WO2013051702A1 - Seismic isolation support device for traveling crane - Google Patents
Seismic isolation support device for traveling crane Download PDFInfo
- Publication number
- WO2013051702A1 WO2013051702A1 PCT/JP2012/075988 JP2012075988W WO2013051702A1 WO 2013051702 A1 WO2013051702 A1 WO 2013051702A1 JP 2012075988 W JP2012075988 W JP 2012075988W WO 2013051702 A1 WO2013051702 A1 WO 2013051702A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- flange portions
- seismic isolation
- elastic
- lower flange
- crane
- Prior art date
Links
- 238000002955 isolation Methods 0.000 title claims abstract description 59
- 239000013013 elastic material Substances 0.000 claims abstract description 41
- 238000006073 displacement reaction Methods 0.000 description 18
- 229910000831 Steel Inorganic materials 0.000 description 14
- 239000010959 steel Substances 0.000 description 14
- 239000000463 material Substances 0.000 description 8
- 230000004044 response Effects 0.000 description 8
- 230000001133 acceleration Effects 0.000 description 7
- 230000004048 modification Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 230000005284 excitation Effects 0.000 description 5
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 238000013016 damping Methods 0.000 description 4
- 238000005452 bending Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000036316 preload Effects 0.000 description 2
- 238000007792 addition Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000010485 coping Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000000452 restraining effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66C—CRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
- B66C15/00—Safety gear
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66C—CRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
- B66C5/00—Base supporting structures with legs
Definitions
- the present invention relates to a seismic isolation support device for a traveling crane.
- This application claims priority based on Japanese Patent Application No. 2011-2222048 filed in Japan on October 6, 2011, the contents of which are incorporated herein by reference.
- a container crane which is an example of a traveling crane and is used in a harbor or the like, has a crane body in which support legs are formed in a gate shape.
- the crane body travels along the rail on the quay by means of wheels (traveling devices) provided at the lower support legs at the four corners.
- an excitation force in a direction orthogonal to the traveling direction of the traveling crane acts on the crane body as an external force.
- the crane body has flexibility, the crane body is flexible even if a small-scale or medium-scale earthquake occurs and an excitation force acts in a direction perpendicular to the traveling direction. It can be deformed to absorb the excitation force, and is less likely to cause problems with the traveling crane.
- Patent Documents 1 and 2 The seismic isolation structure for coping with this problem is disclosed in Patent Documents 1 and 2 below.
- the support legs of the traveling crane are provided with upper and lower flange portions that are divided into upper and lower portions and can be connected to each other, on the opposing surfaces of these upper and lower flange portions, A contact surface having a predetermined contact width in the left-right direction perpendicular to the crane traveling direction and transmitting a load in the vertical direction is formed. Further, a gap is formed outside the both end portions of the contact surface in the left-right direction, and both end portions of the upper and lower flange portions where the gap is formed are connected vertically by a connecting tool via an elastic material. .
- a trigger is formed by the contact surface, the gap, and the elastic material.
- the contact surfaces can be kept in contact with each other, so that the support legs are held in a fixed state.
- the upper and lower support legs are bent against the pre-compression force and pre-tension force of the elastic material, thereby preventing the support legs from being damaged.
- the flanges opened by bending of the support legs are always urged in the closing direction by the restoring force of the elastic material, so that they are bent when the earthquake stops. The supported legs are restored to the normal fixed state.
- the present invention has been made in view of the above-described conventional problems.
- the support leg can be bent when a large-scale earthquake occurs, the seismic isolation cycle can be extended with a simple configuration, and the response acceleration of the crane body can be reduced.
- a seismic isolation support device for a traveling crane is divided into upper and lower support legs of a crane main body and can be connected to each other, and upper and lower flange portions.
- a seismic isolation structure having a connecting tool that connects the top and bottom with an elastic material. Abutting surfaces that contact each other with a contact width in the width direction intersecting the crane traveling direction and transmit a load in the vertical direction are formed on the opposing surfaces of the upper and lower flange portions, respectively.
- a gap that allows the inclination of the flange portion is formed between the upper and lower flange portions on the outer sides of both end portions in the width direction of the contact surface.
- An elastic-plastic brace for connecting the upper and lower flange portions up and down is provided.
- the elastic-plastic brace is a center position in the width direction or the center position of the upper and lower flange portions. With respect to the width direction.
- the connector is a center position in the width direction of the upper and lower flange portions or the It arrange
- a vertical direction is provided at an end of the contact surface in the width direction.
- a fulcrum pin that supports the load and serves as a fulcrum for the inclination of the upper and lower flange portions is provided.
- the support leg can be held with high support rigidity during normal operation, and the support leg can be bent when a large-scale earthquake occurs.
- the seismic isolation effect can be enhanced by extending the base isolation cycle with a simple configuration.
- the response acceleration can be reduced by suppressing the contact surface from contacting with an impact force.
- FIG. 2B is a plan view taken along line IIB-IIB in FIG. 2A. It is a side view of an elastic-plastic brace.
- FIG. 3B is an arrow view taken along line IIIB-IIIB in FIG. 3A. It is a front view which shows the state which the support leg of FIG. 2A bent. It is a top view which shows the 1st modification of one Embodiment of this invention. It is a top view which shows the 2nd modification of one Embodiment of this invention.
- FIG. 1 shows a crane body 1 constituting at least a part of a traveling crane (not shown) used in a harbor portion.
- the crane body 1 includes a horizontal member 2, a sea-side support leg 3 and a land-side support leg 4 that are integrally fixed by the horizontal member 2.
- the horizontal member 2, the sea-side support leg 3, and the land-side support leg 4 form a gate-shaped leg structure.
- the wheels 5 provided at the lower ends of the sea side support legs 3 and the land side support legs 4 are configured to be able to travel along the sea side rails 6 and the land side rails 7 on the quay. That is, the crane main body 1 is configured to be movable in a direction perpendicular to a plane including the gate-shaped leg structure (direction perpendicular to the paper surface of FIG. 1).
- the seismic isolation support device 100 is provided on the upper part of each of the sea side support legs 3 and the land side support legs 4.
- the base isolation support device 100 includes a base isolation structure 200 and an elastic-plastic brace 300.
- the sea-side support leg 3 includes an upper member 3a and a lower member 3b that are divided vertically
- the land-side support leg 4 includes an upper member 4a and a lower member 4b that are divided vertically.
- the seismic isolation structure 200 is provided in each connection part of upper member 3a, 4a and lower member 3b, 4b, respectively.
- Each seismic isolation structure 200 is divided into upper and lower parts and can be connected to upper and lower flange parts 8 and 9, and a connecting tool that vertically connects the upper and lower flange parts 8 and 9 via an elastic material 13 to be described later. 14.
- the upper and lower flange portions 8 and 9 are formed so as to protrude outward from the periphery of the support legs 3 and 4.
- the opposing surfaces of the upper and lower flange portions 8 and 9 have a predetermined contact width L in the left-right direction (width direction) orthogonal to the crane traveling direction (direction perpendicular to the paper surface).
- Horizontal contact surfaces 10 are respectively formed.
- the contact surfaces 10 on the opposing surfaces of the upper and lower flange portions 8 and 9 are in contact with each other.
- the contact surface 10 is configured to be able to transmit the load of the upper members 3a, 4a, etc., to the lower members 3b, 4b in the vertical direction (the vertical direction of the paper).
- gaps 11 and 12 that allow the flange portion 8 or 9 to be inclined are formed between the upper and lower flange portions 8 and 9 outside the both ends of the contact surface 10 in the left-right direction. Accordingly, both end portions of the contact surface 10 in the left-right direction can be fulcrums when the flange portions 8 or 9 are inclined.
- the connecting tool 14 connects the both ends in the left-right direction in which the gaps 11 and 12 in the flange portions 8 and 9 are formed via the elastic material 13 up and down.
- the elastic member 13 shown in FIGS. 2A and 2B has a configuration in which spring elements 13s such as a plurality of disc springs are fastened by a connector 14.
- the resilience strength (spring constant) of the elastic member 13 and the tightening strength by the coupler 14 are determined so as to obtain a predetermined precompression force in accordance with the magnitude of the assumed earthquake.
- the cross-sectional shape in the horizontal direction of the support legs 3 and 4 of the large crane main body 1 is generally a rectangular shape as shown in FIG. 2B.
- the outer elastic member 13A and the inner elastic member 13B are arranged in a row (in a row in the crane traveling direction) so as to sandwich the left and right side plates 15 of the support legs 3 and 4, respectively.
- the connector 14 is disposed at a position that is symmetrical in the left-right direction with respect to the center position in the left-right direction of the upper and lower flange portions 8, 9.
- the contact surface 10 of the flange portions 8 and 9 is formed so as to be located at the center between the left and right side plates 15 and 15. Further, the gaps 11 and 12 formed on both sides of the contact surface 10 in the left-right direction are formed by providing an inclined surface 16 on the upper surface of the lower flange portion 9 as shown in FIGS. 1 and 2A. Forming.
- the inclination angle ⁇ of the inclined surface 16 is determined from the magnitude of the assumed earthquake and the length of the lower members 3b, 4b of the support legs 3, 4.
- the gaps 11 and 12 may be formed by providing inclined surfaces on the lower surface of the upper flange portion 8, and inclined surfaces on both the lower surface of the upper flange portion 8 and the upper surface of the lower flange portion 9. You may form by providing.
- the gaps 11 and 12 may be parallel gaps formed between the upper and lower flange portions 8 and 9 in addition to the inclined surfaces. That is, the lower surface and the upper surface of the upper and lower flange portions 8 and 9 forming the gaps 11 and 12 may be formed in parallel to each other.
- fulcrum pins 17, 18 extending in the front-rear direction (crane traveling direction) along the both end portions are provided.
- the fulcrum pins 17 and 18 are configured to transmit the load of the upper members 3a and 4a to the lower members 3b and 4b and serve as fulcrums when the upper and lower flange portions 8 and 9 are inclined and opened. .
- the load of the upper members 3a and 4a is transmitted to the lower members 3b and 4b by the contact surface 10, and the flanges with both end portions in the left-right direction of the contact surface 10 as fulcrums.
- You may comprise so that the parts 8 and 9 may incline.
- the seismic isolation structure 200 is formed by the contact surfaces 10 and the gaps 11 and 12 provided in the flange portions 8 and 9, the elastic material 13 and the coupling tool 14, and the fulcrum pins 17 and 18.
- the elastic member 13 is configured by the spring element 13s such as a pre-compressed disc spring
- a pre-compressed compression spring or a pre-compressed elastic rubber may be used as the elastic member.
