[go: up one dir, main page]

WO2013042952A1 - Detection apparatus using a hall sensor - Google Patents

Detection apparatus using a hall sensor Download PDF

Info

Publication number
WO2013042952A1
WO2013042952A1 PCT/KR2012/007533 KR2012007533W WO2013042952A1 WO 2013042952 A1 WO2013042952 A1 WO 2013042952A1 KR 2012007533 W KR2012007533 W KR 2012007533W WO 2013042952 A1 WO2013042952 A1 WO 2013042952A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic force
hall sensor
unit
force applying
applying unit
Prior art date
Application number
PCT/KR2012/007533
Other languages
French (fr)
Korean (ko)
Inventor
김광식
Original Assignee
Kim Kwang Shik
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kim Kwang Shik filed Critical Kim Kwang Shik
Publication of WO2013042952A1 publication Critical patent/WO2013042952A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/07Hall effect devices

Definitions

  • the present invention relates to a detection device using a hall sensor, and more particularly, to a detection device using a hall sensor having a structure capable of realizing a high-efficiency detection effect at a low cost.
  • Magnetic particles are manufactured from magnetite, and have been researched and used for a long time in the field of biochemistry, because they are very promising as tags for detecting the presence of a bound object by coating the surface of the particle with a biomaterial of interest.
  • magnetic signals from very small volumes of magnetic particles are extremely small, the manufacture of magnetic detectors remains a difficult challenge and is being studied in various ways.
  • the Hall sensor mainly used in the sensing method is a device using the electromotive force generated when a current flows in a conductor among the magnetic fields applied in the vertical direction, that is, the Hall effect.
  • Such a hall sensor is being used in various ways to recognize various measurement signals in equipment such as automobiles.
  • various devices to which the detection method using electromotive force is applied such as a suspension system of a vehicle, a brake detection system of a vehicle, and a detection system for charging or discharging a battery.
  • FIG. 1 is a simplified conceptual diagram showing an example of a signal detection system of a hall sensor used in a brake system of an automobile.
  • Electromotive force is generated in the Hall sensor by the magnetization value that changes according to the flow (piston movement: X1 and X2 directions), and various electromotive forces are sensed through the electromotive force.
  • rare earth magnets are divided into neodymium magnets (Nd-Fe-B magnets) and samarium magnets (Sm-Co magnets), and have high coercive force and residual magnet density compared to the permanent magnet materials developed so far. to be. It is an intermetallic compound of Nd (Neodymium, atomic number 60), Fe, and B, which is one of rare earth metals, and exhibits high coercive force and magnetic energy. (Magnetic characteristics are the highest among currently developed magnetic materials.)
  • the samarium magnet (Sm-Co Magnet) is an intermetallic compound of SmCo, which has high magnetic properties and high Curie temperature (750 ° C), and is classified into SmCo5 and Sm2Co17. It is relatively expensive due to the higher temperature coefficient than the neodymium magnets mentioned above, and has a high temperature stability, strong oxidation resistance in the air, and does not require surface treatment of the sintered magnet and is very expensive because it contains only 0.5 to 3% of rare earth minerals There is this.
  • the rare earth magnet described above has a problem that the production cost is greatly increased because of its excellent properties and processability when the product is applied.
  • the present invention has been made to solve the above problems, an object of the present invention is to reduce the production cost by using a non-rare earth magnet instead of rare earth magnets used in the detection device using a hall sensor, while increasing the magnetic force generation efficiency
  • the present invention provides a detection apparatus capable of increasing the detection efficiency by independently adding a magnetic force applying unit.
  • the configuration of the present invention for solving the present invention is a Hall sensor unit in which a current is induced by a magnetic field generated by a current applied from a power source;
  • a first magnetic force applying unit disposed at a first separation distance d1 in a first direction that does not affect a magnetic field in the hall sensor unit;
  • a second magnetic force applying unit configured to apply the magnetic force by being disposed in the second direction and driving the hall sensor unit; It is possible to provide a detection device using a hall sensor comprising a; detecting unit for detecting the current induced in the hall sensor unit.
  • first magnetic force unit disposed in the first magnetic force applying unit and the second magnetic force unit disposed in the second magnetic force applying unit in the detection apparatus according to the present invention described above are arranged so that the directions of the magnetic fields are opposite to each other. It is preferable.
  • the detection apparatus using the Hall sensor according to the present invention may be configured to further include a drive unit for moving the second magnetic force applying unit in the left and right or up and down directions.
  • the second magnetic force applying unit in the present invention may be formed using a non-rare earth (non-rare earth, material) containing two or more of Al, Co, Ni.
  • the first magnetic force applying unit may be composed of any one or a plurality selected from the permanent magnet.
  • the magnet used in the detection device using the hall sensor can reduce the production cost by using a non-rare earth magnet rather than a rare earth, and at the same time independently add a magnetic force applying unit to increase magnetic generation efficiency, thereby increasing detection efficiency. There is an effect of providing a detection device.
