WO2013051523A1 - Device for utilization of volumetric expansion of gas - Google Patents
Device for utilization of volumetric expansion of gas Download PDFInfo
- Publication number
- WO2013051523A1 WO2013051523A1 PCT/JP2012/075441 JP2012075441W WO2013051523A1 WO 2013051523 A1 WO2013051523 A1 WO 2013051523A1 JP 2012075441 W JP2012075441 W JP 2012075441W WO 2013051523 A1 WO2013051523 A1 WO 2013051523A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- liquid
- volume expansion
- pressure
- gas volume
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K25/00—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
- F01K25/08—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
- F01K25/10—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/14—Power generation using energy from the expansion of the refrigerant
Definitions
- a vapor compression refrigeration cycle apparatus as a refrigeration cycle apparatus.
- the power of the vapor compression refrigeration cycle is mainly electric power.
- the refrigeration cycle apparatus is used for freezing and refrigeration of food. Many are used as air conditioners.
- Refrigeration cycle efficiency improvement measures include inverter control technology, liquid gas heat exchange, and ejectors. Examples of power generation using renewable energy include wind power generation, solar power generation, biomass power generation, and geothermal power generation.
- a gas volume expansion utilization apparatus for achieving this object is characterized by comprising gas expansion liquefaction means for liquefying gas by volume expansion of a working fluid gas.
- gas expansion liquefaction means for liquefying gas by volume expansion of a working fluid gas.
- work or heat is required for isothermal expansion, and work is added in advance. In other words, it was an endothermic process such as compression or isothermal expansion of the Carnot cycle.
- Work W is required to expand the volume of the gas.
- the work amount W at the time of volume expansion of gas under the condition where heat does not enter and exit from the surroundings varies depending on the working fluid. Case 1
- the temperature of the gas during volume expansion is above the critical point.
- the work W is procured from the gas itself, and the temperature and pressure of the gas decrease.
- W R (T1-T2) log (VB / VA)
- R gas constant J / kg ⁇ K
- T1 is a pre-expansion temperature
- T2 is a post-expansion temperature, so-called adiabatic expansion.
- Case 2 The temperature of the gas during volume expansion is below the critical point.
- work W can be obtained from the gas itself, but the gas below the critical point temperature has two phases, liquid phase and gas phase. Is performed at an isothermal isobaric pressure, resulting in an isothermal expansion.
- work W RTlog (VB / VA)
- the working fluid below the critical point during volume expansion includes alternative chlorofluorocarbon refrigerants such as R22, R404, R407, R410, and R134a, and natural refrigerants such as water, ammonia, carbon dioxide, and isobutane.
- Work W required for isothermal expansion is obtained from the gas itself and is liquefied when the work W 2 extracted from the gas is equivalent to the heat of vaporization. Therefore, when a gas having a temperature below the critical point is volume-expanded, it can be liquefied at the evaporation temperature.
- the amount of liquefaction is q where the heat of vaporization is q.
- mass of inflow gas mass of effluent liquid + mass of effluent gas.
- the volume expansion work is W, where the velocity of the outflow gas is V. If the heat of vaporization is q It becomes. The volume expansion work is reduced by the velocity energy of the inflowing gas. Therefore, the velocity of the inflowing gas at the time of the volume expansion liquefaction needs to be sufficiently small such as about 10 m / s.
- the velocity energy per kg at 10 m / s is 50 J, which is very small.
- the working fluid is characterized in that it exists in a two-phase state of liquid gas at the time of volume expansion liquefaction.
- Refrigerating cycle refrigerants such as R22, R134a, R404, R410, R407, R717, and water are present in a two-phase state of liquid and gas at room temperature. This property is utilized by the refrigeration cycle.
- the working fluid be a two-phase working fluid under pressure and temperature conditions during volume expansion. That is, the condition of liquefaction is that the working fluid is below the critical temperature during volume expansion.
- the apparatus further includes a plurality of the gas expansion liquefaction means. Since the expansion ratio is limited, all the gas is liquefied by using a plurality of gas expansion liquefaction means in series or in parallel. In order to completely liquefy, it is better to serialize.
- the apparatus further comprises extraction energy utilization means for utilizing the energy extracted by the gas expansion liquefaction means.
- the apparatus further comprises mechanical energy conversion means for converting energy extracted by the gas expansion liquefaction means into mechanical energy.
- the energy extracted by the gas expansion liquefaction means becomes velocity energy because the pressure and temperature are constant. Energy is extracted at the evaporation temperature by the volume expansion means for the turbine, and the gas is a low-temperature and high-speed gas. Therefore, it is not necessary to select a turbine material with a material that can withstand high temperature and pressure as in a conventional turbine.
- the apparatus further comprises pressure energy conversion means for converting the velocity energy extracted by the gas expansion liquefaction means into pressure energy.
- Velocity energy is converted to pressure energy by using a diffuser, swirl chamber, Laval nozzle, etc., and the temperature and pressure are increased and used for heating, hot water supply, and frost.
- a gas of 646 kg has a gas enthalpy and velocity energy W 72,486J. This velocity energy is converted into pressure energy to raise the temperature.
- the extraction energy W is reduced.
- the expansion ratio is set to 4. Therefore, the expansion part of the inflator is 130 mm.
- the apparatus further comprises power generation means for converting the mechanical energy converted by the mechanical energy conversion means into electric energy.
- the apparatus further comprises a condensing means for condensing the high-temperature and high-pressure gas of the working fluid.
- the working fluid is liquefied by cooling it with outside air or water for heating and defrost circuits. It is a condenser in the refrigeration cycle. It is a condenser in brackish water power generation.
- the apparatus further comprises a pump for delivering the working fluid liquid.
- a pump is needed as a starting force to turn the cycle. Also, a pressure difference is necessary to reduce the pressure loss of the piping, expansion of the throttle, and the evaporation pressure with the nozzle. A pump is necessary for this boosting. Normally, a canned pump is used for the refrigerant in the refrigeration cycle. The boiler uses a high-pressure pump.
- the apparatus further comprises an evaporation means for evaporating the liquid of the working fluid. It is a boiler in brackish water power generation and an evaporator in a refrigeration cycle. In the refrigeration cycle, the liquid in the refrigerant absorbs energy and the liquid becomes gas. Evaporation is endothermic or energy absorption. The change is isothermal expansion. When the energy absorbed by the evaporation means is extracted by the gas expansion liquefaction means, energy without an external combustion heat source can be extracted.
- a liquid pressure reducing means for reducing the liquid of the working fluid to a predetermined evaporation pressure.
- a throttle expansion means In a normal refrigeration cycle, it is a throttle expansion means. These are expansion valve orifices and capillary tubes.
- the liquid low pressure means is a means for lowering the working fluid liquid liquefied by the volume expansion liquefaction means to the design evaporation pressure. Since the liquefaction of the present invention is performed at the evaporation temperature corresponding to the evaporation pressure, it is not necessary to squeeze when the designed evaporation temperature is reached.
- a pressure sensor that detects the pressure liquefied by the volume expansion means and converts it into an electric signal; An electronic control valve that changes the valve opening by an electrical signal; An electronic control valve controller for linearly controlling the electric signal of the pressure sensor to the valve opening degree is provided.
- the pressure sensor converts the liquid pressure into an electrical signal. Evaporation pressure 0.1Mpa 4mA Evaporation pressure 1.5Mpa 20mA When 4 mA, that is, 0.1 Mpa, the orifice is fully opened and 1.5 Mpa is 20 mA. When 20 mA, the valve opening is minimized. If the P 1 and pressure P 2 the design evaporation pressure P 3 of the sectional area C of the orifice density A of the pressure [rho 1 of pressure P 1 liquid discharge coefficient of the pump of the liquefied solution
- the present invention is characterized by further comprising a low pressure switching means for switching the liquid low pressure means.
- the working fluid is a refrigerant for a refrigeration cycle.
- the working fluid is water. Water is optimal as a working fluid because it has a large heat of vaporization and is stable at high temperatures. Often used in thermal power generation.
- the gas expansion liquefaction means is a gas volume expansion part, A gas inlet, A gas-liquid separation unit that gas-liquid separates the liquid of the working fluid liquefied by the volume expansion of the gas and the gas not liquefied; It is characterized by setting it as an expander provided with a gas discharge part.
- the gas expansion liquefaction means, the mechanical energy conversion means, and the power generation means may be an expander that uses a heat insulating compressor.
- a heat-insulating compressor such as a scroll expander is reversely used.
- the discharge port of the adiabatic compressor is used as the suction port of the expander and rotated in reverse. It is also possible to use the compressor motor as a generator.
- a low-pressure receiver that stores the working fluid liquefied by the gas expansion liquefaction means is further provided. Since the liquefaction by the gas expansion liquefaction means is performed at the evaporation temperature, the pressure becomes low.
- a final liquid receiver for storing the liquid of the working fluid is further provided.
- the working fluid is at room temperature. Therefore, at the time of start-up, liquid is sent from the final receiver by a pump.
- the moving means is an automobile, a ship, a train or the like.
- Buildings include data centers, factories, apartment houses, office buildings, and the like.
- power generation can be performed without fuel.
- power storage means is attached. Examples are storage batteries and capacitors.
- a power converter is an inverter or converter.
- the pressure converting means is characterized by having a taper spread.
- the gas of the working fluid that has not been liquefied becomes high speed.
- the device changes depending on whether the pressure conversion means exceeds the speed of sound or not. When exceeding the speed of sound, use a taper nozzle.
- the present invention is characterized in that the pressure converting means is diffused. If the velocity of the gas that has not been liquefied by the gas expansion liquefaction means is less than the speed of sound, a diffuser is used.
- the evaporator is an evaporator used in a refrigeration cycle.
- the evaporation means is a boiler.
- the mechanical energy conversion means is a turbine. Since the gas not liquefied by the energy extracted by the gas expansion liquefaction means becomes a high-speed gas, the turbine converts the velocity energy into mechanical energy. Thereby, the thermal energy absorbed by the evaporation means can be converted into mechanical energy.
- the turbine member is made of synthetic resin. Since the temperature of the working fluid is the evaporation temperature, the evaporation pressure temperature can be controlled. Therefore, when the evaporation temperature is set to 0 ° C., the temperature of the working fluid flowing into the turbine can be set to 0 ° C. Therefore, instead of a material that can withstand high temperature and pressure as in the prior art, a heat-sensitive synthetic resin can be used for the impeller, blade, and rotor of the turbine. Synthetic resins are plastics, and those that are strong like engineer plastics are optimal for turbine materials. Further, fiber reinforced plastic may be used. Compared to iron alloys, plastic is lighter, so when used in a turbine, mechanical loss is reduced. Since a magnetic bearing cannot be used as a plastic bearing, it is preferable to use a fluid bearing in which a fluid is used as a working fluid.
- liquid pressure reducing means is a nozzle.
- the turbine bearing is a fluid bearing, and the fluid is a working fluid. Since the turbine rotates at high speed, the choice of bearings is important. Air bearings are used in micro gas turbines. Usually, the air bearing needs a compressor that sends air. However, since the gas after volume expansion and liquefaction is high speed, the working fluid can be used as the fluid of the fluid bearing.
- the condenser means is a condenser used in a refrigeration cycle.
- the present invention is characterized in that the evaporation means having different evaporation pressures is provided.
- gas expansion liquefaction means is provided for each different evaporation pressure.
- a low-pressure receiver pressure detecting means for detecting the pressure of the liquid in the low-pressure receiver.
- a low-pressure receiver liquid level detecting means for detecting the liquid level of the low-pressure receiver.
- the apparatus further comprises pump liquid source switching means for switching the liquid source of the pump to the low pressure liquid receiver or the final liquid receiver.
- a first pressure equalizing pipe is provided to make the pressure of the expander and the low-pressure liquid receiver equal to each other.
- a second pressure equalizing pipe is provided to make the pressure of the low-pressure receiver and the high-pressure receiver equal.
- a heating heat source for heating the gas of the working fluid is further provided.
- a vacuum pump is further provided.
- a vacuum pump is used to assist in lowering the liquid temperature and pressure. When the working fluid is water, the vacuum pump is evaporated.
- the apparatus further includes an object temperature detecting means for detecting the temperature of the object to be cooled.
- the object to be cooled is the temperature of the air in the refrigerator and the temperature of the refrigerator in the freezer.
- the temperature detecting means is a thermostat or the like.
- the working fluid is geothermal steam.
- a pressure vessel A reciprocating liquid that reciprocates in the pressure vessel; A reciprocating liquid suction valve; A reciprocating liquid discharge valve; A gas intake valve and a gas discharge valve; A liquid reciprocating compressor including a pump for sending a reciprocating liquid at a high pressure is provided. It is a reciprocating gas compressor that uses liquid instead of a piston.
- a pump is used to fill the pressure vessel with liquid. The liquid is stored in advance. If the liquid is oil with very low evaporation pressure and the gas is air, it can be used as a vacuum pump. As the oil, a fluorine-based oil for a vacuum pump may be used.
- a gas-liquid mixed condenser When gas is used as a refrigerant and a liquid is used as a low-temperature refrigerant of the same liquid, a gas-liquid mixed condenser is obtained.
- a vacuum pump When the gas suction valve is closed and the liquid is lowered, a vacuum pump is obtained, and when the gas suction valve is opened and the liquid is lowered, a gas compressor is obtained.
- the reciprocating liquid is used as a vacuum pump oil
- the gas is air.
- This is a so-called air compressor. Since the oil for vacuum pumps has a low vapor pressure, it can be used as a liquid piston for a liquid reciprocating compressor.
- a heat insulating compressor is further provided.
- the working fluid that has not been liquefied by the gas expansion liquefaction means is made high temperature and high pressure by an adiabatic compressor and liquefied by a condenser.
- the reciprocating liquid is a refrigeration cycle liquid refrigerant
- the gas is a gas refrigerant for a refrigeration cycle.
- a gas-liquid heat exchanger for exchanging heat between the liquid of the working fluid liquefied by the condenser and the gas of the working fluid evaporated by the evaporation means is provided.
- the gas-liquid heat exchanger is provided with a check valve for preventing a backflow of gas.
- a heating heat source is further provided.
- a heating heat source such as a combustion heat source is used when the working fluid is changed to a high temperature and a high pressure by the pressure conversion means, but a higher temperature is desired.
- the communication device further includes a communication unit.
- the heating heat source is a computer heat generation heat source.
- the CPU of the computer is the heat source.
- a heat pipe for transporting the heat of the heating heat source to the evaporation means is further provided.
- the CPU and the evaporator's evaporator pipe are connected by a heat pipe to transport the CPU generated heat to the evaporator.
- the apparatus further comprises a compression means for compressing the gas with the mechanical energy converted by the gas energy conversion means.
- the adiabatic compressor is moved and compressed by mechanical energy obtained by expanding the gas to extract energy and extracting the gas that has not been liquefied and liquefied.
- a heat insulating compressor is further provided.
- the gas is gradually liquefied, but each time it is liquefied, the amount of gas decreases and the energy extraction efficiency deteriorates. Therefore, the remaining gas is condensed and liquefied using an adiabatic compressor.
- the apparatus further comprises a liquid reciprocating compressor comprising a pressure vessel, a liquid, a gas, a gas suction valve, a gas discharge valve, a liquid suction valve, a liquid, a discharge valve, and valve control means. is there. It is a reciprocating gas compressor that uses liquid instead of a piston.
- a pump is used to fill the pressure vessel with gas.
- the liquid is stored in advance. If the liquid is oil with very low evaporation pressure and the gas is air, it can be used as a vacuum pump. As the oil, a fluorine-based oil for a vacuum pump may be used.
- gas-liquid mixed condenser is obtained.
- the refrigerant vapor suction valve is closed and the liquid refrigerant suction valve is opened to fill the pressure vessel with the liquid refrigerant.
- a high pressure pump is used to fill the pressure vessel with gas.
- the liquid level in the pressure vessel rises.
- the refrigerant vapor is compressed and the pressure temperature rises.
- the liquid refrigerant is at a low temperature, heat exchange with the high-temperature refrigerant vapor is performed, and the refrigerant vapor is liquefied and condensed.
- the liquid discharge valve and the refrigerant vapor suction valve are opened after the compression condensation, the refrigerant vapor is sucked with a decrease in the liquid level.
- two gas-liquid mixing condensers should be installed. Condensation is possible if the liquid is filled to a sufficiently high pressure with a high-pressure pump. If about 99% is liquefied and condensed by the expansion means and the final liquefaction condensation is performed by the gas-liquid mixing condenser, the difference in specific volume between the liquid and the gas is about the same, the rise in liquid temperature is suppressed, and the amount of liquid delivered is reduced. The liquid is stored in advance.
- a pressure vessel for further containing gas It is characterized by comprising a gas-liquid heat exchanger composed of a pressure vessel containing liquid with a heat transfer plate attached to compensate for the difference in heat transfer coefficient between liquid and gas. Heat exchange between liquid and gas.
- the gas is a refrigerant or water other than the atmosphere, it is necessary to seal the gas, so this structure is adopted.
- aluminum plate fins are used as the expansion heat transfer surface, heat exchange is possible even for gases with low thermal conductivity.
- the gas-liquid heat exchanger for exchanging heat between the gas-liquid heat exchanger for exchanging heat between the low-temperature gas, the liquid, the high-temperature gas, the low-temperature gas and the liquid, and the liquid exchanged with the gas-liquid heat exchange and the high-temperature gas are exchanged. It is characterized by providing. Since heat exchange between gas and gas has a low thermal conductivity, heat exchange is performed by interposing a liquid between the gas and gas. It is better to use low-pressure water at room temperature as the liquid has a high heat transfer coefficient.
- the apparatus further comprises vaporization heat supply means for supplying vaporization heat to the evaporator.
- the vaporization heat supply means is heat absorption of outside air by a fan and a plate fin.
- Existing steam boilers generate high-temperature and high-pressure steam from low-temperature liquid water.
- the amount of heat used is the sum of latent heat of vaporization and sensible heat. Therefore, liquid water is evaporated in advance with an evaporator.
- the heater disposed in the upper part of the evaporator is heated to evaporate at a low pressure by making the inside of the lower evaporator negative by the chimney effect.
- the energy for generating the superheated steam can be reduced by the heat of vaporization.
- the heat source of the evaporator is water. The water is cooled. If air in the atmosphere is used as a heat source, it will be cooled.
- the liquid may be made high pressure with a high-pressure pump to exchange heat with superheated steam.
- the high temperature heat source is an electric resistance heat generation, a combustion heat heat source, a solar heat collection heat source, or the like.
- a seawater draining means is provided for draining seawater whose salt concentration is increased by evaporating water in the evaporator. It is a seawater desalination device.
- the refrigerant vapor can be liquefied by volume expansion with an expander. If the volume is expanded a plurality of times, all the refrigerant vapor can be liquefied. This eliminates the need for an adiabatic compressor and condenser. A liquid pump is necessary for circulation of the cycle, but the power of the pump is much smaller than the power of the adiabatic compressor of the same circulation amount, which greatly reduces energy. In addition, it is possible to generate power with the energy extracted by liquefaction. This uses the energy absorbed by the evaporator without radiating heat with the condenser as in the prior art, thus contributing to the prevention of the heat island phenomenon and the reduction of CO2 emissions.
- the inflator is a pressure vessel. Basically it is made of steel. Consider low temperature vulnerability depending on temperature.
- the inflator has 14 gas inlets, 19 liquid outlets and 17 gas outlets.
- the overall configuration consists of 15 gently enlarged parts and 16 reduced parts.
- the gas is volume-expanded at 15 enlarged portions, and the work is taken out and liquefied. Since it is difficult to increase the expansion ratio, volume expansion is performed with a plurality of expanders. Since the gas liquefaction is a part, the volume-expanded working fluid becomes liquid and gaseous wet vapor.