- an elastic-plastic brace 300 configured to connect the flange portions 8 and 9 vertically is provided at the center position of the upper and lower flange portions 8 and 9 in the left-right direction. It has been.
- An example of the elastoplastic brace 300 includes a steel plate 19 and a buckling restraint 21 as shown in FIGS. 3A and 3B.
- the steel plate 19 is formed of an elastoplastic history steel material having a yield point set lower than that of the steel material constituting the crane body 1 (support legs 3 and 4) of FIG. 1, and is assembled so as to have a cross shape when viewed from the vertical direction. In addition, it is configured to extend in the vertical direction.
- the buckling restraining material 21 is provided so as to surround an intermediate portion in the length direction of the steel plate 19 assembled in a cross shape, and the inside thereof is filled with a mortar 20 for buckling prevention.
- the elastoplastic hysteresis steel material is a steel material that is elastically deformed in a range where the displacement is small and plastically deforms when the displacement exceeds a predetermined value.
- the steel plate 19 is formed with a bolt hole 24A into which a fixing bolt 24 described later is inserted.
- 3A and 3B are arranged so as to penetrate through the openings 22 formed in the upper and lower flange portions 8 and 9 in FIG. 2A.
- the upper end of the elastoplastic brace 300 is fixed to a fixing member 23 a provided on the upper surface of the upper flange portion 8 with bolts 24, and the lower end of the elastoplastic brace 300 is fixed to the lower surface of the lower flange portion 9. It is fixed to the member 23b with bolts 24.
- the elastoplastic brace 300 has a center position in the left-right direction inside the fulcrum pins 17 and 18 that set the contact width L (see FIG. 2A) of the flange portions 8 and 9. And it is provided in one place of the center position (up-down center position of FIG. 2B) in a crane traveling direction. Note that a plurality of elastoplastic braces 300 may be provided at the center positions of the flange portions 8 and 9 in the left-right direction as shown by the broken lines in FIG. 2B.
- a plurality of elastoplastic braces 300 may be arranged side by side in the crane traveling direction at the center position of the flange portions 8 and 9 in the left-right direction. Furthermore, it may be provided in a plurality of rows inside the fulcrum pins 17 and 18 (in the crane traveling direction). As described above, in FIGS. 1, 2 ⁇ / b> A and 2 ⁇ / b> B, the elastic-plastic brace 300 is disposed inside the fulcrum pins 17 and 18, and the elastic member 13 (connector 14) is disposed outside the fulcrum pins 17 and 18. is doing.
- the left and right end portions of the upper and lower flange portions 8 and 9 are prevented from being displaced in the left and right directions, and the upper members 3a and 4a are Each of the members 3b and 4b is provided with a stopper 25 for preventing the member 3b and 4b from being greatly bent and inclined. Further, stoppers 26 are provided at both ends of the upper and lower flange portions 8 and 9 in the front-rear direction to prevent the upper and lower flange portions 8 and 9 from being displaced in the front-rear direction.
- FIG. 5 is a plan view showing a first modification of the embodiment of the present invention.
- FIG. 5 shows a configuration in which the elastic member 13 and the elastoplastic brace 300 are arranged outside the fulcrum pins 17 and 18 (outside in the left-right direction).
- FIG. 5 shows a configuration in which the elastic-plastic brace 300 and the elastic material 13 are mixed and arranged outside the side plates 15 of the support legs 3 and 4, but the elastic plates are arranged inside the side plates 15 and outside the fulcrum pins 17 and 18.
- the plastic brace 300 and the elastic material 13 may be mixed and arranged.
- the elastic-plastic brace 300 may be disposed on one of the inner side and the outer side of the side plate 15 and the elastic member 13 may be disposed on the other side.
- 6A and 6B are plan views showing second and third modifications of the embodiment of the present invention, respectively.
- 6A and 6B show a configuration in which the elastic member 13 and the elastic-plastic brace 300 are arranged on the inner side (the inner side in the left-right direction) than the fulcrum pins 17 and 18.
- FIG. 6A shows a case where the elastic member 13 (connector 14) is arranged at the center position inside the fulcrum pins 17 and 18, and the elastic-plastic brace 300 is arranged on both the left and right sides of the elastic member 13. That is, the connector 14 is disposed at the center position in the left-right direction of the upper and lower flange portions 8, 9.
- a plurality of elastoplastic braces 300 are arranged at positions that are symmetrical in the left-right direction with respect to the center position.
- FIG. 6B shows a case where the elastic-plastic brace 300 is arranged at the center position inside the fulcrum pins 17, 18 and the elastic member 13 is arranged on both the left and right sides of the elastic-plastic brace 300. That is, the elastic-plastic brace 300 is disposed at the center position in the left-right direction of the upper and lower flange portions 8, 9.
- the some connector 14 (elastic material 13) is arrange
- the installation number and installation position of the elastic material 13 and the elastic-plastic brace 300 can be arbitrarily selected.
- the elastic material 13 and the elastoplastic brace 300 described above are provided in the left and right directions of the upper and lower flange portions 8 and 9 so that the same base isolation performance can be exhibited even when the upper and lower flange portions 8 and 9 are inclined to the left and right. It is preferable to arrange them at the center position or at a position that is symmetrical in the left-right direction with respect to this center position.
- the upper flange portion 8 is subjected to a preload (precompression force) of the right elastic member 13.
- the left fulcrum pin 17 is tilted to the left with the center (fulcrum) as the center.
- the flange portions 8 and 9 return to the state shown in FIG. 2A mainly due to the restoring moment by the elastic material 13 on the right side.
- FIG. 7A shows a history of the relationship between the load and displacement of the elastic member 13 constituting the seismic isolation structure 200.
- the load and displacement of the elastic body 13 in a state where the precompression force is applied are based on the vertical axis representing the load and the reference on the horizontal axis representing the displacement (intersection of the vertical axis and the horizontal axis). It is described as follows. When a large excitation force acts on the support legs 3 and 4 and a force (load) exceeding the precompression force applied to the elastic material 13 acts on the elastic material 13, the elastic material 13 is displaced according to the load by an arrow. It increases as shown by a1 (inclined so that the flange parts 8 and 9 open).
- FIG. 7B shows the history of the relationship between the load and displacement of the elastic member 13 with a broken line and the history of the relationship between the load and the displacement of the elastic-plastic brace 300 with a solid line.
- An elastic-plastic brace 300 formed of an elastic-plastic history steel material or the like, first, when a tensile load is applied to the elastic-plastic brace 300 due to the inclination of the flange portions 8 and 9, a linear load indicated by an arrow b1 ⁇ Displacement characteristics are shown. However, the elastoplastic brace 300 yields at a low load (yield point), and thereafter displaces in a state where the slope of the load-displacement characteristic is extremely small as indicated by an arrow b2.
- the elastic-plastic brace 300 when the applied load is reduced, a compressive force is applied to the elastic-plastic brace 300 by the restoring force of the elastic member 13, so that a linear load-displacement characteristic indicated by an arrow b3 is exhibited as in the case of a general steel material.
- the elastoplastic brace 300 yields again at a low load (yield point), and is displaced with a very small gradient of the load-displacement characteristic as indicated by an arrow b4.
- the elastic-plastic brace 300 draws a history having an area in the load-displacement characteristic until the upper and lower flange portions 8 and 9 are opened and closed. It can be consumed and response (vibration) can be suppressed.
- the elastoplastic brace 300 provides a parallelogram history in the load-displacement characteristics by providing the elastoplastic brace 300, the load when the displacement returns to 0, that is, the flange portions 8 and 9 are closed.
- the load when the contact surfaces 10 come into contact with each other can be reduced. That is, the elastoplastic brace 300 can act as a resistance (attenuator). Therefore, it is possible to reduce an impact force generated when the flange portions 8 and 9 are closed from the opened state and the contact surfaces 10 come into contact with each other, and generation of a large response acceleration in the crane body 1 can be prevented.
- the elastoplastic brace 300 has not only a function as a damping device but also a function of a spring element.
- the support point interval is increased in order to increase the horizontal force required when the seismic isolation structure 200 starts to operate (starts tilting at the flange portions 8 and 9). Need to be wide. That is, it is necessary to set a large distance between the fulcrum pins 17 and 18 in FIG. 2A.
- the elastic-plastic brace 300 uses a steel plate 19 having a spring constant close to that of a general steel material. Therefore, since the elasticity of the steel plate 19 is added to the horizontal rigidity of the base isolation structure 200, the horizontal force required when the base isolation structure 200 starts operation can be increased. Therefore, the space
- the elastic material 13 since the elastic material 13 is disposed inside the fulcrum pins 17 and 18, the amount of deformation of the elastic material 13 when the flange portions 8 and 9 are opened is small. . As a result, since the amount of deformation required for the elastic material 13 is reduced, the elastic material 13 can be reduced in size. Further, when the elastic material 13 is arranged outside the fulcrum pins 17 and 18, only the elastic material 13 on the side where the flange portions 8 and 9 are opened is deformed, and the elastic material 13 on the opposite side is not deformed.
- the elastic material 13 can be deformed even if the flange portions 8 and 9 are opened on either the left or right side. Therefore, in this case, it is possible to reduce the number of elastic members 13 and reduce the size and weight of the apparatus.
- the elastic-plastic brace 300 when the elastic-plastic brace 300 is disposed inside the fulcrum pins 17 and 18, the elastic-plastic brace 300 when the flange portions 8 and 9 are opened is used. Therefore, the elastic-plastic brace 300 can be reduced in size.
- the seismic isolation support device 100 including the base isolation structure 200 having the elastic member 13 and the elastoplastic brace 300
- the number of the elastic members 13 is reduced and the distance between the fulcrum pins 17 and 18 is increased.
- the support legs 3 and 4 during normal operation can be held with high support rigidity.
- the elasticity of the steel plate 19 of the elasto-plastic brace 300 is added to the elasticity of the pre-compressed elastic material 13, so that the seismic isolation period can be expanded and the seismic isolation effect can be effectively enhanced.
- the response acceleration in the crane body 1 can be reduced.
- the seismic isolation support device 100 including the seismic isolation structure 200 having the elastic material 13 and the elastoplastic brace 300 is illustrated.
- the seismic function can be further enhanced.
- the seismic isolation support device for a traveling crane of the present invention can be applied to support legs of various traveling cranes.
- various shapes and structures other than the illustrated example can be used for the elastic-plastic brace.
- the left-right direction is demonstrated as a direction orthogonal to a crane traveling direction, it is not restricted to this, The direction which crosses a crane traveling direction may be sufficient as the left-right direction (width direction). .
