butadiene.
138 35. The method of claim 34, wherein said recombinant host is deficient in DOXP
139 synthase activity.
140 36. The method of claim 34 or claim 35, wherein said recombinant host is
141 deficient in DXP reductoisomerase activity.
142 37. The method of anyone of claims 34-36, wherein said recombinant host
143 comprises an exogenous nucleic acid encoding an enzyme classified under EC
144 2.7.7.60.
145 38. The method of anyone of claims 34-37, wherein said recombinant host
146 comprises an exogenous nucleic acid encoding an enzyme classified under EC
147 2.7.1.14.
148 39. The method of anyone of claims 34-38, wherein said recombinant host
149 comprises an exogenous nucleic acid encoding an enzyme classified under EC
150 4.6.1.12.
151 40. The method of anyone of claims 34-39, wherein said recombinant host
152 comprises an exogenous nucleic acid encoding an enzyme classified under EC
153 1.17.7.1.
154 41. The method of anyone of claims 34-40, wherein said recombinant host
155 comprises an exogenous nucleic acid encoding an enzyme classified under EC
156 1.17.1.2.
157
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161558712P | 2011-11-11 | 2011-11-11 | |
US201161558700P | 2011-11-11 | 2011-11-11 | |
US61/558,712 | 2011-11-11 | ||
US61/558,700 | 2011-11-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013071074A1 true WO2013071074A1 (en) | 2013-05-16 |
Family
ID=47278518
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2012/064407 WO2013071074A1 (en) | 2011-11-11 | 2012-11-09 | Methods of producing butadiene |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2013071074A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016069949A1 (en) * | 2014-10-29 | 2016-05-06 | Virginia Tech Intellectual Properties, Inc. | Compositions and formulations of methylerthritol phosphate pathway inhibitors and uses thereof |
WO2017064606A1 (en) * | 2015-10-12 | 2017-04-20 | Reliance Industries Limited | Process for preparation of 1,3-butadiene |
CN110268058A (en) * | 2017-02-27 | 2019-09-20 | 积水化学工业株式会社 | The production method of recombinant cell, the preparation method of recombinant cell and isoprene or terpenes |
CN112438912A (en) * | 2019-08-30 | 2021-03-05 | 株式会社Lg生活健康 | Cosmetic composition containing fermented product of truffle mushroom extract as effective component |
CN117965414A (en) * | 2024-04-01 | 2024-05-03 | 北京微构工场生物技术有限公司 | Recombinant halomonas and application thereof in isoprene production |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120225466A1 (en) * | 2011-02-02 | 2012-09-06 | Genomatica, Inc. | Microorganisms and methods for the biosynthesis of butadiene |
-
2012
- 2012-11-09 WO PCT/US2012/064407 patent/WO2013071074A1/en active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120225466A1 (en) * | 2011-02-02 | 2012-09-06 | Genomatica, Inc. | Microorganisms and methods for the biosynthesis of butadiene |
Non-Patent Citations (4)
Title |
---|
MARTIN ET AL: "Engineering a mevalonate pathway in Escherichia coli for production of terpenoids", NATURE BIOTECHNOLOGY, vol. 21, 2003, pages 796 - 802, XP002420804 * |
MORRONE ET AL: "Increasing diterpene yield with a modular metabolic engineering system in E. coli: comparison of MEV and MEP isoprenoid precursor pathway engineering", APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, vol. 85, 2010, pages 1893 - 1906, XP019778553 * |
YANG ET AL: "Enhancing production of bio-isoprene using hybrid MVA pathway and isoprene synthase in E. coli", PLOS ONE, vol. 7, 27 April 2012 (2012-04-27), pages 1 - 7, XP055046587 * |
ZHAO ET AL: "Biosynthesis of isoprene in Escherichia coli via methylerythritol phosphate (MEP) pathway", APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, vol. 90, 6 April 2011 (2011-04-06), pages 1915 - 1922, XP019908970 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016069949A1 (en) * | 2014-10-29 | 2016-05-06 | Virginia Tech Intellectual Properties, Inc. | Compositions and formulations of methylerthritol phosphate pathway inhibitors and uses thereof |
WO2017064606A1 (en) * | 2015-10-12 | 2017-04-20 | Reliance Industries Limited | Process for preparation of 1,3-butadiene |
