WO2013042777A1 - Production method for positive electrode material for secondary battery - Google Patents
Production method for positive electrode material for secondary battery Download PDFInfo
- Publication number
- WO2013042777A1 WO2013042777A1 PCT/JP2012/074269 JP2012074269W WO2013042777A1 WO 2013042777 A1 WO2013042777 A1 WO 2013042777A1 JP 2012074269 W JP2012074269 W JP 2012074269W WO 2013042777 A1 WO2013042777 A1 WO 2013042777A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- positive electrode
- secondary battery
- electrode material
- compound
- group
- Prior art date
Links
- 239000007774 positive electrode material Substances 0.000 title claims abstract description 68
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 40
- 150000001875 compounds Chemical class 0.000 claims abstract description 77
- 238000010438 heat treatment Methods 0.000 claims abstract description 76
- 239000002994 raw material Substances 0.000 claims abstract description 73
- 238000002844 melting Methods 0.000 claims abstract description 59
- 230000008018 melting Effects 0.000 claims abstract description 59
- 239000013078 crystal Substances 0.000 claims abstract description 36
- 238000000034 method Methods 0.000 claims abstract description 31
- -1 phosphoric acid compound Chemical class 0.000 claims description 92
- 238000010298 pulverizing process Methods 0.000 claims description 61
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 43
- 238000001816 cooling Methods 0.000 claims description 43
- 239000000155 melt Substances 0.000 claims description 41
- 229910052799 carbon Inorganic materials 0.000 claims description 38
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 31
- 239000010450 olivine Substances 0.000 claims description 29
- 229910052609 olivine Inorganic materials 0.000 claims description 29
- 238000002360 preparation method Methods 0.000 claims description 28
- NBIIXXVUZAFLBC-UHFFFAOYSA-N phosphoric acid Substances OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 27
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 26
- 239000000463 material Substances 0.000 claims description 22
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 20
- 229910052742 iron Inorganic materials 0.000 claims description 19
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 17
- 229910052782 aluminium Inorganic materials 0.000 claims description 16
- 238000000227 grinding Methods 0.000 claims description 16
- 229910052748 manganese Inorganic materials 0.000 claims description 14
- 229910052611 pyroxene Inorganic materials 0.000 claims description 14
- 239000002228 NASICON Substances 0.000 claims description 13
- 229910052796 boron Inorganic materials 0.000 claims description 13
- 239000000377 silicon dioxide Substances 0.000 claims description 13
- 239000004020 conductor Substances 0.000 claims description 12
- 150000002894 organic compounds Chemical class 0.000 claims description 12
- 229910052758 niobium Inorganic materials 0.000 claims description 11
- 229910052719 titanium Inorganic materials 0.000 claims description 11
- 229910052744 lithium Inorganic materials 0.000 claims description 10
- 229910052710 silicon Inorganic materials 0.000 claims description 10
- 229910052715 tantalum Inorganic materials 0.000 claims description 10
- 229910052721 tungsten Inorganic materials 0.000 claims description 10
- 229910052720 vanadium Inorganic materials 0.000 claims description 10
- 229910052750 molybdenum Inorganic materials 0.000 claims description 9
- 229910052726 zirconium Inorganic materials 0.000 claims description 9
- 229910052698 phosphorus Inorganic materials 0.000 claims description 8
- 229910052759 nickel Inorganic materials 0.000 claims description 7
- 229910052700 potassium Inorganic materials 0.000 claims description 7
- 229910052708 sodium Inorganic materials 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 5
- 239000000203 mixture Substances 0.000 abstract description 55
- 238000002156 mixing Methods 0.000 abstract description 8
- 239000002245 particle Substances 0.000 description 61
- 125000004429 atom Chemical group 0.000 description 45
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 36
- 239000012298 atmosphere Substances 0.000 description 26
- 239000011819 refractory material Substances 0.000 description 20
- 239000011572 manganese Substances 0.000 description 19
- 230000001603 reducing effect Effects 0.000 description 18
- 235000012239 silicon dioxide Nutrition 0.000 description 18
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 16
- 239000007789 gas Substances 0.000 description 15
- 229910004298 SiO 2 Inorganic materials 0.000 description 14
- 239000002904 solvent Substances 0.000 description 14
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 13
- 239000000919 ceramic Substances 0.000 description 11
- 239000012071 phase Substances 0.000 description 11
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 10
- 238000009472 formulation Methods 0.000 description 10
- 239000011521 glass Substances 0.000 description 10
- 230000002829 reductive effect Effects 0.000 description 10
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 9
- 230000003628 erosive effect Effects 0.000 description 9
- 239000011159 matrix material Substances 0.000 description 9
- 229910019142 PO4 Inorganic materials 0.000 description 8
- 229910002091 carbon monoxide Inorganic materials 0.000 description 8
- 239000010452 phosphate Substances 0.000 description 8
- 239000010948 rhodium Substances 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 229910000873 Beta-alumina solid electrolyte Inorganic materials 0.000 description 7
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 6
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 6
- 229910052697 platinum Inorganic materials 0.000 description 6
- QSNQXZYQEIKDPU-UHFFFAOYSA-N [Li].[Fe] Chemical compound [Li].[Fe] QSNQXZYQEIKDPU-UHFFFAOYSA-N 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 229910001385 heavy metal Inorganic materials 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 230000003746 surface roughness Effects 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 229910018068 Li 2 O Inorganic materials 0.000 description 3
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 3
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 3
- 229910001416 lithium ion Inorganic materials 0.000 description 3
- 239000011707 mineral Substances 0.000 description 3
- 239000012768 molten material Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 229910052703 rhodium Inorganic materials 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 2
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- 229910020599 Co 3 O 4 Inorganic materials 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 2
- 229910018119 Li 3 PO 4 Inorganic materials 0.000 description 2
- 229910015868 MSiO Inorganic materials 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 2
- 229910001260 Pt alloy Inorganic materials 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical group 0.000 description 2
- 229910003481 amorphous carbon Inorganic materials 0.000 description 2
- YXTPWUNVHCYOSP-UHFFFAOYSA-N bis($l^{2}-silanylidene)molybdenum Chemical compound [Si]=[Mo]=[Si] YXTPWUNVHCYOSP-UHFFFAOYSA-N 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 230000005496 eutectics Effects 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 229910021344 molybdenum silicide Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- UXFQFBNBSPQBJW-UHFFFAOYSA-N 2-amino-2-methylpropane-1,3-diol Chemical compound OCC(N)(C)CO UXFQFBNBSPQBJW-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910012425 Li3Fe2 (PO4)3 Inorganic materials 0.000 description 1
- 229910010743 LiFeSi Inorganic materials 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 229910000629 Rh alloy Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 150000004645 aluminates Chemical class 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- NTXGQCSETZTARF-UHFFFAOYSA-N buta-1,3-diene;prop-2-enenitrile Chemical compound C=CC=C.C=CC#N NTXGQCSETZTARF-UHFFFAOYSA-N 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 239000010431 corundum Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- SWXVUIWOUIDPGS-UHFFFAOYSA-N diacetone alcohol Natural products CC(=O)CC(C)(C)O SWXVUIWOUIDPGS-UHFFFAOYSA-N 0.000 description 1
- CQTRUFMMCCOKTA-UHFFFAOYSA-N diacetoneamine hydrogen oxalate Natural products CC(=O)CC(C)(C)N CQTRUFMMCCOKTA-UHFFFAOYSA-N 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 229920001973 fluoroelastomer Polymers 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052756 noble gas Inorganic materials 0.000 description 1
- 150000002835 noble gases Chemical class 0.000 description 1
- 239000011255 nonaqueous electrolyte Substances 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 239000006064 precursor glass Substances 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003746 solid phase reaction Methods 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 150000003505 terpenes Chemical class 0.000 description 1
- 235000007586 terpenes Nutrition 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003623 transition metal compounds Chemical class 0.000 description 1
- 229910000319 transition metal phosphate Inorganic materials 0.000 description 1
- LSGOVYNHVSXFFJ-UHFFFAOYSA-N vanadate(3-) Chemical class [O-][V]([O-])([O-])=O LSGOVYNHVSXFFJ-UHFFFAOYSA-N 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B25/00—Phosphorus; Compounds thereof
- C01B25/16—Oxyacids of phosphorus; Salts thereof
- C01B25/26—Phosphates
- C01B25/45—Phosphates containing plural metal, or metal and ammonium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5825—Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/20—Batteries in motive systems, e.g. vehicle, ship, plane
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a method for producing a positive electrode material for a secondary battery.
- plug-in hybrid vehicles and electric vehicles are being developed from the viewpoint of carbon dioxide emission regulations and energy saving.
- it is required to increase the capacity and the energy density while maintaining the safety of the secondary battery.
- Non-Patent Document 1 discloses a olivine-type silicic acid compound (Li 2 MSiO 4 ) containing two Li atoms in one molecule as a secondary battery material capable of increasing the capacity by a multi-electron reaction.
- M Fe, Mn).
- Non-Patent Document 2 discloses a method of obtaining a positive electrode material for a secondary battery having a predetermined crystal structure by once heating and melting a raw material mixture and then cooling it. Thus, once the raw material mixture is in a molten state, the positive electrode material for a secondary battery can be manufactured at low cost and in large quantities, and the uniformity of the chemical composition of the obtained positive electrode material can be improved.
- Patent Document 1 discloses a method in which a raw material mixture containing a divalent transition metal compound is heated and melted at 1500 ° C. in an argon atmosphere and then rapidly cooled with a single roll to obtain an amorphous transition metal phosphate complex. Is disclosed.
- Heat melting of the raw material mixture requires heat treatment at a high temperature, and a container used for heat melting requires characteristics such as heat resistance and corrosion resistance.
- a raw material mixture composed of LiFePO 4 and LiF is placed in a platinum tube, the platinum tube is disposed in a quartz tube, heated by high frequency induction heating to melt the raw material mixture, and then the melt is cooled.
- a method for obtaining an active material composed of a phosphate complex containing a transition metal such as Fe or Mn is disclosed.
- Patent Document 3 materials such as Li 2 CO 3 , NH 4 H 2 PO 4 , and Fe (II) C 2 O 4 are put in an alumina crucible with a lid, melted at 1200 ° C., and then the melt is put on an iron plate.
- a method for obtaining a precursor glass having a basic composition of LiFePO 4 by pouring out and pressing and quenching is disclosed.
- Patent Document 4 a raw material composition containing Li 2 CO 3 , Fe (COO) 2 .2H 2 O, NH 4 H 2 PO 4, etc. is placed in a crucible with a nozzle made of rhodium / platinum alloy at 1300 ° C.
- a method of obtaining olivine-type lithium iron phosphate particles by heating after melting and then rapidly cooling the melt and then heating after pulverization is disclosed.
- Japanese Unexamined Patent Publication No. 2005-158673 Japanese Unexamined Patent Publication No. 2007-73360 Japanese Unexamined Patent Publication No. 2008-47412 Japanese Unexamined Patent Publication No. 2011-1242
- Patent Document 2 is not suitable for mass production, and platinum components are mixed from the platinum tube into the internal melt during heating by high-frequency induction, leading to a decrease in product purity and an increase in production costs. There is a fear.
- the corrosion resistance of alumina constituting the crucible is not necessarily high, the crucible is easily worn by erosion of Fe or the like during heating and melting, and the replacement frequency increases. Further, the alumina component is likely to be mixed into the melt from the crucible, and there is a possibility that the purity may be lowered. Furthermore, since alumina has a relatively high coefficient of thermal expansion, the crucible may be damaged due to a rapid temperature change.
- Patent Document 4 at high temperatures, the crucible is easily worn out by the formation of an alloy between platinum and rhodium contained in the crucible and the iron component in the melt, and platinum and rhodium dissolved from the crucible are contained in the melt. It may be easily mixed into the product, resulting in a decrease in product purity and an increase in production cost.
- An object of the present invention is to provide a method for efficiently producing a positive electrode material for a secondary battery that is reduced in the mixing of components derived from a container used for heating and melting a raw material mixture and excellent in purity at a low cost. is there.
- the method for producing a positive electrode material for a secondary battery according to the present invention is a method for producing a positive electrode material for a secondary battery containing a compound having an olivine type, pyroxene type, or NASICON type crystal structure, wherein the raw materials are prepared. And a raw material preparation step of preparing a raw material preparation, and a melting step of melting the raw material preparation in a container formed of an electroformed refractory to obtain a melt.
- the electrocast refractory is preferably at least one selected from the group consisting of an alumina-zirconia-silica electrocast refractory, a high zirconia electrocast refractory, and an alumina electrocast refractory. Further, the melting step is preferably performed at 900 ° C to 1700 ° C.
- the method for producing a positive electrode material for a secondary battery of the present invention includes a cooling step of cooling the melt obtained in the melting step to obtain a solidified product. Furthermore, it is preferable to have a heating step of heating the solidified product obtained in the cooling step.
- the phosphoric acid compound represented by following (1) Formula is mentioned.
- A represents at least one atom selected from the group consisting of Li, Na, and K
- M represents at least one atom selected from the group consisting of Fe, Mn, Co, and Ni
- X 1 represents at least one atom selected from the group consisting of Zr, Ti, Nb, Ta, Mo, and W
- Z 1 represents at least one type selected from the group consisting of Si, B, Al
- V A is 0 ⁇ a ⁇ 0.2
- b is 0 ⁇ b ⁇ 0.2
- c is the numerical value of a and b
- the silicic acid compound represented by following (2) Formula is mentioned.
- A represents at least one atom selected from the group consisting of Li, Na, and K, M represents at least one atom selected from the group consisting of Fe, Mn, Co, and Ni;
- X 2 represents at least one atom selected from the group consisting of Zr, Ti, Nb, Ta, Mo, and W, and
- Z 2 represents at least one type selected from the group consisting of P, B, Al, and V D is 0 ⁇ d ⁇ 0.2, e is 0 ⁇ e ⁇ 0.2, f is the numerical value of d and e, and the valence of M, the valence of X 2 and Z It is a number that depends on the valence of 2 and satisfies electrical neutrality.
- the present invention it is possible to efficiently produce a positive electrode material for a secondary battery that is less contaminated with components derived from a container used for heating and melting the raw material mixture and has excellent purity.
- olivine type compound “compound having an olivine type crystal structure” is also referred to as “olivine type compound”
- compound having a pyroxene type crystal structure” is also referred to as “pyroxene type compound”
- “Compound having” is also referred to as “Nashikon-type compound”.
- the “compound having an olivine type, pyroxene type, or NASICON type crystal structure” is also referred to as “compound ( ⁇ )”.
- the phosphoric acid compound having the composition represented by the above formula (1) is also referred to as “phosphoric acid compound (1)”
- the silicic acid compound having the composition represented by the above formula (2) is referred to as “silicic acid”. Also referred to as “compound (2)”.
- a method for producing a positive electrode material for a secondary battery according to the present invention is a method for producing a positive electrode material for a secondary battery containing a compound having an olivine type, pyroxene type, or NASICON type crystal structure, wherein raw materials are prepared.
- the secondary battery positive electrode material according to the present invention is preferably a compound having an olivine type, pyroxene type, or NASICON type crystal structure.
- Examples of the olivine type compounds include those represented by the general formula AMPO 4 , AVOPO 4 , A 2 MSiO 4 , A 2 VOSiO 4 , AMBO 3 , A 2 MPO 4 F, or AVOPO 4 F.
- examples of pyroxene-type compounds include those represented by general formulas AMSi 2 O 6 and AVSi 2 O 6 .
- a 2 MP 2 O 7 is also included in the pyroxene-type compound.
- Examples of NASICON compounds include those represented by the general formula A 3 M 2 (PO 4 ) 3 or A 3 V 2 (PO 4 ) 3 .
- atom A represents an alkali metal atom such as Li, Na, and K
- atom M represents a transition metal atom such as Fe, Mn, Co, and Ni.
- P, Si, B, and V may each be partially substituted with each other, or these may be substituted with atoms such as Al or S.
- the olivine-type compound, pyroxene-type compound, and nasicon-type compound described above are at least selected from Zr, Ti, Nb, Ta, Mo, and W together with the atoms A and M, in addition to the compounds represented by the general formula described above. It may contain one kind of atom.
- the phosphoric acid compound (1) represented by the following formula (1) is preferred as the phosphoric acid compound.
- AM 1-a X 1 a P 1-b Z 1 b O 4 + c (1)
- A is at least one atom selected from the group consisting of Li, Na, and K
- M is at least one atom selected from the group consisting of Fe, Mn, Co, and Ni
- X 1 is Zr.