- the present invention can be used for a seismic isolation support device for a traveling crane that travels on rails with a gate-shaped support leg such as a container crane used in a harbor portion or the like.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Control And Safety Of Cranes (AREA)
- Leg Units, Guards, And Driving Tracks Of Cranes (AREA)
- Vibration Prevention Devices (AREA)
Abstract
This seismic isolation support device (100) for a traveling crane is provided with a seismic isolation structure (200) having: a top and bottom flange part (8, 9) which are formed by being separated into a top and bottom portion and which are capable of being connected to one another; and a connection tool (14) for connecting the top and bottom flange parts (8, 9) via an elastic material (13). Contact surfaces (10) which come into contact with one another and which have a contact width in the width direction are formed on the facing surfaces of the top and bottom flange parts (8, 9). Gaps (11, 12) for allowing the flange parts (8, 9) to tilt outward relative to both ends of the contact surfaces (10) in the width direction are formed between the top and bottom flange parts (8, 9). Moreover, elasto-plastic braces (300) for connecting the top and bottom flange parts (8, 9) in the top and bottom are provided.
Description
本発明は、走行クレーンの免震支持装置に関する。
本願は、2011年10月6日に日本に出願された特願2011-222048号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a seismic isolation support device for a traveling crane.
This application claims priority based on Japanese Patent Application No. 2011-2222048 filed in Japan on October 6, 2011, the contents of which are incorporated herein by reference.
本願は、2011年10月6日に日本に出願された特願2011-222048号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a seismic isolation support device for a traveling crane.
This application claims priority based on Japanese Patent Application No. 2011-2222048 filed in Japan on October 6, 2011, the contents of which are incorporated herein by reference.
走行クレーンの一例であり港湾部等で使用されるコンテナクレーンは、支持脚が門型に形成されたクレーン本体を有する。このクレーン本体は、その四隅部の支持脚下部に備えられた車輪(走行装置)により、岸壁上のレールに沿って走行する。
A container crane, which is an example of a traveling crane and is used in a harbor or the like, has a crane body in which support legs are formed in a gate shape. The crane body travels along the rail on the quay by means of wheels (traveling devices) provided at the lower support legs at the four corners.
このような走行クレーンが使用される港湾部等において地震が発生した場合には、走行クレーンの走行方向と直交する方向での加振力が外力としてクレーン本体に作用する。これに対し、クレーン本体は柔軟性を有しているため、小規模或いは中規模程度の地震が発生して走行方向と直交する方向での加振力が作用しても、クレーン本体は柔軟に変形して加振力を吸収することができ、走行クレーンに問題が生じる可能性は低い。
When an earthquake occurs in a harbor or the like where such a traveling crane is used, an excitation force in a direction orthogonal to the traveling direction of the traveling crane acts on the crane body as an external force. On the other hand, because the crane body has flexibility, the crane body is flexible even if a small-scale or medium-scale earthquake occurs and an excitation force acts in a direction perpendicular to the traveling direction. It can be deformed to absorb the excitation force, and is less likely to cause problems with the traveling crane.
しかし、大規模な地震が発生した場合には、支持脚に対して、走行クレーンの走行方向と直交する方向に大きな外力が作用する可能性がある。
However, when a large earthquake occurs, a large external force may act on the support leg in a direction perpendicular to the traveling direction of the traveling crane.
この問題に対処するための免震構造が、下記特許文献1、2に開示されている。特許文献1、2の免震構造では、走行クレーンの支持脚に、上下に分割して形成されると共に互いに連結できるようにした上下のフランジ部を設け、これら上下のフランジ部の対向面に、クレーン走行方向と直交する左右方向に所定の接触幅を有して鉛直方向の荷重を伝達する当接面をそれぞれ形成している。また、これら当接面の上記左右方向での両端部外側に隙間を形成し、上下のフランジ部の前記隙間が形成された両端部を、弾性材を介して連結具により上下に連結している。
The seismic isolation structure for coping with this problem is disclosed in Patent Documents 1 and 2 below. In the seismic isolation structures of Patent Documents 1 and 2, the support legs of the traveling crane are provided with upper and lower flange portions that are divided into upper and lower portions and can be connected to each other, on the opposing surfaces of these upper and lower flange portions, A contact surface having a predetermined contact width in the left-right direction perpendicular to the crane traveling direction and transmitting a load in the vertical direction is formed. Further, a gap is formed outside the both end portions of the contact surface in the left-right direction, and both end portions of the upper and lower flange portions where the gap is formed are connected vertically by a connecting tool via an elastic material. .
特許文献1、2の免震構造では、前記当接面及び隙間と弾性材とによってトリガ(制動装置)が形成されている。小、中規模な地震では当接面が接触した状態を維持できるため、支持脚は固定状態に保持される。又、大規模な地震が発生した際には、弾性材の予圧縮力や予引張力に抗して上下の支持脚が折れ曲がることにより支持脚の損壊を防止することができる。更に、前記支持脚の折れ曲がりによって開口した状態(一方の端部で互いに離間した状態)のフランジ部は、前記弾性材の復元力によって常に閉じる方向に付勢されているため、地震が収まると屈曲した支持脚は通常の固定状態に復元される。
In the seismic isolation structures of Patent Documents 1 and 2, a trigger (braking device) is formed by the contact surface, the gap, and the elastic material. In small and medium-scale earthquakes, the contact surfaces can be kept in contact with each other, so that the support legs are held in a fixed state. In addition, when a large-scale earthquake occurs, the upper and lower support legs are bent against the pre-compression force and pre-tension force of the elastic material, thereby preventing the support legs from being damaged. Further, the flanges opened by bending of the support legs (separated from each other at one end) are always urged in the closing direction by the restoring force of the elastic material, so that they are bent when the earthquake stops. The supported legs are restored to the normal fixed state.
しかし、特許文献1、2に記載の免震構造は、減衰機能を備えていない。そのため、前記したように大規模な地震によってフランジ部が傾いて開口した状態から、フランジ部が閉じて当接面が接触した状態に復元する際に、当接面が衝撃力を伴って互いに接触し、このためにクレーン本体に大きな応答加速度が発生する場合がある。
However, the seismic isolation structures described in Patent Documents 1 and 2 do not have a damping function. Therefore, when the flange portion is opened by tilting due to a large-scale earthquake as described above, the contact surfaces come into contact with each other with an impact force when the flange portion is closed and the contact surface is in contact. For this reason, a large response acceleration may occur in the crane body.
尚、走行クレーンにおいて大規模な地震に対応するためには、免震周期を長期化して免震性能を高めることが有効である。特許文献1、2の免震構造において免震周期を長期化するための一手段としては、免震構造に備えられる弾性材のばね剛性(ばね定数)を低下させることが挙げられる。しかし、弾性材のばね剛性を低下させた状態でもトリガとしての機能を一定に保つためには、ばね剛性の低い弾性材を用いつつ非常に大きな初期圧縮力を加えておく必要があり、装置が非常に大型になる可能性がある。
In order to respond to a large-scale earthquake in a traveling crane, it is effective to increase the base isolation performance by extending the base isolation cycle. One means for prolonging the base isolation cycle in the base isolation structures of Patent Documents 1 and 2 is to reduce the spring stiffness (spring constant) of the elastic material provided in the base isolation structure. However, in order to keep the trigger function constant even when the spring stiffness of the elastic material is lowered, it is necessary to apply a very large initial compression force while using an elastic material with low spring stiffness. Can be very large.
又、免震周期を長期化するために、特許文献1、2の免震構造に油圧ダンパ等を設置して減衰機能を付加することも考えられる。しかし、油圧ダンパ等は構造が複雑且つ高価であるため、減衰機能を付加するためだけに前記油圧ダンパ等を設置すると、費用対効果が低下する可能性がある。
Also, in order to prolong the seismic isolation cycle, it may be possible to add a damping function by installing a hydraulic damper or the like in the seismic isolation structures of Patent Documents 1 and 2. However, since the structure of a hydraulic damper or the like is complicated and expensive, if the hydraulic damper or the like is installed only for adding a damping function, cost effectiveness may be reduced.
本発明は、上記従来の問題に鑑みてなされたもので、大規模な地震の発生時に支持脚が屈曲でき、簡単な構成によって免震周期を長期化できると共に、クレーン本体の応答加速度を低減できる走行クレーンの免震支持装置を提供する。
The present invention has been made in view of the above-described conventional problems. The support leg can be bent when a large-scale earthquake occurs, the seismic isolation cycle can be extended with a simple configuration, and the response acceleration of the crane body can be reduced. To provide a seismic isolation support device for a traveling crane.
本発明の第1の態様によれば、走行クレーンの免震支持装置は、クレーン本体の支持脚に上下に分割して形成されると共に互いに連結可能な上下のフランジ部と、これら上下のフランジ部を弾性材を介して上下に連結する連結具と、を有する免震構造を備える。前記上下のフランジ部における互いの対向面に、クレーン走行方向と交差する幅方向に接触幅を有して互いに当接すると共に鉛直方向の荷重を伝達する当接面がそれぞれ形成されている。前記当接面の前記幅方向での両端部外側にフランジ部の傾きを許容する隙間が前記上下のフランジ部の間に形成されている。また、前記上下のフランジ部を上下に連結する弾塑性ブレースが設けられている。
According to the first aspect of the present invention, a seismic isolation support device for a traveling crane is divided into upper and lower support legs of a crane main body and can be connected to each other, and upper and lower flange portions. A seismic isolation structure having a connecting tool that connects the top and bottom with an elastic material. Abutting surfaces that contact each other with a contact width in the width direction intersecting the crane traveling direction and transmit a load in the vertical direction are formed on the opposing surfaces of the upper and lower flange portions, respectively. A gap that allows the inclination of the flange portion is formed between the upper and lower flange portions on the outer sides of both end portions in the width direction of the contact surface. An elastic-plastic brace for connecting the upper and lower flange portions up and down is provided.
本発明の第2の態様によれば、上記第1の態様に係る走行クレーンの免震支持装置において、前記弾塑性ブレースが、前記上下のフランジ部の前記幅方向での中心位置又は前記中心位置に対して前記幅方向で対称となる位置に配置されている。
According to the second aspect of the present invention, in the seismic isolation support device for a traveling crane according to the first aspect, the elastic-plastic brace is a center position in the width direction or the center position of the upper and lower flange portions. With respect to the width direction.
本発明の第3の態様によれば、上記第1又は第2の態様に係る走行クレーンの免震支持装置において、前記連結具が、前記上下のフランジ部の前記幅方向での中心位置又は前記中心位置に対して前記幅方向で対称となる位置に配置されている。
According to a third aspect of the present invention, in the seismic isolation support device for a traveling crane according to the first or second aspect, the connector is a center position in the width direction of the upper and lower flange portions or the It arrange | positions in the position which becomes symmetrical with respect to the center position in the said width direction.
