[go: up one dir, main page]

WO2013065502A1 - Radiographic imaging method and device - Google Patents

Radiographic imaging method and device Download PDF

Info

Publication number
WO2013065502A1
WO2013065502A1 PCT/JP2012/077058 JP2012077058W WO2013065502A1 WO 2013065502 A1 WO2013065502 A1 WO 2013065502A1 JP 2012077058 W JP2012077058 W JP 2012077058W WO 2013065502 A1 WO2013065502 A1 WO 2013065502A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
region
phase differential
correction
differential image
Prior art date
Application number
PCT/JP2012/077058
Other languages
French (fr)
Japanese (ja)
Inventor
拓司 多田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2013065502A1 publication Critical patent/WO2013065502A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/484Diagnostic techniques involving phase contrast X-ray imaging

Definitions

  • the present invention relates to a radiation imaging method and apparatus for detecting an image based on a phase change of radiation.
  • Radiation such as X-rays
  • X-rays has a characteristic of decaying depending on the weight (atomic number) of the elements constituting the substance and the density and thickness of the substance. Focusing on this characteristic, X-rays are used as a probe for seeing through the inside of a subject in fields such as medical diagnosis and nondestructive inspection.
  • a general X-ray imaging apparatus includes an X-ray source that emits X-rays and an X-ray image detector that detects X-rays.
  • an X-ray source that emits X-rays
  • an X-ray image detector that detects X-rays.
  • the X-rays emitted from the X-ray source are absorbed when passing through the subject, and enter the X-ray image detector in a state where the intensity is attenuated.
  • an image representing an X-ray intensity change by the subject is detected by the X-ray image detector.
  • the X-ray absorption ability is lower with an element having a smaller atomic number, there is a problem that a change in X-ray intensity is small and a sufficient contrast cannot be obtained in an image in a soft body tissue or soft material.
  • most of the components of the cartilage part constituting the joint of the human body and the joint fluid in the vicinity thereof are water, and the difference in X-ray absorption capacity between the two is small, so that it is difficult to obtain contrast.
  • X-ray phase imaging is a method of imaging the phase change of X-rays, focusing on the fact that the phase change of X-rays incident on the subject is larger than the intensity change. Can also obtain a high-contrast image.
  • an X-ray imaging apparatus in which first and second gratings are arranged in parallel at a predetermined interval between an X-ray source and an X-ray image detector. (See, for example, WO 2004/058070 (US2005 / 0286680A1)).
  • the first periodic pattern image is generated when the X-ray source passes through the first grating, and the second grating partially shields the first periodic pattern image.
  • Two periodic pattern images are generated.
  • the X-ray image detector detects the second periodic pattern image and generates image data.
  • the subject is disposed, for example, between the X-ray source and the first grating, and the subject undergoes a phase change in the X-ray, thereby modulating the first periodic pattern image. By detecting this modulation amount through the second periodic pattern image, the X-ray phase change can be imaged.
  • the fringe scanning method is used to detect the modulation amount. This is because the second grating is intermittently moved relative to the first grating in a direction parallel to the plane of the first grating and perpendicular to the grating line direction of the first grating, and during each stop thereof Image data is generated by photographing. Based on the obtained plurality of image data, an intensity modulation signal representing an intensity change accompanying the movement of the second lattice is generated for each pixel. For each pixel, the phase shift amount of the intensity modulation signal (the phase shift amount from the case where the subject does not exist) is calculated, and the phase shift amount is imaged to obtain an image representing the modulation amount. Since this image represents the differential amount of the phase change (phase shift) of the X-rays by the subject, it is called a phase differential image.
  • phase differential image is calculated It is expressed by a value convolved (wrapped) in the range of the function used in ( ⁇ to + ⁇ or ⁇ / 2 to + ⁇ / 2).
  • jumps discontinuous points
  • the wrapped phase differential image is subjected to unwrap processing for eliminating the discontinuity and making it continuous (see, for example, Japanese Patent Application Laid-Open No. 2011-045655).
  • unwrap processing is performed in order along a predetermined path from a starting point at a predetermined position in the image.
  • the discontinuous point is determined by uniformly adding or subtracting a value corresponding to the range of the function to data on the path after the discontinuous point. It is made continuous without any change (see, for example, Japanese Patent Application Laid-Open No. 2008-082869).
  • offset correction is performed to remove noise unevenness from the phase differential image.
  • a phase differential image is acquired in advance without a subject, stored as an offset image, and the offset image is subtracted from the phase differential image acquired with the subject placed. It is processing.
  • the high-absorber has a large amount of X-ray attenuation, and the intensity and amplitude of the intensity modulation signal are reduced.
  • the calculation accuracy of the phase shift amount decreases.
  • an unwrapping error is likely to occur in the region of the phase differential image corresponding to the high absorber.
  • this unwrapping error there are a case where an unwrapping process is performed because it is erroneously determined as a discontinuous point, and a case where an unwrapping process is not performed because it is erroneously determined that it is not a discontinuous point.
  • the bone Unwrapping errors are likely to occur in the area.
  • an error value (a value corresponding to the range of the above function) is sequentially added to or subtracted from the path after that point.
  • the phase differential image after the unwrap process has a difference in the path direction of the unwrap process.
  • a streak of noise along the line occurs. This streak noise overlaps with a soft tissue (cartilage portion) that is a target portion of X-ray phase imaging, and obstructs imaging of the soft tissue.
  • phase differential image difference image
  • a step is generated in the pixel value between the OK regions. Furthermore, when there is a difference in the noise unevenness gradient between the phase differential image of FIG. 20A and the offset image of FIG. 20B, the phase differential image after the offset processing shown in FIG. The tilt will remain.
  • a radiation imaging apparatus of the present invention includes a radiation source, a radiation detector, a grating unit, a phase differential image generation unit, an offset image storage unit, an OK / NG region detection unit, An unwrap processing unit, an offset processing unit, an inclination correction processing unit, and a step correction processing unit are provided.
  • the radiation source emits radiation.
  • the radiation detector detects radiation transmitted through the subject and generates image data.
  • the grating portion is disposed between the radiation source and the radiation detector.
  • the phase differential image generation unit generates a phase differential image in a state where the phase differential value is wrapped in a predetermined range based on the image data.
  • the offset image storage unit stores, as an offset image, the phase differential image generated by the phase differential image generation unit without placing the subject.
  • the OK / NG region detection unit detects an NG region in which an unwrap error is likely to occur from the phase differential image generated by the phase differential image generation unit in a state where the subject is arranged, and sets other regions as OK regions.
  • An area in the offset image corresponding to this OK area is defined as an OK area.
  • the unwrap processing unit unwraps only the OK region for each of the phase differential image and the offset image.
  • the offset processing unit subtracts the offset image subjected to the unwrap process from the phase differential image subjected to the unwrap process.
  • the inclination correction processing unit performs an inclination correction process for removing noise having a substantially constant inclination that remains in the OK region of the phase differential image subjected to the offset correction.
  • the step correction processing unit performs a step correction process for removing a step formed between the OK regions.
  • a determination unit that determines whether or not there are a plurality of OK regions is further provided, and that the inclination correction processing unit and the step correction processing unit perform each process only when there are a plurality of OK regions.
  • the inclination correction processing unit obtains a correction function by fitting a change in the pixel value of the OK region in one direction with a linear form or a polynomial for the phase differential image subjected to the offset correction, and obtains the correction function in the one direction It is preferable to create a two-dimensional tilt correction image by extending in a direction orthogonal to the direction and remove noise based on the tilt correction image.
  • the inclination correction processing unit collectively fits changes in pixel values in one direction of adjacent OK areas in a linear form or polynomial form when there are a plurality of OK areas and the inclinations of the correction functions of adjacent OK areas are close. Thus, it is preferable to obtain a correction function and use this correction function as a correction function for adjacent OK regions.
  • the inclination correction processing unit fits the first and second correction functions by fitting the change of the pixel value in two directions with a linear form or a polynomial in the OK region existing in the phase differential image subjected to the offset correction. Then, a two-dimensional tilt correction image may be created based on the first and second correction functions, and noise may be removed based on the tilt correction image.
  • the step correction processing unit calculates an average value of the pixel values for at least a part of each OK region in the phase differential image after the tilt correction processing, and each OK region has the same average value in each OK region. It is preferable to add or subtract a certain value from the pixel value for each region.
  • the unwrap processing unit sets a starting point along a through line that penetrates the OK region in one direction, and performs unwrap processing between the starting points and unwrap processing along a straight path perpendicular to the through line from each starting point.
  • the unwrap processing unit further performs unwrap processing on the pixels in the OK region remaining behind the NG region as viewed from the starting point.
  • the unwrap processing unit preferably determines the setting direction of the starting point so that the number of times of unwrap processing for the pixels remaining behind the NG region is reduced.
  • the unwrap processing unit sets the starting point along any one side of the quadrilateral phase differential image.
  • the grating unit generates a second periodic pattern image by partially shielding the first periodic pattern image and a first grating that generates a first periodic pattern image by passing radiation from a radiation source. It is preferable to have the second lattice. In this case, the radiation image detector detects the second periodic pattern image and generates image data.
  • the phase differential image generation unit preferably generates a phase differential image based on single image data obtained by the radiation detector.
  • the grating unit further includes a scanning mechanism that moves the first grating or the second grating at a predetermined scanning pitch and sequentially sets the plurality of scanning positions.
  • the radiation image detector detects the second periodic pattern image at each scanning position and generates image data.
  • the phase differential image generation unit generates a phase differential image based on a plurality of image data generated by the radiation image detector at a plurality of scanning positions.
  • the OK / NG area detecting unit detects an NG area based on one or a combination of an average intensity, an amplitude, and a visibility of an intensity modulation signal representing an intensity change of a pixel value of image data with respect to a plurality of scanning positions. Is preferred.
  • the OK / NG area detection unit generates an absorption image based on the average intensity of the intensity modulation signal indicating the intensity change of the pixel value of the image data for a plurality of scanning positions, and performs an absorption differentiation by performing a differentiation process on the absorption image.
  • An image may be generated and an NG region may be detected based on the absorption differential image.
  • the step correction processing unit sets an OK region in the absorption differential image, extracts a pixel region having substantially the same pixel value from each OK region, and outputs each OK for the phase differential image subjected to the tilt correction processing. It is preferable to add or subtract a constant value to each pixel value for each OK region so that the pixel values of the pixel regions in the region are the same.
  • an NG region image replacement unit that generates any one of the absorption image, the absorption differential image, and the small angle scattered image and replaces the NG region of the phase differential image.
  • the radiation imaging method of the present invention includes a pre-imaging process, a main imaging process, an OK / NG area detection process, an unwrap process process, an offset process process, an inclination correction process process, and a step correction process process.
  • the pre-imaging process in a state in which the subject is not arranged, the radiation emitted from the radiation source and detected through the grating portion is generated to generate image data. Based on this image data, the phase differential value is within a predetermined range. A wrapped phase differential image is generated and stored as an offset image.
  • this imaging process in a state in which the subject is arranged, the radiation emitted from the radiation source and passed through the subject and the lattice part is detected to generate image data.
  • the phase differential value is a predetermined value.
  • a phase differential image that is wrapped in a range is generated.
  • an NG area where an unwrapping error is likely to occur is detected from the phase differential image, and the other area is set as an OK area, and the area in the offset image corresponding to this OK area is set as the OK area.
  • the unwrap processing step only the OK region is unwrapped for each of the phase differential image and the offset image.
  • offset correction is performed by subtracting the offset image that has been unwrapped from the phase differential image that has been unwrapped.
  • noise having a substantially constant tilt remaining in the OK region of the phase differential image subjected to offset correction is removed.
  • the step correction processing step the step formed between the OK regions is removed.
  • the OK region is unwrapped for each of the phase differential image and the offset image, and then offset correction is performed to subtract the unwrapped offset image from the unwrapped phase differential image. Since the inclination correction process for removing noise having a substantially constant inclination remaining in the OK region of the phase differential image after the offset correction and the step correction process for removing the step formed between the OK regions are performed. In addition to reducing unwrapping errors, it is possible to reduce the level difference and inclination of data between OK regions in the phase differential image after offset correction.
  • an X-ray imaging apparatus 10 includes an X-ray source 11, a grating unit 12, an X-ray image detector 13, a memory 14, an image processing unit 15, an image recording unit 16, an imaging control unit 17, a console 18, and a system.
  • a control unit 19 is provided.
  • the X-ray source 11 includes a rotary anode type X-ray tube (not shown) and a collimator (not shown) for limiting the X-ray irradiation field, and is controlled by the imaging control unit 17. Based on the above, X-rays are emitted toward the subject H.
  • the grating unit 12 includes a first grating 21, a second grating 22, and a scanning mechanism 23.
  • the first and second gratings 21 and 22 are disposed to face the X-ray source 11 in the Z direction, which is the X-ray irradiation direction.
  • a space is provided between the X-ray source 11 and the first grating 21 so that the subject H can be arranged.
  • the X-ray image detector 13 is a flat panel detector using a semiconductor circuit, and is disposed close to the back of the second grating 22.
  • the detection surface 13a of the X-ray image detector 13 exists on the XY plane orthogonal to the Z direction.
  • the first lattice 21 has a lattice plane on the XY plane, and a plurality of X-ray absorption portions 21a and X-ray transmission portions 21b extending in the Y direction (lattice direction) are formed on the lattice plane. .
  • the X-ray absorption parts 21a and the X-ray transmission parts 21b are alternately arranged along the X direction to form a striped pattern.
  • the second grating 22 includes a plurality of X-ray absorption parts 22 a and X-ray transmission parts 22 b that extend in the Y direction and are alternately arranged along the X direction.
  • the X-ray absorbing portions 21a and 22a are formed of a metal having X-ray absorption properties such as gold (Au) and platinum (Pt).
  • the X-ray transmissive portions 21b and 22b are formed of an X-ray transmissive material such as silicon (Si) or resin, or a gap.
  • the first grating 21 partially passes the X-rays emitted from the X-ray source 11 to generate a first periodic pattern image (hereinafter referred to as a G1 image).
  • This G1 image substantially coincides with the lattice pattern of the second lattice 22 at the position of the second lattice 22.
  • the second grating 22 partially shields the G1 image generated by the first grating 21 to generate a second periodic pattern image (hereinafter referred to as G2 image).
  • the X-ray image detector 13 detects the G2 image and generates image data.
  • the memory 14 temporarily stores the image data read from the X-ray image detector 13.
  • the image processing unit 15 generates a phase differential image based on the image data stored in the memory 14, and generates a phase contrast image based on the phase differential image.
  • the image recording unit 16 records a phase differential image and a phase contrast image.
  • the scanning mechanism 23 intermittently moves the second grating 22 in the X direction, and changes the position (scanning position) of the second grating 22 with respect to the first grating 21 in a stepwise manner.
  • the drive unit of the scanning mechanism 23 is configured by a piezoelectric actuator or an electrostatic actuator, and is driven based on the control of the imaging control unit 17 at the time of stripe scanning described later.
  • the memory 14 stores image data obtained by the X-ray image detector 13 at each scanning position of the second grating 22 with respect to the first grating 21.
  • the console 18 includes an operation unit 18a and a monitor 18b.
  • the operation unit 18a is configured by a keyboard, a mouse, and the like, and sets imaging conditions such as tube voltage, tube current, and irradiation time of the X-ray source 11, selection of an imaging mode (main imaging or pre-imaging), imaging execution instruction, and the like.
  • the operation input can be performed.
  • the main imaging is an imaging mode performed with the subject H placed between the X-ray source 11 and the first grating 21.
  • Pre-imaging is an imaging mode performed without placing the subject H between the X-ray source 11 and the first grating 21.
  • Pre-photographing is performed in order to acquire a background component (offset image) caused by a manufacturing error or an arrangement error of the first and second gratings 21 and 22.
  • the monitor 18b displays photographing information such as photographing conditions, and a phase differential image and a phase contrast image recorded in the image recording unit 16.
  • the system control unit 19 comprehensively controls each unit according to a signal input from the operation unit 18a.
  • the X-ray image detector 13 includes a plurality of pixels 30 arranged two-dimensionally, a gate scanning line 33, a scanning circuit 34, a signal line 35, and a readout circuit 36.
  • the pixel 30 includes a pixel electrode 31 for collecting charges generated in a semiconductor film such as amorphous selenium (a-Se) by incident X-rays, and a TFT (for reading the charges collected by the pixel electrode 31).
  • a-Se amorphous selenium
  • TFT Thin Film Transistor
  • the gate scanning line 33 is provided for each row of the pixels 30.
  • the scanning circuit 34 applies a scanning signal for turning on / off the TFT 32 to each gate scanning line 33.
  • the signal line 35 is provided for each column of the pixels 30.
  • the readout circuit 36 reads out electric charges from the pixels 30 through the signal lines 35, converts them into image data, and outputs them.
  • the detailed layer configuration of each pixel 30 is the same as the layer configuration described in Japanese Patent Laid-Open No. 2002-26300.
  • the readout circuit 36 includes an integration amplifier, an A / D converter, a correction circuit (none of which is shown), and the like.
  • the integrating amplifier integrates the charges output from each pixel 30 through the signal line 35 to generate an image signal.
  • the A / D converter converts the image signal generated by the integrating amplifier into digital image data.
  • the correction circuit performs dark current correction, gain correction, linearity correction, and the like on the image data, and inputs the corrected image data to the memory 14.
  • the X-ray image detector 13 is not limited to a direct conversion type that directly converts incident X-rays into electric charges, but converts incident X-rays into visible light with a scintillator such as cesium iodide (CsI) or gadolinium oxysulfide (GOS). Alternatively, an indirect conversion type in which visible light is converted into electric charge by a photodiode may be used.
  • the X-ray image detector 13 is not limited to a radiographic image detector based on a TFT panel, and a radiographic image detector based on a solid-state imaging device such as a CCD sensor or a CMOS sensor can also be used. .
  • X-rays irradiated from the X-ray source 11 are cone beams having the X-ray focal point 11a as a light emitting point.
  • the first grating 21 is configured to project the X-rays that have passed through the X-ray transmission part 21b substantially geometrically.
  • the width of the X-ray transmission part 21b in the X direction is set to a value sufficiently larger than the effective wavelength of X-rays radiated from the X-ray source 11, and straightness is achieved without diffracting most of the X-rays. It is realized by letting it pass while keeping.
  • the effective wavelength of X-rays is about 0.4 mm.
  • the width of the X-ray transmission part 21b may be about 1 to 10 ⁇ m. The same applies to the second grating 22.
  • the G1 image generated by the first grating 21 expands in proportion to the distance from the X-ray focal point 11a.
  • the grating pitch p 2 of the second grating 22 is determined so as to coincide with the periodic pattern of the G1 image at the position of the second grating 22.
  • the grating pitch p 2 of the second grating 22 is the grating pitch of the first grating 21, p 1 , the distance L 1 between the X-ray focal point 11 a and the first grating 21, the first grating 21. If the distance L 2 between the grid 21 and second grid 22 is set to equation (1) so as to satisfy substantially.
  • the coordinates in the X, Y, and Z directions are x, y, and z.
  • the G1 image is modulated by the phase change in the X-ray caused by the subject H.
  • the modulation amount reflects the X-ray refraction angle ⁇ (x) of the subject H.
  • FIG. 3 illustrates an X-ray path emitted from the X-ray focal point 11a.
  • Reference numeral X1 indicates a path along which the X-ray goes straight when the subject H does not exist.
  • X-rays traveling along the path X 1 pass through the first and second gratings 21 and 22 and enter the X-ray image detector 13.
  • Reference numeral X2 indicates an X-ray path refracted by the subject H when the subject H exists.
  • X-rays traveling along the path X ⁇ b> 2 pass through the first grating 21 and are then absorbed by the X-ray absorption unit 22 a of the second grating 22.
  • phase shift distribution ⁇ (x) representing the amount of X-ray phase change by the subject H.
  • This phase shift distribution ⁇ (x) is expressed by Equation (2), where ⁇ is the wavelength of the X-ray and n (x, z) is the refractive index distribution of the subject H.
  • the y-coordinate is omitted for simplification of description.
  • This phase shift distribution ⁇ (x) is in the relationship of the refraction angle ⁇ (x) of X-rays and the equation (3).
  • the amount of displacement ⁇ x in the X direction at the position of the second grating 22 between the X-ray traveling along the path X1 and the X-ray traveling along the path X2 is based on the fact that the refraction angle ⁇ (x) of the X-ray is very small. Approximately expressed by equation (4).
  • the displacement ⁇ x is proportional to the differential value of the phase shift distribution ⁇ (x).
  • This displacement amount ⁇ x can be detected by a fringe scanning method, and as a result, a phase differential image is obtained.
  • a value obtained by dividing the grating pitch p 2 into M pieces (p 2 / M) is set as a scanning pitch, and the scanning mechanism 23 intermittently moves the second grating 22 in the X direction at this scanning pitch. By doing so, fringe scanning is performed.
  • X-rays are emitted from the X-ray source 11 and a G2 image is detected by the X-ray image detector 13.
  • M pieces of image data are obtained, and M pixel values are obtained for each pixel 30 of the X-ray image detector 13.
  • the scanning position k is a position that is discrete in the X direction by a scanning pitch (p 2 / M).
  • a signal representing a change in the pixel value I k with respect to the scanning position k is referred to as an intensity modulation signal.
  • the broken line in the figure shows an intensity modulation signal obtained by pre-imaging (a state where the subject H is not arranged).
  • the solid line indicates the intensity modulation signal in which the phase shift amount ⁇ (x) is generated by the subject H in the main imaging (the state where the subject H is arranged).
  • This phase shift amount ⁇ (x) is in the relationship of the displacement amount ⁇ x and the equation (5).
  • a phase differential image is obtained by obtaining the phase shift amount ⁇ (x) of the intensity modulation signal based on the M pixel values I k obtained by the fringe scanning.
  • the intensity modulation signal is generally expressed by Equation (6).
  • a 0 represents the average intensity of the incident X-ray
  • a n represents the amplitude of the intensity-modulated signal.
  • N is a positive integer
  • phase shift amount ⁇ (x) is represented by equation (8).
  • arg vein is a function that extracts the argument of a complex number.
  • phase shift amount ⁇ (x) can also be expressed as an equation (9) using an arctangent function.
  • the phase shift amount ⁇ (x) is ⁇ Take a value that is convolved (wrapped) in the range from to + ⁇ .
  • the range of the arc tangent function is usually in the range of ⁇ / 2 to + ⁇ / 2
  • the phase shift amount ⁇ (x) is calculated based on the equation (9)
  • the phase shift The deviation amount ⁇ (x) takes a value convolved in the range of ⁇ / 2 to + ⁇ / 2.
  • Equation (9) the range of the arc tangent function can be expanded from ⁇ to + ⁇ by determining the denominator and the sign of the numerator in the arc tangent function. Therefore, the phase shift amount ⁇ (x) can be calculated in the range of ⁇ to + ⁇ based on the equation (9).
  • phase differential image an image represented by a value (phase differential value) obtained by calculating the phase shift amount ⁇ (x) for each pixel 30 is referred to as a phase differential image.
  • a phase differential image an image represented by a value obtained by multiplying or adding a constant to the phase shift amount ⁇ (x) may be a phase differential image.
  • the image processing unit 15 includes a phase differential image generation unit 40, an offset image storage unit 41, an OK / NG region detection unit 42, an unwrap processing unit 43, an offset processing unit 44, a division determination unit 45, and an inclination correction processing unit. 46, a level difference correction processing unit 47, and a phase contrast image generation unit 48.
  • the phase differential image generation unit 40 uses the image data for M sheets acquired by the fringe scanning in the main shooting or the pre-shooting and stored in the memory 14, and performs the calculation based on the formula (8) or the formula (9). By doing so, a phase differential image is generated.
  • the phase differential image generated by the phase differential image generation unit 40 at the time of pre-photographing is stored in the offset image storage unit 41 as an offset image.
  • the phase differential image generated by the phase differential image generation unit 40 during the main photographing is input to the unwrap processing unit 43.
  • the offset image storage unit 41 deletes the stored offset image and then stores the newly input offset image.
  • the OK / NG area detection unit 42 detects an area (hereinafter referred to as an NG area) in which an unwrapping error is likely to occur in the phase differential image based on the M image data stored in the memory 14 at the time of actual photographing.
  • the area other than is set as the OK area, and the area in the offset image corresponding to the OK area is set as the OK area.
  • OK / NG area detection unit 42 for each pixel unit 30, the average intensity A 0 is lower than the threshold region of the intensity modulated signal, domain amplitude A 1 is lower than the threshold value or visibility A 1 / A 0 is lower than the threshold region, Is detected as an NG region.
  • This NG region corresponds to a high-absorber region included in the subject H (when the subject H is a human body, a bone portion having a high X-ray absorption capability). This is based on the fact that the average intensity A 0 , the amplitude A 1 , or the visibility A 1 / A 0 decreases due to the X-rays being absorbed by the high absorber.
  • the NG region may be detected by combining two or more of the average intensity A 0 , the amplitude A 1 , and the visibility A 1 / A 0 .
  • the size of the detected NG region may be adjusted by changing the threshold value.
  • the unwrap processing unit 43 unwraps only the OK region with respect to the phase differential image input from the phase differential image generation unit 40.
  • the unwrap processing unit 43 unwraps only the OK region with respect to the offset image stored in the offset image storage unit 41.
  • the offset processing unit 44 performs offset correction by subtracting the offset image after the unwrapping process from the phase differential image after the unwrapping process. Specifically, the pixel value is subtracted for each corresponding pixel 30.
