[go: up one dir, main page]

WO2013042839A1 - Composition containing hydroquinone or quinoline for fuel cell coolant - Google Patents

Composition containing hydroquinone or quinoline for fuel cell coolant Download PDF

Info

Publication number
WO2013042839A1
WO2013042839A1 PCT/KR2012/000755 KR2012000755W WO2013042839A1 WO 2013042839 A1 WO2013042839 A1 WO 2013042839A1 KR 2012000755 W KR2012000755 W KR 2012000755W WO 2013042839 A1 WO2013042839 A1 WO 2013042839A1
Authority
WO
WIPO (PCT)
Prior art keywords
glycol
composition
fuel cell
present
quinoline
Prior art date
Application number
PCT/KR2012/000755
Other languages
French (fr)
Korean (ko)
Inventor
하영주
조창열
이홍기
Original Assignee
극동제연공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 극동제연공업 주식회사 filed Critical 극동제연공업 주식회사
Priority to CN201280045990.XA priority Critical patent/CN103842466B/en
Publication of WO2013042839A1 publication Critical patent/WO2013042839A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/12Oxygen-containing compounds
    • C23F11/122Alcohols; Aldehydes; Ketones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/10Liquid materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/20Antifreeze additives therefor, e.g. for radiator liquids
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/14Nitrogen-containing compounds
    • C23F11/149Heterocyclic compounds containing nitrogen as hetero atom

Definitions

  • Fuel cell coolant composition comprising hydroquinone or quinoline
  • the present invention provides a fuel cell composition for (a) glycol; (b) deionized water; And (c) hydroquinone or quinolinol.
  • a fuel cell is generally composed of a sal stack having a structure in which a single cell, which is a power generation unit, and a plurality of separators are stacked.
  • the fuel cell stack is fabricated by stacking cells (membrane electrode assemblies, gaskets and separators) and current collectors, insulation plates and end plates at both ends of the cells.
  • reaction products such as fuel, air, and angular water pass through respective flow paths through a manifold (manifold) to generate electrochemical reactions, thereby producing electricity.
  • DI-Water deionized water
  • DI-Water deionized water
  • Fuel cell automotive angles must be non-conductive with good electrical insulation to protect the fuel cell system from short circuits and to prevent electrical hazards, and can be operated at temperatures below -30 ° C to allow for start-up in winter or in cold weather. It should not be frozen.
  • Korean Patent Laid-Open Publication No. 10-2010-0045265 refers to a composition comprising trimethylglycine in alkylene glycol as an antifreeze solution having excellent freeze protection and electrical insulation, but does not mention the anti-oxidation performance of hydroquinone or quinolated.
  • glycols which are the main base materials used in fuel cell liquids, have a problem in that ionic materials are generated by oxidation, resulting in an increase in electrical conductivity.
  • an antioxidant capable of suppressing the above, and many patent documents are referred to throughout the present specification and their citations are indicated. The disclosures of the cited patent documents are incorporated by reference herein in their entirety, and the level of the technical field to which the present invention belongs and the contents of the present invention are more clearly described.
  • the present inventors earnestly researched to develop a fuel cell waste liquid composition which prevents the oxidation of a base to suppress the formation of ionic substances, maintains passivability and maintains low conductivity.
  • the present inventors are prepared by including a compound containing a hydroquinone or quinolinol in the glycol contained in the conventional antifreeze liquid composition for fuel cell vehicles, the anti-freezing function is improved and prevents the oxidation of the glycol base and fuel cell Antifreeze
  • the present invention has been completed by identifying the effect of suppressing an increase in the value of electrical conductivity, which is an important characteristic. Accordingly, an object of the present invention is to provide a fuel cell liquid composition. Other objects and advantages of the present invention will become apparent from the following detailed description and claims. [Task solution]
  • a fuel cell liquid composition comprising: (a) glycol; (b) deionized water; And (c) provides a fuel cell coolant composition comprising a hydroquinone or quinoline.
  • the present inventors earnestly researched to develop a fuel cell shell liquid composition which prevents the oxidation of a base to suppress the formation of ionic material, maintains passivability, and maintains a low conductivity.
  • the present inventors prepared by including a compound containing a hydroquinone or quinoline in the glycol contained in the conventional antifreeze liquid composition for fuel cell vehicles, the anti-freezing function is improved and the oxidation of the base glycol is prevented and the fuel cell is It was found to have an effect of suppressing the increase of the conductivity value, which is an important characteristic of the antifreeze solution.
  • compositions of the present invention comprise (a) glycol; (b) deionized water; And (c) hydroquinone or quinoline.
  • the content of the components is not particularly limited, preferably 30-70% by weight of glycol, 30-60% by weight of deionized water (more preferably 40-50% by weight) and 0.0001-3% by weight of hydroquinone or quinoline Include.
  • the glycol included in the composition of the present invention is selected from the group consisting of monoethylene glycol, monopropylene glycol, diethylene glycol, dipropylene glycol, glycerin, triethylene glycol and tripropylene glycol, More preferably ⁇ 1, crab, monoethylene glycol, Monopropylene glycol, diethylene glycol, dipropylene glycol or glycerin, most preferably monoethylene glycol or monoflofilene glycol.
  • the use range of the glycol is preferably 30-70% by weight, more preferably 40-60% by weight.
  • the composition of the present invention comprises 0.0001-3 weight 3 ⁇ 4> hydroquinone or quinoline based on the total weight of the composition, more preferably 0.0005-2 weight percent, most preferred Preferably 0.005-1 weight).
  • the hydroquinone or quinoline included in the composition of the present invention prevents the oxidation of the glycol so that the conductivity change rate (initial conductivity-conductivity after oxidation / initial conductivity) to the separator based separator is Preferably it is 25 times or less, More preferably, it is 5-25 times.
  • the hydroquinone or quinoline contained in the composition of the present invention prevents the oxidation of the glycol to change the conductivity of the aluminum-based test specimens (for example, A1 2000 series test specimens) (initial conductivity-after oxidation Conductivity / initial conductivity) is preferably 25 times or less, and more preferably 5 to 25 times.
  • the amount of acid produced after oxidation of glycol is 550 ppm or less, specifically, the amount of acid produced is 30-550 ppm for graphite-based separators, and 30-120 ppm for aluminum-based test specimens.
  • the freezing temperature of the composition of the present invention is ⁇ 30 ° C.
  • the freezing temperature is different.
  • the freezing temperature is -3.lt: when the composition and deionized water ratio is 10:90, and the freezing temperature is 7.2. ° C, 30: 70, if the freezing temperature is -13.3 ° C, 40: 60 is frozen when the degree of
  • the freezing temperature is -22.1 ° C and the ratio commonly used is 50:50.
  • the antifreeze solution composition of the present invention may include a pH adjusting agent, a dye, an antifoaming agent or a corrosion inhibitor.
  • the pH adjusting agent may include an alkali metal hydroxide, preferably potassium hydroxide or sodium hydroxide.
  • the corrosion inhibitor does not affect the electrical conductivity of the antifreeze solution composition of the present invention. It may include various corrosion inhibitors known in the art to the extent that it does not. For example, carboxylate, phosphate, nitrate, nitrite, molybdate, tungstate, borate, silicate, sulfate, sulfite, carbonate, amine salt, triazole and thiazole are mixed Is selected.
  • the greatest feature of the present invention is to provide a liquid antifreeze solution for fuel cells in which freeze protection is improved by preventing the oxidation of the base by combining hydroquinone or quinoline with glycol as the main base.
  • the present invention provides a fuel cell cooling composition comprising: (a) glycol; (b) deionized water; And (c) it provides a fuel cell coolant composition comprising a hydroquinone or quinoline.
  • the hydroquinone or quinoline-containing compound has an acid content of 550 ppm or less after glycol oxidation.
  • composition of the present invention prevents the oxidation of glycol to inhibit the formation of ionic substances, and thus the rate of change of electrical conductivity (initial conductivity-conductivity after oxidation / initial conductivity) for the inhaled separator and the aluminum specimen is The effect of keeping it lower than 25 times is excellent.
  • the liquid composition for fuel cell of the present invention can be used for the cooling angle for the angle system for the fuel cell drive device because the low conductivity is maintained without being frozen in winter.
  • the antifreeze solution composition was prepared by weighing the contents of the ingredients shown in the following table 1 into a deionized water and stirring until it became a uniform solution without residue.
  • the deionized water was prepared in an ultrapure water production system. ions were used, "the removal of deionized water, glycols include ethylene glycol, quinone, and hydroquinone of DOW Chemical was used for purification purchased from Gold thread.
  • the Teflon enclosed container was deposited with components used in each fuel cell system to promote oxidation. A certain amount of parts to be deposited It was immersed in 180 antifreeze solution, the stopper was closed, and it was left to stand in 100 degreeC oven for 500 hours.
  • the electrical conductivity and acid production of the antifreeze solution before and after the test were measured using a conductivity meter and ion chromatography (IC) of Thermo or ion 162A, respectively.
  • IC conductivity meter and ion chromatography
  • Examples 1 to 6 has a lower amount of acid generation after thermal oxidation of the incinerator separator in the fuel cell system components compared to Comparative Examples 1 to 3, and thus the conductivity change rate is small. . It is believed that the hydroquinone or quinoline prevents oxidation of ethylene glycol and thus the change in conductivity is kept small. Table 3
  • Examples 1 to 6 is less acid production after thermal oxidation of the A1 2000 series test pieces of the fuel cell system components compared to Comparative Examples 1 to 3 it can be seen that the resulting conductivity change rate is small. . It is believed that hydroquinone or quinoline prevents the oxidation of ethylene glycol and thus the change in conductivity is kept small.
  • Experimental Example 2 Measurement of the freezing temperature of the antifreeze solution composition
  • the freezing temperature of the antifreeze liquid composition of Example 1 was measured according to KS ⁇ 2142. To summarize the measurement process, first add acetone or methane to the wet shell and slowly add dry ice to form a ' cooling liquid, and sample. 75-100 ⁇ was placed in a cooling tube, and the eggplant and thermometer were installed using a cork stopper or a rubber stopper, and the freezing temperature was measured. At this time, the thermometer was placed at the center of the antifreeze solution composition to be measured. The measurement results are summarized in Table 4 below: Table 4