本発明の第4の態様によれば、上記第1~第3のいずれか1つの態様に係る走行クレーンの免震支持装置において、前記当接面の前記幅方向での端部に、鉛直方向の荷重を支持し、且つ、上下のフランジ部の傾きの支点となる支点ピンが設けられている。
According to a fourth aspect of the present invention, in the seismic isolation support device for a traveling crane according to any one of the first to third aspects, a vertical direction is provided at an end of the contact surface in the width direction. A fulcrum pin that supports the load and serves as a fulcrum for the inclination of the upper and lower flange portions is provided.
本発明によれば、通常運転時には支持脚を高い支持剛性で保持でき、大規模な地震の発生時には支持脚を屈曲させることができる。また、簡単な構成によって免震周期を長期化して免震効果を高めることができる。さらに、支持脚が屈曲から復元する際に当接面が衝撃力を伴って接触することを抑制して応答加速度を低減することができる。
According to the present invention, the support leg can be held with high support rigidity during normal operation, and the support leg can be bent when a large-scale earthquake occurs. In addition, the seismic isolation effect can be enhanced by extending the base isolation cycle with a simple configuration. Furthermore, when the support leg is restored from bending, the response acceleration can be reduced by suppressing the contact surface from contacting with an impact force.
以下、本発明の実施の形態を図面を参照して説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図1は、港湾部で使用される走行クレーン(図示せず)の少なくとも一部を構成するクレーン本体1を示している。クレーン本体1は、水平材2と、この水平材2により一体に固定された海側支持脚3と陸側支持脚4とを備える。水平材2、海側支持脚3、及び陸側支持脚4は、門型の脚構造を形成している。海側支持脚3と陸側支持脚4の夫々の下端に設けられた車輪5は、岸壁上の海側レール6と陸側レール7に沿って走行可能に構成されている。すなわち、上記門型の脚構造が含まれる平面に対して垂直な方向(図1の紙面に垂直な方向)に、クレーン本体1は移動可能に構成されている。
FIG. 1 shows a crane body 1 constituting at least a part of a traveling crane (not shown) used in a harbor portion. The crane body 1 includes a horizontal member 2, a sea-side support leg 3 and a land-side support leg 4 that are integrally fixed by the horizontal member 2. The horizontal member 2, the sea-side support leg 3, and the land-side support leg 4 form a gate-shaped leg structure. The wheels 5 provided at the lower ends of the sea side support legs 3 and the land side support legs 4 are configured to be able to travel along the sea side rails 6 and the land side rails 7 on the quay. That is, the crane main body 1 is configured to be movable in a direction perpendicular to a plane including the gate-shaped leg structure (direction perpendicular to the paper surface of FIG. 1).
海側支持脚3と陸側支持脚4の夫々の上部には、本発明の一実施形態における免震支持装置100が設けられている。免震支持装置100は、免震構造200と弾塑性ブレース300とを備える。
The seismic isolation support device 100 according to an embodiment of the present invention is provided on the upper part of each of the sea side support legs 3 and the land side support legs 4. The base isolation support device 100 includes a base isolation structure 200 and an elastic-plastic brace 300.
海側支持脚3は、上下に分割された上部材3aと下部材3bとを備え、陸側支持脚4は、上下に分割された上部材4aと下部材4bとを備えている。
免震構造200は、上部材3a,4aと下部材3b,4bの各連結部にそれぞれ設けられている。各免震構造200は、上下に分割して形成されると共に互いに連結できる上下のフランジ部8,9と、後述する弾性材13を介して上下のフランジ部8,9を上下に連結する連結具14と、を有している。上下のフランジ部8,9は、支持脚3,4の周囲から外側に突出するように形成されている。 The sea-side support leg 3 includes an upper member 3a and a lower member 3b that are divided vertically, and the land-side support leg 4 includes an upper member 4a and a lower member 4b that are divided vertically.
Theseismic isolation structure 200 is provided in each connection part of upper member 3a, 4a and lower member 3b, 4b, respectively. Each seismic isolation structure 200 is divided into upper and lower parts and can be connected to upper and lower flange parts 8 and 9, and a connecting tool that vertically connects the upper and lower flange parts 8 and 9 via an elastic material 13 to be described later. 14. The upper and lower flange portions 8 and 9 are formed so as to protrude outward from the periphery of the support legs 3 and 4.
免震構造200は、上部材3a,4aと下部材3b,4bの各連結部にそれぞれ設けられている。各免震構造200は、上下に分割して形成されると共に互いに連結できる上下のフランジ部8,9と、後述する弾性材13を介して上下のフランジ部8,9を上下に連結する連結具14と、を有している。上下のフランジ部8,9は、支持脚3,4の周囲から外側に突出するように形成されている。 The sea-
The
上下のフランジ部8,9の互いの対向面には、図2Aに示すように、クレーン走行方向(紙面に垂直な方向)と直交する左右方向(幅方向)に所定の接触幅Lを有する略水平な当接面10がそれぞれ形成されている。上下のフランジ部8,9の各対向面における当接面10は、互いに当接している。この当接面10は、鉛直方向(紙面の上下方向)での上部材3a,4a等の荷重を下部材3b,4bに伝達できるように構成されている。更に、当接面10の左右方向での両端部の外側における上下のフランジ部8,9間には、フランジ部8又は9の傾きを許容する隙間11,12が形成されている。従って、当接面10の左右方向での両端部は、フランジ部8又は9が傾く際の支点となることが可能である。
As shown in FIG. 2A, the opposing surfaces of the upper and lower flange portions 8 and 9 have a predetermined contact width L in the left-right direction (width direction) orthogonal to the crane traveling direction (direction perpendicular to the paper surface). Horizontal contact surfaces 10 are respectively formed. The contact surfaces 10 on the opposing surfaces of the upper and lower flange portions 8 and 9 are in contact with each other. The contact surface 10 is configured to be able to transmit the load of the upper members 3a, 4a, etc., to the lower members 3b, 4b in the vertical direction (the vertical direction of the paper). Further, gaps 11 and 12 that allow the flange portion 8 or 9 to be inclined are formed between the upper and lower flange portions 8 and 9 outside the both ends of the contact surface 10 in the left-right direction. Accordingly, both end portions of the contact surface 10 in the left-right direction can be fulcrums when the flange portions 8 or 9 are inclined.
フランジ部8,9における隙間11,12が形成された左右方向での両端部を、弾性材13を介して連結具14が上下に連結している。
The connecting tool 14 connects the both ends in the left-right direction in which the gaps 11 and 12 in the flange portions 8 and 9 are formed via the elastic material 13 up and down.
図2A,2Bに示す弾性材13は、複数の皿ばね等のばね要素13sを連結具14で締結した構成を有している。この弾性材13の反発強度(ばね定数)と連結具14による締め付け強度は、想定される地震の大きさに応じて、所定の予圧縮力が得られるように決定する。大型のクレーン本体1の支持脚3,4における水平方向での断面形状は、一般に図2Bに示すような略矩形状となっている。支持脚3,4の左右の側板15の夫々を挟むように、外側の弾性材13Aと内側の弾性材13Bとが各々列状に(クレーン走行方向に列状に)配置されている。図2Bに示す弾性材13A,13Bは、上下のフランジ部8,9の左右方向での中心位置に対して、左右方向で対応する(対称となる)位置に配置されている。すなわち、連結具14は、上下のフランジ部8,9の左右方向での中心位置に対して、左右方向で対称となる位置に配置されている。
The elastic member 13 shown in FIGS. 2A and 2B has a configuration in which spring elements 13s such as a plurality of disc springs are fastened by a connector 14. The resilience strength (spring constant) of the elastic member 13 and the tightening strength by the coupler 14 are determined so as to obtain a predetermined precompression force in accordance with the magnitude of the assumed earthquake. The cross-sectional shape in the horizontal direction of the support legs 3 and 4 of the large crane main body 1 is generally a rectangular shape as shown in FIG. 2B. The outer elastic member 13A and the inner elastic member 13B are arranged in a row (in a row in the crane traveling direction) so as to sandwich the left and right side plates 15 of the support legs 3 and 4, respectively. The elastic members 13A and 13B shown in FIG. 2B are arranged at positions corresponding (symmetrical) in the left-right direction with respect to the center positions in the left-right direction of the upper and lower flange portions 8, 9. That is, the connector 14 is disposed at a position that is symmetrical in the left-right direction with respect to the center position in the left-right direction of the upper and lower flange portions 8, 9.
フランジ部8,9の当接面10は、左右の側板15,15間の中央に位置するように形成されている。また、当接面10の左右方向での両端部の外側に形成される隙間11,12は、図1、図2Aに示すように、下部のフランジ部9の上面に傾斜面16を設けることによって形成している。この傾斜面16の傾斜角αは、想定される地震の大きさと支持脚3,4の下部材3b,4bの長さから決定する。尚、隙間11,12は、上部のフランジ部8の下面に傾斜面を設けることによって形成してもよく、また上部のフランジ部8の下面と、下部のフランジ部9の上面の両方に傾斜面を設けることによって形成してもよい。更に、隙間11,12は、傾斜面によって形成する以外に、上下のフランジ部8,9の間に形成された平行な隙間としてもよい。すなわち、隙間11,12を形成する上下のフランジ部8,9の下面と上面とが、互いに平行に形成されていてもよい。
The contact surface 10 of the flange portions 8 and 9 is formed so as to be located at the center between the left and right side plates 15 and 15. Further, the gaps 11 and 12 formed on both sides of the contact surface 10 in the left-right direction are formed by providing an inclined surface 16 on the upper surface of the lower flange portion 9 as shown in FIGS. 1 and 2A. Forming. The inclination angle α of the inclined surface 16 is determined from the magnitude of the assumed earthquake and the length of the lower members 3b, 4b of the support legs 3, 4. The gaps 11 and 12 may be formed by providing inclined surfaces on the lower surface of the upper flange portion 8, and inclined surfaces on both the lower surface of the upper flange portion 8 and the upper surface of the lower flange portion 9. You may form by providing. Further, the gaps 11 and 12 may be parallel gaps formed between the upper and lower flange portions 8 and 9 in addition to the inclined surfaces. That is, the lower surface and the upper surface of the upper and lower flange portions 8 and 9 forming the gaps 11 and 12 may be formed in parallel to each other.