  • FIG. 1 is a schematic diagram showing the structure of a detector using a conventional Hall sensor.
  • FIG. 2 is a conceptual view illustrating main parts of a configuration according to the present invention.
  • FIG. 2 is a schematic block diagram showing the main components of a detection device using a Hall sensor according to the present invention (hereinafter referred to as the present device).
  • the apparatus comprises a Hall sensor unit (H) in which current is induced by a magnetic field generated by a current applied from a power source, and the Hall sensor unit does not affect the magnetic field.
  • a first magnetic force applying unit 100 disposed at a first separation distance d1 in one direction, and a second magnetic force applying unit 200 applying magnetic force by being disposed and driven in a second direction of the hall sensor unit; It may be configured to include a detection unit (D) for detecting a current induced in the hall sensor unit.
  • the hall sensor unit H includes at least one hall sensor, and is disposed at a lower portion of the hall sensor unit H at a predetermined second separation distance d2 to apply a magnetic force to the hall sensor unit.
  • the second magnetic force applying unit 200 may be disposed. In the present exemplary embodiment, the second magnetic force applying unit 200 is disposed below the hall sensor unit H in one embodiment, but is not necessarily limited thereto.
  • the second magnetic force applying unit 200 is disposed at a predetermined distance from the hall sensor unit H, and moves in the X-axis direction or the Y-axis direction with a separate drive unit M, or without a separate drive unit. It may be implemented in a structure that can move to realize a change in magnetic force, such as to move naturally in accordance with the movement of the piston of the vehicle.
  • the second magnetic force applying unit 200 is preferably formed using a non-rare earth material containing at least two of Al, Co, and Ni.
  • a non-rare earth material containing at least two of Al, Co, and Ni.
  • the first magnetic force is applied with a constant first separation distance d1 between the hall sensors in a direction opposite to the direction in which the second magnetic force applying unit 200 is disposed (a first direction). It is characterized by having a part (100).
  • the first magnetic force applying unit 100 is basically disposed at a distance (first separation distance) such that the magnetic force does not affect the hall sensor, and is disposed in the second magnetic force applying unit 200. It is more preferable to arrange the poles SN of the magnets in an arrangement opposite to the arrangement of the poles NS of the permanent magnets.
  • the first magnetic force applying unit 100 may be composed of any one or a plurality of solenoid coils, Helmholtz coils, electromagnet yokes, permanent magnets.
  • the magnetic force of the first magnetic force applying unit 100 used in the present embodiment is more preferably disposed to be relatively weaker than the magnetic force of the second magnetic force applying unit 200.
  • the magnetic force of the second magnetic force applying unit 200 is 600 to 1000 gauss, so as to have a difference of 1.5 to 2.0 times. This is preferred.
  • the direction of the magnetic force of the relatively weak first magnetic force applying unit is opposite to the direction of the second magnetic force, and the first magnetic force applying unit having a weak magnetic force by the interaction between the two magnetic force applying portion between the Hall sensor to the Hall sensor It is possible to implement an amplifying effect to more strongly pull the magnetic force formation of the second magnetic force applying portion without affecting.
  • the configuration of the first magnetic force applying unit 100 may be amplified by supplementing the weak magnetic force when the magnetic force generated by the second magnetic force applying unit 200 is weak or non-rare earth materials in the present invention. Allows you to perform a function Through this, even if the second magnetic force applying unit 200 is formed by using a low cost material, an advantage of realizing a desired detection efficiency is realized.
  • the first magnetic force applying unit 100 may be fixed in a state in which a predetermined distance from the hall sensor is fixed without moving or driving separately.
  • the present invention can be implemented in a structure further comprising a drive unit (M) for reciprocating the detection unit (D), the second magnetic force applying unit 200 for detecting a change in electromotive force according to the change in the magnetic field generated by the Hall sensor. Yes is as described above.
  • the detection apparatus according to the present invention described above can be applied to a variety of equipment.
  • the Hall sensor is applied to the brake system of the car and detects the signal generated when the brake is applied to the car to detect the magnetic force generated by the flow of the permanent magnet according to the flow of the piston in the system that realizes the flicker of the tail light Can be applied to systems;
  • the electric parking brake system may be applied to a system having a hall sensor to control the operation of the actuator to implement precise sensing.
  • a vehicle speed sensor and a signal processing apparatus for measuring the rotational speed of the wheel by using a Hall IC and processing the measured speed signal.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

The present invention relates to a detection apparatus using a Hall sensor, and more particularly, to a detection apparatus using a Hall sensor in which a magnet to be used in the detection apparatus is a non-rare-earth magnet rather than a rare-earth magnet to reduce manufacturing cost, and a magnetic force application unit for improving efficiency of generating magnetic force is added independently to achieve improved detection efficiency.

