[go: up one dir, main page]

WO2013046790A1 - Backlight device and liquid crystal display device using same - Google Patents

Backlight device and liquid crystal display device using same Download PDF

Info

Publication number
WO2013046790A1
WO2013046790A1 PCT/JP2012/062011 JP2012062011W WO2013046790A1 WO 2013046790 A1 WO2013046790 A1 WO 2013046790A1 JP 2012062011 W JP2012062011 W JP 2012062011W WO 2013046790 A1 WO2013046790 A1 WO 2013046790A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
backlight
led
liquid crystal
optical element
Prior art date
Application number
PCT/JP2012/062011
Other languages
French (fr)
Japanese (ja)
Inventor
久保田 秀直
大内 敏
浩 岩佐
Original Assignee
日立コンシューマエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立コンシューマエレクトロニクス株式会社 filed Critical 日立コンシューマエレクトロニクス株式会社
Publication of WO2013046790A1 publication Critical patent/WO2013046790A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133605Direct backlight including specially adapted reflectors

Definitions

  • the present invention relates to a backlight device and a liquid crystal display device using the same, and more particularly, to a backlight device using a side view type LED (Light Emitting Diode) as a light source and a liquid crystal display device using the same.
  • a side view type LED Light Emitting Diode
  • a backlight device is arranged on the back of the liquid crystal display panel.
  • a backlight device used for a liquid crystal display device having a relatively large screen such as a television display device
  • a fluorescent tube has been used as a light source (see Patent Document 1).
  • Patent Document 1 discloses an edge light type (side view type) backlight device and an invention in which the backlight device is applied to a liquid crystal display device having a liquid crystal panel 10.
  • a light guide plate disposed so as to overlap the liquid crystal panel, a fluorescent tube as a light source disposed on a side portion of the light guide plate, It has a condenser that collects the light from the fluorescent tube in a relatively small angle range and enters the light toward the light guide plate.
  • the fluorescent tube has a U-shaped reflector in its cross section having an internal reflection layer.
  • the light guide plate of Patent Document 1 is made of a transparent plate such as an acrylic resin.
  • a diffusion sheet is provided on one surface (hereinafter, the liquid crystal display panel side is referred to as an upper surface), and a diffusion reflection layer (reflection) is formed on the lower surface. Sheet) is provided.
  • the diffuse reflection layer is obtained by providing diffusion dots in a predetermined pattern on the lower surface of the light guide plate.
  • the diffusion dots have different areas depending on the distance from the light source of the light guide plate, thereby making it possible to obtain uniform brightness over the entire surface of the light guide plate as is well known.
  • Patent Document 1 a light guide plate, a condenser, a reflector, and the like are used, and the number of parts is large. For this reason, in the backlight device and the liquid crystal display device using the backlight device, the component cost is high. In addition, since a fluorescent tube is used, power consumption is large. In addition, the fluorescent tube has a heavy load on the global environment because mercury vapor is sealed inside. Therefore, the use tends to be prohibited in some areas such as Europe.
  • LEDs Light Emitting Diodes
  • a backlight device of a liquid crystal display device using an LED as a light source an optical system that uses the entire liquid crystal display device from the LED as a surface light source is required.
  • a backlight device used in a large-screen liquid crystal display device generally has a structure in which the backlight device is divided into a plurality of backlight blocks. The LEDs in each backlight block need to be able to receive light uniformly within the backlight block.
  • FIG. 11A is a schematic view showing the display surface field of the LED when viewed from above (the display surface of the liquid crystal display device), and FIG. 11B shows the display of the LED when viewed from the side (side surface of the liquid crystal display device). It is a schematic diagram which shows a surface visual field.
  • Reference numeral 7 denotes an LED as a light source
  • 6 denotes an LED substrate on which the LED 7 is mounted
  • 115 and 116 denote light source distributions showing light distribution characteristics.
  • the spread ⁇ W in the horizontal direction (X direction) is about 120 °
  • the height direction The spread ⁇ H in the (Z direction) is about 90 °.
  • the LED 7 has a directivity characteristic that spreads in a spherical shape in front of the LED 7 (outgoing direction).
  • the LED has a light distribution characteristic as described in FIGS. 11A and 11B.
  • the brightness of light decreases in inverse proportion to the square of the propagation distance. Therefore, when the luminance is measured on the surface of the liquid crystal panel, the luminance is different in each of the X direction and the Y direction. For this reason, the image quality is not uniform.
  • the region farthest from the LED 7 is a dark region (see region 28 in FIGS. 8B, 9B, and 10B described later).
  • an object of the present invention is to reduce power consumption by using an LED, and to transmit light almost uniformly over the entire surface of a backlight block, so that the backlight device has uniform luminance. And providing a liquid crystal display device.
  • a backlight device of the present invention is a backlight device for irradiating light to a liquid crystal panel.
  • the backlight device includes a chassis and a plurality of backlight blocks on the chassis.
  • Each backlight block has a sheet-like reflecting member provided on the chassis on the bottom side of the backlight block, and is provided to face the reflecting member.
  • a plate-like optical element disposed at a predetermined interval in a direction perpendicular to the light irradiation surface of the light source, and a direction parallel to the light irradiation surface of the backlight, disposed in a space between the optical element and the reflecting member
  • a plurality of LEDs that emit light to the light, and the space between the plurality of LEDs in a direction parallel to the light irradiation surface and the light emitting direction.
  • a partition plate that transmits light through the optical element while repeatedly reflecting and propagating light from the light source in the space between the optical element and the reflecting member, and guiding the light toward the liquid crystal panel. Is the first feature.
  • the second feature is that the LED is a side view type LED.
  • a third feature is that a predetermined pattern is formed on the optical member and / or the reflection sheet.
  • the backlight device is characterized in that the optical element directly above the LED is provided with a shielding plate for shielding light emitted above the LED.
  • the partition plate is a partition plate that promotes the propagation of the LED, and supports the space between the chassis and the optical element. 5 features.
  • the partition plate is a partition plate that promotes propagation of the LED, and the LED is the optical element between the chassis and the optical element.
  • a sixth feature is that the space is attached so as not to contact and the space is supported.
  • the partition plate is about 1 ⁇ 2 to 3 of the length of the backlight block in the light emitting direction from the light emitting port of the LED.
  • a seventh feature is that the partition plate is not provided on the most distal end side of the backlight block.
  • the partition plate is configured by bending the chassis and the reflecting member, according to an eighth feature.
  • a liquid crystal display device uses a liquid crystal panel and the backlight device according to any one of the backlight devices according to the first to eighth features of the present invention. Is the ninth feature.
  • the present invention it is possible to provide a backlight device capable of improving the utilization efficiency of light from a light source and obtaining a high-quality image, and a liquid crystal display device using the backlight device.
  • FIG. 1 is a cross-sectional view of a backlight device according to an embodiment of the present invention that is orthogonal to a light irradiation surface and parallel to an optical axis direction of an LED. It is sectional drawing of the liquid crystal display containing the internal structure and backlight block of a backlight block regarding embodiment of this invention. It is a schematic three-dimensional view of the backlight according to the embodiment of the present invention. It is sectional drawing orthogonal to the optical-axis direction of LED7 and a backlight light irradiation surface of the backlight apparatus which concerns on the Example of this invention, and its peripheral part.
  • FIG. 1 It is a figure which shows an example which has arrange
  • FIG. 1 is an exploded view showing an outline of the overall configuration of a liquid crystal display device having a backlight device according to an embodiment of the present invention
  • FIG. 2 is orthogonal to the light irradiation surface of the backlight device according to the present embodiment.
  • FIG. 3 is a cross-sectional view parallel to the optical axis direction of the LED
  • FIG. 3 is a cross-sectional view of the internal configuration of the backlight block and a liquid crystal display including the backlight block according to this embodiment.
  • a transmissive liquid crystal display device using a liquid crystal panel 1 that is widely used as a display for video display includes a liquid crystal panel 1, an optical element or a diffusion plate, and a diffusion sheet as an overall configuration.
  • the backlight device 3 according to the present embodiment is formed by arranging a plurality of backlight blocks 4 in a matrix on a plane (in the direction of the light irradiation surface of the backlight device). In addition, uniform luminance is obtained in the large-sized backlight device 3.
  • a backlight device 3 is necessary for irradiating light from the back side of the liquid crystal panel 1, and the backlight device 3 has a direct type, a side light (edge light) type, and a direct type depending on its structure.
  • a hybrid system that combines a sidelight system with This hybrid system refers to a structure in which the backlight is optically divided into a plurality of backlight blocks and the light intensity is individually controlled, that is, the area can be controlled.
  • the hybrid system is also called a slim block system.
  • the backlight device 3 according to the embodiment of the present invention is intended for a slim block system, and particularly employs a side-view type light source and has a structure in which the backlight is divided into a plurality of backlight blocks 4. It is intended.
  • the backlight device 3 is disposed on the back side of the liquid crystal panel 1 in order to irradiate the liquid crystal panel 1 with light, and at least in the horizontal direction (liquid crystal LED 7 having a light emission axis (optical axis) parallel to the panel surface or the light irradiation surface direction of the backlight device, reflection sheet 19 that is a reflection member that reflects light from LED 7, and reflection sheet 19. And a plate-like optical element 20 for guiding light from the LED 7 and the reflection sheet 19 to the liquid crystal panel 1 side, which is disposed at a predetermined distance from the reflection sheet 19.
  • the LED 7 is a side-view type LED that emits light in a direction parallel to the electrode surface.
  • the reflection sheet 19 is provided on a chassis (described later) located on the bottom side of the backlight device 3.
  • the LED 7 is mounted on an LED substrate 6 that is a light source substrate.
  • the backlight device 3 includes, for example, one LED 7 (actually a plurality of LEDs 7 arranged in the depth direction on the paper surface) in a direction orthogonal to the light irradiation surface and parallel to the optical axis of the LED 7. ) And the optical element 20 between the LEDs 7, the reflection sheet 19, and the space between them, is a single backlight block 4. Then, the amount of light or the light intensity can be controlled for each backlight block 4 by individually controlling the LEDs 7 corresponding to the backlight blocks 4. That is, in this embodiment, the area control (local dimming) is made possible by configuring as described above.
  • the optical element 20 is, for example, a diffusion plate, a transparent acrylic plate, a mirror plate, a diffusion plate with a fine pattern, an optical sheet, an optical property control plate, a polarization sorting plate, or the like.
  • a sheet-like light control member 9 for controlling or adjusting the amount of light supplied to the optical element 20 according to the position of the optical element 20 is provided on the back surface of the optical element 20.
  • the light control member 9 is provided on the back surface of the optical element 20, but may be provided on the front surface of the optical element 20 or on both the back surface and the front surface.
  • the light control member 9 has a predetermined light control function.
  • the function includes, for example, two-dimensional reflection, transmission, diffusion, shading, absorption, re-emission, coloring, wavelength conversion, and a predetermined amount of light. It shall have at least two or more of the polarizing functions.
  • the light control member 9 transmits part of the incident light, and is emitted from the optical element 20 as scattered light on the spot.
  • a part of the incident light is reflected by the light control member 9 and propagates in the space in the optical axis direction of the LED 7 in cooperation with the reflection function by the reflection sheet 19 to guide the light far from the LED 7.
  • the light control member 9 reflects part of the light from the LED 7 and the light reflected by the reflecting sheet 19 while reflecting part of the light, and repeatedly performing this along the optical axis direction, thereby the backlight block.
  • the light is sufficiently supplied to the tip of 4 (the part on the side opposite to the position of the LED 7). Thereby, regardless of the size of the backlight block 4, it is possible to improve the uniform luminance distribution and the light use efficiency.
  • the light control member 9 is provided with slits and patterns in order to realize the transmission and reflection of the light.
  • the optical element 20 and the light control member 9, particularly the light control member 9, are separated from the LED 7 in the optical axis direction of the LED 7, the size or shape of the slit or pattern, or the light transmittance, reflectance, diffusivity, Optical functions such as the degree of capture, propagation rate, polarization transmittance, color transmittance, and spectral characteristics are changing. By doing in this way, the uniformity in the backlight block 4 is easily realizable.
  • the distance between the optical element 20 and the reflection sheet 19 (that is, the height of the space) is h, and the height of the LED 7 is Lh
  • the relationship between the distance h and the height Lh is 5Lh>h> 1. .2Lh is preferable.
  • the light leaking from the upper surface of the LED 7 and the hot spot (the portion where the light is locally brightened) generated in the vicinity of the light emitting portion of the LED 7 are expanded by the COS 4 angle (fourth power law) in the space of the distance h. It becomes possible to diffuse and make it difficult to see as unevenness.
  • the above condition can be said to be a distance necessary for dimming the light transmitted directly from the LED 7 through the light control member 9 because the side-view type LED 7 and the light control member 9 are too close.
  • FIG. 3 is a schematic three-dimensional view of the backlight according to the present embodiment.
  • the LEDs 7 are arranged together with a substrate (not shown) in the horizontal direction of the liquid crystal panel in a metal chassis 11 made of, for example, aluminum.
  • the optical element 20 is arranged with a predetermined distance from the LED 7.
  • the optical element 20 can be made of a material such as a general diffusion plate used in a fluorescent tube type backlight device such as CCFL. Thereby, the slim block type backlight device 3 can be realized at low cost.
  • an optical sheet group 18 such as a prism sheet or a brightness enhancement film is disposed on the optical element 20 to reduce luminance unevenness on the entire backlight irradiation surface.
  • the optical sheet group 18 includes a plurality of optical sheets, but only one optical sheet group may be provided.
  • FIG. 3 a dotted line is drawn on the optical element 20, which is drawn to virtually divide the backlight block 4, and the backlight block 4 is actually physically separated.
  • a groove or the like for dividing the backlight block 4 is not provided.
  • the optical element 20 is composed of one plate-like member (diffuser plate). If necessary, a groove or the like for dividing the backlight block 4 may be provided on the front surface (liquid crystal panel side) or the back surface (chassis 11 side) of the optical element 20.
  • FIG. 4 shows a schematic top view and a cross-sectional view of the backlight device according to this embodiment.
  • patterns 101, 102, and 103 having a predetermined shape are provided on the front surface and / or the back surface of the light control member 9 or the optical element 20.
  • These patterns 101 to 103 show the case of viewing from the liquid crystal panel 1 side. 4 indicates the width of one backlight block (dimension in the direction orthogonal to the optical axis direction of the LED 7). That is, in this example, six LEDs 7 are provided in the backlight block. Of course, the number of LEDs 7 per backlight block is not limited to this.
  • the pitch, density, or shape of the patterns 101 to 103 in the optical axis direction (left and right direction of the paper) of the LED 7 is changed according to the distance from the LED 7.
  • the pitch, density, or shape of the patterns 101 to 103 in the direction perpendicular to the optical axis of the LED 7 (up and down in the drawing) is substantially the same.
  • the patterns 101 to 103 are formed to extend in the optical axis direction from the side opposite to the light emitting direction (optical axis direction) of the LED 7.
  • the patterns 101 to 103 change in accordance with the distance in the optical axis direction from the LED 7.
  • the patterns 101 to 103 may have a tapered shape.
  • the shape may be a combination of an ellipse whose major axis is the optical axis direction of the LED 7 as in 102 and an ellipse in a direction orthogonal to the optical axis direction, or in the optical axis direction from the light source 7 as in the pattern 103. It is good also as a shape which spreads, so that distance becomes large.
  • the patterns 101 to 103 are basically provided on the back surface of the optical element 20, but may be provided on the surface of the optical element 20. Further, as patterns 101 to 103, a printed sheet, a thermal transfer sheet, a perforated reflection / transmission sheet, a reflection sheet with a pattern, or a pattern printed on an optical sheet is placed near the LED 7 on the back surface or the front surface of the optical element 20 or both.
  • the patterns 101 to 103 may be mounted.
  • any shape or member may be adopted as long as it can control or adjust the light action, light transmission, reflection, propagation rate and the like according to the position (distance from the LED 7). it can. For example, by gradually reducing the pattern density as it moves away from the LED 7 in the optical axis direction, the vicinity of the LED 7 increases light emission and reflection to reduce the transmitted light to 10% or less, while the distance away from the LED 7 transmits the transmitted light. Do more. As a result, not only the light traveling from the LED 7 in the optical axis direction but also the two-dimensionally (radially) propagating light is increased, and the amount of light emitted toward the liquid crystal panel is increased according to the distance from the LED 7. be able to. And according to such a structure, the brightness nonuniformity of the optical axis direction of LED7 can be reduced, and the brightness uniformity in a backlight block and a backlight irradiation surface front surface can be improved.
  • the patterns 101 to 103 can be composed of a collection of minute dots as shown in FIG. 4, and the outer shape of the dot assembly is polka dots, curves, dotted lines, radial straight lines, radial curves, etc. Various shapes can be used. In the dot aggregate, if the dot density is changed so that the dot density gradually gradations the distance from the LED 7, the error sensitivity due to the positional deviation between the LED 7 and the pattern can be improved.
  • the ink film thickness, ink color (mixing blue and black colors, controlling the transmittance and applying gradation), dot size, dot shape, pattern just above the LED The shape and the printing thickness can be easily adjusted, and the above-described outer shape of the dot aggregate and gradation can be formed more satisfactorily. Therefore, when the pattern is formed by printing, the luminance uniformity can be further improved.
  • (dimension) is a
  • the longitudinal size of the light emitting surface 71 of the LED 7 is c (see FIG. 15)
  • the arrangement pitch of the LEDs 7 is p
  • the condition of p ⁇ a ⁇ c is satisfied.
  • the pitch of the pattern is e
  • the condition of p ⁇ a ⁇ 0.5 ⁇ e is satisfied.
  • the relationship between the distance h and the dimension a of the pattern satisfies the condition h ⁇ a.
  • another pattern 104 is provided at a position corresponding to between two adjacent light sources of the optical element 20, and the transmittance T of the other pattern satisfies the condition of 0.1% ⁇ T ⁇ 50%. I am doing so.
  • FIG. 5 shows a cross-sectional view of the backlight device according to the present embodiment and the peripheral portion thereof orthogonal to the optical axis direction of the LED 7 and the backlight light irradiation surface.
  • a signal control board 15, an LED drive circuit 16, and a power source 14 are arranged between a back cover 17 that is a rear casing of the liquid crystal display device and the chassis 11.
  • the signal control board 15, the LED drive circuit 16, and the power supply 14 are attached to the chassis 11.
  • the chassis 11 may be one to which the above-described reflection sheet 19 is attached.
  • the chassis 11 having the reflection sheet 19 attached thereto is pressed to form a curved surface or an inclined surface along the optical axis direction of the LED 7 so that the reflection angle of the light on the reflection sheet surface 19 can be reduced. It can be varied along the axial direction.
  • the space between the reflection sheet 19 and the light control member 9 is held by a conical pin mold 38 to ensure a predetermined distance. Accordingly, light is gradually emitted by the optical control member 9 and the optical element 20 while propagating through the backlight block 4, and overall uniform light can be controlled in units of backlight blocks.
  • the backlight device 3 basically has an LED 7 as a light source installed on the LED substrate 6 and a light for effectively guiding the light from the LED 7 to the liquid crystal panel 1.
  • An optical element 20, a reflective sheet 19 for supplying light to the optical element 20, and a space between the optical element 20 and the reflective sheet 19 for favorably propagating light in the optical axis direction of the LED 7 are provided.
  • a light control member 9 is provided on the back surface of the optical element 20 provided on the liquid crystal panel 1 side of the space, thereby gradually emitting light from the LED 7 along the optical axis direction of the LED 7, and a backlight block 4 uniform light distribution is realized.
  • the backlight block 4 is formed in a rectangular shape when viewed from the light irradiation surface side of the backlight device 3, and its longitudinal direction (from left to right on the paper surface in FIG. 3). ), The light from the LED 7 advances, is reflected by the back surface (the reflection sheet 19 side) of the backlight block 4, and the light advances to the liquid crystal panel 1.
  • a plurality of LEDs 7 are arranged at appropriate intervals on the short side of the backlight block 4 (in the vertical direction of the paper in FIG. 3). The LEDs 7 may be arranged on the long side of the backlight block 4.
  • FIG. 6 shows an image of a space in which the backlight block 4 is connected in the optical axis direction of the LED 7 and the direction orthogonal to the optical axis direction.
  • the backlight block 4 having only one row and one column is shown.
  • FIG. 6 is a diagram for explaining an example of pattern formation for intentionally generating the brightness / darkness distribution from the backlight device according to the present embodiment over a plurality of backlight blocks
  • FIG. It is a figure explaining the situation where a luminance difference arises between the boundary of a backlight block, and the inside of a backlight block by arranging a plurality of backlight blocks.
  • the pattern in this embodiment is called a “bright / dark pattern”.
  • the light / dark pattern includes a bright brightness portion 40, a dark brightness portion 41, and a bright / light brightness portion 42.
  • the brightness difference (brightness / darkness difference or brightness unevenness) is obtained by viewing the light emitted from the backlight device 3 from the light emitting side of the optical sheet group 18 (see FIG. 2) including the diffusion plate and the like. It is assumed that the brightness difference is.
  • the pattern of the brightness bright portion 40 is a pattern that has a larger effect of diffusing light than the brightness dark portion 41 and the brightness mid-light portion 42 (that is, the roughness (the density of fine irregularities) is high)
  • the pattern of the portion 42 is a pattern that has a larger effect of diffusing light than the luminance dark portion 41.
  • the backlight device 3 when the backlight device 3 is configured by arranging a plurality of backlight blocks 4 vertically and horizontally, light leaks from the boundary of the backlight block 4 or directly above the LEDs 7 to generate bright lines and hot spots. The resulting bright brightness portion occurs.
  • the light emitted from the light source (LED 7) is uniformly emitted (in the vertical front direction in the drawing) inside the backlight block 4, that is, the luminance of the optical element 20 is uniform.
  • Optical patterns such as 40, 41 and 42 in the figure are arranged on the back surface and / or the front surface or in the vicinity of the back surface.
  • FIG. 6 illustrates a pattern arranged on the back surface. The density of the pattern is appropriately adjusted according to the optical axis direction from the light incident portion of the LED 7 so that the luminance distribution becomes uniform.
  • a pattern is arranged in which the density of the light incident part is slightly high, the central part is slightly low, and the tip part has the highest density.
  • the graph shown in the lower part of FIG. 6 shows the density of the light and dark pattern corresponding to the position of the optical element 20.
  • This light / dark pattern is formed on the back surface of the optical element 20 composed of a diffusing plate, a clear plate, an optical film attaching plate material, a polarizing member, etc., on a diffusing concave / convex surface, concave microlens, convex microlens, prism, truncated cone, cone or It is formed by adding a print pattern or the like.
  • an optical functional film having one or more functions such as light reflection, light shielding, transmission and propagation is provided with a notch, a slit, a circular hole, an elliptical hole, a predetermined shape hole, or a shading process. It may be formed by applying fine processing, fine work, printing pattern, or the like. Thereby, the luminance distribution of the emitted light from the optical element 20 can be freely controlled.
  • a luminance difference is intentionally formed inside the backlight block, and the luminance unevenness extends as a whole, thereby causing a linear or grid-like shape at the boundary of the backlight block. It is characterized in that a bright (or dark) luminance portion is relaxed, that is, it is difficult to visually recognize.
  • the luminance dark portion 41 and the luminance middle light / dark portion 42 are alternately arranged in the backlight block 4. It is a structural example. That is, the brightness difference between the backlight block 4 and the brightness bright portion at the boundary of the backlight block 4 is reduced by providing a brightness difference between the brightness and darkness inside the backlight block 4.
  • this light-dark pattern has a rectangular shape, and squares are arranged on a staggered pattern.
  • the arrangement pitch of the rectangular light portions is gradually narrowed so that the density is increased or arranged. That is, the light is emitted more efficiently as it goes to the tip portion, and the uniformity within the block is enhanced.
  • an unusual pattern may be provided in a portion where the luminance changes extremely, such as a bright line or a dark line in the vicinity or boundary of the LED 7, or the size of a circular or elliptical pattern may be changed.
  • the light control unit 9 can gradually select the light propagating through the space, take it into the optical element 20, and control the light emitted to the liquid crystal panel 1 side.
  • the brightness bright portion at the boundary of the backlight block 4 is provided. Becomes difficult to see.
  • a light shielding member composed of a light shielding sheet, light shielding printing or the like is installed at a position corresponding to the LED 7 together with the light control member 9 to shield the direct light of the LED 7 and partially transmit, reflect, or propagate the light. Prevents spots from forming. At this time, even if light leaks from the LED 7 slightly due to the thinness of the reflection sheet, the light is diffused by the light and darkness of the staggered pattern and becomes inconspicuous.
  • the brightness difference described above can be realized not only by the optical element 20 and the light control member 9 but also by forming a pattern on the reflection sheet 19 and the optical sheet group 18.
  • an elliptical medium brightness portion may be formed inside the backlight block 4.
  • the bright, medium and dark portions of luminance are formed on the surface of the optical element 20 by a so-called rough surface (rough surface) such as a fine or dense uneven surface.
  • a plurality of the oval rough surfaces are arranged in a direction parallel to the arrangement direction of the LEDs 7 of the optical elements (in this example, the short direction of the optical element 20) to form one luminance mid-bright and dark area.
  • the rough surface functions to increase the amount of light traveling forward than the surrounding surface, thereby producing bright brightness.
  • the presence or absence of a light / dark part in the brightness causes variations or irregularities in the brightness / darkness distribution emitted forward from the backlight device 3, It becomes difficult to visually recognize the brightness level of the brightness (brightness of the boundary becomes inconspicuous).
  • the shape is not limited to an elliptical shape, and may be a circular shape, a rectangular shape, or a circular shape, and the number of adjacent bright, middle, light, and dark portions (for example, the number in the vertical direction on the paper) is changed to two or three. May be. In short, it is only necessary to form the mid-bright and dark portions so that irregularities in the luminance difference occur with the dark portions.
  • an element for providing a bright portion on the surface of the optical element 20 such as the rough surface (rough surface), uneven surface, prism surface, concave lens or convex lens (hereinafter referred to as “bright portion providing element”).
  • the bright portion imparting element is arranged in the LED arrangement direction. Two or more are arranged in a direction orthogonal to the direction (in this embodiment, the short direction of the optical element 20 and the traveling direction of light from the LED in the optical element 20).
  • the distance between the maximum points of each luminance in the two or more bright part providing elements is preferably about 0.5 to 3 cm, and the distance between the maximum points is incident on the optical sheet group from the surface of the diffusion plate. It is preferably at least twice the distance to the surface (incident surface of the diffusion plate arranged at the position closest to the diffusion plate).
  • the luminance difference between the light passing through the bright portion providing element and the light emitted from the portion other than the bright portion providing element on the surface of the diffuser plate is diffused from the bright bright portion (or the dark luminance portion) at the boundary portion of the backlight block 4. More preferably, it is 50% or more of the luminance difference of light emitted from a portion other than the bright portion providing element on the plate surface. If the bright portion providing element is formed so as to satisfy these conditions, the bright luminance portion (or the dark luminance portion) at the boundary portion of the backlight block 4 can be made inconspicuous.
  • the element for diffusing the light is provided in the direction orthogonal to the arrangement direction of the LEDs 7 on the surface of the diffusion plate, the backlight block generated in the direction orthogonal to the arrangement direction of the LEDs 7 (left and right direction in FIG. 2) It is difficult to visually recognize bright portions (or dark portions) at the boundary of 4. Of course, you may provide the element for diffusing the said light in both the direction orthogonal to the direction parallel to the sequence direction of LED7.
  • the light emitted from the LED 7 has the light distribution characteristics as described in FIGS. 11A and 11B. Therefore, there is a possibility that the luminance uniformity is insufficient in the area close to and far from the LED in the backlight block.
  • FIGS. 8A and 8B are diagrams showing the arrangement of LEDs in one embodiment of the liquid crystal display device of the present invention.
  • FIGS. 8A and 8B are diagrams showing an embodiment in which the LEDs 7 having the light distribution characteristics shown in FIGS. 11A and 11B are arranged in a liquid crystal display device.
  • FIG. 8A shows a cross-sectional view of the liquid crystal display device as viewed from the side
  • FIG. 8B is a schematic diagram showing the display surface field of the LED when the liquid crystal display device is seen from the display surface.
  • the LED substrate 6 is not shown in FIG. 8B. As shown in FIG.
  • the liquid crystal display device includes a liquid crystal panel 1, an optical sheet unit 2 including a diffusion plate, a diffusion sheet, a polarizing plate, a deflection film, and the like as a whole configuration, and a backlight device.
  • the backlight device is formed by, for example, arranging a plurality of backlight blocks 4 in a matrix on a plane (in the direction of the light irradiation surface of the backlight device), and obtains uniform luminance in a large-sized backlight device. I am doing so.
  • one backlight block 4 is composed of nine LEDs 7 (only a part is shown in FIGS. 8A and 8B).
  • the length pp of the backlight block in the Y direction from the exit of the LED 7 is 95 mm
  • the width w in the X direction of the LED 7 is 4.9 mm
  • the distance d between the LEDs 7 is 28.0 mm.
  • a backlight device is required to irradiate light from the back side of the liquid crystal panel 1 (below the Z direction in FIGS. 8A and 8B).
  • the backlight device of FIGS. 8A and 8B is a hybrid backlight device depending on its structure.
  • This hybrid system indicates a structure in which the backlight device is optically divided into a plurality of backlight blocks 4 so that the light intensity can be individually controlled, that is, the area can be controlled.
  • the hybrid system is also called a slim block system.
  • the backlight device according to the present invention is intended for a slim block system, and particularly for a structure in which a side view type LED is used as a light source and the backlight device is divided into a plurality of backlight blocks. To do.
  • the LED 7 emits diffusive light into the air layer 24 in the direction of the arrow 27.
  • the emitted light propagates in the air layer 24 while being repeatedly reflected between the reflection sheet 19 and the diffusion plate (optical sheet portion 2).
  • the propagating light passes through the optical sheet portion 2 such as a diffusion plate and is emitted in the direction of the liquid crystal panel 1.
  • the LED 7 has a light distribution characteristic as described in FIGS. 11A and 11B.
  • the brightness of light decreases in inverse proportion to the square of the propagation distance. Therefore, when the luminance is measured on the surface of the liquid crystal panel 1, the luminance is different at the points A, B, and C. Thus, the image quality is not uniform.
  • the region (the most advanced portion of the backlight block) 28 farthest from the LED 7 that is the light source is a dark region. Therefore, in a second embodiment described below, a backlight device and a liquid crystal display device that further improve the utilization efficiency of light from the light source and obtain a high-quality image will be described with reference to FIGS. 9A and 9B.
  • FIG. 9A and 9B are diagrams showing the arrangement of LEDs in an embodiment of the liquid crystal display device of the present invention.
  • FIG. 9A and FIG. 9B are provided with a partition plate 91 parallel to the emission direction 27 of the LED 7 in the embodiment of FIG. 8A and FIG. 8B.
  • the emitted light of the LED 7 spreads in the lateral (X) direction, but is reflected by the partition plate 91 and the propagation of the LED 7 in the emitting direction 27 is promoted.
  • the amount of light that can be emitted from the LED 7 can reach the most distal portion 28 as compared with the configuration of FIGS. 8A and 8B.
  • the partition plate 91 is flat, for example, and has a surface structure that totally reflects light in the same manner as the reflection sheet 19.
  • the partition plate 91 is partitioned for every three LEDs.
  • the number of LEDs provided with a partition plate is arbitrary, such as one by one or four by one. Further, the partition plate may not be provided on the outermost periphery of the backlight device. Further, the partition plate 91 is fixed with a resin push rivet such as nylon (registered trademark), for example, with a through-hole formed in a point of the reflection sheet 19 and the chassis 11. Furthermore, the partition plate is arranged from the exit of the LED 7 to a distance of about 1 ⁇ 2 to 3 of the length pp of the backlight block in the Y direction, and no partition plate is provided on the most distal end side.
  • a resin push rivet such as nylon (registered trademark)
  • FIG. 17 shows the results of luminance evaluation results measured at points A, B, and C, assuming that the output of LED 7 is the same when there is a difference between Example 1 (without a partition plate) and Example 2 (with a partition plate). It is a figure which shows an example.
  • the point A was 140 cd / m 2
  • the point B was 70 cd / m 2
  • the point C was 65 cd / m 2 .
  • the point A was 140 cd / m 2
  • the point B was 88 cd / m 2
  • the point C was 83 cd / m 2 .
  • FIGS. 10A and 10B are diagrams showing the arrangement of LEDs in one embodiment of the liquid crystal display device of the present invention.
  • a light-blocking sheet 92 that blocks light is further provided immediately above the LED 7 (however, since it becomes complicated, some It is only shown on the LED.)
  • the light emitted from the liquid crystal panel 1 does not have an extreme luminance in the immediate vicinity of the LED 7, and the light from the liquid crystal panel 1 has a uniform luminance as compared with the second embodiment.
  • the light shielding sheet 92 is formed on the optical sheet portion 2 by printing. Alternatively, a separate light shielding sheet may be created and attached to the optical sheet portion 2 with a double-sided tape or the like. Furthermore, although the shape of the light shielding sheet 92 is an ellipse in FIGS. 10A and 10B, it is obvious that the shape is not limited to this shape. Moreover, it may be a continuous sheet without being divided for each LED.
  • FIGS. 12A, 12B, 12C, and 12D A fourth embodiment of the present invention will be described with reference to FIGS. 12A, 12B, 12C, and 12D.
  • the partition plate 91 was plate-shaped.
  • the cross section may be an isosceles triangle with the liquid crystal panel 1 side at the top.
  • the cross section may be a straight line or a curved shape that bends at one or a plurality of locations.
  • the cross section may have a curved shape that gradually spreads toward the reflection sheet 19 with the liquid crystal panel 1 side as the top.
  • the light from the liquid crystal panel 1 has a more uniform luminance than in the second to third embodiments.
  • FIG. 12A the cross section may be an isosceles triangle with the liquid crystal panel 1 side at the top.
  • the cross section may be a straight line or a curved shape that bends at one or a plurality of locations.
  • the cross section may have a curved shape that gradually spreads toward the reflection sheet 19 with the liquid crystal panel
  • the LED 7 side or the most distal portion of the backlight block may be inclined.
  • the diagonal line may be a straight line, a curved line, or a sawtooth shape.
  • the shape of the partition plate is such that the LED 7 side is cut obliquely as shown in FIGS. 13A, 13B, and 13C.
  • Fig. 13A corresponds to Fig. 12A
  • Fig. 13B corresponds to Fig. 12B
  • Fig. 13C corresponds to Fig. 12C.
  • the light emitted from the LED 7 is not reflected and returned to the LED 7 side.
  • the projected light is projected onto the backlight block.
  • the light from the liquid crystal panel 1 has a more uniform luminance than in the second to third embodiments.
  • the partition plate is linear when viewed from the liquid crystal panel 1, the partition plate that is not visually recognized becomes more difficult for the viewer to understand than the embodiments shown in FIGS. 12A, 12B, 12C, and 12D. It is suitable for a backlight device and a liquid crystal display device.
  • the partition plate has one or more liquid crystal panels 1 as shown in FIG. You may make it have a sharp protrusion.
  • the shape of the protrusion, the interval, and a combination thereof are arbitrary.
  • 14A to 14F are preferably formed so that their tops become dots.
  • the partition plate is dotted as viewed from the liquid crystal panel 1, the partition plate that is not visually recognized becomes more difficult for the viewer to understand than the embodiment shown in FIGS. 13A, 13B, and 13C.
  • the viewer's difficulty in understanding is more effective as the positions of the points become irregular. For this reason, preferably, as shown in FIGS. 14E and 14F, the arrangement of the protrusions may be irregular.
  • FIG. 15 is a diagram showing the arrangement of LEDs in one embodiment of the liquid crystal display device of the present invention.
  • FIG. 15 shows a case in which the partition plate is not provided and the chassis 11 is bent to replace the partition plate as compared with the second to fourth embodiments.
  • the reflection sheet 19 is bent together with the chassis 11. Therefore, the light emitted from the LED 7 and directed in the lateral (X) direction is totally reflected by the reflection sheet portion that is bent and forms a partition.
  • the propagation of the LED 7 in the emission direction (depth direction on the paper surface) 27 is promoted.
  • the amount of light that can be emitted from the LED 7 can reach the most distal portion 28 as compared with the configuration of FIGS. 8A and 8B. For this reason, light can be propagated substantially uniformly over the entire X direction and Y direction of the backlight block 4. In particular, the luminance in the Y direction becomes uniform. Accordingly, the output light from the liquid crystal panel 1 has a more uniform brightness than that of the first embodiment. Therefore, it is possible to realize a backlight device capable of improving the utilization efficiency of light from the light source and obtaining a high-quality image and a liquid crystal display device using the backlight device.
  • FIGS. 16A and 16B are diagrams showing the arrangement of LEDs in one embodiment of the liquid crystal display device of the present invention.
  • the partition plate 91 ′ is provided so as to be in contact with the back surface of the diffusion plate of the optical sheet portion 2 as compared with the third embodiment of FIGS. 10A and 10B.
  • a support member such as a conical pin mold 38 for supporting the space between the reflection sheet 19 and the light control member 9 shown in FIG.
  • a supporting member for supporting the space between the reflection sheet 19 and the light control member 9 is not required in the first to fifth embodiments, and the component cost is reduced.
  • the assembly cost can be reduced.
  • a backlight device capable of improving the utilization efficiency of light from the LED light source and obtaining a high-quality image
  • a liquid crystal display device using the backlight device it can.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)