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Fuel Cell (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)

Abstract

The present invention relates to a composition for cooling a fuel cell, comprising: (a) glycol; (b) deionized water; and (c) hydroquinone or quinoline. In the composition according to the present invention, in a compound containing hydroquinone or quinoline, the amount of acid generated after oxidation of glycol is no more than 550 ppm. Also, the composition, according to the present invention, has a superior effect of maintaining a change rate of electric conductivity (initial conductivity rate - conductivity rate after oxidation/initial conductivity rate) with respect to a graphite-based separation plate and an aluminum-based testing piece at 25 or more times lower, by preventing oxidation of glycol thereby inhibiting generation of ionic substances. As a result, the composition for a coolant for the fuel cell, according to the present invention, does not freeze in the winter but still maintains a low conductivity rate, thereby allowing for use in cooling water for a cooling system in a fuel cell actuation apparatus.

Description

【명세서】  【Specification】
【발명의 명칭】 [Name of invention]
하이드로퀴논 또는 퀴놀린을 포함하는 연료전지 냉각액 조성물  Fuel cell coolant composition comprising hydroquinone or quinoline
【기술분야】 Technical Field
본 발명은 연료전지 넁각용 조성물에 있어서, (a) 글리콜; (b) 탈이온수 (deionized water); 및 (c) 하이드로퀴논 또는 퀴놀린올 포함하는 연료전지 냉각액 조성물에 관한 것이다.  The present invention provides a fuel cell composition for (a) glycol; (b) deionized water; And (c) hydroquinone or quinolinol.
[배경기술】 Background Art
연료전지는 일반적으로 발전 단위인 단셀과 세퍼레이터를 다수 적층한 구조의 샐 스택으로 구성되어 있다. 연료전지 스택은 여러 겹꾀 셀 (막전극 접합체, 가스켓 및 분리판)과 셀의 양 끝단부에 집전관, 절연판 및 엔드판 (end plate)이 배설되어 제작된다. 이와 같이 제작되는 연료전지 스택은, 연료, 공기 및 넁각수 등의 반웅물이 매니폴드 (manifold: 다기관)를 통해 각각의 유로를 통과하면서 전기화학적 반웅을 일으키고, 이를 통해 전기가 생산된다.  A fuel cell is generally composed of a sal stack having a structure in which a single cell, which is a power generation unit, and a plurality of separators are stacked. The fuel cell stack is fabricated by stacking cells (membrane electrode assemblies, gaskets and separators) and current collectors, insulation plates and end plates at both ends of the cells. In the fuel cell stack manufactured as described above, reaction products such as fuel, air, and angular water pass through respective flow paths through a manifold (manifold) to generate electrochemical reactions, thereby producing electricity.
이러한 전기 화학반응을 이용하여 전기를 생삳할 때 스택으로부터 부수적으로 열이 발생하기 때문에 이 셀 스택을 넁각하기 위해서 수 셀마다 넁각판이 삽입되어 있다. 연료전지의 넁각액은 스택 내를 순환하고 스택을 냉각하기 때문에 넁각액의 전기 전도율이 높다면 스택으로 생성된 전기가 넁각액 측으로 홀러 전기를 손실시켜 발전력을 저하시킨다. 또한 비작동시 넁각액은 주위의 온도끼지 저하되어 버리고, 영하 온도에서의 사용가능성이 있는 경우 순수한 물에서는 동결해 버리고 냉각액의 체적 팽창에 의한 넁각판의 파손 등 연료전지의 전지 성능을 손상시키는 우려가 있다.  When electricity is generated by using such an electrochemical reaction, heat is incidentally generated from the stack. Thus, in order to conceive the cell stack, a condenser plate is inserted every few cells. Since the fuel cell's waste liquid circulates in the stack and cools the stack, if the electrical conductivity of the waste liquid is high, the electricity generated by the stack loses electricity by bringing the electricity to the waste liquid side. In addition, when the non-operational liquid drops, the ambient temperature decreases, and if there is a possibility of use at sub-zero temperatures, it freezes in pure water and damages the cell performance of the fuel cell, such as damage to the angle plate due to the volume expansion of the cooling liquid. There is.
한편, 연료전지 시스템 냉각수 초기 개발단계에서 많이 사용되어은 탈이온수 (Deionized Water, DI-Water)는 전기저항이 높고 전기절연성과 넁각성능이 우수하지만 0°C 이하에서 동결되는 단점이 있으며 연료전지 자동차의 냉시동의 문제점과 연료전지 시스템내의 이온물질에 쉽게 오염되어 전기 전열성이 급격히 떨어지는 문제점을 안고 있다. 특히 연료전지 자동차용 넁각수는 누전으로부터 연료전지 시스템을 보호하고 그로 인한 전기적 위험을 방지하기 위해 전기 절연성이 우수한 부전도성이여야 하며, 겨울철 또는 혹한지역에서도 넁시동이 가능할 수 있도록 -30°C 이하에서도 동결되지 않아야 한다. On the other hand, deionized water (DI-Water), which is frequently used in the early stages of development of fuel cell system cooling water, has high electrical resistance, excellent electrical insulation, and excellent perceptual performance, but freezes below 0 ° C. Problems of cold start and easy contamination of ionic materials in fuel cell system have a problem of rapid drop in electrical heat transfer. Especially Fuel cell automotive angles must be non-conductive with good electrical insulation to protect the fuel cell system from short circuits and to prevent electrical hazards, and can be operated at temperatures below -30 ° C to allow for start-up in winter or in cold weather. It should not be frozen.