当接面10の左右方向での両端部の位置には、この両端部に沿って前後(クレーン走行方向)に延びる支点ピン17,18が設けられている。この支点ピン17,18は、上部材3a,4aの荷重を下部材3b,4bに伝え、且つ、上下のフランジ部8,9が傾斜して開口するときの支点となるように構成されている。この場合、上下のフランジ部8,9に支点ピン17,18と係合する凹溝を設けることにより、上下のフランジ部8,9が左右方向へ相対的にずれることを防止できる。尚、支点ピン17,18を設けることなく、上部材3a,4aの荷重を当接面10によって下部材3b,4bに伝え、且つ、当接面10の左右方向での両端部を支点としてフランジ部8,9が傾くように構成してもよい。
At the positions of both end portions in the left-right direction of the contact surface 10, fulcrum pins 17, 18 extending in the front-rear direction (crane traveling direction) along the both end portions are provided. The fulcrum pins 17 and 18 are configured to transmit the load of the upper members 3a and 4a to the lower members 3b and 4b and serve as fulcrums when the upper and lower flange portions 8 and 9 are inclined and opened. . In this case, it is possible to prevent the upper and lower flange portions 8 and 9 from being relatively displaced in the left-right direction by providing the upper and lower flange portions 8 and 9 with concave grooves that engage with the fulcrum pins 17 and 18. In addition, without providing the fulcrum pins 17 and 18, the load of the upper members 3a and 4a is transmitted to the lower members 3b and 4b by the contact surface 10, and the flanges with both end portions in the left-right direction of the contact surface 10 as fulcrums. You may comprise so that the parts 8 and 9 may incline.
フランジ部8,9に備えられた当接面10及び隙間11,12と、弾性材13及び連結具14と、支点ピン17,18とによって免震構造200が形成されている。
The seismic isolation structure 200 is formed by the contact surfaces 10 and the gaps 11 and 12 provided in the flange portions 8 and 9, the elastic material 13 and the coupling tool 14, and the fulcrum pins 17 and 18.
又、弾性材13を、予圧縮した皿ばね等のばね要素13sによって構成する場合について説明したが、弾性材には予圧縮した圧縮ばね或いは予圧縮した弾性ゴムを用いてもよい。
Moreover, although the case where the elastic member 13 is configured by the spring element 13s such as a pre-compressed disc spring has been described, a pre-compressed compression spring or a pre-compressed elastic rubber may be used as the elastic member.
図1、図2A及び2Bに示すように、上下のフランジ部8,9の左右方向での中心位置には、フランジ部8,9を上下に連結するように構成された弾塑性ブレース300が設けられている。
As shown in FIGS. 1, 2A and 2B, an elastic-plastic brace 300 configured to connect the flange portions 8 and 9 vertically is provided at the center position of the upper and lower flange portions 8 and 9 in the left-right direction. It has been.
弾塑性ブレース300の一例は、図3A,3Bに示すように、鋼板19と、座屈拘束材21とを備える。鋼板19は、図1のクレーン本体1(支持脚3,4)を構成する鋼材よりも降伏点が低く設定された弾塑性履歴鋼材から形成され、鉛直方向からみて十字形となるように組み立てられると共に鉛直方向に延びて構成されている。座屈拘束材21は、十字形に組み立てられた鋼板19の長さ方向での中間部を包囲するように設けられ、その内部には座屈防止用のモルタル20等が充填されている。なお、弾塑性履歴鋼材は、その変位が小さい範囲では弾性変形し、その変位が所定の値を超えると塑性変形する鋼材である。
鋼板19には、後述する固定用のボルト24が挿入されるボルト穴24Aが形成されている。 An example of theelastoplastic brace 300 includes a steel plate 19 and a buckling restraint 21 as shown in FIGS. 3A and 3B. The steel plate 19 is formed of an elastoplastic history steel material having a yield point set lower than that of the steel material constituting the crane body 1 (support legs 3 and 4) of FIG. 1, and is assembled so as to have a cross shape when viewed from the vertical direction. In addition, it is configured to extend in the vertical direction. The buckling restraining material 21 is provided so as to surround an intermediate portion in the length direction of the steel plate 19 assembled in a cross shape, and the inside thereof is filled with a mortar 20 for buckling prevention. Note that the elastoplastic hysteresis steel material is a steel material that is elastically deformed in a range where the displacement is small and plastically deforms when the displacement exceeds a predetermined value.
Thesteel plate 19 is formed with a bolt hole 24A into which a fixing bolt 24 described later is inserted.
鋼板19には、後述する固定用のボルト24が挿入されるボルト穴24Aが形成されている。 An example of the
The
図3A,3Bの弾塑性ブレース300は、図2Aの上下のフランジ部8,9に形成された開口22に貫通して配置されている。弾塑性ブレース300の上端は、上側のフランジ部8の上面に設けられた固定部材23aにボルト24で固定され、弾塑性ブレース300の下端は、下側のフランジ部9の下面に設けられた固定部材23bにボルト24で固定されている。
3A and 3B are arranged so as to penetrate through the openings 22 formed in the upper and lower flange portions 8 and 9 in FIG. 2A. The upper end of the elastoplastic brace 300 is fixed to a fixing member 23 a provided on the upper surface of the upper flange portion 8 with bolts 24, and the lower end of the elastoplastic brace 300 is fixed to the lower surface of the lower flange portion 9. It is fixed to the member 23b with bolts 24.
弾塑性ブレース300は、図2Bでは実線で示すように、フランジ部8,9の接触幅L(図2A参照)を設定している支点ピン17,18よりも内側の左右方向での中心位置、且つ、クレーン走行方向での中心位置(図2Bの上下中心位置)の1箇所に設けられている。
尚、弾塑性ブレース300は、図2Bの破線で示すようにフランジ部8,9の左右方向での中心位置に複数個備えてもよい。すなわち、複数の弾塑性ブレース300が、フランジ部8,9の左右方向での中心位置にクレーン走行方向に並んで配置されてもよい。更には、支点ピン17,18よりも内側に(クレーン走行方向で)複数列に備えてもよい。上記したように、図1、図2A及び2Bでは、支点ピン17,18よりも内側に弾塑性ブレース300を配置し、支点ピン17,18よりも外側に弾性材13(連結具14)を配置している。 As shown by a solid line in FIG. 2B, theelastoplastic brace 300 has a center position in the left-right direction inside the fulcrum pins 17 and 18 that set the contact width L (see FIG. 2A) of the flange portions 8 and 9. And it is provided in one place of the center position (up-down center position of FIG. 2B) in a crane traveling direction.
Note that a plurality ofelastoplastic braces 300 may be provided at the center positions of the flange portions 8 and 9 in the left-right direction as shown by the broken lines in FIG. 2B. That is, a plurality of elastoplastic braces 300 may be arranged side by side in the crane traveling direction at the center position of the flange portions 8 and 9 in the left-right direction. Furthermore, it may be provided in a plurality of rows inside the fulcrum pins 17 and 18 (in the crane traveling direction). As described above, in FIGS. 1, 2 </ b> A and 2 </ b> B, the elastic-plastic brace 300 is disposed inside the fulcrum pins 17 and 18, and the elastic member 13 (connector 14) is disposed outside the fulcrum pins 17 and 18. is doing.
尚、弾塑性ブレース300は、図2Bの破線で示すようにフランジ部8,9の左右方向での中心位置に複数個備えてもよい。すなわち、複数の弾塑性ブレース300が、フランジ部8,9の左右方向での中心位置にクレーン走行方向に並んで配置されてもよい。更には、支点ピン17,18よりも内側に(クレーン走行方向で)複数列に備えてもよい。上記したように、図1、図2A及び2Bでは、支点ピン17,18よりも内側に弾塑性ブレース300を配置し、支点ピン17,18よりも外側に弾性材13(連結具14)を配置している。 As shown by a solid line in FIG. 2B, the
Note that a plurality of
図2A,2Bに示すように、上下のフランジ部8,9の左右方向での両端部には、上下のフランジ部8,9の左右方向の位置ずれを防止し且つ上部材3a,4aと下部材3b,4bが大きく折れ曲がって傾くのを防止するストッパ25がそれぞれ設けられている。また、上下のフランジ部8,9の前後方向での両端部には、上下のフランジ部8,9の前後方向の位置ずれを防止するストッパ26がそれぞれ設けられている。
As shown in FIGS. 2A and 2B, the left and right end portions of the upper and lower flange portions 8 and 9 are prevented from being displaced in the left and right directions, and the upper members 3a and 4a are Each of the members 3b and 4b is provided with a stopper 25 for preventing the member 3b and 4b from being greatly bent and inclined. Further, stoppers 26 are provided at both ends of the upper and lower flange portions 8 and 9 in the front-rear direction to prevent the upper and lower flange portions 8 and 9 from being displaced in the front-rear direction.
図5は本発明の実施形態の第1変形例を示す平面図である。図5では、弾性材13と弾塑性ブレース300を、支点ピン17,18よりも外側(左右方向での外側)に配置した構成を示している。
図5では、支持脚3,4の側板15の外側に弾塑性ブレース300と弾性材13を混在させて配置した構成を示しているが、側板15の内側且つ支点ピン17,18の外側に弾塑性ブレース300と弾性材13を混在させて配置してもよい。或いは、側板15の内側と外側の一方に弾塑性ブレース300を配置し、他方に弾性材13を配置してもよい。 FIG. 5 is a plan view showing a first modification of the embodiment of the present invention. FIG. 5 shows a configuration in which theelastic member 13 and the elastoplastic brace 300 are arranged outside the fulcrum pins 17 and 18 (outside in the left-right direction).
FIG. 5 shows a configuration in which the elastic-plastic brace 300 and the elastic material 13 are mixed and arranged outside the side plates 15 of the support legs 3 and 4, but the elastic plates are arranged inside the side plates 15 and outside the fulcrum pins 17 and 18. The plastic brace 300 and the elastic material 13 may be mixed and arranged. Alternatively, the elastic-plastic brace 300 may be disposed on one of the inner side and the outer side of the side plate 15 and the elastic member 13 may be disposed on the other side.