Abstract

Provided are a backlight device that can improve utilization efficiency for light from a light source and obtain a high quality image and a liquid crystal display device using the same. The backlight device has a plurality of backlight blocks on a chassis. Each backlight block is provided with: a reflective member, which is a bottom surface side of the backlight block and is provided on the chassis; a sheet shaped optical element provided so as to face the reflective member and disposed in a direction orthogonal to a light irradiation surface of the backlight at a prescribed distance from the reflective member; a plurality of LEDs disposed in the space between the optical element and the reflective member with light emitted in a direction parallel to the light irradiation surface of the backlight; and dividing plates that are between the LEDs and divide the space in a direction parallel to the light irradiation surface and the direction that light is emitted. The light from the light source passes through the optical element while being repeatedly reflected within the space between the optical element and the reflective member and propagated and is guided to a liquid crystal panel side.

Description

バックライト装置及びこれを用いた液晶表示装置Backlight device and liquid crystal display device using the same
 本発明は、バックライト装置及びこれを用いた液晶表示装置に係り、特に、サイドビュー型のLED(Light Emitting Diode)を光源としたバックライト装置及びこれを用いた液晶表示装置に関する。 The present invention relates to a backlight device and a liquid crystal display device using the same, and more particularly, to a backlight device using a side view type LED (Light Emitting Diode) as a light source and a liquid crystal display device using the same.
 液晶表示装置は、液晶は自身では発光しないので、液晶表示パネルの背面にバックライト装置を配置している。テレビジョン表示装置等、比較的大画面の液晶表示装置に使用するバックライト装置では、光源として蛍光管が使用されてきた(特許文献1参照)。 Since the liquid crystal display device does not emit light by itself, a backlight device is arranged on the back of the liquid crystal display panel. In a backlight device used for a liquid crystal display device having a relatively large screen such as a television display device, a fluorescent tube has been used as a light source (see Patent Document 1).
 特許文献1には、エッジライト型(サイドビュー型)のバックライト装置と、当該バックライト装置が液晶パネル10を有する液晶表示装置に応用された発明が開示されている。特許文献1のバックライト装置は、液晶パネルに向かって光を透過させるために、液晶パネルと重畳して配置された導光板と、導光板の側部に配置される光源としての蛍光管と、蛍光管の光を比較的に小さい角度範囲に集光して導光板に向かって入射させる集光器を有している。また、蛍光管は、内面反射層を有する断面がコの字型のリフレクタにより包まれている。
  特許文献1の導光板は、アクリル樹脂等の透明な板からなり、一方の表面上(以後、液晶表示パネル側を上面と称する)には拡散シートが設けられ、下面には拡散反射層(反射シート)が設けられている。拡散反射層は、導光板の下面に所定のパターンで拡散ドットを設けたものである。この拡散ドットは導光板の光源からの距離に応じて異なった面積を有し、それによって公知のように導光板の全面で均一な輝度が得られるようにするものである。
Patent Document 1 discloses an edge light type (side view type) backlight device and an invention in which the backlight device is applied to a liquid crystal display device having a liquid crystal panel 10. In the backlight device of Patent Document 1, in order to transmit light toward the liquid crystal panel, a light guide plate disposed so as to overlap the liquid crystal panel, a fluorescent tube as a light source disposed on a side portion of the light guide plate, It has a condenser that collects the light from the fluorescent tube in a relatively small angle range and enters the light toward the light guide plate. In addition, the fluorescent tube has a U-shaped reflector in its cross section having an internal reflection layer.
The light guide plate of Patent Document 1 is made of a transparent plate such as an acrylic resin. A diffusion sheet is provided on one surface (hereinafter, the liquid crystal display panel side is referred to as an upper surface), and a diffusion reflection layer (reflection) is formed on the lower surface. Sheet) is provided. The diffuse reflection layer is obtained by providing diffusion dots in a predetermined pattern on the lower surface of the light guide plate. The diffusion dots have different areas depending on the distance from the light source of the light guide plate, thereby making it possible to obtain uniform brightness over the entire surface of the light guide plate as is well known.
 特許文献1では、導光板、集光器、リフレクタ等を使用しており、部品点数が多い。このため、バックライト装置及びそれを使った液晶表示装置では、部品コストが高くなる。また、蛍光管を使っているため、消費電力が大きい。
  また、蛍光管は、内部に水銀の蒸気が封入されているので地球環境への負荷が大きい。従って、特にヨーロッパ等、一部の地域においては、使用が禁止される傾向にある。
In Patent Document 1, a light guide plate, a condenser, a reflector, and the like are used, and the number of parts is large. For this reason, in the backlight device and the liquid crystal display device using the backlight device, the component cost is high. In addition, since a fluorescent tube is used, power consumption is large.
In addition, the fluorescent tube has a heavy load on the global environment because mercury vapor is sealed inside. Therefore, the use tends to be prohibited in some areas such as Europe.
 そこで、蛍光管の代替の光源として、LED(Light Emitting Diode)が使われるようになってきた。
  LEDを光源として使用した液晶表示装置のバックライト装置においては、LEDから液晶表示装置全体を面光源とする光学系が必要である。また、大画面の液晶表示装置に使われるバックライト装置は、複数のバックライトブロックに分割された構造が一般的である。そして、それぞれのバックライトブロックにおけるLEDは、そのバックライトブロック内にて、均一に光が届くようにする必要がある。
Therefore, LEDs (Light Emitting Diodes) have come to be used as an alternative light source for fluorescent tubes.
In a backlight device of a liquid crystal display device using an LED as a light source, an optical system that uses the entire liquid crystal display device from the LED as a surface light source is required. A backlight device used in a large-screen liquid crystal display device generally has a structure in which the backlight device is divided into a plurality of backlight blocks. The LEDs in each backlight block need to be able to receive light uniformly within the backlight block.
 また、LEDの形状によって異なるが、一般的に、LEDは、横方向(X方向)の広がりが、高さ方向(Z方向)の広がりより大きい。
  図11A及び図11Bは、バックライトブロックの距離に対するサイドビュー型のLEDから照射された光の配光特性を示す図である。図11Aは、上(液晶表示装置の表示面)から見た場合のLEDの表示面視野を示す模式図であり、図11Bは、横(液晶表示装置の側面)から見た場合のLEDの表示面視野を示す模式図である。7は光源であるLED、6はLED7を実装したLED基板、115と116は配光特性を示す光源分布である。例えば、横(液晶表示装置の側面)から見た場合のLEDの表示面視野を示す模式図に示すように、横方向(X方向)の広がり∠Wは、約120°であり、高さ方向(Z方向)の広がり∠Hは、約90°である。また、LED7は、その前方(出射方向)に球状に広がる指向特性を持つ。
Moreover, although it changes with shapes of LED, generally, as for LED, the breadth of a horizontal direction (X direction) is larger than the breadth of a height direction (Z direction).
11A and 11B are diagrams illustrating light distribution characteristics of light emitted from a side-view type LED with respect to the distance of the backlight block. FIG. 11A is a schematic view showing the display surface field of the LED when viewed from above (the display surface of the liquid crystal display device), and FIG. 11B shows the display of the LED when viewed from the side (side surface of the liquid crystal display device). It is a schematic diagram which shows a surface visual field. Reference numeral 7 denotes an LED as a light source, 6 denotes an LED substrate on which the LED 7 is mounted, and 115 and 116 denote light source distributions showing light distribution characteristics. For example, as shown in the schematic view showing the display surface field of the LED when viewed from the side (side surface of the liquid crystal display device), the spread ∠W in the horizontal direction (X direction) is about 120 °, and the height direction The spread ∠H in the (Z direction) is about 90 °. Further, the LED 7 has a directivity characteristic that spreads in a spherical shape in front of the LED 7 (outgoing direction).
 LEDは、図11A及び図11Bで説明したような配光特性を持つ。そして、光の輝度は、伝播する距離の2乗に反比例して減少する。従って、液晶パネルの表面上で輝度を測定すると、X方向とY方向のそれぞれについて輝度が異なる。このため画質が均一にならない。特に、Y方向では、LED7に一番遠い領域(バックライトブロックの最先端部)が暗い領域となる(後述する図8B、図9B、図10B等の領域28参照)。 The LED has a light distribution characteristic as described in FIGS. 11A and 11B. The brightness of light decreases in inverse proportion to the square of the propagation distance. Therefore, when the luminance is measured on the surface of the liquid crystal panel, the luminance is different in each of the X direction and the Y direction. For this reason, the image quality is not uniform. In particular, in the Y direction, the region farthest from the LED 7 (the most advanced portion of the backlight block) is a dark region (see region 28 in FIGS. 8B, 9B, and 10B described later).
特開平6-174929号公報JP-A-6-174929
 本発明の目的は、上記のような問題に鑑み、LEDを使用することによる低消費電力化、及び、バックライトブロックの全面でほぼ均一に光を伝播させることにより、輝度が均質なバックライト装置及び液晶表示装置を提供することにある。 In view of the above problems, an object of the present invention is to reduce power consumption by using an LED, and to transmit light almost uniformly over the entire surface of a backlight block, so that the backlight device has uniform luminance. And providing a liquid crystal display device.
 上記の目的を達成するために、本発明のバックライト装置は、液晶パネルに光を照射するためのバックライト装置において、上記バックライト装置は、シャーシと、上記シャーシ上に複数のバックライトブロックを有し、各バックライトブロックは、該バックライトブロックの底面側であって上記シャーシ上に設けられたシート状の反射部材と、該反射部材と対向して設けられ、該反射部材から上記バックライトの光照射面と直交する方向に所定間隔離して配置された板状の光学素子と、該光学素子と反射部材との間の空間に配置された、上記バックライトの光照射面と平行な方向に光を放出する複数のLED(Light Emitting Diode)と、上記複数のLED間であって、上記光照射面及び上記光を放出する方向とに平行な方向に上記空間を仕切る仕切り板とを備え、上記光源からの光を、上記光学素子と反射部材と間の空間内を繰り返し反射させて伝播させながら光学素子を透過させて、上記液晶パネル側へ導く構成とすることを第1の特徴とする。 In order to achieve the above object, a backlight device of the present invention is a backlight device for irradiating light to a liquid crystal panel. The backlight device includes a chassis and a plurality of backlight blocks on the chassis. Each backlight block has a sheet-like reflecting member provided on the chassis on the bottom side of the backlight block, and is provided to face the reflecting member. A plate-like optical element disposed at a predetermined interval in a direction perpendicular to the light irradiation surface of the light source, and a direction parallel to the light irradiation surface of the backlight, disposed in a space between the optical element and the reflecting member A plurality of LEDs (LightLEDEmitting Diodes) that emit light to the light, and the space between the plurality of LEDs in a direction parallel to the light irradiation surface and the light emitting direction. A partition plate that transmits light through the optical element while repeatedly reflecting and propagating light from the light source in the space between the optical element and the reflecting member, and guiding the light toward the liquid crystal panel. Is the first feature.
 上記本発明の第1の特徴のバックライト装置において、上記LEDは、サイドビュー型のLEDであることを第2の特徴とする。 In the backlight device according to the first feature of the present invention, the second feature is that the LED is a side view type LED.
 上記本発明の第1の特徴のバックライト装置において、上記光学部材及び/または反射シートに所定のパターンを形成したことを第3の特徴とする。 In the backlight device according to the first feature of the present invention, a third feature is that a predetermined pattern is formed on the optical member and / or the reflection sheet.
 上記本発明の第1の特徴のバックライト装置において、上記LEDの直上の上記光学素子に上記LEDの上方に放出される光を遮蔽する遮蔽板を設けたことを第4の特徴とする。 The backlight device according to the first aspect of the present invention is characterized in that the optical element directly above the LED is provided with a shielding plate for shielding light emitted above the LED.
 上記本発明の第1の特徴のバックライト装置において、上記仕切り板は、上記LEDの伝播を促進する仕切り板あって、かつ、上記シャーシと上記光学素子間である上記空間を支持することを第5の特徴とする。 In the backlight device according to the first aspect of the present invention, the partition plate is a partition plate that promotes the propagation of the LED, and supports the space between the chassis and the optical element. 5 features.
 上記本発明の第1の特徴のバックライト装置において、上記仕切り板は、上記LEDの伝播を促進する仕切り板であって、かつ、上記シャーシと上記光学素子間で、上記LEDが上記光学素子に接触しないように取付け、上記空間を支持することを第6の特徴とする。 In the backlight device according to the first aspect of the present invention, the partition plate is a partition plate that promotes propagation of the LED, and the LED is the optical element between the chassis and the optical element. A sixth feature is that the space is attached so as not to contact and the space is supported.
 上記本発明の第1の特徴のバックライト装置において、上記仕切り板は、上記LEDの光の出射口から上記光の出射方向に上記バックライトブロックの長さの1/2から1/3程度の距離まで配置し、上記バックライトブロックの最先端部側には仕切り板を設けないことを第7の特徴とする。 In the backlight device according to the first aspect of the present invention, the partition plate is about ½ to 3 of the length of the backlight block in the light emitting direction from the light emitting port of the LED. A seventh feature is that the partition plate is not provided on the most distal end side of the backlight block.
 上記本発明の第1の特徴のバックライト装置において、上記仕切り板は、上記シャーシ及び上記反射部材を屈曲させて構成したことを第8の特徴とする。 In the backlight device according to the first feature of the present invention, the partition plate is configured by bending the chassis and the reflecting member, according to an eighth feature.
 上記の目的を達成するために、本発明の液晶表示装置は、液晶パネルと、上記本発明の第1乃至上記第8の特徴のバックライト装置のいずれかに記載のバックライト装置を用いたことを第9の特徴とする。 In order to achieve the above object, a liquid crystal display device according to the present invention uses a liquid crystal panel and the backlight device according to any one of the backlight devices according to the first to eighth features of the present invention. Is the ninth feature.
 本発明によれば、光源からの光の利用効率を向上させて、高画質の映像を得ることが可能なバックライト装置及びこれを用いた液晶表示装置を提供することができる。 According to the present invention, it is possible to provide a backlight device capable of improving the utilization efficiency of light from a light source and obtaining a high-quality image, and a liquid crystal display device using the backlight device.
本発明の実施形態に係るバックライト装置を有する液晶表示装置の全体構成の概略を示す分解図である。It is an exploded view showing the outline of the whole composition of the liquid crystal display which has the backlight device concerning the embodiment of the present invention. 本発明の実施形態に係るバックライト装置の、光照射面と直交しかつLEDの光軸方向と平行な断面図である。1 is a cross-sectional view of a backlight device according to an embodiment of the present invention that is orthogonal to a light irradiation surface and parallel to an optical axis direction of an LED. 本発明の実施形態に関するバックライトブロックの内部構成とバックライトブロックを含む液晶ディスプレイの断面図である。It is sectional drawing of the liquid crystal display containing the internal structure and backlight block of a backlight block regarding embodiment of this invention. 本発明の実施形態に係るバックライトの概略立体図である。It is a schematic three-dimensional view of the backlight according to the embodiment of the present invention. 本発明の実施例に係るバックライト装置及びその周辺部分の、LED7の光軸方向及びバックライト光照射面と直交する断面図である。It is sectional drawing orthogonal to the optical-axis direction of LED7 and a backlight light irradiation surface of the backlight apparatus which concerns on the Example of this invention, and its peripheral part. 液晶ディスプレイからの輝度明暗分布をバックライトブロック内部で生じさせるためのパターンの形成例をバックライトブロック別に示す説明図である。It is explanatory drawing which shows the example of formation of the pattern for producing the brightness brightness-and-darkness distribution from a liquid crystal display inside a backlight block according to a backlight block. 図6の部分拡大図である。It is the elements on larger scale of FIG. 本発明の液晶表示装置の一実施例のLEDの配置を示す図であり、液晶表示装置を側面から見た断面図である。It is a figure which shows arrangement | positioning of LED of one Example of the liquid crystal display device of this invention, and is sectional drawing which looked at the liquid crystal display device from the side surface. 本発明の液晶表示装置の一実施例のLEDの配置を示す図であり、液晶表示装置を表示面から見た場合のLEDの表示面視野を示す模式図である。It is a figure which shows arrangement | positioning of LED of one Example of the liquid crystal display device of this invention, and is a schematic diagram which shows the display surface visual field of LED at the time of seeing a liquid crystal display device from a display surface. 本発明の液晶表示装置の一実施例のLEDの配置を示す図であり、液晶表示装置を側面から見た断面図である。It is a figure which shows arrangement | positioning of LED of one Example of the liquid crystal display device of this invention, and is sectional drawing which looked at the liquid crystal display device from the side surface. 本発明の液晶表示装置の一実施例のLEDの配置を示す図であり、液晶表示装置を表示面から見た場合のLEDの表示面視野を示す模式図である。It is a figure which shows arrangement | positioning of LED of one Example of the liquid crystal display device of this invention, and is a schematic diagram which shows the display surface visual field of LED at the time of seeing a liquid crystal display device from a display surface. 本発明の液晶表示装置の一実施例のLEDの配置を示す図であり、液晶表示装置を側面から見た断面図である。It is a figure which shows arrangement | positioning of LED of one Example of the liquid crystal display device of this invention, and is sectional drawing which looked at the liquid crystal display device from the side surface. 本発明の液晶表示装置の一実施例のLEDの配置を示す図であり、液晶表示装置を側面から見た断面図である。It is a figure which shows arrangement | positioning of LED of one Example of the liquid crystal display device of this invention, and is sectional drawing which looked at the liquid crystal display device from the side surface. バックライトブロックの距離に対するサイドビュー型のLEDから照射された光の配光特性を示す図であり、上(液晶表示装置の表示面)から見た場合のLEDの表示面視野を示す模式図である。