Description

홀 센서를 이용한 검출장치Detection device using Hall sensor
본 발명은 홀 센서를 이용한 검출장치로서, 더욱 상세하게는 저가의 비용으로 고효율의 검출효과를 구현할 수 있는 구조를 갖는 홀 센서를 이용한 검출장치에 관한 것이다.The present invention relates to a detection device using a hall sensor, and more particularly, to a detection device using a hall sensor having a structure capable of realizing a high-efficiency detection effect at a low cost.
자성입자는 자철광으로부터 제조되는 것으로, 입자의 표면을 관심의 대상이 되는 생체물질로 코팅하여 결합한 대상물의 존재를 검출하기 위한 태그로서 매우 유망하기 때문에 특히, 생화학 분야에서 오랫동안 연구되고 사용되어 왔다. 그러나 매우 작은 부피의 자성입자로부터 나오는 자기 신호는 극히 작기 때문에 자기 검출기 제조는 어려운 도전과제로 남겨져 있고 다양한 방식으로 연구되고 있는 실정이다.Magnetic particles are manufactured from magnetite, and have been researched and used for a long time in the field of biochemistry, because they are very promising as tags for detecting the presence of a bound object by coating the surface of the particle with a biomaterial of interest. However, since magnetic signals from very small volumes of magnetic particles are extremely small, the manufacture of magnetic detectors remains a difficult challenge and is being studied in various ways.
특히, 이러한 센싱방식에 주로 사용되는 홀 센서는 수직방향으로 인가된 자장 중에서 도체에 전류가 흐를 경우에 발생하는 기전력, 즉 홀 효과를 이용하는 소자로써 전통적으로 자계를 측정하는 방식이다.In particular, the Hall sensor mainly used in the sensing method is a device using the electromotive force generated when a current flows in a conductor among the magnetic fields applied in the vertical direction, that is, the Hall effect.
이러한 홀 센서는 자동차 등의 장비에 다양한 측정신호를 인지하는 구성으로 다양하게 활용되고 있다. 이를 테면, 자동차의 현가 시스템이나 자동차의 브레이크 감지시스템, 배터리의 충방전 여부에 대한 검출 시스템 등 기전력을 이용한 검출방식이 적용되는 장치는 수없이 많다.Such a hall sensor is being used in various ways to recognize various measurement signals in equipment such as automobiles. For example, there are numerous devices to which the detection method using electromotive force is applied, such as a suspension system of a vehicle, a brake detection system of a vehicle, and a detection system for charging or discharging a battery.
도 1은 자동차의 브레이크 시스템에 이용되는 홀 센서의 신호검출시스템의 일례를 도시한 간략한 개념도이다.1 is a simplified conceptual diagram showing an example of a signal detection system of a hall sensor used in a brake system of an automobile.
도시된 것과 같이, 홀 센서(H)가 배치되는 경우, 자동차의 피스톤(P)의 말단 표면에 형성되는 링 형(RING TYPE) 영구자석(M)이 배치되고, 이러한 영구자석에서 형성되는 자기력의 유동(피스톤의 운동:X1, X2 방향)에 따라 변화되는 자화값에 의해 홀 센서에 기전력이 발생하게 되고, 이러한 기전력을 통해 다양한 신호 감지가 이루어진다.As shown, when the Hall sensor (H) is disposed, a ring type permanent magnet (M) formed on the distal surface of the piston (P) of the vehicle is disposed, the magnetic force formed in this permanent magnet Electromotive force is generated in the Hall sensor by the magnetization value that changes according to the flow (piston movement: X1 and X2 directions), and various electromotive forces are sensed through the electromotive force.
다만, 상기 영구자석(M)을 이용하는 경우, 효율적인 검출을 위한 기전력발생을 위해서는 자력발생의 감도가 높은 물질을 이용해야 하는데, 이때 주로 사용되는 것이 희토류 물질이다.However, in the case of using the permanent magnet (M), in order to generate an electromotive force for efficient detection, it is necessary to use a material having a high sensitivity of the magnetic force, which is mainly used is a rare earth material.
이러한 희토류 자석은 네오디움 자석(Nd-Fe-B Magnet)과 사마륨 자석(Sm-Co Magnet)으로 나누어지며, 지금까지 개발된 영구자석 재료에 비해 월등히 높은 보자력과 잔류자석 밀도를 갖는 고자력 영구 자석이다. 희토류 금속 중 하나인 Nd(Neodymium, 원자번호 60)와 Fe, B와의 금속 간 화합물로서 높은 보자력과 자기 에너지적을 나타낸다. (현재 개발된 자석 재료 중에서 자기적 특성이 가장 높다.)These rare earth magnets are divided into neodymium magnets (Nd-Fe-B magnets) and samarium magnets (Sm-Co magnets), and have high coercive force and residual magnet density compared to the permanent magnet materials developed so far. to be. It is an intermetallic compound of Nd (Neodymium, atomic number 60), Fe, and B, which is one of rare earth metals, and exhibits high coercive force and magnetic energy. (Magnetic characteristics are the highest among currently developed magnetic materials.)
나아가, 자원적으로 풍부한 Nd와 Fe를 사용하므로 가격 면에서 SmCo계 자석보다 저렴하다. 페라이트나 사마륨계 자석보다는 기계적 가공성이 우수한 장점이 있음, 내식성 향상을 위하여 다양한 표면 처리가 가능한 장점이 있다.Furthermore, since it uses resource-rich Nd and Fe, it is cheaper than SmCo magnet in terms of price. The mechanical processability is superior to ferrite or samarium-based magnets, and various surface treatments are possible to improve corrosion resistance.