- the wet steam finally collides with the 16 reduced portions and is separated from the liquid.
- the liquid is led to 19 gas outlets and the gas is led to 17 gas outlets.
- the discharged gas absorbs the work W and becomes a high-speed gas.
- Eighteen pressure equalization tubes are used to equalize the pressure in the inflator and 20 low pressure receivers when gravity drops the liquid into 20 low pressure receivers. It is a ph diagram of steam expansion refrigeration cycle power generation (expander only). Evaporate from 1 with an evaporator. 2 completes evaporation.
- the gas is isothermally expanded from 2 to 3 with an expander to liquefy part of the gas. In 3-4, a part of the gas is further liquefied by the second isothermal expansion. 4 to 5 further liquefy part of the gas by the third isothermal expansion. 5 to 6 further liquefy part of the gas in the fourth isothermal expansion.
- the refrigerant gas evaporated by the evaporator 24 is volume-expanded by the expander 25a, and a part of the gas is liquefied. The remaining gas is further liquefied by a 25b expander. By repeating the volume expansion several times, all the gas is liquefied. The energy extracted when the gas is liquefied becomes velocity energy according to the law of conservation of energy.
- the refrigerant gas having velocity energy is converted into mechanical energy by the turbines 26a to 26d, and converted into electrical energy by the generators 27a to d to generate electric power.
- the refrigerant liquefied by the expanders 25a to 25e is dropped by gravity into the low pressure receiver 20 by using the first pressure equalizing pipe 29 by opening the solenoid valve 28a.
- the low pressure receiver 20 detects the liquid level at the high position of the float switch 31 and opens the solenoid valves 28d and 28e and drops them to the final receiver 22 by gravity using the second pressure equalizing pipe 30. At this time, the solenoid valves 28c and 28d are closed. When the liquid level is detected at a low level of 32 float switches, the solenoid valves 28d and 28e are closed, the solenoid valves 28a and 28b are opened, and the liquid liquefied by the expander is stored in the low pressure receiver. At the end of the cycle, the solenoid valves 28c, 28d and 28e are opened, and the refrigerant liquid is dropped by gravity from the 20 low pressure receivers to the 22 final receivers using the second pressure equalizing pipe 30.
- the remaining gas is further liquefied by a 25b expander.
- the extracted energy becomes velocity energy according to the law of energy conservation.
- the refrigerant gas having velocity energy is converted into mechanical energy by the turbines 26a and 26b, and converted into electrical energy by the generators 27a and 27b to generate electric power.
- the gas exiting the turbine 26b is volume-expanded by an expander 25c, and using a Laval nozzle 35, velocity energy is converted into thermal energy and led to a condenser 36.
- the high-temperature and high-pressure refrigerant gas led to the condenser 36 is used for heating, defrosting, water heating, and the like by exchanging heat with ambient ambient air, water, and the like during condensation.
- the refrigerant liquefied by heat exchange in 36 condensers is led to 22 final liquid receivers.
- the refrigerant liquefied by the expanders 25a to 25c is opened by the solenoid valve 28a, and dropped by gravity to the low pressure receiver 20 by the first pressure equalizing pipe 29.
- the low pressure receiver of 20 detects the liquid level at the high position of the float switch of 31 and opens the solenoid valves of 28d and 28e and drops them by gravity to the final receiver of 22 with the second pressure equalizing pipe of 30, and with the condenser of 36 Merge with liquefied refrigerant.
- the solenoid valves 28a and 28b are closed.
- the water heated by the boiler 39 becomes steam, and the steam energy is converted into mechanical energy by the turbine 26a, and is converted into electric energy by the generator 27a to generate electric power. Then, the steam emitted from the turbine 26a is volume-expanded by an expander 25 to liquefy the gas.
- the energy extracted when the gas is liquefied becomes velocity energy according to the law of conservation of energy. Steam with velocity energy is converted into mechanical energy by the turbine 26b, and converted into electric energy by the generator 27b to generate electricity.
- the water liquefied by the 25 inflator is dropped by gravity into the 37 water tank. As a result, the steam energy previously discarded in the condenser is extracted by the expander, and the power generation efficiency is greatly improved.
- the refrigerant gas evaporated by the evaporator of 24 is expanded by the expander of 25 and becomes a crushing vapor. Squeeze vapor is separated into gas and liquid by 40 gas-liquid separators.
- the liquefaction rate varies depending on the expansion ratio, it is necessary to pass through an eight-fold expander with R22 and an expansion ratio of 4 in order to reduce the gas amount to about 20%. Since the liquefaction efficiency gradually deteriorates as the liquefaction rate increases, the liquefaction efficiency is finally liquefied by a condenser of 36 using a 41 adiabatic compressor and put into a final receiver.
- the liquid separated by 40 gas-liquid separators falls to 20 low-pressure receivers by gravity.
- the low pressure receiver 20 detects the liquid level at the high position of 31 float switch, uses the pressure equalizing pipe 18, opens the solenoid valve 28b, equalizes the pressure with the final receiver and opens the solenoid valve 28c. And move it by gravity. At this time, the solenoid valve 28a is closed. When the liquid level is detected at 32 float switches, the solenoid valves 28b and 28c are closed, the solenoid valve 28a is opened, and the liquid separated by the gas-liquid separator 40 is removed. Store in a low-pressure receiver. At the end of the cycle, the solenoid valve 28a is opened, and the refrigerant liquid is dropped by gravity from the low pressure receiver 20 to the final receiver 22 using the pressure equalizing pipe 18.
- the solenoid valves 28a and 28d are closed. It is a low-pressure receiver.
- the low-pressure liquid receiver stores the low-pressure refrigerant liquid liquefied by the expander. 42 pressure vessels, 43a and 43b liquid tubes, 29 first pressure equalizing tubes, and 30 second pressure equalizing tubes.
- the pressure equalizing pipe 29 is opened to equalize the pressures of the low pressure receiver and the expander, and the low pressure receiver using the gravity of the liquid. Pour liquid into.
- the pressure equalizing tube 30 is used when the liquid in the low pressure receiver is dropped to the final receiver by gravity.
- the float switch 31 is used to detect that about half of the liquid in the container has been stored so that the low-pressure receiver is full and the liquid does not compress the gas in the low-pressure receiver and is dropped into the final receiver. .
- the float switch 32 detects the liquid level in order to stop the liquid from dropping into the final receiver.
- the final liquid receiver is a liquid receiver that stores refrigerant liquid at the time of start-up, and is a liquid receiver that combines and stores the liquid of the low-pressure liquid receiver or the liquid liquefied by the condenser. 42 pressure vessels, 43a liquid tube, 43b liquid tube, 43c liquid tube and 30 second pressure equalizing tube.
- the liquid pipe 43a is connected to the low-pressure receiver, the liquid pipe 43b is connected to the condenser, and the liquid pipe 43c is connected to the pump.
- the refrigerant liquid liquefied by the condenser enters the final liquid receiver through the liquid pipe 43b.
- a second pressure equalizing pipe is required to put the liquid in the low pressure liquid receiver into the final liquid receiver.
- the liquid in the final receiver is sent to the expansion by a pump. It is a gas-liquid heat exchanger.
- the gas, 48 heat transfer plates, and 43 liquid tubes are accommodated in 42 pressure vessels. Most of the 48 heat transfer plates are aluminum plates. Most of the liquid pipes 43 are copper pipes.
- the difference in heat transfer coefficient between liquid and gas is defined as the enlarged area of the plate.
- a liquid reciprocating compressor or a liquid compression vacuum pump The liquid suction valve 51 is opened, and the liquid is fed into the pressure vessel 42 at a high pressure by the high pressure pump 21. If the gas suction valve and the gas discharge valve are closed during liquid feeding, the gas is compressed as the liquid level rises. Further, when the gas discharge valve is opened, the gas is discharged. The gas compression ratio is adjusted by the height of 31 and 32 float switches. At the time of gas suction, the liquid discharge valve 54 is opened while the gas suction valve 52 is opened, and the liquid is discharged. As the liquid level drops, the pressure vessel becomes negative and gas is sucked. Reciprocate the liquid into a piston.
- a gas is air
- a liquid is a fluorine-based oil having a low vapor pressure, or a vacuum pump oil is used, it can be used as a vacuum pump.
- the fluid is used as a refrigerant in the refrigeration cycle
- the gas is the evaporator return vapor
- the liquid is the condensate.
- the liquid is stored in 55 and pumped by 21. It is a gas-liquid mixing condenser.
- (A) closes the liquid suction valve 51 and the liquid discharge valve 54 and opens the gas suction valve 52 to suck the gas into the pressure vessel 42.
- the liquid suction valve is arranged at the upper part of the pressure vessel and the liquid discharge valve is arranged at the lower part of the pressure vessel.
- the high-pressure pump 21 serves as a liquid feeding means to the gas-liquid mixing condenser after starting, the solenoid valve 28a and the solenoid valve 28d are closed and the solenoid valve 28c is opened. Further, after starting, the electromagnetic valve 28b is opened in order to send liquid from the liquid receiver 58 to the evaporator 24.
- the gas evaporated by the evaporator is isothermally expanded by 56 expanders, and a part of the gas is liquefied. At the time of liquefaction, the gas absorbs the energy of the liquefied amount, so the energy of the gas is converted using 26 turbines, and power is generated by 27 generators.
- a part of the gas that has not been liquefied by the expander is liquefied by the gas-liquid mixing condenser.
- the gas-liquid mixing condenser In order to condense the remaining gas which has not been liquefied by the 56 expander, it passes through the 26 turbine and enters the 61a gas-liquid mixing condenser.
- the solenoid valve 28e, the solenoid valve 28g, and the solenoid valve 28h are closed.
- the liquid liquefied by the expander 56 is boosted by the high-pressure pump 21 and sent to the gas-liquid mixing condenser 61a.
- the solenoid valve at 28f is closed and the solenoid valve at 28h is opened to allow gas to enter the gas-liquid mixing condenser at 61b.
- the solenoid valve 28f and the solenoid valve 28h are closed during liquid feeding, the liquid level rises and the temperature of the compressed gas rises. Since the temperature of the liquid is lower than the temperature of the gas, it is condensed and liquefied.
- the liquid level of the gas-liquid mixing condenser 61a is controlled by a float switch 31a for detecting a high water level and a float switch 32a for detecting a low water level, the solenoid valve 28e is closed, and the solenoid valve 28i is opened. Move to the receiver.
- the solenoid valve 28h is closed, the solenoid valve 28g is opened, and the pressure is increased by the high-pressure pump 21b.
- the solenoid valve 28f is opened and gas is introduced into the gas-liquid mixing condenser 61a.
- the liquid level of the gas-liquid mixing condenser 61b is controlled by a float switch 31b that detects a high water level and a float switch 32b that detects a low water level, the 28g solenoid valve is closed, and the 28j solenoid valve is opened. Move to the receiver.
- the process of gas compression by the rise of the liquid level in the gas-liquid mixing condensers 61a and 61b is alternately repeated. Since the gas absorbs the energy liquefied by the 56 expanders, the energy of the gas is converted using the 26 turbines and the power is generated by the 27 generators. Moreover, since the amount of gas decreases by using a plurality of expanders, the size of the gas-liquid mixer can be reduced. Volume expansion liquefaction refrigeration cycle power generation (with adiabatic compressor). Twenty-four evaporators are expanded by a 25 expander into crushing steam. Crushing steam is separated into steam and liquid by 40 gas-liquid separator.
- the liquefaction rate varies depending on the expansion ratio, it is necessary to pass through an eight-time expander with R22 and an expansion ratio of 4 in order to reduce the amount of steam to about 20%. Since the liquefaction efficiency gradually deteriorates as the liquefaction rate increases, the liquid is finally liquefied by 36 condensers using a conventional 41 adiabatic compressor. The liquid separated by 40 gas-liquid separators falls to 20 low-pressure receivers by gravity. Thereafter, the liquid is dropped by gravity into the 63 high-pressure receiver. Then, the pressure is increased by 21 high-pressure pumps and sent to 22 final liquid receivers. When moving the liquid, the pressure is equalized using 18 pressure equalizing tubes and moved by gravity.
- the liquid volume is controlled using 31 and 32 float switches that detect high and low water levels.
- the starting force of this cycle is 21 high pressure pumps.
- Volume expansion liquefaction refrigeration cycle power generation (with gas-liquid mixing condenser).
- the gas-liquid mixing condenser 61 is used instead of the adiabatic compressor 41 in FIG. It is a figure of pressure reduction by an electronic control valve.
- the pressure sensor of 66 is attached to 20 low-pressure liquid receivers, detects the pressure of the liquid, converts it into an electrical signal, transmits pressure information to the electronic control valve controller of 67, and controls the valve opening by pressure. Then, the pressure is reduced and evaporated by an evaporator. The evaporation pressure is controlled by the valve opening. Even with a high-pressure pump, the pressure is 0. 2 M-0. 3 is about M. If the pressure loss of the pipe is large, the head can be increased by connecting the pump in series.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
[Problem] To reduce the energy used by a refrigeration cycle device. Adiabatic compressors are used in refrigeration cycle devices, and most are driven by electric power. Technology is required for refrigeration cycle devices to conserve electricity and generate electricity using renewable energy when the power from an electric power supply is insufficient. [Solution] A gas that is not at critical temperature is liquefied by volumetric expansion. The energy extracted at the time of liquefaction is used to generate electricity.
Description
冷凍サイクル装置及発電装置に関る
Refrigeration cycle equipment and power generation equipment
冷凍サイクル装置として蒸気圧縮冷凍サイクル装置がある。
蒸気圧縮冷凍サイクルの動力は主に電力である。
冷凍サイクル装置は食品の冷凍、冷蔵に使用されている。
またエアコンとして多数使用されている。
冷凍サイクルの効率向上策としてインバーター制御技術や液ガス熱交換、エジェクター等がある。再生可能エネルギーによる発電として、風力発電、太陽光発電、バイオマス発電、地熱発電がある。 There is a vapor compression refrigeration cycle apparatus as a refrigeration cycle apparatus.
The power of the vapor compression refrigeration cycle is mainly electric power.
The refrigeration cycle apparatus is used for freezing and refrigeration of food.
Many are used as air conditioners.
Refrigeration cycle efficiency improvement measures include inverter control technology, liquid gas heat exchange, and ejectors. Examples of power generation using renewable energy include wind power generation, solar power generation, biomass power generation, and geothermal power generation.
蒸気圧縮冷凍サイクルの動力は主に電力である。
冷凍サイクル装置は食品の冷凍、冷蔵に使用されている。
またエアコンとして多数使用されている。
冷凍サイクルの効率向上策としてインバーター制御技術や液ガス熱交換、エジェクター等がある。再生可能エネルギーによる発電として、風力発電、太陽光発電、バイオマス発電、地熱発電がある。 There is a vapor compression refrigeration cycle apparatus as a refrigeration cycle apparatus.
The power of the vapor compression refrigeration cycle is mainly electric power.
The refrigeration cycle apparatus is used for freezing and refrigeration of food.
Many are used as air conditioners.
Refrigeration cycle efficiency improvement measures include inverter control technology, liquid gas heat exchange, and ejectors. Examples of power generation using renewable energy include wind power generation, solar power generation, biomass power generation, and geothermal power generation.
冷凍サイクル装置の使用エネルギーの削減が求められている。
気水火力発電のエネルギー効率の向上が求められている。
蒸気圧縮冷凍サイクル装置には断熱圧縮機が使用され大部分は電力で駆動されている。
断熱圧縮機を使わない冷凍サイクルが求められている。
再生可能エネルギーの利用が求められている。
冷凍サイクル装置の節電が求められている。
電力供給力が不足し再生可能エネルギーでの発電が求められている。 There is a demand for reduction in energy consumption of the refrigeration cycle apparatus.
There is a need to improve the energy efficiency of steam-fired thermal power generation.
An adiabatic compressor is used in the vapor compression refrigeration cycle apparatus, and most is driven by electric power.
There is a need for a refrigeration cycle that does not use an adiabatic compressor.
The use of renewable energy is required.
There is a need for power saving in refrigeration cycle equipment.
There is a demand for power generation using renewable energy due to insufficient power supply.
気水火力発電のエネルギー効率の向上が求められている。
蒸気圧縮冷凍サイクル装置には断熱圧縮機が使用され大部分は電力で駆動されている。
断熱圧縮機を使わない冷凍サイクルが求められている。
再生可能エネルギーの利用が求められている。
冷凍サイクル装置の節電が求められている。
電力供給力が不足し再生可能エネルギーでの発電が求められている。 There is a demand for reduction in energy consumption of the refrigeration cycle apparatus.
There is a need to improve the energy efficiency of steam-fired thermal power generation.
An adiabatic compressor is used in the vapor compression refrigeration cycle apparatus, and most is driven by electric power.
There is a need for a refrigeration cycle that does not use an adiabatic compressor.
The use of renewable energy is required.
There is a need for power saving in refrigeration cycle equipment.
There is a demand for power generation using renewable energy due to insufficient power supply.
本目的を達成するための気体体積膨張利用装置であって
作動流体の気体を体積膨張させて気体を液化する気体膨張液化手段を備える事を特徴とするものである。
従来の技術では等温膨張には仕事又は熱が必要とされており、事前に仕事を加える。すなわち圧縮するかカルノーサイクルの等温膨張のような吸熱過程とされていた。
しかし本発明は、気体を体積膨張させる際に仕事を加えず逆に仕事を取り出すものである。
気体を体積膨張させるには仕事Wが必要である。
周囲との熱の出入がない条件での気体の体積膨張時の仕事量Wは作動流体によって違いがある。
ケース1 体積膨張時の気体の温度が臨界点以上
この場合は仕事Wは気体自身から調達され、気体の温度・圧力が低下する。
W = R(T1-T2)log(VB/VA)
Rは気体定数 J/kg・K
T1は膨張前温度
T2は膨張後温度
いわゆる断熱膨張である。
ケース2 体積膨張時の気体の温度が臨界点未満
この場合も仕事Wは気体自身から得られるが、臨界点温度以下の気体は液相、気相の2相状態が存在し2相の相変化は等温等圧で行われるので、等温膨張となる。
よって、仕事 W = RTlog(VB/VA)
Tは蒸発温度
よって、仕事 W と熱、の変換効率は100%となる。
熱とは蒸発で吸収した熱量である。
体積膨張時に臨界点以下の作動流体としては
R22,R404,R407、R410、R134a等の代替フロン系冷媒や、水、アンモニア、二酸化炭素、イソブタン等の自然冷媒がある。
等温膨張に必要な仕事 W は気体自身から得られて気体から抽出された仕事
W が気化熱相当になった時に液化される。
よって、臨界点以下の温度の気体を体積膨張させると蒸発温度で液化することができる。
液化量は気化熱をqとすると、
液化量 = W/q = {RTlog(VB/VA)/q}
次に質量保存則により
流入気体質量 = 流出液体質量 + 流出気体質量
である。
又、エネルギー保存則により熱の出入りがないので
流出液体エネルギー減少 + 流出気体のエネルギー増 = 0
流出液体のエネルギー減は体積膨張仕事Wであるので気体のエネルギー増はWである。
ここで流入気体の速度エネルギーは通常の冷凍サイクルでは流速10m/sくらいなのでエネルギーは(1/2)102=50Jで無視できる。
又、流入気体の吸入口と流出気体の吐出口の断面積を等しくすると圧力項も等温等圧なので無視できる。
よって流出気体のエネルギー増は速度エネルギーとなる。
流出気体の速度をVとして
体積膨張仕事をW
気化熱をqとすると
となる。
体積膨張仕事は流入気体の速度エネルギー分だけ小さくなる。
よって、体積膨張液化時の流入気体の速度は10m/s程度と充分速度が小さい必要がある。
10m/s時の1kg当りの速度エネルギーは50Jとなり非常に小さい。 A gas volume expansion utilization apparatus for achieving this object is characterized by comprising gas expansion liquefaction means for liquefying gas by volume expansion of a working fluid gas.
