[go: up one dir, main page]

WO2013069111A1 - Gas turbine electricity generation device and operating method therefor - Google Patents

Gas turbine electricity generation device and operating method therefor Download PDF

Info

Publication number
WO2013069111A1
WO2013069111A1 PCT/JP2011/075833 JP2011075833W WO2013069111A1 WO 2013069111 A1 WO2013069111 A1 WO 2013069111A1 JP 2011075833 W JP2011075833 W JP 2011075833W WO 2013069111 A1 WO2013069111 A1 WO 2013069111A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas turbine
turbine power
heat
temperature
power generator
Prior art date
Application number
PCT/JP2011/075833
Other languages
French (fr)
Japanese (ja)
Inventor
尚弘 楠見
小山 一仁
重雄 幡宮
高橋 文夫
孝朗 関合
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2011/075833 priority Critical patent/WO2013069111A1/en
Priority to JP2013542749A priority patent/JP5766295B2/en
Publication of WO2013069111A1 publication Critical patent/WO2013069111A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/30Adding water, steam or other fluids for influencing combustion, e.g. to obtain cleaner exhaust gases
    • F02C3/305Increasing the power, speed, torque or efficiency of a gas turbine or the thrust of a turbojet engine by injecting or adding water, steam or other fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/212Heat transfer, e.g. cooling by water injection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Definitions