  • the division determination unit 45 determines whether the OK region detected by the OK / NG region detection unit 42 is divided by the NG region (that is, there are a plurality of OK regions).
  • the inclination correction processing unit 46 and the step correction processing unit 47 operate.
  • the inclination correction processing unit 46 removes noise having a substantially constant inclination remaining in each OK region of the phase differential image (difference image) after offset correction by correction.
  • the step correction processing unit 47 removes the step formed between the OK regions remaining in the phase differential image on which the tilt correction processing has been performed by correction.
  • the division determination unit 45 determines that only one OK region exists, the inclination correction processing unit 46 and the step correction processing unit 47 do not operate, and thus the phase subjected to the offset correction by the offset processing unit 44 is performed.
  • the differential image is directly input to the phase contrast image generation unit 48. This is because when there is only one OK area, there is no problem that a data level difference occurs between the OK areas, and the inclination hardly remains.
  • the phase contrast image generation unit 48 integrates the phase differential image with the level difference corrected or the phase differential image directly input from the offset processing unit 44 along the X direction, thereby expressing the phase contrast representing the phase shift distribution. Generate an image. Then, the phase differential image (difference image) after the step correction or the offset correction and the phase contrast image are recorded in the image recording unit 16.
  • FIG. 7 shows the phase differential image as an image of 10 ⁇ 7 pixels for the sake of simplicity of explanation.
  • the NG area detected by the OK / NG area detection unit 42 is shown.
  • the OK area is an area other than the NG area.
  • the starting point for starting the unwrapping process is set for each row or column of the phase differential image (step S10).
  • a through line that passes only through the OK region and penetrates the phase differential image in the X direction or the Y direction is searched, and a starting point is set along one of the through lines.
  • the penetrating lines along the shorter Y direction are given priority, and starting points P0 to P6 are set in one of them.
  • the starting points P0 to P6 are set along the X direction end (short side) of the phase differential image.
  • Step S11 After setting the starting points P0 to P6 in this way, linear straight paths R0 to R6 extending in the X direction from the starting points P0 to P6 are set, and the unwrapping process is executed along each of the linear paths R0 to R6.
  • These straight paths R0 to R6 are not set in the NG area. Therefore, behind the NG area viewed from the starting points P0 to P6, pixels that belong to the same OK area as the starting points P0 to P6 but do not have the straight paths R0 to R6 set remain.
  • step S11 first, unwrap processing is performed in order along the straight line route R0 from the starting point P0, and when the unwrap processing of the straight line route R0 ends, the unwrapping processing of the starting point P1 is performed with reference to the starting point P0. Thereafter, the unwrapping process is sequentially performed from the starting point P1 along the straight path R1. Then, the unwrapping process is not performed on the pixels remaining behind the NG area in the same row as the straight line R1, and the unwrapping process of the starting point P2 is performed with the starting point P1 as a reference. Thereafter, the unwrapping process is performed in the same procedure, and when the unwrapping process for the straight line route R6 is finished, the step S11 is finished.
  • a wraparound path is set for the pixels remaining behind the NG area, and a wraparound process is performed for performing an unwrap process along the wraparound path (step S12).
  • the wraparound path WR0 is set for pixels remaining in the same row as the straight line route R1
  • the wraparound path WR1 is set for pixels remaining in the same row as the straight line route R5.
  • the wraparound path WR0 is unwrapped from the pixel on the adjacent straight path R0.
  • the wraparound path WR1 is subjected to unwrap processing starting from a pixel on the adjacent straight path R6.
  • the unwrapping process on each path sequentially detects and detects discontinuous points DP that change from the upper limit to the lower limit of the function range of the function of Equation (8) or Equation (9), or from the lower limit to the upper limit.
  • the data after the discontinuous point DP is uniformly added or subtracted with a value corresponding to this range to eliminate the discontinuous point DP and to make the data continuous.
  • the phase differential image may be divided by the NG region, and there may be a plurality of OK regions.
  • steps S10 to S12 are individually executed for each OK area.
  • the phase differential image of FIG. 9 includes first and second OK regions.
  • the first OK region starting points P0a to P6a are set on the penetrating line along the end in the X direction, and straight paths R0a to R6a are set in the Y direction from the starting points P0a to P6a. Then, an unwrap process along each straight path R0a to R6a and an unwrap process between the start points of the respective start points P0a to P6a are performed.
  • starting points P0b to P6b are set on the penetrating line along the end in the X direction, and straight paths R0b to R6b are set in the Y direction from the starting points P0b to P6b. Then, an unwrap process along each of the straight paths R0b to R6b and an unwrap process between the start points of the start points P0b to P6b are performed.
  • the setting is appropriately performed, and the unwrap process is performed along the set wraparound path.
  • the unwrap processing unit 43 sets the starting point, the straight path, and the wraparound path for the offset image as well as the phase differential image, and performs unwrap processing according to the same procedure.
  • the inclination correction processing unit 46 creates an inclination correction image representing noise having a substantially constant inclination that remains in each OK region with respect to the phase differential image subjected to the offset processing by the offset processing unit 44, and the created inclination correction image Is subtracted from each OK region of the phase differential image.
  • the expansion in the Y direction is performed, for example, by applying the correction function to each row along the X direction.
  • a correction function (second correction function) is similarly obtained along the line Ly penetrating the OK region in the Y direction, and the first and second correction functions are obtained.
  • An inclination correction image may be created based on the correction function.
  • the inclination of the noise described above depends on the direction of moire fringes generated in the G2 image, and is likely to occur in the X direction and the Y direction. Therefore, by creating an inclination correction image based on the first and second correction functions, a more accurate inclination correction image reflecting the inclination in the X direction and the Y direction can be obtained.
  • the tilt correction processing unit 46 performs the above process for each OK region, and generates a tilt correction image for each OK region.
  • the step correction processing unit 47 calculates the average value of the pixel values for at least a part of each OK region in the phase differential image after the tilt correction processing by the tilt correction processing unit 46, and the average value is the same in each OK region. A constant value is added to or subtracted from the pixel value for each OK region.
  • the step correction processing unit 47 is not limited to a part of each OK region, and may calculate an average value of all pixel values included in each OK region. In this case, since all pixel values in the OK region are averaged, the noise is leveled and the influence of the local trend can be kept low.
  • the step correction processing unit 47 calculates the average value of the pixel values for the central region (for example, a rectangular region) among the OK regions. Or a partial area along one of the four sides of the phase differential image in each OK area (for example, the NG area divides the phase differential image in the Y direction, and the OK area is X If they are separated in the direction, the average value of the pixel values may be calculated for a region along one of the two sides facing the Y direction of the phase differential image.
  • the central region for example, a rectangular region
  • a partial area along one of the four sides of the phase differential image in each OK area for example, the NG area divides the phase differential image in the Y direction
  • the OK area is X If they are separated in the direction, the average value of the pixel values may be calculated for a region along one of the two sides facing the Y direction of the phase differential image.
  • step S20 When the shooting mode is selected using the operation unit 18a (step S20), it is determined whether or not the selected shooting mode is pre-shooting (step S21). If it is pre-photographing (YES in step S21), a standby state for photographing instructions is set (step S22).
  • step S22 When an imaging instruction is given using the operation unit 18a (YES in step S22), the X-ray source 11 X is scanned at each scanning position k while the second grating 22 is moved by a predetermined scanning pitch by the scanning mechanism 23. Radiation and detection of the G2 image by the X-ray image detector 13 are performed (step S23). As a result of the fringe scanning, M pieces of image data are generated and stored in the memory 14.
  • the image data for M sheets stored in the memory 14 is read by the image processing unit 15.
  • a phase differential image is generated by the phase differential image generation unit 40 (step S24).
  • This phase differential image is stored in the offset image storage unit 41 as an offset image (step S25).
  • the pre-photographing operation ends here. Note that this pre-imaging may be performed at least once in a state in which the subject H is not disposed when the X-ray imaging apparatus 10 is started up, and need not be performed every time before the main imaging.
  • step S30 when the subject H is arranged and the main imaging is selected by selecting the imaging mode in step S20 (NO in step S21), the imaging instruction standby state is set (step S30).
  • a photographing instruction is given using the operation unit 18a (YES in step S30)
  • the same stripe scanning as in step S23 is performed (step S31), and M pieces of image data are stored in the memory 14.
  • the phase differential image is generated by the phase differential image generation unit 40 (step S32).
  • the unwrap processing unit 43 unwraps only the OK area of the phase differential image generated in step S32 (step S34). Similarly, only the OK region of the offset image stored in the offset image storage unit 41 is unwrapped by the unwrap processing unit 43 (step S35).
  • the offset processing unit 44 performs offset correction by subtracting the offset image after the unwrap process from the phase differential image after the unwrap process (step S36). Then, the division determination unit 45 determines whether or not the OK area is divided (a plurality of OK areas exist) (step S37).
  • the inclination correction processing unit 46 creates an inclination correction image for each OK area of the phase differential image after the offset process, and each inclination correction image is converted into the phase differential image. By subtracting from each OK area of the image, the inclination is removed (step S39). Then, the step correction processing unit 47 calculates the average value of the pixel values for at least a part of each OK region of the phase differential image after the tilt correction processing, and the average value is the same in each OK region. A fixed value is added to or subtracted from the pixel value for each OK region (step S40). Thereby, the level
  • step S38 when there is one OK region (NO in step S38), the processing by the inclination correction processing unit 46 and the step correction processing unit 47 is not performed, and the phase differential image after the step correction is directly sent to the phase contrast image generation unit 48. Entered.
  • the phase contrast image generation unit 48 integrates the phase differential image after the step correction or the phase differential image directly input from the offset processing unit 44, thereby generating a phase contrast image (step S41).
  • the phase differential image and the phase contrast image after the offset correction are recorded in the image recording unit 16, and then displayed on the monitor 18b (step S42).
  • the determination process by the division determination unit 45 may be performed at any time after the determination of the OK / NG region and before the inclination correction process is performed.
  • the unwrap processing unit 43 performs the unwrap process only on the OK region other than the NG region where the unwrap error is likely to occur on the phase differential image, thereby preventing the occurrence of the unwrap error and reducing the phase differential with less noise. An image is obtained. Since soft tissue (cartilage portion or the like), which is a region of interest in X-ray phase imaging, exists outside the NG region, it is prevented that imaging of the soft tissue is inhibited by noise due to unwrapping errors.
  • the unwrap processing unit 43 performs the same unwrap processing on the offset image, as shown in FIGS. 13A and 13B, the noise unevenness included in the phase differential image is It is almost the same as noise unevenness.
  • the phase differential image (difference image) after the offset correction as shown in FIG. 13C, a slight inclination remains in each OK region and a slight step S remains between the OK regions. This inclination is removed by the inclination correction processing unit 46.
  • the step S is removed by the step correction processing unit 47. Note that the soft tissue that is the region of interest is represented by data at a higher frequency than the tilt correction image created by the tilt correction processing unit 46, and therefore is not removed by the tilt correction processing.
  • the inclination correction processing unit 46 obtains a correction function for each OK area as shown in FIG. 14A. It is determined whether or not the slope of the correction function is close between the areas. If the slope is close, as shown in FIG. 14B, the pixel values in the OK area are arranged so that the pixel values are substantially aligned on a straight line.
  • the correction function may be obtained by shifting and fitting pixel value changes in a plurality of OK regions in a linear format. The shift of the pixel value may be performed based on, for example, an average value of pixel values in each OK region and a difference between the average values. As a result, the correction function can be obtained with higher accuracy.
  • the inclination correction processing unit 46 is not limited to the linear format, and may obtain a correction function by performing fitting using a polynomial.
  • the unwrap processing unit 43 unwraps the starting point of the straight line route and the starting point of the next straight line route each time the straight line route is unwrapped among the plurality of straight line routes R0 to R6. However, before unwrapping the straight paths R0 to R6, the unwrap processing is first performed between the starting points of the starting points P0 to P6, and the straight paths R0 to R6 are started from the starting points P0 to P6 after the unwrapping process. Each may be unwrapped.
  • the starting point is set along the Y direction in preference to the Y direction.
  • the starting point may be set along the X direction with priority on the X direction.
  • the setting direction of the starting point is determined so that the number of wraparound processes performed on the pixels remaining behind the NG area is reduced.
  • the wrapping process is required for two lines along the X direction (lines including the starting points P1 and P5). The number of times is “2”.
  • the wraparound process is required for six lines along the Y direction, so the number of wraparound processes is “6”. Therefore, when the NG area has the shape shown in FIG. 7, the Y direction in which the number of wraparound processes is reduced is determined as the starting direction setting direction.
  • the starting point is set along the X direction end in a OK area
  • a starting point does not necessarily follow an edge part in an OK area
  • the unwrap processing unit 43 sets the starting point for each column or each row so that the unwrap processing is performed for each column or each row of the phase differential image. It is also possible to set one starting point (starting point) for each pixel and sequentially unwrap the pixels adjacent from this starting point.
  • a start point P0 is set in the OK region, and pixels adjacent in the X direction and the Y direction from this start point P0 are unwrapped.
  • the pixels adjacent in the X direction and the Y direction are unwrapped from each unwrapped pixel.
  • the adjacent pixel is a pixel belonging to the NG area, it is not considered and the unwrapping process is not performed.
  • the adjacent pixel is an adjacent pixel of another pixel that has been unwrapped, priority is given to one of them.
  • the adjacent pixel in the X direction has priority over the adjacent pixel in the Y direction.
  • the unwrapping process may be advanced in the same manner.
  • the OK / NG region detection unit 42 detects an NG region in which an unwrapping error is likely to occur based on the average intensity, amplitude, or visibility of the intensity modulation signal. Is not limited to this, and an area where variation between pixels of the average intensity of the intensity modulation signal (that is, dispersion between pixels of the absorption image) or dispersion between pixels of the phase differential image is larger than a predetermined value is detected as an NG area. May be.
  • variation between the pixels of this phase differential image is a dispersion
  • an absolute value is taken for each pixel of the phase differential image, and an edge portion of the superabsorbent region is detected by detecting a portion where the absolute value exceeds a predetermined value, and a region surrounded by the edge portion is determined as an NG region You may detect as.
  • the phase differential image used for the detection of the NG region here is the one before the unwrap processing by the unwrap processing unit 43, the discontinuous point DP shown in FIG. 8 exists, and the edge portion of the high absorber region It is possible to inhibit detection. Even if the absorption image is used instead of the phase differential image, the NG region cannot be detected with high accuracy because the signal of the absorption image has a gradual change at the edge portion of the high absorber region.
  • the OK / NG region detection unit 42 generates an absorption image by calculating the average value of the intensity modulation signals corresponding to each pixel unit 30 based on the M pieces of image data obtained during the main photographing. Then, an absorption differential image is generated by differentiating the generated absorption image. The differential processing of the absorption image is performed, for example, by calculating a difference value between pixels in the X direction. Then, the OK / NG region detection unit 42 performs differentiation processing or the like on the absorption differential image, and detects the NG region by detecting a peak protruding in the positive or negative direction. In the absorption differential image, the signal changes sharply at the edge portion of the high-absorber region, and no wrap occurs (no discontinuous point exists), so that the NG region can be accurately detected.
  • the OK / NG region detection unit 42 may also refer to the absorption image in addition to the absorption differential image, and detect a region having a large absorption amount surrounded by a peak generated in the absorption differential image as an NG region.
  • the OK / NG area detection unit 42 generates an absorption image based on M image data obtained at the time of pre-shooting, stores this as a corrected image, and stores M images at the time of main shooting.
  • An absorption differential image may be generated after the correction image is subtracted or divided from the absorption image generated based on the image data.
  • the OK / NG region detection unit 42 may detect a region where the average intensity or the maximum intensity of the intensity modulation signal is larger than a predetermined value and the intensity modulation signal is saturated as an NG area. This saturation of the intensity modulation signal is likely to occur in a pixel region (elementary region) that is directly transmitted to the X-ray image detector 13 through the first and second gratings 21 and 22 without passing through the subject H. When the intensity modulation signal is saturated, the phase shift amount ⁇ (x) cannot be obtained accurately, and this unaccompanied region is also a region where unwrapping errors are likely to occur.
  • the OK / NG area detecting unit 42 may detect the NG area by combining the above detection criteria.
  • the pixel value of the specific pixel unit 30 is always high, or May be lower.
  • the region where such a pixel defect occurs is a region where an unwrapping error is likely to occur because the average intensity, amplitude, or visibility of the intensity modulation signal indicates an abnormal value.
  • Such a pixel defect region can also be detected as an NG region by appropriately combining the above detection criteria.
  • an NG region image replacement unit 50 may be provided in the image processing unit 15 as shown in FIG.
  • the same reference numerals are given to the same components as those in the above embodiment, and the description thereof is omitted.
  • the NG region image replacement unit 50 generates an absorption image, a differential image of the absorption image, or a small-angle scattered image based on the M image data stored in the memory 14 at the time of the main photographing, and corresponds to the NG region of the image.
  • the portion to be replaced is inserted into the NG area of the phase differential image after offset correction.
  • the NG area of the phase contrast image may be replaced.
  • the absorption image is generated by imaging the average intensity of the intensity modulation signal.
  • the differential image of the absorption image is generated by differentiating the absorption image in a predetermined direction (for example, the X direction).
  • the small angle scattered image is generated by imaging the amplitude of the intensity modulation signal.
  • the NG area is replaced after multiplying each image by an appropriate coefficient so that the balance between the OK area and the contrast is improved. May be.
  • the step correction processing unit 47 performs the step correction based on making the average value of the pixel values the same for at least a part of each OK region, but using an absorption differential image.
  • the step may be corrected. Since the absorption differential image does not cause wrapping, there is almost no step between OK regions, and it is suitable as reference data for step correction.
  • the level difference correction processing unit 47 generates the absorption differential image 60 as described above, and the OK / NG region detection unit 42 detects the OK in the absorption differential image 60 as shown in FIG. A region is set, and pixel regions D1 and D2 each including one or a plurality of pixels having substantially the same pixel value are extracted from each OK region. Then, a constant value is added to each pixel value for each OK region so that the pixel values of the pixel regions D1, D2 of each OK region are the same in the phase differential image after the tilt correction processing by the tilt correction processing unit 46. Or subtract. In addition, when each pixel area
  • the level difference correction processing unit 47 sets the pixel areas D1 and D2 to areas where noise is less than a predetermined threshold in each OK area.
  • the pixel areas D1 and D2 are set as a blank area other than the area where the subject H (soft tissue or flesh) exists in each OK area. In the blank area, there is little noise and the change in pixel value is almost constant, so that a step between the OK areas can be obtained remarkably.
  • an absorption differential image may be generated after subtracting or dividing a correction image generated by pre-imaging from an absorption image generated by actual imaging.
  • the subject H is disposed between the X-ray source 11 and the first grating 21, but the subject H is disposed between the first grating 21 and the second grating 22. You may arrange.
  • the second grating 22 is moved in the direction (X direction) perpendicular to the grid lines during fringe scanning.
  • the second grid 22 is inclined with respect to the grid lines (XY plane). May be moved in a direction not orthogonal to the X direction and the Y direction.
  • the scanning position k may be set based on the X-direction component of the movement of the second grating 22.
  • lattice 22 is moved at the time of fringe scanning, it replaces with the 2nd grating
  • the X-ray source 11 that emits cone-beam X-rays emitted from the X-ray source 11 is used.
  • an X-ray source that emits parallel-beam X-rays is used.
  • the X-rays emitted from the X-ray source 11 are incident on the first grating 21 and the X-ray source 11 has a single focal point.
  • the X focus is dispersed by providing a multi-slit (source grating) 70 described in WO2006 / 131235 etc. immediately after the emission side of the source 11 (between the X-ray source 11 and the first grating 21). May be used.
  • the grid lines of the multi slit 70 are parallel to the Y direction.
  • the pitch p 0 of the multi slit 70 needs to satisfy the following expression (10).
  • the distance L 1 represents the distance from the multi slit 70 to the first grating 21.
  • the position of the multi slit 70 becomes the position of the X-ray focal point, and therefore the distance L 1 in the above embodiment is replaced with the distance L 0 .
  • the multi slit 70 when the multi slit 70 is provided, the first and second stripes are scanned in addition to moving the first grating 21 or the second grating 22 while the multi slit 70 is fixed. It is possible to perform fringe scanning by moving the multi slit 70 while the gratings 21 and 22 are fixed.
  • the multi slit 70 may be intermittently moved in the X direction using a value (p 0 / M) obtained by dividing the pitch p 0 of the multi slit 70 by M as described above.
  • lattice 21 is comprised so that incident X-ray may be projected geometrically optically, as known in WO2004 / 058070 etc.
  • lattice 21 is comprised. May be configured to generate the Talbot effect.
  • a small-focus X-ray light source or a multi-slit 70 may be used so as to enhance the spatial coherence of X-rays.
  • the first grating 21 can be a phase-type grating.
  • Talbot distance Z m is dependent on the beam shape of the structure and the X-ray of the first grating 21.
  • the first grating 21 are absorption type grating
  • Talbot distance Z m is represented by the following formula (11).
  • “m” is a positive integer.
  • the grating pitches p 1 and p 2 are set so as to substantially satisfy the above expression (1) (however, when the multi-slit 70 is used, the distance L 1 is replaced with the distance L 0 ). .
  • the Talbot distance Z m is And represented by equation (12).
  • “m” is “0” or a positive integer.
  • the grating pitches p 1 and p 2 are set so as to substantially satisfy the expression (1) (however, when the multi slit 70 is used, the distance L 1 is replaced with the distance L 0 ).
  • the Talbot distance Z m is expressed by the equation It is represented by (13).
  • “m” is “0” or a positive integer.
  • the grating pitches p 1 and p 2 are set so as to substantially satisfy Expression (14) ( However, when using a multi-slit 70, the distance L 1 is replaced by a distance L 0).
  • the first grating 21 is absorption grating, if X-rays emitted from the X-ray source 11 is a parallel beam shape, Talbot distance Z m is represented by the formula (15).
  • “m” is a positive integer.
  • the Talbot distance Z m is And represented by equation (16).
  • “m” is “0” or a positive integer.
  • the Talbot distance Z m It is represented by (17).
  • “m” is “0” or a positive integer.
  • the grating portion 12 is provided with the two gratings of the first and second gratings 21 and 22.
  • the second grating 22 may be omitted and only the first grating 21 may be used. Is possible.
  • the second grating 22 can be omitted and only the first grating 21 can be provided.
  • This X-ray image detector is a direct conversion type X-ray image detector including a conversion layer that converts X-rays into electric charges and a charge collection electrode that collects electric charges converted in the conversion layer.
  • the charge collection electrode includes a plurality of linear electrode groups.
  • One linear electrode group is obtained by electrically connecting linear electrodes arranged at a constant period, and is arranged so that the phases thereof are different from those of other linear electrode groups.
  • This linear electrode group functions as the second grating 22, and the presence of a plurality of linear electrode groups allows detection of a plurality of G2 images having different phases in one imaging. Therefore, in this configuration, the scanning mechanism 23 can be omitted.
  • a pixel division method for generating a phase differential image based on single image data obtained by the X-ray image detector 13 via the first and second gratings 21 and 22 without the scanning mechanism 23 is provided. It has been proposed by the applicant (currently published as WO2012 / 056724).
  • the first grating 21 and the second grating 22 are slightly rotated around the Z direction, and moire fringes having a period in the Y direction are generated in the G2 image.
  • the single image data obtained by the X-ray image detector 13 is divided into groups of pixel rows (pixels arranged in the X direction) having different phases from each other with respect to the moire fringes, and the plurality of divided image data are divided into fringes.
  • a phase differential image is generated in the same procedure as in the fringe scanning method.
  • the intensity modulation signal described above is expressed as a change in intensity of pixel values for one cycle of moire fringes generated in single image data.
  • the scanning mechanism 23 is omitted, and the phase differential image is obtained based on the single image data obtained by the X-ray image detector 13 via the first and second gratings 21 and 22.
  • a Fourier transform method described in WO2010 / 050484 is known. This Fourier transform method obtains a Fourier spectrum by performing a Fourier transform on the single image data, separates a spectrum corresponding to a carrier frequency (a spectrum carrying phase information) from the Fourier spectrum, and then reverses the spectrum.
  • a phase differential image is generated by performing Fourier transform.
  • the intensity modulation signal described above is expressed as a change in intensity of pixel values for one cycle of moire fringes generated in a single image data, as in the case of the pixel division method.
  • the present invention can be applied to an industrial radiography apparatus and the like in addition to a radiography apparatus for medical diagnosis.
  • a radiography apparatus for medical diagnosis In addition to X-rays, gamma rays or the like can be used as radiation.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