In conventional techniques, work or heat is required for isothermal expansion, and work is added in advance. In other words, it was an endothermic process such as compression or isothermal expansion of the Carnot cycle.
However, according to the present invention, when the gas is volume-expanded, the work is taken out without adding work.
Work W is required to expand the volume of the gas.
The work amount W at the time of volume expansion of gas under the condition where heat does not enter and exit from the surroundings varies depending on the working fluid.
Case 1 The temperature of the gas during volume expansion is above the critical point. In this case, the work W is procured from the gas itself, and the temperature and pressure of the gas decrease.
W = R (T1-T2) log (VB / VA)
R is gas constant J / kg · K
T1 is a pre-expansion temperature T2 is a post-expansion temperature, so-called adiabatic expansion.
Case 2 The temperature of the gas during volume expansion is below the critical point. In this case as well, work W can be obtained from the gas itself, but the gas below the critical point temperature has two phases, liquid phase and gas phase. Is performed at an isothermal isobaric pressure, resulting in an isothermal expansion.
Therefore, work W = RTlog (VB / VA)
Depending on the evaporation temperature, the conversion efficiency of work W and heat is 100%.
Heat is the amount of heat absorbed by evaporation.
The working fluid below the critical point during volume expansion includes alternative chlorofluorocarbon refrigerants such as R22, R404, R407, R410, and R134a, and natural refrigerants such as water, ammonia, carbon dioxide, and isobutane.
Work W required for isothermal expansion is obtained from the gas itself and is liquefied when thework W 2 extracted from the gas is equivalent to the heat of vaporization.
Therefore, when a gas having a temperature below the critical point is volume-expanded, it can be liquefied at the evaporation temperature.
The amount of liquefaction is q where the heat of vaporization is q.
Liquefaction amount = W / q = {RTlog (VB / VA) / q}
Next, according to the law of conservation of mass, mass of inflow gas = mass of effluent liquid + mass of effluent gas.
Also, since there is no heat in and out due to the law of conservation of energy, the effluent liquid energy decreases + the effluent gas energy increases = 0
Since the decrease in the energy of the effluent liquid is the volume expansion work W, the increase in the energy of the gas is W.
Here, since the velocity energy of the inflowing gas is about 10 m / s in the normal refrigeration cycle, the energy can be ignored at (1/2) 102 = 50J.
Further, if the cross-sectional areas of the inlet port for the inflowing gas and the discharge port for the outflowing gas are equal, the pressure term can be ignored because it is isothermal and isobaric.
Therefore, the increase in energy of the outflow gas becomes velocity energy.
The volume expansion work is W, where the velocity of the outflow gas is V.
If the heat of vaporization is q
It becomes.
The volume expansion work is reduced by the velocity energy of the inflowing gas.
Therefore, the velocity of the inflowing gas at the time of the volume expansion liquefaction needs to be sufficiently small such as about 10 m / s.
The velocity energy per kg at 10 m / s is 50 J, which is very small.
作動流体の気体を体積膨張させて気体を液化する気体膨張液化手段を備える事を特徴とするものである。
従来の技術では等温膨張には仕事又は熱が必要とされており、事前に仕事を加える。すなわち圧縮するかカルノーサイクルの等温膨張のような吸熱過程とされていた。
しかし本発明は、気体を体積膨張させる際に仕事を加えず逆に仕事を取り出すものである。
気体を体積膨張させるには仕事Wが必要である。
周囲との熱の出入がない条件での気体の体積膨張時の仕事量Wは作動流体によって違いがある。
ケース1 体積膨張時の気体の温度が臨界点以上
この場合は仕事Wは気体自身から調達され、気体の温度・圧力が低下する。
W = R(T1-T2)log(VB/VA)
Rは気体定数 J/kg・K
T1は膨張前温度
T2は膨張後温度
いわゆる断熱膨張である。
ケース2 体積膨張時の気体の温度が臨界点未満
この場合も仕事Wは気体自身から得られるが、臨界点温度以下の気体は液相、気相の2相状態が存在し2相の相変化は等温等圧で行われるので、等温膨張となる。
よって、仕事 W = RTlog(VB/VA)
Tは蒸発温度
よって、仕事 W と熱、の変換効率は100%となる。
熱とは蒸発で吸収した熱量である。
体積膨張時に臨界点以下の作動流体としては
R22,R404,R407、R410、R134a等の代替フロン系冷媒や、水、アンモニア、二酸化炭素、イソブタン等の自然冷媒がある。
等温膨張に必要な仕事 W は気体自身から得られて気体から抽出された仕事
W が気化熱相当になった時に液化される。
よって、臨界点以下の温度の気体を体積膨張させると蒸発温度で液化することができる。
液化量は気化熱をqとすると、
液化量 = W/q = {RTlog(VB/VA)/q}
次に質量保存則により
流入気体質量 = 流出液体質量 + 流出気体質量
である。
又、エネルギー保存則により熱の出入りがないので
流出液体エネルギー減少 + 流出気体のエネルギー増 = 0
流出液体のエネルギー減は体積膨張仕事Wであるので気体のエネルギー増はWである。
ここで流入気体の速度エネルギーは通常の冷凍サイクルでは流速10m/sくらいなのでエネルギーは(1/2)102=50Jで無視できる。
又、流入気体の吸入口と流出気体の吐出口の断面積を等しくすると圧力項も等温等圧なので無視できる。
よって流出気体のエネルギー増は速度エネルギーとなる。
流出気体の速度をVとして
体積膨張仕事をW
気化熱をqとすると
となる。
体積膨張仕事は流入気体の速度エネルギー分だけ小さくなる。
よって、体積膨張液化時の流入気体の速度は10m/s程度と充分速度が小さい必要がある。
10m/s時の1kg当りの速度エネルギーは50Jとなり非常に小さい。 A gas volume expansion utilization apparatus for achieving this object is characterized by comprising gas expansion liquefaction means for liquefying gas by volume expansion of a working fluid gas.
In conventional techniques, work or heat is required for isothermal expansion, and work is added in advance. In other words, it was an endothermic process such as compression or isothermal expansion of the Carnot cycle.
However, according to the present invention, when the gas is volume-expanded, the work is taken out without adding work.
Work W is required to expand the volume of the gas.
The work amount W at the time of volume expansion of gas under the condition where heat does not enter and exit from the surroundings varies depending on the working fluid.
Case 1 The temperature of the gas during volume expansion is above the critical point. In this case, the work W is procured from the gas itself, and the temperature and pressure of the gas decrease.
W = R (T1-T2) log (VB / VA)
R is gas constant J / kg · K
T1 is a pre-expansion temperature T2 is a post-expansion temperature, so-called adiabatic expansion.
Therefore, work W = RTlog (VB / VA)
Depending on the evaporation temperature, the conversion efficiency of work W and heat is 100%.
Heat is the amount of heat absorbed by evaporation.
The working fluid below the critical point during volume expansion includes alternative chlorofluorocarbon refrigerants such as R22, R404, R407, R410, and R134a, and natural refrigerants such as water, ammonia, carbon dioxide, and isobutane.
Work W required for isothermal expansion is obtained from the gas itself and is liquefied when the
Therefore, when a gas having a temperature below the critical point is volume-expanded, it can be liquefied at the evaporation temperature.
The amount of liquefaction is q where the heat of vaporization is q.
Liquefaction amount = W / q = {RTlog (VB / VA) / q}
Next, according to the law of conservation of mass, mass of inflow gas = mass of effluent liquid + mass of effluent gas.
Also, since there is no heat in and out due to the law of conservation of energy, the effluent liquid energy decreases + the effluent gas energy increases = 0
Since the decrease in the energy of the effluent liquid is the volume expansion work W, the increase in the energy of the gas is W.
Here, since the velocity energy of the inflowing gas is about 10 m / s in the normal refrigeration cycle, the energy can be ignored at (1/2) 102 = 50J.
Further, if the cross-sectional areas of the inlet port for the inflowing gas and the discharge port for the outflowing gas are equal, the pressure term can be ignored because it is isothermal and isobaric.
Therefore, the increase in energy of the outflow gas becomes velocity energy.
The volume expansion work is W, where the velocity of the outflow gas is V.
If the heat of vaporization is q
It becomes.
The volume expansion work is reduced by the velocity energy of the inflowing gas.
Therefore, the velocity of the inflowing gas at the time of the volume expansion liquefaction needs to be sufficiently small such as about 10 m / s.
The velocity energy per kg at 10 m / s is 50 J, which is very small.
また、更に前記作動流体は体積膨張液化時に液体気体の2相状態で存在する事を特徴とするものである。
冷凍サイクル用の冷媒、たとえばR22、R134a、R404、R410、R407、R717、水などは常温で
液体と気体の2相状態で存在している。この性質を冷凍サイクルは利用している。
気体膨張液化手段で液化するためには体積膨張時の圧力温度条件で作動流体が2相状態で存在する作動流体である事が必要である。つまり体積膨張時に作動流体が臨界温度以下である事が液化の条件である。 Further, the working fluid is characterized in that it exists in a two-phase state of liquid gas at the time of volume expansion liquefaction.
Refrigerating cycle refrigerants such as R22, R134a, R404, R410, R407, R717, and water are present in a two-phase state of liquid and gas at room temperature. This property is utilized by the refrigeration cycle.
In order to liquefy with the gas expansion liquefaction means, it is necessary that the working fluid be a two-phase working fluid under pressure and temperature conditions during volume expansion. That is, the condition of liquefaction is that the working fluid is below the critical temperature during volume expansion.
冷凍サイクル用の冷媒、たとえばR22、R134a、R404、R410、R407、R717、水などは常温で
液体と気体の2相状態で存在している。この性質を冷凍サイクルは利用している。
気体膨張液化手段で液化するためには体積膨張時の圧力温度条件で作動流体が2相状態で存在する作動流体である事が必要である。つまり体積膨張時に作動流体が臨界温度以下である事が液化の条件である。 Further, the working fluid is characterized in that it exists in a two-phase state of liquid gas at the time of volume expansion liquefaction.
Refrigerating cycle refrigerants such as R22, R134a, R404, R410, R407, R717, and water are present in a two-phase state of liquid and gas at room temperature. This property is utilized by the refrigeration cycle.
In order to liquefy with the gas expansion liquefaction means, it is necessary that the working fluid be a two-phase working fluid under pressure and temperature conditions during volume expansion. That is, the condition of liquefaction is that the working fluid is below the critical temperature during volume expansion.
また、更に複数の前記気体膨脹液化手段を備える事を特徴とするものである。
膨張比には限界があるので複数の気体膨張液化手段を直列または並列使用して気体をすべて液化する。完全に液化するには直列にすると良い。 Further, the apparatus further includes a plurality of the gas expansion liquefaction means.
Since the expansion ratio is limited, all the gas is liquefied by using a plurality of gas expansion liquefaction means in series or in parallel. In order to completely liquefy, it is better to serialize.
膨張比には限界があるので複数の気体膨張液化手段を直列または並列使用して気体をすべて液化する。完全に液化するには直列にすると良い。 Further, the apparatus further includes a plurality of the gas expansion liquefaction means.
Since the expansion ratio is limited, all the gas is liquefied by using a plurality of gas expansion liquefaction means in series or in parallel. In order to completely liquefy, it is better to serialize.
更に前記気体膨張液化手段で抽出されたエネルギーを利用する抽出エネルギー利用手段を備える事を特徴とするものである。
Furthermore, the apparatus further comprises extraction energy utilization means for utilizing the energy extracted by the gas expansion liquefaction means.
また、更に前記気体膨脹液化手段で抽出されたエネルギーを機械エネルギーに変換する機械エネルギー変換手段を備える事を特徴とするものである。
所謂タービンである。気体膨張液化手段で抽出したエネルギーは圧力と温度が一定なので
速度エネルギーとなる。
タービンについて
体積膨張手段によって蒸発温度でエネルギーが抽出され気体は、低温高速の気体となっている。
故に従来のタービンの様な高温高圧に耐える材料でタービン素材を選択する必要はない。
又、タービンの形式は衝動タービンとなる。
発電機の効率、タービンの効率を考慮すると100kwの発電には、140kw程度のエネルギー抽出が必要。
発電効率 90%
タービン効率 85% とすると、
又、蒸発温度、流量、膨張比、作動流体を選択する事により抽出エネルギーは調整できる。
何故なら、
W = RTlog(VB/VA)
であるから。
Furthermore, the apparatus further comprises mechanical energy conversion means for converting energy extracted by the gas expansion liquefaction means into mechanical energy.
It is a so-called turbine. The energy extracted by the gas expansion liquefaction means becomes velocity energy because the pressure and temperature are constant.
Energy is extracted at the evaporation temperature by the volume expansion means for the turbine, and the gas is a low-temperature and high-speed gas.
Therefore, it is not necessary to select a turbine material with a material that can withstand high temperature and pressure as in a conventional turbine.
The turbine type is an impulse turbine.
Considering the efficiency of the generator and the efficiency of the turbine, an energy extraction of about 140 kw is required for 100 kw power generation.
Power generation efficiency 90%
If the turbine efficiency is 85%,
The extraction energy can be adjusted by selecting the evaporation temperature, flow rate, expansion ratio, and working fluid.
Because,
W = RTlog (VB / VA)
Because.
所謂タービンである。気体膨張液化手段で抽出したエネルギーは圧力と温度が一定なので
速度エネルギーとなる。
タービンについて
体積膨張手段によって蒸発温度でエネルギーが抽出され気体は、低温高速の気体となっている。
故に従来のタービンの様な高温高圧に耐える材料でタービン素材を選択する必要はない。
又、タービンの形式は衝動タービンとなる。
発電機の効率、タービンの効率を考慮すると100kwの発電には、140kw程度のエネルギー抽出が必要。
発電効率 90%
タービン効率 85% とすると、
又、蒸発温度、流量、膨張比、作動流体を選択する事により抽出エネルギーは調整できる。
何故なら、
W = RTlog(VB/VA)
であるから。
Furthermore, the apparatus further comprises mechanical energy conversion means for converting energy extracted by the gas expansion liquefaction means into mechanical energy.
It is a so-called turbine. The energy extracted by the gas expansion liquefaction means becomes velocity energy because the pressure and temperature are constant.
Energy is extracted at the evaporation temperature by the volume expansion means for the turbine, and the gas is a low-temperature and high-speed gas.
Therefore, it is not necessary to select a turbine material with a material that can withstand high temperature and pressure as in a conventional turbine.
The turbine type is an impulse turbine.
Considering the efficiency of the generator and the efficiency of the turbine, an energy extraction of about 140 kw is required for 100 kw power generation.
Power generation efficiency 90%
If the turbine efficiency is 85%,
The extraction energy can be adjusted by selecting the evaporation temperature, flow rate, expansion ratio, and working fluid.
Because,
W = RTlog (VB / VA)
Because.
また、更に前記気体膨張液化手段で抽出された速度エネルギーを圧力エネルギーに変換する圧力エネルギー変換手段を備える事を特徴とするものである。
デフューザーや渦巻き室やラバルノズルなどで速度エネルギーを圧力エネルギーに変換して温度圧力をあげて暖房や給湯やでフロストなどに使用する。
「 暖房の計算 」
0℃、1kgの気体の温度を50℃にするためには
定圧比熱をCpとすると
Cp × 50Kの仕事量が必要である。
R22のCpは 0.681なので
必要エネルギーは 0.681 × 50K =34.05kJ必要である。
1kgの蒸気のエネルギーは約200kJなので
50k温度を上昇するためには約40kJエネルギーを抽出し、圧力変換をすれば良い。
よって液化率20%となる。
この場合の暖房能力 200kw + 40kw = 240kw/kg
ラバルノズルなので減速。
すると圧力が上昇し、暖房として使える。
又、給湯等で80℃のものにする為には、
80k × 0.681 =54.5kJ 必要で
液化率を545÷200 = 27.25%
給湯能力 200 + 54.5 = 254.5kw となる。
この様に液化率を変える事で、温度制御が出来る。
液化率の計算では
0. 646kgの気体は気体のエンタルピーと
速度エネルギーW 72,486Jを持っている。
この速度エネルギーを圧力エネルギーに変換して温度を上げる。
R22の低圧比熱Cpは0.681kJ/kgK
であるので72.486kJの速度エネルギーは
気体の質量 × Cp × K(温度差)となる。
よって、0.646×0.681×K=72.486
∴ K=164Kの温度上昇が可能である。
しかし、これでは温度差が大きすぎるので抽出エネルギーWを小さくする。
抽出エネルギーを小さくするには膨張比を小さくする。
よって、膨張比を4にする。
よって、膨張器の拡大部は130mmとなる。
・抽出エネルギーは
W=RTlog(VB/VA) であるので
W=96×213.15×log4
=36,186J
液化量は W/q なので
36,186÷204.59
= 0.176kgである。
残りの気体量は0.824kgである。
よって、0.824×0.681×K=36.186
よって、K=64.48となり
温度は64.48℃上る。
この時の冷凍効果は0.824kgの気化熱分
0. 824×204.59+36.186
=168.58+36.186
=204.766kwである。
この結果
204.59kwの冷凍効果で冷房しながら204.766kwの暖房が可能となる。 Further, the apparatus further comprises pressure energy conversion means for converting the velocity energy extracted by the gas expansion liquefaction means into pressure energy.
Velocity energy is converted to pressure energy by using a diffuser, swirl chamber, Laval nozzle, etc., and the temperature and pressure are increased and used for heating, hot water supply, and frost.
"Calculation of heating"
In order to set the temperature of the gas of 1 kg to 0 ° C. to 50 ° C., the work amount of Cp × 50K is required if the constant pressure specific heat is Cp.
Since Cp of R22 is 0.681, the required energy is 0.681 × 50K = 34.05 kJ.
Since the energy of 1 kg of steam is about 200 kJ, about 40 kJ energy can be extracted and pressure converted to increase the temperature of 50 k.
Therefore, the liquefaction rate is 20%.
Heating capacity in this case 200kw + 40kw = 240kw / kg
Since it is a Laval nozzle, it slows down.
Then the pressure rises and can be used as heating.
In addition, in order to make it 80 ℃ with hot water supply etc.,
80k x 0.681 = 54.5kJ required
Liquefaction rate is 545 ÷ 200 = 27.25%
Hot water supply capacity 200 + 54.5 = 254.5kw
In this way, the temperature can be controlled by changing the liquefaction rate.
In the calculation of the liquefaction rate, 0. A gas of 646 kg has a gas enthalpy and velocity energy W 72,486J.
This velocity energy is converted into pressure energy to raise the temperature.
Low pressure specific heat Cp of R22 is 0.681kJ / kgK
Therefore, the velocity energy of 72.486 kJ is the mass of the gas × Cp × K (temperature difference).
Therefore, 0.646 × 0.681 × K = 72.486
温度 K = 164K temperature rise is possible.
However, since the temperature difference is too large, the extraction energy W is reduced.
In order to reduce the extraction energy, the expansion ratio is reduced.
Therefore, the expansion ratio is set to 4.
Therefore, the expansion part of the inflator is 130 mm.
・ Extraction energy is W = RTlog (VB / VA)
W = 96 × 213.15 × log4
= 36,186J
Since the amount of liquefaction is W / q
36,186 ÷ 204.59
= 0.176 kg.
The remaining gas amount is 0.824 kg.
Therefore, 0.824 × 0.681 × K = 36.186
Therefore, K = 64.48 and the temperature rises by 64.48 ° C.