  • the present invention relates to a gas turbine power generator that uses high-humidity air in a power generator using a gas turbine, and an operation method thereof.
  • thermal power plants have an apparatus for generating electricity by burning coal or heavy oil in a boiler, generating steam using the combustion heat, driving a steam turbine, and generating electrical energy from rotational energy.
  • the air is compressed by a compressor, the compressed air is burned by the combustor, the gas turbine is driven by the combustion air, and the gas turbine power generation device that generates electric power or the exhaust gas burned by the gas turbine is reused.
  • There is a high-efficiency combined cycle power generation device that generates steam in an exhaust heat recovery boiler and drives the steam turbine using the steam.
  • Patent Documents 1 and 2 steam obtained by recovering the thermal energy of the combustion exhaust gas of the gas turbine is mixed with the air for the gas turbine fuel, and the turbine is made of the high humidity combustion exhaust gas obtained by the combustor. A gas turbine cycle that realizes an improvement in output (electric power) and power generation efficiency by driving is described.
  • JP 57-79225 A Japanese Patent Laid-Open No. 58-101228
  • solar power generation requires a large installation space in order to secure required power because the energy density per installation space of the energy supply source is low.
  • Power generation using solar heat is a use of heat supply to an existing power plant rather than power generation alone, and it requires a large amount of energy to obtain high-temperature and high-pressure steam. As with solar power generation, a large installation space is required.
  • an object of the present invention is to provide a gas turbine power generator capable of improving output by spraying hot water obtained from solar thermal energy and capable of stable operation, and an operation method thereof.
  • a gas turbine power generator is driven by a compressor that compresses air, a combustor that combusts compressed air and fuel from the compressor, and a combustion gas of the combustor.
  • a heat storage tank that stores a heat medium; a first bypass line that bypasses a heated-side circulation path formed by the heat exchanger; a first adjustment valve that adjusts a flow rate to the first bypass line; and the heat
  • a gas turbine power generator comprising: an intake air cooling chamber for spraying hot water heated by an exchanger onto the air of the compressor by a spray nozzle.
  • a gas turbine power generator is driven by a compressor that compresses air, a combustor that combusts compressed air and fuel from the compressor, and a combustion gas of the combustor.
  • a gas turbine a generator connected to the gas turbine via a shaft and driven by rotation of the gas turbine, a heat exchanger, a heat storage tank for storing a heat medium, and the heat exchanger.
  • a first bypass line for bypassing the heated side circulation path, a first adjustment valve for adjusting a flow rate to the first bypass line, a spray nozzle for spraying hot water on the air, and the air to the compressor An operation method of a gas turbine power generator comprising an intake air cooling chamber to be sent, wherein a circulation formed by a heat exchanger by the first regulating valve until a heat medium heated using solar heat reaches a predetermined temperature.
  • a path is bypassed using the first bypass line, the heat storage tank stores the heat medium reaching the predetermined temperature, and produces the hot water by heat exchange with the heat medium by the heat exchanger.
  • the hot water heated by the heat exchanger by the spray nozzle is sprayed on the air.
  • FIG. 1 It is a figure which shows the main apparatuses of the gas turbine electric power generating apparatus of embodiment which concerns on this invention. It is a figure which shows the gas turbine power generator including the main equipment of embodiment, and an operating method. It is a figure which shows the actual value data table of embodiment. It is a figure which shows the predicted value data table of embodiment. It is a figure which shows the information (data) preserve
  • FIG. 1 is a diagram showing a main device of a gas turbine power generator according to an embodiment of the present invention.
  • the gas turbine power generation device S of the embodiment is a device having a function and an operation method for improving the power generation output by spraying hot water w4 heated by solar heat onto the air sent to the compressor 2.
  • the gas turbine power generator S includes a hot water generator 700 that generates hot water w4 by solar heat, and a gas turbine power generation facility 100 that generates power by driving the gas turbine 1 with compressed exhaust gas sprayed with the hot water w4 and combustion exhaust gas. It is equipped with.
  • the gas turbine power generation facility 100 includes a compressor 2 that compresses air (intake air) sprayed with hot water w4 and outputs the compressed air, a combustor 4 that combusts fuel with the compressed air supplied from the compressor 2, and a combustor.
  • 4 is provided with a gas turbine 1 driven by combustion exhaust gas from 4, and a generator 3 connected to the gas turbine 1 via a gas turbine shaft 1j.
  • the gas turbine power generation device S includes a hot water generator 700 that heats water to warm water w4 by solar heat, an intake air cooling chamber 5 that cools air (intake air) sent to the sucked compressor 2, and an intake air cooling chamber 5 And a spray nozzle 6 for spraying hot water w4 heated by the hot water generator 700.
  • the advantage of using warm water is that spraying warm water causes the fog of warm water to drop from high temperature and pressure to atmospheric pressure, so the boiling point suddenly becomes low and boiling under reduced pressure occurs. Therefore, the sprayed fine water droplets evaporate all at once, and the fine water droplets sprayed by evaporation become further fine particles. Accordingly, since more spray water can be sprayed from the spray nozzle 6, the evaporation phenomenon is promoted, and the temperature is further lowered by the latent heat of evaporation, thereby increasing the density of the intake air.
  • the mass flow rate can be further increased, and further output improvement can be achieved by spraying warm water. Further, since the sprayed fine water droplets are further finely divided, the generation of drain and rust caused by the combustion exhaust gas colliding with the turbine blades of the gas turbine 1 can be suppressed as much as possible.
  • ⁇ Hot water generator 700> The hot water generator 700 that absorbs solar heat absorbs the heat from the sun into the first working fluid w1 that flows in the heat collecting pipe (not shown), and increases the temperature of the first working fluid w1 by the solar heat collecting device 701. It has.
  • the heat medium oil of the first working fluid w1 and the second working fluid w2 whose temperature is increased by solar heat (hereinafter, the second working fluid w2 will be described as the heat medium oil w2) and First heat exchanger 702 that performs heat exchange in the first, second and second heat storage tanks 703 and 704 that store the heat transfer medium oil w2 that has reached a high temperature, a water supply tank 706 that stores the water w3, and a heat transfer medium
  • a second heat exchanger 705 is provided that performs heat exchange between the oil w2 and the water w3 from the water supply tank 706 to obtain hot water w4 for spraying.
  • the hot water generator 700 is provided with adjusting valves 711 to 718 for opening and closing the flow path of the hot water generator 700 and pumps 721 to 725 for sending the working fluid (w1, w2, w3, w4).
  • the regulating valves 711 to 718 and the pumps 721 to 725 operate by receiving a control signal 130 from a control device 200 (see FIG. 2) described later.
  • the working fluid w1 delivered by the pump 721 flows through a heat collecting tube (not shown) by the solar heat collector 701 and is heated by solar heat.
  • heat transfer oil is used as the working fluid w1.
  • the first working fluid w1 and the second working fluid w2 exemplify the case where oil (heat medium oil) is used, but the first and second working fluids w1 and w2 are heat medium oil.
  • water may be used.
  • the first and second working fluids w1 and w2 are preferably oils whose pressure increase is slower than water even at high temperatures.
  • the first and second working fluids w1 and w2 may use a heat medium other than the heat medium oil.
  • a heat medium is selected that has a gradual rise in pressure even at high temperatures and low viscosity at low temperatures.
  • the heat medium oil w2 circulated by the pumps 722 and 723 rises in temperature by exchanging heat with the working fluid w1 heated by solar heat in the first heat exchanger 702.
  • the heat transfer oil w2 is heated by the heat exchanger 702
  • the heat medium oil w2 of a predetermined temperature can always heat the water w3 sent from the water supply tank 706 by the second heat exchanger 705 with an amount within the capacity of the heat storage tank 703.
  • the feed water (water w3) fed from the feed water tank 706 to the second heat exchanger 705 by the pump 724 is heated by heat exchange with the heat transfer oil w2 in the second heat exchanger 705 and heated at a predetermined temperature. Heated to w4.
  • the hot water w4 having a predetermined temperature is pressurized by the booster pump 725 and sprayed from the spray nozzle 6 into the intake cooling chamber 5.
  • the regulating valves 711, 714, 717 are operated when controlling the state of the operating fluid (w1, w2, w3, w4) during operation or in an emergency.
  • the regulating valve 711 is used when the temperature of the working fluid w1 heated by the solar heat collecting apparatus 701 does not reach a predetermined temperature used in the first heat exchanger 702 or when the heat in the first heat exchanger 702 is reached.
  • the flow path from the solar heat collecting apparatus 701 is set to the bypass line b1 side instead of the first heat exchanger 702 side.
  • the temperature of the working fluid w1 heated by the solar heat collector 701 reaches a predetermined temperature used in the first heat exchanger 702 and heat exchange is performed in the first heat exchanger 702.
  • the flow path from the solar heat collecting apparatus 701 is not the bypass line b1 side but the first heat exchanger 702 side.
  • the regulating valve 714 Not on the 705 side but on the bypass line b2 side.
  • the second heat exchanger 705 is not the side of the bypass line b2 but the second heat exchanger 705. Let it be the heat exchanger 705 side.
  • the regulating valve 717 is not on the spray nozzle 6 side but on the water supply tank 706 side. Open the flow path.
  • the regulating valve 717 is not on the water supply tank 706 side. A flow path is opened on the spray nozzle 6 side.
  • the regulating valves 712, 713, 715, 716 are operated when accumulating or releasing the amount of heat obtained by the solar heat collecting apparatus 700.
  • the flow paths of the regulating valves 712, 713, 715, 716 are opened, and the first heat exchange tanks 703, 704 perform the first heat exchange.
  • the high-temperature heat transfer oil w2 heated by the vessel 702 is stored.
  • the high-temperature heat transfer oil w2 stored in the first and second heat storage tanks 703 and 704 is adjusted to the regulating valves 712, 713, 715, and 716. Is opened, discharged to the second heat exchanger 705, and the water w3 is heated.
  • FIG. 2 is a diagram showing a gas turbine power generation apparatus including main components of the embodiment and an operation method thereof.
  • the hot water generating device 700 of the gas turbine power generation device S and the gas turbine power generation facility 100 are operated (controlled) by the control device 200.
  • An operation command to the hot water generation device 700 and the gas turbine power generation facility 100 and an operation state display of the hot water generation device 700 and the gas turbine power generation facility 100 are performed using the support tool 910.
  • the gas turbine power generation facility 100 receives the control signal 150 from the control device 200 and is controlled to a desired state.
  • the state quantity of each part of the gas turbine power generation facility 100 is captured (transmitted) into the control device 200 as a measurement signal 140.
  • the control device 200 performs control by operating various operation ends so as to be in an appropriate operation state with respect to the power generation request based on the measurement signal 140 from the gas turbine power generation facility 100. Since this control method is based on a known technique, the relationship with the hot water generator 700 of the gas turbine power generation facility 100 will be described here.
  • the adjustment valves 711 to 718 are adjusted so that the gas turbine power generation facility 100 is in an appropriate operating state, and the working fluid w1 and the heat medium are heated by the solar heat of the solar heat collector 701.
  • a control signal 130 is output so as to supply the intake water cooling chamber 5 with an appropriate amount of hot water w4 having a predetermined temperature heated via the oil w2.
  • the predetermined temperature is, for example, about 150 ° C., but is not limited to about 150 ° C.
  • the related information database 300 stores information for use in determining the operating conditions of the gas turbine power generation facility 100 and the hot water generator 700.
  • the operation information database 600 stores measurement signals 140 and 120 obtained from the gas turbine power generation facility 100 and the hot water generator 700, respectively.
  • the hot water generator 700 and the gas turbine are based on information obtained from the measurement signals 120 and 140 and data necessary for determining the operating conditions of the gas turbine power generation facility 100 and the hot water generator 700.
  • the operation state of the power generation facility 100 is determined (calculated).
  • the data necessary for determining the operating condition includes, for example, information on sunshine data when the outside air temperature or solar heat is used. Details of these data will be described later.
  • the control unit 500 receives the determination result of the operating condition determination unit 400 (input information of the determination result) and outputs an appropriate control signal 130 according to the determination result to the hot water generator 700. Based on the control signal 130, the regulating valves 711 to 718 and the pumps 721 to 725 in the hot water generator 700 are controlled. The signals (130, 150) and information generated in the control device 200 are also output to the support tool 910 as necessary.
  • the determination result by the operating condition determination unit 400 and the algorithm for obtaining the control signals 130 and 150 will be described in detail later.
  • a user related to the gas turbine power generation facility 100 can visually check various information regarding the gas turbine power generation facility 100 and the hot water generator 700 on the image display device 950 by using the support tool 910.
  • the support tool 910 includes an external input / output interface 920, a data transmission / reception processing unit 930, and an external output interface 940.
  • the support tool 910 is connected to an input device 900 that includes a keyboard 901, a mouse 902, a touch panel, and the like, and an image display device 950 that is an output device. Further, the user can access information in the control device 200 by using the support tool 910 using the input device 900.
  • the input signal 800 generated by the input device 900 is received by the support tool 910 via the external input / output interface 920.
  • information (signal) 210 from the control device 200 to the support tool 910 is also taken in (received) by the external input / output interface 920.
  • information (signal) 210 from the support tool 910 to the control device 200 is also taken into (received) by the control device 200 via the external input / output interface 920.
  • the data transmission / reception processing unit 930 processes the input signal 801 according to the information of the input signal 800 generated by the input device 900 from the user, and transmits it to the external output interface 940 as the output signal 802.
  • An output signal 803 from the external output interface 940 based on the output signal 802 is displayed on the image display device 950.
  • the output signal 803 may be output to an output file, printed on a form by a printer (not shown), or output to another system and processed by another system.
  • the driving condition determination data and the measurement signals 120 and 140 stored in the related information database 300 and the driving information database 600 will be described. First, information required when the driving condition determination unit 400 determines the driving condition will be described.
  • FIG. 3A is a diagram showing an actual measurement data table 300J.
  • the measured value data table 300J in FIG. 3A is data stored in the related information database, and records information on measured values of the climatic state.
  • FIG. 3B is a diagram showing a predicted value data table 300Y.
  • the predicted value data table 300Y of FIG. 3B is data stored in the related information database, and information on predicted values of the climatic state is recorded.
  • the measured value and the predicted value are both the time (time), weather, temperature (° C.), wind direction (degree), wind speed (m / s), humidity ( %), The amount of solar radiation (kW / m 2 ) and the like are stored. Further, the predicted value data table 300Y stores the predicted temperature of the hot water w4 described later.
  • the period of time (time) to be measured is arbitrarily determined by the measurable time width.
  • the weather is expressed using 15 types sent to the general public by the Japan Meteorological Agency.
  • the wind direction (degree) is generally 16 azimuths, but the international style uses 360 azimuths expressed by dividing 360 degrees in the clockwise direction with true north as a reference.
  • 360 azimuths are represented. However, in the case of 16 azimuths, if a ratio of 22.5 degrees is given to each azimuth, it can be numerically expressed in 360 azimuth degrees.
  • Actual measured values are stored in the actual measurement data table 300J shown in FIG. 3A.
  • Each numerical value is stored in the predicted value data table 300Y shown in FIG. 3B based on, for example, a calculation result in the prediction model and distribution data.
  • each numerical value may be currently distributed every hour, but in other cases, a model for calculating a predicted value based on past data is required.
  • This prediction model includes, for example, a meso-meteorological model (Weather Research and Forecasting model: WRF model) which is a model for predicting an atmospheric state based on a physical formula.
  • WRF model Weather Research and Forecasting model
  • this model since it is necessary to make a setting for forecasting a desired area, there is also a simple method of obtaining using a regression equation or the like based on past data.
  • any method may be used.
  • FIG. 4 is a diagram showing information (data) stored in the driving information database 600.
  • the PID number in the first line is a unique number assigned to each measurement value so that data stored in the operation information database 600 can be easily used.
  • the alphabet below the PID number is a symbol indicating the measurement target.
  • the flow rate value F of the working fluid w1 heated by the solar heat collecting device 701, the temperature value T of the working fluid w1, the pressure value P of the working fluid w1, the power generation output value E of the generator 3, and the combustor 4 The concentration value D of NOx contained in the combustion exhaust gas, the temperature of the hot water w4, and so on.
  • data is stored at a cycle of 1 second, but the sampling cycle of data collection differs depending on the target gas turbine power generation facility 100.
  • FIG. 5 shows the fluid discharged from the solar heat collector 701 (first) using the data stored in the predicted value data table 300Y (see FIG. 3B) stored in the related information database 300 shown in FIG. It is a figure which shows the model which estimates the temperature of the working fluid w1).
  • the operating condition determination unit 400 estimates the temperature of the fluid (first working fluid w1) discharged from the solar heat collecting apparatus 701 from the heat of the fluid (first working fluid w1). This is to obtain control information for setting the temperature of the hot water w4 used for spraying obtained to a predetermined value.
  • This model has an input layer, an intermediate layer, and an output layer, and each layer has multiple nodes. These nodes are linked from the input layer to the output layer, and a weighting coefficient (for example, ⁇ 1 to ⁇ n: n is the number of connections) indicating the strength of the link is set. That is, there are as many weighting coefficients as the number of connections between nodes.
  • a weighting coefficient for example, ⁇ 1 to ⁇ n: n is the number of connections
  • This model is called a neural network, and simulates a human cranial nerve network.
  • this model By giving an input value to this model and adjusting the weighting coefficient so that a desired output value for the input value is output, the correlation of the input value can be expressed as a model. This is called learning.
  • an input value can be input to the model, and an output value can be estimated based on the correlation obtained by the input value at that time.
  • the function set for each node generally uses an exponential function called a sigmoid function, but is not limited thereto.
  • many algorithms have been devised that appropriately adjust the weighting factors (the above-mentioned ⁇ 1 to ⁇ n) during learning.
  • the back propagation method is used.
  • the back-propagation method is referred to as a back-propagation method because it is a method in which a virtual output value is assigned and a weighting factor representing a weight affecting the virtual output value is obtained retrospectively from the virtual output value.
  • the method for estimating the temperature of the fluid (working fluid w1) discharged from the solar heat collecting apparatus 701 may be another method such as a least square method other than the illustrated back-propagation method, and the fluid (working fluid w1). Of course, the method is not limited as long as the temperature can be estimated.
  • the operating condition determination unit 400 predicts the temperature of the hot water w4 using data stored in the predicted value data table 300Y (see FIG. 3B).
  • the measured value data table 300J (see FIG. 3A), information on the measurement signals 120 and 140, information on the driving information database 600, and the like are used as necessary.
  • the predicted temperature of the hot water w4 is recorded by the operating condition determination unit 400 in the predicted value data table 300Y or the storage unit of the work area. Then, the controller 500 uses the predicted temperature of the hot water w4 to store a necessary amount of heat in the first and second heat storage tanks 703 and 704. For example, when the temperature is predicted to be low or the amount of solar radiation is predicted to be small, the heat amount of the heat transfer oil w2 is accumulated in the first and second heat storage tanks 703 and 704. On the other hand, when the temperature is predicted to be high or the amount of solar radiation is predicted to be large, the amount of heat of the heat transfer oil w2 is accumulated in the first and second heat storage tanks 703 and 704 to a small extent.
  • FIG. 6 is a flowchart showing the processing operation in the operating condition determination unit 400.
  • the processing operation in the operation condition determination unit 400 shown in FIG. 2 is any one of a prediction mode for predicting the operation of the gas turbine power generation facility 100 and the hot water generator 700, an actual operation start mode, an operation mode, and a stop mode. This is a process of distributing the above.
  • the prediction mode, the start mode, the operation mode, and the stop mode (operation conditions) are input from the support tool 910 by the user.
  • step S401 of FIG. 6 it is determined whether or not the operation condition prediction mode of the gas turbine power generation equipment 100 and the hot water generator 700 is set. If it is the prediction mode (Yes in Step S401), the process proceeds to Step S402, while if it is not the prediction mode (No in Step S401), the process proceeds to Step S406.
  • the setting information of heat storage enablement, start mode, operation mode, and stop mode obtained in the flow of FIG. 6 is input to the control unit 500 in the control device 200 of FIG.
  • the control unit 500 in FIG. 2 controls the regulating valves 711 to 718 and the pumps 721 to 725 in the hot water generator 700 based on information from the operation condition determination unit 400 and the operation information database 600.
  • the control unit 500 in FIG. 2 controls the regulating valves 711 to 718 and the pumps 721 to 725 in the hot water generator 700 based on information from the operation condition determination unit 400 and the operation information database 600.
  • start mode When the start mode is set to “1” (start mode is ON), the bypass line b1 side of the regulating valve 711 shown in FIG. 2 is opened first, and the solar heat collector 701 does not pass through the heat exchanger 702. A circulation loop passes through the bypass line b1.
  • the working fluid w1 is circulated by the pump 721, and the temperature is raised until the temperature of the working fluid w1 flowing into the first heat exchanger inlet 702i reaches a preset temperature.
  • An unillustrated temperature sensor for measuring the temperature of the working fluid w1 is disposed upstream of the regulating valve 711.
  • the bypass line b2 is opened by operating the adjustment valve 714.
  • the regulating valves 712, 713, and 715 are opened so that the heat transfer oil w2 can flow into the first heat exchanger 702. Whether or not the heat transfer oil w2 is allowed to flow through the second heat storage tank 704 depends on the control state of the hot water generator 700.
  • the adjustment valve 715 is opened to the second heat storage tank 704 side, and the adjustment valve 716 is also opened.
  • the pumps 722 and 723 are operated, and the heat transfer oil w2 flows into the first heat exchanger 702.
  • the bypass line b1 is closed by the operation of the regulating valve 711, and the working fluid w1 flows through the first heat exchanger 702.
  • the first heat exchanger 702 starts heat exchange between the working fluid w1 heated to the set temperature by solar heat and the heat transfer oil w2.
  • the current state is maintained until the temperature of the heat transfer oil w2 flowing into the second heat exchanger inlet 705i reaches a preset temperature.
  • a temperature sensor (not shown) that measures the temperature of the heat transfer oil w2 is disposed upstream of the regulating valve 714.
  • the bypass line b3 through which the water w3 flows is opened by operating the adjustment valve 717, and the pumps 724 and 725 are operated.
  • the adjustment valve 718 is also opened, and the water w3 supplied from the water supply tank 706 flows into the second heat exchanger 705 and the bypass line b3.
  • the bypass line b ⁇ b> 2 is closed by the operation of the regulating valve 714, and the working fluid heat transfer oil w ⁇ b> 2 flows into the second heat exchanger 705.
  • the temperature of the water w3 supplied from the water supply tank 706 is raised by heat exchange with the heat transfer oil w2 in the second heat exchanger 705. Spraying is possible when the temperature and pressure of the water w3 on the outlet side 725o of the pump 725 reach a preset temperature and pressure.
  • a temperature sensor and a pressure sensor (not shown) for measuring the temperature and pressure of the water w3 are disposed downstream of the outlet side 725o of the pump 725.
  • the adjustment valve 717 is operated to close the bypass line b3 and shift to the operating state. Then, a signal indicating the operation mode is sent to the support tool 910.
  • operation mode when the operation mode is set to “1” (operation mode is ON), the operation is performed so that the state of the hot water 4 immediately before the spray nozzle 6 becomes a desired pressure and temperature.
  • a pressure sensor and a temperature sensor (not shown) for measuring the pressure and temperature of the hot water w4 are disposed immediately before the spray nozzle 6, respectively.
  • a pressure sensor (not shown) and a temperature sensor for measuring the pressure and temperature of the hot water w4 are not provided immediately before the spray nozzle 6, respectively.
  • a temperature sensor and a pressure sensor (not shown) downstream of the outlet side 725o of the pump 725 measure the temperature and pressure of the hot water w4, respectively.
  • the working fluid w1 at the inlets 702i and 705i of the first and second heat exchangers 702 and 705, The set value of each temperature of the heat transfer oil w2 is determined.
  • the temperature of the heat transfer oil w2 at the inlet (705i) on the high temperature side of the second heat exchanger 705 is a set value, and the temperature of the heat transfer oil w2 at the outlet (705o) is a temperature considering the heat loss after heat exchange.
  • the control valves 712 and 713 and the pump 723 of the first heat storage tank 703 of the high-temperature tank are controlled.
  • the temperature of the working fluid w1 at the inlet (702i) of the first heat exchanger 702 and the temperature of the working fluid w1 at the outlet (702o) are controlled in the same way.
  • stop mode When the stop mode is set to “1” (stop mode is ON), all the control valves 711, 714, 717 are operated to open all the bypass lines b1, b2, b3, and then all the pumps 721 to 725 is stopped.
  • the opening degree of each of the regulating valves 712 and 713 is operated to store an excessive amount of heat for stable operation of the gas turbine power generation facility 100.
  • the heat transfer oil w2 of the working fluid in the first heat storage tank 703 flows into the second heat exchanger 705, but the working fluid at the inlet 702i of the first heat exchanger 702
  • the control valves 712 and 713 are controlled so that the temperature of the heat transfer oil w2 flowing into the inlet (705i) of the second heat exchanger 705 becomes a predetermined set temperature (constant) based on the same concept as the constant temperature control of w1. Operate each opening.
  • the second heat storage tank 704 operates the opening degree of each of the adjustment valves 715 and 716.
  • the adjustment valve 714 causes the heat medium oil w2 to be
  • the heat medium oil w2 is flowed to the bypass line b2 without flowing to the heat exchanger 705, and the temperature of the heat transfer oil w2 is transferred to the inlet (705i) of the second heat exchanger 705 by heat exchange in the first heat exchanger 702. Heat to set temperature.
  • the adjustment valve 714 closes the bypass line b2 to change the heat transfer oil w2 Flow to the second heat exchanger 705. Even when it is determined that the temperature of the heat transfer oil w2 flowing to the inlet (705i) of the second heat exchanger 705 does not reach the set temperature, the inlet (705i) of the second heat exchanger 705 You may comprise so that it may flow.
  • FIG. 7 to 10 show examples of screens G1, G2, G3, and G4 displayed on the image display device 950 of FIG.
  • the user uses the keyboard 901 and the mouse 902 shown in FIG. 2 to perform operations such as selecting a button on the screens G1 to G4 by pressing a button or inputting a parameter value in a blank area.
  • Various information of the gas turbine power generator S is displayed.
  • FIG. 7 shows a data processing device GUI screen G1 of the initial screen displayed on the image display device 950.
  • the user displays the data processing device GUI screen G1 on the image display device 950, moves the cursor 953 using the mouse 902 (see FIG. 2), and is necessary from the operation state display button 951 or the trend display button 952 ( A desired button is selected by clicking with the mouse 902.
  • a desired operation state display screen operation state display screen G2 in FIG. 8) or a trend display screen (trend display setting screen G3 in FIG. 9) can be displayed.
  • FIG. 8 shows an operation state display screen G2 which is an operation state display screen.
  • the operation state display button 951 is clicked on the data processing device GUI screen G1 (see FIG. 7)
  • the operation state display screen G2 of FIG. 8 is displayed.
  • the system information display field 961 of the operation state display screen G2 the user inputs the time desired to be displayed in the time input field 962.
  • the display button 963 By clicking (pressing) the display button 963, various states at the input time are displayed in the system information display field 961.
  • FIG. 8 shows a case where the opening degree of the regulating valve 711 and the temperature of the heat transfer oil w2 at the inlet (705i) of the second heat exchanger 705 are displayed.
  • the user selects one of a start mode, an operation mode, a stop mode, and a prediction mode. Then, the selected mode is highlighted.
  • FIG. 8 shows a case where the operation mode is highlighted.
  • the selection signal is transmitted to the driving condition determination unit 400 (see FIG. 2) via the support tool 910.
  • the support tool 910 receives the operation mode signal (information 210) from the operation condition determination unit 400 of the control device 200 that has received the measurement signals 120 and 140.
  • the operation mode column in this screen G2 is highlighted (lighted).
  • the heat storage possibility 965 is highlighted (lighted).
  • the prediction mode is selected on the operation state display 964, the estimated temperature of the first working fluid w1 is displayed as the estimated temperature in the 966 column.
  • the temperature in the heat storage tank 1 in the column 966 indicates the temperature of the heat transfer oil w2 in the first heat storage tank 703, and the temperature in the heat storage tank 2 indicates the temperature of the heat transfer oil w2 in the second heat storage tank 704.
  • Each item of the state of the outside air in each mode is displayed in the related information display column 967.
  • the return button 968 By clicking (depressing) the return button 968 on the operation state display screen G2, it is possible to return to the data processing device GUI screen G1 of FIG.
  • FIG. 9 is a trend display setting screen G3 that is a setting screen for displaying trends such as measured values and various specifications over time on the image display device 950.
  • the trend display button 952 is clicked (pressed) on the data processing device GUI screen G1 in FIG. 7, the trend display setting screen G3 in FIG. 9 is displayed.
  • the user inputs the measurement signal 120, 140 or the operation signals 130, 150 to be displayed on the image display device 950 together with the range (upper / lower) in the input field.
  • FIG. 9 shows a case where the name of the measurement signal display field 981 is selected and displayed using a pull-down menu.
  • the time input field 982 the time zone in which the signal input in the measurement signal display field 981 is to be displayed is input.
  • a trend display screen G4 (see FIG. 10) showing a trend graph of data input in the measurement signal display field 981 and the time input field 982 is displayed on the image display device 950. Is displayed.
  • the user who views the desired trend graph can return to the screen of FIG. 9 by clicking (pressing) the return button 991 on the trend display screen G4 (see FIG. 10).
  • any of the weather, temperature, wind direction, wind speed, humidity, and solar radiation in the state of the outside air is selected.
  • FIG. 9 shows a case where temperature and wind speed are selected.
  • a time zone in which the item selected in the related information display field 984 is to be displayed is input to the time input field 985.
  • the display button 986 is clicked, the selected information is retrieved from the related information database 300 (see FIG. 2) via the support tool 910, and the trend graph on the trend display screen G4 (see FIG. 10) is displayed as an image. It is displayed on the display device 950.
  • the weather in the related information display column 984 is expressed using 15 types transmitted (announced) to the general public by the Japan Meteorological Agency as described above. That is, a number is assigned according to each type of weather, and this is displayed as a trend. That is, numbers are sequentially assigned up to 14, such as 0 for clear weather, 1 for clear weather, and 2 for light cloudiness. Note that symbols such as ⁇ (cloudy), ⁇ (rainy), and pictograms may be displayed.
  • the predicted hot water temperature and the actual hot water temperature are compared and displayed.
  • the user inputs a time zone to be compared in the time input field 987 and clicks (presses) the display button 988, a trend for comparing and displaying the predicted hot water temperature and the actual hot water temperature on the trend display screen G4 in FIG.
  • the graph is displayed on the image display device 950.
  • the user can return to the data processing device GUI screen G1 of FIG. 7 by clicking (pressing) the return button 989 on the trend display setting screen G3 of FIG.
  • the gas turbine power generation equipment 100 since the warm water w4 heated using the solar heat is sprayed on the air which the compressor 2 suck
  • a database is exemplified as the storage unit.
  • a temporary file or a work area may be used as long as the storage unit can store various data, and the mode is not limited as long as data can be stored.
  • the various storage units described in the embodiment may be divided and configured, and the operating condition determination unit 400 and the control unit 500 may be configured separately or may be integrated into one unit. May be.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Provided are a gas turbine electricity generation device, and an operating method therefor, with which the output can be improved by spraying heated water obtained with the heat energy of solar heat, and with which stable operation can be obtained. This gas turbine electricity generation device (S) is equipped with: a compressor (2) that compresses air; a combustor (4) that burns a fuel and compressed air from the compressor (2); a gas turbine (1) that is driven by the combustion gas from the combustor (4); an electricity generation device (3) that is connected to the gas turbine (1) via a shaft (1j), and that is driven by the rotation of the gas turbine (1); a heat exchanger (705) that exchanges heat with a heat medium (w2) that has been heated using solar heat; heat storage tanks (703, 704) that store the heat medium (w2); a first bypass line (b3) that bypasses a circulation path that is on the to-be-heated side and is formed with the heat exchanger (705); a first adjustment valve (717) that adjusts the flow volume of the first bypass line (b3); and a suction air cooling chamber (5) for spraying into the air in the compressor (2), by means of spray nozzles (6), heated water (w4) that has been heated by the heat exchanger (705).