It is a figure which shows the light distribution characteristic of the light irradiated from side view type LED with respect to the distance of a backlight block, and is a schematic diagram which shows the display surface field of LED at the time of seeing from the top (display surface of a liquid crystal display device) is there. バックライトブロックの距離に対するサイドビュー型のLEDから照射された光の配光特性を示す図であり、横(液晶表示装置の側面)から見た場合のLEDの表示面視野を示す模式図である。It is a figure which shows the light distribution characteristic of the light irradiated from side view type LED with respect to the distance of a backlight block, and is a schematic diagram which shows the display surface visual field of LED at the time of seeing from the side (side surface of a liquid crystal display device). . 本発明の実施形態に係るバックライト装置にLEDを配置した一実施例を示す図である。It is a figure which shows one Example which has arrange | positioned LED in the backlight apparatus which concerns on embodiment of this invention. 本発明の実施形態に係るバックライト装置にLEDを配置した一実施例を示す図である。It is a figure which shows one Example which has arrange | positioned LED in the backlight apparatus which concerns on embodiment of this invention. 本発明の実施形態に係るバックライト装置にLEDを配置した一実施例を示す図である。It is a figure which shows one Example which has arrange | positioned LED in the backlight apparatus which concerns on embodiment of this invention. 本発明の実施形態に係るバックライト装置にLEDを配置した一実施例を示す図である。It is a figure which shows one Example which has arrange | positioned LED in the backlight apparatus which concerns on embodiment of this invention. 本発明の実施形態に係るバックライト装置にLEDを配置した一例を示す図である。It is a figure which shows an example which has arrange | positioned LED in the backlight apparatus which concerns on embodiment of this invention. 本発明の実施形態に係るバックライト装置にLEDを配置した一例を示す図である。It is a figure which shows an example which has arrange | positioned LED in the backlight apparatus which concerns on embodiment of this invention. 本発明の実施形態に係るバックライト装置にLEDを配置した一例を示す図である。It is a figure which shows an example which has arrange | positioned LED in the backlight apparatus which concerns on embodiment of this invention. 本発明の実施形態に係るバックライト装置にLEDをバックライト装置に配置した一例を示す図である。It is a figure which shows an example which has arrange | positioned LED to the backlight apparatus in the backlight apparatus which concerns on embodiment of this invention. 本発明の実施形態に係るバックライト装置にLEDをバックライト装置に配置した一例を示す図である。It is a figure which shows an example which has arrange | positioned LED to the backlight apparatus in the backlight apparatus which concerns on embodiment of this invention. 本発明の実施形態に係るバックライト装置にLEDをバックライト装置に配置した一例を示す図である。It is a figure which shows an example which has arrange | positioned LED to the backlight apparatus in the backlight apparatus which concerns on embodiment of this invention. 本発明の実施形態に係るバックライト装置にLEDをバックライト装置に配置した一例を示す図である。It is a figure which shows an example which has arrange | positioned LED to the backlight apparatus in the backlight apparatus which concerns on embodiment of this invention. 本発明の実施形態に係るバックライト装置にLEDをバックライト装置に配置した一例を示す図である。It is a figure which shows an example which has arrange | positioned LED to the backlight apparatus in the backlight apparatus which concerns on embodiment of this invention. 本発明の実施形態に係るバックライト装置にLEDをバックライト装置に配置した一例を示す図である。It is a figure which shows an example which has arrange | positioned LED to the backlight apparatus in the backlight apparatus which concerns on embodiment of this invention. 本発明の液晶表示装置の一実施例のLEDの配置を示す図である。It is a figure which shows arrangement | positioning of LED of one Example of the liquid crystal display device of this invention. 本発明の液晶表示装置の一実施例のLEDの配置を示す図であり、液晶表示装置を側面から見た断面図である。It is a figure which shows arrangement | positioning of LED of one Example of the liquid crystal display device of this invention, and is sectional drawing which looked at the liquid crystal display device from the side surface. 本発明の液晶表示装置の一実施例のLEDの配置を示す図であり、液晶表示装置を表示面から見た場合のLEDの表示面視野を示す模式図である。It is a figure which shows arrangement | positioning of LED of one Example of the liquid crystal display device of this invention, and is a schematic diagram which shows the display surface visual field of LED at the time of seeing a liquid crystal display device from a display surface. 実施例1と実施例2の違いによる輝度評価結果の一例を示す図である。It is a figure which shows an example of the brightness | luminance evaluation result by the difference of Example 1 and Example 2. FIG.
 以下に本発明の一実施形態を、図面等を用いて説明する。なお、以下の説明は、本発明の一実施形態を説明するためのものであり、本願発明の範囲を制限するものではない。従って、当業者であればこれらの各要素若しくは全要素をこれと均等なものに置換した実施形態を採用することが可能であり、これらの実施形態も本願発明の範囲に含まれる。
  なお、本書では、既に説明した図11A及び図11Bを含め、各図の説明において、共通な機能を有する構成要素には同一の参照番号を付し、説明の重複をできるだけ避ける。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In addition, the following description is for describing one embodiment of the present invention, and does not limit the scope of the present invention. Accordingly, those skilled in the art can employ embodiments in which these elements or all of the elements are replaced with equivalent ones, and these embodiments are also included in the scope of the present invention.
In this document, components having common functions are denoted by the same reference numerals in the description of each drawing including those already described with reference to FIGS. 11A and 11B to avoid duplication of description as much as possible.
 まず、本実施形態に係るバックライト装置を適用した映像表示装置の全体構成について、図1~図7を参照しながらその概略を説明し、その後、本発明の課題を解決するための手段についての実施形態を説明する。 First, an overall configuration of a video display device to which the backlight device according to the present embodiment is applied will be described with reference to FIGS. 1 to 7, and thereafter, means for solving the problems of the present invention will be described. An embodiment will be described.
 図1は、本発明の実施形態に係るバックライト装置を有する液晶表示装置の全体構成の概略を示す分解図であり、図2は本実施形態に係るバックライト装置の、光照射面と直交しかつLEDの光軸方向と平行な断面図であり、図3は本実施形態に関するバックライトブロックの内部構成とバックライトブロックを含む液晶ディスプレイの断面図である。 FIG. 1 is an exploded view showing an outline of the overall configuration of a liquid crystal display device having a backlight device according to an embodiment of the present invention, and FIG. 2 is orthogonal to the light irradiation surface of the backlight device according to the present embodiment. FIG. 3 is a cross-sectional view parallel to the optical axis direction of the LED, and FIG. 3 is a cross-sectional view of the internal configuration of the backlight block and a liquid crystal display including the backlight block according to this embodiment.
 図1に示されるように、映像表示用のディスプレイとして普及している液晶パネル1を用いた透過型の液晶表示装置は、その全体構成として、液晶パネル1と、光学素子または拡散板、拡散シート、偏光板、偏向フィルム等を含む光学シート部2と、バックライト装置3と、を備えている。本実施形態に係るバックライト装置3は、例えば図2に示されるように、複数のバックライトブロック4を平面上(バックライト装置の光照射面方向)にマトリックス状に組み合わせて配置し形成されており、大型のバックライト装置3において均一の輝度を得るようにしている。液晶ディスプレイでは液晶パネル1の背面側から光を照射するためにバックライト装置3が必要であり、このバックライト装置3は、その構造によって、直下式、サイドライト(エッジライト)方式、及び直下式とサイドライト方式とを組み合わせたハイブリッド方式がある。このハイブリッド方式は、バックライトを複数のバックライトブロックに光学的に分割して個別に光強度をコントロール、すなわちエリア制御できる構造を指すものである。該ハイブリッド方式はスリムブロック方式とも呼ばれる。本発明の実施形態に係るバックライト装置3は、スリムブロック方式を対象とするものであり、特にサイドビュー型の光源を採用し、且つバックライトを複数のバックライトブロック4に分割された構造を対象とするものである。 As shown in FIG. 1, a transmissive liquid crystal display device using a liquid crystal panel 1 that is widely used as a display for video display includes a liquid crystal panel 1, an optical element or a diffusion plate, and a diffusion sheet as an overall configuration. , An optical sheet unit 2 including a polarizing plate, a deflection film, and the like, and a backlight device 3. For example, as shown in FIG. 2, the backlight device 3 according to the present embodiment is formed by arranging a plurality of backlight blocks 4 in a matrix on a plane (in the direction of the light irradiation surface of the backlight device). In addition, uniform luminance is obtained in the large-sized backlight device 3. In the liquid crystal display, a backlight device 3 is necessary for irradiating light from the back side of the liquid crystal panel 1, and the backlight device 3 has a direct type, a side light (edge light) type, and a direct type depending on its structure. There is a hybrid system that combines a sidelight system with This hybrid system refers to a structure in which the backlight is optically divided into a plurality of backlight blocks and the light intensity is individually controlled, that is, the area can be controlled. The hybrid system is also called a slim block system. The backlight device 3 according to the embodiment of the present invention is intended for a slim block system, and particularly employs a side-view type light source and has a structure in which the backlight is divided into a plurality of backlight blocks 4. It is intended.
 本実施形態に係るバックライト装置3は、図2に示されるように、液晶パネル1に光を照射するために液晶パネル1の背面側に配置されているものであって、少なくとも水平方向(液晶パネルの面またはバックライト装置の光照射面方向)と平行な光出射軸(光軸)を有するLED7、LED7からの光を反射する反射部材である反射シート19、および反射シート19と対向するように設けられ、かつ反射シート19から所定間隔離されて配置された、LED7及び反射シート19からの光を液晶パネル1側に導くための板状の光学素子20とを有している。ここでは、LED7は、電極面と平行な方向に光を放出するサイドビュー型のLEDであるものとする。また反射シート19は、バックライト装置3の底面側に位置するシャーシ(後述する)に設けられる。またLED7は光源基板であるLED基板6に実装されている。 As shown in FIG. 2, the backlight device 3 according to the present embodiment is disposed on the back side of the liquid crystal panel 1 in order to irradiate the liquid crystal panel 1 with light, and at least in the horizontal direction (liquid crystal LED 7 having a light emission axis (optical axis) parallel to the panel surface or the light irradiation surface direction of the backlight device, reflection sheet 19 that is a reflection member that reflects light from LED 7, and reflection sheet 19. And a plate-like optical element 20 for guiding light from the LED 7 and the reflection sheet 19 to the liquid crystal panel 1 side, which is disposed at a predetermined distance from the reflection sheet 19. Here, it is assumed that the LED 7 is a side-view type LED that emits light in a direction parallel to the electrode surface. The reflection sheet 19 is provided on a chassis (described later) located on the bottom side of the backlight device 3. The LED 7 is mounted on an LED substrate 6 that is a light source substrate.
 上記バックライト装置3は、図2に示されるように、例えば光照射面と直交しかつLED7の光軸と平行な方向において、1つのLED7(実際は紙面奥行き方向に複数のLED7が配列されている)と、LED7相互間の光学素子20、反射シート19及びその間の空間とを含む部分を、1つのバックライトブロック4としている。そして、各バックライトブロック4に対応するLED7をそれぞれ個別に制御することで、バックライトブロック4ごとに光量または光強度を制御することができる。すなわち、本実施例では上記のように構成することでエリア制御(ローカルディミング)を可能にするものである。 As shown in FIG. 2, the backlight device 3 includes, for example, one LED 7 (actually a plurality of LEDs 7 arranged in the depth direction on the paper surface) in a direction orthogonal to the light irradiation surface and parallel to the optical axis of the LED 7. ) And the optical element 20 between the LEDs 7, the reflection sheet 19, and the space between them, is a single backlight block 4. Then, the amount of light or the light intensity can be controlled for each backlight block 4 by individually controlling the LEDs 7 corresponding to the backlight blocks 4. That is, in this embodiment, the area control (local dimming) is made possible by configuring as described above.
 光学素子20は、例えば拡散板、透明アクリル板、鏡面平板、微細パターン付の拡散板、光学シート、光学特性制御板、偏光選別板などが使用される。この光学素子20の裏面には、光学素子20の位置に応じて光学素子20への光供給量を制御或いは調整するためのシート状の光制御部材9が設けられている。図2の例では光学素子20の裏面に光制御部材9が設けられているが、光学素子20の表面または裏面及び表面の両方に設けてもよい。この光制御部材9は、所定の光制御機能を有するものであり、当該機能は、例えば所定量の光を二次元的に反射、透過、拡散、遮光、吸収、再発光、着色、波長変換、偏光する機能のうち、少なくとも2つの以上を有するものとする。 The optical element 20 is, for example, a diffusion plate, a transparent acrylic plate, a mirror plate, a diffusion plate with a fine pattern, an optical sheet, an optical property control plate, a polarization sorting plate, or the like. A sheet-like light control member 9 for controlling or adjusting the amount of light supplied to the optical element 20 according to the position of the optical element 20 is provided on the back surface of the optical element 20. In the example of FIG. 2, the light control member 9 is provided on the back surface of the optical element 20, but may be provided on the front surface of the optical element 20 or on both the back surface and the front surface. The light control member 9 has a predetermined light control function. The function includes, for example, two-dimensional reflection, transmission, diffusion, shading, absorption, re-emission, coloring, wavelength conversion, and a predetermined amount of light. It shall have at least two or more of the polarizing functions.
 これにより、光制御部材9は、入射した光の一部が透過され、その場で散乱光として光学素子20から出射される。また入射した光の一部は光制御部材9により反射されて、上記反射シート19による反射機能と協働して上記空間内をLED7の光軸方向に伝播し、LED7から遠くへ光を導く伝達させる。すなわち、光制御部材9は、LED7からの光及び反射シート19で反射された光の一部を透過しつつ一部を反射し、これを光軸方向に沿って繰り返し行うことによって、バックライトブロック4の先端部(LED7の位置と反対側の部分)にまで十分に光を供給する。これによりバックライトブロック4のサイズにかかわらず、均一な輝度分布、かつ光の利用効率を向上させることができる。光制御部材9は、上記光の透過、反射を実現するために、スリットやパターンが設けられている。 Thereby, the light control member 9 transmits part of the incident light, and is emitted from the optical element 20 as scattered light on the spot. In addition, a part of the incident light is reflected by the light control member 9 and propagates in the space in the optical axis direction of the LED 7 in cooperation with the reflection function by the reflection sheet 19 to guide the light far from the LED 7. Let That is, the light control member 9 reflects part of the light from the LED 7 and the light reflected by the reflecting sheet 19 while reflecting part of the light, and repeatedly performing this along the optical axis direction, thereby the backlight block. The light is sufficiently supplied to the tip of 4 (the part on the side opposite to the position of the LED 7). Thereby, regardless of the size of the backlight block 4, it is possible to improve the uniform luminance distribution and the light use efficiency. The light control member 9 is provided with slits and patterns in order to realize the transmission and reflection of the light.
 光学素子20及び光制御部材9、特に光制御部材9は、LED7付近からLED7の光軸方向に離れるに従って、上記スリットやパターンの大きさまたは形状、或いは光の透過率、反射率、拡散率、取り込み度合い、伝播率、偏光透過率、色透過率、分光特性などの光学機能が変化している。このようにすることで、バックライトブロック4内の均一性が安易に実現可能となる。 The optical element 20 and the light control member 9, particularly the light control member 9, are separated from the LED 7 in the optical axis direction of the LED 7, the size or shape of the slit or pattern, or the light transmittance, reflectance, diffusivity, Optical functions such as the degree of capture, propagation rate, polarization transmittance, color transmittance, and spectral characteristics are changing. By doing in this way, the uniformity in the backlight block 4 is easily realizable.
 ここで、光学素子20と反射シート19との距離(すなわち上記空間の高さ)をh、LED7の高さをLhとしたとき、距離hと高さLhとの関係を、5Lh>h>1.2Lhとすることが好ましい。このようにすると、LED7の上面から漏れる光とLED7の光出射部近傍に生じるホットスポット(光が局所的に明るくなる部分)を距離hの空間において、COS角度(4乗則)により拡大、拡散して、ムラとして見えづらくすることが可能となる。上記条件は、サイドビュー型のLED7と光制御部材9が近すぎて、LED7からダイレクトに光制御部材9を透過してくる光を減光させるために必要な距離と言うこともできる。 Here, when the distance between the optical element 20 and the reflection sheet 19 (that is, the height of the space) is h, and the height of the LED 7 is Lh, the relationship between the distance h and the height Lh is 5Lh>h> 1. .2Lh is preferable. In this way, the light leaking from the upper surface of the LED 7 and the hot spot (the portion where the light is locally brightened) generated in the vicinity of the light emitting portion of the LED 7 are expanded by the COS 4 angle (fourth power law) in the space of the distance h. It becomes possible to diffuse and make it difficult to see as unevenness. The above condition can be said to be a distance necessary for dimming the light transmitted directly from the LED 7 through the light control member 9 because the side-view type LED 7 and the light control member 9 are too close.
 図3は、本実施形態に係るバックライトの概略立体図である。LED7は、例えばアルミ等で構成された金属製のシャーシ11に液晶パネルの水平方向に(図示しない)基板とともに配列されている。LED7に対し所定の距離を設けて光学素子20を配置する。光学素子20は、例えばCCFLなどの蛍光管方式のバックライト装置で使われている、一般的な拡散板などの素材を用いることができる。これにより、安価にスリムブロック方式のバックライト装置3が実現できる。 FIG. 3 is a schematic three-dimensional view of the backlight according to the present embodiment. The LEDs 7 are arranged together with a substrate (not shown) in the horizontal direction of the liquid crystal panel in a metal chassis 11 made of, for example, aluminum. The optical element 20 is arranged with a predetermined distance from the LED 7. The optical element 20 can be made of a material such as a general diffusion plate used in a fluorescent tube type backlight device such as CCFL. Thereby, the slim block type backlight device 3 can be realized at low cost.