図5では、支持脚3,4の側板15の外側に弾塑性ブレース300と弾性材13を混在させて配置した構成を示しているが、側板15の内側且つ支点ピン17,18の外側に弾塑性ブレース300と弾性材13を混在させて配置してもよい。或いは、側板15の内側と外側の一方に弾塑性ブレース300を配置し、他方に弾性材13を配置してもよい。 FIG. 5 is a plan view showing a first modification of the embodiment of the present invention. FIG. 5 shows a configuration in which the
FIG. 5 shows a configuration in which the elastic-
図6A,6Bは本発明の実施形態の第2,第3変形例をそれぞれ示す平面図である。図6A,6Bでは、弾性材13と弾塑性ブレース300を、支点ピン17,18よりも内側(左右方向での内側)に配置した構成を示している。
図6Aでは、支点ピン17,18よりも内側の中心位置に弾性材13(連結具14)を配置し、弾性材13の左右両側に弾塑性ブレース300を配置した場合を示している。すなわち、連結具14は上下のフランジ部8,9の左右方向での中心位置に配置されている。また、複数の弾塑性ブレース300が上記中心位置に対して左右方向で対称となる位置に配置されている。
図6Bでは、支点ピン17,18よりも内側の中心位置に弾塑性ブレース300を配置し、弾塑性ブレース300の左右両側に弾性材13を配置した場合を示している。すなわち、弾塑性ブレース300は上下のフランジ部8,9の左右方向での中心位置に配置されている。また、複数の連結具14(弾性材13)が上記中心位置に対して左右方向で対称となる位置に配置されている。尚、弾性材13と弾塑性ブレース300の設置数、設置位置は任意に選定することができる。 6A and 6B are plan views showing second and third modifications of the embodiment of the present invention, respectively. 6A and 6B show a configuration in which theelastic member 13 and the elastic-plastic brace 300 are arranged on the inner side (the inner side in the left-right direction) than the fulcrum pins 17 and 18.
FIG. 6A shows a case where the elastic member 13 (connector 14) is arranged at the center position inside the fulcrum pins 17 and 18, and the elastic-plastic brace 300 is arranged on both the left and right sides of the elastic member 13. That is, the connector 14 is disposed at the center position in the left-right direction of the upper and lower flange portions 8, 9. In addition, a plurality of elastoplastic braces 300 are arranged at positions that are symmetrical in the left-right direction with respect to the center position.
FIG. 6B shows a case where the elastic-plastic brace 300 is arranged at the center position inside the fulcrum pins 17, 18 and the elastic member 13 is arranged on both the left and right sides of the elastic-plastic brace 300. That is, the elastic-plastic brace 300 is disposed at the center position in the left-right direction of the upper and lower flange portions 8, 9. Moreover, the some connector 14 (elastic material 13) is arrange | positioned in the position which becomes symmetrical in the left-right direction with respect to the said center position. In addition, the installation number and installation position of the elastic material 13 and the elastic-plastic brace 300 can be arbitrarily selected.
図6Aでは、支点ピン17,18よりも内側の中心位置に弾性材13(連結具14)を配置し、弾性材13の左右両側に弾塑性ブレース300を配置した場合を示している。すなわち、連結具14は上下のフランジ部8,9の左右方向での中心位置に配置されている。また、複数の弾塑性ブレース300が上記中心位置に対して左右方向で対称となる位置に配置されている。
図6Bでは、支点ピン17,18よりも内側の中心位置に弾塑性ブレース300を配置し、弾塑性ブレース300の左右両側に弾性材13を配置した場合を示している。すなわち、弾塑性ブレース300は上下のフランジ部8,9の左右方向での中心位置に配置されている。また、複数の連結具14(弾性材13)が上記中心位置に対して左右方向で対称となる位置に配置されている。尚、弾性材13と弾塑性ブレース300の設置数、設置位置は任意に選定することができる。 6A and 6B are plan views showing second and third modifications of the embodiment of the present invention, respectively. 6A and 6B show a configuration in which the
FIG. 6A shows a case where the elastic member 13 (connector 14) is arranged at the center position inside the fulcrum pins 17 and 18, and the elastic-
FIG. 6B shows a case where the elastic-
上記した弾性材13と弾塑性ブレース300は、上下のフランジ部8,9が左右のいずれに傾いたときも同等の免震性能を発揮できるように、上下のフランジ部8,9の左右方向での中心位置、或いは、この中心位置に対して左右方向で対称となるような位置に配置することが好ましい。
The elastic material 13 and the elastoplastic brace 300 described above are provided in the left and right directions of the upper and lower flange portions 8 and 9 so that the same base isolation performance can be exhibited even when the upper and lower flange portions 8 and 9 are inclined to the left and right. It is preferable to arrange them at the center position or at a position that is symmetrical in the left-right direction with respect to this center position.
以下に、上記実施形態の作用を説明する。
Hereinafter, the operation of the above embodiment will be described.
図1、図2A及び2Bにおいて、走行クレーンによる通常のクレーン作業時は、免震構造200の予圧縮された弾性材13の復元力によって、上下のフランジ部8,9における当接面10は密接している。そのため、クレーン本体1の鉛直方向の荷重は当接面10を介して確実に下部に伝達され、支持脚3,4は剛構造として構成され揺れることがないため、走行クレーンの良好な運転が行える。
1, 2 </ b> A, and 2 </ b> B, during normal crane work by a traveling crane, the contact surfaces 10 of the upper and lower flange portions 8 and 9 are in close contact with each other due to the restoring force of the precompressed elastic material 13 of the seismic isolation structure 200. is doing. Therefore, the load in the vertical direction of the crane body 1 is reliably transmitted to the lower part through the contact surface 10, and the support legs 3 and 4 are configured as a rigid structure and do not swing, so that the traveling crane can be operated satisfactorily. .
一方、大規模な地震が発生してクレーン本体1の支持脚3,4に、走行クレーンの走行方向と直交する方向の大きな加振力Aが作用した場合には、図4のように支持脚3,4の上部材3a,4aと下部材3b,4bとが折れ曲がる。すなわち、上側のフランジ部8が左側の弾性材13の予圧縮された予荷重(予圧縮力)に抗して右側の支点ピン18を中心(支点)に右側へ傾く。その後は主に左側の弾性材13による復元モーメントによってフランジ部8は図2Aの状態に戻る。一方、支持脚3,4の上部材3a,4aと下部材3b,4bとが上記と反対側に折れ曲がるときには、例えば上側のフランジ部8が右側の弾性材13の予荷重(予圧縮力)に抗して左側の支点ピン17を中心(支点)に左側へ傾く。その後は主に右側の弾性材13による復元モーメントによってフランジ部8,9は図2Aの状態に戻る。
On the other hand, when a large earthquake occurs and a large excitation force A in the direction orthogonal to the traveling direction of the traveling crane is applied to the supporting legs 3 and 4 of the crane body 1, the supporting legs are as shown in FIG. The upper members 3a and 4a and the lower members 3b and 4b are bent. That is, the upper flange portion 8 is inclined to the right with the right fulcrum pin 18 at the center (fulcrum) against the pre-compressed pre-load (pre-compression force) of the left elastic member 13. Thereafter, the flange portion 8 returns to the state of FIG. 2A mainly due to the restoring moment by the left elastic member 13. On the other hand, when the upper members 3a, 4a and the lower members 3b, 4b of the support legs 3, 4 are bent to the opposite side, for example, the upper flange portion 8 is subjected to a preload (precompression force) of the right elastic member 13. Against this, the left fulcrum pin 17 is tilted to the left with the center (fulcrum) as the center. Thereafter, the flange portions 8 and 9 return to the state shown in FIG. 2A mainly due to the restoring moment by the elastic material 13 on the right side.
図5、図6A及び6Bの変形例の場合においても、図4の場合と同様に、弾性材13の予圧縮力よりも大きい外力が支持脚3,4に作用すると、上下のフランジ部8,9は開口するように傾き、その後弾性材13による復元モーメントによってフランジ部8,9は図2Aの閉じた状態に戻る。
5, 6 </ b> A, and 6 </ b> B, as in the case of FIG. 4, when an external force larger than the precompression force of the elastic member 13 acts on the support legs 3, 4, the upper and lower flange portions 8, 9 is inclined to open, and then the flange portions 8 and 9 return to the closed state of FIG. 2A due to the restoring moment by the elastic material 13.
図7Aは、免震構造200を構成する弾性材13の荷重と変位の関係の履歴を示している。なお、図7Aでは、予圧縮力が与えられた状態における弾性体13の荷重と変位が、図7Aの荷重を表す縦軸と変位を表す横軸における基準(縦軸と横軸の交点)になるように記載している。支持脚3,4に大きな加振力が作用して弾性材13に与えられた予圧縮力を超えた力(荷重)が弾性材13に作用すると、弾性材13は荷重に応じて変位が矢印a1で示すように増加する(フランジ部8,9が開口するように傾く)。一方、力が減少すると弾性材13の変位は矢印a2で示すように減少する(フランジ部8,9の開口が閉じる)。このとき、図4に示すようにフランジ部8,9が開口した状態から図2Aのように閉じて当接面10が互いに接触する際に、当接面10が衝撃力を伴って接触し、クレーン本体1に大きな応答加速度が発生する場合がある。
FIG. 7A shows a history of the relationship between the load and displacement of the elastic member 13 constituting the seismic isolation structure 200. In FIG. 7A, the load and displacement of the elastic body 13 in a state where the precompression force is applied are based on the vertical axis representing the load and the reference on the horizontal axis representing the displacement (intersection of the vertical axis and the horizontal axis). It is described as follows. When a large excitation force acts on the support legs 3 and 4 and a force (load) exceeding the precompression force applied to the elastic material 13 acts on the elastic material 13, the elastic material 13 is displaced according to the load by an arrow. It increases as shown by a1 (inclined so that the flange parts 8 and 9 open). On the other hand, when the force decreases, the displacement of the elastic member 13 decreases as indicated by the arrow a2 (openings of the flange portions 8 and 9 are closed). At this time, as shown in FIG. 4, when the contact surfaces 10 come into contact with each other by closing from the state in which the flange portions 8 and 9 are opened as shown in FIG. 2A, the contact surfaces 10 come into contact with an impact force, A large response acceleration may occur in the crane body 1.
これに対し、図1~図5に示すように、上下のフランジ部8,9を上下に連結する弾塑性ブレース300を備えたので、弾性材13を有する免震構造200のみを備えた場合と比較して、フランジ部8,9の開口が閉じる際のクレーン本体1における大きな応答加速度の発生を防止することができる。
On the other hand, as shown in FIGS. 1 to 5, since the elasto-plastic brace 300 for connecting the upper and lower flange portions 8, 9 up and down is provided, only the seismic isolation structure 200 having the elastic member 13 is provided. In comparison, it is possible to prevent the occurrence of a large response acceleration in the crane body 1 when the openings of the flange portions 8 and 9 are closed.