Description

ガスタービン発電装置およびその運転方法Gas turbine power generator and operation method thereof
 本発明は、ガスタービンによる発電装置において高湿分空気を利用するガスタービン発電装置およびその運転方法に関する。 The present invention relates to a gas turbine power generator that uses high-humidity air in a power generator using a gas turbine, and an operation method thereof.
 従来、火力発電プラントには、石炭や重油などをボイラで燃焼し、その燃焼熱を用いて蒸気を発生させ、蒸気タービンを駆動させて、回転エネルギから電気エネルギを発生させて発電する装置がある。また、大気を圧縮器で圧縮し燃焼器によって圧縮空気を燃焼させ、その燃焼空気により、ガスタービンを駆動させて発電するガスタービン発電装置や、或いは、ガスタービンで燃焼した排ガスを再利用し、排熱回収ボイラにて蒸気を発生させ、その蒸気を用いて蒸気タービンを駆動させる高効率のコンバインドサイクル発電装置がある。 2. Description of the Related Art Conventionally, thermal power plants have an apparatus for generating electricity by burning coal or heavy oil in a boiler, generating steam using the combustion heat, driving a steam turbine, and generating electrical energy from rotational energy. . In addition, the air is compressed by a compressor, the compressed air is burned by the combustor, the gas turbine is driven by the combustion air, and the gas turbine power generation device that generates electric power or the exhaust gas burned by the gas turbine is reused. There is a high-efficiency combined cycle power generation device that generates steam in an exhaust heat recovery boiler and drives the steam turbine using the steam.
 ガスタービンを備える発電装置では、入口側吸気温度が高くなると燃焼空気の分子の運動エネルギが大きくなりその密度が低下し、質量流量が少なくなる。そのため、ガスタービンに付与されるエネルギが低下し、ガスタービンの出力が低下することが知られている。
 従って、外気温度が高くなる夏季での運用や、元来、外気温度の高い地域での運用では、定格出力を下回る場合もある。その為、ガスタービンの上流の圧縮器入口で水を噴霧することで当該霧の蒸発潜熱により温度を低下させ質量流量の低下を防ぎ、外気温度の高い場合でも、定格出力を維持するための装置や方法が考案されている。
In a power generator equipped with a gas turbine, when the inlet side intake air temperature increases, the kinetic energy of the molecules of combustion air increases, the density thereof decreases, and the mass flow rate decreases. For this reason, it is known that the energy applied to the gas turbine decreases and the output of the gas turbine decreases.
Therefore, in operation in summer when the outside air temperature becomes high or in operation in a region where the outside air temperature is originally high, the output may be lower than the rated output. Therefore, by spraying water at the compressor inlet upstream of the gas turbine, the temperature is lowered by the latent heat of vaporization of the mist to prevent a decrease in mass flow rate, and a device for maintaining the rated output even when the outside air temperature is high And methods have been devised.
 近年、二酸化炭素低減の観点から自然エネルギを利用した発電が注目されている。特に、太陽光発電あるいは太陽熱を利用した発電が急速に広まっている。
 また、特許文献1、2には、ガスタービンの燃焼排ガスの熱エネルギを回収し得られた蒸気をガスタービン燃料用の空気に混入し燃焼器で得られた高湿分の燃焼排ガスでタービンを駆動することで、出力(電力)および発電効率の向上を実現するガスタービンサイクルが記載されている。
In recent years, power generation using natural energy has attracted attention from the viewpoint of reducing carbon dioxide. In particular, photovoltaic power generation or power generation using solar heat is rapidly spreading.
In Patent Documents 1 and 2, steam obtained by recovering the thermal energy of the combustion exhaust gas of the gas turbine is mixed with the air for the gas turbine fuel, and the turbine is made of the high humidity combustion exhaust gas obtained by the combustor. A gas turbine cycle that realizes an improvement in output (electric power) and power generation efficiency by driving is described.
特開昭57-79225号公報JP 57-79225 A 特開昭58-101228号公報Japanese Patent Laid-Open No. 58-101228
 ところで、太陽光発電は、大容量の発電を得るためには、エネルギの供給源の設置スペース当りのエネルギ密度が低いために所要の電力を確保するには、広大な設置スペースが必要となる。
 太陽熱を利用した発電は、単独での発電よりは、既設の発電プラントへの熱供給の利用という用途であり、高温高圧の蒸気を得るには大きなエネルギを必要とするため、エネルギ密度の関係から太陽光発電と同様に広大な設置スペースが必要となる。
By the way, in order to obtain large-capacity power generation, solar power generation requires a large installation space in order to secure required power because the energy density per installation space of the energy supply source is low.
Power generation using solar heat is a use of heat supply to an existing power plant rather than power generation alone, and it requires a large amount of energy to obtain high-temperature and high-pressure steam. As with solar power generation, a large installation space is required.
 一方、前記したように、所望の出力(電力)或いは発電効率を得るためには、ガスタービンの上流の燃焼器に供給される圧縮空気に大量の水を注入する必要がある。これによって、圧縮空気に水分が含まれ酸素の濃度が低下したり、大量の水により温度が発火点を下回る場合が生じ、燃焼の不安定が発生する。 On the other hand, as described above, in order to obtain a desired output (electric power) or power generation efficiency, it is necessary to inject a large amount of water into the compressed air supplied to the combustor upstream of the gas turbine. As a result, the compressed air contains moisture and the concentration of oxygen is lowered, or a large amount of water may cause the temperature to fall below the ignition point, resulting in instability of combustion.
 特に、ガスタービンを用いた発電装置では、燃焼排ガスに含まれるNOx(nitrogen oxide:窒素酸化物)を低減させるべく安定燃焼範囲の狭い空気と燃料の予混合燃焼を行うため、燃焼の不安定の影響は大きい。
 特許文献1、2に記載されている方法は、何れも大量の水を利用するため、燃焼の不安定の問題に対応するのは困難である。
In particular, in a power generator using a gas turbine, in order to reduce NOx (nitrogen oxide) contained in combustion exhaust gas, premixed combustion of air and fuel having a narrow stable combustion range is performed, so that unstable combustion is caused. The impact is great.
Since the methods described in Patent Documents 1 and 2 both use a large amount of water, it is difficult to cope with the problem of unstable combustion.
 本発明は上記実状に鑑み、太陽熱の熱エネルギで得られた温水を噴霧することで出力を向上でき、安定運転が可能なガスタービン発電装置およびその運転方法の提供を目的とする。 In view of the above circumstances, an object of the present invention is to provide a gas turbine power generator capable of improving output by spraying hot water obtained from solar thermal energy and capable of stable operation, and an operation method thereof.
 本発明の請求の範囲第1項に関わるガスタービン発電装置は、空気を圧縮する圧縮器と、前記圧縮器からの圧縮空気と燃料を燃焼する燃焼器と、前記燃焼器の燃焼ガスにより駆動されるガスタービンと、前記ガスタービンと軸を介して連結され、前記ガスタービンの回転によって駆動される発電機と、太陽熱を用いて加熱された熱媒体との熱交換を行う熱交換器と、前記熱媒体を蓄える蓄熱タンクと、前記熱交換器で形成された被加熱側の循環路をバイパスする第1バイパスラインと、前記第1バイパスラインへの流量を調節する第1調整弁と、前記熱交換器で加熱された温水を前記圧縮器の空気に噴霧ノズルで噴霧するための吸気冷却室とを備えることを特徴としたガスタービン発電装置である。 A gas turbine power generator according to claim 1 of the present invention is driven by a compressor that compresses air, a combustor that combusts compressed air and fuel from the compressor, and a combustion gas of the combustor. A gas turbine, a generator connected to the gas turbine via a shaft and driven by rotation of the gas turbine, and a heat exchanger for exchanging heat with a heat medium heated using solar heat, A heat storage tank that stores a heat medium; a first bypass line that bypasses a heated-side circulation path formed by the heat exchanger; a first adjustment valve that adjusts a flow rate to the first bypass line; and the heat A gas turbine power generator comprising: an intake air cooling chamber for spraying hot water heated by an exchanger onto the air of the compressor by a spray nozzle.
 本発明の請求の範囲第11項に関わるガスタービン発電装置は、空気を圧縮する圧縮器と、前記圧縮器からの圧縮空気と燃料を燃焼する燃焼器と、前記燃焼器の燃焼ガスにより駆動されるガスタービンと、前記ガスタービンと軸を介して連結され、前記ガスタービンの回転によって駆動される発電機と、熱交換器と、熱媒体を蓄える蓄熱タンクと、前記熱交換器で形成された被加熱側の循環路をバイパスさせる第1バイパスラインと、前記第1バイパスラインへの流量を調節する第1調整弁と、前記空気に温水を噴霧する噴霧ノズルと、前記圧縮器に前記空気を送る吸気冷却室とを備えるガスタービン発電装置の運転方法であって、太陽熱を用いて加熱される熱媒体が所定の温度に至るまでは前記第1調整弁により熱交換器で形成された循環路を、前記第1バイパスラインを用いてバイパスさせ、前記蓄熱タンクは、前記所定の温度に至った前記熱媒体を蓄え、前記熱交換器による前記熱媒体との熱交換で前記温水を作製し、前記吸気冷却室において、前記噴霧ノズルによって前記熱交換器で加熱された前記温水を前記空気に噴霧する。 A gas turbine power generator according to claim 11 of the present invention is driven by a compressor that compresses air, a combustor that combusts compressed air and fuel from the compressor, and a combustion gas of the combustor. A gas turbine, a generator connected to the gas turbine via a shaft and driven by rotation of the gas turbine, a heat exchanger, a heat storage tank for storing a heat medium, and the heat exchanger. A first bypass line for bypassing the heated side circulation path, a first adjustment valve for adjusting a flow rate to the first bypass line, a spray nozzle for spraying hot water on the air, and the air to the compressor An operation method of a gas turbine power generator comprising an intake air cooling chamber to be sent, wherein a circulation formed by a heat exchanger by the first regulating valve until a heat medium heated using solar heat reaches a predetermined temperature. A path is bypassed using the first bypass line, the heat storage tank stores the heat medium reaching the predetermined temperature, and produces the hot water by heat exchange with the heat medium by the heat exchanger. In the intake cooling chamber, the hot water heated by the heat exchanger by the spray nozzle is sprayed on the air.
 本発明によれば、太陽熱の熱エネルギで得られた温水を噴霧することで出力を向上でき、安定運転が可能となる。 According to the present invention, it is possible to improve the output by spraying the hot water obtained by the thermal energy of solar heat, and stable operation is possible.
本発明に係る実施形態のガスタービン発電装置の主要装置を示す図である。It is a figure which shows the main apparatuses of the gas turbine electric power generating apparatus of embodiment which concerns on this invention. 施形態の主要機器を含めたガスタービン発電装置と運転方法を示す図である。It is a figure which shows the gas turbine power generator including the main equipment of embodiment, and an operating method. 実施形態の実測値データテーブルを示す図である。It is a figure which shows the actual value data table of embodiment. 実施形態の予測値データテーブルを示す図である。It is a figure which shows the predicted value data table of embodiment. 実施形態の運転情報データベースに保存されている情報(データ)を示す図である。It is a figure which shows the information (data) preserve | saved in the driving | operation information database of embodiment. 実施形態の関連情報データベースに格納されている予測値データテーブルに格納されているデータを用いて、太陽熱集熱装置から吐出される流体の温度を推定するモデルを示す図である。It is a figure which shows the model which estimates the temperature of the fluid discharged from a solar thermal collector using the data stored in the predicted value data table stored in the related information database of embodiment. 実施形態の運転条件判定部での処理動作を示すフローチャートである。It is a flowchart which shows the processing operation in the driving | running condition determination part of embodiment. 実施形態の画像表示装置に表示される初期画面のデータ処理装置GUI画面を示す図である。It is a figure which shows the data processor GUI screen of the initial screen displayed on the image display apparatus of embodiment. 実施形態の運転状態表示の画面である運転状態表示画面を示す図である。It is a figure which shows the driving | running state display screen which is a driving | running state display screen of embodiment. 実施形態の時間経過に伴う計測値や各諸元などのトレンドを画像表示装置に表示させるためのトレンド表示設定画面を示す図である。It is a figure which shows the trend display setting screen for displaying trends, such as a measured value and each item with progress of time of embodiment, on an image display apparatus. 実施形態のトレンドグラフが表示されるトレンド表示画面を示す図である。It is a figure which shows the trend display screen on which the trend graph of embodiment is displayed.
 以下、本発明の実施形態について添付図面を参照して説明する。
 図1は、本発明に係る実施形態のガスタービン発電装置の主要装置を示す図である。
 実施形態のガスタービン発電装置Sは、太陽熱で加熱された温水w4を圧縮器2に送る空気に噴霧することで発電出力を向上させる機能および運転方法を備える装置である。
 ガスタービン発電装置Sは、太陽熱で温水w4を作る温水生成装置700と、当該温水w4を噴霧した圧縮空気と燃料を燃焼させた燃焼排ガスでガスタービン1を駆動して発電するガスタービン発電設備100とを具備している。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
FIG. 1 is a diagram showing a main device of a gas turbine power generator according to an embodiment of the present invention.
The gas turbine power generation device S of the embodiment is a device having a function and an operation method for improving the power generation output by spraying hot water w4 heated by solar heat onto the air sent to the compressor 2.
The gas turbine power generator S includes a hot water generator 700 that generates hot water w4 by solar heat, and a gas turbine power generation facility 100 that generates power by driving the gas turbine 1 with compressed exhaust gas sprayed with the hot water w4 and combustion exhaust gas. It is equipped with.
 ガスタービン発電設備100は、温水w4が噴霧された空気(吸気)を圧縮しその圧縮空気を出力する圧縮器2、圧縮器2から供給される圧縮空気で燃料を燃焼する燃焼器4、燃焼器4からの燃焼排ガスで駆動されるガスタービン1、および、ガスタービン1にガスタービン軸1jを介して連結される発電機3を備えている。
 さらに、ガスタービン発電装置Sは、太陽熱で水を温水w4に加熱する温水生成装置700と、吸入された圧縮器2に送る空気(吸気)を冷却する吸気冷却室5と、吸気冷却室5内の吸気に温水生成装置700で加熱された温水w4を噴霧する噴霧ノズル6とを備えている。
The gas turbine power generation facility 100 includes a compressor 2 that compresses air (intake air) sprayed with hot water w4 and outputs the compressed air, a combustor 4 that combusts fuel with the compressed air supplied from the compressor 2, and a combustor. 4 is provided with a gas turbine 1 driven by combustion exhaust gas from 4, and a generator 3 connected to the gas turbine 1 via a gas turbine shaft 1j.
Further, the gas turbine power generation device S includes a hot water generator 700 that heats water to warm water w4 by solar heat, an intake air cooling chamber 5 that cools air (intake air) sent to the sucked compressor 2, and an intake air cooling chamber 5 And a spray nozzle 6 for spraying hot water w4 heated by the hot water generator 700.
 次に、本ガスタービン発電装置Sにおいて出力を向上させる作用について説明する。
 太陽熱で加熱された温水w4を吸気冷却室5内にある噴霧ノズル6より吸入された空気(吸気)内に噴霧することで、霧の一部が蒸発してその際の蒸発潜熱で空気(吸気)を冷却する。冷却された空気(吸気)は圧縮器2に入る。
Next, the effect | action which improves an output in this gas turbine electric power generating apparatus S is demonstrated.
By spraying the hot water w4 heated by solar heat into the air (intake air) sucked from the spray nozzle 6 in the intake air cooling chamber 5, a part of the mist evaporates, and the air (intake air) by the latent heat of evaporation at that time ). The cooled air (intake air) enters the compressor 2.
 空気(吸気)は、冷却されると気体分子(N、O)の運動エネルギが低下しその密度が大きくなるため、圧縮器2に入る空気の質量流量が増加する。この効果によって、燃焼器4から送られてタービン翼に当る燃焼排ガスの質量流量が増加することでガスタービン1に付与されるエネルギが増加する。これにより、ガスタービン1の出力が増加することとなる。 When air (intake air) is cooled, the kinetic energy of gas molecules (N 2 , O 2 ) decreases and the density thereof increases, so the mass flow rate of air entering the compressor 2 increases. Due to this effect, the energy applied to the gas turbine 1 is increased by increasing the mass flow rate of the combustion exhaust gas sent from the combustor 4 and hitting the turbine blades. Thereby, the output of the gas turbine 1 will increase.
 従来の技術に比較し、温水を利用することの利点は、温水を噴霧することで温水の霧が高温高圧から大気圧に下がるので沸点が急に低温となり、減圧沸騰が生じる。そのため、噴霧の微水滴が一気に蒸発し、蒸発により噴霧される微水滴が一層微粒子化する。
 従って、噴霧ノズル6からより多くの噴霧水を噴霧することが出来るため、蒸発現象が促進され蒸発潜熱によってさらに低温にされ、もって吸気の密度が高くなる。
Compared to the conventional technology, the advantage of using warm water is that spraying warm water causes the fog of warm water to drop from high temperature and pressure to atmospheric pressure, so the boiling point suddenly becomes low and boiling under reduced pressure occurs. Therefore, the sprayed fine water droplets evaporate all at once, and the fine water droplets sprayed by evaporation become further fine particles.
Accordingly, since more spray water can be sprayed from the spray nozzle 6, the evaporation phenomenon is promoted, and the temperature is further lowered by the latent heat of evaporation, thereby increasing the density of the intake air.
 そのため、質量流量をより一層増加することが可能となり、温水を噴霧することで更なる出力向上を図ることが可能となる。
 また、噴霧される微水滴が一層微粒子化するので、燃焼排ガスがガスタービン1のタービン翼に衝突することに起因するドレインの発生および錆を可及的に抑制できる。
Therefore, the mass flow rate can be further increased, and further output improvement can be achieved by spraying warm water.
Further, since the sprayed fine water droplets are further finely divided, the generation of drain and rust caused by the combustion exhaust gas colliding with the turbine blades of the gas turbine 1 can be suppressed as much as possible.
 <温水生成装置700>
 太陽熱を吸熱する温水生成装置700は、太陽からの熱を不図示の集熱管内を流れる第1の作動流体w1に吸収して第1の作動流体w1の温度を上昇させる太陽熱集熱装置701を具えている。
 温水生成装置700には、太陽熱で温度が上昇した第1の作動流体w1と第2の作動流体w2の熱媒油(以下、第2の作動流体w2を熱媒油w2として説明を行う)とで熱交換を行う第1の熱交換器702、高温となった熱媒油w2を貯留する第1・第2の蓄熱タンク703、704、水w3が貯留される給水タンク706、および、熱媒油w2と給水タンク706からの水w3とで熱交換を行って噴霧のための温水w4を得る第2の熱交換器705が設けられている。
<Hot water generator 700>
The hot water generator 700 that absorbs solar heat absorbs the heat from the sun into the first working fluid w1 that flows in the heat collecting pipe (not shown), and increases the temperature of the first working fluid w1 by the solar heat collecting device 701. It has.
In the hot water generator 700, the heat medium oil of the first working fluid w1 and the second working fluid w2 whose temperature is increased by solar heat (hereinafter, the second working fluid w2 will be described as the heat medium oil w2) and First heat exchanger 702 that performs heat exchange in the first, second and second heat storage tanks 703 and 704 that store the heat transfer medium oil w2 that has reached a high temperature, a water supply tank 706 that stores the water w3, and a heat transfer medium A second heat exchanger 705 is provided that performs heat exchange between the oil w2 and the water w3 from the water supply tank 706 to obtain hot water w4 for spraying.
 さらに、温水生成装置700には、温水生成装置700の流路を開閉調整する調整弁711~718、作動流体(w1、w2、w3、w4)を送るポンプ721~725が設けられている。調整弁711~718、ポンプ721~725は、後記の制御装置200(図2参照)からの制御信号130を受信して動作する。 Furthermore, the hot water generator 700 is provided with adjusting valves 711 to 718 for opening and closing the flow path of the hot water generator 700 and pumps 721 to 725 for sending the working fluid (w1, w2, w3, w4). The regulating valves 711 to 718 and the pumps 721 to 725 operate by receiving a control signal 130 from a control device 200 (see FIG. 2) described later.
 温水生成装置700の動作について説明する。
 ポンプ721で送り出される作業流体w1は、太陽熱集熱装置701で不図示の集熱管内を流れ太陽熱で加熱される。ここでは、作動流体w1として熱媒油を用いている。
 第1の作動流体w1、第2の作動流体w2は、油(熱媒油)が使用される場合を例示しているが、第1・第2の作動流体w1、w2は、熱媒油に代替して水を使用してもよい。しかし、第1・第2の作動流体w1、w2は、高温にしても圧力の上昇が水より緩慢な油の方が望ましい。なお、第1・第2の作動流体w1、w2は熱媒油以外の熱媒体を使用してもよいが、それぞれ高温にしても圧力の上昇が緩やかで、低温でも粘性が低い熱媒体を選択することに留意する。
The operation of the hot water generator 700 will be described.
The working fluid w1 delivered by the pump 721 flows through a heat collecting tube (not shown) by the solar heat collector 701 and is heated by solar heat. Here, heat transfer oil is used as the working fluid w1.
The first working fluid w1 and the second working fluid w2 exemplify the case where oil (heat medium oil) is used, but the first and second working fluids w1 and w2 are heat medium oil. Alternatively, water may be used. However, the first and second working fluids w1 and w2 are preferably oils whose pressure increase is slower than water even at high temperatures. The first and second working fluids w1 and w2 may use a heat medium other than the heat medium oil. However, a heat medium is selected that has a gradual rise in pressure even at high temperatures and low viscosity at low temperatures. Keep in mind that