A phase differential image, generated by pre-imaging without a subject, is stored as an offset image. NG areas, where unwrap errors readily occur, are detected in a phase differential image generated by imaging having the subject in place, and the remaining areas are considered to be OK areas. The OK areas, only, of the phase differential image and the offset image are unwrapped. Offset compensation is performed, whereby the offset image after unwrapping is deducted from the phase differential image after unwrapping. Inclination correction, whereby noise that is residual in the OK areas and has an almost constant inclination is removed, and level different correction, whereby level differences formed between the OK areas are removed, are performed on the phase differential image after offset compensation.

Description

放射線撮影方法及び装置Radiography method and apparatus
 本発明は、放射線の位相変化に基づく画像を検出する放射線撮影方法及び装置に関する。 The present invention relates to a radiation imaging method and apparatus for detecting an image based on a phase change of radiation.
 放射線、例えばX線は、物質を構成する元素の重さ(原子番号)と、物質の密度及び厚さとに依存して減衰する特性を有する。この特性に着目し、医療診断や非破壊検査等の分野において、被検体の内部を透視するためのプローブとしてX線が利用されている。 Radiation, such as X-rays, has a characteristic of decaying depending on the weight (atomic number) of the elements constituting the substance and the density and thickness of the substance. Focusing on this characteristic, X-rays are used as a probe for seeing through the inside of a subject in fields such as medical diagnosis and nondestructive inspection.
 一般的なX線撮影装置は、X線を放射するX線源と、X線を検出するX線画像検出器とを備え、これらの間に被検体を配置して、被検体のX線画像を撮影する。この場合、X線源から放射されたX線は、被検体を透過する際に吸収され、それにより強度が減衰した状態で、X線画像検出器に入射する。この結果、被検体によるX線の強度変化を表す画像がX線画像検出器により検出される。 A general X-ray imaging apparatus includes an X-ray source that emits X-rays and an X-ray image detector that detects X-rays. Shoot. In this case, the X-rays emitted from the X-ray source are absorbed when passing through the subject, and enter the X-ray image detector in a state where the intensity is attenuated. As a result, an image representing an X-ray intensity change by the subject is detected by the X-ray image detector.
 X線吸収能は、原子番号が小さい元素ほど低くなるため、生体軟部組織やソフトマテリアルなどでは、X線の強度変化が小さく、画像に十分なコントラストが得られないという問題がある。例えば、人体の関節を構成する軟骨部とその周辺の関節液は、いずれも成分の殆どが水であり、両者のX線吸収能の差が小さいため、コントラストが得られにくい。 Since the X-ray absorption ability is lower with an element having a smaller atomic number, there is a problem that a change in X-ray intensity is small and a sufficient contrast cannot be obtained in an image in a soft body tissue or soft material. For example, most of the components of the cartilage part constituting the joint of the human body and the joint fluid in the vicinity thereof are water, and the difference in X-ray absorption capacity between the two is small, so that it is difficult to obtain contrast.
 このような問題を背景に、被検体によるX線の強度変化に代えて、被検体によるX線の位相変化に基づいた画像を得るX線位相イメージングの研究が近年盛んに行われている。X線位相イメージングは、被検体に入射したX線の位相変化が強度変化より大きいことに着目し、X線の位相変化を画像化する方法であり、X線吸収能が低い被検体に対しても高コントラストの画像を得ることができる。 Against the background of such problems, research on X-ray phase imaging for obtaining an image based on the phase change of the X-ray by the subject instead of the change in the intensity of the X-ray by the subject has been actively conducted in recent years. X-ray phase imaging is a method of imaging the phase change of X-rays, focusing on the fact that the phase change of X-rays incident on the subject is larger than the intensity change. Can also obtain a high-contrast image.
 このようなX線位相イメージングを可能とするために、X線源とX線画像検出器との間に、第1及び第2の格子を所定の間隔で平行に配置したX線撮影装置が提案されている(例えば、WO2004/058070号(US2005/0286680A1)公報参照)。 In order to enable such X-ray phase imaging, an X-ray imaging apparatus is proposed in which first and second gratings are arranged in parallel at a predetermined interval between an X-ray source and an X-ray image detector. (See, for example, WO 2004/058070 (US2005 / 0286680A1)).
 このX線撮影装置では、X線源が第1の格子を通過することにより第1の周期パターン像が生成され、第2の格子が第1の周期パターン像を部分的に遮蔽することにより第2の周期パターン像が生成される。X線画像検出器は、第2の周期パターン像を検出して画像データを生成する。被検体は、例えば、X線源と第1の格子との間に配置され、被検体でX線に位相変化が生じ、第1の周期パターン像を変調させる。この変調量を第2の周期パターン像を通して検出することにより、X線の位相変化を画像化することができる。 In this X-ray imaging apparatus, the first periodic pattern image is generated when the X-ray source passes through the first grating, and the second grating partially shields the first periodic pattern image. Two periodic pattern images are generated. The X-ray image detector detects the second periodic pattern image and generates image data. The subject is disposed, for example, between the X-ray source and the first grating, and the subject undergoes a phase change in the X-ray, thereby modulating the first periodic pattern image. By detecting this modulation amount through the second periodic pattern image, the X-ray phase change can be imaged.
 上記変調量の検出には縞走査法が用いられる。これは、第1の格子に対して第2の格子を、第1の格子の面に平行でかつ第1の格子の格子線方向に垂直な方向に間欠的に移動させ、その各停止中に撮影を行うことにより画像データを生成するものである。得られた複数の画像データに基づき、第2の格子の移動に伴う強度変化を表す強度変調信号を画素ごとに生成する。画素ごとに、強度変調信号の位相ズレ量(被検体が存在しない場合からの位相のズレ量)を算出し、この位相ズレ量を画像化することにより、上記変調量を表す画像が得られる。この画像は、被検体によるX線の位相変化(位相シフト)の微分量を表しているため、位相微分画像と呼ばれている。 The fringe scanning method is used to detect the modulation amount. This is because the second grating is intermittently moved relative to the first grating in a direction parallel to the plane of the first grating and perpendicular to the grating line direction of the first grating, and during each stop thereof Image data is generated by photographing. Based on the obtained plurality of image data, an intensity modulation signal representing an intensity change accompanying the movement of the second lattice is generated for each pixel. For each pixel, the phase shift amount of the intensity modulation signal (the phase shift amount from the case where the subject does not exist) is calculated, and the phase shift amount is imaged to obtain an image representing the modulation amount. Since this image represents the differential amount of the phase change (phase shift) of the X-rays by the subject, it is called a phase differential image.
 強度変調信号の位相ズレ量は、複素数の偏角を抽出する関数(arg[…])や、逆正接関数(tan-1[…])を用いて算出されるため、位相微分画像は、算出に用いられた関数の値域(-πから+π、または、-π/2から+π/2)に畳み込まれた(ラップされた)値で表現される。このようにラップされた位相微分画像には、値域の上限から下限に変化する箇所、または下限から上限に変化する箇所で、上記値域に相当する飛び(不連続点)が生じる。このため、ラップされた位相微分画像には、不連続点をなくして連続化するためのアンラップ処理が行われている(例えば、特開2011-045655号公報参照)。 Since the phase shift amount of the intensity modulation signal is calculated using a function (arg [...]) for extracting a complex argument, or an arctangent function (tan -1 [...]), the phase differential image is calculated It is expressed by a value convolved (wrapped) in the range of the function used in (−π to + π or −π / 2 to + π / 2). In the phase differential image wrapped in this way, jumps (discontinuous points) corresponding to the above-described range occur at locations where the upper limit of the range changes from the lower limit or locations where the lower limit changes to the upper limit. For this reason, the wrapped phase differential image is subjected to unwrap processing for eliminating the discontinuity and making it continuous (see, for example, Japanese Patent Application Laid-Open No. 2011-045655).
 一般に、アンラップ処理は、画像内の所定位置を起点とし、この起点から所定の経路に沿って順に行われる。具体的には、経路中に不連続点が検出されると、この不連続点以降の経路上のデータに、上記関数の値域に相当する値を一律に加算または減算することにより不連続点をなくして連続化する(例えば、特開2008-082869号公報参照)。 Generally, unwrap processing is performed in order along a predetermined path from a starting point at a predetermined position in the image. Specifically, when a discontinuous point is detected in the path, the discontinuous point is determined by uniformly adding or subtracting a value corresponding to the range of the function to data on the path after the discontinuous point. It is made continuous without any change (see, for example, Japanese Patent Application Laid-Open No. 2008-082869).
 X線位相イメージングでは、格子の歪や走査誤差等によって、位相微分画像にノイズムラが現れることがある。このため、WO2004/058070号公報では、位相微分画像からノイズムラを除去するためにオフセット補正が行われている。このオフセット補正とは、予め被検体のない状態で位相微分画像を取得して、これをオフセット画像として記憶しておき、被検体を配置した状態で取得された位相微分画像からオフセット画像を減算する処理である。 In X-ray phase imaging, noise unevenness may appear in the phase differential image due to lattice distortion or scanning error. For this reason, in WO2004 / 058070, offset correction is performed to remove noise unevenness from the phase differential image. In this offset correction, a phase differential image is acquired in advance without a subject, stored as an offset image, and the offset image is subtracted from the phase differential image acquired with the subject placed. It is processing.
 しかしながら、被検体に骨部等のX線吸収能が高い高吸収体が含まれる場合には、高吸収体では、X線の減衰量が大きく、強度変調信号の強度や振幅が低下するため、位相ズレ量の算出精度が低下する。これにより、高吸収体に対応する位相微分画像の領域では、アンラップエラーが生じやすいという問題がある。このアンラップエラーには、不連続点と誤判定されてアンラップ処理が行われてしまうケースと、不連続点でないと誤判定され、アンラップ処理が行われないケースがある。 However, when the subject includes a high-absorber having a high X-ray absorption capability such as a bone part, the high-absorber has a large amount of X-ray attenuation, and the intensity and amplitude of the intensity modulation signal are reduced. The calculation accuracy of the phase shift amount decreases. As a result, there is a problem that an unwrapping error is likely to occur in the region of the phase differential image corresponding to the high absorber. In this unwrapping error, there are a case where an unwrapping process is performed because it is erroneously determined as a discontinuous point, and a case where an unwrapping process is not performed because it is erroneously determined that it is not a discontinuous point.
 図19に示すように、ラップされた位相微分画像において、高吸収体である骨部の領域に起点を設定し、起点から下方向に進む経路に沿ってアンラップ処理を行う場合には、骨部領域ではアンラップエラーが生じやすい。アンラップエラーが生じると、その箇所以降の経路に順次にエラー値(上記関数の値域に相当する値)が加算または減算され、この結果、アンラップ処理後の位相微分画像にはアンラップ処理の経路方向に沿った筋状のノイズが生じる。この筋状のノイズは、X線位相イメージングの対象部分である軟部組織(軟骨部)に重なり、軟部組織の画像化を阻害してしまう。 As shown in FIG. 19, in the wrapped phase differential image, when the origin is set in the region of the bone that is a high-absorber, and the unwrap processing is performed along the path that goes downward from the origin, the bone Unwrapping errors are likely to occur in the area. When an unwrap error occurs, an error value (a value corresponding to the range of the above function) is sequentially added to or subtracted from the path after that point. As a result, the phase differential image after the unwrap process has a difference in the path direction of the unwrap process. A streak of noise along the line occurs. This streak noise overlaps with a soft tissue (cartilage portion) that is a target portion of X-ray phase imaging, and obstructs imaging of the soft tissue.
 アンラップエラーを低減するには、位相微分画像中からアンラップエラーが生じやすい領域(NG領域)を検出し、それ以外の領域(OK領域)のみをアンラップ処理する方法が考えられる。しかし、位相微分画像をNG領域が分断して、位相微分画像中に複数のOK領域が存在する場合には、各OK領域を個別にアンラップ処理すると、図20(A)に示すように、OK領域間の画素値に相関が生じない。このため、前述のノイズムラを除去するために、この位相微分画像から、図20(B)に示すように全体にアンラップ処理を行ったオフセット画像を減算すると、図20(C)に示すように、オフセット処理後の位相微分画像(差分画像)には、OK領域間で画素値に段差が生じてしまう。さらに、図20(A)の位相微分画像と図20(B)のオフセット画像との間でノイズムラの傾きに差異がある場合には、図20(C)に示すオフセット処理後の位相微分画像にも傾きが残存してしまう。 In order to reduce the unwrapping error, a method of detecting a region (NG region) where an unwrapping error is likely to occur from the phase differential image and unwrapping only the other region (OK region) can be considered. However, when the phase differential image is divided into NG regions and there are a plurality of OK regions in the phase differential image, if each OK region is individually unwrapped, as shown in FIG. There is no correlation in pixel values between regions. For this reason, in order to remove the noise unevenness described above, subtracting the offset image that has been unwrapped as a whole as shown in FIG. 20B from this phase differential image, as shown in FIG. In the phase differential image (difference image) after the offset processing, a step is generated in the pixel value between the OK regions. Furthermore, when there is a difference in the noise unevenness gradient between the phase differential image of FIG. 20A and the offset image of FIG. 20B, the phase differential image after the offset processing shown in FIG. The tilt will remain.
 本発明は、アンラップエラーを低減するとともに、オフセット補正後の位相微分画像におけるOK領域間でのデータの段差及び傾きを低減することができる放射線撮影方法及び装置を提供することを目的とする。 It is an object of the present invention to provide a radiography method and apparatus capable of reducing unwrapping errors and reducing data step and inclination between OK regions in a phase differential image after offset correction.
 上記目的を達成するために、本発明の放射線撮影装置は、放射線源と、放射線検出器と、格子部と、位相微分画像生成部と、オフセット画像記憶部と、OK/NG領域検出部と、アンラップ処理部と、オフセット処理部と、傾き補正処理部と、段差補正処理部とを備える。放射線源は、放射線を放出する。放射線検出器は、被検体を透過した放射線を検出して画像データを生成する。格子部は、放射線源と放射線検出器との間に配置されている。位相微分画像生成部は、画像データに基づき、位相微分値が所定の範囲にラップされた状態の位相微分画像を生成する。オフセット画像記憶部は、被検体を配置しない状態で位相微分画像生成部により生成された位相微分画像をオフセット画像として記憶する。OK/NG領域検出部は、被検体を配置した状態で位相微分画像生成部により生成された位相微分画像から、アンラップエラーが生じやすいNG領域を検出し、これ以外の領域をOK領域とするとともに、このOK領域に対応するオフセット画像中の領域をOK領域とする。アンラップ処理部は、位相微分画像とオフセット画像とのそれぞれについて、OK領域のみをアンラップ処理する。オフセット処理部は、アンラップ処理が行われた位相微分画像から、アンラップ処理が行われたオフセット画像を減算する。傾き補正処理部は、オフセット補正が行われた位相微分画像のうち、OK領域に残存しており、ほぼ一定の傾きを有するノイズを除去する傾き補正処理を行う。段差補正処理部は、OK領域間に形成される段差を除去する段差補正処理を行う。 In order to achieve the above object, a radiation imaging apparatus of the present invention includes a radiation source, a radiation detector, a grating unit, a phase differential image generation unit, an offset image storage unit, an OK / NG region detection unit, An unwrap processing unit, an offset processing unit, an inclination correction processing unit, and a step correction processing unit are provided. The radiation source emits radiation. The radiation detector detects radiation transmitted through the subject and generates image data. The grating portion is disposed between the radiation source and the radiation detector. The phase differential image generation unit generates a phase differential image in a state where the phase differential value is wrapped in a predetermined range based on the image data. The offset image storage unit stores, as an offset image, the phase differential image generated by the phase differential image generation unit without placing the subject. The OK / NG region detection unit detects an NG region in which an unwrap error is likely to occur from the phase differential image generated by the phase differential image generation unit in a state where the subject is arranged, and sets other regions as OK regions. An area in the offset image corresponding to this OK area is defined as an OK area. The unwrap processing unit unwraps only the OK region for each of the phase differential image and the offset image. The offset processing unit subtracts the offset image subjected to the unwrap process from the phase differential image subjected to the unwrap process. The inclination correction processing unit performs an inclination correction process for removing noise having a substantially constant inclination that remains in the OK region of the phase differential image subjected to the offset correction. The step correction processing unit performs a step correction process for removing a step formed between the OK regions.
 OK領域が複数存在するか否かを判定する判定部をさらに備え、傾き補正処理部及び段差補正処理部は、OK領域が複数存在する場合にのみ各処理を行うることが好ましい。 It is preferable that a determination unit that determines whether or not there are a plurality of OK regions is further provided, and that the inclination correction processing unit and the step correction processing unit perform each process only when there are a plurality of OK regions.
 傾き補正処理部は、オフセット補正が行われた位相微分画像について、OK領域の画素値の一方向への変化を線形式または多項式でフィッティングすることにより補正関数を求め、この補正関数を前記一方向と直交する方向に拡張することにより2次元の傾き補正画像を作成し、この傾き補正画像に基づいてノイズを除去することが好ましい。 The inclination correction processing unit obtains a correction function by fitting a change in the pixel value of the OK region in one direction with a linear form or a polynomial for the phase differential image subjected to the offset correction, and obtains the correction function in the one direction It is preferable to create a two-dimensional tilt correction image by extending in a direction orthogonal to the direction and remove noise based on the tilt correction image.
 傾き補正処理部は、OK領域が複数存在し、隣り合うOK領域の補正関数の傾きが近い場合に、隣り合うOK領域の画素値の一方向への変化を線形式または多項式でまとめてフィッティングすることにより補正関数を求め、この補正関数を隣り合うOK領域の補正関数とすることが好ましい。 The inclination correction processing unit collectively fits changes in pixel values in one direction of adjacent OK areas in a linear form or polynomial form when there are a plurality of OK areas and the inclinations of the correction functions of adjacent OK areas are close. Thus, it is preferable to obtain a correction function and use this correction function as a correction function for adjacent OK regions.
 傾き補正処理部は、オフセット補正が行われた位相微分画像に存在するOK領域内で、2方向への画素値の変化を線形式または多項式でフィッティングすることにより第1及び第2の補正関数を求め、この第1及び第2の補正関数に基づいて2次元の傾き補正画像を作成し、この傾き補正画像に基づいてノイズを除去してもよい。 The inclination correction processing unit fits the first and second correction functions by fitting the change of the pixel value in two directions with a linear form or a polynomial in the OK region existing in the phase differential image subjected to the offset correction. Then, a two-dimensional tilt correction image may be created based on the first and second correction functions, and noise may be removed based on the tilt correction image.
 段差補正処理部は、傾き補正処理後の位相微分画像について、各OK領域の少なくとも一部の領域について画素値の平均値を算出し、各OK領域で平均値が同一となるように、各OK領域ごとに画素値に一定値を加算または減算することが好ましい。 The step correction processing unit calculates an average value of the pixel values for at least a part of each OK region in the phase differential image after the tilt correction processing, and each OK region has the same average value in each OK region. It is preferable to add or subtract a certain value from the pixel value for each region.
 アンラップ処理部は、OK領域を一方向に貫通する貫通ラインに沿って起点を設定し、各起点間のアンラップ処理と、各起点から貫通ラインに直交する直線経路に沿ったアンラップ処理と行うことが好ましい。この場合、アンラップ処理部は、起点から見てNG領域の背後に残存するOK領域内の画素に対するアンラップ処理をさらに行うことが好ましい。また、アンラップ処理部は、NG領域の背後に残存する画素に対するアンラップ処理の回数が少なくなるように起点の設定方向を決定することが好ましい。 The unwrap processing unit sets a starting point along a through line that penetrates the OK region in one direction, and performs unwrap processing between the starting points and unwrap processing along a straight path perpendicular to the through line from each starting point. preferable. In this case, it is preferable that the unwrap processing unit further performs unwrap processing on the pixels in the OK region remaining behind the NG region as viewed from the starting point. The unwrap processing unit preferably determines the setting direction of the starting point so that the number of times of unwrap processing for the pixels remaining behind the NG region is reduced.
 アンラップ処理部は、四角形をした位相微分画像のいずれかの一辺に沿って起点を設定することが好ましい。 It is preferable that the unwrap processing unit sets the starting point along any one side of the quadrilateral phase differential image.
 格子部は、放射線源からの放射線を通過させて第1の周期パターン像を生成する第1の格子と、第1の周期パターン像を部分的に遮蔽して第2の周期パターン像を生成する第2の格子と有することが好ましい。この場合、放射線画像検出器は、第2の周期パターン像を検出して画像データを生成する。 The grating unit generates a second periodic pattern image by partially shielding the first periodic pattern image and a first grating that generates a first periodic pattern image by passing radiation from a radiation source. It is preferable to have the second lattice. In this case, the radiation image detector detects the second periodic pattern image and generates image data.
 位相微分画像生成部は、放射線検出器により得られる単一の画像データに基づいて位相微分画像を生成することが好ましい。 The phase differential image generation unit preferably generates a phase differential image based on single image data obtained by the radiation detector.
 格子部は、第1の格子または第2の格子を所定の走査ピッチで移動させ、複数の走査位置に順に設定する走査機構をさらに有することが好ましい。この場合、放射線画像検出器は、各走査位置で第2の周期パターン像を検出して画像データを生成する。位相微分画像生成部は、複数の走査位置において放射線画像検出器により生成された複数の画像データに基づいて位相微分画像を生成する。 It is preferable that the grating unit further includes a scanning mechanism that moves the first grating or the second grating at a predetermined scanning pitch and sequentially sets the plurality of scanning positions. In this case, the radiation image detector detects the second periodic pattern image at each scanning position and generates image data. The phase differential image generation unit generates a phase differential image based on a plurality of image data generated by the radiation image detector at a plurality of scanning positions.
 走査機構は、第1の格子または第2の格子を、その格子線に直交または傾斜する方向に移動させることが好ましい。 The scanning mechanism preferably moves the first grating or the second grating in a direction orthogonal to or inclined with respect to the grating line.
 OK/NG領域検出部は、複数の走査位置に対する画像データの画素値の強度変化を表す強度変調信号の平均強度、振幅、ビジビリティのうち1つまたは複数の組み合わせに基づいてNG領域を検出することが好ましい。 The OK / NG area detecting unit detects an NG area based on one or a combination of an average intensity, an amplitude, and a visibility of an intensity modulation signal representing an intensity change of a pixel value of image data with respect to a plurality of scanning positions. Is preferred.
 OK/NG領域検出部は、複数の走査位置に対する画像データの画素値の強度変化を表す強度変調信号の平均強度に基づいて吸収画像を生成し、この吸収画像に微分処理を施すことにより吸収微分画像を生成し、この吸収微分画像に基づいてNG領域を検出してもよい。 The OK / NG area detection unit generates an absorption image based on the average intensity of the intensity modulation signal indicating the intensity change of the pixel value of the image data for a plurality of scanning positions, and performs an absorption differentiation by performing a differentiation process on the absorption image. An image may be generated and an NG region may be detected based on the absorption differential image.
 段差補正処理部は、吸収微分画像内に、OK領域を設定するとともに、各OK領域中から画素値がほぼ同一の画素領域を抽出し、傾き補正処理が行われた位相微分画像について、各OK領域の画素領域の画素値が同一となるように、各OK領域ごとに各画素値に一定値を加算または減算することが好ましい。 The step correction processing unit sets an OK region in the absorption differential image, extracts a pixel region having substantially the same pixel value from each OK region, and outputs each OK for the phase differential image subjected to the tilt correction processing. It is preferable to add or subtract a constant value to each pixel value for each OK region so that the pixel values of the pixel regions in the region are the same.
 吸収画像、吸収微分画像、小角散乱画像のうちいずれかを生成し、位相微分画像のNG領域を置換するNG領域画像置換部をさらに備えることが好ましい。 It is preferable to further include an NG region image replacement unit that generates any one of the absorption image, the absorption differential image, and the small angle scattered image and replaces the NG region of the phase differential image.
 本発明の放射線撮影方法は、プレ撮影工程と、本撮影工程と、OK/NG領域検出工程と、アンラップ処理工程と、オフセット処理工程と、傾き補正処理工程と、段差補正処理工程とを備える。プレ撮影工程では、被検体を配置しない状態において、放射線源から射出され、格子部を通過した放射線を検出して画像データを生成し、この画像データに基づき、位相微分値が所定の範囲内にラップされた状態の位相微分画像を生成して、これをオフセット画像として記憶する。本撮影工程では、被検体を配置した状態において、放射線源から射出され、被検体及び格子部を通過した放射線を検出して画像データを生成し、この画像データに基づき、位相微分値が所定の範囲にラップされた状態の位相微分画像を生成する。OK/NG領域検出工程では、位相微分画像内から、アンラップエラーが生じやすいNG領域を検出し、これ以外の領域をOK領域とするとともに、このOK領域に対応するオフセット画像中の領域をOK領域とする。アンラップ処理工程では、位相微分画像とオフセット画像とのそれぞれについて、OK領域のみをアンラップ処理する。オフセット処理工程では、アンラップ処理が行われた位相微分画像から、アンラップ処理が行われたオフセット画像を減算するオフセット補正を行う。傾き補正処理工程では、オフセット補正が行われた位相微分画像のOK領域に残存するほぼ一定の傾きを有するノイズを除去する。段差補正処理工程では、OK領域間に形成される段差を除去する。 The radiation imaging method of the present invention includes a pre-imaging process, a main imaging process, an OK / NG area detection process, an unwrap process process, an offset process process, an inclination correction process process, and a step correction process process. In the pre-imaging process, in a state in which the subject is not arranged, the radiation emitted from the radiation source and detected through the grating portion is generated to generate image data. Based on this image data, the phase differential value is within a predetermined range. A wrapped phase differential image is generated and stored as an offset image. In this imaging process, in a state in which the subject is arranged, the radiation emitted from the radiation source and passed through the subject and the lattice part is detected to generate image data. Based on this image data, the phase differential value is a predetermined value. A phase differential image that is wrapped in a range is generated. In the OK / NG area detection step, an NG area where an unwrapping error is likely to occur is detected from the phase differential image, and the other area is set as an OK area, and the area in the offset image corresponding to this OK area is set as the OK area. And In the unwrap processing step, only the OK region is unwrapped for each of the phase differential image and the offset image. In the offset processing step, offset correction is performed by subtracting the offset image that has been unwrapped from the phase differential image that has been unwrapped. In the tilt correction processing step, noise having a substantially constant tilt remaining in the OK region of the phase differential image subjected to offset correction is removed. In the step correction processing step, the step formed between the OK regions is removed.