- Ti, Nb, Ta, Mo, and W at least one atom selected from the group consisting of W
- Z 1 represents at least one atom selected from the group consisting of Si, B, Al, and V.
- a is 0 ⁇ a ⁇ 0.2
- b is 0 ⁇ b ⁇ 0.2
- c depends on the numerical values of a and b, and the valence of M, the valence of X 1 and the valence of Z 1 , Number that satisfies electrical neutrality.
- the raw material preparation can be satisfactorily melted in the melting step (ii) described later, and a uniform melt can be obtained.
- the phosphoric acid compound (1) can be obtained by the heating step (v) described below, and further, the phosphoric acid compound (1) containing an olivine type crystal structure, particularly a phosphoric acid compound (1) comprising only an olivine type crystal structure (1). ) Is preferable.
- the value of a is more preferably 0.001 ⁇ a ⁇ 0.1, and particularly preferably 0.001 ⁇ a ⁇ 0.05.
- the value of b is more preferably 0.001 ⁇ b ⁇ 0.1, and particularly preferably 0.001 ⁇ b ⁇ 0.05.
- the value of c in the phosphoric acid compound (1) is a number depending on the numerical values of a and b, and the valence of M, the valence of X 1 and the valence of Z 1 , from 1/2 of the total positive charge The value obtained by subtracting 4.
- the silicate compound (2) represented by the following formula (2) is preferred as the silicate compound.
- A is at least one atom selected from the group consisting of Li, Na, and K
- M is at least one atom selected from the group consisting of Fe, Mn, Co, and Ni
- X 2 is Zr.
- Z 2 represents at least one atom selected from the group consisting of P, B, Al, and V.
- d represents 0.
- f depends on the numerical values of d and e, and the valence of M, the valence of X 2 and the valence of Z 2 , It is a number that satisfies the target neutrality.
- the raw material preparation can be melted well in the melting step (ii) described later, and a uniform melt can be obtained.
- the silicate compound (2) can be obtained by the heating step (v) described later, and further, the silicate compound (2) having an olivine type crystal structure, particularly a silicate compound (2) having only an olivine type crystal structure (2). ) Is preferable.
- the value of d is more preferably 0.001 ⁇ d ⁇ 0.1, and particularly preferably 0.001 ⁇ d ⁇ 0.05.
- the value of e is more preferably 0.001 ⁇ e ⁇ 0.1, and particularly preferably 0.001 ⁇ e ⁇ 0.05.
- the value of f in the composition of the silicate compound (2) is a number that depends on the values of d and e, and the valence of M, the valence of X 2 and the valence of Z 2 , and is 1 / The value obtained by subtracting 4 from 2.
- the atom A is suitable as a positive electrode material for a secondary battery, it is preferable to make Li essential, and it is particularly preferable to use only Li.
- the phosphoric acid compound (1) containing Li and the silicic acid compound (2) containing Li increase the capacity per unit volume (mass) of the secondary battery.
- the atom M is preferably composed of only one kind or two kinds. In particular, it is preferable in terms of cost that the atom M consists of Fe alone, Mn alone, or Fe and Mn.
- the valence of atom M in phosphoric acid compound (1) or silicic acid compound (2) is in the range of +2 to +4.
- the valence of atom M is +2, +8/3, +3 when atom M is Fe, +2, +3, +4 when Mn, +2, +8/3, +3 when Co, +2, when Ni is Ni, +4 is preferred.
- the valence of atom M is preferably 2 to 2.2, more preferably 2.
- the atoms X 1 and X 2 are at least one atom selected from the group consisting of Zr, Ti, Nb, Ta, Mo and W. From the viewpoint of performance, Zr, Ti or Nb is preferable, and Zr or Ti is particularly preferable.
- the valences of the atoms X 1 and X 2 in the phosphoric acid compound (1) or the silicic acid compound (2) are basically +4 for Zr, +2 or +4 for Ti, +2 or +5 for Nb, Ta is +2 or +5, Mo is +4 or +6, and W is +4 or +6.
- the atom Z 1 is at least one selected from the group consisting of Si, B, Al, and V. From the viewpoint of performance, B or Al is preferable, and B is particularly preferable.
- the atom Z 2 is at least one selected from the group consisting of P, B, Al, and V. From the viewpoint of performance, B or Al is preferable, and B is particularly preferable.
- the valences of the atoms Z 1 and Z 2 are basically +5 for P, +3 for B, +3 for Al, and +3 for V. +3, +4, +5.
- the silicic acid compound (2) is preferable because it can increase the capacity per unit volume (mass) of the secondary battery when used as the positive electrode material for the secondary battery.
- a method for producing a positive electrode material for a secondary battery according to the present invention is a method for producing a positive electrode material for a secondary battery containing the compound having the olivine type, pyroxene type, or NASICON type crystal structure described above, and preparing raw materials
- the production method of the present invention preferably further includes a cooling step (iii), a pulverizing step (iv), and a heating step (v). Each step will be specifically described below.
- each component source of an olivine type compound, pyroxene type compound, or NASICON type compound is selected and mixed so as to be a melt having a predetermined composition.
- the compound containing atom A includes A carbonate (A 2 CO 3 ), A hydrogen carbonate (AHCO 3 ).
- a 2 CO 3 , AHCO 3 , or AF is more preferable because it is inexpensive and easy to handle.
- oxides of M FeO, Fe 3 O 4 , Fe 2 O 3 , MnO, Mn 2 O 3 , MnO 2 , CoO, Co 3 O 4 , Co 2 O 3 , NiO, etc.
- M oxyhydroxide MO (OH)
- M silicate MO ⁇ SiO 2 , 2MO ⁇ SiO 2 etc.
- M phosphate M 3 (PO 4 ) 2 etc.
- Borate M 3 (BO 3 ) 2 etc.
- M sulfate MSO 4 , M 2 (SO 4 ) 3 etc.
- M organic acid salt acetate (M (CH 3 COO) 2 ) and oxalate (M (COO 2 ) and M alkoxides (M (OCH 3 )
- At least one compound selected from the group consisting of Fe 3 O 4 , Fe 2 O 3 , MnO, Mn 2 O 3 , MnO 2 , Co 3 O 4 and NiO is more preferable.
- the compound when the atom M is Fe Fe 3 O 4 and / or Fe 2 O 3 is preferable, and as the compound when the atom M is Mn, MnO 2 is preferable.
- the compound containing atom M may be one type or two or more types.
- SiO 2 silicon oxide
- Si (OCH 3 ) 4 silicon alkoxide
- a silicate, or M silicate is preferable.
- the compound containing Si may be crystalline or amorphous. Among them, more preferable because SiO 2 is inexpensive.
- anhydrous phosphoric acid P 2 O 5
- ammonium hydrogen phosphate NH 4 H 2 PO 4 , (NH 4 ) 2 HPO 4
- a or M phosphate is preferable.
- the phosphate of A or M for example, at least one selected from the group consisting of Li 3 PO 4 , Fe 3 (PO 4 ) 2 , FePO 4 and Mn 3 (PO 4 ) 2 is preferable.
- the compound containing P may be crystalline or amorphous. Of these, NH 4 H 2 PO 4 is more preferable because it is inexpensive.
- Examples of the compound containing atoms X 1 and X 2 include oxides of X 1 and X 2 such as ZrO 2 , TiO 2 , Nb 2 O 5 and Ta 2 O 5. , MoO 3 or WO 3 are preferred.
- Compounds containing atoms Z 1 and Z 2 include Z 1 , Z 2 oxides (P 2 O 5 , B 2 O 3, etc.), A or M phosphorus At least one selected from the group consisting of acid salts, A or M silicates, A or M borates, A or M aluminates, and A or M vanadates is preferred.
- the atoms Z 1 and Z 2 contain P, at least one selected from the group consisting of Li 3 PO 4 , Fe 3 (PO 4 ) 2 , FePO 4 and Mn 3 (PO 4 ) 2 , Si SiO 2 when contained, B 2 O 3 and / or H 3 BO 3 when containing B, at least one selected from the group consisting of Al 2 O 3 , AlO (OH) and aluminosilicate when containing Al , V is preferable because vanadium oxide (VO, V 2 O 3 , VO 3 , V 2 O 5, etc.) is inexpensive.
- a suitable combination of the raw material formulations is a carbonate or hydrogen carbonate in which the compound containing atom A is A, an oxide of M in compound containing atom M, an ammonium hydrogen phosphate or a phosphate in which compound P is contained In this case, it is a combination when the compound containing Si is silicon oxide.
- the composition of the raw material formulation corresponds theoretically to the composition of the melt obtained from the raw material formulation.
- the composition of the obtained melt is based on an oxide standard calculated from the charged amount of each raw material. It may be slightly different from the mol%. In such a case, it is preferable to set the charging amount of each raw material in consideration of the amount lost due to volatilization or the like.
- each raw material in the raw material formulation is not particularly limited. Considering reactivity and physical properties of the positive electrode positive electrode material, the purity excluding hydration water is preferably 99% by mass or more.
- each raw material it is preferable to use a pulverized raw material.
- Each raw material may be pulverized and mixed, or may be pulverized after mixing.
- the pulverization is preferably performed by a dry method or a wet method using a mixer, a ball mill, a jet mill, a planetary mill or the like, and a dry method is preferable because a solvent removal step is unnecessary.
- the particle diameter of each raw material in the raw material formulation is not limited as long as it does not adversely affect the mixing operation, the filling operation of the mixture into the melting container, the meltability of the mixture, and the like.
- the electroformed refractory is an abbreviation for electrofused cast refractory, and a selected raw material is prepared in accordance with a target component and completely melted in an electric furnace. It is a generic term for refractories produced by casting in a mold and solidifying by slow cooling. In this specification, the refractory is used in the same meaning as ceramics.
- electrocast refractories examples include alumina-silica electrocast refractories, alumina electrocast refractories, alumina-zirconia-silica electrocast refractories, and high zirconia electrocast refractories.
- alumina-zirconia-silica electrocast refractories, high zirconia electrocast refractories, or alumina electrocast refractories are preferably used from the viewpoint of easy availability and high corrosion resistance.
- An alumina-zirconia-silica electrocast refractory is an electrocast refractory having a structure in which matrix glass surrounds corundum, baderite, or eutectic thereof.
- the content of the matrix glass phase is preferably 20% by mass or less, and more preferably 16% by mass or less.
- the chemical composition when the entire alumina-zirconia-silica electrocast refractory containing the matrix glass phase is 100% by mass in terms of oxide, Al is 45 to 55% by mass in terms of Al 2 O 3 , Zr Is preferably 35 to 45% by mass in terms of ZrO 2 , Si is 10 to 16% by mass in terms of SiO 2 , and Na is 1 to 2% by mass in terms of Na 2 O.
- Examples of the alumina-zirconia-silica electrocast refractories include ZB-1681 (trade name of AGC Ceramics), ZB-1711 (trade name of AGC Ceramics), SCIMOS CS-3 (trade name of Saint-Gobain tee M), SCIMOS CS-5 ( Saint-Gobain tee product name).
- a high zirconia electrocast refractory is an electrocast refractory having a zirconia (ZrO 2 ) content of 90% by mass or more, and has a structure in which a small amount of a matrix glass phase surrounds a bedrite crystal phase, for example. Preferably used.
- the content of the matrix glass phase is preferably 4 to 12% by mass, and more preferably 4 to 7% by mass.
- Zr is 90 to 97 in terms of mass% in terms of ZrO 2. %, Si containing 3 to 5% in terms of SiO 2 , Na containing 0.1 to 2% in terms of Na 2 O, and Al containing 0.5 to 2.5% in terms of Al 2 O 3 are preferred. It contains more than 92 to 97% in terms of ZrO 2 , Si to 3 to 4% in terms of SiO 2 , Na to 0.2 to 1% in terms of Na 2 O, and Al to 1 to 2% in terms of Al 2 O 3 preferable. Further, B may be contained in an amount of 0.1 to 0.5% in terms of B 2 O 3 , and P may be contained in an amount of 0.1 to 0.5% in terms of P 2 O 3 .
- Examples of the high zirconia electrocast refractory include ZB-X950 (AGC Ceramics company trade name) and SCIMOS Z (Saint Govin T. M trade name).
- Alumina electrocast refractories are electrocast refractories with a total content of ⁇ -alumina and ⁇ -alumina of 95% by mass or more, depending on the ratio of ⁇ -alumina and ⁇ -alumina contained in the electrocast refractories. , ⁇ -alumina electrocast refractory, ⁇ , ⁇ -alumina electrocast refractory or ⁇ -alumina electrocast refractory.
- ⁇ , ⁇ -alumina electrocast refractories are easy to obtain, have sufficient strength, and have a dense structure, so that they can be suitably used as containers for heating and melting.
- the content of the matrix glass phase is preferably 10% by mass or less, and preferably 2% by mass or less.
- the chemical composition of the alumina electrocast refractory when the entire alumina electrocast refractory including the matrix glass phase is 100% by mass in terms of oxide, Al is 93 to 99 in terms of mass% in terms of Al 2 O 3. 0.5%, Si containing 0.1 to 1.0% in terms of SiO 2 , Na containing 0.2 to 6.5% in terms of Na 2 O, Al being preferably 94.5 in terms of Al 2 O 3 More preferably, it contains ⁇ 99%, Si contains 0.1 to 1.0% in terms of SiO 2 , and Na contains 0.2 to 5% in terms of Na 2 O.
- alumina electrocast refractories include ⁇ -alumina electrocast refractories, MB-A (trade name of AGC Ceramics), SCIMOS A (trade name of Saint-Gobain T.M), ⁇ , ⁇ -alumina As electroformed refractories, MB-G (trade name of AGC Ceramics), SCIMOS M (trade name of Saint-Gobain tee M), Jaguar M (trade name of Societe Europian de Prodisputedy Leflectaire), ⁇ -alumina Examples of cast refractories include MB-U (trade name of AGC Ceramics), SCIMOS H (trade name of Saint-Gobain tee M), and Jaguar H (trade name of Societe Europian de Produy Leflectre).
- alumina-zirconia-silica electrocast refractories have a dense structure composed of ⁇ -alumina, baderite, or eutectic thereof, and matrix glass surrounding these crystals. Even when a raw material composition containing a heavy metal element at a high rate is melted, it is preferable because these components are difficult to enter and problems such as leakage of contents are unlikely to occur.
- a phosphoric acid compound having a relatively low melting temperature it is preferable to melt the raw material formulation in a container formed of a high zirconia electroformed refractory with little contamination from the refractory.
- the fireproof temperature of the electroformed refractory used for the container is preferably 1000 ° C. or higher.
- the melt resistance of the container used for melting may be significantly reduced.
- the refractory temperature of the electroformed refractory is preferably in the range of 1,000 to 2,000 ° C., more preferably in the range of 1,200 to 1,800 ° C.
- the refractory temperature of the electrocast refractory means a temperature at which no remarkable change in appearance is observed when the electrocast refractory is heated for 24 hours.
- the surface roughness (Rmax) of the electroformed refractory is preferably 0.035 to 5 mm. If the surface roughness (Rmax) of the electroformed refractory exceeds 5 mm, the container may be easily eroded by heavy metal elements such as Fe and Mn in the melt.
- the surface roughness (Rmax) of the electroformed refractory is more preferably 0.04 to 3 mm, and more preferably 0.05 to 1 mm.
- the surface roughness (Rmax) of the electrocast refractory can be measured using a contact-type surface roughness meter.
- the porosity of the electroformed refractory is preferably 0.1 to 5%.
- An electrocast refractory having a porosity of less than 0.1% is actually difficult to manufacture.
- the porosity of the electroformed refractory exceeds 5%, heavy metal elements such as Fe and Mn contained in the melt are likely to enter the refractory, and sufficient corrosion resistance cannot be obtained. There is a possibility that leakage of the molten material is likely to occur.
- the porosity of this electrocast refractory can be measured using a specific gravity method.
- the container formed of the electroformed refractory is not particularly limited in size and shape, and can be used as a small cylindrical crucible or a large melting tank.
- the electroformed refractory may be used at least in a contact portion with the melt, and a non-contact portion with the melt, such as the upper structure of the melt tank, may be composed of other materials.
- a small cylindrical crucible in order to prevent volatilization and evaporation of a raw material formulation or a molten material, it is preferable to heat-melt by attaching a lid to the container.
- a heat source of a heating furnace Electricity, oil, gas, etc., or these combinations can be used. It is preferable to burn with a burner using oil or gas. The burner is preferably placed at the top of the melt tank.
- the raw material mixture is preferably melted at a heating temperature of 900 to 1700 ° C.