 次に、ポンプ722、723で循環される熱媒油w2は第1の熱交換器702で、太陽熱で加熱された作業流体w1と熱交換することにより温度が上昇する。熱媒油w2は熱交換器702で加熱される際、常時、第1の蓄熱タンク703を通過する。これにより、所定温度の熱媒油w2が常時、蓄熱タンク703の容積以内の量をもって第2の熱交換器705で給水タンク706から送られる水w3を加熱することができる。 Next, the heat medium oil w2 circulated by the pumps 722 and 723 rises in temperature by exchanging heat with the working fluid w1 heated by solar heat in the first heat exchanger 702. When the heat transfer oil w2 is heated by the heat exchanger 702, it always passes through the first heat storage tank 703. Thereby, the heat medium oil w2 of a predetermined temperature can always heat the water w3 sent from the water supply tank 706 by the second heat exchanger 705 with an amount within the capacity of the heat storage tank 703.
 ポンプ724により、給水タンク706から第2の熱交換器705に送水される給水(水w3)は、第2の熱交換器705での熱媒油w2との熱交換により加熱され所定温度の温水w4にまで加熱される。そして、所定温度の温水w4が昇圧ポンプ725で加圧されて噴霧ノズル6より吸気冷却室5の内部に噴霧される。
 調整弁711、714、717は、起動時や緊急時、運転中の作動流体(w1、w2、w3、w4)の状態を制御する時に操作される。
The feed water (water w3) fed from the feed water tank 706 to the second heat exchanger 705 by the pump 724 is heated by heat exchange with the heat transfer oil w2 in the second heat exchanger 705 and heated at a predetermined temperature. Heated to w4. The hot water w4 having a predetermined temperature is pressurized by the booster pump 725 and sprayed from the spray nozzle 6 into the intake cooling chamber 5.
The regulating valves 711, 714, 717 are operated when controlling the state of the operating fluid (w1, w2, w3, w4) during operation or in an emergency.
 例えば、調整弁711は、太陽熱集熱装置701で加熱される作業流体w1の温度が、第1の熱交換器702で用いる所定の温度に至らない場合や第1の熱交換器702での熱交換を行わない場合には、太陽熱集熱装置701からの流路を第1の熱交換器702側ではなくバイパスラインb1側とする。一方、太陽熱集熱装置701で加熱される作業流体w1の温度が、第1の熱交換器702で用いる所定の温度に至り、かつ、第1の熱交換器702での熱交換を行う場合には、太陽熱集熱装置701からの流路をバイパスラインb1側ではなく第1の熱交換器702側とする。 For example, the regulating valve 711 is used when the temperature of the working fluid w1 heated by the solar heat collecting apparatus 701 does not reach a predetermined temperature used in the first heat exchanger 702 or when the heat in the first heat exchanger 702 is reached. When the exchange is not performed, the flow path from the solar heat collecting apparatus 701 is set to the bypass line b1 side instead of the first heat exchanger 702 side. On the other hand, when the temperature of the working fluid w1 heated by the solar heat collector 701 reaches a predetermined temperature used in the first heat exchanger 702 and heat exchange is performed in the first heat exchanger 702. The flow path from the solar heat collecting apparatus 701 is not the bypass line b1 side but the first heat exchanger 702 side.
 調整弁714は、熱媒油w2の温度が、第2の熱交換器705に用いる温度に達してない場合や、第2の熱交換器705を使用しない場合には、第2の熱交換器705側ではなく、バイパスラインb2側とする。一方、熱媒油w2の温度が、第2の熱交換器705に用いる温度に達しており、かつ、第2の熱交換器705を使用する場合には、バイパスラインb2側ではなく第2の熱交換器705側とする。 When the temperature of the heat transfer oil w2 has not reached the temperature used for the second heat exchanger 705 or when the second heat exchanger 705 is not used, the regulating valve 714 Not on the 705 side but on the bypass line b2 side. On the other hand, when the temperature of the heat transfer oil w2 reaches the temperature used for the second heat exchanger 705 and the second heat exchanger 705 is used, the second heat exchanger 705 is not the side of the bypass line b2 but the second heat exchanger 705. Let it be the heat exchanger 705 side.
 調整弁717は、第2の熱交換器705側で加熱された水w3が所定温度に至らない場合や噴霧ノズル6から温水w4の噴霧を行わない場合、噴霧ノズル6側ではなく給水タンク706側に流路を開く。一方、調整弁717は、第2の熱交換器705側で加熱された水w3が所定温度の温水w4となり、かつ噴霧ノズル6から温水w4の噴霧を行う場合には、給水タンク706側ではなく噴霧ノズル6側に流路を開く。
 調整弁712、713、715、716は、太陽熱集熱装置700で得た熱量を蓄積あるいは放出する際に操作される。
When the water w3 heated on the second heat exchanger 705 side does not reach a predetermined temperature or when the warm water w4 is not sprayed from the spray nozzle 6, the regulating valve 717 is not on the spray nozzle 6 side but on the water supply tank 706 side. Open the flow path. On the other hand, when the water w3 heated on the second heat exchanger 705 side becomes hot water w4 having a predetermined temperature and the spray of the hot water w4 from the spray nozzle 6 is performed, the regulating valve 717 is not on the water supply tank 706 side. A flow path is opened on the spray nozzle 6 side.
The regulating valves 712, 713, 715, 716 are operated when accumulating or releasing the amount of heat obtained by the solar heat collecting apparatus 700.
 例えば、太陽熱集熱装置700で得た熱量を蓄積する場合には、調整弁712、713、715、716の流路を開き、第1・第2の蓄熱タンク703、704に第1の熱交換器702で加熱された高温の熱媒油w2を貯留する。一方、太陽熱集熱装置700で得た熱量を放出する場合には、第1・第2の蓄熱タンク703、704に貯留される高温の熱媒油w2を、調整弁712、713、715、716の流路を開き、第2の熱交換器705に放出し、水w3を加熱する。 For example, when accumulating the amount of heat obtained by the solar heat collector 700, the flow paths of the regulating valves 712, 713, 715, 716 are opened, and the first heat exchange tanks 703, 704 perform the first heat exchange. The high-temperature heat transfer oil w2 heated by the vessel 702 is stored. On the other hand, when the amount of heat obtained by the solar heat collecting apparatus 700 is released, the high-temperature heat transfer oil w2 stored in the first and second heat storage tanks 703 and 704 is adjusted to the regulating valves 712, 713, 715, and 716. Is opened, discharged to the second heat exchanger 705, and the water w3 is heated.
 これら、調整弁711~718やポンプ721~725の運用方法については、後に詳述する。
 本実施形態では、熱交換器(702、705)を2つ、蓄熱タンク(703、704)を2つ備えた装置例を示したが、これに限定するものではない。すなわち、熱交換器の数と蓄熱タンクの数は任意に選択可能であり、また、その配置は任意に選択できる。
 例えば、熱交換器705が一つ、または、蓄熱タンク703が一つでもよい。或いは、第1の蓄熱タンク703と第2の蓄熱タンク704を直列に接続した形態を採用してもよい。
The operation methods of these regulating valves 711 to 718 and pumps 721 to 725 will be described in detail later.
In this embodiment, although the example of an apparatus provided with two heat exchangers (702, 705) and two heat storage tanks (703, 704) was shown, it is not limited to this. That is, the number of heat exchangers and the number of heat storage tanks can be arbitrarily selected, and the arrangement thereof can be arbitrarily selected.
For example, one heat exchanger 705 or one heat storage tank 703 may be used. Or you may employ | adopt the form which connected the 1st heat storage tank 703 and the 2nd heat storage tank 704 in series.
 <ガスタービン発電装置Sの運転方法>
 次に、主要機器を含めたガスタービン発電装置Sの運転方法について説明する。
 図2は実施形態の主要機器を含めたガスタービン発電装置とその運転方法を示す図である。
 ガスタービン発電装置Sの温水生成装置700とガスタービン発電設備100とは、制御装置200により運転(制御)が行われる。
<Operation Method of Gas Turbine Generator S>
Next, an operation method of the gas turbine power generation device S including main equipment will be described.
FIG. 2 is a diagram showing a gas turbine power generation apparatus including main components of the embodiment and an operation method thereof.
The hot water generating device 700 of the gas turbine power generation device S and the gas turbine power generation facility 100 are operated (controlled) by the control device 200.
 温水生成装置700およびガスタービン発電設備100への運転の指令や、温水生成装置700およびガスタービン発電設備100の運転状態の表示は、支援ツール910を用いて行われる。
 ガスタービン発電設備100は、制御装置200からの制御信号150を受信して所望の状態に制御される。ガスタービン発電設備100の各部の状態量は計測信号140として制御装置200に取り込まれる(送信される)。
An operation command to the hot water generation device 700 and the gas turbine power generation facility 100 and an operation state display of the hot water generation device 700 and the gas turbine power generation facility 100 are performed using the support tool 910.
The gas turbine power generation facility 100 receives the control signal 150 from the control device 200 and is controlled to a desired state. The state quantity of each part of the gas turbine power generation facility 100 is captured (transmitted) into the control device 200 as a measurement signal 140.
 制御装置200は、ガスタービン発電設備100からの計測信号140をもとに、発電要求に対し適切な運転状態となるよう各種操作端を操作することで制御する。本制御方法は、公知の技術によるものなので、ここでは、ガスタービン発電設備100の温水生成装置700との関係を説明する。 The control device 200 performs control by operating various operation ends so as to be in an appropriate operation state with respect to the power generation request based on the measurement signal 140 from the gas turbine power generation facility 100. Since this control method is based on a known technique, the relationship with the hot water generator 700 of the gas turbine power generation facility 100 will be described here.
 温水生成装置700からの計測信号120をもとに、ガスタービン発電設備100が適切な運転状態となるよう調整弁711~718を調節し、太陽熱集熱装置701の太陽熱で作業流体w1、熱媒油w2を介して温められた所定温度の温水w4を、吸気冷却室5に適切な量を供給するよう制御信号130を出力する。所定温度とは、例えば150℃程度であるが、150℃程度に限定されない。 Based on the measurement signal 120 from the hot water generator 700, the adjustment valves 711 to 718 are adjusted so that the gas turbine power generation facility 100 is in an appropriate operating state, and the working fluid w1 and the heat medium are heated by the solar heat of the solar heat collector 701. A control signal 130 is output so as to supply the intake water cooling chamber 5 with an appropriate amount of hot water w4 having a predetermined temperature heated via the oil w2. The predetermined temperature is, for example, about 150 ° C., but is not limited to about 150 ° C.
 関連情報データベース300は、ガスタービン発電設備100、温水生成装置700の運転条件を判定する際に用いるための情報を格納する。
 運転情報データベース600は、ガスタービン発電設備100と温水生成装置700から得られた計測信号140、120をそれぞれ格納する。
The related information database 300 stores information for use in determining the operating conditions of the gas turbine power generation facility 100 and the hot water generator 700.
The operation information database 600 stores measurement signals 140 and 120 obtained from the gas turbine power generation facility 100 and the hot water generator 700, respectively.
 運転条件判定部400では、計測信号120、140から得られる情報、および、ガスタービン発電設備100、温水生成装置700の運転条件を判定するために必要なデータを基に温水生成装置700、ガスタービン発電設備100の運転状態を判定(演算)する。ここで、運転条件を判定するために必要なデータとは、例えば、外気温度、太陽熱を利用している場合には日照データの情報などが挙げられる。これらデータの詳細については、後記する。 In the operating condition determination unit 400, the hot water generator 700 and the gas turbine are based on information obtained from the measurement signals 120 and 140 and data necessary for determining the operating conditions of the gas turbine power generation facility 100 and the hot water generator 700. The operation state of the power generation facility 100 is determined (calculated). Here, the data necessary for determining the operating condition includes, for example, information on sunshine data when the outside air temperature or solar heat is used. Details of these data will be described later.
 制御部500では、運転条件判定部400の判定結果を受けて(判定結果の情報が入力され)、判定結果に応じた適切な制御信号130を温水生成装置700に出力する。
 この制御信号130に基づいて温水生成装置700内の調整弁711~718やポンプ721~725が制御される。制御装置200内で生成した信号(130、150)や情報は、必要に応じて、支援ツール910にも出力される。運転条件判定部400による判定結果および制御信号130、150を求めるアルゴリズムについては、後に詳述する。
The control unit 500 receives the determination result of the operating condition determination unit 400 (input information of the determination result) and outputs an appropriate control signal 130 according to the determination result to the hot water generator 700.
Based on the control signal 130, the regulating valves 711 to 718 and the pumps 721 to 725 in the hot water generator 700 are controlled. The signals (130, 150) and information generated in the control device 200 are also output to the support tool 910 as necessary. The determination result by the operating condition determination unit 400 and the algorithm for obtaining the control signals 130 and 150 will be described in detail later.
 ガスタービン発電設備100に関わるユーザは、支援ツール910を用いることにより、ガスタービン発電設備100、温水生成装置700に関する様々な情報を画像表示装置950で目視することが可能である。
 支援ツール910は、外部入出力インターフェイス920、データ送受信処理部930、および、外部出力インターフェイス940で構成される。
A user related to the gas turbine power generation facility 100 can visually check various information regarding the gas turbine power generation facility 100 and the hot water generator 700 on the image display device 950 by using the support tool 910.
The support tool 910 includes an external input / output interface 920, a data transmission / reception processing unit 930, and an external output interface 940.
 支援ツール910は、キーボード901やマウス902、タッチパネルなどで構成される入力装置900、および、出力装置である画像表示装置950に接続されている。
 また、ユーザは、入力装置900を使って支援ツール910を用いることで、制御装置200内の情報にアクセスすることができる。
The support tool 910 is connected to an input device 900 that includes a keyboard 901, a mouse 902, a touch panel, and the like, and an image display device 950 that is an output device.
Further, the user can access information in the control device 200 by using the support tool 910 using the input device 900.
 入力装置900で生成した入力信号800は、外部入出力インターフェイス920を介して支援ツール910に受信される。また、制御装置200からの支援ツール910への情報(信号)210についても、同様に外部入出力インターフェイス920にて取り込まれる(受信される)。一方、支援ツール910から制御装置200への情報(信号)210についても、外部入出力インターフェイス920を介して、制御装置200に取り込まれる(受信される)。 The input signal 800 generated by the input device 900 is received by the support tool 910 via the external input / output interface 920. Similarly, information (signal) 210 from the control device 200 to the support tool 910 is also taken in (received) by the external input / output interface 920. On the other hand, information (signal) 210 from the support tool 910 to the control device 200 is also taken into (received) by the control device 200 via the external input / output interface 920.
 データ送受信処理部930では、ユーザからの入力装置900で生成した入力信号800の情報に従って、入力信号801を処理し、出力信号802として外部出力インターフェイス940に送信する。出力信号802に基づく外部出力インターフェイス940からの出力信号803は、画像表示装置950に表示される。なお、出力信号803は、出力ファイルに出力したり、不図示のプリンタで帳票に印刷したり、他システムに出力して他システムで加工する構成にしてもよい。 The data transmission / reception processing unit 930 processes the input signal 801 according to the information of the input signal 800 generated by the input device 900 from the user, and transmits it to the external output interface 940 as the output signal 802. An output signal 803 from the external output interface 940 based on the output signal 802 is displayed on the image display device 950. The output signal 803 may be output to an output file, printed on a form by a printer (not shown), or output to another system and processed by another system.
 以下では、関連情報データベース300と運転情報データベース600に格納されている運転条件判定用データと計測信号120、140について説明する。
 始めに、運転条件判定部400で運転条件を判定する際に必要となる情報について説明する。
Hereinafter, the driving condition determination data and the measurement signals 120 and 140 stored in the related information database 300 and the driving information database 600 will be described.
First, information required when the driving condition determination unit 400 determines the driving condition will be described.
 図3Aは、実測値データテーブル300Jを示す図である。
 図3Aの実測値データテーブル300Jは、関連情報データベースに記憶されるデータであり、気候状態の実測値の情報が記録される。
 図3Bは、予測値データテーブル300Yを示す図である。
 図3Bの予測値データテーブル300Yは、関連情報データベースに記憶されるデータであり、気候状態の予測値の情報が記録される。
FIG. 3A is a diagram showing an actual measurement data table 300J.
The measured value data table 300J in FIG. 3A is data stored in the related information database, and records information on measured values of the climatic state.
FIG. 3B is a diagram showing a predicted value data table 300Y.
The predicted value data table 300Y of FIG. 3B is data stored in the related information database, and information on predicted values of the climatic state is recorded.
 図3A、図3Bに示すように、実測値および予測値とも気候状態(外気の状態)の時間(時刻)、天気、気温(℃)、風向(度)、風速(m/s)、湿度(%)、日射量(kW/m)などが格納されている。
 さらに、予測値データテーブル300Yには、後記する予測した温水w4の温度が格納される。
As shown in FIGS. 3A and 3B, the measured value and the predicted value are both the time (time), weather, temperature (° C.), wind direction (degree), wind speed (m / s), humidity ( %), The amount of solar radiation (kW / m 2 ) and the like are stored.
Further, the predicted value data table 300Y stores the predicted temperature of the hot water w4 described later.
 計測する時間(時刻)の周期は、計測可能な時間幅により任意に決定される。天気は、気象庁が一般向けに発信している15種類を用いて表現する。風向(度)は日本では16方位を用いるのが一般的であるが、国際式では、真北を基準とし、時計回りの方向に360度に分割して表現する360方位が用いられている。図3A、図3B中では、360方位で表現しているが、16方位においてもそれぞれの方位に対して22.5度の割合を与えれば、同様に360方位の度で数値化できる。 The period of time (time) to be measured is arbitrarily determined by the measurable time width. The weather is expressed using 15 types sent to the general public by the Japan Meteorological Agency. In Japan, the wind direction (degree) is generally 16 azimuths, but the international style uses 360 azimuths expressed by dividing 360 degrees in the clockwise direction with true north as a reference. In FIG. 3A and FIG. 3B, 360 azimuths are represented. However, in the case of 16 azimuths, if a ratio of 22.5 degrees is given to each azimuth, it can be numerically expressed in 360 azimuth degrees.
 図3Aに示す実測値データテーブル300Jには、実際のそれぞれの数値が格納される。
 図3Bに示す予測値データテーブル300Yには、例えば予測モデルでの計算結果や配信データをもとにそれぞれの数値が格納される。場所によっては、現在、1時間ごとに、各数値を配信している場合もあるが、それ以外では、過去のデータをもとに予測値を計算するモデルが必要となる。この予測モデルには、例えば、物理式をもとに大気の状態を予測するためのモデルであるメソ気象モデル(Weather Research and Forecastingmodel:WRFmodel)がある。本モデルでは、所望の地域を予報するための設定が必要なため、過去のデータをもとに回帰式などを用いて、簡易的に求める方法もある。ここでは、何れの方式であっても構わない。
Actual measured values are stored in the actual measurement data table 300J shown in FIG. 3A.
Each numerical value is stored in the predicted value data table 300Y shown in FIG. 3B based on, for example, a calculation result in the prediction model and distribution data. Depending on the location, each numerical value may be currently distributed every hour, but in other cases, a model for calculating a predicted value based on past data is required. This prediction model includes, for example, a meso-meteorological model (Weather Research and Forecasting model: WRF model) which is a model for predicting an atmospheric state based on a physical formula. In this model, since it is necessary to make a setting for forecasting a desired area, there is also a simple method of obtaining using a regression equation or the like based on past data. Here, any method may be used.
 <計測信号140、120>
 次に、ガスタービン発電設備100および温水生成装置700から得られる計測信号140、120の情報について説明する。
 図4は運転情報データベース600に保存されている情報(データ)を示す図である。
<Measurement signals 140 and 120>
Next, information on the measurement signals 140 and 120 obtained from the gas turbine power generation facility 100 and the hot water generator 700 will be described.
FIG. 4 is a diagram showing information (data) stored in the driving information database 600.
 図4に示すように、ガスタービン発電設備100および温水生成装置700で不図示の計測器を用いて計測した情報(計測信号140、120の情報)が、当該各計測器毎に各計測時刻と共に保存される。1行目のPID番号とは、運転情報データベース600に格納されているデータを容易に活用できるよう各計測値に割り付けられた固有の番号である。PID番号の下にあるアルファベットは、被計測対象を示す記号である。