The freezing effect at this time is 0.824 kg of heat of vaporization of 0. 824 × 204.59 + 36.186
= 168.58 + 36.186
= 204.766 kw.
As a result, it is possible to heat 204.766 kw while cooling with a freezing effect of 204.59 kw.
デフューザーや渦巻き室やラバルノズルなどで速度エネルギーを圧力エネルギーに変換して温度圧力をあげて暖房や給湯やでフロストなどに使用する。
「 暖房の計算 」
0℃、1kgの気体の温度を50℃にするためには
定圧比熱をCpとすると
Cp × 50Kの仕事量が必要である。
R22のCpは 0.681なので
必要エネルギーは 0.681 × 50K =34.05kJ必要である。
1kgの蒸気のエネルギーは約200kJなので
50k温度を上昇するためには約40kJエネルギーを抽出し、圧力変換をすれば良い。
よって液化率20%となる。
この場合の暖房能力 200kw + 40kw = 240kw/kg
ラバルノズルなので減速。
すると圧力が上昇し、暖房として使える。
又、給湯等で80℃のものにする為には、
80k × 0.681 =54.5kJ 必要で
液化率を545÷200 = 27.25%
給湯能力 200 + 54.5 = 254.5kw となる。
この様に液化率を変える事で、温度制御が出来る。
液化率の計算では
0. 646kgの気体は気体のエンタルピーと
速度エネルギーW 72,486Jを持っている。
この速度エネルギーを圧力エネルギーに変換して温度を上げる。
R22の低圧比熱Cpは0.681kJ/kgK
であるので72.486kJの速度エネルギーは
気体の質量 × Cp × K(温度差)となる。
よって、0.646×0.681×K=72.486
∴ K=164Kの温度上昇が可能である。
しかし、これでは温度差が大きすぎるので抽出エネルギーWを小さくする。
抽出エネルギーを小さくするには膨張比を小さくする。
よって、膨張比を4にする。
よって、膨張器の拡大部は130mmとなる。
・抽出エネルギーは
W=RTlog(VB/VA) であるので
W=96×213.15×log4
=36,186J
液化量は W/q なので
36,186÷204.59
= 0.176kgである。
残りの気体量は0.824kgである。
よって、0.824×0.681×K=36.186
よって、K=64.48となり
温度は64.48℃上る。
この時の冷凍効果は0.824kgの気化熱分
0. 824×204.59+36.186
=168.58+36.186
=204.766kwである。
この結果
204.59kwの冷凍効果で冷房しながら204.766kwの暖房が可能となる。 Further, the apparatus further comprises pressure energy conversion means for converting the velocity energy extracted by the gas expansion liquefaction means into pressure energy.
Velocity energy is converted to pressure energy by using a diffuser, swirl chamber, Laval nozzle, etc., and the temperature and pressure are increased and used for heating, hot water supply, and frost.
"Calculation of heating"
In order to set the temperature of the gas of 1 kg to 0 ° C. to 50 ° C., the work amount of Cp × 50K is required if the constant pressure specific heat is Cp.
Since Cp of R22 is 0.681, the required energy is 0.681 × 50K = 34.05 kJ.
Since the energy of 1 kg of steam is about 200 kJ, about 40 kJ energy can be extracted and pressure converted to increase the temperature of 50 k.
Therefore, the liquefaction rate is 20%.
Heating capacity in this case 200kw + 40kw = 240kw / kg
Since it is a Laval nozzle, it slows down.
Then the pressure rises and can be used as heating.
In addition, in order to make it 80 ℃ with hot water supply etc.,
80k x 0.681 = 54.5kJ required
Liquefaction rate is 545 ÷ 200 = 27.25%
Hot water supply capacity 200 + 54.5 = 254.5kw
In this way, the temperature can be controlled by changing the liquefaction rate.
In the calculation of the liquefaction rate, 0. A gas of 646 kg has a gas enthalpy and velocity energy W 72,486J.
This velocity energy is converted into pressure energy to raise the temperature.
Low pressure specific heat Cp of R22 is 0.681kJ / kgK
Therefore, the velocity energy of 72.486 kJ is the mass of the gas × Cp × K (temperature difference).
Therefore, 0.646 × 0.681 × K = 72.486
温度 K = 164K temperature rise is possible.
However, since the temperature difference is too large, the extraction energy W is reduced.
In order to reduce the extraction energy, the expansion ratio is reduced.
Therefore, the expansion ratio is set to 4.
Therefore, the expansion part of the inflator is 130 mm.
・ Extraction energy is W = RTlog (VB / VA)
W = 96 × 213.15 × log4
= 36,186J
Since the amount of liquefaction is W / q
36,186 ÷ 204.59
= 0.176 kg.
The remaining gas amount is 0.824 kg.
Therefore, 0.824 × 0.681 × K = 36.186
Therefore, K = 64.48 and the temperature rises by 64.48 ° C.
The freezing effect at this time is 0.824 kg of heat of vaporization of 0. 824 × 204.59 + 36.186
= 168.58 + 36.186
= 204.766 kw.
As a result, it is possible to heat 204.766 kw while cooling with a freezing effect of 204.59 kw.
また、更に前記機械エネルギー変換手段で変換された機械エネルギーを電気エネルギーに変換する発電手段を備える事を特徴とするものである。
Further, the apparatus further comprises power generation means for converting the mechanical energy converted by the mechanical energy conversion means into electric energy.
また、更に前記作動流体の高温高圧の気体を凝縮する凝縮手段を備える事を特徴とするものである。
暖房やデフロスト回路の為に作動流体を外気や水で冷却して液化する。
冷凍サイクルでは凝縮器である。
汽水発電では復水器である。 Further, the apparatus further comprises a condensing means for condensing the high-temperature and high-pressure gas of the working fluid.
The working fluid is liquefied by cooling it with outside air or water for heating and defrost circuits.
It is a condenser in the refrigeration cycle.
It is a condenser in brackish water power generation.
暖房やデフロスト回路の為に作動流体を外気や水で冷却して液化する。
冷凍サイクルでは凝縮器である。
汽水発電では復水器である。 Further, the apparatus further comprises a condensing means for condensing the high-temperature and high-pressure gas of the working fluid.
The working fluid is liquefied by cooling it with outside air or water for heating and defrost circuits.
It is a condenser in the refrigeration cycle.
It is a condenser in brackish water power generation.
また、更に前記作動流体の液体を送出するポンプを備える事を特徴とするものである。
サイクルを回すために起動力としてポンプが必要である。
また配管の圧力損失や絞り膨張やノズルで蒸発圧力を下げるためにも圧力差が必要である。
この昇圧の為にポンプが必要である。
通常は冷凍サイクルの冷媒ではキャンドポンプを使用する。
ボイラーでは高圧ポンプを使用する。 Further, the apparatus further comprises a pump for delivering the working fluid liquid.
A pump is needed as a starting force to turn the cycle.
Also, a pressure difference is necessary to reduce the pressure loss of the piping, expansion of the throttle, and the evaporation pressure with the nozzle.
A pump is necessary for this boosting.
Normally, a canned pump is used for the refrigerant in the refrigeration cycle.
The boiler uses a high-pressure pump.
サイクルを回すために起動力としてポンプが必要である。
また配管の圧力損失や絞り膨張やノズルで蒸発圧力を下げるためにも圧力差が必要である。
この昇圧の為にポンプが必要である。
通常は冷凍サイクルの冷媒ではキャンドポンプを使用する。
ボイラーでは高圧ポンプを使用する。 Further, the apparatus further comprises a pump for delivering the working fluid liquid.
A pump is needed as a starting force to turn the cycle.
Also, a pressure difference is necessary to reduce the pressure loss of the piping, expansion of the throttle, and the evaporation pressure with the nozzle.
A pump is necessary for this boosting.
Normally, a canned pump is used for the refrigerant in the refrigeration cycle.
The boiler uses a high-pressure pump.
また、更に前記作動流体の液体を蒸発させる蒸発手段を備えることを特徴とするものである。
汽水発電ではボイラーであり、冷凍サイクルでは蒸発器である。
冷凍サイクルでは蒸発は冷媒の液体がエネルギーを吸収して液体が気体となる。
蒸発は吸熱すなわちエネルギー吸収である。
変化としては等温膨張である。
蒸発手段で吸収したエネルギーを気体膨張液化手段で抽出すると外部燃焼熱源なしエネルギーが取り出せる。 Further, the apparatus further comprises an evaporation means for evaporating the liquid of the working fluid.
It is a boiler in brackish water power generation and an evaporator in a refrigeration cycle.
In the refrigeration cycle, the liquid in the refrigerant absorbs energy and the liquid becomes gas.
Evaporation is endothermic or energy absorption.
The change is isothermal expansion.
When the energy absorbed by the evaporation means is extracted by the gas expansion liquefaction means, energy without an external combustion heat source can be extracted.
汽水発電ではボイラーであり、冷凍サイクルでは蒸発器である。
冷凍サイクルでは蒸発は冷媒の液体がエネルギーを吸収して液体が気体となる。
蒸発は吸熱すなわちエネルギー吸収である。
変化としては等温膨張である。
蒸発手段で吸収したエネルギーを気体膨張液化手段で抽出すると外部燃焼熱源なしエネルギーが取り出せる。 Further, the apparatus further comprises an evaporation means for evaporating the liquid of the working fluid.
It is a boiler in brackish water power generation and an evaporator in a refrigeration cycle.
In the refrigeration cycle, the liquid in the refrigerant absorbs energy and the liquid becomes gas.
Evaporation is endothermic or energy absorption.
The change is isothermal expansion.
When the energy absorbed by the evaporation means is extracted by the gas expansion liquefaction means, energy without an external combustion heat source can be extracted.
また、更に前記作動流体の液体を所定の蒸発圧力に低下させる液体低圧化手段を備える事を特徴とするものである。
通常の冷凍サイクルでは絞り膨張手段である。膨張弁のオリフィスやキャピラリーチューブなどである。
液体低圧化手段とは、体積膨張液化手段で液化された作動流体の液体を設計蒸発圧力に下げるものである。
本発明の液化は蒸発圧力に応じた蒸発温度でなされるので設計蒸発温になったら絞る必要がなくなる。
ここでポンプの送液なので流量Qを一定とすると
P1を液化液の圧力
P2を設計蒸発圧力
P3をポンプの加圧
ρ1を圧力P1の液体の密度
Aをオリフィスの断面積
Cを流出係数とすると
ρを一定とするとオリフィス断面積Aは圧力差の平方根に反比例する。
よってP1=P3の時に断面積は最大でP1が高ければ高い程オリフィス径は小さくなる。 Further, it is characterized by further comprising a liquid pressure reducing means for reducing the liquid of the working fluid to a predetermined evaporation pressure.
In a normal refrigeration cycle, it is a throttle expansion means. These are expansion valve orifices and capillary tubes.
The liquid low pressure means is a means for lowering the working fluid liquid liquefied by the volume expansion liquefaction means to the design evaporation pressure.
Since the liquefaction of the present invention is performed at the evaporation temperature corresponding to the evaporation pressure, it is not necessary to squeeze when the designed evaporation temperature is reached.
Wherein the cross-sectional area of the density A of the orifice of the liquid because the pump of the liquid transfer when the flow rate Q is constant and P 1 liquefied fluid pressure P 1 of the pressure P 2 pressure [rho 1 design evaporating pressure P 3 of the pump of the C Is the spill coefficient
If ρ is constant, the orifice cross-sectional area A is inversely proportional to the square root of the pressure difference.
Therefore, when P 1 = P 3 , the cross-sectional area is maximum, and the higher P 1 is, the smaller the orifice diameter becomes.
通常の冷凍サイクルでは絞り膨張手段である。膨張弁のオリフィスやキャピラリーチューブなどである。
液体低圧化手段とは、体積膨張液化手段で液化された作動流体の液体を設計蒸発圧力に下げるものである。
本発明の液化は蒸発圧力に応じた蒸発温度でなされるので設計蒸発温になったら絞る必要がなくなる。
ここでポンプの送液なので流量Qを一定とすると
P1を液化液の圧力
P2を設計蒸発圧力
P3をポンプの加圧
ρ1を圧力P1の液体の密度
Aをオリフィスの断面積
Cを流出係数とすると
ρを一定とするとオリフィス断面積Aは圧力差の平方根に反比例する。
よってP1=P3の時に断面積は最大でP1が高ければ高い程オリフィス径は小さくなる。 Further, it is characterized by further comprising a liquid pressure reducing means for reducing the liquid of the working fluid to a predetermined evaporation pressure.
In a normal refrigeration cycle, it is a throttle expansion means. These are expansion valve orifices and capillary tubes.
The liquid low pressure means is a means for lowering the working fluid liquid liquefied by the volume expansion liquefaction means to the design evaporation pressure.
Since the liquefaction of the present invention is performed at the evaporation temperature corresponding to the evaporation pressure, it is not necessary to squeeze when the designed evaporation temperature is reached.
Wherein the cross-sectional area of the density A of the orifice of the liquid because the pump of the liquid transfer when the flow rate Q is constant and P 1 liquefied fluid pressure P 1 of the pressure P 2 pressure [rho 1 design evaporating pressure P 3 of the pump of the C Is the spill coefficient
If ρ is constant, the orifice cross-sectional area A is inversely proportional to the square root of the pressure difference.
Therefore, when P 1 = P 3 , the cross-sectional area is maximum, and the higher P 1 is, the smaller the orifice diameter becomes.
また、更に前記体積膨張手段で液化された圧力を検出して電気信号に変換する圧力センサーと、
電気信号によって弁開度を変更する電子制御弁と、
圧力センサーの電気信号を弁開度にリニアに制御する電子制御弁コントローラーを備える事を特徴とするものである。
圧力センサーで液体の圧力を電気信号に変換する。
蒸発圧力 0.1Mpa を 4mA
蒸発圧力 1.5Mpa を 20mA
として4mAすなわち0.1Mpa の場合オリフィスを全開にして
1.5Mpaを20mAとして
20mAの時、弁開度を最小にする。
P1を液化液の圧力
P2を設計蒸発圧力
P3をポンプの加圧
ρ1を圧力P1の液体の密度
Aをオリフィスの断面積
Cを流出係数とすると
Further, a pressure sensor that detects the pressure liquefied by the volume expansion means and converts it into an electric signal;
An electronic control valve that changes the valve opening by an electrical signal;
An electronic control valve controller for linearly controlling the electric signal of the pressure sensor to the valve opening degree is provided.
The pressure sensor converts the liquid pressure into an electrical signal.
Evaporation pressure 0.1Mpa 4mA
Evaporation pressure 1.5Mpa 20mA
When 4 mA, that is, 0.1 Mpa, the orifice is fully opened and 1.5 Mpa is 20 mA. When 20 mA, the valve opening is minimized.
If the P 1 and pressure P 2 the design evaporation pressure P 3 of the sectional area C of the orifice density A of the pressure [rho 1 of pressure P 1 liquid discharge coefficient of the pump of the liquefied solution
電気信号によって弁開度を変更する電子制御弁と、
圧力センサーの電気信号を弁開度にリニアに制御する電子制御弁コントローラーを備える事を特徴とするものである。
圧力センサーで液体の圧力を電気信号に変換する。
蒸発圧力 0.1Mpa を 4mA
蒸発圧力 1.5Mpa を 20mA
として4mAすなわち0.1Mpa の場合オリフィスを全開にして
1.5Mpaを20mAとして
20mAの時、弁開度を最小にする。
P1を液化液の圧力
P2を設計蒸発圧力
P3をポンプの加圧
ρ1を圧力P1の液体の密度
Aをオリフィスの断面積
Cを流出係数とすると
Further, a pressure sensor that detects the pressure liquefied by the volume expansion means and converts it into an electric signal;
An electronic control valve that changes the valve opening by an electrical signal;
An electronic control valve controller for linearly controlling the electric signal of the pressure sensor to the valve opening degree is provided.
The pressure sensor converts the liquid pressure into an electrical signal.
Evaporation pressure 0.1Mpa 4mA
Evaporation pressure 1.5Mpa 20mA
When 4 mA, that is, 0.1 Mpa, the orifice is fully opened and 1.5 Mpa is 20 mA. When 20 mA, the valve opening is minimized.
If the P 1 and pressure P 2 the design evaporation pressure P 3 of the sectional area C of the orifice density A of the pressure [rho 1 of pressure P 1 liquid discharge coefficient of the pump of the liquefied solution
また、更に前記液体低圧化手段を切り替える低圧化切替手段を備える事を特徴とするものである。
Further, the present invention is characterized by further comprising a low pressure switching means for switching the liquid low pressure means.
また、更に前記作動流体を冷凍サイクル用冷媒とする事を特徴とするものである。
R22、R404、R407、R410、アンモニア、二酸化炭素、イソブタン、等である。 Further, the working fluid is a refrigerant for a refrigeration cycle.
R22, R404, R407, R410, ammonia, carbon dioxide, isobutane, and the like.
R22、R404、R407、R410、アンモニア、二酸化炭素、イソブタン、等である。 Further, the working fluid is a refrigerant for a refrigeration cycle.
R22, R404, R407, R410, ammonia, carbon dioxide, isobutane, and the like.
また、更に前記作動流体を水とする事を特徴とするものである。
水は気化熱も大きく高温でも安定しているので作動流体として最適である。
火力発電でよく使用されている。 Further, the working fluid is water.
Water is optimal as a working fluid because it has a large heat of vaporization and is stable at high temperatures.
Often used in thermal power generation.
水は気化熱も大きく高温でも安定しているので作動流体として最適である。
火力発電でよく使用されている。 Further, the working fluid is water.
Water is optimal as a working fluid because it has a large heat of vaporization and is stable at high temperatures.
Often used in thermal power generation.
また、更に前記気体膨張液化手段を
気体体積膨張部と、
気体吸入部と、
気体の体積膨張により液化された作動流体の液体と液化されなかった気体を気液分離する気液分離部と、
気体吐出部
を備える膨張器とする事を特徴とするものである。 Further, the gas expansion liquefaction means is a gas volume expansion part,
A gas inlet,
A gas-liquid separation unit that gas-liquid separates the liquid of the working fluid liquefied by the volume expansion of the gas and the gas not liquefied;
It is characterized by setting it as an expander provided with a gas discharge part.
気体体積膨張部と、
気体吸入部と、
気体の体積膨張により液化された作動流体の液体と液化されなかった気体を気液分離する気液分離部と、
気体吐出部
を備える膨張器とする事を特徴とするものである。 Further, the gas expansion liquefaction means is a gas volume expansion part,
A gas inlet,
A gas-liquid separation unit that gas-liquid separates the liquid of the working fluid liquefied by the volume expansion of the gas and the gas not liquefied;
It is characterized by setting it as an expander provided with a gas discharge part.
また、更に前記気体膨張液化手段と機械エネルギー変換手段と発電手段を、断熱圧縮機を転用した膨張機とする事を特徴とするものである。
スクロール膨張機などの断熱圧縮機を逆使用するものである。
断熱圧縮機の吐出口を膨張機の吸入口にして逆回転して使用する。
圧縮機の電動機を発電機にする事も可能である。 Further, the gas expansion liquefaction means, the mechanical energy conversion means, and the power generation means may be an expander that uses a heat insulating compressor.
A heat-insulating compressor such as a scroll expander is reversely used.
The discharge port of the adiabatic compressor is used as the suction port of the expander and rotated in reverse.
It is also possible to use the compressor motor as a generator.
スクロール膨張機などの断熱圧縮機を逆使用するものである。
断熱圧縮機の吐出口を膨張機の吸入口にして逆回転して使用する。
圧縮機の電動機を発電機にする事も可能である。 Further, the gas expansion liquefaction means, the mechanical energy conversion means, and the power generation means may be an expander that uses a heat insulating compressor.