 また光学素子20の上には、プリズムシートや輝度向上フィルム等の光学シート群18を配置し、バックライト照射面全体の輝度ムラを低減している。図3では光学シート群18は複数の光学シートを含んでいるが、一つのみとしてもよい。 Further, an optical sheet group 18 such as a prism sheet or a brightness enhancement film is disposed on the optical element 20 to reduce luminance unevenness on the entire backlight irradiation surface. In FIG. 3, the optical sheet group 18 includes a plurality of optical sheets, but only one optical sheet group may be provided.
 尚、図3において光学素子20に点線が描かれているが、これはバックライトブロック4を仮想的に区分するために描いたものであり、実際にバックライトブロック4が物理的に分離されていたり、バックライトブロック4を区分するための溝等が設けられているわけではない。本実施例では、光学素子20は1つの板状部材(拡散板)で構成されているものとする。必要に応じて、光学素子20の表面(液晶パネル側)または裏面(シャーシ11側)にバックライトブロック4を区分するための溝等を設けてもよい。 In FIG. 3, a dotted line is drawn on the optical element 20, which is drawn to virtually divide the backlight block 4, and the backlight block 4 is actually physically separated. In addition, a groove or the like for dividing the backlight block 4 is not provided. In this embodiment, it is assumed that the optical element 20 is composed of one plate-like member (diffuser plate). If necessary, a groove or the like for dividing the backlight block 4 may be provided on the front surface (liquid crystal panel side) or the back surface (chassis 11 side) of the optical element 20.
 図4は本実施形態に係るバックライト装置の概略上面図と断面図を示している。図4の例において、光制御部材9もしくは光学素子20の表面または裏面或いはその両方には、所定形状のパターン101、102、103が設けられている。このパターン101~103は、液晶パネル1側から見た場合を示している。尚、図4のWは、1つのバックライトブロックの幅(LED7の光軸方向と直交する方向の寸法)を示している。すなわち、この例では、バックライトブロックに6つのLED7が設けられている。当然、1バックライトブロック当たりのLED7の数は、これに限られるものではない。 FIG. 4 shows a schematic top view and a cross-sectional view of the backlight device according to this embodiment. In the example of FIG. 4, patterns 101, 102, and 103 having a predetermined shape are provided on the front surface and / or the back surface of the light control member 9 or the optical element 20. These patterns 101 to 103 show the case of viewing from the liquid crystal panel 1 side. 4 indicates the width of one backlight block (dimension in the direction orthogonal to the optical axis direction of the LED 7). That is, in this example, six LEDs 7 are provided in the backlight block. Of course, the number of LEDs 7 per backlight block is not limited to this.
 図示されるように、パターン101~103の、LED7の光軸方向(紙面左右方向)のピッチ、密度または形状はLED7からの距離に従い変更している。一方、LED7の光軸と垂直方向(紙面上下方向)のパターン101~103のピッチ、密度または形状は略同じとしている。より具体的には、パターン101~103は、LED7の光出射方向(光軸方向)と反対側よりも、光軸方向に伸びて形成されている。また、パターン101~103は、LED7からの光軸方向の距離に応じて変化しており、例えばパターン101のようにLED7からの光軸方向の距離が大きくなるほど先細りの形状としてもよいし、パターン102のようにLED7の光軸方向を長軸とする楕円と、光軸方向と直交する方向の楕円とを組み合わせた形状としてもよいし、またパターン103のように光源7からの光軸方向の距離が大きくなるほど広がる形状としてもよい。 As shown in the figure, the pitch, density, or shape of the patterns 101 to 103 in the optical axis direction (left and right direction of the paper) of the LED 7 is changed according to the distance from the LED 7. On the other hand, the pitch, density, or shape of the patterns 101 to 103 in the direction perpendicular to the optical axis of the LED 7 (up and down in the drawing) is substantially the same. More specifically, the patterns 101 to 103 are formed to extend in the optical axis direction from the side opposite to the light emitting direction (optical axis direction) of the LED 7. The patterns 101 to 103 change in accordance with the distance in the optical axis direction from the LED 7. For example, as the distance in the optical axis direction from the LED 7 increases as in the pattern 101, the patterns 101 to 103 may have a tapered shape. The shape may be a combination of an ellipse whose major axis is the optical axis direction of the LED 7 as in 102 and an ellipse in a direction orthogonal to the optical axis direction, or in the optical axis direction from the light source 7 as in the pattern 103. It is good also as a shape which spreads, so that distance becomes large.
 上記パターン101~103は、基本的に光学素子20の裏面に設けるものとするが、光学素子20の表面に設けてもよい。また、パターン101~103として、印刷シート、熱転写シート、穴あき反射/透過シート、パターン付反射シート、または光学シートにパターン印刷したものを、光学素子20の裏面または表面或いはその両方のLED7近傍に取り付けてパターン101~103を構成してもよい。 The patterns 101 to 103 are basically provided on the back surface of the optical element 20, but may be provided on the surface of the optical element 20. Further, as patterns 101 to 103, a printed sheet, a thermal transfer sheet, a perforated reflection / transmission sheet, a reflection sheet with a pattern, or a pattern printed on an optical sheet is placed near the LED 7 on the back surface or the front surface of the optical element 20 or both. The patterns 101 to 103 may be mounted.
 パターン101~103としては、位置(LED7からの距離)に応じて射光作用、光の透過、反射、伝播率などを制御または調整できるものであれば、どのような形状、部材を採用することができる。例えば、LED7から光軸方向へ離れるに従い除々にパターン密度を減少させることで、LED7近辺は射光と反射を多くして透過する光を10%以下とする一方、LED7から離れたところでは透過光を多くする。これにより、LED7からの光軸方向に進む光のみならず、2次元的に(放射状に)伝播する光について透過量を増加させて、LED7からの距離に従い液晶パネル側へ光の出射量を上げることができる。そして、このような構成によれば、LED7の光軸方向の輝度むらを低減でき、かつ、バックライトブロック内、およびバックライト照射面前面での輝度均一性を向上させることができる。 As the patterns 101 to 103, any shape or member may be adopted as long as it can control or adjust the light action, light transmission, reflection, propagation rate and the like according to the position (distance from the LED 7). it can. For example, by gradually reducing the pattern density as it moves away from the LED 7 in the optical axis direction, the vicinity of the LED 7 increases light emission and reflection to reduce the transmitted light to 10% or less, while the distance away from the LED 7 transmits the transmitted light. Do more. As a result, not only the light traveling from the LED 7 in the optical axis direction but also the two-dimensionally (radially) propagating light is increased, and the amount of light emitted toward the liquid crystal panel is increased according to the distance from the LED 7. be able to. And according to such a structure, the brightness nonuniformity of the optical axis direction of LED7 can be reduced, and the brightness uniformity in a backlight block and a backlight irradiation surface front surface can be improved.
 上記パターン101~103パターンは、図4に示されるように微小なドットの集合体で構成することができ、このドット集合体の外形形状を、水玉、曲線、点線、放射状直線、放射状曲線など、様々な形状とすることができる。またドット集合体において、ドットの密度がLED7からの距離に徐々にグラデーションを掛けるようにドットの密度を変化させれば、LED7とパターンとの位置ずれによる誤差感度を向上させることができる。 The patterns 101 to 103 can be composed of a collection of minute dots as shown in FIG. 4, and the outer shape of the dot assembly is polka dots, curves, dotted lines, radial straight lines, radial curves, etc. Various shapes can be used. In the dot aggregate, if the dot density is changed so that the dot density gradually gradations the distance from the LED 7, the error sensitivity due to the positional deviation between the LED 7 and the pattern can be improved.
 また、パターンを印刷で形成する場合は、インクの膜厚、インク色(青や黒の色を混ぜて、透過率をコントロールして、グラデーションをかける)、ドットサイズ、ドット形状、LED直上のパターン形状、印刷厚さを容易に調整することができ、上述したドット集合体の外形形状やグラデーションの形成をより良好に行うことができる。従って、パターンを印刷で形成する場合は、より輝度の均一性を向上できる。 In addition, when the pattern is formed by printing, the ink film thickness, ink color (mixing blue and black colors, controlling the transmittance and applying gradation), dot size, dot shape, pattern just above the LED The shape and the printing thickness can be easily adjusted, and the above-described outer shape of the dot aggregate and gradation can be formed more satisfactorily. Therefore, when the pattern is formed by printing, the luminance uniformity can be further improved.
 ここで、図4に示されるように、上記パターンの、LED7の光軸と垂直な方向であって、上記光学素子20の光出射面或いはその裏面と平行な方向(紙面上下方向)の大きさ(寸法)をa、LED7の発光面71の長手方向の大きさをc(図15参照)、LED7の配列ピッチをpとしたとき、p≧a≧cの条件を満たしている。また上記パターンのピッチをeとしたとき、p≧a≧0.5×eの条件を満たしている。更にまた、上記距離hと上記パターンの寸法aとの関係は、h≧aの条件を満たしている。更にまた、上記光学素子20の、隣接する2つの光源間と対応する位置に別のパターン104を設け、該別のパターンの透過率Tが、0.1%≦T<50%の条件を満たすようにしている。 Here, as shown in FIG. 4, the size of the pattern in the direction perpendicular to the optical axis of the LED 7 and parallel to the light emitting surface of the optical element 20 or the back surface thereof (up and down direction on the paper surface). When (dimension) is a, the longitudinal size of the light emitting surface 71 of the LED 7 is c (see FIG. 15), and the arrangement pitch of the LEDs 7 is p, the condition of p ≧ a ≧ c is satisfied. Further, when the pitch of the pattern is e, the condition of p ≧ a ≧ 0.5 × e is satisfied. Furthermore, the relationship between the distance h and the dimension a of the pattern satisfies the condition h ≧ a. Furthermore, another pattern 104 is provided at a position corresponding to between two adjacent light sources of the optical element 20, and the transmittance T of the other pattern satisfies the condition of 0.1% ≦ T <50%. I am doing so.
 図5に本実施例に係るバックライト装置及びその周辺部分の、LED7の光軸方向及びバックライト光照射面と直交する断面図を示す。 FIG. 5 shows a cross-sectional view of the backlight device according to the present embodiment and the peripheral portion thereof orthogonal to the optical axis direction of the LED 7 and the backlight light irradiation surface.
 図示されるように、液晶表示装置の背面筐体であるバックカバー17とシャーシ11との間には、信号コントロール基板15、LED駆動回路16及び電源14が配置されている。信号コントロール基板15、LED駆動回路16及び電源14は、シャーシ11に取り付けられている。シャーシ11は、上述した反射シート19を貼り付けたものでもよい。またシャーシ11に反射シート19を貼り付けたものをプレス作業にて絞りを入れ、LED7の光軸方向に沿った曲面や傾斜面を形成することで、反射シート面19の光の反射角を光軸方向に沿って変化させることができる。これにより、LED7からの光をその光軸方向に伝播し易くし、バックライトブロック4の先端部(LED7の位置と反対側の部分)への光の供給量をより増やす効果がある。また、シャーシ11に絞りが追加されるので、シャーシ11の機械的強度も増す。 As shown in the figure, a signal control board 15, an LED drive circuit 16, and a power source 14 are arranged between a back cover 17 that is a rear casing of the liquid crystal display device and the chassis 11. The signal control board 15, the LED drive circuit 16, and the power supply 14 are attached to the chassis 11. The chassis 11 may be one to which the above-described reflection sheet 19 is attached. In addition, the chassis 11 having the reflection sheet 19 attached thereto is pressed to form a curved surface or an inclined surface along the optical axis direction of the LED 7 so that the reflection angle of the light on the reflection sheet surface 19 can be reduced. It can be varied along the axial direction. Thereby, it is easy to propagate the light from the LED 7 in the optical axis direction, and there is an effect of increasing the amount of light supplied to the front end portion of the backlight block 4 (the portion opposite to the position of the LED 7). Moreover, since a diaphragm is added to the chassis 11, the mechanical strength of the chassis 11 is also increased.
 反射シート19と光制御部材9との間の空間は円錐状のピンモールド38により保持され、所定の距離確保されている。これにより光がバックライトブロック4内を伝播しながら、光学制御部材9と光学素子20により除々に光を出射し、全体的に均一な光を各バックライトブロック単位で制御できる。 The space between the reflection sheet 19 and the light control member 9 is held by a conical pin mold 38 to ensure a predetermined distance. Accordingly, light is gradually emitted by the optical control member 9 and the optical element 20 while propagating through the backlight block 4, and overall uniform light can be controlled in units of backlight blocks.
 再び図2を参照すると、本実施例に係るバックライト装置3は、基本的には、LED基板6に設置された光源としてのLED7と、LED7からの光を有効に液晶パネル1に導くための光学素子20と、光学素子20に光を供給するための反射シート19と、LED7の光軸方向に光を良好に伝搬させるための、光学素子20と反射シート19との間の空間とを備えている。当該空間の液晶パネル1側に設けられている光学素子20の裏面には光制御部材9が設けられ、これによりLED7の光軸方向に沿ってLED7からの光を除々に出射し、バックライトブロック4の均一な光分布を実現する。 Referring back to FIG. 2, the backlight device 3 according to the present embodiment basically has an LED 7 as a light source installed on the LED substrate 6 and a light for effectively guiding the light from the LED 7 to the liquid crystal panel 1. An optical element 20, a reflective sheet 19 for supplying light to the optical element 20, and a space between the optical element 20 and the reflective sheet 19 for favorably propagating light in the optical axis direction of the LED 7 are provided. ing. A light control member 9 is provided on the back surface of the optical element 20 provided on the liquid crystal panel 1 side of the space, thereby gradually emitting light from the LED 7 along the optical axis direction of the LED 7, and a backlight block 4 uniform light distribution is realized.
 ここで図2に示す構成例において、バックライトブロック4は、バックライト装置3の光照射面側から見た形状が矩形状に形成されていて、その長手方向(図3で紙面の左から右)にLED7からの光が進んでいきバックライトブロック4の裏面(反射シート19側)で反射されて液晶パネル1に光が進む。LED7は、バックライトブロック4の短辺側(図3で紙面の鉛直方向)に複数個適宜の間隔で配列されている。LED7をバックライトブロック4の長辺側に配列してもよい。 Here, in the configuration example shown in FIG. 2, the backlight block 4 is formed in a rectangular shape when viewed from the light irradiation surface side of the backlight device 3, and its longitudinal direction (from left to right on the paper surface in FIG. 3). ), The light from the LED 7 advances, is reflected by the back surface (the reflection sheet 19 side) of the backlight block 4, and the light advances to the liquid crystal panel 1. A plurality of LEDs 7 are arranged at appropriate intervals on the short side of the backlight block 4 (in the vertical direction of the paper in FIG. 3). The LEDs 7 may be arranged on the long side of the backlight block 4.
 次に、本実施形態に係るバックライト装置におけるバックライトブロックの境界の輝度とバックライトブロック内部の輝度との輝度差を緩和し、境界からの明るさを目立たなくする技術について、図6及び図7を参照しながら説明する。ここでバックライトブロック4がLED7の光軸方向及び光軸方向と直交する方向に連結している空間のイメージを図6に示している。尚、ここでは、図示の簡略化のために、1行1列のみのバックライトブロック4を図示している。 Next, a technique for reducing the brightness difference between the brightness of the boundary of the backlight block and the brightness inside the backlight block in the backlight device according to the present embodiment, and making the brightness from the boundary inconspicuous is shown in FIGS. This will be described with reference to FIG. Here, FIG. 6 shows an image of a space in which the backlight block 4 is connected in the optical axis direction of the LED 7 and the direction orthogonal to the optical axis direction. Here, for simplicity of illustration, the backlight block 4 having only one row and one column is shown.
 図6は本実施形態に係るバックライト装置からの輝度明暗分布を意図的に発生させるためのパターン形成例を複数のバックライトブロックに亘って説明する図であり、図7はバックライト装置からの輝度について、バックライトブロックの境界とバックライトブロック内部との間で輝度差が発生する状況を複数のバックライトブロックを配列して説明する図である。この実施例におけるパターンを「明暗パターン」と呼ぶこととする。図面において、明暗パターンは、輝度明部40、輝度暗部41、輝度中明暗部42を含んでいる。なお、ここでは、上記輝度差(輝度明暗差あるいは輝度むら)は、バックライト装置3から照射された光を、拡散板等を含む光学シート群18(図2参照)の光出射側から見たときの輝度差であるものとする。ここで、輝度明部40のパターンは、輝度暗部41、輝度中明暗部42よりも光を拡散させる作用が大きい(つまり粗し度(微細凹凸の密度)が高い)パターンであり、輝度中明暗部42のパターンは、輝度暗部41よりも光を拡散させる作用が大きいパターンである。 FIG. 6 is a diagram for explaining an example of pattern formation for intentionally generating the brightness / darkness distribution from the backlight device according to the present embodiment over a plurality of backlight blocks, and FIG. It is a figure explaining the situation where a luminance difference arises between the boundary of a backlight block, and the inside of a backlight block by arranging a plurality of backlight blocks. The pattern in this embodiment is called a “bright / dark pattern”. In the drawing, the light / dark pattern includes a bright brightness portion 40, a dark brightness portion 41, and a bright / light brightness portion 42. Here, the brightness difference (brightness / darkness difference or brightness unevenness) is obtained by viewing the light emitted from the backlight device 3 from the light emitting side of the optical sheet group 18 (see FIG. 2) including the diffusion plate and the like. It is assumed that the brightness difference is. Here, the pattern of the brightness bright portion 40 is a pattern that has a larger effect of diffusing light than the brightness dark portion 41 and the brightness mid-light portion 42 (that is, the roughness (the density of fine irregularities) is high), The pattern of the portion 42 is a pattern that has a larger effect of diffusing light than the luminance dark portion 41.
 上記のように、複数のバックライトブロック4を縦横に配列してバックライト装置3を構成する場合、バックライトブロック4の境界やLED7の直上から光が漏れて輝線やホットスポットが生じ、これに起因する輝度明部が発生する。また逆に、バックライトブロックの境界やLED7の背面側で光が不足して暗線になる場合もあり得る。
 そこで、この例では、バックライトブロック4の内部では光源(LED7)から出射された光が一様に出射(図面の鉛直手前方向)するように、すなわち輝度が均一になるように光学素子20の裏面及び/または表面、あるいは裏面近傍に、図の40、41、42のような光学パターンが配置されている。図6は裏面に配置されたパターンを図示している。パターンの密度は、LED7の入光部から光軸方向に従って適切に調整され、これにより輝度分布が均一になるようにされている。図6の場合は、入光部の密度がやや高く、中央部がやや低く、先端部が最も密度が高いパターンが配置されている。図6の下方に示されたグラフは、光学素子20の位置に対応した明暗パターンの密度を示している。この明暗パターンは、拡散板やクリア板、光学フィルム貼り付け板材、偏光部材などで構成された光学素子20の裏面に、拡散凹凸面、凹マイクロレンズ、凸マイクロレンズ、プリズム、円錐台、円錐もしくは印刷パターンなどを付加して形成される。これに代えて、光の反射、遮光、透過、伝播などの機能を1以上有する光学機能フィルムに、切り欠き、スリット、円穴、楕円穴、所定の形状穴を設けるか、または、濃淡処理、微細加工、微細細工、印刷パターンなどを施して形成してもよい。これにより、光学素子20からの出射光の輝度分布を自在に制御できる。
As described above, when the backlight device 3 is configured by arranging a plurality of backlight blocks 4 vertically and horizontally, light leaks from the boundary of the backlight block 4 or directly above the LEDs 7 to generate bright lines and hot spots. The resulting bright brightness portion occurs. On the contrary, there may be a case where light is insufficient at the boundary of the backlight block or on the back side of the LED 7 to become a dark line.