 例えば、太陽熱集熱装置701で加熱された作動流体w1の流量値F、当該作動流体w1の温度値T、当該作動流体w1の圧力値P、発電機3の発電出力値E、燃焼器4の燃焼排ガスに含まれるNOxの濃度値D、温水w4の温度、……などである。尚、図4では1秒周期でデータを保存しているが、データ収集のサンプリング周期は対象となるガスタービン発電設備100によって異なる。
As shown in FIG. 4, information (information on measurement signals 140 and 120) measured by using a measuring instrument (not shown) in the gas turbine power generation facility 100 and the hot water generator 700 together with each measurement time for each measuring instrument. Saved. The PID number in the first line is a unique number assigned to each measurement value so that data stored in the operation information database 600 can be easily used. The alphabet below the PID number is a symbol indicating the measurement target.
For example, the flow rate value F of the working fluid w1 heated by the solar heat collecting device 701, the temperature value T of the working fluid w1, the pressure value P of the working fluid w1, the power generation output value E of the generator 3, and the combustor 4 The concentration value D of NOx contained in the combustion exhaust gas, the temperature of the hot water w4, and so on. In FIG. 4, data is stored at a cycle of 1 second, but the sampling cycle of data collection differs depending on the target gas turbine power generation facility 100.
 図5は、図2に示す関連情報データベース300に格納されている予測値データテーブル300Y(図3B参照)に格納されているデータを用いて、太陽熱集熱装置701から吐出される流体(第1の作動流体w1)の温度を推定するモデルを示す図である。
 ここで、運転条件判定部400で、太陽熱集熱装置701から吐出される流体(第1の作動流体w1)の温度を推定するのは、流体(第1の作動流体w1)の熱から熱交換して得られる噴霧に用いる温水w4の温度を所定値に設定するための制御情報を得るためである。
FIG. 5 shows the fluid discharged from the solar heat collector 701 (first) using the data stored in the predicted value data table 300Y (see FIG. 3B) stored in the related information database 300 shown in FIG. It is a figure which shows the model which estimates the temperature of the working fluid w1).
Here, the operating condition determination unit 400 estimates the temperature of the fluid (first working fluid w1) discharged from the solar heat collecting apparatus 701 from the heat of the fluid (first working fluid w1). This is to obtain control information for setting the temperature of the hot water w4 used for spraying obtained to a predetermined value.
 本モデルは、入力層、中間層、出力層を持ち、それぞれの層には複数のノードが備わっている。これらのノードは、入力層から出力層に向かって、リンクされており、リンクの強さを表す重み係数(例えば、ω1~ωn:nは連結数)が設定されている。つまり、重み係数はノード間の連結数だけ存在する。 This model has an input layer, an intermediate layer, and an output layer, and each layer has multiple nodes. These nodes are linked from the input layer to the output layer, and a weighting coefficient (for example, ω1 to ωn: n is the number of connections) indicating the strength of the link is set. That is, there are as many weighting coefficients as the number of connections between nodes.
 本モデルはニューラルネットワークと呼称されており、人間の持つ脳神経ネットワークを模擬したものである。本モデルに入力値を与え、その入力値に対する所望の出力値が出力されるよう重み係数を調整することで、入力値のもつ相関関係をモデルとして表現できるようになる。これを学習と称する。 This model is called a neural network, and simulates a human cranial nerve network. By giving an input value to this model and adjusting the weighting coefficient so that a desired output value for the input value is output, the correlation of the input value can be expressed as a model. This is called learning.
 学習が完了すると、本モデルに入力値を入力することで、その時の入力値のもつ求めた相関関係をもとに、出力値を推定することが可能となる。各ノードに設定する関数はシグモイド関数と呼ばれる指数関数を用いるのが一般的であるが、それに限定するものではない。また、学習時に、重み係数(前記のω1~ωn)を適切に調整するアルゴリズムは多数考案されている。一般的には、バックプロパゲーション法を用いる。なお、バックプロパゲーション法とは、仮想出力値を付与し、仮想出力値から仮想出力値に影響する重みを表す重み係数を遡って求める手法なのでバックプロパゲーション法と称される。
 これら詳しい計算アルゴリズムについては、「基礎と実践 ニューラルネットワーク、臼井支朗他著、コロナ社」に詳しい。
When learning is completed, an input value can be input to the model, and an output value can be estimated based on the correlation obtained by the input value at that time. The function set for each node generally uses an exponential function called a sigmoid function, but is not limited thereto. In addition, many algorithms have been devised that appropriately adjust the weighting factors (the above-mentioned ω1 to ωn) during learning. In general, the back propagation method is used. The back-propagation method is referred to as a back-propagation method because it is a method in which a virtual output value is assigned and a weighting factor representing a weight affecting the virtual output value is obtained retrospectively from the virtual output value.
These detailed calculation algorithms are detailed in "Basics and Practices Neural Network, Shiro Usui et al., Corona".
 なお、太陽熱集熱装置701から吐出される流体(作動流体w1)の温度を推定する方法は、例示したバックプロパゲーション法以外の最小二乗法などの他の方法でもよく、流体(作動流体w1)の温度を推定できる方法であれば、限定されないのは勿論である。
 同様にして、運転条件判定部400により、予測値データテーブル300Y(図3B参照)に格納されているデータなどを用いて、温水w4の温度が予測される。必要に応じて、実測値データテーブル300J(図3A参照)、計測信号120、140の情報、運転情報データベース600の情報などが使用される。
The method for estimating the temperature of the fluid (working fluid w1) discharged from the solar heat collecting apparatus 701 may be another method such as a least square method other than the illustrated back-propagation method, and the fluid (working fluid w1). Of course, the method is not limited as long as the temperature can be estimated.
Similarly, the operating condition determination unit 400 predicts the temperature of the hot water w4 using data stored in the predicted value data table 300Y (see FIG. 3B). The measured value data table 300J (see FIG. 3A), information on the measurement signals 120 and 140, information on the driving information database 600, and the like are used as necessary.
 予測した温水w4の温度は、運転条件判定部400によって、予測値データテーブル300Yやワークエリアの記憶部に記録される。
 そして、制御部500が、予測される温水w4の温度を使用して、第1・第2の蓄熱タンク703、704に必要な分の熱量を溜めておく。例えば、気温が低いと予測される場合や日射量が少ないと予測される場合などには、第1・第2の蓄熱タンク703、704に熱媒油w2の熱量を多目に溜める。一方、気温が高いと予測される場合や日射量が多いと予測される場合などには、第1・第2の蓄熱タンク703、704に熱媒油w2の熱量を少な目に溜める等々である。
The predicted temperature of the hot water w4 is recorded by the operating condition determination unit 400 in the predicted value data table 300Y or the storage unit of the work area.
Then, the controller 500 uses the predicted temperature of the hot water w4 to store a necessary amount of heat in the first and second heat storage tanks 703 and 704. For example, when the temperature is predicted to be low or the amount of solar radiation is predicted to be small, the heat amount of the heat transfer oil w2 is accumulated in the first and second heat storage tanks 703 and 704. On the other hand, when the temperature is predicted to be high or the amount of solar radiation is predicted to be large, the amount of heat of the heat transfer oil w2 is accumulated in the first and second heat storage tanks 703 and 704 to a small extent.
 次に、図2の制御装置200における運転条件判定部400と制御部500での演算機能の動作について説明する。
 <運転条件判定部400での演算機能>
 図6に、運転条件判定部400での処理動作をフローチャートに示す。
 図2に示す運転条件判定部400での処理動作は、ガスタービン発電設備100、温水生成装置700の稼動を予測する予測モード、実際の稼動の起動モード、運転モード、停止モードの何れかであるかを振り分ける処理である。予測モード、起動モード、運転モード、停止モード(運転条件)は、ユーザによって支援ツール910より入力される。
Next, the operation of the calculation function in the operation condition determination unit 400 and the control unit 500 in the control device 200 of FIG. 2 will be described.
<Calculation function in operation condition determination unit 400>
FIG. 6 is a flowchart showing the processing operation in the operating condition determination unit 400.
The processing operation in the operation condition determination unit 400 shown in FIG. 2 is any one of a prediction mode for predicting the operation of the gas turbine power generation facility 100 and the hot water generator 700, an actual operation start mode, an operation mode, and a stop mode. This is a process of distributing the above. The prediction mode, the start mode, the operation mode, and the stop mode (operation conditions) are input from the support tool 910 by the user.
 始めに、図6のステップS401では、ガスタービン発電設備100、温水生成装置700の運転条件の予測モードであるか否かを判断する。予測モードであれば(ステップS401でYes)、ステップS402へ進む一方、予測モードでなければ(ステップS401でNo)、ステップS406へ進む。 First, in step S401 of FIG. 6, it is determined whether or not the operation condition prediction mode of the gas turbine power generation equipment 100 and the hot water generator 700 is set. If it is the prediction mode (Yes in Step S401), the process proceeds to Step S402, while if it is not the prediction mode (No in Step S401), the process proceeds to Step S406.
 ステップS402では、図5に示す予測手法により現在の気温や日射量から太陽熱による作動流体w1の温度を推定する。その推定値があらかじめ設定した温度以上になっているのか否かを判断する。設定温度以上となっていれば(ステップS402でYes)、ステップS403へ移行する一方、設定温度未満であれば(ステップS402でNo)、作動流体w1が設定温度未満であり、蓄熱は不可能であるので、「蓄熱可=0」(蓄熱不可)として終了する(ステップS405)。 In step S402, the temperature of the working fluid w1 due to solar heat is estimated from the current temperature and the amount of solar radiation by the prediction method shown in FIG. It is determined whether or not the estimated value is equal to or higher than a preset temperature. If the temperature is equal to or higher than the set temperature (Yes in step S402), the process proceeds to step S403. If the temperature is lower than the set temperature (No in step S402), the working fluid w1 is lower than the set temperature and heat storage is impossible. Therefore, the process ends as “heat storage is possible = 0” (heat storage is not possible) (step S405).
 ステップS403では、蓄熱タンク703、704内の温度が作動流体w1の温度未満か否かを判断する。蓄熱タンク703、704内の温度が作動流体w1の温度未満であれば(ステップS403でYes)、蓄熱が可能であるので「蓄熱可=1」(蓄熱可)として(ステップS404)、終了する。蓄熱タンク703、704内の熱媒油w2の温度が作動流体w1の温度以上である場合には(ステップS403でNo)、蓄熱タンク703、704内の熱媒油w2に蓄熱が不可能であるので、「蓄熱可=0」(蓄熱不可)として(ステップS405)、終了する。 In step S403, it is determined whether or not the temperature in the heat storage tanks 703 and 704 is lower than the temperature of the working fluid w1. If the temperature in the heat storage tanks 703 and 704 is lower than the temperature of the working fluid w1 (Yes in step S403), since heat storage is possible, “heat storage is possible = 1” (heat storage is possible) (step S404) and the process is terminated. When the temperature of the heat transfer oil w2 in the heat storage tanks 703 and 704 is equal to or higher than the temperature of the working fluid w1 (No in step S403), heat cannot be stored in the heat transfer oil w2 in the heat storage tanks 703 and 704. Therefore, “heat storage is possible = 0” (heat storage is not possible) is set (step S405), and the process is terminated.
 図6のステップS406では、計測信号120、140に基づきガスタービン発電設備100、温水生成装置700が実際に稼動するための起動モードであるか否かを判断する。起動モードであれば(ステップS406でYes)、「起動モード=1」(起動モードのフラグ“1”を表す)として(ステップS408)、終了する。 In step S406 of FIG. 6, it is determined based on the measurement signals 120 and 140 whether or not the gas turbine power generation facility 100 and the hot water generator 700 are in a start-up mode for actual operation. If it is the start mode (Yes in step S406), it is determined as “start mode = 1” (representing the start mode flag “1”) (step S408), and the process ends.
 起動モードでなければ(ステップS406でNo)、計測信号120、140に基づき停止モードであるか否かを判断する(ステップS407)。停止モードでなければ(ステップS407でNo)、「運転モード=1」(運転モードのフラグ“1”を表す)として(ステップS409)、終了する。停止モードであれば(ステップS407でYes)、「停止モード=1」(停止モードのフラグ“1”を表す)として(ステップS410)、終了する。
 図6のフローで求めた蓄熱可、起動モード、運転モード、停止モードの設定情報は、図2の制御装置200内の制御部500に入力される。
If it is not the start mode (No in step S406), it is determined based on the measurement signals 120 and 140 whether or not it is the stop mode (step S407). If it is not the stop mode (No in step S407), the operation is terminated as “operation mode = 1” (representing the operation mode flag “1”) (step S409). If it is the stop mode (Yes in step S407), it is determined as “stop mode = 1” (representing the stop mode flag “1”) (step S410), and the process ends.
The setting information of heat storage enablement, start mode, operation mode, and stop mode obtained in the flow of FIG. 6 is input to the control unit 500 in the control device 200 of FIG.
<制御部500での演算機能>
 図2の制御部500は、運転条件判定部400と運転情報データベース600からの情報を基に、温水生成装置700内にある調整弁711~718やポンプ721~725を制御する。以下、起動モード、運転モード、停止モードの各モードに応じた運転方法を説明する。
<Calculation function in control unit 500>
The control unit 500 in FIG. 2 controls the regulating valves 711 to 718 and the pumps 721 to 725 in the hot water generator 700 based on information from the operation condition determination unit 400 and the operation information database 600. Hereinafter, an operation method according to each mode of the start mode, the operation mode, and the stop mode will be described.
 起動モードが“1”(起動モードがON)に設定された場合は、始めに図2に示す調整弁711のバイパスラインb1側が開き、太陽熱集熱装置701から熱交換器702を経由することなくバイパスラインb1を通過する循環ループとなる。ポンプ721で作動流体w1を巡回させ、第1の熱交換器入口702iに流入する作動流体w1の温度が予め設定した温度になるまで昇温する。調整弁711の上流には、作動流体w1の温度を測定する不図示の温度センサが配設されている。 When the start mode is set to “1” (start mode is ON), the bypass line b1 side of the regulating valve 711 shown in FIG. 2 is opened first, and the solar heat collector 701 does not pass through the heat exchanger 702. A circulation loop passes through the bypass line b1. The working fluid w1 is circulated by the pump 721, and the temperature is raised until the temperature of the working fluid w1 flowing into the first heat exchanger inlet 702i reaches a preset temperature. An unillustrated temperature sensor for measuring the temperature of the working fluid w1 is disposed upstream of the regulating valve 711.
 作動流体w1の昇温が完了すると調整弁714の操作によりバイパスラインb2を開く。この際、調整弁712、713、715が、熱媒油w2が第1の熱交換器702に流入できるように開く。なお、第2の蓄熱タンク704に熱媒油w2を流すか否かは、温水生成装置700の制御状態に依る。第2の蓄熱タンク704に熱媒油w2を流す場合には、調整弁715を第2の蓄熱タンク704側に開き、調整弁716も開く。 When the heating of the working fluid w1 is completed, the bypass line b2 is opened by operating the adjustment valve 714. At this time, the regulating valves 712, 713, and 715 are opened so that the heat transfer oil w2 can flow into the first heat exchanger 702. Whether or not the heat transfer oil w2 is allowed to flow through the second heat storage tank 704 depends on the control state of the hot water generator 700. When flowing the heat transfer oil w2 to the second heat storage tank 704, the adjustment valve 715 is opened to the second heat storage tank 704 side, and the adjustment valve 716 is also opened.
 そして、ポンプ722、723が動作し、熱媒油w2が第1の熱交換器702に流入する。同時に、調整弁711の操作によりバイパスラインb1が閉じられ第1の熱交換器702に作動流体w1が貫流する。
 これによって、第1の熱交換器702で、太陽熱で設定温度に昇温された作動流体w1と熱媒油w2との熱交換が開始される。第2の熱交換器入口705iに流入する熱媒油w2の温度が予め設定した温度になるまで現状を維持する。なお、調整弁714の上流側には、熱媒油w2の温度を測定する不図示の温度センサが配設されている。
Then, the pumps 722 and 723 are operated, and the heat transfer oil w2 flows into the first heat exchanger 702. At the same time, the bypass line b1 is closed by the operation of the regulating valve 711, and the working fluid w1 flows through the first heat exchanger 702.
As a result, the first heat exchanger 702 starts heat exchange between the working fluid w1 heated to the set temperature by solar heat and the heat transfer oil w2. The current state is maintained until the temperature of the heat transfer oil w2 flowing into the second heat exchanger inlet 705i reaches a preset temperature. A temperature sensor (not shown) that measures the temperature of the heat transfer oil w2 is disposed upstream of the regulating valve 714.
 熱媒油w2の昇温が完了すると調整弁717の操作により水w3が流れるバイパスラインb3を開き、ポンプ724、725を作動させる。この際、調整弁718も開き、給水タンク706から給水される水w3が第2の熱交換器705、バイパスラインb3に流入する。そして、調整弁714の操作によりバイパスラインb2が閉じられ第2の熱交換器705に作動流体の熱媒油w2が貫流する。 When the temperature increase of the heat transfer oil w2 is completed, the bypass line b3 through which the water w3 flows is opened by operating the adjustment valve 717, and the pumps 724 and 725 are operated. At this time, the adjustment valve 718 is also opened, and the water w3 supplied from the water supply tank 706 flows into the second heat exchanger 705 and the bypass line b3. Then, the bypass line b <b> 2 is closed by the operation of the regulating valve 714, and the working fluid heat transfer oil w <b> 2 flows into the second heat exchanger 705.
 これにより、給水タンク706から給水された水w3が第2の熱交換器705での熱媒油w2との熱交換により昇温される。ポンプ725の出口側725oの水w3の温度と圧力が予め設定した温度と圧力に到達すると噴霧可能となる。なお、ポンプ725の出口側725oの下流には、水w3の温度、圧力をそれぞれ測定する不図示の温度センサ、圧力センサが配設されている。 Thereby, the temperature of the water w3 supplied from the water supply tank 706 is raised by heat exchange with the heat transfer oil w2 in the second heat exchanger 705. Spraying is possible when the temperature and pressure of the water w3 on the outlet side 725o of the pump 725 reach a preset temperature and pressure. In addition, downstream of the outlet side 725o of the pump 725, a temperature sensor and a pressure sensor (not shown) for measuring the temperature and pressure of the water w3 are disposed.
 そして、ポンプ725の出口側725oの水w3の温度と圧力が予め設定した温度と圧力に到達した場合、すなわち水w3が所定温度と圧力の温水w4になった場合には、温水w4を噴霧状態とするため調整弁717を操作しバイパスラインb3を閉じ、運転状態に移行する。そして、運転モードであるという信号が支援ツール910に送られる。 When the temperature and pressure of the water w3 on the outlet side 725o of the pump 725 reach a preset temperature and pressure, that is, when the water w3 becomes the warm water w4 having a predetermined temperature and pressure, the warm water w4 is sprayed. Therefore, the adjustment valve 717 is operated to close the bypass line b3 and shift to the operating state. Then, a signal indicating the operation mode is sent to the support tool 910.
 次に、運転モードが“1”(運転モードがON)に設定された場合、噴霧ノズル6の直前の温水4の状態が所望の圧力と温度になるように運転する。配管の状態によっては、噴霧ノズル6の直前に温水w4の圧力、温度をそれぞれ測定する不図示の圧力センサ、温度センサを配設する。ポンプ725の出口側725oと噴霧ノズル6との距離が短い場合には、噴霧ノズル6の直前に温水w4の圧力、温度をそれぞれ測定する不図示の圧力センサ、温度センサを配設することなく、ポンプ725の出口側725oの下流の不図示の温度センサ、圧力センサが温水w4の温度、圧力をそれぞれ測定する。 Next, when the operation mode is set to “1” (operation mode is ON), the operation is performed so that the state of the hot water 4 immediately before the spray nozzle 6 becomes a desired pressure and temperature. Depending on the state of the piping, a pressure sensor and a temperature sensor (not shown) for measuring the pressure and temperature of the hot water w4 are disposed immediately before the spray nozzle 6, respectively. When the distance between the outlet side 725o of the pump 725 and the spray nozzle 6 is short, a pressure sensor (not shown) and a temperature sensor for measuring the pressure and temperature of the hot water w4 are not provided immediately before the spray nozzle 6, respectively. A temperature sensor and a pressure sensor (not shown) downstream of the outlet side 725o of the pump 725 measure the temperature and pressure of the hot water w4, respectively.
 この噴霧ノズル6の直前の温水w4の温度をもとに、配管や機器での熱損失を考慮して第1・第2の熱交換器702、705の各入口702i、705iの作動流体w1、熱媒油w2の各温度の設定値を決める。