이러한 문제로 인하여 겨울철에 동결되지 않고 전기 절연성이 우수한 연료전지 넁각수에 대한 관심이 높아지게 되었으며 기존의 내연기관용으로 사용중인 냉각수의 주 베이스 물질인 모노에틸렌글리콜, 모노프로필렌글리콜 등 알킬렌 글리콜류와 물의 흔합용액으로 적용되고 있다. 대한민국 공개특허 10-2010-0045265 에서는 동결 방지 및 전기 절연성이 우수한 부동넁각액 조성물로 알킬렌글리콜에 트리메틸글리신을 포함하는 조성물을 언급하고 있으나, 하이드로퀴논 또는 퀴놀된의 산화방지 성능은 언급되지 않았다.  Due to these problems, interest in fuel cell spontaneous water, which does not freeze in winter and has excellent electrical insulation, has increased, and alkylene glycols such as monoethylene glycol, monopropylene glycol, and water, which are the main base materials of the cooling water used for the internal combustion engine, It is applied as a mixed solution. Korean Patent Laid-Open Publication No. 10-2010-0045265 refers to a composition comprising trimethylglycine in alkylene glycol as an antifreeze solution having excellent freeze protection and electrical insulation, but does not mention the anti-oxidation performance of hydroquinone or quinolated.
더욱이 연료전지 넁각액에 이용되는 주 베이스 물질인 글리콜류는 산화에 의해 이온성 물질이 생성되어 전기 전도도가 상승되는 문제점이 있어, 주 베이스 물질 (기제)의 산화를 방지하거나 속도를 늦추어 이은성 물질 생성을 억제할 수 있는 산화방지제에 대한 필요성이 대두되고 있다, 본 명세서 전체에 걸쳐 다수의 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다.  In addition, glycols, which are the main base materials used in fuel cell liquids, have a problem in that ionic materials are generated by oxidation, resulting in an increase in electrical conductivity. There is a need for an antioxidant capable of suppressing the above, and many patent documents are referred to throughout the present specification and their citations are indicated. The disclosures of the cited patent documents are incorporated by reference herein in their entirety, and the level of the technical field to which the present invention belongs and the contents of the present invention are more clearly described.
【발명의 내용】 [Content of invention]
【해결하고자 하는 과제】  Problem to be solved
본 발명자들은 기제의 산화를 방지하여 이온성 물질의 생성을 억제하고 부동성을 유지하고 저도전율올 유지하는 연료전지 넁각액 조성물을 개발하고자 예의 연구 노력하였다. 그 결과, 본 발명자들은 종래 연료전지 자동차용 부동넁각액 조성물에 포함되는 글리콜에 하이드로퀴논 또는 퀴놀린올 포함하는 화합물을 포함하여 제조하면, 동결방지 기능이 향상되고 기제인 글리콜의 산화를 방지하고 연료전지용 부동넁각액의 중요특성인 전기전도도 값의 증가를 억제하는 효과를 나타내는 것을 규명함으로써, 본 발명을 완성하게 되었다. 따라서, 본 발명의 목적은 연료전지 넁각액 조성물을 제공하는 데 있다. 본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명 및 청구범위에 의해 보다 명확하게 된다. 【과제 해결 수단】 The present inventors earnestly researched to develop a fuel cell waste liquid composition which prevents the oxidation of a base to suppress the formation of ionic substances, maintains passivability and maintains low conductivity. As a result, the present inventors are prepared by including a compound containing a hydroquinone or quinolinol in the glycol contained in the conventional antifreeze liquid composition for fuel cell vehicles, the anti-freezing function is improved and prevents the oxidation of the glycol base and fuel cell Antifreeze The present invention has been completed by identifying the effect of suppressing an increase in the value of electrical conductivity, which is an important characteristic. Accordingly, an object of the present invention is to provide a fuel cell liquid composition. Other objects and advantages of the present invention will become apparent from the following detailed description and claims. [Task solution]
본 발명의 일 양태에 따르면, 본 발명은 연료전지 넁각용 조성물에 있어서, (a) 글리콜; (b) 탈이온수 (deionized water); 및 (c) 하이드로퀴논 또는 퀴놀린을 포함하는 연료전지 냉각액 조성물을 제공한다. 본 발명자들은 기제의 산화를 방지하여 이온성 물질의 생성을 억제하고 부동성을 유지하고 저도전율을 유지하는 연료전지 넁각액 조성물을 개발하고자 예의 연구 노력하였다. 그 결과, 본 발명자들은 종래 연료전지 자동차용 부동넁각액 조성물에 포함되는 글리콜에 하이드로퀴논 또는 퀴놀린을 포함하는 화합물을 포함하여 제조하면, 동결방지 기능이 향상되고 기제인 글리콜의 산화를 방지하고 연료전지용 부동넁각액의 중요특성인 전기전도도 값의 증가를 억제하는 효과를 나타내는 것을 규명하였다.  According to one aspect of the present invention, there is provided a fuel cell liquid composition comprising: (a) glycol; (b) deionized water; And (c) provides a fuel cell coolant composition comprising a hydroquinone or quinoline. The present inventors earnestly researched to develop a fuel cell shell liquid composition which prevents the oxidation of a base to suppress the formation of ionic material, maintains passivability, and maintains a low conductivity. As a result, the present inventors prepared by including a compound containing a hydroquinone or quinoline in the glycol contained in the conventional antifreeze liquid composition for fuel cell vehicles, the anti-freezing function is improved and the oxidation of the base glycol is prevented and the fuel cell is It was found to have an effect of suppressing the increase of the conductivity value, which is an important characteristic of the antifreeze solution.