또한, 희토류 자석중 사마륨 자석 (Sm-Co Magnet)은 SmCo의 금속 간 화합물로서 높은 자기적 특성과 퀴리 온도(750℃)가 높으며, SmCo5 와 Sm2Co17로 구분된다. 이는 상술한 네오디움 자석보다 상대적으로 온도계수가 높아 온도에 대한 안정성이 크고, 대기중 내산화성이 강하여 소결자석의 표면처리가 필요 없으며, 희토류 광물 중 0.5~3% 밖에 함유되어 있지 않으므로 매우 고가인 단점이 있다.Among the rare earth magnets, the samarium magnet (Sm-Co Magnet) is an intermetallic compound of SmCo, which has high magnetic properties and high Curie temperature (750 ° C), and is classified into SmCo5 and Sm2Co17. It is relatively expensive due to the higher temperature coefficient than the neodymium magnets mentioned above, and has a high temperature stability, strong oxidation resistance in the air, and does not require surface treatment of the sintered magnet and is very expensive because it contains only 0.5 to 3% of rare earth minerals There is this.
즉, 상술한 희토류 자석은 그 특성 및 제품 적용시 가공성이 우수한 반면 가격이 매우 고가여서 생산비용이 크게 증가하는 문제가 발생하고 있다.That is, the rare earth magnet described above has a problem that the production cost is greatly increased because of its excellent properties and processability when the product is applied.
본 발명은 상술한 과제를 해결하기 위해 안출된 것으로, 본 발명의 목적은 홀 센서를 이용한 검출장치에 이용되는 자석을 희토류가 아닌 비희토류 자석을 이용하여 생산단가를 낮추는 동시에, 자력발생효율을 높이기 위한 자기력인가부를 독립적으로 부가하여 검출효율을 높일 수 있는 검출장치를 제공하는 데 있다.The present invention has been made to solve the above problems, an object of the present invention is to reduce the production cost by using a non-rare earth magnet instead of rare earth magnets used in the detection device using a hall sensor, while increasing the magnetic force generation efficiency The present invention provides a detection apparatus capable of increasing the detection efficiency by independently adding a magnetic force applying unit.
본 발명은 상술한 과제를 해결하기 위하여 안출된 것으로, 본 과제를 해결하기 위한 본 발명의 구성은 전원에서 인가되는 전류에 의해 발생하는 자장에 의해 전류가 유도되는 홀 센서부; 상기 홀 센서부에 자장의 영향을 주지 않는 제1방향으로 제1이격거리(d1)에 배치되는 제1자기력인가부; 상기 홀 센서부의 제2방향에 배치되어 구동함으로써, 자기력을 인가하는 제2자기력인가부; 상기 홀 센서부에 유도된 전류를 검출하는 검출부;를 포함하여 구성되는 홀 센서를 이용한 검출장치를 제공할 수 있도록 한다.The present invention has been made to solve the above-described problems, the configuration of the present invention for solving the present invention is a Hall sensor unit in which a current is induced by a magnetic field generated by a current applied from a power source; A first magnetic force applying unit disposed at a first separation distance d1 in a first direction that does not affect a magnetic field in the hall sensor unit; A second magnetic force applying unit configured to apply the magnetic force by being disposed in the second direction and driving the hall sensor unit; It is possible to provide a detection device using a hall sensor comprising a; detecting unit for detecting the current induced in the hall sensor unit.
또한, 상술한 본 발명에 따른 검출장치에서의 상기 제1자기력인가부에 배치되는 제1자력유닛과, 상기 제2자기력인가부에 배치되는 제2자력유닛은 자기장의 방향이 상호 반대되도록 배치되는 것이 바람직하다.In addition, the first magnetic force unit disposed in the first magnetic force applying unit and the second magnetic force unit disposed in the second magnetic force applying unit in the detection apparatus according to the present invention described above are arranged so that the directions of the magnetic fields are opposite to each other. It is preferable.
또한, 본 발명에 따른 상기 홀 센서를 이용한 검출장치는, 상기 제2자기력인가부를 좌우 또는 상하 방향으로 이동하는 구동부를 더 포함하여 구성될 수 있다.In addition, the detection apparatus using the Hall sensor according to the present invention may be configured to further include a drive unit for moving the second magnetic force applying unit in the left and right or up and down directions.
아울러, 본 발명에서의 상기 제2자기력인가부는, Al, Co, Ni 중 둘 이상을 포함하는 비희토류(non-rare earth, 非稀土類) 재료를 이용하여 형성될 수 있다.In addition, the second magnetic force applying unit in the present invention, it may be formed using a non-rare earth (non-rare earth, material) containing two or more of Al, Co, Ni.
아울러, 본 발명에 따른 상기 제1자기력인가부는, 솔레노이드 코일, 헬름홀츠(Helmotz)코일, 전자석 요크, 영구자석 중에서 선택되는 어느 하나 또는 복수로 구성될 수 있다.In addition, the first magnetic force applying unit according to the present invention, the solenoid coil, Helmholtz (Helmotz) coil, electromagnet yoke, may be composed of any one or a plurality selected from the permanent magnet.
본 발명에 따르면, 홀 센서를 이용한 검출장치에 이용되는 자석을 희토류가 아닌 비희토류 자석을 이용하여 생산단가를 낮추는 동시에, 자력발생효율을 높이기 위한 자기력인가부를 독립적으로 부가하여 검출효율을 높일 수 있는 검출장치를 제공하는 효과가 있다.According to the present invention, the magnet used in the detection device using the hall sensor can reduce the production cost by using a non-rare earth magnet rather than a rare earth, and at the same time independently add a magnetic force applying unit to increase magnetic generation efficiency, thereby increasing detection efficiency. There is an effect of providing a detection device.
도 1은 종래의 홀 센서를 이용한 검출기의 구조를 도시한 개략도이다.1 is a schematic diagram showing the structure of a detector using a conventional Hall sensor.
도 2는 본 발명에 따른 구성을 도시한 요부 개념도이다.2 is a conceptual view illustrating main parts of a configuration according to the present invention.