図7Bは、弾性材13の荷重と変位の関係の履歴を破線で示すと共に、弾塑性ブレース300の荷重と変位の関係の履歴を実線で示している。弾塑性履歴鋼材等から形成される弾塑性ブレース300は、まずフランジ部8,9の傾きによって弾塑性ブレース300に引っ張り荷重が作用すると、一般の鋼材と同様に矢印b1で示される線形な荷重-変位特性を示す。しかし、弾塑性ブレース300は低い荷重(降伏点)で降伏し、その後は矢印b2で示すように荷重-変位特性の傾きが極めて小さい状態で変位する。又、加えられていた荷重が減少すると、弾性材13の復元力によって弾塑性ブレース300に圧縮力が作用するため一般の鋼材と同様に矢印b3で示される線形な荷重-変位特性を示す。しかし、弾塑性ブレース300は再び低い荷重(降伏点)で降伏し、矢印b4で示すように荷重-変位特性の傾きが極めて小さい状態で変位する。このように、弾塑性ブレース300は、上下のフランジ部8,9が開いて閉じるまでの間に荷重-変位特性において面積をもった履歴を描くため、クレーンが振動するエネルギを弾塑性ブレース300で消費することができ、応答(振動)を抑制することができる。また、弾性材13が設けられるが弾塑性ブレース300が設けられない場合には、フランジ部8,9が閉じてその変位が0となる点において、弾性材13の予圧縮分の復元力が発生する。一方、弾塑性ブレース300を設けたことにより、弾塑性ブレース300が荷重-変位特性において平行四辺形の履歴を描くため、上記変位が0に戻るときの荷重、即ち、フランジ部8,9が閉じて当接面10が互いに接触する際の荷重を低減することができる。即ち、弾塑性ブレース300は抵抗(減衰装置)として働くことができる。よって、フランジ部8,9が開口した状態から閉じて当接面10が互いに接触する際に生じる衝撃力を低減でき、クレーン本体1における大きな応答加速度の発生を防止できる。
FIG. 7B shows the history of the relationship between the load and displacement of the elastic member 13 with a broken line and the history of the relationship between the load and the displacement of the elastic-plastic brace 300 with a solid line. An elastic-plastic brace 300 formed of an elastic-plastic history steel material or the like, first, when a tensile load is applied to the elastic-plastic brace 300 due to the inclination of the flange portions 8 and 9, a linear load indicated by an arrow b1 − Displacement characteristics are shown. However, the elastoplastic brace 300 yields at a low load (yield point), and thereafter displaces in a state where the slope of the load-displacement characteristic is extremely small as indicated by an arrow b2. Further, when the applied load is reduced, a compressive force is applied to the elastic-plastic brace 300 by the restoring force of the elastic member 13, so that a linear load-displacement characteristic indicated by an arrow b3 is exhibited as in the case of a general steel material. However, the elastoplastic brace 300 yields again at a low load (yield point), and is displaced with a very small gradient of the load-displacement characteristic as indicated by an arrow b4. As described above, the elastic-plastic brace 300 draws a history having an area in the load-displacement characteristic until the upper and lower flange portions 8 and 9 are opened and closed. It can be consumed and response (vibration) can be suppressed. When the elastic material 13 is provided but the elastic-plastic brace 300 is not provided, the restoring force corresponding to the precompression of the elastic material 13 is generated at the point where the flange portions 8 and 9 are closed and the displacement becomes zero. To do. On the other hand, since the elastoplastic brace 300 provides a parallelogram history in the load-displacement characteristics by providing the elastoplastic brace 300, the load when the displacement returns to 0, that is, the flange portions 8 and 9 are closed. Thus, the load when the contact surfaces 10 come into contact with each other can be reduced. That is, the elastoplastic brace 300 can act as a resistance (attenuator). Therefore, it is possible to reduce an impact force generated when the flange portions 8 and 9 are closed from the opened state and the contact surfaces 10 come into contact with each other, and generation of a large response acceleration in the crane body 1 can be prevented.
更に、弾塑性ブレース300は、単なる減衰装置としての作用のみではなく、ばね要素の機能も有する。従来の免震構造200では、大きな震動を対象とする場合には、免震構造200が動作開始(フランジ部8,9における傾きの開始)するときに必要な水平力を高めるために支持点間隔を広くする必要がある。即ち、図2Aにおける支点ピン17,18の間隔を大きく設定する必要がある。
Furthermore, the elastoplastic brace 300 has not only a function as a damping device but also a function of a spring element. In the conventional seismic isolation structure 200, when large seismic vibrations are targeted, the support point interval is increased in order to increase the horizontal force required when the seismic isolation structure 200 starts to operate (starts tilting at the flange portions 8 and 9). Need to be wide. That is, it is necessary to set a large distance between the fulcrum pins 17 and 18 in FIG. 2A.
これに対し、弾塑性ブレース300では、ばね定数が一般的な鋼材に近い鋼板19を使用している。そのため、鋼板19の弾性が免震構造200の水平剛性に加えられるので、免震構造200が動作開始するときに必要な水平力を高めることができる。よって、支点ピン17,18の間隔を狭めることができ、免震支持装置100を小型化できる。更に、弾塑性ブレース300を設置することにより、免震構造200の水平剛性を高めることができるので、従来の免震構造200のみを備えた場合に比べて、弾性材13の設置数は大幅に減少することができる。
On the other hand, the elastic-plastic brace 300 uses a steel plate 19 having a spring constant close to that of a general steel material. Therefore, since the elasticity of the steel plate 19 is added to the horizontal rigidity of the base isolation structure 200, the horizontal force required when the base isolation structure 200 starts operation can be increased. Therefore, the space | interval of the fulcrum pins 17 and 18 can be narrowed, and the seismic isolation support apparatus 100 can be reduced in size. Furthermore, since the horizontal rigidity of the seismic isolation structure 200 can be increased by installing the elastoplastic brace 300, the number of elastic members 13 installed is significantly larger than when only the conventional seismic isolation structure 200 is provided. Can be reduced.
又、図6A,6Bの変形例においては、弾性材13を支点ピン17,18よりも内側に配置しているので、フランジ部8,9が開口した際の弾性材13の変形量は小さくなる。結果として、弾性材13に必要とされる変形量が小さくなるため、弾性材13を小型化することができる。又、弾性材13を支点ピン17,18よりも外側に配置した場合には、フランジ部8,9が開口する側の弾性材13のみが変形し、反対側の弾性材13は変形しない。一方、上述したように支点ピン17,18よりも内側に弾性材13を配置することにより、フランジ部8,9が左右いずれの側に開口しても弾性材13は変形することができる。よって、この場合は、弾性材13の設置数を少なくして装置のコンパクト化及び軽量化を図ることができる。
6A and 6B, since the elastic material 13 is disposed inside the fulcrum pins 17 and 18, the amount of deformation of the elastic material 13 when the flange portions 8 and 9 are opened is small. . As a result, since the amount of deformation required for the elastic material 13 is reduced, the elastic material 13 can be reduced in size. Further, when the elastic material 13 is arranged outside the fulcrum pins 17 and 18, only the elastic material 13 on the side where the flange portions 8 and 9 are opened is deformed, and the elastic material 13 on the opposite side is not deformed. On the other hand, by disposing the elastic material 13 on the inner side of the fulcrum pins 17 and 18 as described above, the elastic material 13 can be deformed even if the flange portions 8 and 9 are opened on either the left or right side. Therefore, in this case, it is possible to reduce the number of elastic members 13 and reduce the size and weight of the apparatus.
又、図2A及び2B、図6A及び6Bに示すように、弾塑性ブレース300を支点ピン17,18よりも内側に配置した場合には、フランジ部8,9が開口した際の弾塑性ブレース300の変形が小さくなるので、弾塑性ブレース300を小型化することができる。
Further, as shown in FIGS. 2A and 2B and FIGS. 6A and 6B, when the elastic-plastic brace 300 is disposed inside the fulcrum pins 17 and 18, the elastic-plastic brace 300 when the flange portions 8 and 9 are opened is used. Therefore, the elastic-plastic brace 300 can be reduced in size.
上記したように、弾性材13を有する免震構造200と弾塑性ブレース300とを備えた免震支持装置100によれば、弾性材13の設置数を減少させると共に、支点ピン17,18の間隔を狭くした小型の構成を採用した場合であっても、通常運転時における支持脚3,4を高い支持剛性で保持することができる。又、地震発生時には、予圧縮された弾性材13による弾性に弾塑性ブレース300の鋼板19の弾性が加えられるため、免震周期を拡大でき、免震効果を効果的に高めることができる。更に、支持脚3,4が屈曲した状態から復元する際における当接面10の衝撃力を伴う接触が抑制されるため、クレーン本体1における応答加速度を低減することができる。
As described above, according to the seismic isolation support device 100 including the base isolation structure 200 having the elastic member 13 and the elastoplastic brace 300, the number of the elastic members 13 is reduced and the distance between the fulcrum pins 17 and 18 is increased. Even when a small configuration with a narrower width is adopted, the support legs 3 and 4 during normal operation can be held with high support rigidity. Further, when an earthquake occurs, the elasticity of the steel plate 19 of the elasto-plastic brace 300 is added to the elasticity of the pre-compressed elastic material 13, so that the seismic isolation period can be expanded and the seismic isolation effect can be effectively enhanced. Furthermore, since the contact with the impact force of the contact surface 10 when the supporting legs 3 and 4 are restored from the bent state is suppressed, the response acceleration in the crane body 1 can be reduced.
なお、上記実施形態では、弾性材13を有する免震構造200と弾塑性ブレース300とを備えた免震支持装置100について例示したが、流体圧ダンパを免震支持装置にさらに設けることにより、免震機能を更に高めることもできる。
In the above embodiment, the seismic isolation support device 100 including the seismic isolation structure 200 having the elastic material 13 and the elastoplastic brace 300 is illustrated. However, by providing a fluid pressure damper in the seismic isolation support device, The seismic function can be further enhanced.
なお、本発明は前記上記実施形態に限定されることはなく、添付のクレームの範囲によってのみ限定される。上述した実施形態において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨を逸脱しない範囲で種々の、構成の付加、省略、置換、およびその他の変更が可能である。
例えば、本発明の走行クレーンの免震支持装置は、種々の走行クレーンの支持脚に適用できる。また、弾塑性ブレースには図示例以外の種々の形状、構造を用いることが可能である。上記実施形態では、左右方向を、クレーン走行方向と直交する方向であると説明しているが、これに限られず、左右方向(幅方向)が、クレーン走行方向と交差する方向であってもよい。 The present invention is not limited to the above-described embodiment, and is limited only by the scope of the appended claims. The various shapes and combinations of the constituent members shown in the above-described embodiments are merely examples, and various additions, omissions, substitutions, and other modifications can be made without departing from the spirit of the present invention. .