본 발명의 조성물은 (a) 글리콜; (b) 탈이온수 (deionized water); 및 (c) 하이드로퀴논 또는 퀴놀린을 포함한다. 상기 성분들의 함량은 특별하게 제한되지 않으며, 바람직하게는 글리콜 30-70 중량 %, 탈이온수 30-60 증량 % (보다 바람직하게는 40—50 중량 %) 및 하이드로 퀴논 또는 퀴놀린 0.0001-3 중량 %를 포함한다.  Compositions of the present invention comprise (a) glycol; (b) deionized water; And (c) hydroquinone or quinoline. The content of the components is not particularly limited, preferably 30-70% by weight of glycol, 30-60% by weight of deionized water (more preferably 40-50% by weight) and 0.0001-3% by weight of hydroquinone or quinoline Include.
본 발명의 바람직한 구현예에 따르면, 본 발명의 조성물에 포함되는 글리콜은 모노에틸렌글리콜, 모노프로필렌글리콜, 디에틸렌글리콜, 디프로필렌글리콜, 글리세린, 트리에틸렌글리콜 및 트리프로필렌글리콜으로 구성된 군으로부터 선택되고, 보다 바람직 §1·게는, 모노에틸렌글리콜, 모노프로필렌글리콜, 디에틸렌글리콜, 디프로필렌글리콜 또는 글리세린, 가장 바람직하게는 모노에틸렌글리콜 또는 모노플로필렌글리콜이다. 상기 글리콜의 사용 범위는 바람직하게는 30-70 중량 %이고,보다 바람직하게는 40-60 중량 % 이다. According to a preferred embodiment of the present invention, the glycol included in the composition of the present invention is selected from the group consisting of monoethylene glycol, monopropylene glycol, diethylene glycol, dipropylene glycol, glycerin, triethylene glycol and tripropylene glycol, More preferably § 1, crab, monoethylene glycol, Monopropylene glycol, diethylene glycol, dipropylene glycol or glycerin, most preferably monoethylene glycol or monoflofilene glycol. The use range of the glycol is preferably 30-70% by weight, more preferably 40-60% by weight.
본 발명의 바람직한 구현예에 따르면, 본 발명의 조성물은 조성물의 총 중량을 기준으로 하여 하이드로퀴논 또는 퀴놀린을 0.0001-3 중량 ¾>로 포함되고, 보다 바람직하게는 0.0005-2 중량%이고, 가장 바람직하게는 0.005-1 중량 )이다.  According to a preferred embodiment of the present invention, the composition of the present invention comprises 0.0001-3 weight ¾> hydroquinone or quinoline based on the total weight of the composition, more preferably 0.0005-2 weight percent, most preferred Preferably 0.005-1 weight).
본 발명의 바람직한 구현예에 따르면, 본 발명의 조성물에 포함되는 상기 하이드로퀴논 또는 퀴놀린은 상기 글리콜의 산화를 방지하여 혹연계 분리판에 대한 전도도 변화율 (초기전도도 -산화 후 전도도 /초기전도도))이 바람직하게는 25 배 이하이며, 보다 바람직하게는 5 내지 25 배이다.  According to a preferred embodiment of the present invention, the hydroquinone or quinoline included in the composition of the present invention prevents the oxidation of the glycol so that the conductivity change rate (initial conductivity-conductivity after oxidation / initial conductivity) to the separator based separator is Preferably it is 25 times or less, More preferably, it is 5-25 times.
본 발명의 바람직한 구현예에 따르면, 본 발명의 조성물에 포함되는 상기 하이드로퀴논 또는 퀴놀린은 상기 글리콜의 산화를 방지하여 알루미늄계 시험편 (예컨대, A1 2000 계열 시험편)에 대한 전도도 변화율 (초기전도도 -산화 후 전도도 /초기전도)이 바람직하게는 25 배 이하이며, 보다 바람직하게는 5 내지 25 배이다.  According to a preferred embodiment of the present invention, the hydroquinone or quinoline contained in the composition of the present invention prevents the oxidation of the glycol to change the conductivity of the aluminum-based test specimens (for example, A1 2000 series test specimens) (initial conductivity-after oxidation Conductivity / initial conductivity) is preferably 25 times or less, and more preferably 5 to 25 times.
본 발명의 조성물은 글리콜의 산화 후 산의 생성량이 550 ppm 이하이고, 구체적으로는 흑연계 분리판에 대해서는 산의 생성량인 30-550 ppm이며, 알루미늄계 시험편에 대해서는 30-120 ppm이다 .  In the composition of the present invention, the amount of acid produced after oxidation of glycol is 550 ppm or less, specifically, the amount of acid produced is 30-550 ppm for graphite-based separators, and 30-120 ppm for aluminum-based test specimens.
본 발명의 바람직한 구현예에 따르면, 본 발명의 조성물은 넁각액 조성물의 동결온도는 _30°C 이하이다. 본 발명의 조성물을 탈이온수와 다양한 부피 비율로 배합하면 동결 온도가 달라지며, 조성물과 탈이온수 비율이 10 : 90 인 경우 동결온도는 -3.lt:, 20 : 80 인 경우 동결온도는 ᅳ 7.2°C, 30 : 70 인 경우 동결온도는 -13.3°C, 40 : 60 인 경우 동결은도는According to a preferred embodiment of the present invention, the freezing temperature of the composition of the present invention is 이하 30 ° C. When the composition of the present invention is mixed with deionized water in various volume ratios, the freezing temperature is different. The freezing temperature is -3.lt: when the composition and deionized water ratio is 10:90, and the freezing temperature is 7.2. ° C, 30: 70, if the freezing temperature is -13.3 ° C, 40: 60 is frozen when the degree of
-22.1°C이고, 일반적으로 사용되는 비율인 50 : 50 인 경우 동결온도는 -The freezing temperature is -22.1 ° C and the ratio commonly used is 50:50.
34.7°C로 동결 방지 효과가 우수하다. Excellent freeze protection at 34.7 ° C.