이하에서는 첨부한 도면을 참조하여 본 발명에 따른 구성 및 작용을 구체적으로 설명한다. 첨부 도면을 참조하여 설명함에 있어, 도면 부호에 관계없이 동일한 구성요소는 동일한 참조부여를 부여하고, 이에 대한 중복설명은 생략하기로 한다. 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.Hereinafter, with reference to the accompanying drawings will be described in detail the configuration and operation according to the present invention. In the description with reference to the accompanying drawings, the same components are given the same reference numerals regardless of the reference numerals, and duplicate description thereof will be omitted. Terms such as first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
도 2는 본 발명에 따른 홀 센서를 이용한 검출장치(이하, '본 장치'라고 한다.)의 요부 구성을 도시한 개략적인 블록도이다.FIG. 2 is a schematic block diagram showing the main components of a detection device using a Hall sensor according to the present invention (hereinafter referred to as the present device).
도시된 도면을 참조하면, 본 발명에 따른 본 장치는 전원에서 인가되는 전류에 의해 발생하는 자장에 의해 전류가 유도되는 홀 센서부(H)와, 상기 홀 센서부에 자장의 영향을 주지 않는 제1방향으로 제1이격거리(d1)에 배치되는 제1자기력인가부(100), 그리고 상기 홀 센서부의 제2방향에 배치되어 구동함으로써, 자기력을 인가하는 제2자기력인가부(200), 상기 홀 센서부에 유도된 전류를 검출하는 검출부(D)를 포함하여 구성될 수 있다.Referring to the drawings, the apparatus according to the present invention comprises a Hall sensor unit (H) in which current is induced by a magnetic field generated by a current applied from a power source, and the Hall sensor unit does not affect the magnetic field. A first magnetic force applying unit 100 disposed at a first separation distance d1 in one direction, and a second magnetic force applying unit 200 applying magnetic force by being disposed and driven in a second direction of the hall sensor unit; It may be configured to include a detection unit (D) for detecting a current induced in the hall sensor unit.
상기 홀 센서부(H)는 적어도 1 이상의 홀 센서를 포함하여 구성되며, 상기 홀 센서부(H)의 하부에 일정한 제2이격거리(d2)를 두고 배치되어 상기 홀 센서부에 자기력을 인가하는 제2자기력인가부(200)이 배치될 수 있다. 본 실시예에서는 홀 센서부(H)의 하부에 제2자기력인가부(200)이 배치되는 것을 일 실시예로 설명하나, 반드시 여기에 한정되는 것은 아니다.The hall sensor unit H includes at least one hall sensor, and is disposed at a lower portion of the hall sensor unit H at a predetermined second separation distance d2 to apply a magnetic force to the hall sensor unit. The second magnetic force applying unit 200 may be disposed. In the present exemplary embodiment, the second magnetic force applying unit 200 is disposed below the hall sensor unit H in one embodiment, but is not necessarily limited thereto.
이러한 상기 제2자기력인가부(200)는 상기 홀 센서부(H)와 일정한 거리를 두고 배치되면서, 별도의 구동부(M)를 두고 X축 방향 또는 Y축 방향으로 움직이거나, 또는 별도의 구동부 없이 자동차의 피스톤의 이동에 따라 자연스럽게 이동하는 등, 자력변화를 구현하기 위한 이동을 할 수 있는 구조로 구현될 수 있다.The second magnetic force applying unit 200 is disposed at a predetermined distance from the hall sensor unit H, and moves in the X-axis direction or the Y-axis direction with a separate drive unit M, or without a separate drive unit. It may be implemented in a structure that can move to realize a change in magnetic force, such as to move naturally in accordance with the movement of the piston of the vehicle.
특히, 상기 제2자기력인가부(200)는 Al, Co, Ni 중 둘 이상을 포함하는 비희토류(non-rare earth, 非稀土類)재료를 이용하여 형성되는 것이 바람직하다. 물론, 희토류광물로 구성되는 영구자석을 이용하는 것도 가능하나, 이 경우에는 매우 최소한의 자력을 가질 수 있도록 사용하여 비용을 절감하도록 하는 것이 바람직하다.In particular, the second magnetic force applying unit 200 is preferably formed using a non-rare earth material containing at least two of Al, Co, and Ni. Of course, it is also possible to use a permanent magnet composed of rare earth minerals, in this case, it is desirable to use to have a very minimum magnetic force to reduce the cost.
본 발명에서는 특징적인 구성으로 상기 제2자기력인가부(200)가 배치되는 방향과 대향되는 방향(제1방향)에 홀 센서를 사이에 두고 일정한 제1이격거리(d1)을 두고 제1자기력인가부(100)을 구비하는 것을 특징으로 한다.According to the present invention, the first magnetic force is applied with a constant first separation distance d1 between the hall sensors in a direction opposite to the direction in which the second magnetic force applying unit 200 is disposed (a first direction). It is characterized by having a part (100).
상기 제1자기력인가부(100)은 기본적으로 상기 홀 센서에 자력의 영향을 미치지 않을 정도의 거리(제1이격거리)를 두고 배치되는 것이 바람직하며, 상기 제2자기력인가부(200)에 배치되는 영구자석의 극의 배열(N-S)과는 상반되는 배치로 자석의 극(S-N)을 배치하는 것이 더욱 바람직하다. 또한, 상기 제1자기력인가부(100)은 솔레노이드 코일, 헬름홀츠(Helmotz)코일, 전자석 요크, 영구자석 중에서 선택되는 어느 하나 또는 복수로 구성될 수 있다. Preferably, the first magnetic force applying unit 100 is basically disposed at a distance (first separation distance) such that the magnetic force does not affect the hall sensor, and is disposed in the second magnetic force applying unit 200. It is more preferable to arrange the poles SN of the magnets in an arrangement opposite to the arrangement of the poles NS of the permanent magnets. In addition, the first magnetic force applying unit 100 may be composed of any one or a plurality of solenoid coils, Helmholtz coils, electromagnet yokes, permanent magnets.