 本発明では、位相微分画像とオフセット画像とのそれぞれについてOK領域のみをアンラップ処理した後、アンラップ処理後の位相微分画像からアンラップ処理後のオフセット画像を減算するオフセット補正を行う。このオフセット補正後の位相微分画像のOK領域に残存するほぼ一定の傾きを有するノイズを除去する傾き補正処理と、OK領域間に形成された段差を除去する段差補正処理とを行うので、本発明は、アンラップエラーを低減するとともに、オフセット補正後の位相微分画像におけるOK領域間でのデータの段差及び傾きを低減することができる。 In the present invention, only the OK region is unwrapped for each of the phase differential image and the offset image, and then offset correction is performed to subtract the unwrapped offset image from the unwrapped phase differential image. Since the inclination correction process for removing noise having a substantially constant inclination remaining in the OK region of the phase differential image after the offset correction and the step correction process for removing the step formed between the OK regions are performed. In addition to reducing unwrapping errors, it is possible to reduce the level difference and inclination of data between OK regions in the phase differential image after offset correction.
X線撮影装置を示すブロック図である。It is a block diagram which shows an X-ray imaging apparatus. X線画像検出器を示す模式図である。It is a schematic diagram which shows an X-ray image detector. 第1及び第2の格子の構成を説明する説明図である。It is explanatory drawing explaining the structure of the 1st and 2nd grating | lattice. 強度変調信号を示すグラフである。It is a graph which shows an intensity | strength modulation signal. 画像処理部の構成を示すブロック図である。It is a block diagram which shows the structure of an image process part. アンラップ処理方法の流れを説明するフローチャートである。It is a flowchart explaining the flow of the unwrap processing method. アンラップ処理の起点及び経路の設定方法を説明する図である。It is a figure explaining the starting method of an unwrap process, and the setting method of a path | route. アンラップ処理を説明する説明図である。It is explanatory drawing explaining an unwrap process. 複数のOK領域が存在する場合の起点及び経路の設定方法を説明する図である。It is a figure explaining the setting method of the starting point and path | route when a some OK area | region exists. 傾き補正画像の作成方法を説明する説明図である。It is explanatory drawing explaining the preparation method of an inclination correction image. プレ撮影を説明するフローチャートである。It is a flowchart explaining pre imaging | photography. 本撮影を説明するフローチャートである。It is a flowchart explaining this imaging | photography. オフセット補正について説明する説明図である。It is explanatory drawing explaining offset correction. 傾き補正画像の別の作成方法を説明する説明図である。It is explanatory drawing explaining another preparation method of an inclination correction image. 1つの起点から画素ごとに順にアンラップ処理を行う例を説明する図である。It is a figure explaining the example which performs an unwrap process in order for every pixel from one starting point. NG領域画像置換部を備えた画像処理部の構成を示すブロック図である。It is a block diagram which shows the structure of the image process part provided with the NG area | region image replacement part. 段差補正処理の別形態を説明する説明図である。It is explanatory drawing explaining another form of a level | step difference correction process. マルチスリットを有するX線撮影装置の構成を説明する説明図である。It is explanatory drawing explaining the structure of the X-ray imaging apparatus which has a multi slit. 従来のアンラップ処理を説明する説明図である。It is explanatory drawing explaining the conventional unwrap process. 従来のオフセット補正を説明する説明図である。It is explanatory drawing explaining the conventional offset correction.
 図1において、X線撮影装置10は、X線源11、格子部12、X線画像検出器13、メモリ14、画像処理部15、画像記録部16、撮影制御部17、コンソール18、及びシステム制御部19を備えている。X線源11は、周知のように、回転陽極型のX線管(図示せず)と、X線の照射野を制限するコリメータ(図示せず)とを有し、撮影制御部17の制御に基づき、被検体Hに向けてX線を放射する。 In FIG. 1, an X-ray imaging apparatus 10 includes an X-ray source 11, a grating unit 12, an X-ray image detector 13, a memory 14, an image processing unit 15, an image recording unit 16, an imaging control unit 17, a console 18, and a system. A control unit 19 is provided. As is well known, the X-ray source 11 includes a rotary anode type X-ray tube (not shown) and a collimator (not shown) for limiting the X-ray irradiation field, and is controlled by the imaging control unit 17. Based on the above, X-rays are emitted toward the subject H.
 格子部12は、第1の格子21、第2の格子22、及び走査機構23を備える。第1及び第2の格子21,22は、X線照射方向であるZ方向に関してX線源11に対向配置されている。X線源11と第1の格子21との間には、被検体Hが配置可能な間隔が設けられている。X線画像検出器13は、半導体回路を用いたフラットパネル検出器であり、第2の格子22の背後に近接して配置されている。X線画像検出器13の検出面13aは、Z方向に直交するXY面に存在する。 The grating unit 12 includes a first grating 21, a second grating 22, and a scanning mechanism 23. The first and second gratings 21 and 22 are disposed to face the X-ray source 11 in the Z direction, which is the X-ray irradiation direction. A space is provided between the X-ray source 11 and the first grating 21 so that the subject H can be arranged. The X-ray image detector 13 is a flat panel detector using a semiconductor circuit, and is disposed close to the back of the second grating 22. The detection surface 13a of the X-ray image detector 13 exists on the XY plane orthogonal to the Z direction.
 第1の格子21は、XY面に格子面が存在し、この格子面には、Y方向(格子方向)に延伸された複数のX線吸収部21a及びX線透過部21bが形成されている。X線吸収部21a及びX線透過部21bは、X方向に沿って交互に配列されており、縞状のパターンを形成している。第2の格子22は、第1の格子21と同様にY方向に延伸され、かつX方向に沿って交互に配列された複数のX線吸収部22a及びX線透過部22bを備えている。X線吸収部21a,22aは、金(Au)、白金(Pt)等のX線吸収性を有する金属により形成されている。X線透過部21b,22bは、シリコン(Si)や樹脂等のX線透過性材料や空隙により形成されている。 The first lattice 21 has a lattice plane on the XY plane, and a plurality of X-ray absorption portions 21a and X-ray transmission portions 21b extending in the Y direction (lattice direction) are formed on the lattice plane. . The X-ray absorption parts 21a and the X-ray transmission parts 21b are alternately arranged along the X direction to form a striped pattern. Similar to the first grating 21, the second grating 22 includes a plurality of X-ray absorption parts 22 a and X-ray transmission parts 22 b that extend in the Y direction and are alternately arranged along the X direction. The X-ray absorbing portions 21a and 22a are formed of a metal having X-ray absorption properties such as gold (Au) and platinum (Pt). The X-ray transmissive portions 21b and 22b are formed of an X-ray transmissive material such as silicon (Si) or resin, or a gap.
 第1の格子21は、X線源11から放射されたX線を部分的に通過させて第1の周期パターン像(以下、G1像という)を生成する。このG1像は、第2の格子22の位置において、第2の格子22の格子パターンとほぼ一致する。第2の格子22は、第1の格子21により生成されたG1像を部分的に遮蔽して第2の周期パターン像(以下、G2像という)を生成する。 The first grating 21 partially passes the X-rays emitted from the X-ray source 11 to generate a first periodic pattern image (hereinafter referred to as a G1 image). This G1 image substantially coincides with the lattice pattern of the second lattice 22 at the position of the second lattice 22. The second grating 22 partially shields the G1 image generated by the first grating 21 to generate a second periodic pattern image (hereinafter referred to as G2 image).
 X線画像検出器13は、G2像を検出して画像データを生成する。メモリ14は、X線画像検出器13から読み出された画像データを一時的に記憶する。画像処理部15は、メモリ14に記憶された画像データに基づいて位相微分画像を生成し、この位相微分画像に基づいて位相コントラスト画像を生成する。画像記録部16は、位相微分画像と位相コントラスト画像とを記録する。 The X-ray image detector 13 detects the G2 image and generates image data. The memory 14 temporarily stores the image data read from the X-ray image detector 13. The image processing unit 15 generates a phase differential image based on the image data stored in the memory 14, and generates a phase contrast image based on the phase differential image. The image recording unit 16 records a phase differential image and a phase contrast image.
 走査機構23は、第2の格子22をX方向に間欠的に移動させ、第1の格子21に対する第2の格子22の位置(走査位置)を段階的に変更する。走査機構23の駆動部は、圧電アクチュエータや静電アクチュエータにより構成されており、後述する縞走査の際に、撮影制御部17の制御に基づいて駆動される。メモリ14には、第1の格子21に対する第2の格子22の各走査位置でX線画像検出器13により得られる画像データがそれぞれ記憶される。 The scanning mechanism 23 intermittently moves the second grating 22 in the X direction, and changes the position (scanning position) of the second grating 22 with respect to the first grating 21 in a stepwise manner. The drive unit of the scanning mechanism 23 is configured by a piezoelectric actuator or an electrostatic actuator, and is driven based on the control of the imaging control unit 17 at the time of stripe scanning described later. The memory 14 stores image data obtained by the X-ray image detector 13 at each scanning position of the second grating 22 with respect to the first grating 21.
 コンソール18は、操作部18a及びモニタ18bを備えている。操作部18aは、キーボードやマウス等により構成され、X線源11の管電圧、管電流、照射時間等の撮影条件の設定や、撮影モード(本撮影またはプレ撮影)の選択、撮影実行指示等の操作入力を可能とする。本撮影とは、X線源11と第1の格子21との間に被検体Hを配置した状態で行う撮影モードである。プレ撮影とは、X線源11と第1の格子21との間に被検体Hを配置せずに行う撮影モードである。プレ撮影は、第1及び第2の格子21,22の製造誤差や配置誤差等により生じるバックグランド成分(オフセット画像)を取得するために行われる。 The console 18 includes an operation unit 18a and a monitor 18b. The operation unit 18a is configured by a keyboard, a mouse, and the like, and sets imaging conditions such as tube voltage, tube current, and irradiation time of the X-ray source 11, selection of an imaging mode (main imaging or pre-imaging), imaging execution instruction, and the like. The operation input can be performed. The main imaging is an imaging mode performed with the subject H placed between the X-ray source 11 and the first grating 21. Pre-imaging is an imaging mode performed without placing the subject H between the X-ray source 11 and the first grating 21. Pre-photographing is performed in order to acquire a background component (offset image) caused by a manufacturing error or an arrangement error of the first and second gratings 21 and 22.
 モニタ18bは、撮影条件等の撮影情報や、画像記録部16に記録された位相微分画像及び位相コントラスト画像の表示を行う。システム制御部19は、操作部18aから入力される信号に応じて各部を統括的に制御する。 The monitor 18b displays photographing information such as photographing conditions, and a phase differential image and a phase contrast image recorded in the image recording unit 16. The system control unit 19 comprehensively controls each unit according to a signal input from the operation unit 18a.
 図2において、X線画像検出器13は、2次元状に多数配列された画素30と、ゲート走査線33と、走査回路34と、信号線35と、読み出し回路36とから構成されている。画素30は、周知のように、入射X線によりアモルファスセレン(a-Se)等の半導体膜に生じた電荷を収集する画素電極31と、画素電極31によって収集された電荷を読み出すためのTFT(Thin Film Transistor)32とを備えている。 2, the X-ray image detector 13 includes a plurality of pixels 30 arranged two-dimensionally, a gate scanning line 33, a scanning circuit 34, a signal line 35, and a readout circuit 36. As is well known, the pixel 30 includes a pixel electrode 31 for collecting charges generated in a semiconductor film such as amorphous selenium (a-Se) by incident X-rays, and a TFT (for reading the charges collected by the pixel electrode 31). Thin Film Transistor) 32.
 ゲート走査線33は、画素30の行ごとに設けられている。走査回路34は、各ゲート走査線33にTFT32をオンオフするための走査信号を印加する。信号線35は、画素30の列ごとに設けられている。読み出し回路36は、各信号線35を介して画素30から電荷を読み出し、画像データに変換して出力する。なお、各画素30の詳細な層構成については、特開2002-26300号公報に記載された層構成と同様である。 The gate scanning line 33 is provided for each row of the pixels 30. The scanning circuit 34 applies a scanning signal for turning on / off the TFT 32 to each gate scanning line 33. The signal line 35 is provided for each column of the pixels 30. The readout circuit 36 reads out electric charges from the pixels 30 through the signal lines 35, converts them into image data, and outputs them. The detailed layer configuration of each pixel 30 is the same as the layer configuration described in Japanese Patent Laid-Open No. 2002-26300.
 読み出し回路36は、周知のように、積分アンプ、A/D変換器、補正回路(いずれも図示せず)等により構成されている。積分アンプは、各画素30から信号線35を介して出力された電荷を積分して画像信号を生成する。A/D変換器は、積分アンプにより生成された画像信号を、デジタル形式の画像データに変換する。補正回路は、画像データに対して、暗電流補正、ゲイン補正、及びリニアリティ補正等を行い、補正後の画像データをメモリ14に入力する。 As is well known, the readout circuit 36 includes an integration amplifier, an A / D converter, a correction circuit (none of which is shown), and the like. The integrating amplifier integrates the charges output from each pixel 30 through the signal line 35 to generate an image signal. The A / D converter converts the image signal generated by the integrating amplifier into digital image data. The correction circuit performs dark current correction, gain correction, linearity correction, and the like on the image data, and inputs the corrected image data to the memory 14.
 X線画像検出器13は、入射X線を電荷に直接変換する直接変換型に限られず、ヨウ化セシウム(CsI)やガドリウムオキシサルファイド(GOS)等のシンチレータで入射X線を可視光に変換し、可視光をフォトダイオードで電荷に変換する間接変換型であってもよい。また、X線画像検出器13には、TFTパネルをベースとした放射線画像検出器に限られず、CCDセンサやCMOSセンサ等の固体撮像素子をベースとした放射線画像検出器を用いることも可能である。 The X-ray image detector 13 is not limited to a direct conversion type that directly converts incident X-rays into electric charges, but converts incident X-rays into visible light with a scintillator such as cesium iodide (CsI) or gadolinium oxysulfide (GOS). Alternatively, an indirect conversion type in which visible light is converted into electric charge by a photodiode may be used. The X-ray image detector 13 is not limited to a radiographic image detector based on a TFT panel, and a radiographic image detector based on a solid-state imaging device such as a CCD sensor or a CMOS sensor can also be used. .
 図3において、X線源11から照射されるX線は、X線焦点11aを発光点としたコーンビームである。第1の格子21は、X線透過部21bを通過したX線をほぼ幾何光学的に投影するように構成されている。具体的には、X方向に関するX線透過部21bの幅を、X線源11から放射されるX線の実効波長より十分大きな値とし、X線の大部分を回折させずに、直進性を保ったまま通過させることで実現される。例えば、X線源11の回転陽極としてタングステンを用い、管電圧を50kVとした場合には、X線の実効波長は約0.4Åである。この場合には、X線透過部21bの幅を1~10μm程度とすればよい。なお、第2の格子22も同様である。 In FIG. 3, X-rays irradiated from the X-ray source 11 are cone beams having the X-ray focal point 11a as a light emitting point. The first grating 21 is configured to project the X-rays that have passed through the X-ray transmission part 21b substantially geometrically. Specifically, the width of the X-ray transmission part 21b in the X direction is set to a value sufficiently larger than the effective wavelength of X-rays radiated from the X-ray source 11, and straightness is achieved without diffracting most of the X-rays. It is realized by letting it pass while keeping. For example, when tungsten is used as the rotating anode of the X-ray source 11 and the tube voltage is 50 kV, the effective wavelength of X-rays is about 0.4 mm. In this case, the width of the X-ray transmission part 21b may be about 1 to 10 μm. The same applies to the second grating 22.
 第1の格子21により生成されるG1像は、X線焦点11aからの距離に比例して拡大する。第2の格子22の格子ピッチpは、第2の格子22の位置におけるG1像の周期パターンと一致するように決定されている。具体的には、第2の格子22の格子ピッチpは、第1の格子21の格子ピッチをp、X線焦点11aと第1の格子21との間の距離L、第1の格子21と第2の格子22との間の距離Lとした場合、式(1)をほぼ満たすように設定されている。以下、X,Y,Z方向の座標を、x,y,zとする。 The G1 image generated by the first grating 21 expands in proportion to the distance from the X-ray focal point 11a. The grating pitch p 2 of the second grating 22 is determined so as to coincide with the periodic pattern of the G1 image at the position of the second grating 22. Specifically, the grating pitch p 2 of the second grating 22 is the grating pitch of the first grating 21, p 1 , the distance L 1 between the X-ray focal point 11 a and the first grating 21, the first grating 21. If the distance L 2 between the grid 21 and second grid 22 is set to equation (1) so as to satisfy substantially. Hereinafter, the coordinates in the X, Y, and Z directions are x, y, and z.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 G1像は、被検体HによりX線に位相変化が生じることで変調される。この変調量には、被検体HによるX線の屈折角φ(x)が反映される。図3には、X線焦点11aから放射されたX線の経路が例示されている。符号X1は、被検体Hが存在しない場合にX線が直進する経路を示している。この経路X1を進むX線は、第1及び第2の格子21,22を通過してX線画像検出器13に入射する。符号X2は、被検体Hが存在する場合に、被検体Hにより屈折したX線の経路を示している。この経路X2を進むX線は、第1の格子21を通過した後、第2の格子22のX線吸収部22aにより吸収される。 The G1 image is modulated by the phase change in the X-ray caused by the subject H. The modulation amount reflects the X-ray refraction angle φ (x) of the subject H. FIG. 3 illustrates an X-ray path emitted from the X-ray focal point 11a. Reference numeral X1 indicates a path along which the X-ray goes straight when the subject H does not exist. X-rays traveling along the path X 1 pass through the first and second gratings 21 and 22 and enter the X-ray image detector 13. Reference numeral X2 indicates an X-ray path refracted by the subject H when the subject H exists. X-rays traveling along the path X <b> 2 pass through the first grating 21 and are then absorbed by the X-ray absorption unit 22 a of the second grating 22.
 X線は、被検体HによるX線の位相変化量を表す位相シフト分布Φ(x)に応じて屈折する。この位相シフト分布Φ(x)は、X線の波長をλ、被検体Hの屈折率分布をn(x,z)として、式(2)で表される。ここで、説明の簡略化のため、y座標は省略している。 X-rays are refracted according to the phase shift distribution Φ (x) representing the amount of X-ray phase change by the subject H. This phase shift distribution Φ (x) is expressed by Equation (2), where λ is the wavelength of the X-ray and n (x, z) is the refractive index distribution of the subject H. Here, the y-coordinate is omitted for simplification of description.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 この位相シフト分布Φ(x)は、X線の屈折角φ(x)と、式(3)の関係にある。 This phase shift distribution Φ (x) is in the relationship of the refraction angle φ (x) of X-rays and the equation (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 経路X1を進むX線と経路X2を進むX線との第2の格子22の位置におけるX方向への変位量Δxは、X線の屈折角φ(x)が微小であることに基づいて、近似的に式(4)で表される。 The amount of displacement Δx in the X direction at the position of the second grating 22 between the X-ray traveling along the path X1 and the X-ray traveling along the path X2 is based on the fact that the refraction angle φ (x) of the X-ray is very small. Approximately expressed by equation (4).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 このように、変位量Δxは、位相シフト分布Φ(x)の微分値に比例することがわかる。この変位量Δxは、縞走査法により検出することができ、この結果、位相微分画像が得られる。 Thus, it can be seen that the displacement Δx is proportional to the differential value of the phase shift distribution Φ (x). This displacement amount Δx can be detected by a fringe scanning method, and as a result, a phase differential image is obtained.
 本実施形態では、格子ピッチpをM個に分割した値(p/M)を走査ピッチとし、走査機構23により、この走査ピッチで第2の格子22をX方向に間欠的に移動させることにより縞走査を行う。Mは3以上の整数であり、例えば、M=5であることが好ましい。第2の格子22の各停止中に、X線源11からX線を放射してG2像がX線画像検出器13により検出される。この縞走査により、M枚分の画像データが得られ、X線画像検出器13の各画素30について、M個の画素値が得られる。 In the present embodiment, a value obtained by dividing the grating pitch p 2 into M pieces (p 2 / M) is set as a scanning pitch, and the scanning mechanism 23 intermittently moves the second grating 22 in the X direction at this scanning pitch. By doing so, fringe scanning is performed. M is an integer greater than or equal to 3, for example, it is preferable that M = 5. During each stop of the second grating 22, X-rays are emitted from the X-ray source 11 and a G2 image is detected by the X-ray image detector 13. By this fringe scanning, M pieces of image data are obtained, and M pixel values are obtained for each pixel 30 of the X-ray image detector 13.
 図4に示すように、M個の画素値Iは、第2の格子22の走査位置k(k=0,1,2,・・・,M-1)に対して周期的に変化する。走査位置kは、X方向に走査ピッチ(p/M)ずつ離散した位置である。以下、走査位置kに対する画素値Iの変化を表す信号を強度変調信号と呼ぶ。 As shown in FIG. 4, the M pixel values I k periodically change with respect to the scanning position k (k = 0, 1, 2,..., M−1) of the second grating 22. . The scanning position k is a position that is discrete in the X direction by a scanning pitch (p 2 / M). Hereinafter, a signal representing a change in the pixel value I k with respect to the scanning position k is referred to as an intensity modulation signal.
 同図中の破線は、プレ撮影(被検体Hを配置しない状態)で得られる強度変調信号を示している。これに対して、実線は、本撮影(被検体Hを配置した状態)で、被検体Hにより位相ズレ量ψ(x)が生じた強度変調信号を示している。この位相ズレ量ψ(x)は、変位量Δxと式(5)の関係にある。 The broken line in the figure shows an intensity modulation signal obtained by pre-imaging (a state where the subject H is not arranged). On the other hand, the solid line indicates the intensity modulation signal in which the phase shift amount ψ (x) is generated by the subject H in the main imaging (the state where the subject H is arranged). This phase shift amount ψ (x) is in the relationship of the displacement amount Δx and the equation (5).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 したがって、各画素30について、縞走査で得られるM個の画素値Iに基づき、強度変調信号の位相ズレ量ψ(x)を求めることにより、位相微分画像が得られる。 Therefore, for each pixel 30, a phase differential image is obtained by obtaining the phase shift amount ψ (x) of the intensity modulation signal based on the M pixel values I k obtained by the fringe scanning.
 なお、式(1)を僅かに満たさない場合や、第1の格子21と第2の格子22との間にZ方向周りの回転や、XY平面に対する傾斜が僅かに生じている場合には、G2像にはモアレ縞が生じる。このモアレ縞は、第2の格子22の移動に伴って移動し、X方向への移動距離が格子ピッチpに達すると元のモアレ縞に一致する。このモアレ縞の移動量を検出することで、第2の格子22の実際の移動量を精度よく検出することができる。 In the case where the expression (1) is not satisfied slightly, or when the rotation around the Z direction or the inclination with respect to the XY plane is slightly generated between the first grating 21 and the second grating 22, Moire fringes occur in the G2 image. The moire fringes are moved by the movement of the second grating 22, to match the original moire fringes when the movement distance in the X direction to reach the grating pitch p 2. By detecting the movement amount of the moire fringes, the actual movement amount of the second grating 22 can be detected with high accuracy.
 次に、位相ズレ量ψ(x)の算出方法について説明する。強度変調信号は、一般に式(6)で表される。 Next, a method for calculating the phase shift amount ψ (x) will be described. The intensity modulation signal is generally expressed by Equation (6).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 ここで、Aは入射X線の平均強度を表し、Aは強度変調信号の振幅を表す。「n」は正の整数、「i」は虚数単位である。図4に示すように、強度変調信号が正弦波を描く場合には、n=1である。 Here, A 0 represents the average intensity of the incident X-ray, A n represents the amplitude of the intensity-modulated signal. “N” is a positive integer and “i” is an imaginary unit. As shown in FIG. 4, when the intensity modulation signal draws a sine wave, n = 1.
 本実施形態では、走査ピッチ(p/M)が一定であるため、式(7)が満たされる。 In the present embodiment, since the scanning pitch (p 2 / M) is constant, Expression (7) is satisfied.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 式(7)を式(6)に適用すると、位相ズレ量ψ(x)は、式(8)で表される。 When equation (7) is applied to equation (6), phase shift amount ψ (x) is represented by equation (8).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 ここで、arg[…]は、複素数の偏角を抽出する関数である。また、位相ズレ量ψ(x)は、逆正接関数を用いて式(9)のように表すことも可能である。 Here, arg [...] is a function that extracts the argument of a complex number. Further, the phase shift amount ψ (x) can also be expressed as an equation (9) using an arctangent function.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 複素数の偏角は、値域が-πから+πの範囲であるため、式(8)に基づいて位相ズレ量ψ(x)を算出した場合には、位相ズレ量ψ(x)は、-πから+πの範囲に畳み込まれた(ラップされた)値を取る。これに対して、逆正接関数の値域は、通常、-π/2から+π/2の範囲であるため、式(9)に基づいて位相ズレ量ψ(x)を算出した場合には、位相ズレ量ψ(x)は、-π/2から+π/2の範囲に畳み込まれた値を取る。なお、式(9)において、逆正接関数内の分母及び分子の正負を判別することにより、逆正接関数の値域を-πから+πに拡張することができる。このため、式(9)に基づいて、-πから+πの範囲で位相ズレ量ψ(x)を算出することも可能である。 Since the deviation angle of the complex number ranges from −π to + π, when the phase shift amount ψ (x) is calculated based on the equation (8), the phase shift amount ψ (x) is −π Take a value that is convolved (wrapped) in the range from to + π. On the other hand, since the range of the arc tangent function is usually in the range of −π / 2 to + π / 2, when the phase shift amount ψ (x) is calculated based on the equation (9), the phase shift The deviation amount ψ (x) takes a value convolved in the range of −π / 2 to + π / 2. In Equation (9), the range of the arc tangent function can be expanded from −π to + π by determining the denominator and the sign of the numerator in the arc tangent function. Therefore, the phase shift amount ψ (x) can be calculated in the range of −π to + π based on the equation (9).
 本実施形態では、各画素30について位相ズレ量ψ(x)を算出することにより得られる値(位相微分値)で表される画像を位相微分画像という。なお、位相ズレ量ψ(x)に定数を乗じたり加算したりした値で表される画像を位相微分画像としてもよい。 In this embodiment, an image represented by a value (phase differential value) obtained by calculating the phase shift amount ψ (x) for each pixel 30 is referred to as a phase differential image. Note that an image represented by a value obtained by multiplying or adding a constant to the phase shift amount ψ (x) may be a phase differential image.
 図5において、画像処理部15は、位相微分画像生成部40、オフセット画像記憶部41、OK/NG領域検出部42、アンラップ処理部43、オフセット処理部44、分断判定部45、傾き補正処理部46、段差補正処理部47、及び位相コントラスト画像生成部48を備える。位相微分画像生成部40は、本撮影またはプレ撮影において縞走査により取得されて、メモリ14に記憶されたM枚分の画像データを用い、式(8)または式(9)に基づいて演算を行うことにより位相微分画像を生成する。 In FIG. 5, the image processing unit 15 includes a phase differential image generation unit 40, an offset image storage unit 41, an OK / NG region detection unit 42, an unwrap processing unit 43, an offset processing unit 44, a division determination unit 45, and an inclination correction processing unit. 46, a level difference correction processing unit 47, and a phase contrast image generation unit 48. The phase differential image generation unit 40 uses the image data for M sheets acquired by the fringe scanning in the main shooting or the pre-shooting and stored in the memory 14, and performs the calculation based on the formula (8) or the formula (9). By doing so, a phase differential image is generated.
 プレ撮影時に位相微分画像生成部40により生成された位相微分画像は、オフセット画像としてオフセット画像記憶部41により記憶される。本撮影時に位相微分画像生成部40により生成された位相微分画像は、アンラップ処理部43に入力される。なお、オフセット画像記憶部41は、位相微分画像生成部40からオフセット画像が新たに入力された場合には、記憶中のオフセット画像を消去した後、新たに入力されたオフセット画像を記憶する。 The phase differential image generated by the phase differential image generation unit 40 at the time of pre-photographing is stored in the offset image storage unit 41 as an offset image. The phase differential image generated by the phase differential image generation unit 40 during the main photographing is input to the unwrap processing unit 43. In addition, when an offset image is newly input from the phase differential image generation unit 40, the offset image storage unit 41 deletes the stored offset image and then stores the newly input offset image.