본 발명의 부동넁각액 조성물은 pH 조절제, 염료, 소포제 또는 부식억제제 를 포함 할 수 있다. 상기 pH 조절제는 알칼리금속수산화물이 포함될 수 있으며, 바람직하게는 수산화칼륨 또는 수산화나트륨이다. 상기 부식억제제는 본 발명의 부동넁각액 조성물의 전기전도도에 영향을 미치지 않는 범위 내에서 당업계에 공지된 다양한 부식억제제를 포함할 수 있다. 예를 들어, 카르복실산염, 인산염, 질산염, 아질산염, 몰리브데이트, 텅스테이트 , 보레이트, 실리케이트 , 황산염, 아황산염 , 탄산염, 아민염, 트리아졸 및 티아졸로 구성된 군으로부터 1 종 또는 2 종 이상 흔합되어 선택된다. 상술한 바와 같이, 본 발명의 가장 큰 특징은 주 베이스인 글리콜에 하이드로퀴논 또는 퀴놀린을 조합하여 동결방지 기능이 향상되고 기제의 ,산화를 방지한 연료전지용 부동넁각액을 제공하는 것이다. The antifreeze solution composition of the present invention may include a pH adjusting agent, a dye, an antifoaming agent or a corrosion inhibitor. The pH adjusting agent may include an alkali metal hydroxide, preferably potassium hydroxide or sodium hydroxide. The corrosion inhibitor does not affect the electrical conductivity of the antifreeze solution composition of the present invention. It may include various corrosion inhibitors known in the art to the extent that it does not. For example, carboxylate, phosphate, nitrate, nitrite, molybdate, tungstate, borate, silicate, sulfate, sulfite, carbonate, amine salt, triazole and thiazole are mixed Is selected. As described above, the greatest feature of the present invention is to provide a liquid antifreeze solution for fuel cells in which freeze protection is improved by preventing the oxidation of the base by combining hydroquinone or quinoline with glycol as the main base.
【효과】 【effect】
본 발명의 특징 및 이점을 요약하면 다음과 같다:  The features and advantages of the present invention are summarized as follows:
( i ) 본 발명은 연료전지 냉각용 조성물에 있어서, (a) 글리콜; (b) 탈이온수 (deionized water); 및 (c) 하이드로퀴논 또는 퀴놀린을 포함하는 것을 특징으로 하는 연료전지 냉각액 조성물올 제공한다.  (i) The present invention provides a fuel cell cooling composition comprising: (a) glycol; (b) deionized water; And (c) it provides a fuel cell coolant composition comprising a hydroquinone or quinoline.
(ii) 본 발명의 조성물에서 하이드로퀴논 또는 퀴놀린을 포함하는 화합물은 글리콜의 산화 후 산의 생성량이 550 ppm 이하이다.  (ii) In the composition of the present invention, the hydroquinone or quinoline-containing compound has an acid content of 550 ppm or less after glycol oxidation.
(iii) 또한, 본 발명의 조성물은 글리콜의 산화를 방지하여 이온성 물질의 생성을 억제하여 혹연계 분리판 및 알루미늄계 시험편에 대한 전기전도도의 변화율 (초기전도도 -산화 후 전도도 /초기전도도)이 25 배 이하로 낮게 유지하는 효과가우수하다.  (iii) In addition, the composition of the present invention prevents the oxidation of glycol to inhibit the formation of ionic substances, and thus the rate of change of electrical conductivity (initial conductivity-conductivity after oxidation / initial conductivity) for the inhaled separator and the aluminum specimen is The effect of keeping it lower than 25 times is excellent.
(iv) 따라서, 본 발명의 연료전지용 넁각액 조성물은 겨울철에 동결되지 않으면서도 저도전율을 유지하기 때문에 연료전지 구동장치의 넁각시스템용 넁각수에 이용할 수 있다.  (iv) Therefore, the liquid composition for fuel cell of the present invention can be used for the cooling angle for the angle system for the fuel cell drive device because the low conductivity is maintained without being frozen in winter.
【발명의 실시를 위한 구체적인 내용】 [Specific contents for implementation of the invention]
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이 들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다 는 것은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 있어서 자명할 것이다. 실시예 제조예 1: 부동넁각액 조성물의 제조 Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention in more detail, and the scope of the present invention is not limited by these examples in accordance with the gist of the present invention having ordinary knowledge in the technical field to which the present invention belongs. It will be self-evident. EXAMPLES Preparation Example 1 Preparation of Passivated Liquid Composition
부동넁각액 조성물은 다음 표 1 에 기재된 성분의 함량을 저울로 칭량 하여 탈이온수 (deionized water)에 투입하고 잔류물이 없는 균일한 용액이 될 때까지 교반하여 제조하였다, 탈이온수는 초순수 제조장치에서 이온이" 제거된 탈이온수 이용하였으며, 글리콜류는 DOW Chemical 의 에틸렌 글리콜, 퀴논 및 하이드로퀴논은 대정화금사로부터 구입하여 이용하였다. The antifreeze solution composition was prepared by weighing the contents of the ingredients shown in the following table 1 into a deionized water and stirring until it became a uniform solution without residue. The deionized water was prepared in an ultrapure water production system. ions were used, "the removal of deionized water, glycols include ethylene glycol, quinone, and hydroquinone of DOW Chemical was used for purification purchased from Gold thread.
【표 1】 Table 1
부동냉각액 조성물의 조성 Composition of Anticoolant Composition
Figure imgf000007_0001
실험예 1: 부동넁각액 조성물의 산화 후 전기전도도 측정 및 산의 생성량 측정
Figure imgf000007_0001
Experimental Example 1 Measurement of Electrical Conductivity and Acid Production after Oxidation of Antifreeze Liquid Composition