 第2の熱交換器705の高温側の入口(705i)の熱媒油w2の温度は設定値、出口(705o)の熱媒油w2の温度は熱交換後の熱損失分を考慮した温度となるように高温槽の第1の蓄熱タンク703の調整弁712、713とポンプ723を制御する。第1の熱交換器702の入口(702i)の作動流体w1の温度と出口(702o)の作動流体w1の温度も同様の考えで温度制御をする。
Based on the temperature of the hot water w4 immediately before the spray nozzle 6, taking into account heat loss in the piping and equipment, the working fluid w1 at the inlets 702i and 705i of the first and second heat exchangers 702 and 705, The set value of each temperature of the heat transfer oil w2 is determined.
The temperature of the heat transfer oil w2 at the inlet (705i) on the high temperature side of the second heat exchanger 705 is a set value, and the temperature of the heat transfer oil w2 at the outlet (705o) is a temperature considering the heat loss after heat exchange. Thus, the control valves 712 and 713 and the pump 723 of the first heat storage tank 703 of the high-temperature tank are controlled. The temperature of the working fluid w1 at the inlet (702i) of the first heat exchanger 702 and the temperature of the working fluid w1 at the outlet (702o) are controlled in the same way.
 停止モードが“1”(停止モードがON)に設定された場合、調整弁711、714、717の全てを操作して全てのバイパスラインb1、b2、b3を開く、その後、全てのポンプ721~725を停止する。
 運転モード中に、予測モードが選択され蓄熱可が“1”(第1の蓄熱タンク703に蓄熱可の場合)に設定されている場合、第1の蓄熱タンク703へ積極的に蓄熱するために、調整弁712、713のそれぞれの開度を操作して、ガスタービン発電設備100の安定運転のために余剰の熱量を蓄熱する。
When the stop mode is set to “1” (stop mode is ON), all the control valves 711, 714, 717 are operated to open all the bypass lines b1, b2, b3, and then all the pumps 721 to 725 is stopped.
In order to positively store heat in the first heat storage tank 703 when the prediction mode is selected and the heat storage capability is set to “1” (when the first heat storage tank 703 can store heat) during the operation mode. Then, the opening degree of each of the regulating valves 712 and 713 is operated to store an excessive amount of heat for stable operation of the gas turbine power generation facility 100.
 調整弁713を開弁することで第1の蓄熱タンク703内の作動流体の熱媒油w2が第2の熱交換器705に流入するが、第1の熱交換器702の入口702iの作動流体w1の温度一定制御と同様の考え方により、第2の熱交換器705の入口(705i)に流入する熱媒油w2の温度が予め定めた設定温度(一定)となるよう調整弁712、713のそれぞれの開度を操作する。第2の蓄熱タンク704も同様にして調整弁715、716のそれぞれの開度を操作する。 By opening the regulating valve 713, the heat transfer oil w2 of the working fluid in the first heat storage tank 703 flows into the second heat exchanger 705, but the working fluid at the inlet 702i of the first heat exchanger 702 The control valves 712 and 713 are controlled so that the temperature of the heat transfer oil w2 flowing into the inlet (705i) of the second heat exchanger 705 becomes a predetermined set temperature (constant) based on the same concept as the constant temperature control of w1. Operate each opening. Similarly, the second heat storage tank 704 operates the opening degree of each of the adjustment valves 715 and 716.
 ここで、第2の熱交換器705の入口(705i)に流す熱媒油w2の温度が、設定温度に至らないと判断される場合には、調整弁714によって、熱媒油w2を第2の熱交換器705に流すことなくバイパスラインb2に流して、熱媒油w2の温度を、第1の熱交換器702での熱交換により、第2の熱交換器705の入口(705i)に設定された設定温度に至るまで加熱する。その後、熱媒油w2の温度が、第2の熱交換器705の入口(705i)の設定温度に至ったと判断される際に、調整弁714によって、バイパスラインb2を閉じて熱媒油w2を第2の熱交換器705に流す。なお、第2の熱交換器705の入口(705i)に流す熱媒油w2の温度が、設定温度に至らないと判断される場合にも、第2の熱交換器705の入口(705i)に流すように構成してもよい。 Here, when it is determined that the temperature of the heat medium oil w2 flowing to the inlet (705i) of the second heat exchanger 705 does not reach the set temperature, the adjustment valve 714 causes the heat medium oil w2 to be The heat medium oil w2 is flowed to the bypass line b2 without flowing to the heat exchanger 705, and the temperature of the heat transfer oil w2 is transferred to the inlet (705i) of the second heat exchanger 705 by heat exchange in the first heat exchanger 702. Heat to set temperature. Thereafter, when it is determined that the temperature of the heat transfer oil w2 has reached the set temperature of the inlet (705i) of the second heat exchanger 705, the adjustment valve 714 closes the bypass line b2 to change the heat transfer oil w2 Flow to the second heat exchanger 705. Even when it is determined that the temperature of the heat transfer oil w2 flowing to the inlet (705i) of the second heat exchanger 705 does not reach the set temperature, the inlet (705i) of the second heat exchanger 705 You may comprise so that it may flow.
 <支援ツール910による表示>
 次に、ユーザが支援ツール910(図2参照)を用いて、画像表示装置950に、温水生成装置700で取得した計測信号120、制御装置200から温水生成装置700に送信される制御信号130、運転条件判定部400の判定結果や関連情報データベース300の情報を表示させる方法について説明する。
<Display by support tool 910>
Next, the user uses the support tool 910 (see FIG. 2) to display the measurement signal 120 acquired by the hot water generating device 700 on the image display device 950, the control signal 130 transmitted from the control device 200 to the hot water generating device 700, A method for displaying the determination result of the operating condition determination unit 400 and the information of the related information database 300 will be described.
 図7~図10は、図2の画像表示装置950に表示される画面G1、G2、G3、G4の実施例である。
 ユーザは、図2に示すキーボード901、マウス902を用いて、画面G1~G4で、ボタンを押下して選択したり、空欄となっている箇所にパラメータ値を入力するなどの操作を実行し、ガスタービン発電装置Sの各種情報を表示する。
7 to 10 show examples of screens G1, G2, G3, and G4 displayed on the image display device 950 of FIG.
The user uses the keyboard 901 and the mouse 902 shown in FIG. 2 to perform operations such as selecting a button on the screens G1 to G4 by pressing a button or inputting a parameter value in a blank area. Various information of the gas turbine power generator S is displayed.
 図7は、画像表示装置950に表示される初期画面のデータ処理装置GUI画面G1である。
 ユーザは、画像表示装置950にデータ処理装置GUI画面G1を表示し、マウス902(図2参照)を用いてカーソル953を移動させ、運転状態表示ボタン951またはトレンド表示ボタン952のうちから必要な(所望の)ボタンをマウス902でクリックすることにより選択する。これにより、所望の運転状態表示の画面(図8の運転状態表示画面G2)またはトレンド表示の画面(図9のトレンド表示設定画面G3)を表示させることができる。
FIG. 7 shows a data processing device GUI screen G1 of the initial screen displayed on the image display device 950.
The user displays the data processing device GUI screen G1 on the image display device 950, moves the cursor 953 using the mouse 902 (see FIG. 2), and is necessary from the operation state display button 951 or the trend display button 952 ( A desired button is selected by clicking with the mouse 902. Thereby, a desired operation state display screen (operation state display screen G2 in FIG. 8) or a trend display screen (trend display setting screen G3 in FIG. 9) can be displayed.
 図8に、運転状態表示の画面である運転状態表示画面G2を示す。
 データ処理装置GUI画面G1(図7参照)において運転状態表示ボタン951をクリックすることにより、図8の運転状態表示画面G2が表示される。
 運転状態表示画面G2の系統情報表示欄961では、ユーザは、表示させたい時間を時刻入力欄962に入力する。そして、表示ボタン963をクリック(押下)することにより、系統情報表示欄961に、入力した時間での各種状態が表示される。
FIG. 8 shows an operation state display screen G2 which is an operation state display screen.
When the operation state display button 951 is clicked on the data processing device GUI screen G1 (see FIG. 7), the operation state display screen G2 of FIG. 8 is displayed.
In the system information display field 961 of the operation state display screen G2, the user inputs the time desired to be displayed in the time input field 962. By clicking (pressing) the display button 963, various states at the input time are displayed in the system information display field 961.
 具体的には、現在または過去に、ガスタービン発電装置Sで計測している箇所の温度や圧力などの状態量、調整弁711~718やポンプ721~725などの機器の状態を表示する。なお、図8では、調整弁711の開度と第2の熱交換器705の入口(705i)の熱媒油w2の温度が表示された場合を示している。
 なお、ユーザが、系統情報表示欄961に表示される構成のうちの状態表示を見たい何れかの箇所をクリックし、その箇所の状態が表示される構成としてもよい。
Specifically, state quantities such as temperature and pressure measured by the gas turbine power generation device S at present or in the past, and states of devices such as the regulating valves 711 to 718 and the pumps 721 to 725 are displayed. FIG. 8 shows a case where the opening degree of the regulating valve 711 and the temperature of the heat transfer oil w2 at the inlet (705i) of the second heat exchanger 705 are displayed.
In addition, it is good also as a structure by which the user clicks on any part of the configuration displayed in the system information display field 961 and wants to see the status display, and the status of that part is displayed.
 運転状態表示964では、ユーザは、起動モード、運転モード、停止モード、および予測モードのうちの何れかのモードを選択する。すると、選択されたモードが強調表示される。図8では、運転モードが強調表示された場合を示している。 In the operation state display 964, the user selects one of a start mode, an operation mode, a stop mode, and a prediction mode. Then, the selected mode is highlighted. FIG. 8 shows a case where the operation mode is highlighted.
 運転状態表示964で、ユーザが起動モードや停止モード、予測モードを選択すると、支援ツール910を介して、運転条件判定部400(図2参照)にその選択信号が送信される。起動モード完了後、ガスタービン発電装置Sが運転モードに移行すると、計測信号120、140を受信した制御装置200の運転条件判定部400より支援ツール910が運転モードの信号(情報210)を受信し、本画面G2内の運転モード欄が強調表示(点灯)される。 When the user selects the start mode, the stop mode, or the prediction mode on the driving state display 964, the selection signal is transmitted to the driving condition determination unit 400 (see FIG. 2) via the support tool 910. When the gas turbine power generation device S shifts to the operation mode after the start mode is completed, the support tool 910 receives the operation mode signal (information 210) from the operation condition determination unit 400 of the control device 200 that has received the measurement signals 120 and 140. The operation mode column in this screen G2 is highlighted (lighted).
 また、蓄熱可の値が“1”(第1・第2の蓄熱タンク703、704が蓄熱可能)になった場合、蓄熱可965が強調表示(点灯)される。
 また、運転状態表示964で予測モードが選択されると、966欄の推定温度に第1の作動流体w1の推定温度が表示される。
 966欄の蓄熱タンク1内温度は第1の蓄熱タンク703内の熱媒油w2の温度が、蓄熱タンク2内温度は第2の蓄熱タンク704内の熱媒油w2の温度が表示される。
Further, when the value of heat storage possibility becomes “1” (the first and second heat storage tanks 703 and 704 can store heat), the heat storage possibility 965 is highlighted (lighted).
When the prediction mode is selected on the operation state display 964, the estimated temperature of the first working fluid w1 is displayed as the estimated temperature in the 966 column.
The temperature in the heat storage tank 1 in the column 966 indicates the temperature of the heat transfer oil w2 in the first heat storage tank 703, and the temperature in the heat storage tank 2 indicates the temperature of the heat transfer oil w2 in the second heat storage tank 704.
 各モードにおける外気の状態の各諸元については、関連情報表示欄967にて表示される。
 運転状態表示画面G2において、戻るボタン968をクリック(押下)することにより、図7のデータ処理装置GUI画面G1に戻ることができる。
Each item of the state of the outside air in each mode is displayed in the related information display column 967.
By clicking (depressing) the return button 968 on the operation state display screen G2, it is possible to return to the data processing device GUI screen G1 of FIG.
 図9は、時間経過に伴う計測値や各諸元などのトレンドを画像表示装置950に表示させるための設定画面であるトレンド表示設定画面G3である。
 図7のデータ処理装置GUI画面G1において、トレンド表示ボタン952をクリック(押下)することにより、図9のトレンド表示設定画面G3が表示される。
FIG. 9 is a trend display setting screen G3 that is a setting screen for displaying trends such as measured values and various specifications over time on the image display device 950.
When the trend display button 952 is clicked (pressed) on the data processing device GUI screen G1 in FIG. 7, the trend display setting screen G3 in FIG. 9 is displayed.
 トレンド表示設定画面G3の計測信号表示欄981では、ユーザは、その入力欄に、画像表示装置950に表示させたい計測信号120、140または操作信号130、150をそのレンジ(上限/下限)と共に入力する。なお、図9では、計測信号表示欄981の名称をプルダウンメニュで選択表示する場合を示している。また、時刻入力欄982に、計測信号表示欄981に入力したものを、表示させたい時間帯を入力する。 In the measurement signal display field 981 of the trend display setting screen G3, the user inputs the measurement signal 120, 140 or the operation signals 130, 150 to be displayed on the image display device 950 together with the range (upper / lower) in the input field. To do. FIG. 9 shows a case where the name of the measurement signal display field 981 is selected and displayed using a pull-down menu. In the time input field 982, the time zone in which the signal input in the measurement signal display field 981 is to be displayed is input.
 そして、表示ボタン983をクリック(押下)することにより、計測信号表示欄981、時刻入力欄982に入力したデータのトレンドグラフが示されるトレンド表示画面G4(図10参照)が、画像表示装置950に表示される。
 所望のトレンドグラフを目視したユーザは、トレンド表示画面G4(図10参照)の戻るボタン991をクリック(押下)することにより、図9の画面に戻ることができる。
When a display button 983 is clicked (pressed), a trend display screen G4 (see FIG. 10) showing a trend graph of data input in the measurement signal display field 981 and the time input field 982 is displayed on the image display device 950. Is displayed.
The user who views the desired trend graph can return to the screen of FIG. 9 by clicking (pressing) the return button 991 on the trend display screen G4 (see FIG. 10).
 一方、トレンド表示設定画面G3(図9参照)の関連情報表示欄984では、外気の状態の天気、気温、風向、風速、湿度、日射量の任意を選択する。図9では、気温、風速が選択された場合を示している。また、関連情報表示欄984で選択した諸元を表示させたい時間帯を時刻入力欄985に入力する。そして、表示ボタン986をクリックすることで、支援ツール910を介して、選択した情報を、関連情報データベース300(図2参照)から検索し、トレンド表示画面G4(図10参照)のトレンドグラフが画像表示装置950に表示される。 On the other hand, in the related information display field 984 of the trend display setting screen G3 (see FIG. 9), any of the weather, temperature, wind direction, wind speed, humidity, and solar radiation in the state of the outside air is selected. FIG. 9 shows a case where temperature and wind speed are selected. Further, a time zone in which the item selected in the related information display field 984 is to be displayed is input to the time input field 985. When the display button 986 is clicked, the selected information is retrieved from the related information database 300 (see FIG. 2) via the support tool 910, and the trend graph on the trend display screen G4 (see FIG. 10) is displayed as an image. It is displayed on the display device 950.
 なお、関連情報表示欄984の天気については、前記したように、気象庁が一般向けに発信(発表)している15種類を用いて表現する。
 つまり、天気の各種類に応じて番号を割り振り、これをトレンド表示する。つまり、快晴を0、晴れを1、薄曇を2というように、順次14まで番号を割り振る。なお、◎(曇り)、●(雨)などの天気を示す記号や絵文字表示で行ってもよい。
Note that the weather in the related information display column 984 is expressed using 15 types transmitted (announced) to the general public by the Japan Meteorological Agency as described above.
That is, a number is assigned according to each type of weather, and this is displayed as a trend. That is, numbers are sequentially assigned up to 14, such as 0 for clear weather, 1 for clear weather, and 2 for light cloudiness. Note that symbols such as ◎ (cloudy), ● (rainy), and pictograms may be displayed.
 トレンド表示設定画面G3(図9参照)の温水温度比較表示では、予測した温水温度と実際の温水温度を比較表示する。ユーザが、時刻入力欄987に比較させたい時間帯を入力し、表示ボタン988をクリック(押下)すると、図10のトレンド表示画面G4に、予測した温水温度と実際の温水温度を比較表示するトレンドグラフが、画像表示装置950に表示される。
 終了する場合、ユーザは、図9のトレンド表示設定画面G3において、戻るボタン989をクリック(押下)することにより、図7のデータ処理装置GUI画面G1に戻ることができる。
In the hot water temperature comparison display on the trend display setting screen G3 (see FIG. 9), the predicted hot water temperature and the actual hot water temperature are compared and displayed. When the user inputs a time zone to be compared in the time input field 987 and clicks (presses) the display button 988, a trend for comparing and displaying the predicted hot water temperature and the actual hot water temperature on the trend display screen G4 in FIG. The graph is displayed on the image display device 950.
When ending, the user can return to the data processing device GUI screen G1 of FIG. 7 by clicking (pressing) the return button 989 on the trend display setting screen G3 of FIG.
 上記構成によれば、太陽熱を利用して加熱した温水w4を圧縮器2が吸い込む空気に噴霧するので、外気温度が高い期間においてもガスタービン発電設備100で定格出力を維持できる。また、太陽熱による温水w4を利用する場合、蓄熱タンク703、704での蓄熱との組合せにより、日射量の変動による温水供給の不安定を解消でき、電力の安定化と運転期間の伸長に寄与できる。
 従って、太陽熱の熱エネルギで得られた温水を噴霧することで出力を向上できるとともに安定運転が可能なガスタービン発電装置Sおよびその運転方法を実現できる。
According to the said structure, since the warm water w4 heated using the solar heat is sprayed on the air which the compressor 2 suck | inhales, a rated output can be maintained with the gas turbine power generation equipment 100 also in the period when external temperature is high. Moreover, when using the hot water w4 by solar heat, the combination with the heat storage in the heat storage tanks 703 and 704 can eliminate the instability of hot water supply due to fluctuations in the amount of solar radiation, and can contribute to the stabilization of power and the extension of the operation period. .
Therefore, it is possible to realize the gas turbine power generation device S and its operation method capable of improving the output and spraying the hot water obtained by the thermal energy of solar heat and capable of stable operation.
 <その他の実施形態>
 なお、前記実施形態では、記憶部としてデータベースを例示したが、各種データを記憶できる記憶部であれば一時ファイル(temporary file)、ワークエリアなどでもよく、データを保存できればその態様は限定されない。
 また、前記実施形態で説明した各種記憶部は分割して構成してもよく、運転条件判定部400、制御部500はそれぞれ分割して構成してもよいし、統合して一つで構成してもよい。
<Other embodiments>
In the above-described embodiment, a database is exemplified as the storage unit. However, a temporary file or a work area may be used as long as the storage unit can store various data, and the mode is not limited as long as data can be stored.
In addition, the various storage units described in the embodiment may be divided and configured, and the operating condition determination unit 400 and the control unit 500 may be configured separately or may be integrated into one unit. May be.
 1   ガスタービン
 1j  ガスタービン軸(軸)
 2   圧縮器
 3   発電機(機器)
 4   燃焼器(機器)
 5   吸気冷却室
 6   噴霧ノズル
 100 ガスタービン発電設備
 120、140 計測信号
 300 関連情報データベース(関連情報記憶部)
 400 運転条件判定部(温度予測部)
 500 制御部(第1制御部、第2制御部、第3制御部)
 600 運転情報データベース(運転情報記憶部)
 701 太陽熱集熱装置(機器)
 703 第1の蓄熱タンク(蓄熱タンク)
 704 第2の蓄熱タンク(蓄熱タンク)
 705 第2の熱交換器(熱交換器)
 712 調整弁(第2調整弁)
 717 調整弁(第1調整弁)
 910 支援ツール(第1表示部、第2表示部)
 950 画像表示装置(表示装置)
 b2  第2バイパスライン
 b3  第1バイパスライン
 S   ガスタービン発電装置
 w1  第1の作動流体(第2の熱媒体)
 w2  第2の作動流体(熱媒体)
 w4  温水
1 Gas turbine 1j Gas turbine shaft (shaft)
2 Compressor 3 Generator (equipment)
4 Combustors (equipment)
5 Intake Cooling Chamber 6 Spray Nozzle 100 Gas Turbine Power Generation Equipment 120, 140 Measurement Signal 300 Related Information Database (Related Information Storage Unit)
400 Operating condition determination unit (temperature prediction unit)
500 control unit (first control unit, second control unit, third control unit)
600 Driving information database (driving information storage unit)
701 Solar collector (equipment)
703 First heat storage tank (heat storage tank)
704 Second heat storage tank (heat storage tank)
705 Second heat exchanger (heat exchanger)
712 Regulating valve (second regulating valve)
717 Regulating valve (first regulating valve)
910 Support tool (1st display part, 2nd display part)
950 Image display device (display device)
b2 2nd bypass line b3 1st bypass line S Gas turbine power generator w1 1st working fluid (2nd heat medium)
w2 Second working fluid (heat medium)
w4 warm water