- a heating temperature refers to the temperature of the melt itself and can be measured with a thermocouple or a pyrometer. Melting means that each raw material melts and becomes transparent with the naked eye.
- the heating temperature is 900 ° C. or higher, melting is facilitated, and when it is 1700 ° C. or lower, the raw material is hardly volatilized.
- melting can be performed more easily, melting is more preferably performed at a heating temperature of 1000 ° C. or higher. Moreover, since wear of the electroformed refractory due to heating is suppressed, melting is more preferably performed at a heating temperature of 1500 ° C. or less.
- the heating time can be appropriately set in consideration of the melting method, the melting scale, the uniformity of the molten metal, etc., but is preferably 0.2 to 24 hours, particularly preferably 0.5 to 2 hours.
- the heating time is 0.5 hours or more, the uniformity of the melt is sufficient, and when it is 2 hours or less, the raw material is difficult to volatilize.
- stirring may be performed to increase the uniformity of the melt.
- the melt may be clarified at a temperature lower than the maximum temperature during melting until the next cooling step (iii) is performed.
- the raw material may be charged once or a plurality of times.
- the melting step (ii) is preferably performed in the air, in an inert atmosphere, or in a reducing atmosphere.
- the pyroxene type or NASICON type compound containing the atom V does not require any particular control. Conditions suitable for the heating method such as the type of container and heating furnace and heat source can be selected as the melting conditions.
- the pressure may be carried out under any conditions of normal pressure, pressurization, and reduced pressure (0.9 ⁇ 10 5 Pa or less). Furthermore, you may charge the container which put the reducing agent (for example, graphite) in the heating furnace. It is preferred that the melt is more reductive, but even if it is more oxidative, it can be reduced (for example changing from M 3+ to M 2+ ) in the subsequent heating step (v).
- the reducing agent for example, graphite
- the inert atmosphere is a gas condition including 99% by volume or more of at least one inert gas selected from the group consisting of noble gases such as nitrogen (N 2 ), helium (He), and argon (Ar).
- the reducing atmosphere means that the above-described inert gas is a gas condition that contains a gas having a reducing property and does not substantially contain oxygen.
- the reducing gas include hydrogen (H 2 ), carbon monoxide (CO), and ammonia (NH 3 ).
- the amount of the reducing gas in the inert gas is preferably 0.1% by volume or more, more preferably 1 to 10% by volume of the reducing gas in the total gas.
- the oxygen content is preferably 1% by volume or less in the gas, and more preferably 0.1% by volume or less.
- the melting step (ii) may be performed batchwise or continuously.
- the reduction treatment of the element M can be performed in this step, the reduction treatment can be performed by performing the heat treatment in the subsequent step. It does not have to be performed in the process.
- the solidified product is preferably an amorphous material, but a part of the solidified product may be a crystallized product.
- the next pulverization step (iv) can be easily performed, and the composition and particle size of the resulting compound can be easily controlled.
- the crystallized product becomes a crystal nucleus in the heating step (v) described later, and it is easy to crystallize.
- the amount of crystallized material in the solidified product is preferably 0 to 30% by mass with respect to the total mass of the solidified product. When a large amount of crystallized material is contained, it becomes difficult to obtain a granular or flaky solidified material. Moreover, the wear of the cooling device is accelerated, and the burden of the subsequent pulverization step (iv) is increased.
- the cooling of the melt is preferably performed in the air, under an inert atmosphere, or under a reducing atmosphere because the equipment is simple.
- Preferred conditions for the inert atmosphere and the reducing atmosphere are the same as those described in the melting step (ii).
- the cooling rate is preferably more than 1 ⁇ 10 3 °C / sec from 1000 ° C. to 50 ° C., more 1 ⁇ 10 4 °C / sec is particularly preferable.
- the cooling rate is 1 ⁇ 10 3 ° C./second or more, an amorphous material is easily obtained.
- the faster the cooling rate the easier it is to obtain an amorphous material.
- it is preferably 1 ⁇ 10 10 ° C./second or less, and from the point of practical use, it is 1 ⁇ 10 8 ° C./second or less. Particularly preferred.
- Cooling methods include, for example, a method in which a melt is dropped between twin rollers rotating at high speed to obtain a flake-like solidified product, and a flake-like or plate-like solidified product by dropping the melt on a rotating single roller , A method of obtaining a lump solidified product by pressing a melt on a cooled carbon plate or metal plate, a method of obtaining a lump solidified product by spraying the melt into air or water in small particles It is preferable to adopt. Among these, a cooling method using twin rollers is more preferable because the cooling rate is high and a large amount of processing can be performed. As the double roller, it is preferable to use one made of metal, carbon or ceramic.
- the obtained solidified product tends to be an amorphous material, and the chemical composition of the solidified product This is preferable because uniformity is improved.
- the so-called rapid cooling treatment at a cooling rate of 1 ⁇ 10 3 ° C./second or more may be performed as it is on the melt flowed out of the container formed of the electroformed refractory, and the melt melted in the container The product may be once cooled at a normal rate and then remelted.
- the solidified product is preferably flaky or fibrous.
- the average thickness is preferably 200 ⁇ m or less, and more preferably 100 ⁇ m or less.
- the average diameter of the surface perpendicular to the flake thickness direction is not particularly limited. In the case of a fibrous form, the average diameter is preferably 50 ⁇ m or less, and more preferably 30 ⁇ m or less.
- the burden of the subsequent pulverization step (iv) can be reduced, and the crystallization efficiency in the heating step (v) can be increased.
- the average thickness of the flaky solidified product can be measured with a caliper or a micrometer. Further, the average diameter of the fibrous solidified product can be measured by the above method or observation with a microscope.
- the solidified product obtained in the cooling step (iii) usually has an advantage of being easily pulverized because it contains a lot of amorphous material or consists of an amorphous material. Further, there is an advantage that the apparatus used for pulverization can be pulverized without imposing a burden and the particle diameter can be easily controlled. For example, when a positive electrode material is obtained by a solid phase reaction, pulverization is performed after firing. In this case, residual stress may be generated by pulverization and battery characteristics may be deteriorated. In contrast, by performing the pulverization step (iv) before the heating step (v) described later, the residual stress generated by the pulverization can be reduced or removed by the heat treatment.
- the pulverization step (iv) at least one selected from the group consisting of an organic compound and a carbon-based conductive material may be added as a carbon source. Since the organic compound or the carbon-based conductive material functions as a conductive material after the heating step (v) described later, the conductivity of the positive electrode material for the secondary battery can be increased. Further, by adding an organic compound or a carbon-based conductive material, oxidation in the pulverization step (iv) and the heating step (v) can be prevented, and further reduction can be promoted.
- the carbon source is added in the pulverization step (iv)
- the solidified product and the carbon source are mixed and then pulverized, the solidified product and the carbon source are pulverized and mixed, or the solidified product is added.
- a step of adding a carbon source after pulverization is preferred.
- a carbon source is only an organic compound, it can mix with a solidified material, without grind
- the compound ( ⁇ ) obtained in the heating step (v) of the next step is an insulator, it is preferable to increase the electrical conductivity for use as a positive electrode material for a secondary battery.
- the carbon-based conductive material serves as conductive carbon and covers at least a part of the surface of the compound ( ⁇ ).
- an organic compound is used, at least a part of the organic compound is carbonized by performing the heating step (v) of the next step, and at least a part of the surface of the compound ( ⁇ ) is formed as conductive carbon. Cover. Since the conductive carbon functions as a conductive material for the compound ( ⁇ ), the electrical conductivity of the positive electrode material for a secondary battery can be increased.
- the organic compound as the carbon source is preferably a compound that undergoes a thermal decomposition reaction when heated in an inert atmosphere or a reducing atmosphere, and oxygen and hydrogen are released and carbonized.
- the organic compound is at least one selected from the group consisting of saccharides, amino acids, peptides, aldehydes, ketones, carboxylic acids, terpenes, heterocyclic amines, fatty acids and aliphatic acyclic polymers having functional groups. Species are preferred.
- the carbon conductive material as the carbon source is preferably at least one selected from the group consisting of carbon black, graphite, acetylene black, carbon fiber, and amorphous carbon.
- amorphous carbon those in which the CO bond peak and CH bond peak causing the decrease in the conductivity of the positive electrode material are not substantially detected in the FTIR analysis are preferable.
- the ratio of the mass of the carbon source is such that the carbon equivalent (mass) in the carbon source is 0.1 to 20 with respect to the total mass of the mass of the solidified product and the carbon equivalent (mass) in the carbon source.
- An amount of mass% is preferable, and an amount of 2 to 10 mass% is more preferable.
- the organic compound and the carbon-based conductive material are adjusted so that the total amount thereof falls within the above range when used in combination. By making the amount of carbon 0.1% by mass or more, the conductivity of the positive electrode material for a secondary battery made of the compound ( ⁇ ) can be sufficiently increased. Moreover, electroconductivity can fully be improved, keeping the characteristic as a positive electrode material for secondary batteries high by making carbon amount 20 mass% or less.
- the pulverization is preferably performed using a cutter mill, jaw crusher, hammer mill, ball mill, jet mill, planetary mill or the like. Moreover, pulverization can be efficiently advanced by using various methods stepwise depending on the particle diameter. For example, preliminarily pulverizing with a cutter mill and then pulverizing with a planetary mill or ball mill is preferable because the time required for pulverization can be shortened. From the viewpoint of productivity, it is particularly preferable to use a ball mill. As the grinding media, it is preferable to use zirconia balls, alumina balls, glass balls or the like. In particular, zirconia balls are preferable because they have a low wear rate and can suppress the mixing of impurities.
- the diameter of the grinding media is preferably 0.1 to 30 mm.
- the pulverization medium and the pulverized product may be separated and pulverized using a smaller pulverization medium. With this method, the remaining of unground particles can be suppressed.
- the pulverization container is not particularly limited, but the pulverization efficiency is good when the pulverization medium and the solidified material are placed in the container up to 30 to 80% of the container volume.
- the pulverization time is preferably 6 to 360 hours, more preferably 6 to 120 hours, and particularly preferably 12 to 96 hours. If the pulverization time is 6 hours or more, the pulverization can be sufficiently advanced, and if it is 360 hours or less, excessive pulverization can be suppressed.
- the pulverization may be performed either dry or wet, but is preferably performed in a wet manner from the viewpoint that the particle size of the pulverized product can be reduced.
- the pulverization step (iv) is preferably performed using a solvent (pulverization solvent).
- a solvent pulverization solvent
- the heating step (v) When the pulverization step (iv) is performed in a wet manner, it is preferable to carry out the heating step (v) after removing the pulverization solvent by sedimentation, filtration, drying under reduced pressure, drying by heating, or the like. However, when the ratio of the solid content with respect to the grinding solvent is 30% or more, the pulverized product containing the grinding solvent may be used in the heating step (v).
- the pulverization solvent a solvent having an appropriate polarity that is difficult to dissolve the solidified product and is compatible with the carbon source, and does not significantly increase the viscosity when mixed with the solidified product and the carbon source is preferable.
- Water is preferable from the viewpoint of cost and safety.
- an organic solvent is preferable. Examples of the organic solvent include ethanol, isopropyl alcohol, acetone, hexane, toluene and the like.
- the grinding solvent is more preferably at least one selected from the group consisting of water, acetone and isopropyl alcohol, and acetone is particularly preferred.
- the amount of the grinding solvent used is preferably such that the total concentration of the solidified product and the carbon source is 1 to 80%, particularly preferably 10 to 40%.
- Productivity can be improved by making the usage-amount of a grinding
- pulverization of a solidified material and a carbon source can be advanced efficiently because the usage-amount of a grinding
- the average particle size of the pulverized product is preferably 10 nm to 10 ⁇ m, particularly preferably 10 nm to 5 ⁇ m in terms of volume-based median diameter, from the viewpoint of obtaining higher conductivity when applied to a positive electrode material for a secondary battery.
- the average particle size is 10 nm or more, when the heating step (v) is performed, the particles of the compound ( ⁇ ) do not sinter and the particle size does not become too large.
- the average particle size is 10 ⁇ m or less, it is easy to obtain a secondary battery positive electrode material exhibiting high conductivity, and it becomes easy to realize a higher capacity and a higher energy density.
- the sintering aid acts when the heating step (v) is performed, and the average particle size after heating is increased.
- the average particle size is obtained mainly by a laser diffraction / scattering particle size measuring device (trade name: LA-950, manufactured by Horiba, Ltd.). If this is difficult, a sedimentation method or a flow image analyzer can be used.
- Heating step (v) After the pulverization step (iv), the obtained pulverized product is heated in an inert atmosphere or a reducing atmosphere to synthesize a compound ( ⁇ ) having a predetermined composition from the pulverized product of the solidified product (v). It is preferable to carry out.
- the heating step (v) preferably includes relaxation of stress generated by pulverization, crystal nucleation of the pulverized product, and grain growth.
- the heating step (v) for example, it is preferable to obtain particles of the phosphoric acid compound (1) or particles of the silicic acid compound (2), and crystal particles of the phosphoric acid compound (1) or the silicic acid compound (2) are obtained. It is more preferable to obtain, and it is particularly preferable to obtain crystal particles of the phosphoric acid compound (1) having an olivine type crystal structure or crystal particles of the silicate compound (2) having an olivine type crystal structure. It is preferable that the obtained compound does not contain an amorphous substance. When the compound does not contain an amorphous substance, a halo pattern is not detected by X-ray diffraction.
- the organic compound or carbon-based conductive substance adhering to the surface of the pulverized product in the pulverization step (iv) is bonded to the surface of the compound ( ⁇ ), preferably its crystal particles, generated in the heating step (v), and functions as a conductive material.
- the organic compound is thermally decomposed in the heating step (v), and at least a part thereof becomes a carbide to function as a conductive material.
- the dispersion medium may be removed simultaneously with heating.
- the heating temperature for synthesizing the compound ( ⁇ ) is preferably 400 to 1,000 ° C., particularly preferably 500 to 900 ° C.
- the heating temperature is 400 ° C. or higher, a reaction is likely to occur, and when it is 1,000 ° C. or lower, the pulverized product is difficult to melt and the crystal system and particle diameter are easily controlled. Further, at the heating temperature, it becomes easy to obtain a compound ( ⁇ ) having an appropriate crystallinity, particle size, particle size distribution, etc., preferably its crystal particles, more preferably olivine type crystal particles.
- the heating is not limited to being held at a constant temperature, and may be performed by setting the holding temperature in multiple stages. As the heating temperature is increased, the particle diameter of the generated particles tends to increase.
- the heating temperature is preferably 1 to 72 hours in consideration of the desired particle size. Heating is preferably performed in a box furnace, tunnel kiln, roller hearth kiln, rotary kiln, microwave heating furnace, or the like that uses electricity, oil, gas, or the like as a heat source.
- the heating step (v) is preferably performed in the air, in an inert atmosphere, or in a reducing atmosphere.
- Preferred conditions for the inert atmosphere and the reducing atmosphere are the same as those described in the melting step (ii).
- the atmospheric pressure may be any of normal pressure, pressurization, and reduced pressure (0.9 ⁇ 10 5 Pa or less).
- the cooling rate in the cooling is preferably 30 ° C./hour to 300 ° C./hour. By setting the cooling rate within this range, distortion due to heating can be removed, and when the product is a crystal, the target product can be obtained while maintaining the crystal structure.
- the cooling is preferably allowed to cool to room temperature. Cooling is preferably performed in an inert atmosphere or a reducing atmosphere.
- Carbon source can be added in the heating step (v).
- the pulverized product obtained in the pulverization step (iv) (preferably a pulverized product containing no carbon source) is heated to obtain the compound ( ⁇ ), and then the compound ( ⁇ ) and the carbon source are obtained. It is preferable to adopt a production method in which a pulverized product containing the following is obtained, and then the pulverized product is heated.
- the compound ( ⁇ ) having a predetermined composition as a positive electrode material for a secondary battery is manufactured through the above-described melting, cooling, pulverization, and heating steps.
- the compound ( ⁇ ) preferably contains crystal particles and is preferably an olivine type. With such a composition and crystal system, as described above, a multi-electron type material having a theoretical electric capacity can be obtained.
- a silicate compound is preferable because it can increase the capacity per unit volume (mass) of the secondary battery when used as a positive electrode material for a secondary battery.
- the silicate compound is preferably an olivine type, and the olivine type silicate compound is suitable as a positive electrode material for a secondary battery.
- a phosphoric acid compound is preferable when used as a positive electrode material for a secondary battery because the reliability of the performance of the secondary battery can be increased.