Therefore, in this example, the light emitted from the light source (LED 7) is uniformly emitted (in the vertical front direction in the drawing) inside the backlight block 4, that is, the luminance of the optical element 20 is uniform. Optical patterns such as 40, 41 and 42 in the figure are arranged on the back surface and / or the front surface or in the vicinity of the back surface. FIG. 6 illustrates a pattern arranged on the back surface. The density of the pattern is appropriately adjusted according to the optical axis direction from the light incident portion of the LED 7 so that the luminance distribution becomes uniform. In the case of FIG. 6, a pattern is arranged in which the density of the light incident part is slightly high, the central part is slightly low, and the tip part has the highest density. The graph shown in the lower part of FIG. 6 shows the density of the light and dark pattern corresponding to the position of the optical element 20. This light / dark pattern is formed on the back surface of the optical element 20 composed of a diffusing plate, a clear plate, an optical film attaching plate material, a polarizing member, etc., on a diffusing concave / convex surface, concave microlens, convex microlens, prism, truncated cone, cone or It is formed by adding a print pattern or the like. Instead of this, an optical functional film having one or more functions such as light reflection, light shielding, transmission and propagation is provided with a notch, a slit, a circular hole, an elliptical hole, a predetermined shape hole, or a shading process. It may be formed by applying fine processing, fine work, printing pattern, or the like. Thereby, the luminance distribution of the emitted light from the optical element 20 can be freely controlled.
 本実施例に係るバックライト装置では、そのバックライトブロック内部に意図的に輝度の明暗差を形成して、輝度むらが全体的に及ぶことによって、バックライトブロックの境界における線状或いは格子状の明るい(または暗い)輝度部分を緩和させること、すなわち視覚的に認識させづらくすることを特徴とするものである。図6に示す例では、バックライトブロック4の内部に、輝度暗部41と輝度中明暗部42(輝度明部40に比べるとやや暗いが輝度暗部41に比べると明るい部分)とを交互に配置した構成例である。すなわち、バックライトブロック4の内部に輝度の明暗差を設けて、バックライトブロック4の境界の輝度明部との輝度差を緩和している。 In the backlight device according to the present embodiment, a luminance difference is intentionally formed inside the backlight block, and the luminance unevenness extends as a whole, thereby causing a linear or grid-like shape at the boundary of the backlight block. It is characterized in that a bright (or dark) luminance portion is relaxed, that is, it is difficult to visually recognize. In the example shown in FIG. 6, the luminance dark portion 41 and the luminance middle light / dark portion 42 (a portion that is slightly darker than the luminance bright portion 40 but brighter than the luminance dark portion 41) are alternately arranged in the backlight block 4. It is a structural example. That is, the brightness difference between the backlight block 4 and the brightness bright portion at the boundary of the backlight block 4 is reduced by providing a brightness difference between the brightness and darkness inside the backlight block 4.
 なお、境界で暗線が生じる場合には、この暗線を目立たなくさせるために、バックライトブロック4における輝度明暗差を形成するようにバックライトブロックの一様な輝度面よりも暗く且つ上記の暗線よりも明るいパターンを設ければよい。 When dark lines are generated at the boundary, in order to make the dark lines inconspicuous, it is darker than the uniform luminance surface of the backlight block so as to form a luminance contrast between the backlight block 4 and the dark line. May be provided with a bright pattern.
 また、この明暗パターンは、図7で示すように、矩形形状をしており、正方形を千鳥上に配置したものである。このとき、LED7からバックライトブロック4の先端部へは、矩形形状の明部の配列ピッチが除々に狭まって、密度が高くなる形状或いは配置になっている。すなわち、先端部分に行くに従い光をより効率よく出射させ、ブロック内の均一性を高めている。これと同時に、LED7近傍や境界での輝線や暗線など、極端に輝度が変化する部分は異型のパターンを設けたり、円形や楕円のパターンのサイズを変えてもよい。このように最適化したサイズ及び形状のパターンにより、輝度均一性の向上機能と輝度差を目立たなくする機能とを両立させている。これにより、光制御部9は空間を伝搬する光を除々に選別し、光学素子20に取り込み、液晶パネル1側への出射光を制御できるのである。 Further, as shown in FIG. 7, this light-dark pattern has a rectangular shape, and squares are arranged on a staggered pattern. At this time, from the LED 7 to the front end portion of the backlight block 4, the arrangement pitch of the rectangular light portions is gradually narrowed so that the density is increased or arranged. That is, the light is emitted more efficiently as it goes to the tip portion, and the uniformity within the block is enhanced. At the same time, an unusual pattern may be provided in a portion where the luminance changes extremely, such as a bright line or a dark line in the vicinity or boundary of the LED 7, or the size of a circular or elliptical pattern may be changed. With the optimized size and shape pattern, the function of improving the brightness uniformity and the function of making the brightness difference inconspicuous are compatible. Thereby, the light control unit 9 can gradually select the light propagating through the space, take it into the optical element 20, and control the light emitted to the liquid crystal panel 1 side.
 図6及び図7の構成によりバックライトブロック4の内部に輝度の明暗差を設けることによって、その境界を含めて輝度むらがバックライト3全体でぼやけるため、バックライトブロック4の境界の輝度明部が視認し難くなる。さらに、LED7と対応する位置に遮光シート、遮光印刷などで構成された遮光部材を光制御部材9とともに設置し、LED7の直接光を遮光し、その光を一部透過、反射、伝播させ、ホットスポットが生じることを防止する。このとき、反射シートの薄さにより、微少にLED7からの光の漏れが発生した場合も、上記千鳥パターンの明暗にて光が拡散され、目立たなくなる。 By providing a difference in brightness between the backlight block 4 and the brightness unevenness including the boundary in the entire backlight 3, the brightness bright portion at the boundary of the backlight block 4 is provided. Becomes difficult to see. Further, a light shielding member composed of a light shielding sheet, light shielding printing or the like is installed at a position corresponding to the LED 7 together with the light control member 9 to shield the direct light of the LED 7 and partially transmit, reflect, or propagate the light. Prevents spots from forming. At this time, even if light leaks from the LED 7 slightly due to the thinness of the reflection sheet, the light is diffused by the light and darkness of the staggered pattern and becomes inconspicuous.
 なお、上述した輝度の明暗差は、上記光学素子20や光制御部材9に形成することに限らず、反射シート19、光学シート群18にパターンを形成することによっても実現することができる。 The brightness difference described above can be realized not only by the optical element 20 and the light control member 9 but also by forming a pattern on the reflection sheet 19 and the optical sheet group 18.
 また、図示しないが、バックライトブロック4の内部に、楕円形の輝度中明暗部を形成してもよい。この輝度中明暗部は、光学素子20の表面に細かい又は密な凹凸面のような、いわゆるざらざら面(粗面)によって形成される。この楕円形のざらざら面は、光学素子の、LED7の配列方向と平行な方向(本例では光学素子20の短手方向)に複数配列されて一つの輝度中明暗部領域を形成し、この領域をLED7の配列方向と直交する方向(本例では光学素子20の短長手方向)に2つ以上設けている。これによって、このざらざら面がこの周囲の面よりも前方に進む光量を多くする機能を果たして明るい輝度を生じさせる。 In addition, although not shown, an elliptical medium brightness portion may be formed inside the backlight block 4. The bright, medium and dark portions of luminance are formed on the surface of the optical element 20 by a so-called rough surface (rough surface) such as a fine or dense uneven surface. A plurality of the oval rough surfaces are arranged in a direction parallel to the arrangement direction of the LEDs 7 of the optical elements (in this example, the short direction of the optical element 20) to form one luminance mid-bright and dark area. Are provided in a direction perpendicular to the arrangement direction of the LEDs 7 (in this example, the short longitudinal direction of the optical element 20). As a result, the rough surface functions to increase the amount of light traveling forward than the surrounding surface, thereby producing bright brightness.
 バックライトブロック4の境界を含めたバックライト装置3全体をみると、輝度中明暗部の存在によって、このバックライト装置3から前方に発する輝度の明暗分布にばらつき又は不規則性が生じることとなり、輝度の明暗の度合いが視認し難くなる(境界の明るさが目立たなくなる)。楕円形状に限らず、円形状、長方形状、円形状であってもよく、また、隣り合う輝度中明暗部の個数(例で紙面縦方向の数)を2個と3個というように異ならせてもよい。要は、輝度暗部との間で輝度差の不規則性が生じるように、輝度中明暗部を形成すればよい。 Looking at the entire backlight device 3 including the boundary of the backlight block 4, the presence or absence of a light / dark part in the brightness causes variations or irregularities in the brightness / darkness distribution emitted forward from the backlight device 3, It becomes difficult to visually recognize the brightness level of the brightness (brightness of the boundary becomes inconspicuous). The shape is not limited to an elliptical shape, and may be a circular shape, a rectangular shape, or a circular shape, and the number of adjacent bright, middle, light, and dark portions (for example, the number in the vertical direction on the paper) is changed to two or three. May be. In short, it is only necessary to form the mid-bright and dark portions so that irregularities in the luminance difference occur with the dark portions.
 上記実施形態において、上記粗面(ざらざら面)、凹凸面、プリズム面、凹レンズまたは凸レンズ等、光学素子20(拡散板)の表面に明部を付与するための要素(以下、「明部付与要素」と称する)を拡散板の表面においてLED7の配列方向と平行な方向(本実施例では光学素子の短手方向)に延びるように形成されており、またこの明部付与要素がLEDの配列方向と直交する方向(本実施例では光学素子20の短手方向であって、LEDからの光の光学素子20内の進行方向)に2つ以上配列されている。このように構成すれば、光学素子20の表面において、バックライトブロック4の境界部分における輝度明部(または輝度暗部)の周期よりも短い周期の輝度差(輝度むら)を生成することができるので、バックライトブロック4の境界部分における輝度明部(または輝度暗部)視覚的に認識されづらくなる。 In the above embodiment, an element for providing a bright portion on the surface of the optical element 20 (diffuser plate) such as the rough surface (rough surface), uneven surface, prism surface, concave lens or convex lens (hereinafter referred to as “bright portion providing element”). Is formed so as to extend in the direction parallel to the arrangement direction of the LEDs 7 (in this embodiment, the short direction of the optical element) on the surface of the diffusion plate, and the bright portion imparting element is arranged in the LED arrangement direction. Two or more are arranged in a direction orthogonal to the direction (in this embodiment, the short direction of the optical element 20 and the traveling direction of light from the LED in the optical element 20). With this configuration, it is possible to generate a luminance difference (luminance unevenness) with a period shorter than the period of the luminance bright portion (or luminance dark portion) at the boundary portion of the backlight block 4 on the surface of the optical element 20. Therefore, it is difficult to visually recognize bright portions (or dark portions) in the boundary portion of the backlight block 4.
 2つ以上の明部付与要素における各輝度の極大点同士の間隔は、おおよそ0.5~3cm程度が好ましく、更にまた、当該極大点同士の間隔は、拡散板の表面から光学シート群の入射面(拡散板に最も近い位置に配置されている拡散板の入射面)までの距離の2倍以上であることが好ましい。また、明部付与要素を通した光と拡散板表面の明部付与要素以外の部分から出射された光の輝度差が、バックライトブロック4の境界部分における輝度明部(または輝度暗部)と拡散板表面の明部付与要素以外の部分から出射された光の輝度差の50%以上とすることがより好ましい。これらの条件を満たすように明部付与要素を形成すれば、よりバックライトブロック4の境界部分における輝度明部(または輝度暗部)を目立たなくさせることができる。 The distance between the maximum points of each luminance in the two or more bright part providing elements is preferably about 0.5 to 3 cm, and the distance between the maximum points is incident on the optical sheet group from the surface of the diffusion plate. It is preferably at least twice the distance to the surface (incident surface of the diffusion plate arranged at the position closest to the diffusion plate). Further, the luminance difference between the light passing through the bright portion providing element and the light emitted from the portion other than the bright portion providing element on the surface of the diffuser plate is diffused from the bright bright portion (or the dark luminance portion) at the boundary portion of the backlight block 4. More preferably, it is 50% or more of the luminance difference of light emitted from a portion other than the bright portion providing element on the plate surface. If the bright portion providing element is formed so as to satisfy these conditions, the bright luminance portion (or the dark luminance portion) at the boundary portion of the backlight block 4 can be made inconspicuous.
 また、上記光を拡散するための要素を拡散板の表面においてLED7の配列方向と直交する方向に設ければ、LED7の配列方向と直交な方向(図2の紙面左右方向)に生じるバックライトブロック4の境界における輝度明部(または輝度暗部)が視覚的に認識されづらくなる。当然、上記光を拡散するための要素をLED7の配列方向と平行な方向と直交する方向の両方に設けてもよい。 Moreover, if the element for diffusing the light is provided in the direction orthogonal to the arrangement direction of the LEDs 7 on the surface of the diffusion plate, the backlight block generated in the direction orthogonal to the arrangement direction of the LEDs 7 (left and right direction in FIG. 2) It is difficult to visually recognize bright portions (or dark portions) at the boundary of 4. Of course, you may provide the element for diffusing the said light in both the direction orthogonal to the direction parallel to the sequence direction of LED7.
 上記実施形態の構成によれば、バックライトブロック4の境界間における輝度明部または輝度暗部を目立たなくさせることが可能となるが、上記境界以外の、バックライトブロック4内に生じる輝度明部または輝度暗部も同様に目立たなくさせることも可能となる。 According to the configuration of the above embodiment, it is possible to make the bright luminance portion or the dark luminance portion between the boundaries of the backlight block 4 inconspicuous. Similarly, it is possible to make the darkness portion inconspicuous.
 しかし、上記図1~図7の実施形態の場合であっても、LED7から出射される光は、図11A及び図11Bで説明したような配光特性になっている。従って、バックライトブロック内のLEDに近い領域と遠い領域では、輝度の均質性が不十分な可能性がある。 However, even in the case of the embodiment shown in FIGS. 1 to 7, the light emitted from the LED 7 has the light distribution characteristics as described in FIGS. 11A and 11B. Therefore, there is a possibility that the luminance uniformity is insufficient in the area close to and far from the LED in the backlight block.
 図8A及び図8Bによって、本発明の実施例1についてさらに説明する。図8A及び図8Bは、本発明の液晶表示装置の一実施例のLEDの配置を示す図である。例えば図8A及び図8Bは、図11A及び図11Bの配光特性のLED7を液晶表示装置に配置した一実施例を示す図である。図8Aは、液晶表示装置を側面から見た断面図を示し、図8Bは、液晶表示装置を表示面から見た場合のLEDの表示面視野を示す模式図である。ただし、図8Bでは、LED基板6を図示していない。
  図8Aに示すように、液晶表示装置は、その全体構成として、液晶パネル1と、拡散板、拡散シート、偏光板、偏向フィルム等を含む光学シート部2と、バックライト装置とを備えている。バックライト装置は、例えば、複数のバックライトブロック4を平面上(バックライト装置の光照射面方向)にマトリックス状に組み合わせて配置し形成されており、大型のバックライト装置において均一の輝度を得るようにしている。
  図8A及び図8Bでは、1つのバックライトブロック4は、9個のLED7で構成される(図8A及び図8Bでは一部しか図示していない)。例えば、LED7の出射口からY方向のバックライトブロックの長さppは95mm、LED7のX方向の幅wは4.9mm、LED7間の距離dは28.0mmである。
The first embodiment of the present invention will be further described with reference to FIGS. 8A and 8B. 8A and 8B are diagrams showing the arrangement of LEDs in one embodiment of the liquid crystal display device of the present invention. For example, FIGS. 8A and 8B are diagrams showing an embodiment in which the LEDs 7 having the light distribution characteristics shown in FIGS. 11A and 11B are arranged in a liquid crystal display device. FIG. 8A shows a cross-sectional view of the liquid crystal display device as viewed from the side, and FIG. 8B is a schematic diagram showing the display surface field of the LED when the liquid crystal display device is seen from the display surface. However, the LED substrate 6 is not shown in FIG. 8B.
As shown in FIG. 8A, the liquid crystal display device includes a liquid crystal panel 1, an optical sheet unit 2 including a diffusion plate, a diffusion sheet, a polarizing plate, a deflection film, and the like as a whole configuration, and a backlight device. . The backlight device is formed by, for example, arranging a plurality of backlight blocks 4 in a matrix on a plane (in the direction of the light irradiation surface of the backlight device), and obtains uniform luminance in a large-sized backlight device. I am doing so.
8A and 8B, one backlight block 4 is composed of nine LEDs 7 (only a part is shown in FIGS. 8A and 8B). For example, the length pp of the backlight block in the Y direction from the exit of the LED 7 is 95 mm, the width w in the X direction of the LED 7 is 4.9 mm, and the distance d between the LEDs 7 is 28.0 mm.
 図8A及び図8Bの液晶表示装置では、液晶パネル1の背面(図8A及び図8BのZ方向下)側から光を照射するためにバックライト装置が必要である。図8A及び図8Bのバックライト装置は、その構造によって、ハイブリッド方式のバックライト装置である。このハイブリッド方式は、バックライト装置を複数のバックライトブロック4に光学的に分割して個別に光強度をコントロール、即ち、エリア制御できる構造を指すものである。当該ハイブリッド方式は、スリムブロック方式とも呼ばれる。本発明に係るバックライト装置は、スリムブロック方式を対象とするものであり、特にサイドビュー型のLEDを光源として採用し、かつバックライト装置を複数のバックライトブロックに分割された構造を対象とするものである。 In the liquid crystal display device of FIGS. 8A and 8B, a backlight device is required to irradiate light from the back side of the liquid crystal panel 1 (below the Z direction in FIGS. 8A and 8B). The backlight device of FIGS. 8A and 8B is a hybrid backlight device depending on its structure. This hybrid system indicates a structure in which the backlight device is optically divided into a plurality of backlight blocks 4 so that the light intensity can be individually controlled, that is, the area can be controlled. The hybrid system is also called a slim block system. The backlight device according to the present invention is intended for a slim block system, and particularly for a structure in which a side view type LED is used as a light source and the backlight device is divided into a plurality of backlight blocks. To do.
 図8A及び図8Bにおいて、LED7は、矢印27の方向に拡散性の光を空気層24内に出射する。出射された光は、反射シート19及び拡散板(光学シート部2)間で反射を繰り返しながら、空気層24内を伝播する。伝播する光は、拡散板等の光学シート部2を通過して液晶パネル1の方向に出射する。