Claims (14)

  1.  空気を圧縮する圧縮器と、
     前記圧縮器からの圧縮空気と燃料を燃焼する燃焼器と、
     前記燃焼器の燃焼ガスにより駆動されるガスタービンと、
     前記ガスタービンと軸を介して連結され、前記ガスタービンの回転によって駆動される発電機と、
     太陽熱を用いて加熱された熱媒体との熱交換を行う熱交換器と、
     前記熱媒体を蓄える蓄熱タンクと、
     前記熱交換器で形成された被加熱側の循環路をバイパスする第1バイパスラインと、
     前記第1バイパスラインへの流量を調節する第1調整弁と、
     前記熱交換器で加熱された温水を前記圧縮器の空気に噴霧ノズルで噴霧するための吸気冷却室とを
     備えることを特徴としたガスタービン発電装置。
    A compressor for compressing air;
    A combustor for combusting compressed air and fuel from the compressor;
    A gas turbine driven by the combustion gas of the combustor;
    A generator connected to the gas turbine via a shaft and driven by rotation of the gas turbine;
    A heat exchanger for exchanging heat with a heat medium heated using solar heat;
    A heat storage tank for storing the heat medium;
    A first bypass line that bypasses the heated side circulation path formed by the heat exchanger;
    A first regulating valve that regulates a flow rate to the first bypass line;
    A gas turbine power generator comprising: an intake air cooling chamber for spraying hot water heated by the heat exchanger onto the air of the compressor with a spray nozzle.
  2.  請求の範囲第1項に記載のガスタービン発電装置において、
     前記ガスタービン発電装置での計測信号を保存する運転情報記憶部と、
     前記計測信号が入力され、運転条件を判定する運転条件判定部と、
     前記運転条件や外気の状態を保存する関連情報記憶部と、
     前記運転条件をもとに前記ガスタービン発電装置を運転するための方法を決定する第1制御部と、
     前記計測信号から得られる前記温水の条件および設けられる機器の状態、前記運転条件に応じて、前記ガスタービン発電装置を運転する第2制御部とを
     を備えることを特徴とするガスタービン発電装置。
    In the gas turbine power generator according to claim 1,
    An operation information storage unit for storing a measurement signal in the gas turbine power generation device;
    The measurement signal is input, and an operation condition determination unit that determines operation conditions;
    A related information storage unit for storing the operating conditions and the state of the outside air;
    A first control unit for determining a method for operating the gas turbine power generator based on the operating conditions;
    A gas turbine power generation device comprising: a second control unit that operates the gas turbine power generation device according to the hot water condition obtained from the measurement signal, the state of equipment to be provided, and the operation condition.
  3.  請求の範囲第1項に記載のガスタービン発電装置において、
     前記ガスタービン発電装置での計測信号を保存する運転情報記憶部と、
     前記計測信号が入力され、運転条件を判定する運転条件判定部と、
     前記運転条件や外気の状態を保存する関連情報記憶部と、
     前記運転条件をもとに前記ガスタービン発電装置を運転するための方法を決定する第1制御部と、
     前記外気の状態より太陽熱集熱装置で加熱される熱媒体の温度を予測する温度予測部とを
     備えることを特徴とするガスタービン発電装置。
    In the gas turbine power generator according to claim 1,
    An operation information storage unit for storing a measurement signal in the gas turbine power generation device;
    The measurement signal is input, and an operation condition determination unit that determines operation conditions;
    A related information storage unit for storing the operating conditions and the state of the outside air;
    A first control unit for determining a method for operating the gas turbine power generator based on the operating conditions;
    A gas turbine power generator comprising: a temperature prediction unit that predicts a temperature of a heat medium heated by a solar heat collector from the state of the outside air.
  4.  請求の範囲第3項に記載のガスタービン発電装置において、
     前記外気の状態より熱媒体の温度を予測した結果と、前記計測信号から得られる前記温水の条件および設けられる機器の状態、前記運転条件に応じて、前記ガスタービン発電装置を運転する第3制御部を
     備えることを特徴とするガスタービン発電装置。
    In the gas turbine power generator according to claim 3,
    Third control for operating the gas turbine power generator according to the result of predicting the temperature of the heat medium from the state of the outside air, the condition of the hot water obtained from the measurement signal, the state of the equipment to be provided, and the operating condition A gas turbine power generator characterized by comprising a section.
  5.  請求の範囲第1項から第4項のうちの何れか一項に記載のガスタービン発電装置において、
     前記第1調整弁は、運転状態に応じて前記温水の流量を制御する
     ことを特徴とするガスタービン発電装置。
    In the gas turbine power generator according to any one of claims 1 to 4,
    The first regulating valve controls a flow rate of the hot water according to an operating state. The gas turbine power generator.
  6.  請求の範囲第3項または第4項に記載のガスタービン発電装置において、
     前記蓄熱タンクに取り付けられ、前記外気の状態より熱媒体の温度を予測した結果と設けられる機器の状態、得られた前記温水の条件に基づき、前記熱媒体の流量を制御する第2調整弁を備える
     ことを特徴とするガスタービン発電装置。
    In the gas turbine power generator according to claim 3 or 4,
    A second regulating valve that is attached to the heat storage tank and controls the flow rate of the heat medium based on the result of predicting the temperature of the heat medium from the state of the outside air, the state of the equipment provided, and the condition of the obtained hot water A gas turbine power generator comprising:
  7.  請求の範囲第1項から第4項のうちの何れか一項に記載のガスタービン発電装置において、
     前記ガスタービンを停止させる場合、前記第1バイパスラインを開く
     ことを特徴とするガスタービン発電装置。
    In the gas turbine power generator according to any one of claims 1 to 4,
    When stopping the gas turbine, the first bypass line is opened. A gas turbine power generator.
  8.  請求の範囲第1項から請求4項のうちの何れか一項に記載のガスタービン発電装置において、
     前記熱交換器の加熱側の循環路をバイパスする第2バイパスラインを備え、
     前記ガスタービンを起動させる場合、
     前記熱交換器の入口側に流れ込む前記熱媒体の温度が設定温度に達するまでは、前記熱媒体を、前記第2バイパスラインを経由させることで前記熱媒体の温度上昇を施し、前記熱媒体の温度が前記設定温度に到達後は当該第2パイパスラインを閉じて、前記熱媒体を、前記熱交換器を経由させる
     ことを特徴とするガスタービン発電装置。
    In the gas turbine power generator according to any one of claims 1 to 4,
    A second bypass line for bypassing the heating side circulation path of the heat exchanger;
    When starting the gas turbine,
    Until the temperature of the heat medium flowing into the inlet side of the heat exchanger reaches a set temperature, the temperature of the heat medium is increased by passing the heat medium through the second bypass line. After the temperature reaches the set temperature, the second bypass line is closed, and the heat medium is passed through the heat exchanger.
  9.  請求の範囲第2項から第4項のうちの何れか一項に記載のガスタービン発電装置において、
     前記運転条件を任意の時間幅で表示装置に表示するための第1表示部を
     備えることを特徴とするガスタービン発電装置。
    In the gas turbine power generator according to any one of claims 2 to 4,
    A gas turbine power generator comprising: a first display unit for displaying the operating condition on a display device at an arbitrary time width.
  10.  請求の範囲第3項に記載のガスタービン発電装置において、
     前記温度予測部は、前記温水の温度を予測し、
     前記温度予測部にて予測した温水温度の結果と実際に得られた温水温度の結果を任意の時間幅で表示装置に比較表示するための第2表示部を備える
     ことを特徴とするガスタービン発電装置。
    In the gas turbine power generator according to claim 3,
    The temperature prediction unit predicts the temperature of the hot water,
    A gas turbine power generation comprising: a second display unit for comparing and displaying the result of the hot water temperature predicted by the temperature prediction unit and the result of the actually obtained hot water temperature on a display device at an arbitrary time width. apparatus.
  11.  空気を圧縮する圧縮器と、
     前記圧縮器からの圧縮空気と燃料を燃焼する燃焼器と、
     前記燃焼器の燃焼ガスにより駆動されるガスタービンと、
     前記ガスタービンと軸を介して連結され、前記ガスタービンの回転によって駆動される発電機と、
     熱交換器と、
     熱媒体を蓄える蓄熱タンクと、
     前記熱交換器で形成された被加熱側の循環路をバイパスさせる第1バイパスラインと、
     前記第1バイパスラインへの流量を調節する第1調整弁と、
     前記空気に温水を噴霧する噴霧ノズルと、
     前記圧縮器に前記空気を送る吸気冷却室とを備えるガスタービン発電装置の運転方法であって、
     太陽熱を用いて加熱される熱媒体が所定の温度に至るまでは前記第1調整弁により熱交換器で形成された循環路を、前記第1バイパスラインを用いてバイパスさせ、
     前記蓄熱タンクは、前記所定の温度に至った前記熱媒体を蓄え、
     前記熱交換器による前記熱媒体との熱交換で前記温水を作製し、
     前記吸気冷却室において、前記噴霧ノズルによって前記熱交換器で加熱された前記温水を前記空気に噴霧する
     ことを特徴としたガスタービン発電装置の運転方法。
    A compressor for compressing air;
    A combustor for combusting compressed air and fuel from the compressor;
    A gas turbine driven by the combustion gas of the combustor;
    A generator connected to the gas turbine via a shaft and driven by rotation of the gas turbine;
    A heat exchanger,
    A heat storage tank for storing a heat medium;
    A first bypass line that bypasses the heated side circulation path formed by the heat exchanger;
    A first regulating valve that regulates a flow rate to the first bypass line;
    A spray nozzle for spraying warm water on the air;
    An operation method of a gas turbine power generator comprising an intake air cooling chamber for sending the air to the compressor,
    Until the heat medium heated using solar heat reaches a predetermined temperature, the first adjustment valve bypasses the circulation path formed by the heat exchanger using the first bypass line,
    The heat storage tank stores the heat medium that has reached the predetermined temperature,
    Producing the hot water by heat exchange with the heat medium by the heat exchanger;
    In the air intake cooling chamber, the hot water heated by the heat exchanger by the spray nozzle is sprayed onto the air.
  12.  請求の範囲第11項に記載のガスタービン発電装置の運転方法において、
     前記ガスタービン発電装置は、運転情報記憶部と、運転条件判定部と、関連情報記憶部と、第1制御部と、第2制御部とを備え
     前記運転情報記憶部は、前記ガスタービン発電装置での計測信号を保存し、
     前記運転条件判定部は、前記計測信号が入力され運転条件を判定し、
     前記関連情報記憶部は、前記運転条件や外気の状態を保存し、
     前記第1制御部は、前記運転条件をもとに前記ガスタービン発電装置を運転するための方法を決定し、
     前記第2制御部は、前記計測信号から得られる前記温水の条件および設けられる機器の状態、前記運転条件に応じて、前記ガスタービン発電装置を運転する
     ことを特徴とするガスタービン発電装置の運転方法。
    In the operation method of the gas turbine power generator according to claim 11,
    The gas turbine power generation device includes an operation information storage unit, an operation condition determination unit, a related information storage unit, a first control unit, and a second control unit. The operation information storage unit includes the gas turbine power generation device. Save the measurement signal at
    The operating condition determining unit determines the operating condition when the measurement signal is input,
    The related information storage unit stores the operating conditions and the state of the outside air,
    The first control unit determines a method for operating the gas turbine power generation device based on the operating conditions,
    The second control unit operates the gas turbine power generator according to the condition of the hot water obtained from the measurement signal, the state of the equipment to be provided, and the operating condition. Method.
  13.  請求の範囲第11項に記載のガスタービン発電装置の運転方法において、
     前記ガスタービン発電装置は、運転情報記憶部と、運転条件判定部と、関連情報記憶部と、第1制御部と、温度予測部とを備え、
     前記運転情報記憶部は、前記ガスタービン発電装置からの計測信号を保存し、
     前記運転条件判定部は、前記計測信号が入力され運転条件を判定し、
     前記関連情報記憶部は、前記運転条件や外気の状態を保存し、
     前記第1制御部は、前記運転条件をもとに前記ガスタービン発電装置を運転するための方法を決定し、
     前記温度予測部は、前記外気の状態より太陽熱集熱装置で加熱される熱媒体の温度を予測する
     ことを特徴とするガスタービン発電装置の運転方法。
    In the operation method of the gas turbine power generator according to claim 11,
    The gas turbine power generator includes an operation information storage unit, an operation condition determination unit, a related information storage unit, a first control unit, and a temperature prediction unit,
    The operation information storage unit stores a measurement signal from the gas turbine power generator,
    The operating condition determining unit determines the operating condition when the measurement signal is input,
    The related information storage unit stores the operating conditions and the state of the outside air,
    The first control unit determines a method for operating the gas turbine power generation device based on the operating conditions,
    The temperature prediction unit predicts the temperature of a heat medium heated by a solar heat collecting device from the state of the outside air.
  14.  請求の範囲第13項に記載のガスタービン発電装置の運転方法において、
     前記ガスタービン発電装置は、第3制御部を備え、
     前記第3制御部は、前記外気の状態より熱媒体の温度を予測した結果と、前記計測信号から得られる前記温水の条件および設けられる機器の状態、前記運転条件に応じて、前記ガスタービン発電装置を運転する
     ことを特徴とするガスタービン発電装置の運転方法。
    In the operation method of the gas turbine power generator according to claim 13,
    The gas turbine power generator includes a third control unit,
    The third control unit generates the gas turbine power generation according to the result of predicting the temperature of the heat medium from the state of the outside air, the condition of the hot water obtained from the measurement signal, the state of the equipment to be provided, and the operation condition. An operation method of a gas turbine power generator characterized by operating an apparatus.
PCT/JP2011/075833 2011-11-09 2011-11-09 Gas turbine electricity generation device and operating method therefor WO2013069111A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2011/075833 WO2013069111A1 (en) 2011-11-09 2011-11-09 Gas turbine electricity generation device and operating method therefor
JP2013542749A JP5766295B2 (en) 2011-11-09 2011-11-09 Gas turbine power generator and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/075833 WO2013069111A1 (en) 2011-11-09 2011-11-09 Gas turbine electricity generation device and operating method therefor