- the phosphate compound is preferably an olivine type, and the olivine type phosphate compound is suitable as a positive electrode material for a secondary battery.
- the specific surface area of the positive electrode material for a secondary battery obtained by the present invention is preferably 0.2 m 2 / g to 200 m 2 / g, more preferably 1 m 2 / g to 100 m 2 / g. By setting the specific surface area within this range, the conductivity is increased.
- the specific surface area can be measured by, for example, a specific surface area measuring apparatus using a nitrogen adsorption method.
- the average particle diameter of the crystal particles of the positive electrode material for a secondary battery is preferably 10 nm to 10 ⁇ m, more preferably 10 nm to 2 ⁇ m in terms of volume median diameter in order to increase the conductivity of the particles.
- the average particle diameter of the positive electrode material for a secondary battery obtained by the present invention is preferably 10 nm to 10 ⁇ m in terms of volume median diameter even if it contains not only crystal particles but also amorphous particles. More preferably, it is ⁇ 2 ⁇ m.
- the raw material mixture of an olivine type compound, pyroxene type compound, or NASICON type compound containing heavy metal elements such as iron and manganese is heated and melted in a container made of electroformed refractory. Therefore, erosion due to heavy metal elements such as Fe and Mn contained in the melt can be suppressed, and wear of containers used for heat melting can be prevented, reducing the frequency of maintenance and reducing the manufacturing cost of the positive electrode material for secondary batteries. can do. Moreover, it can suppress that the component derived from a container mixes in the melt in the said container, and can obtain the positive electrode material for secondary batteries excellent in purity.
- a large melting tank is used in the melting step (ii)
- a secondary battery positive electrode and a secondary battery By using the secondary battery positive electrode material obtained by the production method of the present invention, a secondary battery positive electrode and a secondary battery can be produced.
- the secondary battery include a metal lithium secondary battery, a lithium ion secondary battery, and a lithium polymer secondary battery, and a lithium ion secondary battery is preferable.
- the battery shape is not limited, and various shapes and sizes such as a cylindrical shape, a square shape, and a coin shape can be appropriately employed.
- the positive electrode for a secondary battery can be manufactured according to a known electrode manufacturing method using the positive electrode material for a secondary battery obtained by the manufacturing method of the present invention.
- a positive electrode material for a secondary battery obtained according to the present invention may be prepared by using a known binder (polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl chloride, ethylene propylene diene polymer, styrene-butadiene rubber, acrylonitrile-butadiene as required.
- the structure of the secondary battery a structure in a known secondary battery can be adopted except that the positive electrode material for a secondary battery obtained by the production method of the present invention is used as an electrode.
- the negative electrode a known negative electrode active material can be used as the active material, and at least one selected from the group consisting of carbon materials, alkali metal materials, and alkaline earth metal materials is preferably used.
- the electrolytic solution a non-aqueous electrolytic solution is preferable. That is, as the secondary battery using the positive electrode material for a secondary battery obtained by the production method of the present invention, a nonaqueous electrolyte lithium ion secondary battery is preferable.
- Example 1 Composition Li 2 O melt, FeO, and P 2 O 5 equivalent amount (unit: mol%) in each 25.0 mol%, 50.0 mol%, and so that 25.0 mol% , Lithium carbonate (Li 2 CO 3 ), triiron tetroxide (Fe 3 O 4 ), and ammonium hydrogen phosphate (NH 4 H 2 PO 4 ) are weighed, mixed and pulverized in a dry process, Obtained.
- Heating step (v) The pulverized product obtained in the pulverization step (iv) was heated at 700 ° C. for 8 hours in an Ar gas atmosphere containing 3% by volume of H 2 gas using an electric furnace (manufactured by Motoyama, apparatus name; SKM-3035). Then, the mixture was cooled to room temperature to precipitate lithium iron phosphate particles.
- the mineral phase of the obtained lithium iron phosphate particles was measured using an X-ray diffraction apparatus (manufactured by Rigaku Corporation, apparatus name: RINT TTRIII). From the diffraction pattern, it was confirmed that the obtained lithium iron phosphate particles were orthorhombic olivine type LiFePO 4 . Moreover, it was 28 m ⁇ 2 > / g when the specific surface area of the obtained lithium iron phosphate particle was measured with the specific surface area measuring apparatus (Shimadzu Corporation make, apparatus name: ASAP2020).
- the average particle size of the obtained lithium iron phosphate particles was measured using a laser diffraction / scattering particle size analyzer (manufactured by Horiba, Ltd., apparatus name: LA-950), the median diameter in terms of volume was It was 0.18 ⁇ m.
- the crucible after the cooling step (iii) was not deformed in appearance.
- the amount of erosion was measured, it was about 50 ⁇ m. The amount of erosion is indicated by the maximum erosion depth ( ⁇ m) measured with the flux line.
- Example 2> (Corrosion resistance test)
- the raw material preparation step (i), the melting step (ii), and the cooling step (iii) were performed, and the obtained solidified product was coated with alumina-zirconia having an inner diameter of 20 mm and a height of 40 mm.
- -A crucible made of siliceous electroformed refractory manufactured by AGC Ceramics, trade name: ZB-1711 was filled.
- the crucible containing the solidified material was placed in an electric furnace (manufactured by Motoyama, apparatus name: NH-3035) equipped with a heating element made of molybdenum silicide.
- the temperature was increased at a rate of 300 ° C./hour, and after reaching 1,300 ° C., the temperature was maintained and heated for 48 hours. After the heat treatment, the cooled crucible was cut and the amount of erosion was measured.
- Example 3 Composition Li 2 O melt, FeO, and SiO 2 in terms of the amount (unit: mol%) in each 14.3 mol%, so that 28.6 mol%, and 57.1 mol%, carbonate Lithium (Li 2 CO 3 ), triiron tetroxide (Fe 2 O 3 ), and silicon dioxide (SiO 2 ) were weighed, mixed and pulverized in a dry process to obtain a raw material preparation (raw material preparation step (i) ).
- the melting step (ii) was performed at 1380 ° C. using the same crucible made of alumina-zirconia-silica electrocast refractory as in Example 1, and the heating step (v) was performed in an air atmosphere.
- the melting step (ii), the cooling step (iii), the pulverization step (iv), and the heating step (v) were performed to deposit lithium iron silicate particles.
- the mineral phase of the obtained lithium iron silicate particles was measured using an X-ray diffractometer, it was confirmed that the particles were orthorhombic pyroxene-type LiFeSi 2 O 6 .
- Example 4 Composition Li 2 O melt, FeO, and P 2 O 5 equivalent amount (unit: mol%) in each 37.5 mol%, 25.0 mol%, and so that 37.5 mol% , Lithium carbonate (Li 2 CO 3 ), ferric trioxide (Fe 2 O 3 ), and ammonium hydrogen phosphate (NH 4 H 2 PO 4 ) are weighed, mixed and pulverized in a dry process, Obtained (raw material preparation step (i)).
- Li 2 O melt, FeO, and P 2 O 5 equivalent amount (unit: mol%) in each 37.5 mol%, 25.0 mol%, and so that 37.5 mol% , Lithium carbonate (Li 2 CO 3 ), ferric trioxide (Fe 2 O 3 ), and ammonium hydrogen phosphate (NH 4 H 2 PO 4 ) are weighed, mixed and pulverized in a dry process, Obtained (raw material preparation step (i)).
- the raw material mixture was filled in a crucible made of high zirconia electrocast refractory (AGC Ceramics, trade name: ZB-X950, porosity 0.2%) having an inner diameter of 20 mm and a height of 40 mm.
- the melting step (ii) was performed in the same manner as in Example 1 except that the raw material formulation was melted at 1,200 ° C. in the air. Moreover, it carried out similarly to Example 1, and performed the cooling process (iii) and the grinding
- the pulverized product obtained in the pulverization step (iv) was heated in the atmosphere at 650 ° C.
- Example 1 A raw material preparation having the same composition as in Example 1 is filled in a crucible made of platinum alloy (internal volume 100 mL) containing 20% by mass of rhodium, and in the same manner as in Example 1, the raw material preparation step (i), the melting step (Ii) The cooling step (iii) was performed to obtain a solidified product. Subsequently, the Pt content and the Rh content in the obtained solidified product were quantified as follows. That is, the solidified product was decomposed with HF-HClO 4 and then redissolved with HCl, and the Pt content and Rh content in the solution were measured by ICP emission spectroscopy.
- the Pt content in the solidified product was 9.6 ⁇ g / g
- the Rh content was 23 ⁇ g / g.
- the lithium iron phosphate particles obtained in Examples 1 and 4 and the lithium iron silicate particles obtained in Example 3 were measured for the Pt content and Rh content in the same manner as described above. It was 1 ⁇ g / g or less.
- Example 2 A raw material formulation having the same composition as in Example 1 was filled in an alumina sintered crucible (made by Nikkato, trade name: SSA-S) with an outer diameter of 46 mm and a height of 53 mm. Next, the temperature was raised under the same conditions as in Example 1, and reached 1,250 ° C., then held for 2 hours and heated to perform the melting step (ii). Thereafter, the temperature was lowered at a rate of 300 ° C./hour and cooled to room temperature. When the crucible after the cooling step (iii) was visually observed, cracks were generated on the surface of the crucible. Moreover, when a part of crucible was cut and the amount of erosion was measured, it was 600 ⁇ m.
- the positive electrode material for secondary batteries excellent in purity can be manufactured efficiently at low cost.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
Abstract
Provided is a method for efficiently producing, at low cost, a positive electrode material for a secondary battery having little mixing in of a component derived from a container used for heating and melting a raw material mixture, and having excellent purity. The production method for a secondary battery positive electrode material is a method for producing a secondary battery positive electrode material including a compound having an olivine-, augite-, or nasicon-type crystal structure, and includes: a raw material mixing step in which raw materials are mixed and a raw material mixture is prepared; and a melting step in which the raw material mixture is melted inside a container formed using an electrocast refractory product, and a melted product is obtained.
Description
本発明は、二次電池用正極材料の製造方法に関する。
The present invention relates to a method for producing a positive electrode material for a secondary battery.
近年、次世代リチウム二次電池用正極材料等として、資源面、安全面、コスト面、性能の安定性等の点での優位性から、オリビン型、輝石型、またはナシコン型の結晶構造を有する化合物が注目されている。例えばリン酸鉄リチウムは、実用化に向けた開発が進んでいる。
In recent years, it has an olivine type, pyroxene type, or NASICON type crystal structure as a positive electrode material for next-generation lithium secondary batteries because of its advantages in terms of resources, safety, cost, and performance stability. Compounds are attracting attention. For example, lithium iron phosphate is being developed for practical use.
また、二酸化炭素の排出規制や省エネルギーの観点から、プラグインハイブリッド自動車や電気自動車の開発が進められている。電気自動車の普及の実現には、二次電池の安全性を維持しつつ、高容量化、高エネルギー密度化することが求められている。
Also, plug-in hybrid vehicles and electric vehicles are being developed from the viewpoint of carbon dioxide emission regulations and energy saving. In order to realize the popularization of electric vehicles, it is required to increase the capacity and the energy density while maintaining the safety of the secondary battery.
例えば非特許文献1には、多電子反応による高容量化が可能な二次電池用材料として、一分子中に2個のLi原子を含むカンラン石(オリビン)型ケイ酸化合物(Li2MSiO4、M=Fe、Mn)が開示されている。
For example, Non-Patent Document 1 discloses a olivine-type silicic acid compound (Li 2 MSiO 4 ) containing two Li atoms in one molecule as a secondary battery material capable of increasing the capacity by a multi-electron reaction. , M = Fe, Mn).
上述したオリビン型、輝石型、またはナシコン型の結晶構造を有する化合物の製造方法としては、例えば固相法、液相法等の方法が提案され、実施されているが、近年、二次電池の普及に伴い、電極材料のさらなる低コスト化が求められている。
例えば非特許文献2には、原料混合物を一旦加熱溶融した後、これを冷却することにより、所定の結晶構造を有する二次電池用正極材料を得る方法が開示されている。
このように、原料混合物を一旦溶融状態とすることで、二次電池用正極材料を安価にかつ大量に製造できるうえ、得られる正極材料の化学組成の均一性を向上させることが可能となる。 As a method for producing a compound having an olivine-type, pyroxene-type, or NASICON-type crystal structure as described above, for example, methods such as a solid phase method and a liquid phase method have been proposed and implemented. With the spread, further cost reduction of the electrode material is required.
For example, Non-Patent Document 2 discloses a method of obtaining a positive electrode material for a secondary battery having a predetermined crystal structure by once heating and melting a raw material mixture and then cooling it.
Thus, once the raw material mixture is in a molten state, the positive electrode material for a secondary battery can be manufactured at low cost and in large quantities, and the uniformity of the chemical composition of the obtained positive electrode material can be improved.
例えば非特許文献2には、原料混合物を一旦加熱溶融した後、これを冷却することにより、所定の結晶構造を有する二次電池用正極材料を得る方法が開示されている。
このように、原料混合物を一旦溶融状態とすることで、二次電池用正極材料を安価にかつ大量に製造できるうえ、得られる正極材料の化学組成の均一性を向上させることが可能となる。 As a method for producing a compound having an olivine-type, pyroxene-type, or NASICON-type crystal structure as described above, for example, methods such as a solid phase method and a liquid phase method have been proposed and implemented. With the spread, further cost reduction of the electrode material is required.
For example, Non-Patent Document 2 discloses a method of obtaining a positive electrode material for a secondary battery having a predetermined crystal structure by once heating and melting a raw material mixture and then cooling it.
Thus, once the raw material mixture is in a molten state, the positive electrode material for a secondary battery can be manufactured at low cost and in large quantities, and the uniformity of the chemical composition of the obtained positive electrode material can be improved.
例えば特許文献1には、二価遷移金属化合物を含有する原料混合物を、アルゴン雰囲気中にて1500℃で加熱溶融した後、単ロールにより急冷して非晶質の遷移金属リン酸錯体を得る方法が開示されている。
For example, Patent Document 1 discloses a method in which a raw material mixture containing a divalent transition metal compound is heated and melted at 1500 ° C. in an argon atmosphere and then rapidly cooled with a single roll to obtain an amorphous transition metal phosphate complex. Is disclosed.
原料混合物の加熱溶融には、高温での熱処理が必要であり、加熱溶融に用いる容器には、耐熱性や耐蝕性等の特性が求められる。
例えば特許文献2では、LiFePO4およびLiFからなる原料混合物を白金チューブに入れ、当該白金チューブを石英管内に配設し、高周波誘導加熱によって加熱して原料混合物を溶融した後、溶融物を冷却することで、FeまたはMn等の遷移金属を含むリン酸錯体からなる活物質を得る方法が開示されている。特許文献3には、Li2CO3、NH4H2PO4、Fe(II)C2O4等の原料を蓋付アルミナ坩堝に入れ、1200℃で溶融した後、融液を鉄板上に流し出し、プレス急冷することで、LiFePO4を基本組成とする前駆体ガラスを得る方法が開示されている。特許文献4には、Li2CO3、Fe(COO)2・2H2O、NH4H2PO4等を含む原料調合物を、ロジウム・白金合金製のノズル付き坩堝に入れ、1300℃で加熱溶融した後、融液を急冷して得た固化物を粉砕後加熱することで、オリビン型リン酸鉄リチウム粒子を得る方法が開示されている。 Heat melting of the raw material mixture requires heat treatment at a high temperature, and a container used for heat melting requires characteristics such as heat resistance and corrosion resistance.
For example, in Patent Document 2, a raw material mixture composed of LiFePO 4 and LiF is placed in a platinum tube, the platinum tube is disposed in a quartz tube, heated by high frequency induction heating to melt the raw material mixture, and then the melt is cooled. Thus, a method for obtaining an active material composed of a phosphate complex containing a transition metal such as Fe or Mn is disclosed. In Patent Document 3, materials such as Li 2 CO 3 , NH 4 H 2 PO 4 , and Fe (II) C 2 O 4 are put in an alumina crucible with a lid, melted at 1200 ° C., and then the melt is put on an iron plate. A method for obtaining a precursor glass having a basic composition of LiFePO 4 by pouring out and pressing and quenching is disclosed. In Patent Document 4, a raw material composition containing Li 2 CO 3 , Fe (COO) 2 .2H 2 O, NH 4 H 2 PO 4, etc. is placed in a crucible with a nozzle made of rhodium / platinum alloy at 1300 ° C. A method of obtaining olivine-type lithium iron phosphate particles by heating after melting and then rapidly cooling the melt and then heating after pulverization is disclosed.