특히, 본 실시예에 사용되는 제1자기력인가부(100)의 자력은 상기 제2자기력인가부(200)의 자력보다 상대적으로 약한 것으로 배치함이 더욱 바람직하다. 이를 테면, 상기 제1자기력인가부(100)의 자기력은 400~500 가우스인 경우, 제2자기력인가부(200)의 자력은 600~1000가우스로, 1.5~2.0배의 차이를 가지도록 배치함이 바람직하다. 이는 상대적으로 약한 제1자기력인가부의 자기력의 방향을 상기 제2자기력의 방향과 반대되도록 형성하고, 홀센서를 사이에된 두 자기력인가부가 상호 작용하여 약한 자기력을 가지는 제1자기력인가부는 홀센서에 영향을 주지 않으면서도 제2자기력인가부의 자기력 형성을 더욱 강하게 견인하는 증폭효과를 구현할 수 있게 된다. In particular, the magnetic force of the first magnetic force applying unit 100 used in the present embodiment is more preferably disposed to be relatively weaker than the magnetic force of the second magnetic force applying unit 200. For example, when the magnetic force of the first magnetic force applying unit 100 is 400 to 500 gauss, the magnetic force of the second magnetic force applying unit 200 is 600 to 1000 gauss, so as to have a difference of 1.5 to 2.0 times. This is preferred. It is formed so that the direction of the magnetic force of the relatively weak first magnetic force applying unit is opposite to the direction of the second magnetic force, and the first magnetic force applying unit having a weak magnetic force by the interaction between the two magnetic force applying portion between the Hall sensor to the Hall sensor It is possible to implement an amplifying effect to more strongly pull the magnetic force formation of the second magnetic force applying portion without affecting.
즉, 상기 제1자기력인가부(100)의 구성은 본 발명에서 상기 제2자기력인가부(200)에서 발생하는 자력이 미약하거나, 또는 비희토류재료를 이용하는 경우에 약한 자력을 보완하여 증폭할 수 있는 기능을 수행할 수 있도록 한다. 이를 통해 저가의 재료를 이용하여 제2자기력인가부(200)를 구성하더라도 원하는 검출효율을 구현할 수 있는 장점이 구현되게 된다.That is, the configuration of the first magnetic force applying unit 100 may be amplified by supplementing the weak magnetic force when the magnetic force generated by the second magnetic force applying unit 200 is weak or non-rare earth materials in the present invention. Allows you to perform a function Through this, even if the second magnetic force applying unit 200 is formed by using a low cost material, an advantage of realizing a desired detection efficiency is realized.
상기 제1자기력인가부(100)는 별도로 운동하거나 구동하지 않고 고정식으로 홀 센서와 일정한 거리를 띄운 상태에서 고정될 수 있다.The first magnetic force applying unit 100 may be fixed in a state in which a predetermined distance from the hall sensor is fixed without moving or driving separately.
본 발명의 구성에서는 홀 센서에서 발생하는 자기장의 변화에 따른 기전력 변화를 감지하는 검출부(D), 제2자기력인가부(200)을 왕복 이동할 수 있는 구동부(M)를 더 포함하는 구조로 구현할 수 있음은 상술한 바와 같다.In the configuration of the present invention can be implemented in a structure further comprising a drive unit (M) for reciprocating the detection unit (D), the second magnetic force applying unit 200 for detecting a change in electromotive force according to the change in the magnetic field generated by the Hall sensor. Yes is as described above.
상술한 본 발명에 따른 검출장치는 다양한 장비에 적용될 수 있다.The detection apparatus according to the present invention described above can be applied to a variety of equipment.
이를테면, 자동차의 브레이크 시스템에 적용되어 자동차의 브레이크를 밟는 경우 발생하는 신호를 감지하여 자동차의 후미등의 점멸을 구현하는 시스템에서 피스톤의 유동에 따른 영구자석의 유동에 따라 발생하는 자기력을 감지하는 홀 센서 시스템에 적용될 수 있다;For example, the Hall sensor is applied to the brake system of the car and detects the signal generated when the brake is applied to the car to detect the magnetic force generated by the flow of the permanent magnet according to the flow of the piston in the system that realizes the flicker of the tail light Can be applied to systems;
또는, 전기식 주차브레이크 시스템에서 홀 센서를 구비하여 엑츄에이터의 작동을 제어하는 시스템에 적용되어 정밀한 감지를 구현할 수도 있다.Alternatively, the electric parking brake system may be applied to a system having a hall sensor to control the operation of the actuator to implement precise sensing.
또는, 홀 소자(Hall IC)를 이용하여 차륜의 회전속도를 측정하도록 하고, 그 측정된 속도신호를 처리하는 차량용 속도센서와 그 신호처리 장치에도 적용할 수 있음은 물론이다.Alternatively, it may be applied to a vehicle speed sensor and a signal processing apparatus for measuring the rotational speed of the wheel by using a Hall IC and processing the measured speed signal.
전술한 바와 같은 본 발명의 상세한 설명에서는 구체적인 실시예에 관해 설명하였다. 그러나 본 발명의 범주에서 벗어나지 않는 한도 내에서는 여러 가지 변형이 가능하다. 본 발명의 기술적 사상은 본 발명의 기술한 실시예에 국한되어 정해져서는 안 되며, 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.In the detailed description of the invention as described above, specific embodiments have been described. However, many modifications are possible without departing from the scope of the invention. The technical spirit of the present invention should not be limited to the described embodiments of the present invention, but should be determined not only by the claims, but also by those equivalent to the claims.