Publications (1)

Publication Number Publication Date
WO2013069111A1 true WO2013069111A1 (en) 2013-05-16

Family

ID=48288701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075833 WO2013069111A1 (en) 2011-11-09 2011-11-09 Gas turbine electricity generation device and operating method therefor

Country Status (2)

Country Link
JP (1) JP5766295B2 (en)
WO (1) WO2013069111A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105089955A (en) * 2014-05-09 2015-11-25 亮源工业(以色列)有限公司 Electric energy generating method and system and solar insolation heat storing method and system
JP2021085574A (en) * 2019-11-26 2021-06-03 株式会社神鋼環境ソリューション Heat utilization system and starting method for the same
CN116804381A (en) * 2023-06-29 2023-09-26 米奇科技(北京)有限公司 A liquid air energy storage power generation system and equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57146067A (en) * 1981-03-06 1982-09-09 Agency Of Ind Science & Technol Solar heat-utilizing power plant
EP1820965A1 (en) * 2006-02-17 2007-08-22 Siemens Aktiengesellschaft Method and device to control the energy production in a solar thermal power plant
JP2009041567A (en) * 2007-08-07 2009-02-26 General Electric Co <Ge> Method and apparatus for supplying pressure for spray inlet temperature suppressor of gas turbine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58101228A (en) * 1981-12-10 1983-06-16 Mitsubishi Gas Chem Co Inc Gas turbine cycle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57146067A (en) * 1981-03-06 1982-09-09 Agency Of Ind Science & Technol Solar heat-utilizing power plant
EP1820965A1 (en) * 2006-02-17 2007-08-22 Siemens Aktiengesellschaft Method and device to control the energy production in a solar thermal power plant
JP2009041567A (en) * 2007-08-07 2009-02-26 General Electric Co <Ge> Method and apparatus for supplying pressure for spray inlet temperature suppressor of gas turbine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105089955A (en) * 2014-05-09 2015-11-25 亮源工业(以色列)有限公司 Electric energy generating method and system and solar insolation heat storing method and system
JP2021085574A (en) * 2019-11-26 2021-06-03 株式会社神鋼環境ソリューション Heat utilization system and starting method for the same
CN116804381A (en) * 2023-06-29 2023-09-26 米奇科技(北京)有限公司 A liquid air energy storage power generation system and equipment

Also Published As

Publication number Publication date
JPWO2013069111A1 (en) 2015-04-02
JP5766295B2 (en) 2015-08-19

Similar Documents

Publication Publication Date Title
CN104632311B (en) Steamturbine complete set of equipments opens dynamic control device
Zhu et al. Thermodynamic evaluation of solar integration into a natural gas combined cycle power plant
JP5400969B2 (en) Gas turbine system, control device for gas turbine system, and control method for gas turbine system
JP5399565B2 (en) Combined cycle power plant using solar heat
US20090125152A1 (en) Method of measurement, control, and regulation for the solar thermal hybridization of a fossil fired rankine cycle
EP2818665A1 (en) Solar heat assisted gas turbine system
CN106321161A (en) Activation control apparatus
JP5766295B2 (en) Gas turbine power generator and operation method thereof
US20130139517A1 (en) Solar Assisted Gas Turbine System
AU2011342551B2 (en) Cooling system
CN113191566A (en) Online determination system and method for optimal operation mode of heat pump cascade heat supply unit
Wei et al. Performance of a novel natural draft hybrid cooling system with serial airside heat exchange
Abrosimov et al. Extensive techno-economic assessment of combined inverted Brayton–Organic Rankine cycle for high-temperature waste heat recovery
Villa et al. Techno-economic and Exergoeconomic Analysis of a micro cogeneration system for a residential use
CN109885855A (en) Steady-state dispatching method for combined cooling-heating-electricity power station considering unit characteristics
CN114169800B (en) Energy dispatch method for integrated energy system
JP5514322B2 (en) Gas turbine power generation apparatus, gas turbine power generation system and control method thereof
Mishra et al. Multi-objective optimization of an inlet air-cooled combined cycle power plant
JP5422057B2 (en) Gas turbine system and control method thereof
Moon et al. Simulation of optimizing the partial load performance of a gas turbine combined cycle using exhaust heat recuperation and inlet bleed heating
JP2012140882A (en) Power generation amount calculating method and device therefor of solar heat complex power generating facility
JP4648152B2 (en) Gas turbine system and method of operating gas turbine system
WO2012120555A1 (en) Solar heat utilization gas turbine system
Yang et al. Green heating: Theory and practice
De Paepe et al. Control Strategy Development for Optimized Operational Flexibility From Humidified Microgas Turbine: Saturation Tower Performance Assessment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11875266

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013542749

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11875266

Country of ref document: EP

Kind code of ref document: A1