例えば特許文献2では、LiFePO4およびLiFからなる原料混合物を白金チューブに入れ、当該白金チューブを石英管内に配設し、高周波誘導加熱によって加熱して原料混合物を溶融した後、溶融物を冷却することで、FeまたはMn等の遷移金属を含むリン酸錯体からなる活物質を得る方法が開示されている。特許文献3には、Li2CO3、NH4H2PO4、Fe(II)C2O4等の原料を蓋付アルミナ坩堝に入れ、1200℃で溶融した後、融液を鉄板上に流し出し、プレス急冷することで、LiFePO4を基本組成とする前駆体ガラスを得る方法が開示されている。特許文献4には、Li2CO3、Fe(COO)2・2H2O、NH4H2PO4等を含む原料調合物を、ロジウム・白金合金製のノズル付き坩堝に入れ、1300℃で加熱溶融した後、融液を急冷して得た固化物を粉砕後加熱することで、オリビン型リン酸鉄リチウム粒子を得る方法が開示されている。 Heat melting of the raw material mixture requires heat treatment at a high temperature, and a container used for heat melting requires characteristics such as heat resistance and corrosion resistance.
For example, in Patent Document 2, a raw material mixture composed of LiFePO 4 and LiF is placed in a platinum tube, the platinum tube is disposed in a quartz tube, heated by high frequency induction heating to melt the raw material mixture, and then the melt is cooled. Thus, a method for obtaining an active material composed of a phosphate complex containing a transition metal such as Fe or Mn is disclosed. In Patent Document 3, materials such as Li 2 CO 3 , NH 4 H 2 PO 4 , and Fe (II) C 2 O 4 are put in an alumina crucible with a lid, melted at 1200 ° C., and then the melt is put on an iron plate. A method for obtaining a precursor glass having a basic composition of LiFePO 4 by pouring out and pressing and quenching is disclosed. In Patent Document 4, a raw material composition containing Li 2 CO 3 , Fe (COO) 2 .2H 2 O, NH 4 H 2 PO 4, etc. is placed in a crucible with a nozzle made of rhodium / platinum alloy at 1300 ° C. A method of obtaining olivine-type lithium iron phosphate particles by heating after melting and then rapidly cooling the melt and then heating after pulverization is disclosed.
しかしながら、特許文献2の方法は、大量生産に不向きであり、また高周波誘導による加熱時に、白金チューブから白金成分が内部の溶融体に混入し、生成物の純度低下や、生産コストの増大を招くおそれがある。特許文献3の方法では、坩堝を構成するアルミナの耐蝕性が必ずしも高くないため、加熱溶融時に、Fe等の侵食により坩堝の損耗が進行しやすく、交換頻度が増す。また、アルミナ成分が坩堝から融液中に混入しやすく、純度低下を招くおそれがある。さらに、アルミナは熱膨張係数が比較的高いため、急激な温度変化により、坩堝の破損を生じるおそれもある。特許文献4では、高温下において、坩堝に含まれる白金やロジウムと、溶融物中の鉄成分との合金生成により、坩堝の損耗が進行しやすいうえ、坩堝から溶解した白金やロジウムが融液中に混入しやすく、生成物の純度低下や、製造コストの増大を招くおそれがある。
However, the method of Patent Document 2 is not suitable for mass production, and platinum components are mixed from the platinum tube into the internal melt during heating by high-frequency induction, leading to a decrease in product purity and an increase in production costs. There is a fear. In the method of Patent Document 3, since the corrosion resistance of alumina constituting the crucible is not necessarily high, the crucible is easily worn by erosion of Fe or the like during heating and melting, and the replacement frequency increases. Further, the alumina component is likely to be mixed into the melt from the crucible, and there is a possibility that the purity may be lowered. Furthermore, since alumina has a relatively high coefficient of thermal expansion, the crucible may be damaged due to a rapid temperature change. In Patent Document 4, at high temperatures, the crucible is easily worn out by the formation of an alloy between platinum and rhodium contained in the crucible and the iron component in the melt, and platinum and rhodium dissolved from the crucible are contained in the melt. It may be easily mixed into the product, resulting in a decrease in product purity and an increase in production cost.
本発明の目的は、原料混合物の加熱溶融に用いる容器に由来する成分の混入が低減され、純度に優れた二次電池用正極材料を、低コストで効率的に製造する方法を提供することにある。
An object of the present invention is to provide a method for efficiently producing a positive electrode material for a secondary battery that is reduced in the mixing of components derived from a container used for heating and melting a raw material mixture and excellent in purity at a low cost. is there.
すなわち、本発明の二次電池用正極材料の製造方法は、オリビン型、輝石型、またはナシコン型の結晶構造を有する化合物を含む二次電池用正極材料を製造する方法であって、原料を調合して原料調合物を準備する原料調合工程と、前記原料調合物を、電鋳耐火物で形成した容器内で溶融し、溶融物を得る溶融工程とを含むことを特徴とする。
That is, the method for producing a positive electrode material for a secondary battery according to the present invention is a method for producing a positive electrode material for a secondary battery containing a compound having an olivine type, pyroxene type, or NASICON type crystal structure, wherein the raw materials are prepared. And a raw material preparation step of preparing a raw material preparation, and a melting step of melting the raw material preparation in a container formed of an electroformed refractory to obtain a melt.
また、前記電鋳耐火物は、アルミナ-ジルコニア-シリカ質電鋳耐火物、高ジルコニア質電鋳耐火物、およびアルミナ質電鋳耐火物からなる群より選ばれる少なくとも1種であることが好ましい。さらに前記溶融工程を900℃~1700℃で行うことが好ましい。
The electrocast refractory is preferably at least one selected from the group consisting of an alumina-zirconia-silica electrocast refractory, a high zirconia electrocast refractory, and an alumina electrocast refractory. Further, the melting step is preferably performed at 900 ° C to 1700 ° C.
またさらに、本発明の二次電池用正極材料の製造方法は、前記溶融工程で得られた溶融物を冷却して固化物を得る冷却工程を有することが好ましい。さらに、前記冷却工程で得られた固化物を加熱する加熱工程を有することが好ましい。
Furthermore, it is preferable that the method for producing a positive electrode material for a secondary battery of the present invention includes a cooling step of cooling the melt obtained in the melting step to obtain a solidified product. Furthermore, it is preferable to have a heating step of heating the solidified product obtained in the cooling step.
本発明の目的とする二次電池用正極材料が有する化合物の例としては、下記の(1)式で表されるリン酸化合物が挙げられる。
AM1-aX1 aP1-bZ1 bO4+c (1)
(式中、AはLi、Na、およびKからなる群より選ばれる少なくとも1種の原子を示し、MはFe、Mn、Co、およびNiからなる群より選ばれる少なくとも1種の原子を示し、X1はZr、Ti、Nb、Ta、Mo、およびWからなる群より選ばれる少なくとも1種の原子を示し、Z1はSi、B、Al、およびVからなる群より選ばれる少なくとも1種の原子を示す。aは0≦a≦0.2であり、bは0≦b≦0.2であり、cは、aおよびbの数値、ならびにMの価数、X1の価数およびZ1の価数に依存し、電気的中性を満たす数である。) As an example of the compound which the positive electrode material for secondary batteries made into the objective of this invention has, the phosphoric acid compound represented by following (1) Formula is mentioned.
AM 1-a X 1 a P 1-b Z 1 b O 4 + c (1)
(In the formula, A represents at least one atom selected from the group consisting of Li, Na, and K, M represents at least one atom selected from the group consisting of Fe, Mn, Co, and Ni; X 1 represents at least one atom selected from the group consisting of Zr, Ti, Nb, Ta, Mo, and W, and Z 1 represents at least one type selected from the group consisting of Si, B, Al, and V A is 0 ≦ a ≦ 0.2, b is 0 ≦ b ≦ 0.2, c is the numerical value of a and b, and the valence of M, the valence of X 1 and Z It is a number that depends on the valence of 1 and satisfies electrical neutrality.)
AM1-aX1 aP1-bZ1 bO4+c (1)
(式中、AはLi、Na、およびKからなる群より選ばれる少なくとも1種の原子を示し、MはFe、Mn、Co、およびNiからなる群より選ばれる少なくとも1種の原子を示し、X1はZr、Ti、Nb、Ta、Mo、およびWからなる群より選ばれる少なくとも1種の原子を示し、Z1はSi、B、Al、およびVからなる群より選ばれる少なくとも1種の原子を示す。aは0≦a≦0.2であり、bは0≦b≦0.2であり、cは、aおよびbの数値、ならびにMの価数、X1の価数およびZ1の価数に依存し、電気的中性を満たす数である。) As an example of the compound which the positive electrode material for secondary batteries made into the objective of this invention has, the phosphoric acid compound represented by following (1) Formula is mentioned.
AM 1-a X 1 a P 1-b Z 1 b O 4 + c (1)
(In the formula, A represents at least one atom selected from the group consisting of Li, Na, and K, M represents at least one atom selected from the group consisting of Fe, Mn, Co, and Ni; X 1 represents at least one atom selected from the group consisting of Zr, Ti, Nb, Ta, Mo, and W, and Z 1 represents at least one type selected from the group consisting of Si, B, Al, and V A is 0 ≦ a ≦ 0.2, b is 0 ≦ b ≦ 0.2, c is the numerical value of a and b, and the valence of M, the valence of X 1 and Z It is a number that depends on the valence of 1 and satisfies electrical neutrality.)
また、本発明の目的とする二次電池用正極材料が有する他の化合物の例としては、下記の(2)式で表されるケイ酸化合物が挙げられる。
A2M1-dX2 dSi1-eZ2 eO4+f (2)
(式中、AはLi、Na、およびKからなる群より選ばれる少なくとも1種の原子を示し、MはFe、Mn、Co、およびNiからなる群より選ばれる少なくとも1種の原子を示し、X2はZr、Ti、Nb、Ta、Mo、およびWからなる群より選ばれる少なくとも1種の原子を示し、Z2はP、B、Al、およびVからなる群より選ばれる少なくとも1種の原子を示す。dは0≦d≦0.2であり、eは0≦e≦0.2であり、fは、dおよびeの数値、ならびにMの価数、X2の価数およびZ2の価数に依存し、電気的中性を満たす数である。) Moreover, as an example of the other compound which the positive electrode material for secondary batteries made into the objective of this invention has, the silicic acid compound represented by following (2) Formula is mentioned.
A 2 M 1-d X 2 d Si 1-e Z 2 e O 4 + f (2)
(In the formula, A represents at least one atom selected from the group consisting of Li, Na, and K, M represents at least one atom selected from the group consisting of Fe, Mn, Co, and Ni; X 2 represents at least one atom selected from the group consisting of Zr, Ti, Nb, Ta, Mo, and W, and Z 2 represents at least one type selected from the group consisting of P, B, Al, and V D is 0 ≦ d ≦ 0.2, e is 0 ≦ e ≦ 0.2, f is the numerical value of d and e, and the valence of M, the valence of X 2 and Z It is a number that depends on the valence of 2 and satisfies electrical neutrality.)
A2M1-dX2 dSi1-eZ2 eO4+f (2)
(式中、AはLi、Na、およびKからなる群より選ばれる少なくとも1種の原子を示し、MはFe、Mn、Co、およびNiからなる群より選ばれる少なくとも1種の原子を示し、X2はZr、Ti、Nb、Ta、Mo、およびWからなる群より選ばれる少なくとも1種の原子を示し、Z2はP、B、Al、およびVからなる群より選ばれる少なくとも1種の原子を示す。dは0≦d≦0.2であり、eは0≦e≦0.2であり、fは、dおよびeの数値、ならびにMの価数、X2の価数およびZ2の価数に依存し、電気的中性を満たす数である。) Moreover, as an example of the other compound which the positive electrode material for secondary batteries made into the objective of this invention has, the silicic acid compound represented by following (2) Formula is mentioned.
A 2 M 1-d X 2 d Si 1-e Z 2 e O 4 + f (2)
(In the formula, A represents at least one atom selected from the group consisting of Li, Na, and K, M represents at least one atom selected from the group consisting of Fe, Mn, Co, and Ni; X 2 represents at least one atom selected from the group consisting of Zr, Ti, Nb, Ta, Mo, and W, and Z 2 represents at least one type selected from the group consisting of P, B, Al, and V D is 0 ≦ d ≦ 0.2, e is 0 ≦ e ≦ 0.2, f is the numerical value of d and e, and the valence of M, the valence of X 2 and Z It is a number that depends on the valence of 2 and satisfies electrical neutrality.)
本発明によれば、原料混合物の加熱溶融に用いる容器に由来する成分の混入が低減され、純度に優れた二次電池用正極材料を、低コストでかつ効率的に製造することができる。
According to the present invention, it is possible to efficiently produce a positive electrode material for a secondary battery that is less contaminated with components derived from a container used for heating and melting the raw material mixture and has excellent purity.
本明細書において、「オリビン型の結晶構造を有する化合物」を「オリビン型化合物」ともいい、「輝石型の結晶構造を有する化合物」を「輝石型化合物」ともいい、「ナシコン型の結晶構造を有する化合物」を「ナシコン型化合物」ともいう。
本明細書において、「オリビン型、輝石型、またはナシコン型の結晶構造を有する化合物」を「化合物(α)」ともいう。
本明細書において、上記式(1)で表される組成を有するリン酸化合物を「リン酸化合物(1)」ともいい、上記式(2)で表わされる組成を有するケイ酸化合物を「ケイ酸化合物(2)」ともいう。 In the present specification, “compound having an olivine type crystal structure” is also referred to as “olivine type compound”, “compound having a pyroxene type crystal structure” is also referred to as “pyroxene type compound”, and “ "Compound having" is also referred to as "Nashikon-type compound".
In the present specification, the “compound having an olivine type, pyroxene type, or NASICON type crystal structure” is also referred to as “compound (α)”.
In the present specification, the phosphoric acid compound having the composition represented by the above formula (1) is also referred to as “phosphoric acid compound (1)”, and the silicic acid compound having the composition represented by the above formula (2) is referred to as “silicic acid”. Also referred to as “compound (2)”.
本明細書において、「オリビン型、輝石型、またはナシコン型の結晶構造を有する化合物」を「化合物(α)」ともいう。
本明細書において、上記式(1)で表される組成を有するリン酸化合物を「リン酸化合物(1)」ともいい、上記式(2)で表わされる組成を有するケイ酸化合物を「ケイ酸化合物(2)」ともいう。 In the present specification, “compound having an olivine type crystal structure” is also referred to as “olivine type compound”, “compound having a pyroxene type crystal structure” is also referred to as “pyroxene type compound”, and “ "Compound having" is also referred to as "Nashikon-type compound".
In the present specification, the “compound having an olivine type, pyroxene type, or NASICON type crystal structure” is also referred to as “compound (α)”.
In the present specification, the phosphoric acid compound having the composition represented by the above formula (1) is also referred to as “phosphoric acid compound (1)”, and the silicic acid compound having the composition represented by the above formula (2) is referred to as “silicic acid”. Also referred to as “compound (2)”.
<二次電池用正極材料の製造方法>
本発明の二次電池用正極材料の製造方法は、オリビン型、輝石型、またはナシコン型の結晶構造を有する化合物を含む二次電池用正極材料を製造する方法であって、原料を調合して原料調合物を準備する原料調合工程と、前記原料調合物を、電鋳耐火物で形成した容器内で溶融し、溶融物を得る溶融工程とを含むことを特徴とする。本発明に係る二次電池正極材料は、オリビン型、輝石型、またはナシコン型の結晶構造を有する化合物であるのが好ましい。 <Method for producing positive electrode material for secondary battery>
A method for producing a positive electrode material for a secondary battery according to the present invention is a method for producing a positive electrode material for a secondary battery containing a compound having an olivine type, pyroxene type, or NASICON type crystal structure, wherein raw materials are prepared. A raw material preparation step of preparing a raw material preparation; and a melting step of melting the raw material preparation in a container formed of an electroformed refractory to obtain a melt. The secondary battery positive electrode material according to the present invention is preferably a compound having an olivine type, pyroxene type, or NASICON type crystal structure.