Claims (5)

  1. 전원에서 인가되는 전류에 의해 발생하는 자장에 의해 전류가 유도되는 홀 센서부;A hall sensor unit in which current is induced by a magnetic field generated by a current applied from a power source;
    상기 홀 센서부에 자장의 영향을 주지 않는 제1방향으로 제1이격거리(d1)에 배치되는 제1자기력인가부;A first magnetic force applying unit disposed at a first separation distance d1 in a first direction that does not affect a magnetic field in the hall sensor unit;
    상기 홀 센서부의 제2방향에 배치되어 구동함으로써, 자기력을 인가하는 제2자기력인가부; 및A second magnetic force applying unit configured to apply the magnetic force by being disposed in the second direction and driving the hall sensor unit; And
    상기 홀 센서부에 유도된 전류를 검출하는 검출부; 포함하여 구성되는 홀 센서를 이용한 검출장치.A detector for detecting a current induced in the hall sensor unit; Detection device using a Hall sensor comprising a.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 제1자기력인가부에 배치되는 제1자력유닛과,A first magnetic force unit disposed in the first magnetic force applying unit;
    상기 제2자기력인가부에 배치되는 제2자력유닛은 자기장의 방향이 상호 반대되도록 배치되는 것을 특징으로 하는 홀 센서를 이용한 검출장치.The second magnetic force unit disposed in the second magnetic force applying unit is a detection device using a Hall sensor, characterized in that the direction of the magnetic field is arranged to be opposite to each other.
  3. 청구항 2에 있어서,The method according to claim 2,
    상기 홀 센서를 이용한 검출장치는,The detection device using the Hall sensor,
    상기 제2자기력인가부를 좌우 또는 상하 방향으로 이동하는 구동부를 더 포함하는 것을 특징으로 하는 홀 센서를 이용한 검출장치.And a driving unit for moving the second magnetic force applying unit to the left and right or up and down directions.
  4. 청구항 3에 있어서,The method according to claim 3,
    상기 제2자기력인가부는,The second magnetic force applying unit,
    Al, Co, Ni 중 둘 이상을 포함하는 비희토류(non-rare earth, 非稀土類) 재료 이용하여 형성되는 영구자석인 홀 센서를 이용한 검출장치.A detection device using a hall sensor, which is a permanent magnet formed by using a non-rare earth material containing at least two of Al, Co, and Ni.
  5. 청구항 4에 있어서,The method according to claim 4,
    상기 제1자기력인가부는,The first magnetic force applying unit,
    솔레노이드 코일, 헬름홀츠(Helmotz)코일, 전자석 요크, 영구자석 중에서 선택되는 어느 하나 또는 복수로 구성되는 것을 특징으로 하는 홀 센서를 이용한 검출장치.A solenoid coil, Helmholtz (Helmotz) coil, electromagnet yoke, the detection device using a hall sensor, characterized in that it is composed of any one or more selected from a permanent magnet.
PCT/KR2012/007533 2011-09-21 2012-09-20 Detection apparatus using a hall sensor WO2013042952A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0094938 2011-09-21
KR1020110094938A KR101237913B1 (en) 2011-09-21 2011-09-21 Measurement apparatus using hall sensors