  しかし、LED7は、図11A及び図11Bで説明したような配光特性を持つ。そして、光の輝度は、伝播する距離の2乗に反比例して減少する。従って、液晶パネル1の表面上で輝度を測定するとA点、B点、及びC点では、輝度が異なる。このように、画質が均一にならない。特に光源であるLED7に一番遠い領域(バックライトブロックの最先端部)28が暗い領域となる。
  そこで、次に述べる実施例2では、さらに、図9A及び図9Bを用いて、光源からの光の利用効率を向上させて、高画質の映像を得るバックライト装置及び液晶表示装置について説明する。
8A and 8B, the LED 7 emits diffusive light into the air layer 24 in the direction of the arrow 27. The emitted light propagates in the air layer 24 while being repeatedly reflected between the reflection sheet 19 and the diffusion plate (optical sheet portion 2). The propagating light passes through the optical sheet portion 2 such as a diffusion plate and is emitted in the direction of the liquid crystal panel 1.
However, the LED 7 has a light distribution characteristic as described in FIGS. 11A and 11B. The brightness of light decreases in inverse proportion to the square of the propagation distance. Therefore, when the luminance is measured on the surface of the liquid crystal panel 1, the luminance is different at the points A, B, and C. Thus, the image quality is not uniform. In particular, the region (the most advanced portion of the backlight block) 28 farthest from the LED 7 that is the light source is a dark region.
Therefore, in a second embodiment described below, a backlight device and a liquid crystal display device that further improve the utilization efficiency of light from the light source and obtain a high-quality image will be described with reference to FIGS. 9A and 9B.
 図9A及び図9Bは、本発明の液晶表示装置の一実施例のLEDの配置を示す図である。例えば図9A及び図9Bは、図8A及び図8Bの実施形態に対して、LED7の出射方向27に平行に、仕切り板91を設けたものである。図11Aで説明したように、LED7の出射光は、横(X)方向のも広がるが、仕切り板91によって反射し、LED7の出射方向27への伝播が促進される。その結果、LED7の出射光は図8A及び図8Bの構成に比べて、最先端部28に到達可能な光量が増加する。このため、バックライトブロック4のX方向及びY方向全面でほぼ均一に光を伝播することができる。特に、Y方向の輝度が均一になる。従って、液晶パネル1からの出力光は、実施例1よりも均一な輝度となる。このため、光源からの光の利用効率を向上させて高画質な映像を得ることが可能なバックライト装置及びこれを用いた液晶表示装置を実現できる。ここで、仕切り板91は、例えば平坦で、反射シート19と同様に、光を全反射する表面構造を有する。
  なお、図9A及び図9Bの実施例2では、仕切り板91を、LED3個ごとに仕切っている。しかし、1個ずつ若しくは4個ずつ等、仕切り板を設けるLEDの数は任意である。また、バックライト装置の最外周には仕切り板を設けなくてもよい。
  さらに、仕切り板91は、例えば、反射シート19とシャーシ11の要所に貫通孔を開け、ナイロン(登録商標)等の樹脂プッシュリベット等で固定する。
  またさらに、仕切り板は、LED7の出射口からY方向のバックライトブロックの長さppの1/2から1/3程度の距離まで配置し、最先端部側には仕切り板を設けない。
9A and 9B are diagrams showing the arrangement of LEDs in an embodiment of the liquid crystal display device of the present invention. For example, FIG. 9A and FIG. 9B are provided with a partition plate 91 parallel to the emission direction 27 of the LED 7 in the embodiment of FIG. 8A and FIG. 8B. As described with reference to FIG. 11A, the emitted light of the LED 7 spreads in the lateral (X) direction, but is reflected by the partition plate 91 and the propagation of the LED 7 in the emitting direction 27 is promoted. As a result, the amount of light that can be emitted from the LED 7 can reach the most distal portion 28 as compared with the configuration of FIGS. 8A and 8B. For this reason, light can be propagated substantially uniformly over the entire X direction and Y direction of the backlight block 4. In particular, the luminance in the Y direction becomes uniform. Accordingly, the output light from the liquid crystal panel 1 has a more uniform brightness than that of the first embodiment. Therefore, it is possible to realize a backlight device capable of improving the utilization efficiency of light from the light source and obtaining a high-quality image and a liquid crystal display device using the backlight device. Here, the partition plate 91 is flat, for example, and has a surface structure that totally reflects light in the same manner as the reflection sheet 19.
In addition, in Example 2 of FIG. 9A and FIG. 9B, the partition plate 91 is partitioned for every three LEDs. However, the number of LEDs provided with a partition plate is arbitrary, such as one by one or four by one. Further, the partition plate may not be provided on the outermost periphery of the backlight device.
Further, the partition plate 91 is fixed with a resin push rivet such as nylon (registered trademark), for example, with a through-hole formed in a point of the reflection sheet 19 and the chassis 11.
Furthermore, the partition plate is arranged from the exit of the LED 7 to a distance of about ½ to 3 of the length pp of the backlight block in the Y direction, and no partition plate is provided on the most distal end side.
 図17は、実施例1(仕切り板なし)と実施例2(仕切り板あり)の違いがある場合に、LED7の出力を同一として、A点、B点、C点において測定した輝度評価結果の一例を示す図である。
  実施例1の仕切り板がない場合には、A点で140cd/m、B点で70cd/m、C点で65cd/mであった。そして、実施例2のように仕切り板を設けた場合には、A点で140cd/m、B点で88cd/m、C点で83cd/mであった。
  このように、実施例1(仕切り板なし)に対して、実施例2(仕切り板あり)では、図17に示すように、A点、B点、C点において測定された輝度の差が小さいことが分かる。
FIG. 17 shows the results of luminance evaluation results measured at points A, B, and C, assuming that the output of LED 7 is the same when there is a difference between Example 1 (without a partition plate) and Example 2 (with a partition plate). It is a figure which shows an example.
In the case where the partition plate of Example 1 was not provided, the point A was 140 cd / m 2 , the point B was 70 cd / m 2 , and the point C was 65 cd / m 2 . When the partition plate was provided as in Example 2, the point A was 140 cd / m 2 , the point B was 88 cd / m 2 , and the point C was 83 cd / m 2 .
Thus, in Example 2 (with a partition plate), the difference in luminance measured at points A, B, and C is small compared to Example 1 (without a partition plate), as shown in FIG. I understand that.
 図10A及び図10Bによって、本発明の実施例3について説明する。図10A及び図10Bは、本発明の液晶表示装置の一実施例のLEDの配置を示す図である。例えば図10A及び図10Bは、図9A及び図9Bの実施例2において、さらに、LED7の直上部分に光を遮断する遮光シート92を設けたものである(ただし、煩雑になるため、一部のLEDの上にしか図示していない。)。
  この結果、液晶パネル1の出射光は、LED7の直上部近辺にて極端な輝度とならず、液晶パネル1からの光は、実施例2よりも均一な輝度となる。このため、光源からの光の利用効率を向上させて高画質な映像を得ることが可能なバックライト装置及びこれを用いた液晶表示装置を実現できる。
  なお、遮光シート92は、光学シート部2上に印刷によって形成する。または、別に遮光シートを作成し、光学シート部2に両面テープ等で貼り付けてもよい。
  さらに、遮光シート92の形状は、図10A及び図10Bでは、楕円形としたが、この形状に限らないことは自明である。また、LED毎に分割せず、連続したシートであってもよい。
A third embodiment of the present invention will be described with reference to FIGS. 10A and 10B. 10A and 10B are diagrams showing the arrangement of LEDs in one embodiment of the liquid crystal display device of the present invention. For example, in FIGS. 10A and 10B, in Example 2 of FIGS. 9A and 9B, a light-blocking sheet 92 that blocks light is further provided immediately above the LED 7 (however, since it becomes complicated, some It is only shown on the LED.)
As a result, the light emitted from the liquid crystal panel 1 does not have an extreme luminance in the immediate vicinity of the LED 7, and the light from the liquid crystal panel 1 has a uniform luminance as compared with the second embodiment. Therefore, it is possible to realize a backlight device capable of improving the utilization efficiency of light from the light source and obtaining a high-quality image and a liquid crystal display device using the backlight device.
The light shielding sheet 92 is formed on the optical sheet portion 2 by printing. Alternatively, a separate light shielding sheet may be created and attached to the optical sheet portion 2 with a double-sided tape or the like.
Furthermore, although the shape of the light shielding sheet 92 is an ellipse in FIGS. 10A and 10B, it is obvious that the shape is not limited to this shape. Moreover, it may be a continuous sheet without being divided for each LED.
 図12A、図12B、図12C及び図12Dによって、本発明の実施例4について説明する。実施例2~実施例3では、仕切り板91は、板状であった。しかし、図12Aに示すように、その断面が、液晶パネル1側を頂上とした2等辺三角形であってもよい。また、図12Bに示すように、その断面が、1または複数の箇所で折れ曲がる直線若しくは曲線形状であってもよい。さらに、図12Cに示すように、その断面が、液晶パネル1側を頂上として、反射シート19側に徐々に広がる曲線形状であってもよい。液晶パネル1からの光は、実施例2~実施例3よりも均一な輝度となる。またさらに、図12Dに示すように、図12Aの形状において、LED7側またはバックライトブロックの最先端部の少なくとも一方が斜めになった形状であってもよい。また斜め線は直線であっても曲線であっても、鋸歯状であってもよい。
  この結果、光源からの光の利用効率を向上させて高画質な映像を得ることが可能なバックライト装置及びこれを用いた液晶表示装置を実現できる。さらに、液晶パネル1から見て、仕切り板が線状になるため、視認不要な(液晶パネル1に表示される画像に邪魔な)仕切り板が視聴者に分かり難くなり、バックライト装置及び液晶表示装置に好適である。
A fourth embodiment of the present invention will be described with reference to FIGS. 12A, 12B, 12C, and 12D. In Example 2 to Example 3, the partition plate 91 was plate-shaped. However, as shown in FIG. 12A, the cross section may be an isosceles triangle with the liquid crystal panel 1 side at the top. Moreover, as shown in FIG. 12B, the cross section may be a straight line or a curved shape that bends at one or a plurality of locations. Furthermore, as shown in FIG. 12C, the cross section may have a curved shape that gradually spreads toward the reflection sheet 19 with the liquid crystal panel 1 side as the top. The light from the liquid crystal panel 1 has a more uniform luminance than in the second to third embodiments. Furthermore, as shown in FIG. 12D, in the shape of FIG. 12A, at least one of the LED 7 side or the most distal portion of the backlight block may be inclined. Further, the diagonal line may be a straight line, a curved line, or a sawtooth shape.
As a result, it is possible to realize a backlight device capable of improving the utilization efficiency of light from the light source and obtaining a high-quality image, and a liquid crystal display device using the backlight device. In addition, since the partition plate is linear when viewed from the liquid crystal panel 1, it is difficult for the viewer to understand the partition plate that is not visually recognized (intrusive to the image displayed on the liquid crystal panel 1). Suitable for the device.
 また仕切り板の形状は、図12A、図12B、図12C及び図12Dの形状に加えて、図13A、図13B及び図13Cに示すように、LED7側を斜めに削ったような形状とし、(図13Aは図12Aに対応し、図13Bは図12Bに、また、図13Cは図12Cに対応する。)LED7から出射した光が、LED7側に反射して戻らないようにして、すべての出射した光がバックライトブロックに投射されるようにしている。
  この結果、液晶パネル1からの光は、実施例2~実施例3よりも均一な輝度となる。このため、光源からの光の利用効率を向上させて高画質な映像を得ることが可能なバックライト装置及びこれを用いた液晶表示装置を実現できる。さらに、液晶パネル1から見て、仕切り板が線状になるため、視認不要な仕切り板が図12A、図12B、図12C及び図12Dで示した実施例に増して視聴者に分かり難くなり、バックライト装置及び液晶表示装置に好適である。
In addition to the shapes of FIGS. 12A, 12B, 12C, and 12D, the shape of the partition plate is such that the LED 7 side is cut obliquely as shown in FIGS. 13A, 13B, and 13C. Fig. 13A corresponds to Fig. 12A, Fig. 13B corresponds to Fig. 12B, and Fig. 13C corresponds to Fig. 12C.) The light emitted from the LED 7 is not reflected and returned to the LED 7 side. The projected light is projected onto the backlight block.
As a result, the light from the liquid crystal panel 1 has a more uniform luminance than in the second to third embodiments. Therefore, it is possible to realize a backlight device capable of improving the utilization efficiency of light from the light source and obtaining a high-quality image and a liquid crystal display device using the backlight device. Furthermore, since the partition plate is linear when viewed from the liquid crystal panel 1, the partition plate that is not visually recognized becomes more difficult for the viewer to understand than the embodiments shown in FIGS. 12A, 12B, 12C, and 12D. It is suitable for a backlight device and a liquid crystal display device.
 また仕切り板の形状は、図12A、図12B、図12C及び図12D若しくは図13A、図13B及び図13Cの形状に加えて、図14A~図14Fに示すように、液晶パネル1側が1または複数の尖鋭な突起を有するようにしてもよい。突起の形状、間隔、及びそれらの組み合わせは任意である。
  また、上記図14A~図14Fの突起は、好ましくは、それらの頂上が点となるように形成する。この結果、液晶パネル1から見て、仕切り板が点状になるため、視認不要な仕切り板が図13A、図13B及び図13Cで示した実施例以上に視聴者に分かり難くなり、バックライト装置及び液晶表示装置に好適である。さらに、その視聴者の分かり難くさは、点の位置が不規則になればなるほど効果的である。このため、好ましくは、図14Eや図14Fのように、突起の配置を不規則にするようにしてもよい。
In addition to the shapes of FIG. 12A, FIG. 12B, FIG. 12C and FIG. 12D or FIG. 13A, FIG. 13B and FIG. 13C, the partition plate has one or more liquid crystal panels 1 as shown in FIG. You may make it have a sharp protrusion. The shape of the protrusion, the interval, and a combination thereof are arbitrary.
14A to 14F are preferably formed so that their tops become dots. As a result, since the partition plate is dotted as viewed from the liquid crystal panel 1, the partition plate that is not visually recognized becomes more difficult for the viewer to understand than the embodiment shown in FIGS. 13A, 13B, and 13C. And suitable for a liquid crystal display device. Furthermore, the viewer's difficulty in understanding is more effective as the positions of the points become irregular. For this reason, preferably, as shown in FIGS. 14E and 14F, the arrangement of the protrusions may be irregular.
 図15によって、本発明の実施例5について説明する。図15は、本発明の液晶表示装置の一実施例のLEDの配置を示す図である。図15は、実施例2乃至実施例4と比較して、仕切り板を設けず、シャーシ11を屈曲させて、仕切り板の替わりとしたものである。
  図15の実施例では、シャーシ11と共に反射シート19も屈曲させている。そのため、LED7から出射して、横(X)方向に向かった光は、屈曲して仕切りを形成している反射シート部分で全反射する。
  この結果、実施例2乃至実施例4と同様に、LED7の出射方向(紙面上奥行方向)27への伝播が促進される。その結果、LED7の出射光は図8A及び図8Bの構成に比べて、最先端部28に到達可能な光量が増加する。このため、バックライトブロック4のX方向及びY方向全面でほぼ均一に光を伝播することができる。特に、Y方向の輝度が均一になる。従って、液晶パネル1からの出力光は、実施例1よりも均一な輝度となる。このため、光源からの光の利用効率を向上させて高画質な映像を得ることが可能なバックライト装置及びこれを用いた液晶表示装置を実現できる。
A fifth embodiment of the present invention will be described with reference to FIG. FIG. 15 is a diagram showing the arrangement of LEDs in one embodiment of the liquid crystal display device of the present invention. FIG. 15 shows a case in which the partition plate is not provided and the chassis 11 is bent to replace the partition plate as compared with the second to fourth embodiments.
In the embodiment of FIG. 15, the reflection sheet 19 is bent together with the chassis 11. Therefore, the light emitted from the LED 7 and directed in the lateral (X) direction is totally reflected by the reflection sheet portion that is bent and forms a partition.
As a result, similar to the second to fourth embodiments, the propagation of the LED 7 in the emission direction (depth direction on the paper surface) 27 is promoted. As a result, the amount of light that can be emitted from the LED 7 can reach the most distal portion 28 as compared with the configuration of FIGS. 8A and 8B. For this reason, light can be propagated substantially uniformly over the entire X direction and Y direction of the backlight block 4. In particular, the luminance in the Y direction becomes uniform. Accordingly, the output light from the liquid crystal panel 1 has a more uniform brightness than that of the first embodiment. Therefore, it is possible to realize a backlight device capable of improving the utilization efficiency of light from the light source and obtaining a high-quality image and a liquid crystal display device using the backlight device.
 図16A及び図16Bによって、本発明の実施例6について説明する。図16A及び図16Bは、本発明の液晶表示装置の一実施例のLEDの配置を示す図である。例えば図16A及び図16Bは、図10A及び図10Bの実施例3と比較して、仕切り板91’を光学シート部2の拡散板の裏面に接触するように設けたものである。この結果、図5に示した反射シート19と光制御部材9との間の空間を支持するための円錐状のピンモールド38等の支持部材が不要となる。
  このように、仕切り板91’を設けることにより、実施例1~実施例5において、反射シート19と光制御部材9との間の空間を支持するための支持部材が不要となり、部品コストの削減及び組み立てコストの削減ができる。
A sixth embodiment of the present invention will be described with reference to FIGS. 16A and 16B. 16A and 16B are diagrams showing the arrangement of LEDs in one embodiment of the liquid crystal display device of the present invention. For example, in FIGS. 16A and 16B, the partition plate 91 ′ is provided so as to be in contact with the back surface of the diffusion plate of the optical sheet portion 2 as compared with the third embodiment of FIGS. 10A and 10B. As a result, a support member such as a conical pin mold 38 for supporting the space between the reflection sheet 19 and the light control member 9 shown in FIG.
Thus, by providing the partition plate 91 ′, a supporting member for supporting the space between the reflection sheet 19 and the light control member 9 is not required in the first to fifth embodiments, and the component cost is reduced. In addition, the assembly cost can be reduced.
 上述の実施例1~6によれば、LED光源からの光の利用効率を向上させて、高画質の映像を得ることが可能なバックライト装置及びこれを用いた液晶表示装置を提供することができる。 According to the first to sixth embodiments described above, it is possible to provide a backlight device capable of improving the utilization efficiency of light from the LED light source and obtaining a high-quality image, and a liquid crystal display device using the backlight device. it can.
 1:液晶パネル、 2:光学シート部、 3:バックライト装置、 4:バックライトブロック、 6:LED基板、 7:LED、 9:光制御部材、 11:シャーシ、 14:電源、 15:信号コントロール基板、 16:LED駆動回路、 17;バックカバー、 18:光学シート群、 19:反射シート、 20:光学素子、 22:拡散板、 23:光学部材、 24:空気層、 27:出射方向、 28:最先端部、 38:ピンモールド、 40:輝度明部、 41:輝度暗部、 42:輝度中明暗部、 91、91’:仕切り板、 101、102、103、104:パターン、 115、116:光源分布。 1: liquid crystal panel, 2: optical sheet part, 3: backlight device, 4: backlight block, 6: LED board, 7: LED, 9: light control member, 11: chassis, 14: power supply, 15: signal control Substrate, 16: LED drive circuit, 17: Back cover, 18: Optical sheet group, 19: Reflective sheet, 20: Optical element, 22: Diffuser, 23: Optical member, 24: Air layer, 27: Emission direction, 28 : Cutting edge part, 38: Pin mold, 40: Brightness light part, 41: Brightness dark part, 42: Brightness light and dark part, 91, 91 ': Partition plate, 101, 102, 103, 104: Pattern, 115, 116: Light source distribution.