本発明の二次電池用正極材料の製造方法は、オリビン型、輝石型、またはナシコン型の結晶構造を有する化合物を含む二次電池用正極材料を製造する方法であって、原料を調合して原料調合物を準備する原料調合工程と、前記原料調合物を、電鋳耐火物で形成した容器内で溶融し、溶融物を得る溶融工程とを含むことを特徴とする。本発明に係る二次電池正極材料は、オリビン型、輝石型、またはナシコン型の結晶構造を有する化合物であるのが好ましい。 <Method for producing positive electrode material for secondary battery>
A method for producing a positive electrode material for a secondary battery according to the present invention is a method for producing a positive electrode material for a secondary battery containing a compound having an olivine type, pyroxene type, or NASICON type crystal structure, wherein raw materials are prepared. A raw material preparation step of preparing a raw material preparation; and a melting step of melting the raw material preparation in a container formed of an electroformed refractory to obtain a melt. The secondary battery positive electrode material according to the present invention is preferably a compound having an olivine type, pyroxene type, or NASICON type crystal structure.
オリビン型化合物としては、例えば、一般式AMPO4、AVOPO4、A2MSiO4、A2VOSiO4、AMBO3、A2MPO4F、またはAVOPO4Fで示されるものを挙げることができる。
また、輝石型化合物としては、例えば、一般式AMSi2O6、AVSi2O6で示されるものを挙げることができる。本明細書において、A2MP2O7も輝石型化合物に含まれるものとする。
また、ナシコン型化合物としては、例えば、一般式A3M2(PO4)3、またはA3V2(PO4)3で示されるものを挙げることができる。 Examples of the olivine type compounds include those represented by the general formula AMPO 4 , AVOPO 4 , A 2 MSiO 4 , A 2 VOSiO 4 , AMBO 3 , A 2 MPO 4 F, or AVOPO 4 F.
In addition, examples of pyroxene-type compounds include those represented by general formulas AMSi 2 O 6 and AVSi 2 O 6 . In the present specification, A 2 MP 2 O 7 is also included in the pyroxene-type compound.
Examples of NASICON compounds include those represented by the general formula A 3 M 2 (PO 4 ) 3 or A 3 V 2 (PO 4 ) 3 .
また、輝石型化合物としては、例えば、一般式AMSi2O6、AVSi2O6で示されるものを挙げることができる。本明細書において、A2MP2O7も輝石型化合物に含まれるものとする。
また、ナシコン型化合物としては、例えば、一般式A3M2(PO4)3、またはA3V2(PO4)3で示されるものを挙げることができる。 Examples of the olivine type compounds include those represented by the general formula AMPO 4 , AVOPO 4 , A 2 MSiO 4 , A 2 VOSiO 4 , AMBO 3 , A 2 MPO 4 F, or AVOPO 4 F.
In addition, examples of pyroxene-type compounds include those represented by general formulas AMSi 2 O 6 and AVSi 2 O 6 . In the present specification, A 2 MP 2 O 7 is also included in the pyroxene-type compound.
Examples of NASICON compounds include those represented by the general formula A 3 M 2 (PO 4 ) 3 or A 3 V 2 (PO 4 ) 3 .
上記一般式中、原子AはLi、Na、およびK等のアルカリ金属原子を示し、原子MはFe、Mn、Co、およびNi等の遷移金属原子を示す。
上記一般式において、P、Si、B、およびVは、それぞれ相互に部分的に置換したものであってもよく、これらがAlまたはS等の原子と置換したものであってもよい。 In the above general formula, atom A represents an alkali metal atom such as Li, Na, and K, and atom M represents a transition metal atom such as Fe, Mn, Co, and Ni.
In the above general formula, P, Si, B, and V may each be partially substituted with each other, or these may be substituted with atoms such as Al or S.
上記一般式において、P、Si、B、およびVは、それぞれ相互に部分的に置換したものであってもよく、これらがAlまたはS等の原子と置換したものであってもよい。 In the above general formula, atom A represents an alkali metal atom such as Li, Na, and K, and atom M represents a transition metal atom such as Fe, Mn, Co, and Ni.
In the above general formula, P, Si, B, and V may each be partially substituted with each other, or these may be substituted with atoms such as Al or S.
また、上述したオリビン型化合物、輝石型化合物、ナシコン型化合物としては、上述した一般式で示される化合物のほか、原子A、原子MとともにZr、Ti、Nb、Ta、MoおよびWから選ばれる少なくとも1種の原子を含むものであってもよい。
The olivine-type compound, pyroxene-type compound, and nasicon-type compound described above are at least selected from Zr, Ti, Nb, Ta, Mo, and W together with the atoms A and M, in addition to the compounds represented by the general formula described above. It may contain one kind of atom.
上述した一般式で表わされるオリビン型化合物のうち、リン酸化合物としては、下記式(1)で表されるリン酸化合物(1)が好適である。
AM1-aX1 aP1-bZ1 bO4+c (1)
(式中、AはLi、Na、およびKからなる群より選ばれる少なくとも1種の原子、MはFe、Mn、Co、およびNiからなる群より選ばれる少なくとも1種の原子、X1はZr、Ti、Nb、Ta、Mo、およびWからなる群より選ばれる少なくとも1種の原子、Z1はSi、B、Al、およびVからなる群より選ばれる少なくとも1種の原子を示す。aは0≦a≦0.2、bは0≦b≦0.2であり、cは、aおよびbの数値、ならびにMの価数、X1の価数およびZ1の価数に依存し、電気的中性を満たす数である。) Of the olivine compounds represented by the general formula described above, the phosphoric acid compound (1) represented by the following formula (1) is preferred as the phosphoric acid compound.
AM 1-a X 1 a P 1-b Z 1 b O 4 + c (1)
Wherein A is at least one atom selected from the group consisting of Li, Na, and K, M is at least one atom selected from the group consisting of Fe, Mn, Co, and Ni, and X 1 is Zr. , Ti, Nb, Ta, Mo, and W, at least one atom selected from the group consisting of W, and Z 1 represents at least one atom selected from the group consisting of Si, B, Al, and V. a is 0 ≦ a ≦ 0.2, b is 0 ≦ b ≦ 0.2, c depends on the numerical values of a and b, and the valence of M, the valence of X 1 and the valence of Z 1 , Number that satisfies electrical neutrality.)
AM1-aX1 aP1-bZ1 bO4+c (1)
(式中、AはLi、Na、およびKからなる群より選ばれる少なくとも1種の原子、MはFe、Mn、Co、およびNiからなる群より選ばれる少なくとも1種の原子、X1はZr、Ti、Nb、Ta、Mo、およびWからなる群より選ばれる少なくとも1種の原子、Z1はSi、B、Al、およびVからなる群より選ばれる少なくとも1種の原子を示す。aは0≦a≦0.2、bは0≦b≦0.2であり、cは、aおよびbの数値、ならびにMの価数、X1の価数およびZ1の価数に依存し、電気的中性を満たす数である。) Of the olivine compounds represented by the general formula described above, the phosphoric acid compound (1) represented by the following formula (1) is preferred as the phosphoric acid compound.
AM 1-a X 1 a P 1-b Z 1 b O 4 + c (1)
Wherein A is at least one atom selected from the group consisting of Li, Na, and K, M is at least one atom selected from the group consisting of Fe, Mn, Co, and Ni, and X 1 is Zr. , Ti, Nb, Ta, Mo, and W, at least one atom selected from the group consisting of W, and Z 1 represents at least one atom selected from the group consisting of Si, B, Al, and V. a is 0 ≦ a ≦ 0.2, b is 0 ≦ b ≦ 0.2, c depends on the numerical values of a and b, and the valence of M, the valence of X 1 and the valence of Z 1 , Number that satisfies electrical neutrality.)
0≦a≦0.2および0≦b≦0.2である場合に、後述する溶融工程(ii)で原料調合物を良好に溶融することができ、均一な溶融物が得られる。また、後述する加熱工程(v)でリン酸化合物(1)を得ることができ、さらにはオリビン型結晶構造を含むリン酸化合物(1)、特にオリビン型結晶構造のみからなるリン酸化合物(1)が得られるので好ましい。
When 0 ≦ a ≦ 0.2 and 0 ≦ b ≦ 0.2, the raw material preparation can be satisfactorily melted in the melting step (ii) described later, and a uniform melt can be obtained. In addition, the phosphoric acid compound (1) can be obtained by the heating step (v) described below, and further, the phosphoric acid compound (1) containing an olivine type crystal structure, particularly a phosphoric acid compound (1) comprising only an olivine type crystal structure (1). ) Is preferable.
aの値は、0.001≦a≦0.1がより好ましく、0.001≦a≦0.05が特に好ましい。bの値は、0.001≦b≦0.1がより好ましく、0.001≦b≦0.05が特に好ましい。aおよびbが上記範囲内であると、多電子型の反応(単位モル数当たり1molを超える原子Aを引き抜く反応)を示すリン酸化合物(1)が得られ、このリン酸化合物(1)を二次電池用正極材料として用いたときに理論電気容量を高めることができる。
The value of a is more preferably 0.001 ≦ a ≦ 0.1, and particularly preferably 0.001 ≦ a ≦ 0.05. The value of b is more preferably 0.001 ≦ b ≦ 0.1, and particularly preferably 0.001 ≦ b ≦ 0.05. When a and b are within the above ranges, a phosphoric acid compound (1) showing a multi-electron type reaction (reaction that pulls out more than 1 mol of atoms A per unit mole number) is obtained, and this phosphoric acid compound (1) is obtained. When used as a positive electrode material for a secondary battery, the theoretical electric capacity can be increased.
リン酸化合物(1)におけるcの値はaおよびbの数値、ならびにMの価数、X1の価数およびZ1の価数に依存する数であり、正電荷の総和の1/2から4を引いた値である。
The value of c in the phosphoric acid compound (1) is a number depending on the numerical values of a and b, and the valence of M, the valence of X 1 and the valence of Z 1 , from 1/2 of the total positive charge The value obtained by subtracting 4.
上記一般式で表わされるオリビン型化合物のうち、ケイ酸化合物としては、下記式(2)で表されるケイ酸化合物(2)が好適である。
A2M1-dX2 dSi1-eZ2 eO4+f (2)
(式中、AはLi、Na、およびKからなる群より選ばれる少なくとも1種の原子、MはFe、Mn、Co、およびNiからなる群より選ばれる少なくとも1種の原子、X2はZr、Ti、Nb、Ta、MoおよびWからなる群より選ばれる少なくとも1種の原子、Z2はP、B、Al、およびVからなる群より選ばれる少なくとも1種の原子を示す。dは0≦d≦0.2、eは0≦e≦0.2であり、fは、dおよびeの数値、ならびにMの価数、X2の価数およびZ2の価数に依存し、電気的中性を満たす数である。) Of the olivine-type compounds represented by the above general formula, the silicate compound (2) represented by the following formula (2) is preferred as the silicate compound.
A 2 M 1-d X 2 d Si 1-e Z 2 e O 4 + f (2)
Wherein A is at least one atom selected from the group consisting of Li, Na, and K, M is at least one atom selected from the group consisting of Fe, Mn, Co, and Ni, and X 2 is Zr. , Ti, Nb, Ta, Mo and W, Z 2 represents at least one atom selected from the group consisting of P, B, Al, and V. d represents 0. ≦ d ≦ 0.2, e is 0 ≦ e ≦ 0.2, f depends on the numerical values of d and e, and the valence of M, the valence of X 2 and the valence of Z 2 , It is a number that satisfies the target neutrality.)
A2M1-dX2 dSi1-eZ2 eO4+f (2)
(式中、AはLi、Na、およびKからなる群より選ばれる少なくとも1種の原子、MはFe、Mn、Co、およびNiからなる群より選ばれる少なくとも1種の原子、X2はZr、Ti、Nb、Ta、MoおよびWからなる群より選ばれる少なくとも1種の原子、Z2はP、B、Al、およびVからなる群より選ばれる少なくとも1種の原子を示す。dは0≦d≦0.2、eは0≦e≦0.2であり、fは、dおよびeの数値、ならびにMの価数、X2の価数およびZ2の価数に依存し、電気的中性を満たす数である。) Of the olivine-type compounds represented by the above general formula, the silicate compound (2) represented by the following formula (2) is preferred as the silicate compound.
A 2 M 1-d X 2 d Si 1-e Z 2 e O 4 + f (2)
Wherein A is at least one atom selected from the group consisting of Li, Na, and K, M is at least one atom selected from the group consisting of Fe, Mn, Co, and Ni, and X 2 is Zr. , Ti, Nb, Ta, Mo and W, Z 2 represents at least one atom selected from the group consisting of P, B, Al, and V. d represents 0. ≦ d ≦ 0.2, e is 0 ≦ e ≦ 0.2, f depends on the numerical values of d and e, and the valence of M, the valence of X 2 and the valence of Z 2 , It is a number that satisfies the target neutrality.)
0≦d≦0.2および0≦e≦0.2である場合に、後述する溶融工程(ii)で原料調合物を良好に溶融することができ、均一な溶融物が得られる。また、後述する加熱工程(v)でケイ酸化合物(2)を得ることができ、さらにはオリビン型結晶構造を含むケイ酸化合物(2)、特にオリビン型結晶構造のみからなるケイ酸化合物(2)が得られるので好ましい。
When 0 ≦ d ≦ 0.2 and 0 ≦ e ≦ 0.2, the raw material preparation can be melted well in the melting step (ii) described later, and a uniform melt can be obtained. In addition, the silicate compound (2) can be obtained by the heating step (v) described later, and further, the silicate compound (2) having an olivine type crystal structure, particularly a silicate compound (2) having only an olivine type crystal structure (2). ) Is preferable.
dの値は、0.001≦d≦0.1がより好ましく、0.001≦d≦0.05が特に好ましい。eの値は、0.001≦e≦0.1がより好ましく、0.001≦e≦0.05が特に好ましい。dおよびeが上記範囲内であると、多電子型の反応(単位モル数当たり1molを超えるAを引き抜く反応)を示すケイ酸化合物(2)が得られ、このケイ酸化合物(2)を二次電池用正極材料として用いたときに理論電気容量を高めることができる。
The value of d is more preferably 0.001 ≦ d ≦ 0.1, and particularly preferably 0.001 ≦ d ≦ 0.05. The value of e is more preferably 0.001 ≦ e ≦ 0.1, and particularly preferably 0.001 ≦ e ≦ 0.05. When d and e are within the above ranges, a silicic acid compound (2) showing a multi-electron type reaction (a reaction of extracting A exceeding 1 mol per mole of unit) is obtained. When used as a positive electrode material for a secondary battery, the theoretical electric capacity can be increased.
ケイ酸化合物(2)の組成におけるfの値はdおよびeの数値、ならびにMの価数、X2の価数およびZ2の価数に依存する数であり、正電荷の総和の1/2から4を引いた値である。
The value of f in the composition of the silicate compound (2) is a number that depends on the values of d and e, and the valence of M, the valence of X 2 and the valence of Z 2 , and is 1 / The value obtained by subtracting 4 from 2.
リン酸化合物(1)またはケイ酸化合物(2)において、原子Aは二次電池用正極材料として適しているため、Liを必須とするのが好ましく、Liのみであることが特に好ましい。Liを含むリン酸化合物(1)、Liを含むケイ酸化合物(2)は、二次電池の単位体積(質量)当たりの容量を高くする。
In the phosphoric acid compound (1) or the silicic acid compound (2), since the atom A is suitable as a positive electrode material for a secondary battery, it is preferable to make Li essential, and it is particularly preferable to use only Li. The phosphoric acid compound (1) containing Li and the silicic acid compound (2) containing Li increase the capacity per unit volume (mass) of the secondary battery.
リン酸化合物(1)またはケイ酸化合物(2)において、原子Mは1種のみ、または、2種からなるのが好ましい。特に、原子MはFeのみ、Mnのみ、またはFeおよびMnからなるのが、コストの点で好ましい。
リン酸化合物(1)またはケイ酸化合物(2)における原子Mの価数は、+2~+4の範囲である。原子Mの価数は、原子MがFeの場合は+2、+8/3、+3、Mnの場合は+2、+3、+4、Coの場合は+2、+8/3、+3、Niの場合は+2、+4が好ましい。原子Mの価数は2 ~2.2であるのが好ましく、2であるのがより好ましい。 In the phosphoric acid compound (1) or the silicic acid compound (2), the atom M is preferably composed of only one kind or two kinds. In particular, it is preferable in terms of cost that the atom M consists of Fe alone, Mn alone, or Fe and Mn.
The valence of atom M in phosphoric acid compound (1) or silicic acid compound (2) is in the range of +2 to +4. The valence of atom M is +2, +8/3, +3 when atom M is Fe, +2, +3, +4 when Mn, +2, +8/3, +3 when Co, +2, when Ni is Ni, +4 is preferred. The valence of atom M is preferably 2 to 2.2, more preferably 2.