 OK/NG領域検出部42は、本撮影時にメモリ14に記憶されたM枚分の画像データに基づき、位相微分画像中においてアンラップエラーが生じやすい領域(以下、NG領域という)を検出し、これ以外の領域をOK領域とするとともに、このOK領域に対応するオフセット画像中の領域をOK領域とする。OK/NG領域検出部42は、各画素部30について、強度変調信号の平均強度Aが閾値より低い領域、振幅Aが閾値より低い領域、またはビジビリティA/Aが閾値より低い領域をNG領域として検出する。 The OK / NG area detection unit 42 detects an area (hereinafter referred to as an NG area) in which an unwrapping error is likely to occur in the phase differential image based on the M image data stored in the memory 14 at the time of actual photographing. The area other than is set as the OK area, and the area in the offset image corresponding to the OK area is set as the OK area. OK / NG area detection unit 42, for each pixel unit 30, the average intensity A 0 is lower than the threshold region of the intensity modulated signal, domain amplitude A 1 is lower than the threshold value or visibility A 1 / A 0 is lower than the threshold region, Is detected as an NG region.
 このNG領域は、被検体Hに含まれる高吸収体領域(被検体Hが人体である場合には、X線吸収能が高い骨部等)に相当する。これは、X線が高吸収体で吸収されることにより、平均強度A、振幅A、またはビジビリティA/Aが低下することに基づいている。なお、平均強度A、振幅A、ビジビリティA/Aのうち2以上を組み合わせてNG領域を検出してもよい。また、NG領域が散在して、ある程度の大きさを有する集合領域として得られない場合には、閾値を変化させて、検出されるNG領域の大きさを調整すればよい。 This NG region corresponds to a high-absorber region included in the subject H (when the subject H is a human body, a bone portion having a high X-ray absorption capability). This is based on the fact that the average intensity A 0 , the amplitude A 1 , or the visibility A 1 / A 0 decreases due to the X-rays being absorbed by the high absorber. The NG region may be detected by combining two or more of the average intensity A 0 , the amplitude A 1 , and the visibility A 1 / A 0 . In addition, when the NG regions are scattered and cannot be obtained as an aggregate region having a certain size, the size of the detected NG region may be adjusted by changing the threshold value.
 アンラップ処理部43は、位相微分画像生成部40から入力された位相微分画像に対して、OK領域のみをアンラップ処理する。また、アンラップ処理部43は、オフセット画像記憶部41に記憶されたオフセット画像に対して、OK領域のみをアンラップ処理する。 The unwrap processing unit 43 unwraps only the OK region with respect to the phase differential image input from the phase differential image generation unit 40. The unwrap processing unit 43 unwraps only the OK region with respect to the offset image stored in the offset image storage unit 41.
 オフセット処理部44は、アンラップ処理後の位相微分画像からアンラップ処理後のオフセット画像を減算するオフセット補正を行う。具体的には、対応する画素30ごとに画素値を減算する。分断判定部45は、OK/NG領域検出部42により検出されたOK領域がNG領域により分断されているか(すなわち、複数のOK領域が存在するか)否かを判定する。 The offset processing unit 44 performs offset correction by subtracting the offset image after the unwrapping process from the phase differential image after the unwrapping process. Specifically, the pixel value is subtracted for each corresponding pixel 30. The division determination unit 45 determines whether the OK region detected by the OK / NG region detection unit 42 is divided by the NG region (that is, there are a plurality of OK regions).
 分断判定部45により複数のOK領域が存在すると判定された場合には、傾き補正処理部46及び段差補正処理部47が動作する。傾き補正処理部46は、オフセット補正後の位相微分画像(差分画像)の各OK領域に残存するほぼ一定の傾きを有するノイズを、補正により除去する。段差補正処理部47は、傾き補正処理が行われた位相微分画像に残存する各OK領域間に形成される段差を、補正により除去する。 When the division determination unit 45 determines that there are a plurality of OK regions, the inclination correction processing unit 46 and the step correction processing unit 47 operate. The inclination correction processing unit 46 removes noise having a substantially constant inclination remaining in each OK region of the phase differential image (difference image) after offset correction by correction. The step correction processing unit 47 removes the step formed between the OK regions remaining in the phase differential image on which the tilt correction processing has been performed by correction.
 一方、分断判定部45により1つのOK領域のみが存在すると判定された場合には、傾き補正処理部46及び段差補正処理部47は動作しないから、オフセット処理部44によるオフセット補正が行われた位相微分画像は、直接位相コントラスト画像生成部48に入力される。これは、OK領域が1つの場合には、OK領域間でデータの段差が発生するという問題はなく、傾きも残存しにくいためである。 On the other hand, when the division determination unit 45 determines that only one OK region exists, the inclination correction processing unit 46 and the step correction processing unit 47 do not operate, and thus the phase subjected to the offset correction by the offset processing unit 44 is performed. The differential image is directly input to the phase contrast image generation unit 48. This is because when there is only one OK area, there is no problem that a data level difference occurs between the OK areas, and the inclination hardly remains.
 位相コントラスト画像生成部48は、段差が補正された位相微分画像、またはオフセット処理部44から直接入力された位相微分画像を、X方向に沿って積分処理することにより、位相シフト分布を表す位相コントラスト画像を生成する。そして、段差補正後またはオフセット補正後の位相微分画像(差分画像)と、位相コントラスト画像とが画像記録部16に記録される。 The phase contrast image generation unit 48 integrates the phase differential image with the level difference corrected or the phase differential image directly input from the offset processing unit 44 along the X direction, thereby expressing the phase contrast representing the phase shift distribution. Generate an image. Then, the phase differential image (difference image) after the step correction or the offset correction and the phase contrast image are recorded in the image recording unit 16.
 次に、図6及び図7を用いて、アンラップ処理部43によるアンラップ処理方法を説明する。図7は、説明の簡略化のため、位相微分画像を10×7画素の画像として表している。この位相微分画像には、OK/NG領域検出部42により検出されるNG領域が示されている。OK領域はNG領域以外の領域である。 Next, the unwrap processing method by the unwrap processing unit 43 will be described with reference to FIGS. FIG. 7 shows the phase differential image as an image of 10 × 7 pixels for the sake of simplicity of explanation. In this phase differential image, the NG area detected by the OK / NG area detection unit 42 is shown. The OK area is an area other than the NG area.
 まず、位相微分画像の各行または各列に、アンラップ処理を開始する起点がそれぞれ設定される(ステップS10)。このステップでは、OK領域のみを通り位相微分画像をX方向またはY方向に貫通する貫通ラインが探索され、そのうち1つの貫通ラインに沿って起点が設定される。図7では、X方向とY方向とのそれぞれに貫通ラインが存在するため、短い方のY方向に沿う貫通ラインを優先して、このうちの1つに起点P0~P6が設定されている。ここでは、起点P0~P6は、位相微分画像のX方向端(短辺)に沿って設定されている。 First, the starting point for starting the unwrapping process is set for each row or column of the phase differential image (step S10). In this step, a through line that passes only through the OK region and penetrates the phase differential image in the X direction or the Y direction is searched, and a starting point is set along one of the through lines. In FIG. 7, since there are penetrating lines in each of the X direction and the Y direction, the penetrating lines along the shorter Y direction are given priority, and starting points P0 to P6 are set in one of them. Here, the starting points P0 to P6 are set along the X direction end (short side) of the phase differential image.
 このように起点P0~P6を設定した後、各起点P0~P6からX方向に延びた直線状の直線経路R0~R6が設定され、各直線経路R0~R6に沿ってアンラップ処理が実行される(ステップS11)。この直線経路R0~R6は、NG領域には設定されない。このため、起点P0~P6側から見たNG領域の背後には、起点P0~P6と同一のOK領域に属するが、直線経路R0~R6が設定されない画素が残存する。 After setting the starting points P0 to P6 in this way, linear straight paths R0 to R6 extending in the X direction from the starting points P0 to P6 are set, and the unwrapping process is executed along each of the linear paths R0 to R6. (Step S11). These straight paths R0 to R6 are not set in the NG area. Therefore, behind the NG area viewed from the starting points P0 to P6, pixels that belong to the same OK area as the starting points P0 to P6 but do not have the straight paths R0 to R6 set remain.
 具体的に、ステップS11では、まず、起点P0から直線経路R0に沿って順にアンラップ処理が行われ、直線経路R0のアンラップ処理が終了すると、起点P0を基準として起点P1のアンラップ処理が行われた後、起点P1から直線経路R1に沿って順にアンラップ処理が行われる。そして、直線経路R1と同一行でNG領域の背後に残存する画素についてはアンラップ処理が行われず、起点P1を基準として起点P2のアンラップ処理が行われる。この後、同様の手順でアンラップ処理が行われ、直線経路R6のアンラップ処理が終了するとステップS11は終了する。 Specifically, in step S11, first, unwrap processing is performed in order along the straight line route R0 from the starting point P0, and when the unwrap processing of the straight line route R0 ends, the unwrapping processing of the starting point P1 is performed with reference to the starting point P0. Thereafter, the unwrapping process is sequentially performed from the starting point P1 along the straight path R1. Then, the unwrapping process is not performed on the pixels remaining behind the NG area in the same row as the straight line R1, and the unwrapping process of the starting point P2 is performed with the starting point P1 as a reference. Thereafter, the unwrapping process is performed in the same procedure, and when the unwrapping process for the straight line route R6 is finished, the step S11 is finished.
 この後、NG領域の背後に残存した画素に回り込み経路が設定され、この回り込み経路に沿ってアンラップ処理を行う回り込み処理が行われる(ステップS12)。具体的に、このステップでは、直線経路R1と同一行に残存する画素に回り込み経路WR0が設定され、直線経路R5と同一行に残存する画素に回り込み経路WR1が設定される。回り込み経路WR0は、隣接する直線経路R0上の画素を起点としてアンラップ処理が行われる。回り込み経路WR1は、隣接する直線経路R6上の画素を起点としてアンラップ処理が行われる。 Thereafter, a wraparound path is set for the pixels remaining behind the NG area, and a wraparound process is performed for performing an unwrap process along the wraparound path (step S12). Specifically, in this step, the wraparound path WR0 is set for pixels remaining in the same row as the straight line route R1, and the wraparound path WR1 is set for pixels remaining in the same row as the straight line route R5. The wraparound path WR0 is unwrapped from the pixel on the adjacent straight path R0. The wraparound path WR1 is subjected to unwrap processing starting from a pixel on the adjacent straight path R6.
 図8に示すように、各経路上のアンラップ処理は、式(8)または式(9)の関数の値域の上限から下限、または下限から上限に変化する不連続点DPを順に検出し、検出した不連続点DP以降のデータに、この値域に相当する値を一律に加算または減算することで不連続点DPをなくしてデータを連続化する処理である。 As shown in FIG. 8, the unwrapping process on each path sequentially detects and detects discontinuous points DP that change from the upper limit to the lower limit of the function range of the function of Equation (8) or Equation (9), or from the lower limit to the upper limit. In this process, the data after the discontinuous point DP is uniformly added or subtracted with a value corresponding to this range to eliminate the discontinuous point DP and to make the data continuous.
 図9に示すように、位相微分画像がNG領域により分断されて、複数のOK領域が存在することがある。この場合には、各OK領域に対して、ステップS10~S12がそれぞれ個別に実行される。具体的に、図9の位相微分画像には、第1及び第2のOK領域が存在する。第1のOK領域には、X方向端に沿った貫通ライン上に起点P0a~P6aが設定されるとともに、各起点P0a~P6aからY方向に直線経路R0a~R6aが設定される。そして、各直線経路R0a~R6aに沿ったアンラップ処理と、各起点P0a~P6aの起点間のアンラップ処理とが行われる。 As shown in FIG. 9, the phase differential image may be divided by the NG region, and there may be a plurality of OK regions. In this case, steps S10 to S12 are individually executed for each OK area. Specifically, the phase differential image of FIG. 9 includes first and second OK regions. In the first OK region, starting points P0a to P6a are set on the penetrating line along the end in the X direction, and straight paths R0a to R6a are set in the Y direction from the starting points P0a to P6a. Then, an unwrap process along each straight path R0a to R6a and an unwrap process between the start points of the respective start points P0a to P6a are performed.
 同様に、第2のOK領域には、X方向端に沿った貫通ライン上に起点P0b~P6bが設定されるとともに、各起点P0b~P6bからY方向に直線経路R0b~R6bが設定される。そして、各直線経路R0b~R6bに沿ったアンラップ処理と、各起点P0b~P6bの起点間のアンラップ処理とが行われる。なお、第1及び第2のOK領域に回り込み経路を設定する必要がある場合には適宜設定が行われ、設定された回り込み経路に沿ってアンラップ処理が行われる。 Similarly, in the second OK area, starting points P0b to P6b are set on the penetrating line along the end in the X direction, and straight paths R0b to R6b are set in the Y direction from the starting points P0b to P6b. Then, an unwrap process along each of the straight paths R0b to R6b and an unwrap process between the start points of the start points P0b to P6b are performed. In addition, when it is necessary to set a wraparound path in the first and second OK regions, the setting is appropriately performed, and the unwrap process is performed along the set wraparound path.
 アンラップ処理部43は、オフセット画像に対しても位相微分画像と同様に、起点、直線経路、回り込み経路を設定して、同一の手順に従ってアンラップ処理を行う。 The unwrap processing unit 43 sets the starting point, the straight path, and the wraparound path for the offset image as well as the phase differential image, and performs unwrap processing according to the same procedure.
 次に、傾き補正及び段差補正方法について説明する。傾き補正処理部46は、オフセット処理部44によりオフセット処理が行われた位相微分画像について、各OK領域に残像するほぼ一定の傾きを有するノイズを表す傾き補正画像を作成し、作成した傾き補正画像を位相微分画像の各OK領域から減算する。 Next, the tilt correction and level difference correction methods will be described. The inclination correction processing unit 46 creates an inclination correction image representing noise having a substantially constant inclination that remains in each OK region with respect to the phase differential image subjected to the offset processing by the offset processing unit 44, and the created inclination correction image Is subtracted from each OK region of the phase differential image.
 具体的には、傾き補正処理部46は、図10に示すように、OK領域をX方向に貫通するラインLxに沿った画素値ψ’の変化を線形式でフィッティングすることにより補正関数(ψ’=ax+b、a,bはパラメータ)を求め、これをY方向に拡張することにより傾き補正画像を作成する。このY方向への拡張は、例えば、X方向に沿った各行に上記補正関数を適用することにより行う。なお、上記補正関数(第1の補正関数)に加えて、OK領域をY方向に貫通するラインLyに沿って同様に補正関数(第2の補正関数)を求め、この第1及び第2の補正関数に基づいて傾き補正画像を作成してもよい。前述のノイズの傾きは、G2像に生じるモアレ縞の方向に依存しており、X方向及びY方向に発生する可能性が高い。このため、第1及び第2の補正関数に基づいて傾き補正画像を作成することにより、X方向及びY方向の傾きが反映されたより精度の高い傾き補正画像が得られる。 Specifically, as shown in FIG. 10, the inclination correction processing unit 46 fits a change in the pixel value ψ ′ along the line Lx penetrating the OK region in the X direction by linearly fitting the correction function (ψ '= Ax + b, a, and b are parameters) and are expanded in the Y direction to create an inclination-corrected image. The expansion in the Y direction is performed, for example, by applying the correction function to each row along the X direction. In addition to the correction function (first correction function), a correction function (second correction function) is similarly obtained along the line Ly penetrating the OK region in the Y direction, and the first and second correction functions are obtained. An inclination correction image may be created based on the correction function. The inclination of the noise described above depends on the direction of moire fringes generated in the G2 image, and is likely to occur in the X direction and the Y direction. Therefore, by creating an inclination correction image based on the first and second correction functions, a more accurate inclination correction image reflecting the inclination in the X direction and the Y direction can be obtained.
 傾き補正処理部46は、各OK領域について上記処理を行い、各OK領域ごとに傾き補正画像を生成する。 The tilt correction processing unit 46 performs the above process for each OK region, and generates a tilt correction image for each OK region.
 段差補正処理部47は、傾き補正処理部46による傾き補正処理後の位相微分画像について、各OK領域の少なくとも一部の領域について画素値の平均値を算出し、各OK領域で平均値が同一となるように、各OK領域ごとに画素値に一定値を加算または減算する。なお、段差補正処理部47は、各OK領域の一部の領域に限られず、各OK領域に含まれる全ての画素値の平均値を算出してもよい。この場合は、OK領域内の全画素値の平均を取るので、ノイズが平準化されて、局所的なトレンドによる影響を低く抑えられる。また、段差補正処理部47は、各OK領域の一部の領域について画素値の平均値を算出するには、各OK領域のうち中央領域(例えば、矩形状領域)について画素値の平均値を算出してもよいし、各OK領域中における位相微分画像の4辺のいずれかの辺に沿った一部の領域(例えば、NG領域が位相微分画像をY方向に分断し、OK領域がX方向に分離して存在している場合には、位相微分画像のY方向に対向する2辺のいずれかの辺に沿った領域)について画素値の平均値を算出してもよい。 The step correction processing unit 47 calculates the average value of the pixel values for at least a part of each OK region in the phase differential image after the tilt correction processing by the tilt correction processing unit 46, and the average value is the same in each OK region. A constant value is added to or subtracted from the pixel value for each OK region. The step correction processing unit 47 is not limited to a part of each OK region, and may calculate an average value of all pixel values included in each OK region. In this case, since all pixel values in the OK region are averaged, the noise is leveled and the influence of the local trend can be kept low. Further, in order to calculate the average value of the pixel values for a part of each OK region, the step correction processing unit 47 calculates the average value of the pixel values for the central region (for example, a rectangular region) among the OK regions. Or a partial area along one of the four sides of the phase differential image in each OK area (for example, the NG area divides the phase differential image in the Y direction, and the OK area is X If they are separated in the direction, the average value of the pixel values may be calculated for a region along one of the two sides facing the Y direction of the phase differential image.
 次に、図11及び図12に示すフローチャートを参照しながらX線撮影装置10の作用を説明する。操作部18aを用いて撮影モードの選択が行われると(ステップS20)、選択された撮影モードがプレ撮影であるか否かの判定が行われる(ステップS21)。プレ撮影である場合には(ステップS21でYES)、撮影指示の待受状態となる(ステップS22)。 Next, the operation of the X-ray imaging apparatus 10 will be described with reference to the flowcharts shown in FIGS. When the shooting mode is selected using the operation unit 18a (step S20), it is determined whether or not the selected shooting mode is pre-shooting (step S21). If it is pre-photographing (YES in step S21), a standby state for photographing instructions is set (step S22).
 操作部18aを用いて撮影指示がなされると(ステップS22でYES)、走査機構23により第2の格子22が所定の走査ピッチずつ移動されながら、各走査位置kにおいて、X線源11によるX線照射及びX線画像検出器13によるG2像の検出が行われる(ステップS23)。この縞走査の結果、M枚分の画像データが生成され、メモリ14に格納される。 When an imaging instruction is given using the operation unit 18a (YES in step S22), the X-ray source 11 X is scanned at each scanning position k while the second grating 22 is moved by a predetermined scanning pitch by the scanning mechanism 23. Radiation and detection of the G2 image by the X-ray image detector 13 are performed (step S23). As a result of the fringe scanning, M pieces of image data are generated and stored in the memory 14.
 この後、画像処理部15によりメモリ14に格納されたM枚分の画像データが読み出される。画像処理部15内では、位相微分画像生成部40により位相微分画像が生成される(ステップS24)。この位相微分画像は、オフセット画像としてオフセット画像記憶部41に記憶される(ステップS25)。プレ撮影動作は、以上で終了する。なお、このプレ撮影は、X線撮影装置10の立ち上げ時等に被検体Hを配置しない状態で少なくとも一度行われればよく、本撮影の前に毎回行われる必要はない。 Thereafter, the image data for M sheets stored in the memory 14 is read by the image processing unit 15. In the image processing unit 15, a phase differential image is generated by the phase differential image generation unit 40 (step S24). This phase differential image is stored in the offset image storage unit 41 as an offset image (step S25). The pre-photographing operation ends here. Note that this pre-imaging may be performed at least once in a state in which the subject H is not disposed when the X-ray imaging apparatus 10 is started up, and need not be performed every time before the main imaging.
 次に、被検体Hが配置され、ステップS20の撮影モードの選択により本撮影が選択された場合には(ステップS21でNO)、撮影指示の待受状態となる(ステップS30)。操作部18aを用いて撮影指示がなされると(ステップS30でYES)、ステップS23と同様の縞走査が行われ(ステップS31)、メモリ14にM枚分の画像データが格納される。この後、同様に、位相微分画像生成部40によって位相微分画像が生成される(ステップS32)。 Next, when the subject H is arranged and the main imaging is selected by selecting the imaging mode in step S20 (NO in step S21), the imaging instruction standby state is set (step S30). When a photographing instruction is given using the operation unit 18a (YES in step S30), the same stripe scanning as in step S23 is performed (step S31), and M pieces of image data are stored in the memory 14. Thereafter, similarly, the phase differential image is generated by the phase differential image generation unit 40 (step S32).
 そして、メモリ14に格納された画像データに基づき、OK/NG領域検出部42により、NG領域及びOK領域の検出が行われる(ステップS33)。NG領域及びOK領域が検出されると、アンラップ処理部43により、ステップS32で生成された位相微分画像のOK領域のみがアンラップ処理される(ステップS34)。同様に、アンラップ処理部43により、オフセット画像記憶部41に記憶されたオフセット画像のOK領域のみがアンラップ処理される(ステップS35)。 Then, based on the image data stored in the memory 14, the NG area and the OK area are detected by the OK / NG area detecting unit 42 (step S33). When the NG area and the OK area are detected, the unwrap processing unit 43 unwraps only the OK area of the phase differential image generated in step S32 (step S34). Similarly, only the OK region of the offset image stored in the offset image storage unit 41 is unwrapped by the unwrap processing unit 43 (step S35).
 アンラップ処理が終了すると、オフセット処理部44により、アンラップ処理後の位相微分画像から、アンラップ処理後のオフセット画像を減算するオフセット補正が行われる(ステップS36)。そして、分断判定部45により、OK領域が分断されているか(OK領域が複数存在するか)否かが判定される(ステップS37)。 When the unwrap process is completed, the offset processing unit 44 performs offset correction by subtracting the offset image after the unwrap process from the phase differential image after the unwrap process (step S36). Then, the division determination unit 45 determines whether or not the OK area is divided (a plurality of OK areas exist) (step S37).
 OK領域が複数存在する場合には(ステップS38でYES)、傾き補正処理部46により、オフセット処理後の位相微分画像の各OK領域について傾き補正画像が作成され、各傾き補正画像を該位相微分画像の各OK領域から減算することにより、傾きが除去される(ステップS39)。そして、段差補正処理部47により、傾き補正処理後の位相微分画像の各OK領域の少なくとも一部の領域について画素値の平均値が算出され、各OK領域で該平均値が同一となるように、各OK領域ごとに画素値に一定値が加算または減算される(ステップS40)。これにより、OK領域間の段差が解消される。 When there are a plurality of OK areas (YES in step S38), the inclination correction processing unit 46 creates an inclination correction image for each OK area of the phase differential image after the offset process, and each inclination correction image is converted into the phase differential image. By subtracting from each OK area of the image, the inclination is removed (step S39). Then, the step correction processing unit 47 calculates the average value of the pixel values for at least a part of each OK region of the phase differential image after the tilt correction processing, and the average value is the same in each OK region. A fixed value is added to or subtracted from the pixel value for each OK region (step S40). Thereby, the level | step difference between OK area | regions is eliminated.
 一方、OK領域が1つの場合には(ステップS38でNO)、傾き補正処理部46及び段差補正処理部47による処理は行われず、段差補正後の位相微分画像は直接位相コントラスト画像生成部48に入力される。 On the other hand, when there is one OK region (NO in step S38), the processing by the inclination correction processing unit 46 and the step correction processing unit 47 is not performed, and the phase differential image after the step correction is directly sent to the phase contrast image generation unit 48. Entered.
 この段差補正後の位相微分画像、またはオフセット処理部44から直接入力された位相微分画像を位相コントラスト画像生成部48が積分処理することにより、位相コントラスト画像が生成され(ステップS41)、段差補正後またはオフセット補正後の位相微分画像と位相コントラスト画像とが画像記録部16に記録された後、モニタ18bに画像表示される(ステップS42)。 The phase contrast image generation unit 48 integrates the phase differential image after the step correction or the phase differential image directly input from the offset processing unit 44, thereby generating a phase contrast image (step S41). Alternatively, the phase differential image and the phase contrast image after the offset correction are recorded in the image recording unit 16, and then displayed on the monitor 18b (step S42).
 なお、分断判定部45による判定処理は、OK/NG領域の判定を行った後、傾き補正処理を行うまでの間であればいずれの時点で行ってもよい。 Note that the determination process by the division determination unit 45 may be performed at any time after the determination of the OK / NG region and before the inclination correction process is performed.
 以上のように、アンラップ処理部43は、位相微分画像に対してアンラップエラーが生じやすいNG領域以外のOK領域のみについてのみアンラップ処理を行うため、アンラップエラーの発生を防止し、ノイズの少ない位相微分画像が得られる。X線位相イメージングでの関心領域である軟部組織(軟骨部等)は、NG領域外に存在するため、アンラップエラーによるノイズで軟部組織の画像化が阻害されることは防止される。 As described above, the unwrap processing unit 43 performs the unwrap process only on the OK region other than the NG region where the unwrap error is likely to occur on the phase differential image, thereby preventing the occurrence of the unwrap error and reducing the phase differential with less noise. An image is obtained. Since soft tissue (cartilage portion or the like), which is a region of interest in X-ray phase imaging, exists outside the NG region, it is prevented that imaging of the soft tissue is inhibited by noise due to unwrapping errors.
 また、アンラップ処理部43は、オフセット画像に対しても同様のアンラップ処理を施すため、図13(A)及び図13(B)に示すように、位相微分画像に含まれるノイズムラは、オフセット画像のノイズムラとほぼ同一となる。オフセット補正後の位相微分画像(差分画像)には、図13(C)に示すように、各OK領域に若干の傾きが残存するとともに、OK領域間に若干の段差Sが残存する。この傾きは、傾き補正処理部46により除去される。段差Sは、段差補正処理部47により除去される。なお、関心領域である軟部組織は、傾き補正処理部46により作成される傾き補正画像よりも高周波のデータで表されるため、傾き補正処理により除去されることはない。 Further, since the unwrap processing unit 43 performs the same unwrap processing on the offset image, as shown in FIGS. 13A and 13B, the noise unevenness included in the phase differential image is It is almost the same as noise unevenness. In the phase differential image (difference image) after the offset correction, as shown in FIG. 13C, a slight inclination remains in each OK region and a slight step S remains between the OK regions. This inclination is removed by the inclination correction processing unit 46. The step S is removed by the step correction processing unit 47. Note that the soft tissue that is the region of interest is represented by data at a higher frequency than the tilt correction image created by the tilt correction processing unit 46, and therefore is not removed by the tilt correction processing.
 なお、上記実施形態では、傾き補正処理部46は、複数のOK領域が存在する場合に、図14(A)に示すように、各OK領域ごとに補正関数を求めているが、さらに、OK領域間で補正関数の傾きが近いか否かを判定し、傾きが近い場合には、図14(B)に示すように、ほぼ一直線上に画素値が並ぶようにOK領域内の画素値をシフトさせ、複数のOK領域内の画素値の変化を線形式でフィッティングすることにより補正関数を求めてもよい。上記画素値のシフトは、例えば、各OK領域内の画素値の平均値を求め、この平均値の差異に基づいて行えばよい。これにより、より精度よく補正関数を求めることができる。 In the above embodiment, when there are a plurality of OK areas, the inclination correction processing unit 46 obtains a correction function for each OK area as shown in FIG. 14A. It is determined whether or not the slope of the correction function is close between the areas. If the slope is close, as shown in FIG. 14B, the pixel values in the OK area are arranged so that the pixel values are substantially aligned on a straight line. The correction function may be obtained by shifting and fitting pixel value changes in a plurality of OK regions in a linear format. The shift of the pixel value may be performed based on, for example, an average value of pixel values in each OK region and a difference between the average values. As a result, the correction function can be obtained with higher accuracy.