Publications (1)

Publication Number Publication Date
WO2013042952A1 true WO2013042952A1 (en) 2013-03-28

Family

ID=47900311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/007533 WO2013042952A1 (en) 2011-09-21 2012-09-20 Detection apparatus using a hall sensor

Country Status (2)

Country Link
KR (1) KR101237913B1 (en)
WO (1) WO2013042952A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200161488Y1 (en) * 1994-12-09 1999-11-15 오상수 Vehicle speed sensor
JP2002005613A (en) * 2000-06-15 2002-01-09 Yazaki Corp Rotation angle detection sensor
JP2004271451A (en) * 2003-03-11 2004-09-30 Hitachi Unisia Automotive Ltd Rotation angle detector
KR20100050670A (en) * 2008-11-06 2010-05-14 한국오므론전장주식회사 Rotary position sensor with magnetic
KR20110085713A (en) * 2010-01-21 2011-07-27 현대모비스 주식회사 Current measuring device using Hall sensor
KR20120010085A (en) * 2010-07-23 2012-02-02 이성범 Non-contact steering torque sensing device of vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200161488Y1 (en) * 1994-12-09 1999-11-15 오상수 Vehicle speed sensor
JP2002005613A (en) * 2000-06-15 2002-01-09 Yazaki Corp Rotation angle detection sensor
JP2004271451A (en) * 2003-03-11 2004-09-30 Hitachi Unisia Automotive Ltd Rotation angle detector
KR20100050670A (en) * 2008-11-06 2010-05-14 한국오므론전장주식회사 Rotary position sensor with magnetic
KR20110085713A (en) * 2010-01-21 2011-07-27 현대모비스 주식회사 Current measuring device using Hall sensor
KR20120010085A (en) * 2010-07-23 2012-02-02 이성범 Non-contact steering torque sensing device of vehicle

Also Published As

Publication number Publication date
KR101237913B1 (en) 2013-02-27

Similar Documents

Publication Publication Date Title
CN103814418A (en) Method and drive apparatus for driving electromagnetic actuator
CN105190323A (en) Magnetic current sensor and current measurement method
EP0977015A3 (en) Magnetic sensor, signal processing method for magnetic sensors, and detecting apparatus
US10987818B2 (en) Magnetic lock for throwable robot
CN104157068A (en) Magnetic sensor
Shewane et al. An overview of neodymium magnets over normal magnets for the generation of energy
CN101162637B (en) Permanent magnet device for ultra-high field intensity cobber
CN103971443A (en) Detection method and device for anti-counterfeiting element
US6346806B1 (en) Device for detecting the position of a moveable magnet to produce a magnetic field
CN110738785A (en) Detection method and device for magnetic anti-counterfeiting element
CN202916902U (en) Currency detection magnetic head with magnetic bias processing-based sensitive direction parallel to detection surface
WO2013042952A1 (en) Detection apparatus using a hall sensor
JP3215443B2 (en) Process for detecting the position of a magnet for generating a magnetic field and an apparatus for that purpose
CN1623101A (en) Measurement probe and authentication device comprising the same
WO2015178528A1 (en) Electromagnetic induction-based foreign metal material detector
JP2019158411A (en) Magnet structure, rotation angle detector, and electrically-driven power steering device
US20140014506A1 (en) Analyte transport
CN102254666A (en) Magnetic density order descending array demagnetizing plate
CN109326407A (en) Levitating electromagnet based on middle low speed magnetic suspension train
WO2012053851A1 (en) System for signal detection of specimen using magneto resistance sensor
CN203172651U (en) Wheel sensor
CN2831155Y (en) Coil type magnetic sensor
Xu Zhou et al. Paramagnetism in Bacillus spores: Opportunities for novel biotechnological applications
KR100997538B1 (en) Magnetizing method of speed sensor magnet
KR102476480B1 (en) Rotor and Motor having the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12832935

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12832935

Country of ref document: EP

Kind code of ref document: A1