에틸렌글리콜이 열산화하면서 생성되는 산으로 인해 도전율이 상승되 는 것을 막기 위해 열산화 시험을 실시하여 부동냉각액의 산화 전후의 전기 전도도 및 산의 생성량 변화를 측정하였다 (변화율=초기전도도—산화 후 전도 도 /초기전도도). 테프론 재질의 밀폐용기에 산화 촉진을 위해 연료전지 넁 각시스템에 사용되는 부품을 침적시켰다. 침적시키고자 하는 부품 일정량을 부동냉각액 180 에 침적시키고 마개를 막은 다음 100 °C 오븐에 500 시간 방치하였다. 시험 전후의 부동냉각액의 전기전도도 및 산의 생성량을 각각 Thermo or ion 162A 의 전도도 측정기 및 이온 크로마토그래피 (IC)를 이용하 여 측정하였다. The thermal oxidation test was performed to measure the change in the electrical conductivity and acid production before and after oxidation of the antifreeze liquid (change rate = initial conductivity—conduction after oxidation). Degrees / initial conductivity). The Teflon enclosed container was deposited with components used in each fuel cell system to promote oxidation. A certain amount of parts to be deposited It was immersed in 180 antifreeze solution, the stopper was closed, and it was left to stand in 100 degreeC oven for 500 hours. The electrical conductivity and acid production of the antifreeze solution before and after the test were measured using a conductivity meter and ion chromatography (IC) of Thermo or ion 162A, respectively.
연료전지 시스템 부품 중 비금속 소재인 혹연계 분리판 (가로 2 cm X 세로 2 cm)과 금속소재인 A1 2000 계의 시험편을 이용하였으며, 그 전도도 변화와산의 생성량은 각각 다음의 표 2 및 3에 정리하였다:  Among the fuel cell system components, a nonmetallic separator (2 cm x 2 cm) and a metal A1 2000-based test specimen were used.The conductivity changes and acid production are shown in Tables 2 and 3, respectively. To sum up:
【표 2】 Table 2
혹연계 분리판에 대한 부동넁각액 조성물의 열산화 시험 Thermal Oxidation Test of Antifreeze Solution Composition on Chromatographic Separator
Figure imgf000008_0001
상기 표 2 에서 확인할 수 있듯이, 실시예 1 내지 6 은 비교예 1 내지 3에 비해 연료전지 시스템 부품 중 혹연계 분리판의 열산화 후 산의 생성량 도 적으며 이로 인한 전도도 변화율이 작음을 알 수 있다. 이는 하이드로퀴 논 또는 퀴놀린이 에틸렌글리콜의 산화를 방지하여 이에 따른 도전율의 변 화가 작게 유지되는 것으로 판단된다. 【표 3】
Figure imgf000008_0001
As can be seen in Table 2, Examples 1 to 6 has a lower amount of acid generation after thermal oxidation of the incinerator separator in the fuel cell system components compared to Comparative Examples 1 to 3, and thus the conductivity change rate is small. . It is believed that the hydroquinone or quinoline prevents oxidation of ethylene glycol and thus the change in conductivity is kept small. Table 3
2000 계열의 A1 시험편에 대한 부동넁각액 조성물의 열산화 시험  Thermal Oxidation Test of Antifreeze Liquid Composition on 2000 Series A1 Specimen
Figure imgf000009_0001
상기 표 3 에서 확인할 수 있듯이, 실시예 1 내지 6 은 비교예 1 내지 3 에 비해 연료전지 시스템 부품 중 A1 2000 계열 시험편의 열산화 후 산의 생성량도 적으며 이로 인한 전도도 변화율이 작음을 알 수 있다. 이는 하이 드로퀴논 또는 퀴놀린이 에틸렌글리콜의 산화를 방지하여 이에 따른 도전율 의 변화 작게 유지되는 것으로 판단된다. 실험예 2: 부동넁각액 조성물의 동결온도 측정
Figure imgf000009_0001
As can be seen in Table 3, Examples 1 to 6 is less acid production after thermal oxidation of the A1 2000 series test pieces of the fuel cell system components compared to Comparative Examples 1 to 3 it can be seen that the resulting conductivity change rate is small. . It is believed that hydroquinone or quinoline prevents the oxidation of ethylene glycol and thus the change in conductivity is kept small. Experimental Example 2: Measurement of the freezing temperature of the antifreeze solution composition
상기 실시예 1 의 부동넁각액 조성물의 동결온도는 KS Μ 2142 따라 측 정하였으며, 그 측정 과정을 간략히 정리하면 우선 넁각조에 아세톤 또는 메탄을을 넣고 다시 드라이아이스를 서서히 넣어' 냉각액을 만들고, 시료 75-100 ι 를 냉각관에 넣고 것개 및 온도계를 코르크 마개나 고무마개를 사 용하여 장치한 다음 동결온도를 측정하였다. 이때 온도계는 밑끝이 측정하 고자 하는 부동넁각액 조성물의 중심에 놓이도록 하였다. 그리고 그 측정 결과는 다음 표 4에 정리하였다: 【표 4】 The freezing temperature of the antifreeze liquid composition of Example 1 was measured according to KS Μ 2142. To summarize the measurement process, first add acetone or methane to the wet shell and slowly add dry ice to form a ' cooling liquid, and sample. 75-100 ι was placed in a cooling tube, and the eggplant and thermometer were installed using a cork stopper or a rubber stopper, and the freezing temperature was measured. At this time, the thermometer was placed at the center of the antifreeze solution composition to be measured. The measurement results are summarized in Table 4 below: Table 4
실시예 3의 부동넁각액 조성물의 동결온도 Freezing Temperature of the Antifreeze Liquid Composition of Example 3
Figure imgf000010_0001
이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식올 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하 다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의 하여 정의된다고 할 것이다.
Figure imgf000010_0001
As described above in detail a specific part of the present invention, it will be apparent to those of ordinary skill in the art that such a specific technology is only a preferred embodiment, and the scope of the present invention is not limited thereto. Therefore, the substantial scope of the present invention will be defined by the appended claims and equivalents thereof.