 また、上記実施形態では、傾き補正処理部46は、線形式に限られず、多項式でフィッティングを行うことにより補正関数を求めてもよい。 In the above embodiment, the inclination correction processing unit 46 is not limited to the linear format, and may obtain a correction function by performing fitting using a polynomial.
 また、上記実施形態では、アンラップ処理部43は、複数の直線経路R0~R6のうち1つの直線経路をアンラップ処理するたびに、その直線経路の起点と次の直線経路との起点とのアンラップ処理を行っているが、直線経路R0~R6のアンラップ処理を行う前に、各起点P0~P6の起点間を先にアンラップ処理し、アンラップ処理後の各起点P0~P6から直線経路R0~R6のそれぞれをアンラップ処理してもよい。 Further, in the above embodiment, the unwrap processing unit 43 unwraps the starting point of the straight line route and the starting point of the next straight line route each time the straight line route is unwrapped among the plurality of straight line routes R0 to R6. However, before unwrapping the straight paths R0 to R6, the unwrap processing is first performed between the starting points of the starting points P0 to P6, and the straight paths R0 to R6 are started from the starting points P0 to P6 after the unwrapping process. Each may be unwrapped.
 また、逆に、各直線経路R0~R6をアンラップ処理した後、各起点P0~P6の起点間をアンラップ処理し、アンラップ処理後の各直線経路R0~R6のデータを、アンラップ処理後の各起点P0~P6のデータに合わせてシフトさせてもよい。 Conversely, after unwrapping each of the straight paths R0 to R6, unwrapping is performed between the starting points of the respective starting points P0 to P6, and the data of each of the straight paths R0 to R6 after the unwrapping is obtained as each starting point after the unwrapping process. You may shift according to the data of P0-P6.
 また、上記実施形態では、アンラップ処理部43は、X方向とY方向とのそれぞれに貫通ラインが存在する場合に、Y方向を優先してY方向に沿うように起点を設定しているが、X方向を優先してX方向に沿うように起点を設定してもよい。 Moreover, in the said embodiment, when the unwrap processing part 43 has a penetration line in each of the X direction and the Y direction, the starting point is set along the Y direction in preference to the Y direction. The starting point may be set along the X direction with priority on the X direction.
 また、NG領域の形状に基づいて、起点をY方向に沿って設定するか、X方向に沿って設定するかを決定してもよい。例えば、NG領域の背後に残存する画素に対して行う回り込み処理の回数が少なくなるように起点の設定方向を決定する。例えば、図7に示すように起点をY方向に沿って設定した場合には、X方向に沿った2つのライン(起点P1,P5を含むライン)で回り込み処理が必要となるため、回り込み処理の回数は「2」である。これに対して、起点をX方向に沿って設定した場合には、Y方向に沿った6つのラインで回り込み処理が必要となるため、回り込み処理の回数は「6」となる。したがって、NG領域が図7に示す形状の場合には、回り込み処理の回数が少なくなるY方向を起点の設定方向として決定する。 Further, based on the shape of the NG area, it may be determined whether the starting point is set along the Y direction or the X direction. For example, the setting direction of the starting point is determined so that the number of wraparound processes performed on the pixels remaining behind the NG area is reduced. For example, when the starting point is set along the Y direction as shown in FIG. 7, the wrapping process is required for two lines along the X direction (lines including the starting points P1 and P5). The number of times is “2”. On the other hand, when the starting point is set along the X direction, the wraparound process is required for six lines along the Y direction, so the number of wraparound processes is “6”. Therefore, when the NG area has the shape shown in FIG. 7, the Y direction in which the number of wraparound processes is reduced is determined as the starting direction setting direction.
 また、上記実施形態では、アンラップ処理部43によるアンラップ処理において、起点をOK領域内のX方向端またはY方向端に沿って設定しているが、必ずしも起点をOK領域内の端部に沿って設定する必要はない。 Moreover, in the said embodiment, in the unwrap process by the unwrap process part 43, the starting point is set along the X direction end in a OK area | region, or a Y direction end, However, A starting point does not necessarily follow an edge part in an OK area | region. It is not necessary to set.
 また、上記実施形態では、アンラップ処理部43において、位相微分画像の各列または各行ごとにアンラップ処理を行うように、各列または各行に起点を設定しているが、これに代えて、OK領域に1つの起点(開始点)を設定し、この開始点から隣り合う画素を順にアンラップ処理してもよい。 In the above embodiment, the unwrap processing unit 43 sets the starting point for each column or each row so that the unwrap processing is performed for each column or each row of the phase differential image. It is also possible to set one starting point (starting point) for each pixel and sequentially unwrap the pixels adjacent from this starting point.
 例えば、図15(A)に示すように、OK領域に開始点P0を設定し、この開始点P0からX方向及びY方向に隣接する画素をアンラップ処理する。次いで、図15(B)に示すように、アンラップ処理された各画素からX方向及びY方向に隣接する画素をアンラップ処理する。このとき、隣接画素がNG領域に属する画素である場合には対象とせず、アンラップ処理は行わない。また、隣接画素が、アンラップ処理された他の画素の隣接画素である場合にはいずれかを優先する。ここでは、X方向への隣接画素をY方向への隣接画素より優先している。この後、同様にアンラップ処理を進めて行けばよい。 For example, as shown in FIG. 15A, a start point P0 is set in the OK region, and pixels adjacent in the X direction and the Y direction from this start point P0 are unwrapped. Next, as shown in FIG. 15B, the pixels adjacent in the X direction and the Y direction are unwrapped from each unwrapped pixel. At this time, if the adjacent pixel is a pixel belonging to the NG area, it is not considered and the unwrapping process is not performed. Further, when the adjacent pixel is an adjacent pixel of another pixel that has been unwrapped, priority is given to one of them. Here, the adjacent pixel in the X direction has priority over the adjacent pixel in the Y direction. Thereafter, the unwrapping process may be advanced in the same manner.
 また、上記実施形態では、OK/NG領域検出部42は、強度変調信号の平均強度、振幅、またはビジビリティに基づいて、アンラップエラーが生じやすいNG領域を検出しているが、NG領域の検出基準はこれに限られず、強度変調信号の平均強度の画素間のばらつき(すなわち、吸収画像の画素間のばらつき)や、位相微分画像の画素間のばらつきが所定値より大きい領域をNG領域として検出してもよい。なお、この位相微分画像の画素間のばらつきは、第1及び第2の格子21,22の格子線に直交する方向(X方向)へのばらつきであることが好ましい。 In the above-described embodiment, the OK / NG region detection unit 42 detects an NG region in which an unwrapping error is likely to occur based on the average intensity, amplitude, or visibility of the intensity modulation signal. Is not limited to this, and an area where variation between pixels of the average intensity of the intensity modulation signal (that is, dispersion between pixels of the absorption image) or dispersion between pixels of the phase differential image is larger than a predetermined value is detected as an NG area. May be. In addition, it is preferable that the dispersion | variation between the pixels of this phase differential image is a dispersion | variation to the direction (X direction) orthogonal to the lattice line of the 1st and 2nd grating | lattices 21 and 22. FIG.
 また、位相微分画像の各画素について絶対値を取り、この絶対値が所定値を超える箇所を検出することにより、高吸収体領域のエッジ部分を検出し、このエッジ部で囲われる領域をNG領域として検出してもよい。しかし、ここでNG領域の検出に用いられる位相微分画像は、アンラップ処理部43によるアンラップ処理前のものであるため、図8に示す不連続点DPが存在し、高吸収体領域のエッジ部分の検出を阻害することが考えられる。なお、位相微分画像に代えて吸収画像を用いたとしても、吸収画像は、高吸収体領域のエッジ部分で信号の変化が緩やかであるため、NG領域を精度よく検出することができない。 Further, an absolute value is taken for each pixel of the phase differential image, and an edge portion of the superabsorbent region is detected by detecting a portion where the absolute value exceeds a predetermined value, and a region surrounded by the edge portion is determined as an NG region You may detect as. However, since the phase differential image used for the detection of the NG region here is the one before the unwrap processing by the unwrap processing unit 43, the discontinuous point DP shown in FIG. 8 exists, and the edge portion of the high absorber region It is possible to inhibit detection. Even if the absorption image is used instead of the phase differential image, the NG region cannot be detected with high accuracy because the signal of the absorption image has a gradual change at the edge portion of the high absorber region.
 このため、吸収画像を一方向に微分した吸収微分画像に基づいてNG領域を検出することが好ましい。この場合、OK/NG領域検出部42は、本撮影時に得られたM枚分の画像データに基づき、各画素部30に対応する強度変調信号の平均値を算出することにより吸収画像を生成し、生成した吸収画像を微分処理することにより吸収微分画像を生成する。吸収画像の微分処理は、例えば、X方向に画素間の差分値を算出することにより行う。そして、OK/NG領域検出部42は、吸収微分画像に微分処理等を行い、正または負方向に突出したピークを検知することによりNG領域の検出を行う。吸収微分画像は、高吸収体領域のエッジ部分で信号が急峻に変化し、かつラップが生じない(不連続点が存在しない)ため、NG領域を精度よく検出することができる。 For this reason, it is preferable to detect the NG region based on the absorption differential image obtained by differentiating the absorption image in one direction. In this case, the OK / NG region detection unit 42 generates an absorption image by calculating the average value of the intensity modulation signals corresponding to each pixel unit 30 based on the M pieces of image data obtained during the main photographing. Then, an absorption differential image is generated by differentiating the generated absorption image. The differential processing of the absorption image is performed, for example, by calculating a difference value between pixels in the X direction. Then, the OK / NG region detection unit 42 performs differentiation processing or the like on the absorption differential image, and detects the NG region by detecting a peak protruding in the positive or negative direction. In the absorption differential image, the signal changes sharply at the edge portion of the high-absorber region, and no wrap occurs (no discontinuous point exists), so that the NG region can be accurately detected.
 なお、OK/NG領域検出部42は、吸収微分画像に加えて吸収画像も参照し、吸収微分画像に生じたピークにより囲まれ、吸収量の大きい領域をNG領域として検出してもよい。 Note that the OK / NG region detection unit 42 may also refer to the absorption image in addition to the absorption differential image, and detect a region having a large absorption amount surrounded by a peak generated in the absorption differential image as an NG region.
 また、OK/NG領域検出部42は、プレ撮影時に得られたM枚分の画像データに基づいて吸収画像を生成して、これを補正画像として記憶しておき、本撮影時にM枚分の画像データに基づいて生成した吸収画像に対して補正画像を減算または除算した後、吸収微分画像を生成してもよい。これにより、吸収微分画像から被検体Hに関係しないノイズ成分が除去されるため、NG領域がより精度よく検出される。 Further, the OK / NG area detection unit 42 generates an absorption image based on M image data obtained at the time of pre-shooting, stores this as a corrected image, and stores M images at the time of main shooting. An absorption differential image may be generated after the correction image is subtracted or divided from the absorption image generated based on the image data. Thereby, since the noise component not related to the subject H is removed from the absorption differential image, the NG region is detected with higher accuracy.
 また、OK/NG領域検出部42は、強度変調信号の平均強度や最大強度が所定値より大きく、強度変調信号に飽和が生じている領域をNG領域として検出してもよい。この強度変調信号の飽和は、被検体Hを透過せずに第1及び第2の格子21,22を介してX線画像検出器13に直接入射した画素領域(素抜け領域)で生じやすい。強度変調信号が飽和すると位相ズレ量ψ(x)が正確に得られなくなるため、この素抜け領域もアンラップエラーが生じやすい領域である。なお、OK/NG領域検出部42は、上記の各検出基準を組み合わせてNG領域を検出してもよい。 Further, the OK / NG region detection unit 42 may detect a region where the average intensity or the maximum intensity of the intensity modulation signal is larger than a predetermined value and the intensity modulation signal is saturated as an NG area. This saturation of the intensity modulation signal is likely to occur in a pixel region (elementary region) that is directly transmitted to the X-ray image detector 13 through the first and second gratings 21 and 22 without passing through the subject H. When the intensity modulation signal is saturated, the phase shift amount ψ (x) cannot be obtained accurately, and this unaccompanied region is also a region where unwrapping errors are likely to occur. The OK / NG area detecting unit 42 may detect the NG area by combining the above detection criteria.
 さらに、X線画像検出器13、第1の格子21、第2の格子22に欠陥が生じたり、ゴミなどが付着したりした場合には、特定の画素部30の画素値が常に高く、または低くなることがある。このような画素欠陥が生じた領域は、強度変調信号の平均強度、振幅、またはビジビリティが異常値を示すため、アンラップエラーが生じやすい領域となる。このような画素欠陥領域についても、上記各検出基準を適宜組み合わせることにより、NG領域として検出可能である。 Furthermore, when a defect occurs in the X-ray image detector 13, the first grating 21, or the second grating 22, or dust or the like adheres, the pixel value of the specific pixel unit 30 is always high, or May be lower. The region where such a pixel defect occurs is a region where an unwrapping error is likely to occur because the average intensity, amplitude, or visibility of the intensity modulation signal indicates an abnormal value. Such a pixel defect region can also be detected as an NG region by appropriately combining the above detection criteria.
 また、上記実施形態では、NG領域にはアンラップ処理が行われないため、最終的に画像記録部16に記録されモニタ18bに表示される位相微分画像のNG領域は、不連続点が残存するとともに、ノイズが大きな画像となる可能性があるため、図16に示すように、画像処理部15にNG領域画像置換部50を設けてもよい。ここで、上記実施形態と同一構成部については同一の符号を付しており、これらの説明は省略する。 In the above embodiment, since the unwrapping process is not performed in the NG area, the NG area of the phase differential image that is finally recorded in the image recording unit 16 and displayed on the monitor 18b has a discontinuous point remaining. Since there is a possibility that the image has a large noise, an NG region image replacement unit 50 may be provided in the image processing unit 15 as shown in FIG. Here, the same reference numerals are given to the same components as those in the above embodiment, and the description thereof is omitted.
 NG領域画像置換部50は、本撮影時にメモリ14に記憶されたM枚分の画像データに基づき、吸収画像、吸収画像の微分画像、または小角散乱画像を生成し、該画像のNG領域に対応する部分を、オフセット補正後の位相微分画像のNG領域に挿入して置換する。また、同様に、位相コントラスト画像のNG領域を置換してもよい。吸収画像は、強度変調信号の平均強度を画像化することにより生成される。吸収画像の微分画像は、吸収画像を所定方向(例えば、X方向)に微分処理することにより生成される。小角散乱画像は、強度変調信号の振幅を画像化することにより生成される。さらに、位相微分画像や位相コントラスト画像のNG領域を上記各画像で置換する場合には、OK領域とコントラストのバランスが良くなるように、各画像に適当な係数を乗じた上でNG領域を置換してもよい。 The NG region image replacement unit 50 generates an absorption image, a differential image of the absorption image, or a small-angle scattered image based on the M image data stored in the memory 14 at the time of the main photographing, and corresponds to the NG region of the image. The portion to be replaced is inserted into the NG area of the phase differential image after offset correction. Similarly, the NG area of the phase contrast image may be replaced. The absorption image is generated by imaging the average intensity of the intensity modulation signal. The differential image of the absorption image is generated by differentiating the absorption image in a predetermined direction (for example, the X direction). The small angle scattered image is generated by imaging the amplitude of the intensity modulation signal. Furthermore, when replacing the NG area of the phase differential image or the phase contrast image with each of the above images, the NG area is replaced after multiplying each image by an appropriate coefficient so that the balance between the OK area and the contrast is improved. May be.
 また、上記実施形態では、段差補正処理部47は、各OK領域の少なくとも一部の領域について画素値の平均値を同一とすることに基づいて段差補正を行なっているが、吸収微分画像を用いて段差補正を行なってもよい。吸収微分画像は、ラップが生じないことにより、OK領域間での段差が殆ど生じず、段差補正の基準データとして好適である。 Further, in the above embodiment, the step correction processing unit 47 performs the step correction based on making the average value of the pixel values the same for at least a part of each OK region, but using an absorption differential image. The step may be corrected. Since the absorption differential image does not cause wrapping, there is almost no step between OK regions, and it is suitable as reference data for step correction.
 具体的には、段差補正処理部47は、前述のように吸収微分画像60を生成し、図17に示すように、吸収微分画像60内に、OK/NG領域検出部42で検出されたOK領域を設定し、各OK領域中から画素値がほぼ同一となる1つまたは複数の画素からなる画素領域D1,D2をそれぞれ抽出する。そして、傾き補正処理部46による傾き補正処理後の位相微分画像について、各OK領域の画素領域D1,D2の画素値が同一となるように、各OK領域ごとに各画素値に一定値を加算または減算する。なお、各画素領域D1,D2を複数の画素からなる領域とする場合には、該複数の画素値の平均値等を、各画素領域D1,D2の画素値とする。 Specifically, the level difference correction processing unit 47 generates the absorption differential image 60 as described above, and the OK / NG region detection unit 42 detects the OK in the absorption differential image 60 as shown in FIG. A region is set, and pixel regions D1 and D2 each including one or a plurality of pixels having substantially the same pixel value are extracted from each OK region. Then, a constant value is added to each pixel value for each OK region so that the pixel values of the pixel regions D1, D2 of each OK region are the same in the phase differential image after the tilt correction processing by the tilt correction processing unit 46. Or subtract. In addition, when each pixel area | region D1, D2 is made into the area | region which consists of a some pixel, let the average value of this some pixel value etc. be the pixel value of each pixel area | region D1, D2.
 また、段差補正処理部47は、画素領域D1,D2を、各OK領域中においてノイズが所定の閾値未満の領域に設定することが好ましい。こうすることで、画素領域D1,D2は、各OK領域内において被検体H(軟部組織や肉部)が存在する領域以外の素抜け領域に設定される。素抜け領域は、ノイズが少なく画素値の変化がほぼ一定であるため、OK領域間の段差が顕著に得られる。 Further, it is preferable that the level difference correction processing unit 47 sets the pixel areas D1 and D2 to areas where noise is less than a predetermined threshold in each OK area. In this way, the pixel areas D1 and D2 are set as a blank area other than the area where the subject H (soft tissue or flesh) exists in each OK area. In the blank area, there is little noise and the change in pixel value is almost constant, so that a step between the OK areas can be obtained remarkably.
 なお、本実施形態においても、プレ撮影により生成した補正画像を、本撮影で生成した吸収画像から減算または除算した後、吸収微分画像を生成してもよい。 In this embodiment as well, an absorption differential image may be generated after subtracting or dividing a correction image generated by pre-imaging from an absorption image generated by actual imaging.
 また、上記実施形態では、被検体HをX線源11と第1の格子21との間に配置しているが、被検体Hを第1の格子21と第2の格子22との間に配置してもよい。 In the above-described embodiment, the subject H is disposed between the X-ray source 11 and the first grating 21, but the subject H is disposed between the first grating 21 and the second grating 22. You may arrange.
 また、上記実施形態では、縞走査時に第2の格子22を格子線に直交する方向(X方向)に移動させているが、第2の格子22を格子線に対して傾斜する方向(XY平面内でX方向及びY方向に直交しない方向)に移動させてもよい。この場合には、第2の格子22の移動のX方向成分に基づいて、走査位置kを設定すればよい。第2の格子22を格子線に対して傾斜する方向に移動させることにより、縞走査の一周期分の走査に要するストローク(移動距離)が長くなるため、移動精度が向上するといった利点がある。 In the above-described embodiment, the second grating 22 is moved in the direction (X direction) perpendicular to the grid lines during fringe scanning. However, the second grid 22 is inclined with respect to the grid lines (XY plane). May be moved in a direction not orthogonal to the X direction and the Y direction. In this case, the scanning position k may be set based on the X-direction component of the movement of the second grating 22. By moving the second grating 22 in a direction inclined with respect to the grid line, the stroke (movement distance) required for scanning for one period of the fringe scanning becomes longer, and there is an advantage that the movement accuracy is improved.
 また、上記実施形態では、縞走査時に第2の格子22を移動させているが、第2の格子22に代えて、第1の格子21を格子線に直交する方向または傾斜する方向に移動させてもよい。 Moreover, in the said embodiment, although the 2nd grating | lattice 22 is moved at the time of fringe scanning, it replaces with the 2nd grating | lattice 22, and the 1st grating | lattice 21 is moved to the direction orthogonal to the grid line, or the direction which inclines. May be.
 また、上記第実施形態では、X線源11から射出されるコーンビーム状のX線を射出するX線源11を用いているが、平行ビーム状のX線を射出するX線源を用いることも可能である。この場合には、上式(1)に代えて、p=pをほぼ満たすように第1及び第2の格子21,22を構成すればよい。 In the first embodiment, the X-ray source 11 that emits cone-beam X-rays emitted from the X-ray source 11 is used. However, an X-ray source that emits parallel-beam X-rays is used. Is also possible. In this case, instead of the above equation (1), the first and second gratings 21 and 22 may be configured so as to substantially satisfy p 2 = p 1 .
 また、上記実施形態では、X線源11から射出されたX線を第1の格子21に入射させており、X線源11は単一焦点であるが、図18に示すように、X線源11の射出側直後(X線源11と第1の格子21との間)に、WO2006/131235号公報等に記されたマルチスリット(線源格子)70を設けることにより、X焦点を分散化してもよい。マルチスリット70の格子線はY方向に平行である。これより、高出力のX線源を用いることが可能となり、X線量が向上するため、位相微分画像の画質が向上する。この場合、マルチスリット70のピッチpは、下式(10)を満たす必要がある。ここで、距離Lは、マルチスリット70から第1の格子21までの距離を表す。 In the above embodiment, the X-rays emitted from the X-ray source 11 are incident on the first grating 21 and the X-ray source 11 has a single focal point. However, as shown in FIG. The X focus is dispersed by providing a multi-slit (source grating) 70 described in WO2006 / 131235 etc. immediately after the emission side of the source 11 (between the X-ray source 11 and the first grating 21). May be used. The grid lines of the multi slit 70 are parallel to the Y direction. As a result, it becomes possible to use a high-power X-ray source and the X-ray dose is improved, so that the image quality of the phase differential image is improved. In this case, the pitch p 0 of the multi slit 70 needs to satisfy the following expression (10). Here, the distance L 1 represents the distance from the multi slit 70 to the first grating 21.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 このようにマルチスリット70を設けた場合には、マルチスリット70の位置がX線焦点の位置となるため、上記実施形態の距離Lは、距離Lに置き換えられる。 When the multi slit 70 is provided in this way, the position of the multi slit 70 becomes the position of the X-ray focal point, and therefore the distance L 1 in the above embodiment is replaced with the distance L 0 .
 また、マルチスリット70を設けた場合には、マルチスリット70を固定したまま、第1の格子21または第2の格子22を移動させて縞走査を行うことの他に、第1及び第2の格子21,22を固定したまま、マルチスリット70を移動させることにより縞走査を行うことが可能である。この場合、マルチスリット70のピッチpを前述のMで割った値(p/M)を走査ピッチとして、マルチスリット70をX方向に間欠移動させればよい。これにより、第1及び第2の格子21,22に対するマルチスリット70の走査位置kは、k=0,1,2,・・・,M-1と順に変更される。 In addition, when the multi slit 70 is provided, the first and second stripes are scanned in addition to moving the first grating 21 or the second grating 22 while the multi slit 70 is fixed. It is possible to perform fringe scanning by moving the multi slit 70 while the gratings 21 and 22 are fixed. In this case, the multi slit 70 may be intermittently moved in the X direction using a value (p 0 / M) obtained by dividing the pitch p 0 of the multi slit 70 by M as described above. As a result, the scanning position k of the multi slit 70 with respect to the first and second gratings 21 and 22 is changed in order of k = 0, 1, 2,..., M−1.
 また、上記実施形態では、第1の格子21が入射X線を幾何光学的に投影するように構成しているが、WO2004/058070号公報等で知られているように、第1の格子21をタルボ効果が生じる構成としてもよい。第1の格子21でタルボ効果を生じさせるためには、X線の空間干渉性を高めるように、小焦点のX線光源を用いるか、マルチスリット70を用いればよい。 Moreover, in the said embodiment, although the 1st grating | lattice 21 is comprised so that incident X-ray may be projected geometrically optically, as known in WO2004 / 058070 etc., the 1st grating | lattice 21 is comprised. May be configured to generate the Talbot effect. In order to generate the Talbot effect in the first grating 21, a small-focus X-ray light source or a multi-slit 70 may be used so as to enhance the spatial coherence of X-rays.
 第1の格子21でタルボ効果が生じる場合には、第1の格子21の自己像(G1像)は、第1の格子21からZ方向にタルボ距離Zだけ離れた位置に生じる。このため、第1の格子21から第2の格子22までの距離Lをタルボ距離Zとする必要がある。この場合には、第1の格子21を位相型格子とすることも可能である。 If the Talbot effect in the first grating 21 occurs, the self-image of the first grating 21 (G1 image) occurs at a distance in the Z direction by the Talbot distance Z m from the first grating 21. Therefore, it is necessary to distance L 2 from the first grid 21 to the second grid 22 and Talbot distance Z m. In this case, the first grating 21 can be a phase-type grating.
 タルボ距離Zは、第1の格子21の構成とX線のビーム形状とに依存する。例えば、第1の格子21が吸収型格子であり、X線源11から射出されるX線がコーンビーム状である場合には、タルボ距離Zは、下式(11)で表される。ここで、「m」は、正の整数である。この場合には、格子ピッチp,pは、上式(1)をほぼ満たすように設定される(ただし、マルチスリット70を用いる場合には、距離Lは距離Lに置き換えられる)。 Talbot distance Z m is dependent on the beam shape of the structure and the X-ray of the first grating 21. For example, the first grating 21 are absorption type grating, X-rays emitted from the X-ray source 11 in the case of a cone beam shape, Talbot distance Z m is represented by the following formula (11). Here, “m” is a positive integer. In this case, the grating pitches p 1 and p 2 are set so as to substantially satisfy the above expression (1) (however, when the multi-slit 70 is used, the distance L 1 is replaced with the distance L 0 ). .
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 また、第1の格子21がX線にπ/2の位相変調を与える位相型格子であり、X線源11から射出されるX線がコーンビーム状である場合には、タルボ距離Zは、式(12)で表される。ここで、「m」は、「0」または正の整数である。この場合には、格子ピッチp,pは、式(1)をほぼ満たすように設定される(ただし、マルチスリット70を用いる場合には、距離Lは距離Lに置き換えられる)。 Further, when the first grating 21 is a phase-type grating that applies phase modulation of π / 2 to the X-ray, and the X-ray emitted from the X-ray source 11 has a cone beam shape, the Talbot distance Z m is And represented by equation (12). Here, “m” is “0” or a positive integer. In this case, the grating pitches p 1 and p 2 are set so as to substantially satisfy the expression (1) (however, when the multi slit 70 is used, the distance L 1 is replaced with the distance L 0 ).
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 また、第1の格子21がX線にπの位相変調を与える位相型格子であり、X線源11から射出されるX線がコーンビーム状である場合には、タルボ距離Zは、式(13)で表される。ここで、「m」は、「0」または正の整数である。この場合には、G1像のパターン周期が第1の格子21の格子周期の1/2倍となるため、格子ピッチp,pは、式(14)をほぼ満たすように設定される(ただし、マルチスリット70を用いる場合には、距離Lは距離Lに置き換えられる)。 In addition, when the first grating 21 is a phase-type grating that gives a phase modulation of π to the X-ray, and the X-ray emitted from the X-ray source 11 has a cone beam shape, the Talbot distance Z m is expressed by the equation It is represented by (13). Here, “m” is “0” or a positive integer. In this case, since the pattern period of the G1 image is ½ times the grating period of the first grating 21, the grating pitches p 1 and p 2 are set so as to substantially satisfy Expression (14) ( However, when using a multi-slit 70, the distance L 1 is replaced by a distance L 0).
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013

Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 また、第1の格子21が吸収型格子であり、X線源11から射出されるX線が平行ビーム状である場合には、タルボ距離Zは、式(15)で表される。ここで、「m」は、正の整数である。この場合には、格子ピッチp,pは、p=pの関係をほぼ満たすように設定される。 The first grating 21 is absorption grating, if X-rays emitted from the X-ray source 11 is a parallel beam shape, Talbot distance Z m is represented by the formula (15). Here, “m” is a positive integer. In this case, the lattice pitches p 1 and p 2 are set so as to substantially satisfy the relationship of p 2 = p 1 .
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 また、第1の格子21がX線にπ/2の位相変調を与える位相型格子であり、X線源11から射出されるX線が平行ビーム状である場合には、タルボ距離Zは、式(16)で表される。ここで、「m」は、「0」または正の整数である。この場合には、格子ピッチp,pは、p=pの関係をほぼ満たすように設定される。 Further, when the first grating 21 is a phase-type grating that applies phase modulation of π / 2 to X-rays, and the X-rays emitted from the X-ray source 11 are parallel beams, the Talbot distance Z m is And represented by equation (16). Here, “m” is “0” or a positive integer. In this case, the lattice pitches p 1 and p 2 are set so as to substantially satisfy the relationship of p 2 = p 1 .
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 そして、第1の格子21がX線にπの位相変調を与える位相型格子であり、X線源11から射出されるX線が平行ビーム状である場合には、タルボ距離Zは、式(17)で表される。ここで、「m」は、「0」または正の整数である。この場合には、G1像のパターン周期が第1の格子21の格子周期の1/2倍となるため、格子ピッチp,pは、p=p/2の関係をほぼ満たすように設定される。 When the first grating 21 is a phase-type grating that applies π phase modulation to X-rays, and the X-rays emitted from the X-ray source 11 are parallel beams, the Talbot distance Z m It is represented by (17). Here, “m” is “0” or a positive integer. In this case, since the pattern period of the G1 image is ½ times the grating period of the first grating 21, the grating pitches p 1 and p 2 almost satisfy the relationship of p 2 = p 1/2. Set to
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
 また、上記実施形態では、格子部12に第1及び第2の格子21,22の2つの格子を設けているが、第2の格子22を省略し、第1の格子21のみとすることも可能である。 In the above embodiment, the grating portion 12 is provided with the two gratings of the first and second gratings 21 and 22. However, the second grating 22 may be omitted and only the first grating 21 may be used. Is possible.
 例えば、特開平2009-133823号公報に記されたX線画像検出器を用いることにより、第2の格子22を省略し、第1の格子21のみとすることが可能である。このX線画像検出器は、X線を電荷に変換する変換層と、変換層において変換された電荷を収集する電荷収集電極とを備えた直接変換型のX線画像検出器であり、各画素の電荷収集電極が複数の線状電極群を備える。1つの線状電極群は、一定の周期で配列された線状電極を互いに電気的に接続したものであり、他の線状電極群と互いに位相が異なるように配置されている。この線状電極群が第2の格子22として機能し、線状電極群が複数存在することにより、一度の撮影で位相の異なる複数のG2像の検出が行われる。したがって、この構成では、走査機構23を省略することが可能である。 For example, by using an X-ray image detector described in Japanese Patent Laid-Open No. 2009-133823, the second grating 22 can be omitted and only the first grating 21 can be provided. This X-ray image detector is a direct conversion type X-ray image detector including a conversion layer that converts X-rays into electric charges and a charge collection electrode that collects electric charges converted in the conversion layer. The charge collection electrode includes a plurality of linear electrode groups. One linear electrode group is obtained by electrically connecting linear electrodes arranged at a constant period, and is arranged so that the phases thereof are different from those of other linear electrode groups. This linear electrode group functions as the second grating 22, and the presence of a plurality of linear electrode groups allows detection of a plurality of G2 images having different phases in one imaging. Therefore, in this configuration, the scanning mechanism 23 can be omitted.
 また、走査機構23を省略し、第1及び第2の格子21,22を介してX線画像検出器13により得られる単一の画像データに基づいて位相微分画像を生成する画素分割法が本出願人より提案されている(現在、WO2012/056724号として公開されている)。第1の格子21と第2の格子22とを、Z方向の回りに僅かに回転させて、Y方向に周期を有するモアレ縞をG2像に発生させる。X線画像検出器13により得られる単一の画像データを、モアレ縞に対して互いに位相が異なる画素行(X方向に並ぶ画素)の群に分割し、分割された複数の画像データを、縞走査により互いに異なる複数のG2像に基づくものと見なして、上記縞走査法と同様な手順で位相微分画像を生成する。この画素分割法において、前述の強度変調信号は、単一の画像データに生じるモアレ縞の1周期分の画素値の強度変化として表される。 In addition, a pixel division method for generating a phase differential image based on single image data obtained by the X-ray image detector 13 via the first and second gratings 21 and 22 without the scanning mechanism 23 is provided. It has been proposed by the applicant (currently published as WO2012 / 056724). The first grating 21 and the second grating 22 are slightly rotated around the Z direction, and moire fringes having a period in the Y direction are generated in the G2 image. The single image data obtained by the X-ray image detector 13 is divided into groups of pixel rows (pixels arranged in the X direction) having different phases from each other with respect to the moire fringes, and the plurality of divided image data are divided into fringes. Assuming that it is based on a plurality of G2 images that are different from each other by scanning, a phase differential image is generated in the same procedure as in the fringe scanning method. In this pixel division method, the intensity modulation signal described above is expressed as a change in intensity of pixel values for one cycle of moire fringes generated in single image data.
 さらに、画素分割法と同様に、走査機構23を省略し、第1及び第2の格子21,22を介してX線画像検出器13により得られる単一の画像データに基づいて位相微分画像を生成する方法として、WO2010/050483号公報に記載されたフーリエ変換法が知られている。このフーリエ変換法は、上記単一の画像データに対してフーリエ変換を行うことによりフーリエスペクトルを取得し、このフーリエスペクトルからキャリア周波数に対応したスペクトル(位相情報を担うスペクトル)を分離した後、逆フーリエ変換を行うことにより位相微分画像を生成する方法である。なお、このフーリエ変換法において、前述の強度変調信号は、画素分割法の場合と同様に、単一の画像データに生じるモアレ縞の1周期分の画素値の強度変化として表される。 Further, similarly to the pixel division method, the scanning mechanism 23 is omitted, and the phase differential image is obtained based on the single image data obtained by the X-ray image detector 13 via the first and second gratings 21 and 22. As a generation method, a Fourier transform method described in WO2010 / 050484 is known. This Fourier transform method obtains a Fourier spectrum by performing a Fourier transform on the single image data, separates a spectrum corresponding to a carrier frequency (a spectrum carrying phase information) from the Fourier spectrum, and then reverses the spectrum. In this method, a phase differential image is generated by performing Fourier transform. In this Fourier transform method, the intensity modulation signal described above is expressed as a change in intensity of pixel values for one cycle of moire fringes generated in a single image data, as in the case of the pixel division method.
 本発明は、医療診断用の放射線撮影装置の他に、工業用の放射線撮影装置等に適用することが可能である。また、放射線は、X線以外に、ガンマ線等を用いることも可能である。 The present invention can be applied to an industrial radiography apparatus and the like in addition to a radiography apparatus for medical diagnosis. In addition to X-rays, gamma rays or the like can be used as radiation.