Claims (9)

  1.  液晶パネルに光を照射するためのバックライト装置において、
     上記バックライト装置は、シャーシと、上記シャーシ上に複数のバックライトブロックを有し、
     各バックライトブロックは、該バックライトブロックの底面側であって上記シャーシ上に設けられたシート状の反射部材と、該反射部材と対向して設けられ、該反射部材から上記バックライトの光照射面と直交する方向に所定間隔離して配置された板状の光学素子と、該光学素子と反射部材との間の空間に配置された、上記バックライトの光照射面と平行な方向に光を放出する複数のLED(Light Emitting Diode)と、上記複数のLED間であって、上記光照射面及び上記光を放出する方向とに平行な方向に上記空間を仕切る仕切り板とを備え、
     上記光源からの光を、上記光学素子と反射部材と間の空間内を繰り返し反射させて伝播させながら光学素子を透過させて、上記液晶パネル側へ導く構成とすることを特徴とするバックライト装置。
    In the backlight device for irradiating the liquid crystal panel with light,
    The backlight device has a chassis and a plurality of backlight blocks on the chassis,
    Each backlight block is provided on the bottom surface side of the backlight block and on the chassis, and is provided to face the reflecting member. The light irradiation of the backlight is performed from the reflecting member. A plate-like optical element disposed at a predetermined interval in a direction perpendicular to the surface, and light in a direction parallel to the light irradiation surface of the backlight disposed in a space between the optical element and the reflecting member. A plurality of LEDs (Light Emitting Diodes) to be emitted, and a partition plate that partitions the space in a direction parallel to the light emitting surface and the direction of emitting the light, between the plurality of LEDs.
    A backlight device characterized in that the light from the light source is transmitted through the optical element while being repeatedly reflected and propagated in the space between the optical element and the reflecting member, and guided to the liquid crystal panel side. .
  2.  請求項1に記載のバックライト装置において、上記LEDは、サイドビュー型のLEDであることを特徴とするバックライト装置。 2. The backlight device according to claim 1, wherein the LED is a side view type LED.
  3.  請求項1に記載のバックライト装置において、上記光学部材及び/または反射シートに所定のパターンを形成したことを特徴とするバックライト装置。 2. The backlight device according to claim 1, wherein a predetermined pattern is formed on the optical member and / or the reflection sheet.
  4.  請求項1に記載のバックライト装置において、上記LEDの直上の上記光学素子に上記LEDの上方に放出される光を遮蔽する遮蔽板を設けたことを特徴とするバックライト装置。 2. The backlight device according to claim 1, wherein a shielding plate for shielding light emitted above the LED is provided on the optical element immediately above the LED.
  5.  請求項1記載のバックライト装置において、上記仕切り板は、上記LEDの伝播を促進する仕切り板あって、かつ、上記シャーシと上記光学素子間である上記空間を支持することを特徴とするバックライト装置。 2. The backlight device according to claim 1, wherein the partition plate is a partition plate that promotes the propagation of the LED, and supports the space between the chassis and the optical element. apparatus.
  6.  請求項1記載のバックライト装置において、上記仕切り板は、上記LEDの伝播を促進する仕切り板であって、かつ、上記シャーシと上記光学素子間で、上記LEDが上記光学素子に接触しないように取付け、上記空間を支持することを特徴とするバックライト装置。 2. The backlight device according to claim 1, wherein the partition plate is a partition plate that promotes propagation of the LED, and the LED does not contact the optical element between the chassis and the optical element. A backlight device mounted and supporting the space.
  7.  請求項1記載のバックライト装置において、上記仕切り板は、上記LEDの光の出射口から上記光の出射方向に上記バックライトブロックの長さの1/2から1/3程度の距離まで配置し、上記バックライトブロックの最先端部側には仕切り板を設けないことを特徴とするバックライト装置。 2. The backlight device according to claim 1, wherein the partition plate is disposed from the light emission port of the LED to a distance of about ½ to の of the length of the backlight block in the light emission direction. The backlight device is characterized in that no partition plate is provided on the most distal portion side of the backlight block.
  8.  請求項1記載のバックライト装置において、上記仕切り板は、上記シャーシ及び上記反射部材を屈曲させて構成したことを特徴とするバックライト装置。 2. The backlight device according to claim 1, wherein the partition plate is formed by bending the chassis and the reflecting member.
  9.  液晶パネルと、請求項1乃至請求項8のいずれかに記載のバックライト装置を用いたことを特徴とする液晶表示装置。 A liquid crystal display device using the liquid crystal panel and the backlight device according to any one of claims 1 to 8.
PCT/JP2012/062011 2011-09-29 2012-05-10 Backlight device and liquid crystal display device using same WO2013046790A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011213996A JP2013073874A (en) 2011-09-29 2011-09-29 Backlight device and liquid crystal display device using the same
JP2011-213996 2011-09-29