Claims

【특허청구범위】 [Patent Claims]
【청구항 1】 [Claim 1]
(a) 글리콜; (b) 탈이온수 (deionized water); 및 (c) 하이드로퀴논 또는 퀴놀린을 포함하는 연료전지 냉각액 조성물.  (a) glycol; (b) deionized water; And (c) hydroquinone or quinoline.
【청구항 2】 [Claim 2]
제 1 항에 있어서, 상기 글리콜은 모노에틸렌글리콜, 모노플로필렌글리콜, 디에틸렌글리콜, 디프로필렌글리콜, 글리세린, 트리에틸렌글리콜 및 트리프로필렌글리콜으로 구성된 군으로부터 선택되는 것을 특징으로 하는 연료전지 냉각액 조성물.  The fuel cell coolant composition of claim 1, wherein the glycol is selected from the group consisting of monoethylene glycol, monoflolene glycol, diethylene glycol, dipropylene glycol, glycerin, triethylene glycol, and tripropylene glycol.
【청구항 3】 [Claim 3]
제 1 항에 있어서, 상기 조성물은 조성물의 총 중량을 기준으로 하여 상기 하이드로퀴논 또는 퀴놀린을 0.005-1 중량 %로 포함되는 것을 특징으로 하는 연료전지 냉각액 조성물.  The fuel cell coolant composition of claim 1, wherein the composition comprises 0.005-1% by weight of the hydroquinone or quinoline based on the total weight of the composition.
【청구항 4】 [Claim 4]
제 1 항에 있어서, 상기 조성물은 상기 글리콜의 산화를 방지하여 흑연계 분리판에 대한 전도도 변화율이 25 배 이하 인 것을 특징으로 하는 연료전지 넁각액 조성물.  The composition of claim 1, wherein the composition prevents oxidation of the glycol to have a conductivity change rate of 25 times or less for a graphite-based separator.
【청구항 5] [Claim 5]
제 1 항에 있어서, 상기 조성물은 상기 글리콜의 산화를 방지하여 알루미늄계 시험편에 대한 전도도 변화율이 25 배 이하 인 것을 특징으로 하는 연료전지 냉각액 조성물.  The fuel cell coolant composition of claim 1, wherein the composition prevents oxidation of the glycol to have a conductivity change rate of 25 times or less for an aluminum-based test piece.
【청구항 6] [Claim 6]
제 1 항에 있어서, 상기 조성물은 냉각액 조성물의 동결온도는 -30°C 이하 인 것을 특징으로 하는 연료전지 냉각액 조성물. The fuel cell coolant composition of claim 1, wherein the freezing temperature of the coolant composition is about −30 ° C. or less.
PCT/KR2012/000755 2011-09-23 2012-01-31 Composition containing hydroquinone or quinoline for fuel cell coolant WO2013042839A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280045990.XA CN103842466B (en) 2011-09-23 2012-01-31 Comprise the fuel cell cooling liquid composition of hydroquinone or quinoline