Claims (19)

  1.  放射線を放出する放射線源と、
     被検体を透過した前記放射線を検出して画像データを生成する放射線検出器と、
     前記放射線源と前記放射線検出器との間に配置された格子部と、
     前記画像データに基づき、位相微分値が所定の範囲内にラップされた状態の位相微分画像を生成する位相微分画像生成部と、
     前記被検体を配置しない状態で前記位相微分画像生成部により生成された前記位相微分画像をオフセット画像として記憶するオフセット画像記憶部と、
     前記被検体を配置した状態で前記位相微分画像生成部により生成された前記位相微分画像から、アンラップエラーが生じやすいNG領域を検出し、これ以外の領域をOK領域とするとともに、このOK領域に対応する前記オフセット画像中の領域をOK領域とするOK/NG領域検出部と、
     前記位相微分画像と前記オフセット画像とのそれぞれについて、前記OK領域のみをアンラップ処理するアンラップ処理部と、
     前記アンラップ処理が行われた位相微分画像から、前記アンラップ処理が行われたオフセット画像を減算するオフセット補正を行うオフセット処理部と、
     前記オフセット補正が行われた位相微分画像のうち、前記OK領域に残存しており、ほぼ一定の傾きを有するノイズを除去する傾き補正処理を行う傾き補正処理部と、
     前記OK領域間に形成される段差を除去する段差補正処理を行う段差補正処理部と、
     を備えることを特徴とする放射線撮影装置。
    A radiation source that emits radiation; and
    A radiation detector that detects the radiation transmitted through the subject and generates image data;
    A grating portion disposed between the radiation source and the radiation detector;
    Based on the image data, a phase differential image generation unit that generates a phase differential image in a state where the phase differential value is wrapped within a predetermined range;
    An offset image storage unit that stores the phase differential image generated by the phase differential image generation unit in a state where the subject is not disposed as an offset image;
    From the phase differential image generated by the phase differential image generation unit in a state where the subject is arranged, an NG region in which an unwrap error is likely to occur is detected, and other regions are set as OK regions and An OK / NG area detecting unit that sets an area in the corresponding offset image as an OK area;
    An unwrap processing unit that unwraps only the OK region for each of the phase differential image and the offset image;
    An offset processing unit for performing offset correction for subtracting the offset image on which the unwrap processing has been performed from the phase differential image on which the unwrap processing has been performed;
    An inclination correction processing unit that performs an inclination correction process for removing noise having a substantially constant inclination that remains in the OK region among the phase differential images subjected to the offset correction;
    A step correction processing unit for performing a step correction process for removing a step formed between the OK regions;
    A radiation imaging apparatus comprising:
  2.  前記OK領域が複数存在するか否かを判定する判定部をさらに備え、
     前記傾き補正処理部及び前記段差補正処理部は、前記OK領域が複数存在する場合にのみ前記各処理を行うことを特徴とする請求項1に記載の放射線撮影装置。
    A determination unit that determines whether there are a plurality of the OK regions;
    The radiation imaging apparatus according to claim 1, wherein the inclination correction processing unit and the step correction processing unit perform the processes only when there are a plurality of the OK regions.
  3.  前記傾き補正処理部は、前記オフセット補正が行われた位相微分画像について、前記OK領域の画素値の一方向への変化を線形式または多項式でフィッティングすることにより補正関数を求め、この補正関数を前記一方向と直交する方向に拡張することにより2次元の傾き補正画像を作成し、この傾き補正画像に基づいて前記ノイズを除去することを特徴とする請求の範囲第2項に記載の放射線撮影装置。 The inclination correction processing unit obtains a correction function for the phase differential image subjected to the offset correction by fitting a change in the pixel value of the OK region in one direction with a linear form or a polynomial, and calculates the correction function. The radiography according to claim 2, wherein a two-dimensional tilt correction image is created by extending in a direction orthogonal to the one direction, and the noise is removed based on the tilt correction image. apparatus.
  4.  前記傾き補正処理部は、前記OK領域が複数存在し、隣り合う前記OK領域の補正関数の傾きが近い場合に、該隣り合う前記OK領域の画素値の一方向への変化を線形式または多項式でまとめてフィッティングすることにより補正関数を求め、この補正関数を前記隣り合うOK領域の補正関数とすることを特徴とする請求の範囲3項に記載の放射線撮影装置。 The inclination correction processing unit is configured to change a pixel value of the adjacent OK region in one direction in a linear form or a polynomial when there are a plurality of the OK regions and the inclination of the correction function of the adjacent OK regions is close. 4. The radiographic apparatus according to claim 3, wherein a correction function is obtained by fitting together in step (1), and the correction function is used as a correction function for the adjacent OK region.
  5.  前記傾き補正処理部は、前記オフセット補正が行われた位相微分画像に存在する前記OK領域内で、2方向への画素値の変化を線形式または多項式でフィッティングすることにより第1及び第2の補正関数を求め、この第1及び第2の補正関数に基づいて2次元の傾き補正画像を作成し、この傾き補正画像に基づいて前記ノイズを除去することを特徴とする請求の範囲第2項に記載の放射線撮影装置。 The inclination correction processing unit performs first and second fitting by fitting a change in pixel value in two directions with a linear form or a polynomial in the OK region existing in the phase differential image subjected to the offset correction. The correction function is obtained, a two-dimensional tilt correction image is created based on the first and second correction functions, and the noise is removed based on the tilt correction image. The radiation imaging apparatus described in 1.
  6.  前記段差補正処理部は、前記傾き補正処理後の位相微分画像について、各OK領域の少なくとも一部の領域について画素値の平均値を算出し、各OK領域で該平均値が同一となるように、各OK領域ごとに画素値に一定値を加算または減算することを特徴とする請求の範囲第2項に記載の放射線撮影装置。 The step correction processing unit calculates an average value of pixel values for at least a part of each OK region in the phase differential image after the tilt correction processing, and the average value is the same in each OK region. The radiation imaging apparatus according to claim 2, wherein a constant value is added to or subtracted from the pixel value for each OK region.
  7.  前記アンラップ処理部は、前記OK領域を一方向に貫通する貫通ラインに沿って起点を設定し、前記各起点間のアンラップ処理と、前記各起点から前記貫通ラインに直交する直線経路に沿ったアンラップ処理と行うことを特徴とする請求の範囲第1項に記載の放射線撮影装置。 The unwrap processing unit sets a starting point along a penetrating line that penetrates the OK region in one direction, and unwraps between the starting points and unwraps along a straight path perpendicular to the penetrating line from the starting point. The radiation imaging apparatus according to claim 1, wherein the radiation imaging apparatus performs processing.
  8.  前記アンラップ処理部は、前記起点から見て前記NG領域の背後に残存する前記OK領域内の画素に対するアンラップ処理をさらに行うことを特徴とする請求の範囲第7項に記載の放射線撮影装置。 The radiation imaging apparatus according to claim 7, wherein the unwrap processing unit further performs unwrap processing for pixels in the OK region remaining behind the NG region as viewed from the starting point.
  9.  前記アンラップ処理部は、前記NG領域の背後に残存する画素に対するアンラップ処理の回数が少なくなるように前記起点の設定方向を決定することを特徴とする請求の範囲第8項に記載の放射線撮影装置。 9. The radiation imaging apparatus according to claim 8, wherein the unwrap processing unit determines the setting direction of the starting point so that the number of times of unwrap processing for pixels remaining behind the NG region is reduced. .
  10.  前記アンラップ処理部は、四角形をした前記位相微分画像のいずれかの一辺に沿って前記起点を設定することを特徴とする請求の範囲第7項に記載の放射線撮影装置。 The radiation imaging apparatus according to claim 7, wherein the unwrap processing unit sets the starting point along any one side of the quadrilateral phase differential image.
  11.  前記格子部は、放射線源からの放射線を通過させて第1の周期パターン像を生成する第1の格子と、前記第1の周期パターン像を部分的に遮蔽して第2の周期パターン像を生成する第2の格子と有し、
     前記放射線画像検出器は、前記第2の周期パターン像を検出して前記画像データを生成することを特徴とする請求の範囲第1項に記載の放射線撮影装置。
    The grating unit partially shields the first periodic pattern image by passing the radiation from the radiation source to generate the first periodic pattern image, and displays the second periodic pattern image. A second grid to generate,
    The radiation imaging apparatus according to claim 1, wherein the radiation image detector generates the image data by detecting the second periodic pattern image.
  12.  前記位相微分画像生成部は、前記放射線検出器により得られる単一の画像データに基づいて前記位相微分画像を生成することを特徴とする請求の範囲第11項に記載の放射線撮影装置。 The radiation imaging apparatus according to claim 11, wherein the phase differential image generation unit generates the phase differential image based on single image data obtained by the radiation detector.
  13.  前記格子部は、前記第1の格子または前記第2の格子を所定の走査ピッチで移動させ、複数の走査位置に順に設定する走査機構をさらに有し、
     前記放射線画像検出器は、前記各走査位置で前記第2の周期パターン像を検出して前記画像データを生成し、
     前記位相微分画像生成部は、前記複数の走査位置において前記放射線画像検出器により生成された複数の画像データに基づいて前記位相微分画像を生成することを特徴とする請求の範囲第11項に記載の放射線撮影装置。
    The grating unit further includes a scanning mechanism that moves the first grating or the second grating at a predetermined scanning pitch and sequentially sets a plurality of scanning positions.
    The radiation image detector detects the second periodic pattern image at each scanning position and generates the image data;
    The phase differential image generation unit generates the phase differential image based on a plurality of image data generated by the radiation image detector at the plurality of scanning positions. Radiography equipment.
  14.  前記走査機構は、前記第1の格子または前記第2の格子を、その格子線に直交または傾斜する方向に移動させることを特徴とする請求の範囲第13項に記載の放射線撮影装置。 The radiation imaging apparatus according to claim 13, wherein the scanning mechanism moves the first grating or the second grating in a direction perpendicular to or inclined with respect to the grating line.
  15.  前記OK/NG領域検出部は、前記複数の走査位置に対する前記画像データの画素値の強度変化を表す強度変調信号の平均強度、振幅、ビジビリティのうち1つまたは複数の組み合わせに基づいて前記NG領域を検出することを特徴とする請求の範囲第13項に記載の放射線撮影装置。 The OK / NG area detection unit is configured to generate the NG area based on one or a combination of an average intensity, an amplitude, and a visibility of an intensity modulation signal representing an intensity change of a pixel value of the image data with respect to the plurality of scanning positions. The radiation imaging apparatus according to claim 13, wherein:
  16.  前記OK/NG領域検出部は、前記複数の走査位置に対する前記画像データの画素値の強度変化を表す強度変調信号の平均強度に基づいて吸収画像を生成し、この吸収画像に微分処理を施すことにより吸収微分画像を生成し、この吸収微分画像に基づいて前記NG領域を検出することを特徴とする請求の範囲第13項に記載の放射線撮影装置。 The OK / NG region detection unit generates an absorption image based on an average intensity of an intensity modulation signal representing an intensity change of a pixel value of the image data with respect to the plurality of scanning positions, and performs a differentiation process on the absorption image. The radiation imaging apparatus according to claim 13, wherein an absorption differential image is generated by the method and the NG region is detected based on the absorption differential image.
  17.  前記段差補正処理部は、前記吸収微分画像内に、前記OK領域を設定するとともに、前記各OK領域中から画素値がほぼ同一の画素領域を抽出し、前記傾き補正処理が行われた位相微分画像について、前記各OK領域の画素領域の画素値が同一となるように、前記各OK領域ごとに各画素値に一定値を加算または減算することを特徴とする請求の範囲第16項に記載の放射線撮影装置。 The step correction processing unit sets the OK region in the absorption differential image, extracts a pixel region having substantially the same pixel value from each OK region, and performs the phase differentiation in which the tilt correction processing has been performed. 17. The image according to claim 16, wherein a constant value is added to or subtracted from each pixel value for each OK region so that the pixel values of the pixel regions of the OK regions are the same for the image. Radiography equipment.
  18.  吸収画像、吸収微分画像、小角散乱画像のうちいずれかを生成し、前記位相微分画像の前記NG領域を置換するNG領域画像置換部をさらに備えることを特徴とする請求の範囲第13項に記載の放射線撮影装置。 The NG region image replacement unit that generates any one of an absorption image, an absorption differential image, and a small-angle scattered image and replaces the NG region of the phase differential image, further comprising: Radiography equipment.
  19.  被検体を配置しない状態において、放射線源から射出され、格子部を通過した放射線を検出して画像データを生成し、この画像データに基づき、位相微分値が所定の範囲内にラップされた状態の位相微分画像を生成して、これをオフセット画像として記憶するプレ撮影工程と、
     被検体を配置した状態において、前記放射線源から射出され、被検体及び前記格子部を通過した放射線を検出して画像データを生成し、この画像データに基づき、位相微分値が所定の範囲内にラップされた状態の位相微分画像を生成する本撮影工程と、
     前記位相微分画像内から、アンラップエラーが生じやすいNG領域を検出し、これ以外の領域をOK領域とするとともに、このOK領域に対応する前記オフセット画像中の領域をOK領域とするOK/NG領域検出工程と、
     前記位相微分画像と前記オフセット画像とのそれぞれについて、前記OK領域のみをアンラップ処理するアンラップ処理工程と、
     前記アンラップ処理が行われた前記位相微分画像から、前記アンラップ処理が行われた前記オフセット画像を減算するオフセット補正を行うオフセット処理工程と、
     前記オフセット補正が行われた位相微分画像の前記OK領域に残存するほぼ一定の傾きを有するノイズを除去する傾き補正処理工程と、
     前記OK領域間に形成される段差を除去する段差補正処理工程と、
     を備えることを特徴とする放射線撮影方法。
    In a state in which the subject is not arranged, the radiation emitted from the radiation source and detected through the lattice portion is generated to generate image data. Based on this image data, the phase differential value is wrapped within a predetermined range. A pre-shooting step of generating a phase differential image and storing this as an offset image;
    In a state in which the subject is arranged, the radiation emitted from the radiation source and passed through the subject and the lattice unit is detected to generate image data. Based on the image data, the phase differential value is within a predetermined range. A main photographing process for generating a phase differential image in a wrapped state;
    An NG area in which an unwrap error is likely to occur is detected from the phase differential image, and an area other than this is set as an OK area, and an area in the offset image corresponding to the OK area is set as an OK area. A detection process;
    For each of the phase differential image and the offset image, an unwrap processing step of unwrapping only the OK region;
    An offset processing step for performing offset correction for subtracting the offset image on which the unwrap processing has been performed from the phase differential image on which the unwrap processing has been performed;
    An inclination correction processing step of removing noise having a substantially constant inclination remaining in the OK region of the phase differential image subjected to the offset correction;
    A step correction processing step of removing a step formed between the OK regions;
    A radiation imaging method comprising:
PCT/JP2012/077058 2011-11-01 2012-10-19 Radiographic imaging method and device WO2013065502A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011240132 2011-11-01
JP2011-240132 2011-11-01
JP2012224749A JP2013116313A (en) 2011-11-01 2012-10-10 Radiographic imaging method and device
JP2012-224749 2012-10-10

Publications (1)

Publication Number Publication Date
WO2013065502A1 true WO2013065502A1 (en) 2013-05-10

Family

ID=48191857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077058 WO2013065502A1 (en) 2011-11-01 2012-10-19 Radiographic imaging method and device

Country Status (2)

Country Link
JP (1) JP2013116313A (en)
WO (1) WO2013065502A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107533024A (en) * 2015-04-06 2018-01-02 三菱电机株式会社 Nondestructive inspection system and critical points detection system
CN108201444A (en) * 2016-12-20 2018-06-26 株式会社岛津制作所 X ray phase camera

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6478709B2 (en) * 2015-02-27 2019-03-06 キヤノン株式会社 Image processing apparatus, image processing apparatus control method, and program
US11266363B2 (en) 2016-02-17 2022-03-08 Rensselaer Polytechnic Institute Energy-sensitive multi-contrast cost-effective CT system
JP6909377B2 (en) * 2016-07-11 2021-07-28 高知県公立大学法人 Inspection system and inspection method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008026098A (en) * 2006-07-20 2008-02-07 Hitachi Ltd X-ray imaging apparatus and imaging method
US8005185B2 (en) * 2008-09-24 2011-08-23 Siemens Aktiengesellschaft Method to determine phase and/or amplitude between interfering, adjacent x-ray beams in a detector pixel in a talbot interferometer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008026098A (en) * 2006-07-20 2008-02-07 Hitachi Ltd X-ray imaging apparatus and imaging method
US8005185B2 (en) * 2008-09-24 2011-08-23 Siemens Aktiengesellschaft Method to determine phase and/or amplitude between interfering, adjacent x-ray beams in a detector pixel in a talbot interferometer

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NAOKI SUNAGUCHI ET AL.: "A Robust Phase Unwrapping Method for Phase-Contrast X-Ray CT Using Genetic Algorithm", MEDICAL IMAGING TECHNOLOGY, vol. 22, no. 4, September 2004 (2004-09-01), pages 175 - 184 *
ZHI-PEI LIANG ET AL.: "A Model-Based Method for Phase Unrapping", IEEE TRANSACTION ON MEDICAL IMAGEING, vol. 15, no. 6, December 1996 (1996-12-01), pages 893 - 897, XP011035600 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107533024A (en) * 2015-04-06 2018-01-02 三菱电机株式会社 Nondestructive inspection system and critical points detection system
CN107533024B (en) * 2015-04-06 2020-01-03 三菱电机株式会社 Nondestructive inspection system and critical point inspection system
CN108201444A (en) * 2016-12-20 2018-06-26 株式会社岛津制作所 X ray phase camera

Also Published As

Publication number Publication date
JP2013116313A (en) 2013-06-13

Similar Documents

Publication Publication Date Title
JP5475737B2 (en) Radiation imaging apparatus and image processing method
JP5378335B2 (en) Radiography system
JP5731214B2 (en) Radiation imaging system and image processing method thereof
JP2012090944A (en) Radiographic system and radiographic method
JP2011218147A (en) Radiographic system
JP2011224329A (en) Radiation imaging system and method
JP2012090945A (en) Radiation detection device, radiographic apparatus, and radiographic system
JP2011224330A (en) Radiation imaging system and offset correction method therefor
JP2012143497A (en) Radiation imaging system and control method thereof
WO2013065502A1 (en) Radiographic imaging method and device
JP2011206490A (en) Radiographic system and radiographic method
WO2012073710A1 (en) Radiography system and radiography method
WO2012057022A1 (en) Radiography system and radiography method
JP2014138625A (en) Radiographic apparatus and image processing method
WO2013038881A1 (en) Radiography device and image processing method
WO2013027536A1 (en) Radiography device and radiography method
JP2013042788A (en) Radiographic apparatus and unwrapping processing method
WO2013027519A1 (en) Radiography device and unwrapping method
JP5635169B2 (en) Radiography system
JP5610480B2 (en) Radiation image processing apparatus and method
JP2011206162A (en) Radiographic system and method
JP2013063098A (en) Radiographic apparatus and image processing method
WO2013099467A1 (en) Radiographic method and apparatus
JP2012228301A (en) Radiographic apparatus
WO2013088878A1 (en) Radiographic method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12846597

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12846597

Country of ref document: EP

Kind code of ref document: A1