Publications (1)

Publication Number Publication Date
WO2013046790A1 true WO2013046790A1 (en) 2013-04-04

Family

ID=47994857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/062011 WO2013046790A1 (en) 2011-09-29 2012-05-10 Backlight device and liquid crystal display device using same

Country Status (2)

Country Link
JP (1) JP2013073874A (en)
WO (1) WO2013046790A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006120499A (en) * 2004-10-22 2006-05-11 Sumitomo Rubber Ind Ltd LIGHTING DEVICE AND METHOD FOR FORMING LAYER ON GLASS PLATE USED FOR LIGHTING DEVICE
JP2006120594A (en) * 2004-10-20 2006-05-11 Samsung Electro-Mechanics Co Ltd Backlight device reduced in thickness
JP2009187904A (en) * 2008-02-08 2009-08-20 Toppan Printing Co Ltd Light source unit, backlight unit and display device
JP2010097736A (en) * 2008-10-14 2010-04-30 Citizen Electronics Co Ltd Plane light source and liquid crystal display
JP2010277728A (en) * 2009-05-26 2010-12-09 Opt Design:Kk Lighting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006120594A (en) * 2004-10-20 2006-05-11 Samsung Electro-Mechanics Co Ltd Backlight device reduced in thickness
JP2006120499A (en) * 2004-10-22 2006-05-11 Sumitomo Rubber Ind Ltd LIGHTING DEVICE AND METHOD FOR FORMING LAYER ON GLASS PLATE USED FOR LIGHTING DEVICE
JP2009187904A (en) * 2008-02-08 2009-08-20 Toppan Printing Co Ltd Light source unit, backlight unit and display device
JP2010097736A (en) * 2008-10-14 2010-04-30 Citizen Electronics Co Ltd Plane light source and liquid crystal display
JP2010277728A (en) * 2009-05-26 2010-12-09 Opt Design:Kk Lighting device

Also Published As

Publication number Publication date
JP2013073874A (en) 2013-04-22

Similar Documents

Publication Publication Date Title
JP5667888B2 (en) BACKLIGHT UNIT AND VIDEO DISPLAY DEVICE USING THE SAME
JP5738742B2 (en) Surface light source device
JP4435774B2 (en) Backlight assembly and liquid crystal display device
KR101047754B1 (en) Side Dimming Backlight Unit
JP2013012422A (en) Backlight device, and liquid crystal display device using the same
JP5422473B2 (en) Video display device and backlight device used therefor
JP2010021131A (en) Display device and backlight unit used for the same
JP5774942B2 (en) Illumination unit and display device using the same
EP2306224A2 (en) Backlight unit and video display apparatus applying the same therein
EP2461205A2 (en) Backlight device and image display using the same
JP2013243126A (en) Illumination device, and liquid crystal display apparatus using the same
EP2562590B1 (en) Illumination unit and display apparatus using the same
CN102954369B (en) The display device of lighting unit and this lighting unit of use
JP2007335182A (en) Surface light source element, light control member used therefor, and image display device using the same
JP5533611B2 (en) BACKLIGHT UNIT AND VIDEO DISPLAY DEVICE USING THE SAME
JP2007294372A (en) Surface light source device and display device
KR102425442B1 (en) Display and device
KR20110042528A (en) Back light unit, display device and display method including same
WO2013046790A1 (en) Backlight device and liquid crystal display device using same
JP2009158468A (en) Backlight
WO2013080344A1 (en) Backlight device and liquid-crystal display device using same
KR20120030807A (en) Back light unit and display having the same
JP2011198626A (en) Light source unit and display device including the same
WO2013132539A1 (en) Illuminating apparatus and liquid crystal display apparatus using same
KR20080051941A (en) LGP for liquid crystal display and liquid crystal display using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12835817

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12835817

Country of ref document: EP

Kind code of ref document: A1