For example, the seismic isolation support device for a traveling crane of the present invention can be applied to support legs of various traveling cranes. In addition, various shapes and structures other than the illustrated example can be used for the elastic-plastic brace. In the said embodiment, although the left-right direction is demonstrated as a direction orthogonal to a crane traveling direction, it is not restricted to this, The direction which crosses a crane traveling direction may be sufficient as the left-right direction (width direction). .
例えば、本発明の走行クレーンの免震支持装置は、種々の走行クレーンの支持脚に適用できる。また、弾塑性ブレースには図示例以外の種々の形状、構造を用いることが可能である。上記実施形態では、左右方向を、クレーン走行方向と直交する方向であると説明しているが、これに限られず、左右方向(幅方向)が、クレーン走行方向と交差する方向であってもよい。 The present invention is not limited to the above-described embodiment, and is limited only by the scope of the appended claims. The various shapes and combinations of the constituent members shown in the above-described embodiments are merely examples, and various additions, omissions, substitutions, and other modifications can be made without departing from the spirit of the present invention. .
For example, the seismic isolation support device for a traveling crane of the present invention can be applied to support legs of various traveling cranes. In addition, various shapes and structures other than the illustrated example can be used for the elastic-plastic brace. In the said embodiment, although the left-right direction is demonstrated as a direction orthogonal to a crane traveling direction, it is not restricted to this, The direction which crosses a crane traveling direction may be sufficient as the left-right direction (width direction). .
本発明は、港湾部等で使用されるコンテナクレーン等のように門型の支持脚を備えてレール上を走行する走行クレーンの免震支持装置に利用することができる。
The present invention can be used for a seismic isolation support device for a traveling crane that travels on rails with a gate-shaped support leg such as a container crane used in a harbor portion or the like.
1 クレーン本体
3 海側支持脚(支持脚)
4 陸側支持脚(支持脚)
8,9 フランジ部
10 当接面
11,12 隙間
13 弾性材
13A 弾性材
13B 弾性材
14 連結具
17,18 支点ピン
100 免震支持装置
200 免震構造
300 弾塑性ブレース 1Crane body 3 Seaside support legs (support legs)
4 Land-side support legs (support legs)
8, 9Flange 10 Contact surface 11, 12 Gap 13 Elastic material 13A Elastic material 13B Elastic material 14 Connector 17, 18 Supporting pin 100 Seismic isolation support device 200 Seismic isolation structure 300 Elastic-plastic brace
3 海側支持脚(支持脚)
4 陸側支持脚(支持脚)
8,9 フランジ部
10 当接面
11,12 隙間
13 弾性材
13A 弾性材
13B 弾性材
14 連結具
17,18 支点ピン
100 免震支持装置
200 免震構造
300 弾塑性ブレース 1
4 Land-side support legs (support legs)
8, 9
Claims (4)
- クレーン本体の支持脚に上下に分割して形成されると共に互いに連結可能な上下のフランジ部と、該上下のフランジ部を弾性材を介して上下に連結する連結具と、を有する免震構造を備え、
前記上下のフランジ部における互いの対向面に、クレーン走行方向と交差する幅方向に接触幅を有して互いに当接すると共に鉛直方向の荷重を伝達する当接面がそれぞれ形成され、
前記当接面の前記幅方向での両端部外側にフランジ部の傾きを許容する隙間が前記上下のフランジ部の間に形成され、
前記上下のフランジ部を上下に連結する弾塑性ブレースが設けられている走行クレーンの免震支持装置。 A seismic isolation structure having upper and lower flange portions that are formed on the support legs of the crane main body and which can be connected to each other and a connecting tool for connecting the upper and lower flange portions up and down via an elastic material. Prepared,
Abutting surfaces that contact each other with a contact width in the width direction intersecting the crane traveling direction and transmit a load in the vertical direction are formed on the opposing surfaces of the upper and lower flange portions, respectively.
A gap allowing the inclination of the flange portion is formed between the upper and lower flange portions on both outer sides in the width direction of the contact surface,
A seismic isolation support device for a traveling crane provided with an elastic-plastic brace for connecting the upper and lower flange portions up and down. - 前記弾塑性ブレースは、前記上下のフランジ部の前記幅方向での中心位置又は前記中心位置に対して前記幅方向で対称となる位置に配置されている請求項1に記載の走行クレーンの免震支持装置。 The seismic isolation of the traveling crane according to claim 1, wherein the elastic-plastic brace is disposed at a center position of the upper and lower flange portions in the width direction or a position that is symmetrical with respect to the center position in the width direction. Support device.
- 前記連結具は、前記上下のフランジ部の前記幅方向での中心位置又は前記中心位置に対して前記幅方向で対称となる位置に配置されている請求項1に記載の走行クレーンの免震支持装置。 2. The traveling crane's seismic isolation support according to claim 1, wherein the connector is disposed at a center position in the width direction of the upper and lower flange portions or a position that is symmetrical in the width direction with respect to the center position. apparatus.
- 前記当接面の前記幅方向での端部に、鉛直方向の荷重を支持し、且つ、上下のフランジ部の傾きの支点となる支点ピンが設けられている請求項1に記載の走行クレーンの免震支持装置。 2. The traveling crane according to claim 1, wherein a fulcrum pin that supports a load in a vertical direction and serves as a fulcrum of inclination of the upper and lower flange portions is provided at an end of the contact surface in the width direction. Seismic isolation support device.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-222048 | 2011-10-06 | ||
JP2011222048A JP5809915B2 (en) | 2011-10-06 | 2011-10-06 | Seismic isolation support device for traveling crane |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013051702A1 true WO2013051702A1 (en) | 2013-04-11 |
Family
ID=48043855
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/075988 WO2013051702A1 (en) | 2011-10-06 | 2012-10-05 | Seismic isolation support device for traveling crane |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5809915B2 (en) |
TW (1) | TWI490158B (en) |
WO (1) | WO2013051702A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106044577A (en) * | 2016-08-18 | 2016-10-26 | 无锡石油化工起重机有限公司 | Port gantry crane with cruise beacon |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101318813B1 (en) * | 2013-06-24 | 2013-10-16 | 주식회사 맥스로텍 | The transported in discrete structures for the gantry device and its installation method |
CN110104547B (en) * | 2019-04-26 | 2020-05-22 | 青岛海西重机有限责任公司 | Heightening tool and heightening method for container gantry crane |
CN111238706B (en) * | 2020-02-14 | 2021-06-01 | 上海上安机械施工有限公司 | Method for detecting supporting force of supporting leg of self-propelled crane |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08310785A (en) * | 1995-05-19 | 1996-11-26 | Ishikawajima Harima Heavy Ind Co Ltd | Swing structure for cargo handling equipment |
JP4536895B2 (en) * | 2000-09-29 | 2010-09-01 | Ihi運搬機械株式会社 | Seismic isolation structure for traveling crane |
JP4739567B2 (en) * | 2001-04-04 | 2011-08-03 | Ihi運搬機械株式会社 | Seismic isolation structure |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW495483B (en) * | 1998-12-25 | 2002-07-21 | Mitsubishi Heavy Ind Ltd | Seismic isolation system for a crane |
CN1666947A (en) * | 2004-03-10 | 2005-09-14 | 上海振华港口机械(集团)股份有限公司 | Anti-shock device of container crane |
CN1785785A (en) * | 2005-03-29 | 2006-06-14 | 上海振华港口机械(集团)股份有限公司 | Anti earthquake system of wharf loading/unloading crane |
CN101229903B (en) * | 2008-02-21 | 2010-08-18 | 同济大学 | Harbor crane anti-seismic device employing sliding pin shaft |
-
2011
- 2011-10-06 JP JP2011222048A patent/JP5809915B2/en active Active
-
2012
- 2012-10-05 TW TW101136857A patent/TWI490158B/en active
- 2012-10-05 WO PCT/JP2012/075988 patent/WO2013051702A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08310785A (en) * | 1995-05-19 | 1996-11-26 | Ishikawajima Harima Heavy Ind Co Ltd | Swing structure for cargo handling equipment |
JP4536895B2 (en) * | 2000-09-29 | 2010-09-01 | Ihi運搬機械株式会社 | Seismic isolation structure for traveling crane |
JP4739567B2 (en) * | 2001-04-04 | 2011-08-03 | Ihi運搬機械株式会社 | Seismic isolation structure |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106044577A (en) * | 2016-08-18 | 2016-10-26 | 无锡石油化工起重机有限公司 | Port gantry crane with cruise beacon |
Also Published As
Publication number | Publication date |
---|---|
JP2013082515A (en) | 2013-05-09 |
JP5809915B2 (en) | 2015-11-11 |
TW201326019A (en) | 2013-07-01 |
TWI490158B (en) | 2015-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8844205B2 (en) | Compressed elastomer damper for earthquake hazard reduction | |
JP2011501050A (en) | Seismic isolation structure | |
JP4545920B2 (en) | Seismic isolation system for bridges | |
JP6172959B2 (en) | Viscous wall structure | |
WO2013051702A1 (en) | Seismic isolation support device for traveling crane | |
JP2013047433A (en) | Structure vibration control and base isolation method | |
JP4893061B2 (en) | Viscous vibration damping device and base-isolated building equipped with the same | |
KR20120136667A (en) | Aseismic damper | |
JP7224101B2 (en) | Displacement stopper and seismic isolation building | |
JP4870483B2 (en) | Member holding device and member holding method | |
JP7182443B2 (en) | Buffers, seismically isolated buildings and buildings | |
KR102124584B1 (en) | Vibration reducing device for structure | |
JP5925514B2 (en) | Laminated rubber structure | |
JP5795516B2 (en) | Fall prevention device | |
KR101132708B1 (en) | The hysteresis damper for the earthquake-proof | |
US8381463B2 (en) | Energy absorbing system for safeguarding structures from disruptive forces | |
JP7455682B2 (en) | Buffer structure and buffer material | |
JP2019082031A (en) | Damper mechanism for base-isolation structure, arranging structure of damper mechanism for base-isolation structure, trigger mechanism for base-isolation structure, arranging structure of trigger mechanism for base-isolation structure, sliding bearing structure for base-isolation structure, and building | |
JP7121645B2 (en) | Seismic structure of pile pier and seismic reinforcement method | |
KR101796207B1 (en) | Steel coulmn connecting construction method for earthquake-resistant | |
KR20190023332A (en) | Seismic equipment for mechanical structures | |
JP6162457B2 (en) | Displacement limiting device | |
JP2013174062A (en) | Base isolation device | |
JP2022021052A (en) | Base isolation structure, building and movement regulation device | |
JP6628988B2 (en) | Seismic isolation device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12837814 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12837814 Country of ref document: EP Kind code of ref document: A1 |