A heat-insulating compressor such as a scroll expander is reversely used.
The discharge port of the adiabatic compressor is used as the suction port of the expander and rotated in reverse.
It is also possible to use the compressor motor as a generator.
また、更に前記気体膨張液化手段で液化された作動流体を貯液する低圧受液器を備える事を特徴とするものである。
気体膨張液化手段での液化は蒸発温度でおこなわれるので低圧になる。 In addition, a low-pressure receiver that stores the working fluid liquefied by the gas expansion liquefaction means is further provided.
Since the liquefaction by the gas expansion liquefaction means is performed at the evaporation temperature, the pressure becomes low.
気体膨張液化手段での液化は蒸発温度でおこなわれるので低圧になる。 In addition, a low-pressure receiver that stores the working fluid liquefied by the gas expansion liquefaction means is further provided.
Since the liquefaction by the gas expansion liquefaction means is performed at the evaporation temperature, the pressure becomes low.
また、更に前記作動流体の液体を貯液する最終受液器を備える事を特徴とするものである。
サイクル稼働しない時、作動流体は常温になる。故に始動時は最終受液器からポンプで送液する。 Furthermore, a final liquid receiver for storing the liquid of the working fluid is further provided.
When the cycle is not operated, the working fluid is at room temperature. Therefore, at the time of start-up, liquid is sent from the final receiver by a pump.
サイクル稼働しない時、作動流体は常温になる。故に始動時は最終受液器からポンプで送液する。 Furthermore, a final liquid receiver for storing the liquid of the working fluid is further provided.
When the cycle is not operated, the working fluid is at room temperature. Therefore, at the time of start-up, liquid is sent from the final receiver by a pump.
また、更に移動手段を備える事を特徴とするものである。
移動手段とは自動車、船舶、電車などである。 Further, it is characterized by further including a moving means.
The moving means is an automobile, a ship, a train or the like.
移動手段とは自動車、船舶、電車などである。 Further, it is characterized by further including a moving means.
The moving means is an automobile, a ship, a train or the like.
また、更に建築物を備える事を特徴とするものである。
建築物とはデータセンター、工場、集合住宅、事務所ビル等である。 Moreover, it is characterized by further providing a building.
Buildings include data centers, factories, apartment houses, office buildings, and the like.
建築物とはデータセンター、工場、集合住宅、事務所ビル等である。 Moreover, it is characterized by further providing a building.
Buildings include data centers, factories, apartment houses, office buildings, and the like.
また、更に蓄電手段を備える事を特徴とするものである。
この装置では発電が燃料なしで出来るがサイクル始動時には外部電源が必要であるので蓄電手段を取り付ける。
蓄電池やキャパシタなどである。 Further, it is characterized by further comprising power storage means.
In this device, power generation can be performed without fuel. However, since an external power source is required at the start of the cycle, power storage means is attached.
Examples are storage batteries and capacitors.
この装置では発電が燃料なしで出来るがサイクル始動時には外部電源が必要であるので蓄電手段を取り付ける。
蓄電池やキャパシタなどである。 Further, it is characterized by further comprising power storage means.
In this device, power generation can be performed without fuel. However, since an external power source is required at the start of the cycle, power storage means is attached.
Examples are storage batteries and capacitors.
また、更に電子式電力変換装置を備えることを特徴とするものである。
電力変換装置とはインバーター、コンバーターの事である。 Further, the electronic power converter is further provided.
A power converter is an inverter or converter.
電力変換装置とはインバーター、コンバーターの事である。 Further, the electronic power converter is further provided.
A power converter is an inverter or converter.
また、更に前記圧力変換手段を先細末広がりとする事を特徴とするものである。
気体膨張液化手段でエネルギーを抽出すると液化されなかった作動流体の気体は高速になる。
圧力変換手段で音速をこえる場合と超えない場合で装置が変わる。
音速をこえる時は先細末広がりノズルを使用する。 Further, the pressure converting means is characterized by having a taper spread.
When energy is extracted by the gas expansion liquefaction means, the gas of the working fluid that has not been liquefied becomes high speed.
The device changes depending on whether the pressure conversion means exceeds the speed of sound or not.
When exceeding the speed of sound, use a taper nozzle.
気体膨張液化手段でエネルギーを抽出すると液化されなかった作動流体の気体は高速になる。
圧力変換手段で音速をこえる場合と超えない場合で装置が変わる。
音速をこえる時は先細末広がりノズルを使用する。 Further, the pressure converting means is characterized by having a taper spread.
When energy is extracted by the gas expansion liquefaction means, the gas of the working fluid that has not been liquefied becomes high speed.
The device changes depending on whether the pressure conversion means exceeds the speed of sound or not.
When exceeding the speed of sound, use a taper nozzle.
また、更に前記圧力変換手段をデフューザーする事を特徴するものである。
気体膨張液化手段で液化されなかった気体の速度が音速以下の場合はデフューザーを使う。 Further, the present invention is characterized in that the pressure converting means is diffused.
If the velocity of the gas that has not been liquefied by the gas expansion liquefaction means is less than the speed of sound, a diffuser is used.
気体膨張液化手段で液化されなかった気体の速度が音速以下の場合はデフューザーを使う。 Further, the present invention is characterized in that the pressure converting means is diffused.
If the velocity of the gas that has not been liquefied by the gas expansion liquefaction means is less than the speed of sound, a diffuser is used.
また、更に前記蒸発手段を冷凍サイクルに使用される蒸発器とする事を特徴とするものである。
Furthermore, the evaporator is an evaporator used in a refrigeration cycle.
また、更に前記蒸発手段をボイラーとする事を特徴とするものである。
Further, the evaporation means is a boiler.
また、更に前記機械エネルギー変換手段をタービンとする事を特徴とするものである。
気体膨張液化手段で抽出したエネルギーで液化されなかった気体は高速の気体になるのでタービンで速度エネルギーを機械エネルギーに変換する。
これにより蒸発手段で吸収した熱エネルギーを機械エネルギーに変換できる。 Furthermore, the mechanical energy conversion means is a turbine.
Since the gas not liquefied by the energy extracted by the gas expansion liquefaction means becomes a high-speed gas, the turbine converts the velocity energy into mechanical energy.
Thereby, the thermal energy absorbed by the evaporation means can be converted into mechanical energy.
気体膨張液化手段で抽出したエネルギーで液化されなかった気体は高速の気体になるのでタービンで速度エネルギーを機械エネルギーに変換する。
これにより蒸発手段で吸収した熱エネルギーを機械エネルギーに変換できる。 Furthermore, the mechanical energy conversion means is a turbine.
Since the gas not liquefied by the energy extracted by the gas expansion liquefaction means becomes a high-speed gas, the turbine converts the velocity energy into mechanical energy.
Thereby, the thermal energy absorbed by the evaporation means can be converted into mechanical energy.
また、更に前記タービンの部材を合成樹脂とする事を特徴とするものである。
作動流体の温度は蒸発温度でするので蒸発圧力温度を制御する事ができる。
よって蒸発温度を0℃にするとタービンに流入する作動流体の温度を0℃にできる。
よって従来技術のように高温高圧に耐える素材ではなく熱に弱い合成樹脂をタービンのインペラ、ブレード、ローターに使用できる。
合成樹脂はプラスチックであり、エンジニアプラスチックのような強度のあるものがタービン素材には最適である。
又、繊維強化プラスチックをしても良い。
鉄合金を較べてプラスチックは軽量なのでタービンに使用すると、機械ロスが少なくなる。
プラスチック軸受には磁気軸受は使用できないので流体を作動流体にした流体軸受を使用すると良い。 Further, the turbine member is made of synthetic resin.
Since the temperature of the working fluid is the evaporation temperature, the evaporation pressure temperature can be controlled.
Therefore, when the evaporation temperature is set to 0 ° C., the temperature of the working fluid flowing into the turbine can be set to 0 ° C.
Therefore, instead of a material that can withstand high temperature and pressure as in the prior art, a heat-sensitive synthetic resin can be used for the impeller, blade, and rotor of the turbine.
Synthetic resins are plastics, and those that are strong like engineer plastics are optimal for turbine materials.
Further, fiber reinforced plastic may be used.
Compared to iron alloys, plastic is lighter, so when used in a turbine, mechanical loss is reduced.
Since a magnetic bearing cannot be used as a plastic bearing, it is preferable to use a fluid bearing in which a fluid is used as a working fluid.
作動流体の温度は蒸発温度でするので蒸発圧力温度を制御する事ができる。
よって蒸発温度を0℃にするとタービンに流入する作動流体の温度を0℃にできる。
よって従来技術のように高温高圧に耐える素材ではなく熱に弱い合成樹脂をタービンのインペラ、ブレード、ローターに使用できる。
合成樹脂はプラスチックであり、エンジニアプラスチックのような強度のあるものがタービン素材には最適である。
又、繊維強化プラスチックをしても良い。
鉄合金を較べてプラスチックは軽量なのでタービンに使用すると、機械ロスが少なくなる。
プラスチック軸受には磁気軸受は使用できないので流体を作動流体にした流体軸受を使用すると良い。 Further, the turbine member is made of synthetic resin.
Since the temperature of the working fluid is the evaporation temperature, the evaporation pressure temperature can be controlled.
Therefore, when the evaporation temperature is set to 0 ° C., the temperature of the working fluid flowing into the turbine can be set to 0 ° C.
Therefore, instead of a material that can withstand high temperature and pressure as in the prior art, a heat-sensitive synthetic resin can be used for the impeller, blade, and rotor of the turbine.
Synthetic resins are plastics, and those that are strong like engineer plastics are optimal for turbine materials.
Further, fiber reinforced plastic may be used.
Compared to iron alloys, plastic is lighter, so when used in a turbine, mechanical loss is reduced.
Since a magnetic bearing cannot be used as a plastic bearing, it is preferable to use a fluid bearing in which a fluid is used as a working fluid.
また、更に前記液体低圧化手段をノズルとする事を特徴とするものである。
Further, the liquid pressure reducing means is a nozzle.
また、更に前記タービンの軸受けを流体軸受けとし流体を作動流体とする事を特徴とするものである。
タービンは高速で回転するので軸受けの選択は重要である。
マイクロガスタービンでは空気軸受けが使用されている。
通常空気軸受けには空気を送るコンプレッサーが必要である。
しかし体積膨張液化後の気体は高速なので作動流体を流体軸受けの流体とできる。 Further, the turbine bearing is a fluid bearing, and the fluid is a working fluid.
Since the turbine rotates at high speed, the choice of bearings is important.
Air bearings are used in micro gas turbines.
Usually, the air bearing needs a compressor that sends air.
However, since the gas after volume expansion and liquefaction is high speed, the working fluid can be used as the fluid of the fluid bearing.
タービンは高速で回転するので軸受けの選択は重要である。
マイクロガスタービンでは空気軸受けが使用されている。
通常空気軸受けには空気を送るコンプレッサーが必要である。
しかし体積膨張液化後の気体は高速なので作動流体を流体軸受けの流体とできる。 Further, the turbine bearing is a fluid bearing, and the fluid is a working fluid.
Since the turbine rotates at high speed, the choice of bearings is important.
Air bearings are used in micro gas turbines.
Usually, the air bearing needs a compressor that sends air.
However, since the gas after volume expansion and liquefaction is high speed, the working fluid can be used as the fluid of the fluid bearing.
また、更に前記凝縮手段を冷凍サイクルに使用する凝縮器とする事を特徴とするものである。
Further, the condenser means is a condenser used in a refrigeration cycle.
また、更に異なる蒸発圧力の前記蒸発手段を備える事を特徴とするものである。
Further, the present invention is characterized in that the evaporation means having different evaporation pressures is provided.
また、更に異なる蒸発圧力毎に前記気体膨張液化手段を備える事を特徴とするものである。
Further, the gas expansion liquefaction means is provided for each different evaporation pressure.
また、更に前記低圧受液器の液体の圧力を検出する低圧受液器圧力検出手段を備える事を特徴とするものである。
Further, it is characterized by further comprising a low-pressure receiver pressure detecting means for detecting the pressure of the liquid in the low-pressure receiver.
また、更に前記低圧受液器の液面を検出する低圧受液器液面検出手段を備える事を特徴とするものである。
Further, it is characterized by further comprising a low-pressure receiver liquid level detecting means for detecting the liquid level of the low-pressure receiver.
また、更に前記ポンプの送液元を前記低圧受液器または最終受液器に切り替えるポンプ送液元切り替え手段を備える事を特徴とするものである。
Further, the apparatus further comprises pump liquid source switching means for switching the liquid source of the pump to the low pressure liquid receiver or the final liquid receiver.
また、更に前記膨張器と前記低圧受液器の圧力を等圧にする第1均圧管を備える事を特徴とするものである。
Furthermore, a first pressure equalizing pipe is provided to make the pressure of the expander and the low-pressure liquid receiver equal to each other.
また、更に前記低圧受液器と前記高圧受液器の圧力を等圧にする第2均圧管を備える事を特徴とするものである。
Furthermore, a second pressure equalizing pipe is provided to make the pressure of the low-pressure receiver and the high-pressure receiver equal.
また、更に作動流体の気体を加熱する加熱熱源を備える事を特徴とするものである。
In addition, a heating heat source for heating the gas of the working fluid is further provided.
また、更に真空ポンプを備える事を特徴とするものである。
液体の低温低圧化の補助のため真空ポンプを使用する。
作動流体が水の時には真空ポンプ蒸発させる。 In addition, a vacuum pump is further provided.
A vacuum pump is used to assist in lowering the liquid temperature and pressure.
When the working fluid is water, the vacuum pump is evaporated.
液体の低温低圧化の補助のため真空ポンプを使用する。
作動流体が水の時には真空ポンプ蒸発させる。 In addition, a vacuum pump is further provided.
A vacuum pump is used to assist in lowering the liquid temperature and pressure.
When the working fluid is water, the vacuum pump is evaporated.
また、更に被冷却物の温度を検出する被冷却物温度検出手段を備える事を特徴とするものである。
被冷却物とは冷蔵庫、冷凍庫では庫内の空気温度、庫内温度のことである。
温度検出手段とはサーモスタット等である。 In addition, the apparatus further includes an object temperature detecting means for detecting the temperature of the object to be cooled.
The object to be cooled is the temperature of the air in the refrigerator and the temperature of the refrigerator in the freezer.
The temperature detecting means is a thermostat or the like.
被冷却物とは冷蔵庫、冷凍庫では庫内の空気温度、庫内温度のことである。
温度検出手段とはサーモスタット等である。 In addition, the apparatus further includes an object temperature detecting means for detecting the temperature of the object to be cooled.
The object to be cooled is the temperature of the air in the refrigerator and the temperature of the refrigerator in the freezer.
The temperature detecting means is a thermostat or the like.
また、更に作動流体を地熱水蒸気とする事を特徴とするものである。
Further, the working fluid is geothermal steam.
また、更に圧力容器と、
圧力容器内を往復する往復用液体と、
往復用液体の吸入弁と、
往復用液体の吐出弁と、
気体の吸入弁と
気体の吐出弁と、
往復用液体を高圧で送出するポンプからなる液体往復式圧縮機を備えることを特徴とするものである。
液体をピストンの代用とする往復式気体圧縮機である。
圧力容器に液体を充填するにはポンプを使用する。
液体は予め貯蔵しておく。
液体を蒸発圧力の非常に小さい油にし、気体を空気にすると真空ポンプとして使用できる。
油は真空ポンプ用のフッ素系油を使用するとよい。
気体を冷媒にして、液体を同じ液体の低温冷媒にすると気液混合凝縮器となる。
気体の吸入弁を閉じて液体を下降させると真空ポンプになり、気体の吸入弁を開いて液体を下降させると気体の圧縮機となる。 Furthermore, a pressure vessel,
A reciprocating liquid that reciprocates in the pressure vessel;
A reciprocating liquid suction valve;
A reciprocating liquid discharge valve;
A gas intake valve and a gas discharge valve;
A liquid reciprocating compressor including a pump for sending a reciprocating liquid at a high pressure is provided.
It is a reciprocating gas compressor that uses liquid instead of a piston.
A pump is used to fill the pressure vessel with liquid.
The liquid is stored in advance.
If the liquid is oil with very low evaporation pressure and the gas is air, it can be used as a vacuum pump.
As the oil, a fluorine-based oil for a vacuum pump may be used.
When gas is used as a refrigerant and a liquid is used as a low-temperature refrigerant of the same liquid, a gas-liquid mixed condenser is obtained.
When the gas suction valve is closed and the liquid is lowered, a vacuum pump is obtained, and when the gas suction valve is opened and the liquid is lowered, a gas compressor is obtained.
圧力容器内を往復する往復用液体と、
往復用液体の吸入弁と、
往復用液体の吐出弁と、
気体の吸入弁と
気体の吐出弁と、
往復用液体を高圧で送出するポンプからなる液体往復式圧縮機を備えることを特徴とするものである。
液体をピストンの代用とする往復式気体圧縮機である。
圧力容器に液体を充填するにはポンプを使用する。
液体は予め貯蔵しておく。
液体を蒸発圧力の非常に小さい油にし、気体を空気にすると真空ポンプとして使用できる。
油は真空ポンプ用のフッ素系油を使用するとよい。
気体を冷媒にして、液体を同じ液体の低温冷媒にすると気液混合凝縮器となる。
気体の吸入弁を閉じて液体を下降させると真空ポンプになり、気体の吸入弁を開いて液体を下降させると気体の圧縮機となる。 Furthermore, a pressure vessel,
A reciprocating liquid that reciprocates in the pressure vessel;
A reciprocating liquid suction valve;
A reciprocating liquid discharge valve;
A gas intake valve and a gas discharge valve;
A liquid reciprocating compressor including a pump for sending a reciprocating liquid at a high pressure is provided.
It is a reciprocating gas compressor that uses liquid instead of a piston.
A pump is used to fill the pressure vessel with liquid.
The liquid is stored in advance.
If the liquid is oil with very low evaporation pressure and the gas is air, it can be used as a vacuum pump.
As the oil, a fluorine-based oil for a vacuum pump may be used.
When gas is used as a refrigerant and a liquid is used as a low-temperature refrigerant of the same liquid, a gas-liquid mixed condenser is obtained.
When the gas suction valve is closed and the liquid is lowered, a vacuum pump is obtained, and when the gas suction valve is opened and the liquid is lowered, a gas compressor is obtained.
また、更に前記往復用液体を真空ポンプ用油とし、
前記気体を空気とする事を特徴とするものである。
いわゆる空気コンプレッサーである。真空ポンプ用油は低蒸気圧であるので液体往復式圧縮機の液体ピストンとして使用できる。 Further, the reciprocating liquid is used as a vacuum pump oil,
The gas is air.
This is a so-called air compressor. Since the oil for vacuum pumps has a low vapor pressure, it can be used as a liquid piston for a liquid reciprocating compressor.
前記気体を空気とする事を特徴とするものである。
いわゆる空気コンプレッサーである。真空ポンプ用油は低蒸気圧であるので液体往復式圧縮機の液体ピストンとして使用できる。 Further, the reciprocating liquid is used as a vacuum pump oil,
The gas is air.
This is a so-called air compressor. Since the oil for vacuum pumps has a low vapor pressure, it can be used as a liquid piston for a liquid reciprocating compressor.
また、更に断熱圧縮機を備える事を特徴とするものである。
気体膨張液化手段で液化されなかった作動流体を断熱圧縮機で高温高圧にして凝縮器で液化する。 In addition, a heat insulating compressor is further provided.
The working fluid that has not been liquefied by the gas expansion liquefaction means is made high temperature and high pressure by an adiabatic compressor and liquefied by a condenser.