CN110268058A (en) * | 2017-02-27 | 2019-09-20 | 积水化学工业株式会社 | The production method of recombinant cell, the preparation method of recombinant cell and isoprene or terpenes |
EP3587572A4 (en) * | 2017-02-27 | 2020-12-30 | Sekisui Chemical Co., Ltd. | Recombinant cell, method for producing recombinant cell, and method for producing isoprene or terpene |
US11261450B2 (en) | 2017-02-27 | 2022-03-01 | Sekisui Chemical Co., Ltd. | Recombinant cell, method for producing recombinant cell, and method for producing isoprene or terpene |
CN110268058B (en) * | 2017-02-27 | 2023-11-21 | 积水化学工业株式会社 | Recombinant cell, method for producing recombinant cell, and method for producing isoprene or terpene |
CN112438912A (en) * | 2019-08-30 | 2021-03-05 | 株式会社Lg生活健康 | Cosmetic composition containing fermented product of truffle mushroom extract as effective component |
CN112438912B (en) * | 2019-08-30 | 2024-06-11 | 株式会社Lg生活健康 | Cosmetic composition containing fermentation product of truffle mushroom extract as effective component |
CN117965414A (en) * | 2024-04-01 | 2024-05-03 | 北京微构工场生物技术有限公司 | Recombinant halomonas and application thereof in isoprene production |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9040266B2 (en) | Cell-based systems for production of methyl formate | |
EP2971027B1 (en) | Use of phosphoketolase and phosphotransacetylase for production of acetyl-coenzyme a derived compounds | |
Lazuka et al. | Efficient anaerobic transformation of raw wheat straw by a robust cow rumen-derived microbial consortium | |
Sukovich et al. | Widespread head-to-head hydrocarbon biosynthesis in bacteria and role of OleA | |
Londry et al. | Stable carbon isotope fractionation between substrates and products of Methanosarcina barkeri | |
WO2013071074A1 (en) | Methods of producing butadiene | |
Yu et al. | Engineering of glycerol utilization pathway for ethanol production by Saccharomyces cerevisiae | |
US20160017374A1 (en) | Compositions and methods for biological production of isoprene | |
CA2707446A1 (en) | Industrial production of organic compounds using recombinant organisms expressing methyl halide transferase | |
WO2013181647A9 (en) | Compositions and methods of producing isoprene and/or industrial bio-products using anaerobic microorganisms | |
WO2014193473A1 (en) | Recombinant anaerobic acetogenic bacteria for production of isoprene and/or industrial bio-products using synthesis gas | |
Pattharaprachayakul et al. | Evolutionary engineering of cyanobacteria to enhance the production of α-farnesene from CO2 | |
Kudoh et al. | Overexpression of endogenous 1-deoxy-d-xylulose 5-phosphate synthase (DXS) in cyanobacterium Synechocystis sp. PCC6803 accelerates protein aggregation | |
Dai et al. | Genetically engineered oleaginous yeast Lipomyces starkeyi for sesquiterpene α-zingiberene production | |
Nongthombam et al. | Bioethanol production from Ficus fruits (Ficus cunia) by Fusarium oxysporum through consolidated bioprocessing system | |
Wackett et al. | Hydrocarbon biosynthesis in microorganisms | |
Nurcholis et al. | Isolation of thermo-tolerant and ethanol-tolerant yeast from local vegetables and their potential as bioethanol producers | |
Olsson | Lignin degradation and oxygen dependence | |
Czinkóczky et al. | Bioproduction of isoprene and isoprenoids | |
Loh | Elucidation of alkane metabolism in the filamentous fungi Ascocoryne sarcoides | |
Hong | Advancing metabolic engineering through combination of systems biology and adaptive evolution | |
Eusebio | Filling in gaps in Clostridium thermocellum metabolism through co-culturing with hydrogenotroph, Methanothermobacter marburgensis | |
BUFFEL | FOSTERING MICROBES WITH BIOCHAR FOR ENHANCED BIOPRODUCTION OF CAPROIC ACID | |
Kumaravelayutham | Impact of simple and complex substrates on the composition and diversity of microbial communities and the end-product synthesis | |
Sibirny | Session I. Microbial Biotechnology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12794815 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12794815 Country of ref document: EP Kind code of ref document: A1 |