リン酸化合物(1)またはケイ酸化合物(2)における原子Mの価数は、+2~+4の範囲である。原子Mの価数は、原子MがFeの場合は+2、+8/3、+3、Mnの場合は+2、+3、+4、Coの場合は+2、+8/3、+3、Niの場合は+2、+4が好ましい。原子Mの価数は2 ~2.2であるのが好ましく、2であるのがより好ましい。 In the phosphoric acid compound (1) or the silicic acid compound (2), the atom M is preferably composed of only one kind or two kinds. In particular, it is preferable in terms of cost that the atom M consists of Fe alone, Mn alone, or Fe and Mn.
The valence of atom M in phosphoric acid compound (1) or silicic acid compound (2) is in the range of +2 to +4. The valence of atom M is +2, +8/3, +3 when atom M is Fe, +2, +3, +4 when Mn, +2, +8/3, +3 when Co, +2, when Ni is Ni, +4 is preferred. The valence of atom M is preferably 2 to 2.2, more preferably 2.
リン酸化合物(1)またはケイ酸化合物(2)において、原子X1、X2はZr、Ti、Nb、Ta、MoおよびWからなる群より選ばれる少なくとも1種の原子である。性能の面から、Zr、TiまたはNbが好ましく、ZrまたはTiが特に好ましい。
リン酸化合物(1)またはケイ酸化合物(2)における原子X1、X2の価数は、基本的にZrの場合は+4、Tiの場合は+2または+4、Nbの場合は+2または+5、Taの場合は+2または+5、Moの場合は+4または+6、Wの場合は+4または+6である。 In the phosphoric acid compound (1) or the silicic acid compound (2), the atoms X 1 and X 2 are at least one atom selected from the group consisting of Zr, Ti, Nb, Ta, Mo and W. From the viewpoint of performance, Zr, Ti or Nb is preferable, and Zr or Ti is particularly preferable.
The valences of the atoms X 1 and X 2 in the phosphoric acid compound (1) or the silicic acid compound (2) are basically +4 for Zr, +2 or +4 for Ti, +2 or +5 for Nb, Ta is +2 or +5, Mo is +4 or +6, and W is +4 or +6.
リン酸化合物(1)またはケイ酸化合物(2)における原子X1、X2の価数は、基本的にZrの場合は+4、Tiの場合は+2または+4、Nbの場合は+2または+5、Taの場合は+2または+5、Moの場合は+4または+6、Wの場合は+4または+6である。 In the phosphoric acid compound (1) or the silicic acid compound (2), the atoms X 1 and X 2 are at least one atom selected from the group consisting of Zr, Ti, Nb, Ta, Mo and W. From the viewpoint of performance, Zr, Ti or Nb is preferable, and Zr or Ti is particularly preferable.
The valences of the atoms X 1 and X 2 in the phosphoric acid compound (1) or the silicic acid compound (2) are basically +4 for Zr, +2 or +4 for Ti, +2 or +5 for Nb, Ta is +2 or +5, Mo is +4 or +6, and W is +4 or +6.
リン酸化合物(1)において、原子Z1はSi、B、Al、およびVからなる群より選ばれる少なくとも1種である。性能の面から、BまたはAlが好ましく、Bが特に好ましい。ケイ酸化合物(2)において、原子Z2はP、B、Al、およびVからなる群より選ばれる少なくとも1種である。性能の面から、BまたはAlが好ましく、Bが特に好ましい。リン酸化合物(1)またはケイ酸化合物(2)における原子Z1、Z2の価数は、基本的にPの場合は+5、Bの場合は+3、Alの場合は+3、Vの場合は+3、+4、+5である。
In the phosphoric acid compound (1), the atom Z 1 is at least one selected from the group consisting of Si, B, Al, and V. From the viewpoint of performance, B or Al is preferable, and B is particularly preferable. In the silicic acid compound (2), the atom Z 2 is at least one selected from the group consisting of P, B, Al, and V. From the viewpoint of performance, B or Al is preferable, and B is particularly preferable. In the phosphoric acid compound (1) or the silicic acid compound (2), the valences of the atoms Z 1 and Z 2 are basically +5 for P, +3 for B, +3 for Al, and +3 for V. +3, +4, +5.
特に、ケイ酸化合物(2)は、二次電池用正極材料に使用する場合に、二次電池の単位体積(質量)当たりの容量を高くできるため好ましい。
In particular, the silicic acid compound (2) is preferable because it can increase the capacity per unit volume (mass) of the secondary battery when used as the positive electrode material for the secondary battery.
本発明に係る二次電池用正極材料の製造方法は、上述したオリビン型、輝石型、またはナシコン型の結晶構造を有する化合物を含む二次電池用正極材料を製造する方法であり、原料を調合して原料調合物を準備する原料調合工程(i)と、原料調合物を、電鋳耐火物で形成した容器内で溶融し、溶融物を得る溶融工程(ii)とを有する。本発明の製造方法は、さらに冷却工程(iii)、粉砕工程(iv)、および加熱工程(v)を有することが好ましい。各工程について、以下に具体的に説明する。
A method for producing a positive electrode material for a secondary battery according to the present invention is a method for producing a positive electrode material for a secondary battery containing the compound having the olivine type, pyroxene type, or NASICON type crystal structure described above, and preparing raw materials The raw material preparation step (i) for preparing the raw material preparation and the melting step (ii) for melting the raw material preparation in a container formed of an electroformed refractory to obtain a melt. The production method of the present invention preferably further includes a cooling step (iii), a pulverizing step (iv), and a heating step (v). Each step will be specifically described below.
[原料調合工程(i)]
本発明の二次電池用正極材料の製造方法では、まず、オリビン型化合物、輝石型化合物、またはナシコン型化合物の各成分源を、所定の組成を有する溶融物となるように選択し、混合して原料調合物を準備する。 [Raw material preparation step (i)]
In the method for producing a positive electrode material for a secondary battery of the present invention, first, each component source of an olivine type compound, pyroxene type compound, or NASICON type compound is selected and mixed so as to be a melt having a predetermined composition. Prepare the raw material formulation.
本発明の二次電池用正極材料の製造方法では、まず、オリビン型化合物、輝石型化合物、またはナシコン型化合物の各成分源を、所定の組成を有する溶融物となるように選択し、混合して原料調合物を準備する。 [Raw material preparation step (i)]
In the method for producing a positive electrode material for a secondary battery of the present invention, first, each component source of an olivine type compound, pyroxene type compound, or NASICON type compound is selected and mixed so as to be a melt having a predetermined composition. Prepare the raw material formulation.
オリビン型化合物、輝石型化合物、またはナシコン型化合物の構成原子を含む出発原料のうち、原子Aを含む化合物としては、Aの炭酸塩(A2CO3)、Aの炭酸水素塩(AHCO3)、Aの水酸化物(AOH)、Aのケイ酸塩(A2O・2SiO2、A2O・SiO2、2A2O・SiO2等)、Aのリン酸塩(A3PO4等)、Aのホウ酸塩(A3BO3)、Aのフッ化物(AF)、Aの塩化物(ACl)、Aの硝酸塩(ANO3)、Aの硫酸塩(A2SO4)、およびAの有機酸塩(酢酸塩(CH3COOA)やシュウ酸塩((COOA)2)等)からなる群より選ばれる少なくとも1種(ただし、該少なくとも1種の一部または全部は、それぞれ水和塩を形成していてもよい。)が好ましい。なかでも、安価でかつ取扱いが容易な点で、A2CO3、AHCO3、またはAFがより好ましい。
Among the starting materials containing the constituent atoms of the olivine type compound, pyroxene type compound, or NASICON type compound, the compound containing atom A includes A carbonate (A 2 CO 3 ), A hydrogen carbonate (AHCO 3 ). , A hydroxide (AOH), A silicate (A 2 O · 2SiO 2 , A 2 O · SiO 2 , 2A 2 O · SiO 2 etc.), A phosphate (A 3 PO 4 etc.) ), A borate (A 3 BO 3 ), A fluoride (AF), A chloride (ACl), A nitrate (ANO 3 ), A sulfate (A 2 SO 4 ), and At least one selected from the group consisting of an organic acid salt of A (acetate (CH 3 COOA), oxalate ((COOA) 2 ), etc.). And may form a Japanese salt). Among these, A 2 CO 3 , AHCO 3 , or AF is more preferable because it is inexpensive and easy to handle.
原子Mを含む化合物としては、Mの酸化物(FeO、Fe3O4、Fe2O3、MnO、Mn2O3、MnO2、CoO、Co3O4、Co2O3、NiO等)、Mのオキシ水酸化物(MO(OH))、Mのケイ酸塩(MO・SiO2、2MO・SiO2等)、Mのリン酸塩(M3(PO4)2等)、Mのホウ酸塩(M3(BO3)2等)、Mのフッ化物(MF2等)、Mの塩化物(MCl2、MCl3等)、Mの硝酸塩(M(NO3)2、M(NO3)3等)、Mの硫酸塩(MSO4、M2(SO4)3等)、Mの有機酸塩(酢酸塩(M(CH3COO)2)やシュウ酸塩(M(COO)2等)およびMのアルコキシド(M(OCH3)2、M(OC2H5)2等)からなる群より選ばれる少なくとも1種が好ましい。
入手のしやすさやコストから、Fe3O4、Fe2O3、MnO、Mn2O3、MnO2、Co3O4およびNiOからなる群より選ばれる少なくとも1種の化合物がより好ましい。特に原子Mが、Feである場合の該化合物としては、Fe3O4および/またはFe2O3が好ましく、原子MがMnである場合の該化合物としては、MnO2が好ましい。原子Mを含む化合物は、1種であっても、2種以上であってもよい。 As the compound containing the atom M, oxides of M (FeO, Fe 3 O 4 , Fe 2 O 3 , MnO, Mn 2 O 3 , MnO 2 , CoO, Co 3 O 4 , Co 2 O 3 , NiO, etc.) , M oxyhydroxide (MO (OH)), M silicate (MO · SiO 2 , 2MO · SiO 2 etc.), M phosphate (M 3 (PO 4 ) 2 etc.), Borate (M 3 (BO 3 ) 2 etc.), M fluoride (MF 2 etc.), M chloride (MCl 2 , MCl 3 etc.), M nitrate (M (NO 3 ) 2 , M ( NO 3 ) 3 ), M sulfate (MSO 4 , M 2 (SO 4 ) 3 etc.), M organic acid salt (acetate (M (CH 3 COO) 2 ) and oxalate (M (COO 2 ) and M alkoxides (M (OCH 3 ) 2 , M (OC 2 H 5 ) 2 etc.) At least one is preferred.
In view of availability and cost, at least one compound selected from the group consisting of Fe 3 O 4 , Fe 2 O 3 , MnO, Mn 2 O 3 , MnO 2 , Co 3 O 4 and NiO is more preferable. In particular, as the compound when the atom M is Fe, Fe 3 O 4 and / or Fe 2 O 3 is preferable, and as the compound when the atom M is Mn, MnO 2 is preferable. The compound containing atom M may be one type or two or more types.
入手のしやすさやコストから、Fe3O4、Fe2O3、MnO、Mn2O3、MnO2、Co3O4およびNiOからなる群より選ばれる少なくとも1種の化合物がより好ましい。特に原子Mが、Feである場合の該化合物としては、Fe3O4および/またはFe2O3が好ましく、原子MがMnである場合の該化合物としては、MnO2が好ましい。原子Mを含む化合物は、1種であっても、2種以上であってもよい。 As the compound containing the atom M, oxides of M (FeO, Fe 3 O 4 , Fe 2 O 3 , MnO, Mn 2 O 3 , MnO 2 , CoO, Co 3 O 4 , Co 2 O 3 , NiO, etc.) , M oxyhydroxide (MO (OH)), M silicate (MO · SiO 2 , 2MO · SiO 2 etc.), M phosphate (M 3 (PO 4 ) 2 etc.), Borate (M 3 (BO 3 ) 2 etc.), M fluoride (MF 2 etc.), M chloride (MCl 2 , MCl 3 etc.), M nitrate (M (NO 3 ) 2 , M ( NO 3 ) 3 ), M sulfate (MSO 4 , M 2 (SO 4 ) 3 etc.), M organic acid salt (acetate (M (CH 3 COO) 2 ) and oxalate (M (COO 2 ) and M alkoxides (M (OCH 3 ) 2 , M (OC 2 H 5 ) 2 etc.) At least one is preferred.
In view of availability and cost, at least one compound selected from the group consisting of Fe 3 O 4 , Fe 2 O 3 , MnO, Mn 2 O 3 , MnO 2 , Co 3 O 4 and NiO is more preferable. In particular, as the compound when the atom M is Fe, Fe 3 O 4 and / or Fe 2 O 3 is preferable, and as the compound when the atom M is Mn, MnO 2 is preferable. The compound containing atom M may be one type or two or more types.
Siを含む化合物としては、酸化ケイ素(SiO2)、ケイ素のアルコキシド(Si(OCH3)4、Si(OC2H5)4等)、Aのケイ酸塩、またはMのケイ酸塩が好ましい。Siを含む化合物は結晶質であっても、非晶質であってもよい。なかでも、SiO2が安価であるのでより好ましい。
As the compound containing Si, silicon oxide (SiO 2 ), silicon alkoxide (Si (OCH 3 ) 4 , Si (OC 2 H 5 ) 4, etc.), A silicate, or M silicate is preferable. . The compound containing Si may be crystalline or amorphous. Among them, more preferable because SiO 2 is inexpensive.
Pを含む化合物としては、無水リン酸(P2O5)、リン酸水素アンモニウム(NH4H2PO4、(NH4)2HPO4)、AまたはMのリン酸塩が好ましい。
AまたはMのリン酸塩としては、例えばLi3PO4、Fe3(PO4)2、FePO4およびMn3(PO4)2からなる群より選ばれる少なくとも1種が好ましい。
Pを含む化合物は結晶質であっても、非晶質であってもよい。なかでも、NH4H2PO4が安価であるのでより好ましい。 As the compound containing P, anhydrous phosphoric acid (P 2 O 5 ), ammonium hydrogen phosphate (NH 4 H 2 PO 4 , (NH 4 ) 2 HPO 4 ), A or M phosphate is preferable.
As the phosphate of A or M, for example, at least one selected from the group consisting of Li 3 PO 4 , Fe 3 (PO 4 ) 2 , FePO 4 and Mn 3 (PO 4 ) 2 is preferable.
The compound containing P may be crystalline or amorphous. Of these, NH 4 H 2 PO 4 is more preferable because it is inexpensive.
AまたはMのリン酸塩としては、例えばLi3PO4、Fe3(PO4)2、FePO4およびMn3(PO4)2からなる群より選ばれる少なくとも1種が好ましい。
Pを含む化合物は結晶質であっても、非晶質であってもよい。なかでも、NH4H2PO4が安価であるのでより好ましい。 As the compound containing P, anhydrous phosphoric acid (P 2 O 5 ), ammonium hydrogen phosphate (NH 4 H 2 PO 4 , (NH 4 ) 2 HPO 4 ), A or M phosphate is preferable.
As the phosphate of A or M, for example, at least one selected from the group consisting of Li 3 PO 4 , Fe 3 (PO 4 ) 2 , FePO 4 and Mn 3 (PO 4 ) 2 is preferable.
The compound containing P may be crystalline or amorphous. Of these, NH 4 H 2 PO 4 is more preferable because it is inexpensive.
原子X1、X2(Zr、Ti、Nb、Ta、MoおよびW)を含む化合物としては、X1、X2の酸化物、例えばZrO2、TiO2、Nb2O5、Ta2O5、MoO3またはWO3が好ましい。
Examples of the compound containing atoms X 1 and X 2 (Zr, Ti, Nb, Ta, Mo and W) include oxides of X 1 and X 2 such as ZrO 2 , TiO 2 , Nb 2 O 5 and Ta 2 O 5. , MoO 3 or WO 3 are preferred.
原子Z1、Z2(P、Si、B、Al、およびV)を含む化合物としては、Z1、Z2の酸化物(P2O5、B2O3等)、AまたはMのリン酸塩、AまたはMのケイ酸塩、AまたはMのホウ酸塩、AまたはMのアルミン酸塩、およびAまたはMのバナジン酸塩からなる群より選ばれる少なくとも1種が好ましい。
なかでも、原子Z1、Z2がPを含む場合はLi3PO4、Fe3(PO4)2、FePO4およびMn3(PO4)2からなる群より選ばれる少なくとも1種、Siを含む場合はSiO2、Bを含む場合はB2O3および/またはH3BO3、Alを含む場合はAl2O3、AlO(OH)およびアルミノケイ酸塩からなる群より選ばれる少なくとも1種、Vを含む場合は酸化バナジウム(VO、V2O3、VO3、V2O5等)が安価であるので好ましい。 Compounds containing atoms Z 1 and Z 2 (P, Si, B, Al, and V) include Z 1 , Z 2 oxides (P 2 O 5 , B 2 O 3, etc.), A or M phosphorus At least one selected from the group consisting of acid salts, A or M silicates, A or M borates, A or M aluminates, and A or M vanadates is preferred.