気体膨張液化手段で液化されなかった作動流体を断熱圧縮機で高温高圧にして凝縮器で液化する。 In addition, a heat insulating compressor is further provided.
The working fluid that has not been liquefied by the gas expansion liquefaction means is made high temperature and high pressure by an adiabatic compressor and liquefied by a condenser.
また、更に前記往復用液体を冷凍サイクル用液体冷媒とし、
前記気体を冷凍サイクル用気体冷媒とする事を特徴とするものである。 Further, the reciprocating liquid is a refrigeration cycle liquid refrigerant,
The gas is a gas refrigerant for a refrigeration cycle.
前記気体を冷凍サイクル用気体冷媒とする事を特徴とするものである。 Further, the reciprocating liquid is a refrigeration cycle liquid refrigerant,
The gas is a gas refrigerant for a refrigeration cycle.
また、更に前記凝縮器で液化された作動流体の液体と
前記蒸発手段で蒸発された作動流体の気体を熱交換する気液熱交換器を備える事を特徴とするものである。 Furthermore, a gas-liquid heat exchanger for exchanging heat between the liquid of the working fluid liquefied by the condenser and the gas of the working fluid evaporated by the evaporation means is provided.
前記蒸発手段で蒸発された作動流体の気体を熱交換する気液熱交換器を備える事を特徴とするものである。 Furthermore, a gas-liquid heat exchanger for exchanging heat between the liquid of the working fluid liquefied by the condenser and the gas of the working fluid evaporated by the evaporation means is provided.
また、更に前記気液熱交換器は気体の逆流を防止する逆止弁を備える事を特徴とするものである。
Furthermore, the gas-liquid heat exchanger is provided with a check valve for preventing a backflow of gas.
また、更に加熱熱源を備える事を特徴とするものである。
作動流体を
圧力変換手段で高温高圧にするがより高温を得たい場合に燃焼熱熱源などの加熱熱源を使用する。 In addition, a heating heat source is further provided.
A heating heat source such as a combustion heat source is used when the working fluid is changed to a high temperature and a high pressure by the pressure conversion means, but a higher temperature is desired.
作動流体を
圧力変換手段で高温高圧にするがより高温を得たい場合に燃焼熱熱源などの加熱熱源を使用する。 In addition, a heating heat source is further provided.
A heating heat source such as a combustion heat source is used when the working fluid is changed to a high temperature and a high pressure by the pressure conversion means, but a higher temperature is desired.
また、更に通信手段を備える事を特徴とするものである。
Further, the communication device further includes a communication unit.
また、更に前記加熱熱源をコンピューター発熱熱源とする事を特徴とするものである。
データセンターではコンピューターのCPUが加熱熱源となる。
蒸発器の気化熱熱源とする。 Further, the heating heat source is a computer heat generation heat source.
In the data center, the CPU of the computer is the heat source.
Evaporator heat source for evaporator.
データセンターではコンピューターのCPUが加熱熱源となる。
蒸発器の気化熱熱源とする。 Further, the heating heat source is a computer heat generation heat source.
In the data center, the CPU of the computer is the heat source.
Evaporator heat source for evaporator.
また、更に前記加熱熱源の熱を前記蒸発手段に輸送するヒートパイプを備える事を特徴とするものである。
CPUの発熱を蒸発器に輸送するために、ヒートパイプでCPUと蒸発器の蒸発管を接続してCPU発熱を蒸発器に輸送する。 Furthermore, a heat pipe for transporting the heat of the heating heat source to the evaporation means is further provided.
In order to transport the heat generated by the CPU to the evaporator, the CPU and the evaporator's evaporator pipe are connected by a heat pipe to transport the CPU generated heat to the evaporator.
CPUの発熱を蒸発器に輸送するために、ヒートパイプでCPUと蒸発器の蒸発管を接続してCPU発熱を蒸発器に輸送する。 Furthermore, a heat pipe for transporting the heat of the heating heat source to the evaporation means is further provided.
In order to transport the heat generated by the CPU to the evaporator, the CPU and the evaporator's evaporator pipe are connected by a heat pipe to transport the CPU generated heat to the evaporator.
また、更に前記気体エネルギー変換手段で変換された機械エネルギーで気体を圧縮する圧縮手段を備える事を特徴とするものである。
気体を膨張させてエネルギーを取り出し液化し液化されなかった気体を抽出した機械エネルギーで断熱圧縮機を動かして圧縮する。 Further, the apparatus further comprises a compression means for compressing the gas with the mechanical energy converted by the gas energy conversion means.
The adiabatic compressor is moved and compressed by mechanical energy obtained by expanding the gas to extract energy and extracting the gas that has not been liquefied and liquefied.
気体を膨張させてエネルギーを取り出し液化し液化されなかった気体を抽出した機械エネルギーで断熱圧縮機を動かして圧縮する。 Further, the apparatus further comprises a compression means for compressing the gas with the mechanical energy converted by the gas energy conversion means.
The adiabatic compressor is moved and compressed by mechanical energy obtained by expanding the gas to extract energy and extracting the gas that has not been liquefied and liquefied.
また、更に断熱圧縮機を備える事を特徴とするものである。
膨張手段で等温膨張を繰り返すと徐々に液化されるが液化されるごとに気体量が減少しエネルギー取り出し効率が悪くなるので最後に残った気体を断熱圧縮機を使用して凝縮液化する。 In addition, a heat insulating compressor is further provided.
When isothermal expansion is repeated by the expansion means, the gas is gradually liquefied, but each time it is liquefied, the amount of gas decreases and the energy extraction efficiency deteriorates. Therefore, the remaining gas is condensed and liquefied using an adiabatic compressor.
膨張手段で等温膨張を繰り返すと徐々に液化されるが液化されるごとに気体量が減少しエネルギー取り出し効率が悪くなるので最後に残った気体を断熱圧縮機を使用して凝縮液化する。 In addition, a heat insulating compressor is further provided.
When isothermal expansion is repeated by the expansion means, the gas is gradually liquefied, but each time it is liquefied, the amount of gas decreases and the energy extraction efficiency deteriorates. Therefore, the remaining gas is condensed and liquefied using an adiabatic compressor.
また、更に圧力容器と液体と気体と気体の吸入弁と気体の吐出弁と液体の吸入弁と液体と吐出弁と弁の制御手段からなる液体往復式圧縮機を備える事を特徴とするものである。
液体をピストンの代用とする往復式気体圧縮機である。
圧力容器に気体を充填するにはポンプを使用する。
液体は予め貯蔵しておく。
液体を蒸発圧力の非常に小さい油にし、気体を空気にすると真空ポンプとして使用できる。
油は真空ポンプ用のフッ素系油を使用するとよい。
気体を冷媒にして、液体を同じ液体の低温冷媒にすると気液混合凝縮器となる。 The apparatus further comprises a liquid reciprocating compressor comprising a pressure vessel, a liquid, a gas, a gas suction valve, a gas discharge valve, a liquid suction valve, a liquid, a discharge valve, and valve control means. is there.
It is a reciprocating gas compressor that uses liquid instead of a piston.
A pump is used to fill the pressure vessel with gas.
The liquid is stored in advance.
If the liquid is oil with very low evaporation pressure and the gas is air, it can be used as a vacuum pump.
As the oil, a fluorine-based oil for a vacuum pump may be used.
When gas is used as a refrigerant and a liquid is used as a low-temperature refrigerant of the same liquid, a gas-liquid mixed condenser is obtained.
液体をピストンの代用とする往復式気体圧縮機である。
圧力容器に気体を充填するにはポンプを使用する。
液体は予め貯蔵しておく。
液体を蒸発圧力の非常に小さい油にし、気体を空気にすると真空ポンプとして使用できる。
油は真空ポンプ用のフッ素系油を使用するとよい。
気体を冷媒にして、液体を同じ液体の低温冷媒にすると気液混合凝縮器となる。 The apparatus further comprises a liquid reciprocating compressor comprising a pressure vessel, a liquid, a gas, a gas suction valve, a gas discharge valve, a liquid suction valve, a liquid, a discharge valve, and valve control means. is there.
It is a reciprocating gas compressor that uses liquid instead of a piston.
A pump is used to fill the pressure vessel with gas.
The liquid is stored in advance.
If the liquid is oil with very low evaporation pressure and the gas is air, it can be used as a vacuum pump.
As the oil, a fluorine-based oil for a vacuum pump may be used.
When gas is used as a refrigerant and a liquid is used as a low-temperature refrigerant of the same liquid, a gas-liquid mixed condenser is obtained.
また、更に
冷媒と、
圧力容器と、
液体冷媒を高圧で送出する高圧ポンプと、
前記凝縮手段で液化された冷媒と、
液体冷媒の吸入弁と吐出弁と、
冷媒蒸気の吸入弁と、
液体の吸入弁と液体の吐出弁と冷媒蒸気の吸入弁の制御手段からなる気液混合凝縮器を備える事を特徴とするものである。
膨張手段で液化された低温冷媒をピストンにした往復式圧縮器である。
冷媒蒸気の吸入弁を開けて圧力容器の中に冷媒蒸気を吸入する。
吸入後冷媒蒸気の吸入弁を閉じて液体冷媒の吸入弁を開けて圧力容器内へ液体冷媒を充填する。
圧力容器に気体を充填するには高圧ポンプを使用する。
液体を充填すると圧力容器内の液面が上昇する。
液面が上昇すると冷媒蒸気は圧縮され圧力温度が上昇する。
この時液冷媒は低温なので高温の冷媒蒸気と熱交換され冷媒蒸気は液化凝縮される。
圧縮凝縮後に液体の吐出弁と冷媒蒸気の吸入弁を開くと液面の低下と伴に冷媒蒸気が吸入される。
冷凍サイクルを間断なく回す為には気液混合凝縮器は2台設置するとよい。
高圧ポンプで十分高圧に液を充填すれば凝縮できる。
膨張手段で99%程度を液化凝縮して最終液化凝縮を気液混合凝縮器で行うと液体と気体の比体積の差程度になり液温の上昇抑えられ液体の送出量も少なくなる。
液体は予め貯蔵しておく。 And further refrigerant,
A pressure vessel;
A high-pressure pump that delivers liquid refrigerant at high pressure;
Refrigerant liquefied by the condensing means;
An intake valve and a discharge valve for liquid refrigerant;
A refrigerant vapor suction valve;
A gas-liquid mixing condenser comprising control means for a liquid suction valve, a liquid discharge valve, and a refrigerant vapor suction valve is provided.
It is a reciprocating compressor using a low-temperature refrigerant liquefied by expansion means as a piston.
Open the refrigerant vapor suction valve and suck the refrigerant vapor into the pressure vessel.
After the suction, the refrigerant vapor suction valve is closed and the liquid refrigerant suction valve is opened to fill the pressure vessel with the liquid refrigerant.
A high pressure pump is used to fill the pressure vessel with gas.
When the liquid is filled, the liquid level in the pressure vessel rises.
When the liquid level rises, the refrigerant vapor is compressed and the pressure temperature rises.
At this time, since the liquid refrigerant is at a low temperature, heat exchange with the high-temperature refrigerant vapor is performed, and the refrigerant vapor is liquefied and condensed.
When the liquid discharge valve and the refrigerant vapor suction valve are opened after the compression condensation, the refrigerant vapor is sucked with a decrease in the liquid level.
In order to rotate the refrigeration cycle without interruption, two gas-liquid mixing condensers should be installed.
Condensation is possible if the liquid is filled to a sufficiently high pressure with a high-pressure pump.
If about 99% is liquefied and condensed by the expansion means and the final liquefaction condensation is performed by the gas-liquid mixing condenser, the difference in specific volume between the liquid and the gas is about the same, the rise in liquid temperature is suppressed, and the amount of liquid delivered is reduced.
The liquid is stored in advance.
冷媒と、
圧力容器と、
液体冷媒を高圧で送出する高圧ポンプと、
前記凝縮手段で液化された冷媒と、
液体冷媒の吸入弁と吐出弁と、
冷媒蒸気の吸入弁と、
液体の吸入弁と液体の吐出弁と冷媒蒸気の吸入弁の制御手段からなる気液混合凝縮器を備える事を特徴とするものである。
膨張手段で液化された低温冷媒をピストンにした往復式圧縮器である。
冷媒蒸気の吸入弁を開けて圧力容器の中に冷媒蒸気を吸入する。
吸入後冷媒蒸気の吸入弁を閉じて液体冷媒の吸入弁を開けて圧力容器内へ液体冷媒を充填する。
圧力容器に気体を充填するには高圧ポンプを使用する。
液体を充填すると圧力容器内の液面が上昇する。
液面が上昇すると冷媒蒸気は圧縮され圧力温度が上昇する。
この時液冷媒は低温なので高温の冷媒蒸気と熱交換され冷媒蒸気は液化凝縮される。
圧縮凝縮後に液体の吐出弁と冷媒蒸気の吸入弁を開くと液面の低下と伴に冷媒蒸気が吸入される。
冷凍サイクルを間断なく回す為には気液混合凝縮器は2台設置するとよい。
高圧ポンプで十分高圧に液を充填すれば凝縮できる。
膨張手段で99%程度を液化凝縮して最終液化凝縮を気液混合凝縮器で行うと液体と気体の比体積の差程度になり液温の上昇抑えられ液体の送出量も少なくなる。
液体は予め貯蔵しておく。 And further refrigerant,
A pressure vessel;
A high-pressure pump that delivers liquid refrigerant at high pressure;
Refrigerant liquefied by the condensing means;
An intake valve and a discharge valve for liquid refrigerant;
A refrigerant vapor suction valve;
A gas-liquid mixing condenser comprising control means for a liquid suction valve, a liquid discharge valve, and a refrigerant vapor suction valve is provided.
It is a reciprocating compressor using a low-temperature refrigerant liquefied by expansion means as a piston.
Open the refrigerant vapor suction valve and suck the refrigerant vapor into the pressure vessel.
After the suction, the refrigerant vapor suction valve is closed and the liquid refrigerant suction valve is opened to fill the pressure vessel with the liquid refrigerant.
A high pressure pump is used to fill the pressure vessel with gas.
When the liquid is filled, the liquid level in the pressure vessel rises.
When the liquid level rises, the refrigerant vapor is compressed and the pressure temperature rises.
At this time, since the liquid refrigerant is at a low temperature, heat exchange with the high-temperature refrigerant vapor is performed, and the refrigerant vapor is liquefied and condensed.
When the liquid discharge valve and the refrigerant vapor suction valve are opened after the compression condensation, the refrigerant vapor is sucked with a decrease in the liquid level.
In order to rotate the refrigeration cycle without interruption, two gas-liquid mixing condensers should be installed.
Condensation is possible if the liquid is filled to a sufficiently high pressure with a high-pressure pump.
If about 99% is liquefied and condensed by the expansion means and the final liquefaction condensation is performed by the gas-liquid mixing condenser, the difference in specific volume between the liquid and the gas is about the same, the rise in liquid temperature is suppressed, and the amount of liquid delivered is reduced.
The liquid is stored in advance.
また、更に気体を収容する圧力容器と、
液体と気体の熱伝達率差を補う伝熱プレートを取り付けた液体を収容する圧力容器からなる気液熱交換器を備える事を特徴とするものである。
液体と気体の熱交換である。
気体が大気以外の冷媒や水の場合は気体を密閉する必要があるのでこの構造とする。
拡大伝熱面としてアルミのプレートフィンを使用すると熱伝導率が低い気体でも熱交換できる。 And a pressure vessel for further containing gas,
It is characterized by comprising a gas-liquid heat exchanger composed of a pressure vessel containing liquid with a heat transfer plate attached to compensate for the difference in heat transfer coefficient between liquid and gas.
Heat exchange between liquid and gas.
When the gas is a refrigerant or water other than the atmosphere, it is necessary to seal the gas, so this structure is adopted.
When aluminum plate fins are used as the expansion heat transfer surface, heat exchange is possible even for gases with low thermal conductivity.
液体と気体の熱伝達率差を補う伝熱プレートを取り付けた液体を収容する圧力容器からなる気液熱交換器を備える事を特徴とするものである。
液体と気体の熱交換である。
気体が大気以外の冷媒や水の場合は気体を密閉する必要があるのでこの構造とする。
拡大伝熱面としてアルミのプレートフィンを使用すると熱伝導率が低い気体でも熱交換できる。 And a pressure vessel for further containing gas,
It is characterized by comprising a gas-liquid heat exchanger composed of a pressure vessel containing liquid with a heat transfer plate attached to compensate for the difference in heat transfer coefficient between liquid and gas.
Heat exchange between liquid and gas.
When the gas is a refrigerant or water other than the atmosphere, it is necessary to seal the gas, so this structure is adopted.
When aluminum plate fins are used as the expansion heat transfer surface, heat exchange is possible even for gases with low thermal conductivity.
また、更に低温気体と
液体と
高温気体と
低温気体と液体を熱交換する前記気液熱交換器と
気液熱交換で熱交換された液体と高温気体とを
熱交換する前記気液熱交換を備える事を特徴とするものである。
気体と、気体の熱交換は熱伝導率が低く大変なので気体と気体の間に液体を介在させて熱交換を行う。
液体としては熱伝達率が高く常温では低圧の水を使うと良い。 Furthermore, the gas-liquid heat exchanger for exchanging heat between the gas-liquid heat exchanger for exchanging heat between the low-temperature gas, the liquid, the high-temperature gas, the low-temperature gas and the liquid, and the liquid exchanged with the gas-liquid heat exchange and the high-temperature gas are exchanged. It is characterized by providing.
Since heat exchange between gas and gas has a low thermal conductivity, heat exchange is performed by interposing a liquid between the gas and gas.
It is better to use low-pressure water at room temperature as the liquid has a high heat transfer coefficient.
液体と
高温気体と
低温気体と液体を熱交換する前記気液熱交換器と
気液熱交換で熱交換された液体と高温気体とを
熱交換する前記気液熱交換を備える事を特徴とするものである。
気体と、気体の熱交換は熱伝導率が低く大変なので気体と気体の間に液体を介在させて熱交換を行う。
液体としては熱伝達率が高く常温では低圧の水を使うと良い。 Furthermore, the gas-liquid heat exchanger for exchanging heat between the gas-liquid heat exchanger for exchanging heat between the low-temperature gas, the liquid, the high-temperature gas, the low-temperature gas and the liquid, and the liquid exchanged with the gas-liquid heat exchange and the high-temperature gas are exchanged. It is characterized by providing.
Since heat exchange between gas and gas has a low thermal conductivity, heat exchange is performed by interposing a liquid between the gas and gas.
It is better to use low-pressure water at room temperature as the liquid has a high heat transfer coefficient.
また、更に前記蒸発器に気化熱を供給する気化熱供給手段を備えることを特徴とするものである。
気化熱供給手段とは冷凍サイクルの乾式蒸発器ではファンとプレートフィンによる外気の吸熱である。
既存の蒸気ボイラーでは低温の液体の水から高温高圧の水蒸気を生成している。
よって使用熱量は潜熱の気化熱と顕熱の合計である。
そこで予め液体の水を蒸発器で蒸発させる。蒸発器の上部に配置された加熱器を加熱して煙突効果で下部の蒸発器内を負圧にして低圧で蒸発させる。水を低圧下で気化させ気化熱を燃料以外の外部熱源である地下水や水道水や海水または外気で供給することで気化熱分の燃料エネルギーが削減される。
これで過熱蒸気生成の際のエネルギーが気化熱分削減できる。
気化熱供給を水で行う場合は蒸発器の熱源は水となる。
水は冷却される。雰囲気の空気を熱源とすれば冷房となる。
また高圧の湿り蒸気を生成する時は高圧ポンプで液体を高圧にして過熱蒸気と熱交換すればよい。
1gの摂氏0度の液体の水を摂氏100度の過熱蒸気にする場合
水の気化熱 摂氏0度 2400J 外部より供給
ゆえに 0J
100度分の顕熱 2J×100=200J
従来の場合 2600J
今回 200J
削減効果 1gあたり 2400J
となり大幅にエネルギーが削減される。
水不足の土地では水蒸気と空気との熱交換でも良い。
高温熱源は電気抵抗発熱、燃焼熱熱源、太陽熱集熱熱源などである。 Further, the apparatus further comprises vaporization heat supply means for supplying vaporization heat to the evaporator.