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110096278A KR101420746B1 (en) 2011-09-23 2011-09-23 Cooling Liquid Composition for Fuel-Cell Comprising Hydroquinone or Quinoline
KR10-2011-0096278 2011-09-23

Publications (1)

Publication Number Publication Date
WO2013042839A1 true WO2013042839A1 (en) 2013-03-28

Family

ID=47914580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/000755 WO2013042839A1 (en) 2011-09-23 2012-01-31 Composition containing hydroquinone or quinoline for fuel cell coolant

Country Status (3)

Country Link
KR (1) KR101420746B1 (en)
CN (1) CN103842466B (en)
WO (1) WO2013042839A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108102616A (en) * 2017-12-22 2018-06-01 扬州中德汽车零部件有限公司 Low conductivity super long effective organic type fuel cell anti-freeze cooling liquid and preparation method thereof
CN113652210A (en) * 2021-06-28 2021-11-16 中国船舶重工集团公司第七一八研究所 Low-conductivity long-acting cooling liquid and preparation method thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3006261A1 (en) * 2016-01-06 2017-07-13 Marco NUNES Water-based engine coolant for use in tropical environments
CN106010475A (en) * 2016-06-17 2016-10-12 合肥赫普信息科技有限公司 Antifreezing solution special for car
JP6430999B2 (en) * 2016-06-24 2018-11-28 トヨタ自動車株式会社 Automotive engine coolant composition, automotive engine concentrated coolant composition, and internal combustion engine operating method
KR102400637B1 (en) * 2019-11-04 2022-05-23 주식회사 케이디파인켐 Colorants for Heat Transfer Fluids and Compositions Comprising the Same
CN111748324A (en) * 2020-07-08 2020-10-09 萱柯氢能科技(北京)有限公司 Antifreeze fluid for metal bipolar plate fuel cell, preparation method and application
JP7392241B2 (en) * 2020-12-04 2023-12-06 シーシーアイホールディングス株式会社 Colored coolant composition for fuel cell vehicles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005129384A (en) * 2003-10-24 2005-05-19 Calsonic Kansei Corp Cooling liquid and fuel cell cooling system using it
JP3650644B2 (en) * 1995-05-26 2005-05-25 裕治 原嶋 Mixed refrigerant composition
KR20050084066A (en) * 2002-12-02 2005-08-26 텍사코 디벨롭먼트 코포레이션 Antifreeze coolant composition for high temperature applications

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4842420B2 (en) * 1999-09-28 2011-12-21 トヨタ自動車株式会社 Cooling liquid, cooling liquid sealing method and cooling system
WO2003094271A1 (en) * 2002-05-02 2003-11-13 Shishiai-Kabushikigaisha Cooling liquid composition for fuel cell
US20040110050A1 (en) * 2002-12-09 2004-06-10 Abd Elhamid Mahmoud H Environmentally friendly and inexpensive dielectric coolant for fuel cell stacks
CN101580702B (en) * 2009-05-31 2011-04-13 江苏盈天化学有限公司 Antifreezing fluid
CN102108288A (en) * 2009-12-28 2011-06-29 宋晓东 Novel automobile antifreeze

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3650644B2 (en) * 1995-05-26 2005-05-25 裕治 原嶋 Mixed refrigerant composition
KR20050084066A (en) * 2002-12-02 2005-08-26 텍사코 디벨롭먼트 코포레이션 Antifreeze coolant composition for high temperature applications
JP2005129384A (en) * 2003-10-24 2005-05-19 Calsonic Kansei Corp Cooling liquid and fuel cell cooling system using it

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108102616A (en) * 2017-12-22 2018-06-01 扬州中德汽车零部件有限公司 Low conductivity super long effective organic type fuel cell anti-freeze cooling liquid and preparation method thereof
CN108102616B (en) * 2017-12-22 2020-06-26 扬州中德汽车零部件有限公司 Low-conductivity ultra-long-efficiency anti-freezing cooling liquid for organic fuel cell and preparation method thereof
CN113652210A (en) * 2021-06-28 2021-11-16 中国船舶重工集团公司第七一八研究所 Low-conductivity long-acting cooling liquid and preparation method thereof
CN113652210B (en) * 2021-06-28 2024-04-02 中国船舶重工集团公司第七一八研究所 Low-conductivity long-acting cooling liquid and preparation method thereof

Also Published As

Publication number Publication date
CN103842466B (en) 2016-12-14
KR20130032591A (en) 2013-04-02
KR101420746B1 (en) 2014-07-21
CN103842466A (en) 2014-06-04

Similar Documents

Publication Publication Date Title
WO2013042839A1 (en) Composition containing hydroquinone or quinoline for fuel cell coolant
JP4842420B2 (en) Cooling liquid, cooling liquid sealing method and cooling system
RU2315797C2 (en) Composition of fuel element cooling fluid concentrate
EP1476524B1 (en) Heat transfer compositions with high electrical resistance for fuel cell assemblies
CZ305022B6 (en) Method of protecting fuel cell drives and use of antifreeze concentrates
CZ20033397A3 (en) Cooling compositions containing azole derivatives and intended for cooling systems of fuel cells
AU2002346913A1 (en) Corrosion inhibiting compositions and methods for fuel cell coolant systems
CA2509597C (en) Coolant based on azole derivatives containing 1,3-propanediol for fuel cell cooling systems
WO2003094271A1 (en) Cooling liquid composition for fuel cell
US8691110B2 (en) Coolant composition for fuel cell
CN110591657A (en) Heat super-heat medium liquid
JP7244258B2 (en) coolant
JP2004143265A (en) Cooling liquid, cooling liquid enclosing method and cooling system
WO2004091028A1 (en) Cooling liquid composition for fuel cell
AU2003225581B2 (en) Heat transfer compositions with high electrical resisitivity for fuel cell assemblies
WO2005105948A1 (en) Heating medium composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12833052

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12833052

Country of ref document: EP

Kind code of ref document: A1