In the dry evaporator of the refrigeration cycle, the vaporization heat supply means is heat absorption of outside air by a fan and a plate fin.
Existing steam boilers generate high-temperature and high-pressure steam from low-temperature liquid water.
Thus, the amount of heat used is the sum of latent heat of vaporization and sensible heat.
Therefore, liquid water is evaporated in advance with an evaporator. The heater disposed in the upper part of the evaporator is heated to evaporate at a low pressure by making the inside of the lower evaporator negative by the chimney effect. By evaporating water under a low pressure and supplying the vaporization heat by groundwater, tap water, seawater, or outside air, which is an external heat source other than fuel, fuel energy for the vaporization heat is reduced.
As a result, the energy for generating the superheated steam can be reduced by the heat of vaporization.
When the vaporization heat supply is performed with water, the heat source of the evaporator is water.
The water is cooled. If air in the atmosphere is used as a heat source, it will be cooled.
In addition, when generating high-pressure wet steam, the liquid may be made high pressure with a high-pressure pump to exchange heat with superheated steam.
When 1 g of 0 degree Celsius liquid water is converted to 100 degree Celsius superheated steam, the heat of vaporization of water 0 degree Celsius 2400J
100 degree sensible heat 2J × 100 = 200J
Conventional case 2600J
This time 200J
Reduction effect 2400J per gram
The energy is greatly reduced.
In water-deficient lands, heat exchange between water vapor and air is acceptable.
The high temperature heat source is an electric resistance heat generation, a combustion heat heat source, a solar heat collection heat source, or the like.
気化熱供給手段とは冷凍サイクルの乾式蒸発器ではファンとプレートフィンによる外気の吸熱である。
既存の蒸気ボイラーでは低温の液体の水から高温高圧の水蒸気を生成している。
よって使用熱量は潜熱の気化熱と顕熱の合計である。
そこで予め液体の水を蒸発器で蒸発させる。蒸発器の上部に配置された加熱器を加熱して煙突効果で下部の蒸発器内を負圧にして低圧で蒸発させる。水を低圧下で気化させ気化熱を燃料以外の外部熱源である地下水や水道水や海水または外気で供給することで気化熱分の燃料エネルギーが削減される。
これで過熱蒸気生成の際のエネルギーが気化熱分削減できる。
気化熱供給を水で行う場合は蒸発器の熱源は水となる。
水は冷却される。雰囲気の空気を熱源とすれば冷房となる。
また高圧の湿り蒸気を生成する時は高圧ポンプで液体を高圧にして過熱蒸気と熱交換すればよい。
1gの摂氏0度の液体の水を摂氏100度の過熱蒸気にする場合
水の気化熱 摂氏0度 2400J 外部より供給
ゆえに 0J
100度分の顕熱 2J×100=200J
従来の場合 2600J
今回 200J
削減効果 1gあたり 2400J
となり大幅にエネルギーが削減される。
水不足の土地では水蒸気と空気との熱交換でも良い。
高温熱源は電気抵抗発熱、燃焼熱熱源、太陽熱集熱熱源などである。 Further, the apparatus further comprises vaporization heat supply means for supplying vaporization heat to the evaporator.
In the dry evaporator of the refrigeration cycle, the vaporization heat supply means is heat absorption of outside air by a fan and a plate fin.
Existing steam boilers generate high-temperature and high-pressure steam from low-temperature liquid water.
Thus, the amount of heat used is the sum of latent heat of vaporization and sensible heat.
Therefore, liquid water is evaporated in advance with an evaporator. The heater disposed in the upper part of the evaporator is heated to evaporate at a low pressure by making the inside of the lower evaporator negative by the chimney effect. By evaporating water under a low pressure and supplying the vaporization heat by groundwater, tap water, seawater, or outside air, which is an external heat source other than fuel, fuel energy for the vaporization heat is reduced.
As a result, the energy for generating the superheated steam can be reduced by the heat of vaporization.
When the vaporization heat supply is performed with water, the heat source of the evaporator is water.
The water is cooled. If air in the atmosphere is used as a heat source, it will be cooled.
In addition, when generating high-pressure wet steam, the liquid may be made high pressure with a high-pressure pump to exchange heat with superheated steam.
When 1 g of 0 degree Celsius liquid water is converted to 100 degree Celsius superheated steam, the heat of vaporization of water 0 degree Celsius 2400J
100 degree sensible heat 2J × 100 = 200J
Conventional case 2600J
This time 200J
Reduction effect 2400J per gram
The energy is greatly reduced.
In water-deficient lands, heat exchange between water vapor and air is acceptable.
The high temperature heat source is an electric resistance heat generation, a combustion heat heat source, a solar heat collection heat source, or the like.
また、更に海水吸入手段と、
前記蒸発器で水分が蒸発して塩分濃度が上昇した海水を排水する海水排水手段を備える事を特徴とするものである。
海水淡水化装置である。 In addition, seawater inhalation means,
A seawater draining means is provided for draining seawater whose salt concentration is increased by evaporating water in the evaporator.
It is a seawater desalination device.
前記蒸発器で水分が蒸発して塩分濃度が上昇した海水を排水する海水排水手段を備える事を特徴とするものである。
海水淡水化装置である。 In addition, seawater inhalation means,
A seawater draining means is provided for draining seawater whose salt concentration is increased by evaporating water in the evaporator.
It is a seawater desalination device.
冷凍サイクルにおいて、冷媒蒸気を膨張器で体積膨張させて液化する事が出来る。
複数回体積膨張させると、すべての冷媒蒸気を液化する事が可能となる。
この事で、断熱圧縮機と凝縮器が不要となる。
サイクルの循環用に液体ポンプは必要であるが同じ循環量の断熱圧縮機の動力よりポンプの動力は大巾に小さく、大巾なエネルギー削減になる。
又、液化により抽出したエネルギーで発電も可能となる。
これは蒸発器で吸熱したエネルギーを従来技術のように凝縮器で放熱する事なく利用するので、ヒートアイランド現象の防止CO2排出量の削減に寄与する。 In the refrigeration cycle, the refrigerant vapor can be liquefied by volume expansion with an expander.
If the volume is expanded a plurality of times, all the refrigerant vapor can be liquefied.
This eliminates the need for an adiabatic compressor and condenser.
A liquid pump is necessary for circulation of the cycle, but the power of the pump is much smaller than the power of the adiabatic compressor of the same circulation amount, which greatly reduces energy.
In addition, it is possible to generate power with the energy extracted by liquefaction.
This uses the energy absorbed by the evaporator without radiating heat with the condenser as in the prior art, thus contributing to the prevention of the heat island phenomenon and the reduction of CO2 emissions.
複数回体積膨張させると、すべての冷媒蒸気を液化する事が可能となる。
この事で、断熱圧縮機と凝縮器が不要となる。
サイクルの循環用に液体ポンプは必要であるが同じ循環量の断熱圧縮機の動力よりポンプの動力は大巾に小さく、大巾なエネルギー削減になる。
又、液化により抽出したエネルギーで発電も可能となる。
これは蒸発器で吸熱したエネルギーを従来技術のように凝縮器で放熱する事なく利用するので、ヒートアイランド現象の防止CO2排出量の削減に寄与する。 In the refrigeration cycle, the refrigerant vapor can be liquefied by volume expansion with an expander.
If the volume is expanded a plurality of times, all the refrigerant vapor can be liquefied.
This eliminates the need for an adiabatic compressor and condenser.
A liquid pump is necessary for circulation of the cycle, but the power of the pump is much smaller than the power of the adiabatic compressor of the same circulation amount, which greatly reduces energy.
In addition, it is possible to generate power with the energy extracted by liquefaction.
This uses the energy absorbed by the evaporator without radiating heat with the condenser as in the prior art, thus contributing to the prevention of the heat island phenomenon and the reduction of CO2 emissions.
1 蒸発開始点
2 蒸発完了及び第1回膨脹器による液化開始点
3 第1回膨脹器による液化終了点及び第2回膨脹器による液化開始点
4 第2回膨脹器による液化終了点及び第3回膨脹器による液化開始点
5 第3回膨脹器による液化終了点及び第4回膨脹器による液化開始点
6 第4回膨脹器による液化終了点及び第5回膨脹器による液化開始点
7 第5回膨脹器による液化終了点及びポンプによる昇圧開始点
8 ポンプによる昇圧終了点及び絞りによる膨脹開始点
9 絞りによる膨張終了点
10 液相
11 液相及び気相
12 気相
13 臨界点(c、p)
14 気体吸入口
15 拡大部
16 縮小部
17 気体吐出口
18 均圧管
19 液体吐出口
20 低圧受液器
21 高圧ポンプ
22 最終受液器
23 ノズル
24 蒸発器
25a~e 膨張器
26a~d タービン
27a~d 発電機
28a~j 電磁弁
29 第1均圧管
30 第2均圧管
31a~c フロートスウィッチ高位
32a~c フロートスウィッチ低位
33 液体
34 気体
35 ラバルノズル
36 凝縮器
37 給水タンク
38 給水ポンプ
39 ボイラー
40 気液分離器
41 断熱圧縮機
42 圧力容器
43a~c 液管
44 水
45 蒸気
46 気体入口
47 気体出口
48 伝熱プレート
49 液管入口
50 液管出口
51 液体吸入弁
52 気体吸入弁
53 気体排出弁
54 液体排出弁
55 液体貯蔵手段
56 膨張器
57 キャピラリーチューブ
58 受液器
59 液体
60 気体
61a~b 気液混合凝縮器
62 真空ポンプ
63 高圧受液器
64 膨張弁
65 電子制御弁
66 圧力センサー
67 電子制御弁コントローラー
1Evaporation start point 2 Evaporation completion and liquefaction start point by the first inflator
3 End of liquefaction by the 1st inflator and start of liquefaction by the2nd inflator 4 End of liquefaction by the 2nd inflator and start of liquefaction by the 3rd inflator 5 End of liquefaction by the 3rd inflator And the liquefaction start point by the 4th expander 6 The liquefaction end point by the 4th expander and the liquefaction start point by the 5th expander 7 The liquefaction end point by the 5th expander and the pressurization start point by the pump 8 Pressurization by the pump End point and expansion start point by throttling 9 End point of expansion by throttling 10 Liquid phase 11 Liquid phase and gas phase 12 Gas phase 13 Critical point (c, p)
14Gas suction port 15 Enlargement unit 16 Reduction unit 17 Gas discharge port 18 Pressure equalizing pipe 19 Liquid discharge port 20 Low pressure receiver 21 High pressure pump 22 Final receiver 23 Nozzle 24 Evaporator 25a-e Expander 26a-d Turbine 27a- d Generator 28a-j Solenoid valve
29 Firstpressure equalizing pipe 30 Second pressure equalizing pipe 31a-c Float switch high level 32a-c Float switch low level 33 Liquid 34 Gas 35 Laval nozzle 36 Condenser 37 Water supply tank 38 Water supply pump 39 Boiler 40 Gas-liquid separator 41 Adiabatic compressor 42 Pressure Containers 43a-c Liquid tube
44Water 45 Steam 46 Gas inlet 47 Gas outlet 48 Heat transfer plate 49 Liquid pipe inlet 50 Liquid pipe outlet 51 Liquid suction valve 52 Gas suction valve 53 Gas discharge valve 54 Liquid discharge valve 55 Liquid storage means 56 Expander 57 Capillary tube 58 Liquid 59 Liquid 60 Gas 61a-b Gas-liquid mixing condenser 62 Vacuum pump 63 High-pressure receiver 64 Expansion valve 65 Electronic control valve 66 Pressure sensor 67 Electronic control valve controller
2 蒸発完了及び第1回膨脹器による液化開始点
3 第1回膨脹器による液化終了点及び第2回膨脹器による液化開始点
4 第2回膨脹器による液化終了点及び第3回膨脹器による液化開始点
5 第3回膨脹器による液化終了点及び第4回膨脹器による液化開始点
6 第4回膨脹器による液化終了点及び第5回膨脹器による液化開始点
7 第5回膨脹器による液化終了点及びポンプによる昇圧開始点
8 ポンプによる昇圧終了点及び絞りによる膨脹開始点
9 絞りによる膨張終了点
10 液相
11 液相及び気相
12 気相
13 臨界点(c、p)
14 気体吸入口
15 拡大部
16 縮小部
17 気体吐出口
18 均圧管
19 液体吐出口
20 低圧受液器
21 高圧ポンプ
22 最終受液器
23 ノズル
24 蒸発器
25a~e 膨張器
26a~d タービン
27a~d 発電機
28a~j 電磁弁
29 第1均圧管
30 第2均圧管
31a~c フロートスウィッチ高位
32a~c フロートスウィッチ低位
33 液体
34 気体
35 ラバルノズル
36 凝縮器
37 給水タンク
38 給水ポンプ
39 ボイラー
40 気液分離器
41 断熱圧縮機
42 圧力容器
43a~c 液管
44 水
45 蒸気
46 気体入口
47 気体出口
48 伝熱プレート
49 液管入口
50 液管出口
51 液体吸入弁
52 気体吸入弁
53 気体排出弁
54 液体排出弁
55 液体貯蔵手段
56 膨張器
57 キャピラリーチューブ
58 受液器
59 液体
60 気体
61a~b 気液混合凝縮器
62 真空ポンプ
63 高圧受液器
64 膨張弁
65 電子制御弁
66 圧力センサー
67 電子制御弁コントローラー
1
3 End of liquefaction by the 1st inflator and start of liquefaction by the
14
29 First
44
Claims (61)
- 作動流体の気体を体積膨張させて気体を液化する気体膨張液化手段を備える事を特徴とする気体体積膨張利用装置 A gas volume expansion utilization device comprising gas expansion liquefaction means for liquefying gas by volume expansion of a working fluid gas
- 更に前記作動流体は体積膨張液化時に液体気体の2相状態で存在する事を特徴とする請求項1の気体体積膨張利用装置 2. The gas volume expansion utilization apparatus according to claim 1, wherein the working fluid exists in a two-phase state of liquid gas when the volume expansion is liquefied.
- 更に複数の前記気体膨脹液化手段を備える事を特徴とする請求項1~2の気体体積膨張利用装置 3. The gas volume expansion utilization apparatus according to claim 1, further comprising a plurality of said gas expansion liquefaction means.
- 更に前記気体膨張液化手段で抽出されたエネルギーを利用する抽出エネルギー利用手段を備える事を特徴とする請求項1~3の気体体積膨張利用装置 4. The gas volume expansion utilization device according to claim 1, further comprising extraction energy utilization means for utilizing energy extracted by said gas expansion liquefaction means.
- 更に前記気体膨脹液化手段で抽出されたエネルギーを機械エネルギーに変換する機械エネルギー変換手段を備える事を特徴とする請求項1~4の気体体積膨張利用装置 5. The gas volume expansion utilization apparatus according to claim 1, further comprising mechanical energy conversion means for converting energy extracted by said gas expansion liquefaction means into mechanical energy.
- 更に前記気体膨張液化手段で抽出された速度エネルギーを圧力エネルギーに変換する圧力エネルギー変換手段を備える事を特徴とする請求項1~5の気体体積膨張利用装置 6. The gas volume expansion utilization device according to claim 1, further comprising pressure energy conversion means for converting velocity energy extracted by the gas expansion liquefaction means into pressure energy.
- 更に前記機械エネルギー変換手段で変換された機械エネルギーを電気エネルギーに変換する発電手段を備える事を特徴とする請求項1~6の気体体積膨張利用装置 7. The gas volume expansion utilization apparatus according to claim 1, further comprising power generation means for converting mechanical energy converted by the mechanical energy conversion means into electrical energy.
- 更に前記作動流体の高温高圧の気体を凝縮する凝縮手段を備える事を特徴とする請求項1~7の気体体積膨張利用装置 8. The gas volume expansion utilization apparatus according to claim 1, further comprising condensing means for condensing the high-temperature and high-pressure gas of the working fluid.
- 更に前記作動流体の液体を送出するポンプを備える事を特徴とする請求項1~8の気体体積膨張利用装置 9. The gas volume expansion utilization apparatus according to claim 1, further comprising a pump for delivering the working fluid liquid.
- 更に前記作動流体の液体を蒸発させる蒸発手段を備えることを特徴とする請求項1~9の気体体積膨張利用装置 10. The gas volume expansion utilization apparatus according to claim 1, further comprising evaporation means for evaporating the liquid of the working fluid.
- 更に前記作動流体の液体を所定の蒸発圧力に低下させる液体低圧化手段を備えることを特徴とする請求項1~10の気体体積膨張利用装置 11. The gas volume expansion utilization apparatus according to claim 1, further comprising a liquid pressure reducing means for reducing the liquid of the working fluid to a predetermined evaporation pressure.
- 更に前記体積膨張手段で液化された圧力を検出して電気信号に変換する圧力センサーと、
電気信号によって弁開度を変更する電子制御弁と、
圧力センサーの電気信号を弁開度にリニアに制御する電子制御弁コントローラーを備える事を特徴とする請求項1~11の気体体積膨張利用装置ものである。 Furthermore, a pressure sensor that detects the pressure liquefied by the volume expansion means and converts it into an electrical signal;
An electronic control valve that changes the valve opening by an electrical signal;
The gas volume expansion utilization apparatus according to any one of claims 1 to 11, further comprising an electronic control valve controller that linearly controls an electric signal of the pressure sensor to a valve opening degree. - 更に前記液体低圧化手段を切替える低圧化切替手段を備えることを特徴とする請求項1~12の気体体積膨張利用装置 13. The gas volume expansion utilization device according to claim 1, further comprising a low pressure switching means for switching the liquid low pressure means.
- 更に前記作動流体を冷凍サイクル用冷媒とする事を特徴とする請求項1~13の気体体積膨張利用装置 14. The gas volume expansion utilization apparatus according to claim 1, wherein the working fluid is a refrigerant for a refrigeration cycle.
- 更に前記作動流体を水とする事を特徴とする請求項1~14の気体体積膨張利用装置 15. The gas volume expansion utilization apparatus according to claim 1, wherein the working fluid is water.
- 更に前記気体膨張液化手段を
気体体積膨張部と、
気体吸入部と、
気体の体積膨張により液化された作動流体の液体と液化されなかった気体を気液分離する気液分離部と、
気体吐出部
を備える膨張器とする事を特徴とする請求項1~15の気体体積膨張利用装置 Further, the gas expansion liquefaction means is a gas volume expansion part,
A gas inlet,
A gas-liquid separation unit that gas-liquid separates the liquid of the working fluid liquefied by the volume expansion of the gas and the gas not liquefied;
The gas volume expansion utilization apparatus according to any one of claims 1 to 15, wherein the expander includes a gas discharge unit. - 更に前記気体膨張液化手段と機械エネルギー変換手段と発電手段を断熱圧縮機を転用した膨張機とする事を特徴とする請求項1~16の気体体積膨張利用装置 The gas volume expansion utilization apparatus according to any one of claims 1 to 16, wherein the gas expansion liquefaction means, mechanical energy conversion means, and power generation means are an expander using a heat insulating compressor.
- 更に前記気体膨張液化手段で液化された作動流体を貯液する低圧受液器を備える事を特徴とする請求項1~17の気体体積膨張利用装置 18. The gas volume expansion utilization apparatus according to claim 1, further comprising a low-pressure receiver that stores the working fluid liquefied by the gas expansion liquefaction means.
- 更に前記作動流体の液体を貯液する最終受液器を備える事を特徴とする請求項1~18の気体体積膨張利用装置 19. The gas volume expansion utilization device according to claim 1, further comprising a final liquid receiver for storing the liquid of the working fluid.
- 更に移動手段を備える事を特徴とする請求項1~19の気体体積膨張利用装置 20. The gas volume expansion utilization apparatus according to claim 1, further comprising a moving means.
- 更に建築物を備える事を特徴とする請求項1~20の気体体積膨張利用装置 21. The gas volume expansion utilization apparatus according to claim 1, further comprising a building.
- 更に蓄電手段を備える事を特徴とする請求項1~21の気体体積膨張利用装置 The gas volume expansion utilization apparatus according to any one of claims 1 to 21, further comprising a power storage means.
- 更に電子式電力変換装置を備えることを特徴とする請求項1~22の気体体積膨張利用装置 23. The gas volume expansion utilization device according to claim 1, further comprising an electronic power conversion device.
- 更に前記圧力変換手段をラバルノズルとする事を特徴とする請求項1~23の気体体積膨張利用装置 24. The gas volume expansion utilization apparatus according to claim 1, wherein said pressure conversion means is a Laval nozzle.
- 前記圧力変換手段をデフューザーする事を特徴とする請求項1~24の気体体積膨張利用装置 The gas volume expansion utilization device according to any one of claims 1 to 24, wherein the pressure converting means is a diffuser.
- 更に前記蒸発手段を冷凍サイクルに使用される蒸発器とする事を特徴とする請求項1~25の気体体積膨張利用装置 The gas volume expansion utilization apparatus according to any one of claims 1 to 25, wherein the evaporation means is an evaporator used in a refrigeration cycle.
- 更に前記蒸発手段をボイラーとする事を特徴とする請求項1~26の気体体積膨張利用装置 27. The gas volume expansion utilization apparatus according to claim 1, wherein said evaporating means is a boiler.
- 更に前記機械エネルギー変換手段をタービンとする事を特徴とする請求項1~27の気体体積膨張利用装置 28. The gas volume expansion utilization apparatus according to claim 1, wherein the mechanical energy conversion means is a turbine.
- 更に前記タービンの部材を繊維強化プラスチックとするとする事を特徴とする請求項1~28の気体体積膨張利用装置 29. The gas volume expansion utilization apparatus according to claim 1, wherein the turbine member is a fiber reinforced plastic.
- 更に前記液体低圧化手段をキャピラリーチューブとする事を特徴とする請求項1~29の気体体積膨張利用装置 30. The gas volume expansion utilization apparatus according to claim 1, wherein the liquid pressure reducing means is a capillary tube.
- 更に前記タービンの軸受けを流体軸受けとし流体を作動流体とする事を特徴とする請求項1~30の気体体積膨張利用装置 31. The gas volume expansion utilization apparatus according to claim 1, wherein the turbine bearing is a fluid bearing and the fluid is a working fluid.
- 更に前記凝縮手段を冷凍サイクルに使用する凝縮器とする事を特徴とする請求項1~31の気体体積膨張利用装置 The gas volume expansion utilization apparatus according to any one of claims 1 to 31, wherein the condensing means is a condenser used in a refrigeration cycle.
- 更に異なる蒸発圧力の前記蒸発手段を備える事を特徴とする請求項1~32の気体体積膨張利用装置 The gas volume expansion utilization apparatus according to any one of claims 1 to 32, further comprising the evaporation means having different evaporation pressures.
- 更に異なる蒸発圧力毎に前記気体膨張液化手段を備える事を特徴とする請求項1~33の気体体積膨張利用装置 The gas volume expansion utilization apparatus according to any one of claims 1 to 33, further comprising the gas expansion liquefaction means for each different evaporation pressure.
- 更に前記低圧受液器の液体の圧力を検出する低圧受液器圧力検出手段を備える事を特徴とする請求項1~34の気体体積膨張利用装置 The gas volume expansion utilization device according to any one of claims 1 to 34, further comprising low-pressure receiver pressure detection means for detecting the pressure of the liquid in the low-pressure receiver.
- 更に前記低圧受液器の液面を検出する低圧受液器液面検出手段を備える事を特徴とする請求項1~35の気体体積膨張利用装置 The gas volume expansion utilization device according to any one of claims 1 to 35, further comprising a low-pressure receiver liquid level detecting means for detecting a liquid level of the low-pressure receiver.
- 更に前記ポンプの送液元を前記低圧受液器または最終受液器に切り替えるポンプ送液元切り替え手段を備える事を特徴とする請求項1~36の気体体積膨張利用装置 37. A gas volume expansion utilization apparatus according to claim 1, further comprising pump liquid source switching means for switching the liquid source of the pump to the low pressure liquid receiver or the final liquid receiver.
- 更に前記膨張器と前記低圧受液器の圧力を等圧にする第1均圧管を備える事を特徴とする請求項1~37の気体体積膨張利用装置 The gas volume expansion utilization apparatus according to any one of claims 1 to 37, further comprising a first pressure equalizing pipe for equalizing the pressure of the expander and the low-pressure receiver.
- 更に前記低圧受液器と前記高圧受液器の圧力を等圧にする第2均圧管を備える事を特徴とする請求項1~38の気体体積膨張利用装置 The gas volume expansion utilization apparatus according to any one of claims 1 to 38, further comprising a second pressure equalizing pipe for equalizing the pressure of the low-pressure receiver and the high-pressure receiver.
- 更に作動流体の気体を加熱する加熱熱源を備える事を特徴とする請求項1~39の気体体積膨張利用装置 The gas volume expansion utilization apparatus according to any one of claims 1 to 39, further comprising a heating heat source for heating the gas of the working fluid.
- 更に真空ポンプを備える事を特徴とする請求項1~40の気体体積膨張利用装置 The gas volume expansion utilization apparatus according to any one of claims 1 to 40, further comprising a vacuum pump.
- 更に被冷却物の温度を検出する被冷却物温度検出手段を備える事を特徴とする請求項1~41の気体体積膨張利用装置 The gas volume expansion utilization apparatus according to any one of claims 1 to 41, further comprising an object temperature detecting means for detecting an object temperature to be cooled.
- 更に作動流体を地熱水蒸気とする事を特徴とする請求項1~42の気体体積膨張利用装置 The gas volume expansion utilization apparatus according to any one of claims 1 to 42, wherein the working fluid is geothermal water vapor.
- 更に圧力容器と、
圧力容器内を往復する往復用液体と、
往復用液体の吸入弁と、
往復用液体の吐出弁と、
気体の吸入弁と
気体の吐出弁と、
往復用液体を高圧で送出するポンプからなる液体往復式圧縮機を備える事を特徴とする請求項1~43の気体体積膨張利用装置 And a pressure vessel,
A reciprocating liquid that reciprocates in the pressure vessel;
A reciprocating liquid suction valve;
A reciprocating liquid discharge valve;
A gas intake valve and a gas discharge valve;
A gas volume expansion utilization apparatus according to any one of claims 1 to 43, further comprising a liquid reciprocating compressor comprising a pump for delivering reciprocating liquid at high pressure. - 更に前記往復用液体を真空ポンプ用油とし、
前記気体を空気とする事を特徴とする請求項1~44の気体体積膨張利用装置 Further, the reciprocating liquid is used as a vacuum pump oil,
The gas volume expansion utilization apparatus according to any one of claims 1 to 44, wherein the gas is air. - 更に断熱圧縮機を備える事を特徴とする請求項1~45の気体体積膨張利用装置 The gas volume expansion utilization apparatus according to any one of claims 1 to 45, further comprising an adiabatic compressor.
- 更に前記往復用液体を冷凍サイクル用液体冷媒とし、
前記気体を冷凍サイクル用気体冷媒とする事を特徴とする請求項1~46の気体体積膨張利用装置 Further, the reciprocating liquid is a refrigeration cycle liquid refrigerant,
The gas volume expansion utilization apparatus according to any one of claims 1 to 46, wherein the gas is a gas refrigerant for a refrigeration cycle. - 更に前記凝縮器で液化された作動流体の液体と
前記蒸発手段で蒸発された作動流体の気体を熱交換する気液熱交換器を備える事を特徴とする請求項1~47の気体体積膨張利用装置 The gas volume expansion utilization apparatus according to any one of claims 1 to 47, further comprising a gas-liquid heat exchanger for exchanging heat between the liquid of the working fluid liquefied by the condenser and the gas of the working fluid evaporated by the evaporation means. apparatus - 更に前記気液熱交換器は気体の逆流を防止する逆止弁を備える事を特徴とする請求項1~48の気体体積膨張利用装置 The gas volume expansion utilization device according to any one of claims 1 to 48, wherein the gas-liquid heat exchanger further comprises a check valve for preventing a backflow of gas.
- 更に加熱熱源を備える事を特徴とする請求項1~49の気体体積膨張利用装置 The gas volume expansion utilization apparatus according to any one of claims 1 to 49, further comprising a heating heat source.
- 更に通信手段を備える事を特徴とする請求項1~50の気体体積膨張利用装置 The gas volume expansion utilization apparatus according to any one of claims 1 to 50, further comprising a communication means.
- 更に前記加熱熱源をコンピューター発熱熱源とする事を特徴とする請求項1~51の気体体積膨張利用装置 The gas volume expansion utilization apparatus according to any one of claims 1 to 51, wherein the heating heat source is a computer heat generation heat source.
- 更に前記加熱熱源の熱を前記蒸発手段に輸送するヒートパイプを備える事を特徴とする請求項1~52の気体体積膨張利用装置 The gas volume expansion utilization apparatus according to any one of claims 1 to 52, further comprising a heat pipe for transporting heat of the heating heat source to the evaporation means.
- 更に前記気体エネルギー変換手段で変換された機械エネルギーで気体を圧縮する圧縮手段を備える事を特徴とする請求項1~53の気体体積膨張利用装置 The gas volume expansion utilization apparatus according to any one of claims 1 to 53, further comprising compression means for compressing the gas with mechanical energy converted by the gas energy conversion means.
- 更に断熱圧縮機を備える事を特徴とする請求項1~54の気体体積膨張利用装置 The gas volume expansion utilization apparatus according to any one of claims 1 to 54, further comprising an adiabatic compressor.
- 更に圧力容器と液体と気体と気体の吸入弁と気体の吐出弁と液体の吸入弁と液体と吐出弁と弁の制御手段からなる液体往復式圧縮機を備える事を特徴とする請求項1~55の気体体積膨張利用装置 A liquid reciprocating compressor comprising a pressure vessel, a liquid, a gas, a gas suction valve, a gas discharge valve, a liquid suction valve, a liquid, a discharge valve, and valve control means is provided. 55 gas volume expansion utilization devices
- 更に
冷媒と、
圧力容器と、
液体冷媒を高圧で送出する高圧ポンプと、
前記凝縮手段で液化された冷媒と、
液体冷媒の吸入弁と吐出弁と、
冷媒蒸気の吸入弁と、
液体の吸入弁と液体の吐出弁と冷媒蒸気の吸入弁の制御手段からなる気液混合凝縮器を備える事を特徴とする請求項1~56の気体体積膨張利用装置 And a refrigerant,
A pressure vessel;
A high-pressure pump that delivers liquid refrigerant at high pressure;
Refrigerant liquefied by the condensing means;
An intake valve and a discharge valve for liquid refrigerant;
A refrigerant vapor suction valve;
A gas volume expansion utilization apparatus according to any one of claims 1 to 56, further comprising a gas-liquid mixing condenser comprising control means for a liquid suction valve, a liquid discharge valve, and a refrigerant vapor suction valve. - 更に気体を収容する圧力容器と、
液体と気体の熱伝達率差を補う伝熱プレートを取り付けた液体を収容する圧力容器からなる気液熱交換器を備える事を特徴とする請求項1~57の気体体積膨張利用装置 A pressure vessel containing gas,
The gas volume expansion utilization device according to any one of claims 1 to 57, further comprising a gas-liquid heat exchanger comprising a pressure vessel containing a liquid to which a heat transfer plate is attached to compensate for a difference in heat transfer coefficient between the liquid and the gas. - 更に低温気体と
液体と
高温気体と
低温気体と液体を熱交換する前記気液熱交換器と
気液熱交換で熱交換された液体と高温気体とを
熱交換する前記気液熱交換を備える事を特徴とする請求項1~58の気体体積膨張利用装置 Further, the gas-liquid heat exchanger for exchanging heat between the low-temperature gas, the liquid, the high-temperature gas, the low-temperature gas and the liquid, and the gas-liquid heat exchange for exchanging heat between the liquid exchanged by the gas-liquid heat exchange and the high-temperature gas are provided. The gas volume expansion utilization apparatus according to any one of claims 1 to 58, wherein - 更に前記蒸発器に気化熱を供給する気化熱供給手段を備えることを特徴とする請求項1~59の気体体積膨張利用装置 The gas volume expansion utilization apparatus according to any one of claims 1 to 59, further comprising vaporization heat supply means for supplying vaporization heat to the evaporator.
- 更に海水吸入手段と、
前記蒸発器で水分が蒸発して塩分濃度が上昇した海水を排水する海水排水手段を備える事を特徴とする請求項1~60の気体体積膨張利用装置 And seawater inhalation means,
The gas volume expansion utilization device according to any one of claims 1 to 60, further comprising seawater drainage means for draining seawater having a salt concentration increased by evaporating water in the evaporator.
Applications Claiming Priority (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-218818 | 2011-10-03 | ||
JP2011218818A JP2013079739A (en) | 2011-10-03 | 2011-10-03 | Device using heater |
JP2012087900A JP2013217558A (en) | 2012-04-06 | 2012-04-06 | Heater-utilized apparatus |
JP2012-087900 | 2012-04-06 | ||
JP2012-088004 | 2012-04-08 | ||
JP2012088004A JP2013217560A (en) | 2012-04-08 | 2012-04-08 | Heater-utilizing apparatus |
JP2012-098201 | 2012-04-23 | ||
JP2012098201A JP2013224808A (en) | 2012-04-23 | 2012-04-23 | Device using heater |
JP2012126106A JP2013250022A (en) | 2012-06-01 | 2012-06-01 | Heater utilization device |
JP2012-126106 | 2012-06-01 | ||
JP2012209086A JP2014062703A (en) | 2012-09-24 | 2012-09-24 | Gas volume expansion utilization device |
JP2012-209086 | 2012-09-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013051523A1 true WO2013051523A1 (en) | 2013-04-11 |
Family
ID=48043681
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/075441 WO2013051523A1 (en) | 2011-10-03 | 2012-10-02 | Device for utilization of volumetric expansion of gas |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2013051523A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114185378A (en) * | 2021-12-02 | 2022-03-15 | 西安热工研究院有限公司 | A dual-well hydraulic CO2 compression energy storage system and its operation method |
CN115062561A (en) * | 2022-06-27 | 2022-09-16 | 南京信息工程大学 | Quantitative prediction method and system for single perforation yield of horizontal gas well |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59134466A (en) * | 1983-01-19 | 1984-08-02 | 株式会社島津製作所 | Liquefier |
JPS59179204U (en) * | 1983-05-18 | 1984-11-30 | 石川島播磨重工業株式会社 | Distribution device for two-phase flow mixed media in LNG cryogenic power generation equipment using mixed media Rankine cycle system |
JPS6160243B2 (en) * | 1981-07-08 | 1986-12-19 | Tokyo Denryoku Kk | |
JPH0433961B2 (en) * | 1984-06-20 | 1992-06-04 | Idemitsu Petrochemical Co | |
JPH10204455A (en) * | 1997-01-27 | 1998-08-04 | Chiyoda Corp | Natural gas liquefaction method |
JP2003097222A (en) * | 2001-07-10 | 2003-04-03 | Honda Motor Co Ltd | Ranking cycle unit |
JP2009103029A (en) * | 2007-10-23 | 2009-05-14 | Panasonic Corp | Rankine cycle equipment |
JP2009191725A (en) * | 2008-02-14 | 2009-08-27 | Sanden Corp | Waste heat utilization equipment |
-
2012
- 2012-10-02 WO PCT/JP2012/075441 patent/WO2013051523A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6160243B2 (en) * | 1981-07-08 | 1986-12-19 | Tokyo Denryoku Kk | |
JPS59134466A (en) * | 1983-01-19 | 1984-08-02 | 株式会社島津製作所 | Liquefier |
JPS59179204U (en) * | 1983-05-18 | 1984-11-30 | 石川島播磨重工業株式会社 | Distribution device for two-phase flow mixed media in LNG cryogenic power generation equipment using mixed media Rankine cycle system |
JPH0433961B2 (en) * | 1984-06-20 | 1992-06-04 | Idemitsu Petrochemical Co | |
JPH10204455A (en) * | 1997-01-27 | 1998-08-04 | Chiyoda Corp | Natural gas liquefaction method |
JP2003097222A (en) * | 2001-07-10 | 2003-04-03 | Honda Motor Co Ltd | Ranking cycle unit |
JP2009103029A (en) * | 2007-10-23 | 2009-05-14 | Panasonic Corp | Rankine cycle equipment |
JP2009191725A (en) * | 2008-02-14 | 2009-08-27 | Sanden Corp | Waste heat utilization equipment |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114185378A (en) * | 2021-12-02 | 2022-03-15 | 西安热工研究院有限公司 | A dual-well hydraulic CO2 compression energy storage system and its operation method |
CN115062561A (en) * | 2022-06-27 | 2022-09-16 | 南京信息工程大学 | Quantitative prediction method and system for single perforation yield of horizontal gas well |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Arpagaus et al. | Multi-temperature heat pumps: A literature review | |
WO2022166392A1 (en) | Multistage-compression energy storage apparatus and method based on carbon dioxide gas-liquid phase change | |
JP2858750B2 (en) | Power generation system, method and apparatus using stored energy | |
CN210345951U (en) | Gas suspension heat pump unit | |
CN103842747B (en) | Refrigerating circulatory device | |
US20120036854A1 (en) | Transcritical thermally activated cooling, heating and refrigerating system | |
CN101939601B (en) | Refrigerating system and method for refrigerating | |
US10835836B2 (en) | Method and system of combined power plant for waste heat conversion to electrical energy, heating and cooling | |
US20140007577A1 (en) | Method and System for the Utilization of an Energy Source of Relatively Low Temperature | |
CN113474599A (en) | Transduction method and system | |
WO2019114536A1 (en) | Constructed cold source energy recovery system, heat engine system and energy recovery method | |
WO2009059562A1 (en) | A pneumatic-thermal expansion type cycling method and the apparatus thereof | |
Liu et al. | Experimental validation of an advanced heat pump system with high-efficiency centrifugal compressor | |
CN102927730A (en) | Direct-contact ice slurry making device of gas | |
JP2005077042A (en) | Cooling system, and construction method of cooling system | |
JP2013079739A (en) | Device using heater | |
WO2013051523A1 (en) | Device for utilization of volumetric expansion of gas | |
JP2013040726A (en) | Device with heater | |
CN216620339U (en) | Refrigeration and defrosting system | |
JP2014062703A (en) | Gas volume expansion utilization device | |
JP3990524B2 (en) | Compressive refrigeration unit for subcritical and supercritical operation | |
US10712050B2 (en) | Multi-stage heat engine | |
CN111121339B (en) | A device for generating electricity and cooling by combining industrial waste heat or geothermal energy and air energy | |
Charalampidis et al. | Design of a reversible heat pump/organic Rankine cycle unit for a renewables-based trigeneration system | |
JP2013250022A (en) | Heater utilization device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12837960 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12837960 Country of ref document: EP Kind code of ref document: A1 |