Among them, when the atoms Z 1 and Z 2 contain P, at least one selected from the group consisting of Li 3 PO 4 , Fe 3 (PO 4 ) 2 , FePO 4 and Mn 3 (PO 4 ) 2 , Si SiO 2 when contained, B 2 O 3 and / or H 3 BO 3 when containing B, at least one selected from the group consisting of Al 2 O 3 , AlO (OH) and aluminosilicate when containing Al , V is preferable because vanadium oxide (VO, V 2 O 3 , VO 3 , V 2 O 5, etc.) is inexpensive.
なかでも、原子Z1、Z2がPを含む場合はLi3PO4、Fe3(PO4)2、FePO4およびMn3(PO4)2からなる群より選ばれる少なくとも1種、Siを含む場合はSiO2、Bを含む場合はB2O3および/またはH3BO3、Alを含む場合はAl2O3、AlO(OH)およびアルミノケイ酸塩からなる群より選ばれる少なくとも1種、Vを含む場合は酸化バナジウム(VO、V2O3、VO3、V2O5等)が安価であるので好ましい。 Compounds containing atoms Z 1 and Z 2 (P, Si, B, Al, and V) include Z 1 , Z 2 oxides (P 2 O 5 , B 2 O 3, etc.), A or M phosphorus At least one selected from the group consisting of acid salts, A or M silicates, A or M borates, A or M aluminates, and A or M vanadates is preferred.
Among them, when the atoms Z 1 and Z 2 contain P, at least one selected from the group consisting of Li 3 PO 4 , Fe 3 (PO 4 ) 2 , FePO 4 and Mn 3 (PO 4 ) 2 , Si SiO 2 when contained, B 2 O 3 and / or H 3 BO 3 when containing B, at least one selected from the group consisting of Al 2 O 3 , AlO (OH) and aluminosilicate when containing Al , V is preferable because vanadium oxide (VO, V 2 O 3 , VO 3 , V 2 O 5, etc.) is inexpensive.
原料調合物の好適な組み合わせは、原子Aを含む化合物がAの炭酸塩または炭酸水素塩、原子Mを含む化合物がMの酸化物、Pを含む化合物がリン酸水素アンモニウムまたはAのリン酸塩である場合、Siを含む化合物が酸化ケイ素である場合の組み合わせである。
A suitable combination of the raw material formulations is a carbonate or hydrogen carbonate in which the compound containing atom A is A, an oxide of M in compound containing atom M, an ammonium hydrogen phosphate or a phosphate in which compound P is contained In this case, it is a combination when the compound containing Si is silicon oxide.
原料調合物の組成は、原則として、当該原料調合物から得られる溶融物の組成と理論上対応するものである。ただし、該原料調合物中には、溶融処理中に揮発等により失われやすい成分(例えばLi等)が存在するため、得られる溶融物の組成は各原料の仕込み量から計算される酸化物基準のモル%と若干相違する場合がある。そのような場合には、揮発等により失われる量を考慮して、各原料の仕込み量を設定することが好ましい。
In principle, the composition of the raw material formulation corresponds theoretically to the composition of the melt obtained from the raw material formulation. However, since there are components (such as Li) that are easily lost due to volatilization or the like during the melting process in the raw material preparation, the composition of the obtained melt is based on an oxide standard calculated from the charged amount of each raw material. It may be slightly different from the mol%. In such a case, it is preferable to set the charging amount of each raw material in consideration of the amount lost due to volatilization or the like.
原料調合物中の各原料の純度は特に限定されない。反応性や二次電池用正極材料の物性等を考慮すると、水和水を除く純度が99質量%以上であることが好ましい。
各原料としては、粉砕した原料を用いるのが好ましい。各原料は、粉砕してから混合しても、混合した後に粉砕してもよい。粉砕は、ミキサー、ボールミル、ジェットミル、遊星ミル等を用いて、乾式または湿式で行うことが好ましく、溶媒の除去工程が不要なことから、乾式が好ましい。原料調合物中の各原料の粒子径は、混合操作、混合物の溶融容器への充填操作、混合物の溶融性等に悪影響を及ぼさない範囲であれば、限定されない。 The purity of each raw material in the raw material formulation is not particularly limited. Considering reactivity and physical properties of the positive electrode positive electrode material, the purity excluding hydration water is preferably 99% by mass or more.
As each raw material, it is preferable to use a pulverized raw material. Each raw material may be pulverized and mixed, or may be pulverized after mixing. The pulverization is preferably performed by a dry method or a wet method using a mixer, a ball mill, a jet mill, a planetary mill or the like, and a dry method is preferable because a solvent removal step is unnecessary. The particle diameter of each raw material in the raw material formulation is not limited as long as it does not adversely affect the mixing operation, the filling operation of the mixture into the melting container, the meltability of the mixture, and the like.
各原料としては、粉砕した原料を用いるのが好ましい。各原料は、粉砕してから混合しても、混合した後に粉砕してもよい。粉砕は、ミキサー、ボールミル、ジェットミル、遊星ミル等を用いて、乾式または湿式で行うことが好ましく、溶媒の除去工程が不要なことから、乾式が好ましい。原料調合物中の各原料の粒子径は、混合操作、混合物の溶融容器への充填操作、混合物の溶融性等に悪影響を及ぼさない範囲であれば、限定されない。 The purity of each raw material in the raw material formulation is not particularly limited. Considering reactivity and physical properties of the positive electrode positive electrode material, the purity excluding hydration water is preferably 99% by mass or more.
As each raw material, it is preferable to use a pulverized raw material. Each raw material may be pulverized and mixed, or may be pulverized after mixing. The pulverization is preferably performed by a dry method or a wet method using a mixer, a ball mill, a jet mill, a planetary mill or the like, and a dry method is preferable because a solvent removal step is unnecessary. The particle diameter of each raw material in the raw material formulation is not limited as long as it does not adversely affect the mixing operation, the filling operation of the mixture into the melting container, the meltability of the mixture, and the like.
[溶融工程(ii)]
次いで、原料調合工程(i)で得られた原料調合物を電鋳耐火物で形成した容器内に入れ、これを加熱して容器内の原料調合物を溶融する溶融工程(ii)を行う。 [Melting step (ii)]
Next, the raw material preparation obtained in the raw material preparation step (i) is placed in a container formed of an electroformed refractory, and this is heated to perform a melting step (ii) for melting the raw material preparation in the container.
次いで、原料調合工程(i)で得られた原料調合物を電鋳耐火物で形成した容器内に入れ、これを加熱して容器内の原料調合物を溶融する溶融工程(ii)を行う。 [Melting step (ii)]
Next, the raw material preparation obtained in the raw material preparation step (i) is placed in a container formed of an electroformed refractory, and this is heated to perform a melting step (ii) for melting the raw material preparation in the container.
本明細書において、電鋳耐火物とは、電気溶融鋳造耐火物を略したものであり、精選された原料を目標成分に応じて調合し、電気炉で完全に溶融した後、所定の形状の鋳型に鋳造、徐冷固化することによって製造された耐火物を総称していう。本明細書において、耐火物とは、セラミックスとほぼ同じ意味で使用するものとする。
In the present specification, the electroformed refractory is an abbreviation for electrofused cast refractory, and a selected raw material is prepared in accordance with a target component and completely melted in an electric furnace. It is a generic term for refractories produced by casting in a mold and solidifying by slow cooling. In this specification, the refractory is used in the same meaning as ceramics.
電鋳耐火物としては、アルミナ-シリカ質電鋳耐火物、アルミナ質電鋳耐火物、アルミナ-ジルコニア-シリカ質電鋳耐火物、および高ジルコニア質電鋳耐火物等が挙げられる。
Examples of the electrocast refractories include alumina-silica electrocast refractories, alumina electrocast refractories, alumina-zirconia-silica electrocast refractories, and high zirconia electrocast refractories.
これらの中でも、入手のし易さや、耐食性の高さの点から、アルミナ-ジルコニア-シリカ質電鋳耐火物、高ジルコニア質電鋳耐火物、またはアルミナ質電鋳耐火物が好適に用いられる。
Among these, alumina-zirconia-silica electrocast refractories, high zirconia electrocast refractories, or alumina electrocast refractories are preferably used from the viewpoint of easy availability and high corrosion resistance.
アルミナ-ジルコニア-シリカ質電鋳耐火物は、コランダム、バデライト、またはこれらの共晶をマトリックスガラスが取り囲む組織構造を有する電鋳耐火物である。
An alumina-zirconia-silica electrocast refractory is an electrocast refractory having a structure in which matrix glass surrounds corundum, baderite, or eutectic thereof.
アルミナ-ジルコニア-シリカ質電鋳耐火物は、マトリクスガラス相の含有量が20質量%以下であることが好ましく、16質量%以下であることがより好ましい。
In the alumina-zirconia-silica electrocast refractory, the content of the matrix glass phase is preferably 20% by mass or less, and more preferably 16% by mass or less.
化学組成としては、マトリクスガラス相を含むアルミナ-ジルコニア-シリカ質電鋳耐火物全体を酸化物換算で100質量%としたとき、AlがAl2O3換算で45~55質量%であり、ZrがZrO2換算で35~45質量%であり、SiがSiO2換算で10~16質量%であり、NaがNa2O換算で1~2質量%であるように構成したものが好ましい。
As the chemical composition, when the entire alumina-zirconia-silica electrocast refractory containing the matrix glass phase is 100% by mass in terms of oxide, Al is 45 to 55% by mass in terms of Al 2 O 3 , Zr Is preferably 35 to 45% by mass in terms of ZrO 2 , Si is 10 to 16% by mass in terms of SiO 2 , and Na is 1 to 2% by mass in terms of Na 2 O.
アルミナ-ジルコニア-シリカ質電鋳耐火物としては、例えばZB-1681(AGCセラミックス社商品名)、ZB-1711(AGCセラミックス社商品名)、SCIMOS CS-3(サンゴバン ティー エム社商品名)、SCIMOS CS-5(サンゴバン ティー エム社商品名)が挙げられる。
Examples of the alumina-zirconia-silica electrocast refractories include ZB-1681 (trade name of AGC Ceramics), ZB-1711 (trade name of AGC Ceramics), SCIMOS CS-3 (trade name of Saint-Gobain tee M), SCIMOS CS-5 (Saint-Gobain tee product name).
高ジルコニア質電鋳耐火物は、ジルコニア(ZrO2)の含有量が90質量%以上の電鋳耐火物であり、例えばバデライト結晶相の周りを少量のマトリックスガラス相が取り囲む組織構造を有するものが好適に用いられる。
A high zirconia electrocast refractory is an electrocast refractory having a zirconia (ZrO 2 ) content of 90% by mass or more, and has a structure in which a small amount of a matrix glass phase surrounds a bedrite crystal phase, for example. Preferably used.
高ジルコニア質電鋳耐火物は、マトリクスガラス相の含有量が4~12質量%であることが好ましく、4~7質量%であることがより好ましい。
In the high zirconia electrocast refractory, the content of the matrix glass phase is preferably 4 to 12% by mass, and more preferably 4 to 7% by mass.
高ジルコニア質電鋳耐火物の化学組成としては、マトリクスガラス相を含む高ジルコニア質電鋳耐火物全体を酸化物換算で100質量%としたとき、質量%でZrをZrO2換算で90~97%、SiをSiO2換算で3~5%、NaをNa2O換算で0.1~2%、AlをAl2O3換算で0.5~2.5%含むものが好ましく、ZrをZrO2換算で92~97%、SiをSiO2換算で3~4%、NaをNa2O換算で0.2~1%、AlをAl2O3換算で1~2%含むものがより好ましい。
また、BをB2O3換算で0.1~0.5%含んでいてもよく、PをP2O3換算で0.1~0.5%含んでいてもよい。 As the chemical composition of the high zirconia electrocast refractory, when the entire high zirconia electrocast refractory including the matrix glass phase is 100% by mass in terms of oxide, Zr is 90 to 97 in terms of mass% in terms of ZrO 2. %, Si containing 3 to 5% in terms of SiO 2 , Na containing 0.1 to 2% in terms of Na 2 O, and Al containing 0.5 to 2.5% in terms of Al 2 O 3 are preferred. It contains more than 92 to 97% in terms of ZrO 2 , Si to 3 to 4% in terms of SiO 2 , Na to 0.2 to 1% in terms of Na 2 O, and Al to 1 to 2% in terms of Al 2 O 3 preferable.
Further, B may be contained in an amount of 0.1 to 0.5% in terms of B 2 O 3 , and P may be contained in an amount of 0.1 to 0.5% in terms of P 2 O 3 .
また、BをB2O3換算で0.1~0.5%含んでいてもよく、PをP2O3換算で0.1~0.5%含んでいてもよい。 As the chemical composition of the high zirconia electrocast refractory, when the entire high zirconia electrocast refractory including the matrix glass phase is 100% by mass in terms of oxide, Zr is 90 to 97 in terms of mass% in terms of ZrO 2. %, Si containing 3 to 5% in terms of SiO 2 , Na containing 0.1 to 2% in terms of Na 2 O, and Al containing 0.5 to 2.5% in terms of Al 2 O 3 are preferred. It contains more than 92 to 97% in terms of ZrO 2 , Si to 3 to 4% in terms of SiO 2 , Na to 0.2 to 1% in terms of Na 2 O, and Al to 1 to 2% in terms of Al 2 O 3 preferable.
Further, B may be contained in an amount of 0.1 to 0.5% in terms of B 2 O 3 , and P may be contained in an amount of 0.1 to 0.5% in terms of P 2 O 3 .
高ジルコニア質電鋳耐火物としては、例えばZB-X950(AGCセラミックス社商品名)、SCIMOS Z(サンゴバン ティー エム社商品名)が挙げられる。
Examples of the high zirconia electrocast refractory include ZB-X950 (AGC Ceramics company trade name) and SCIMOS Z (Saint Govin T. M trade name).
アルミナ質電鋳耐火物は、α-アルミナおよびβ-アルミナの含有量が合計で95質量%以上の電鋳耐火物であり、電鋳耐火物に含まれるα-アルミナ、β-アルミナの比率によって、α-アルミナ質電鋳耐火物、α,β-アルミナ質電鋳耐火物またはβ-アルミナ質電鋳耐火物に分類される。
Alumina electrocast refractories are electrocast refractories with a total content of α-alumina and β-alumina of 95% by mass or more, depending on the ratio of α-alumina and β-alumina contained in the electrocast refractories. , Α-alumina electrocast refractory, α, β-alumina electrocast refractory or β-alumina electrocast refractory.
これらの中でも、α,β-アルミナ質電鋳耐火物は、入手しやすく、十分な強度を有し、かつ緻密な構造を有するため、加熱溶融に用いる容器として好適に用いることができる。
Among these, α, β-alumina electrocast refractories are easy to obtain, have sufficient strength, and have a dense structure, so that they can be suitably used as containers for heating and melting.
アルミナ質電鋳耐火物は、マトリクスガラス相の含有量が10質量%以下であることが好ましく、2質量%以下であることが好ましい。
In the alumina electrocast refractory, the content of the matrix glass phase is preferably 10% by mass or less, and preferably 2% by mass or less.
アルミナ質電鋳耐火物の化学組成としては、マトリクスガラス相を含むアルミナ質電鋳耐火物全体を酸化物換算で100質量%としたとき、質量%でAlをAl2O3換算で93~99.5%、SiをSiO2換算で0.1~1.0%、NaをNa2O換算で0.2~6.5%含むものが好ましく、AlをAl2O3換算で94.5~99%、SiをSiO2換算で0.1~1.0%、NaをNa2O換算で0.2~5%含むものがより好ましい。
As the chemical composition of the alumina electrocast refractory, when the entire alumina electrocast refractory including the matrix glass phase is 100% by mass in terms of oxide, Al is 93 to 99 in terms of mass% in terms of Al 2 O 3. 0.5%, Si containing 0.1 to 1.0% in terms of SiO 2 , Na containing 0.2 to 6.5% in terms of Na 2 O, Al being preferably 94.5 in terms of Al 2 O 3 More preferably, it contains ˜99%, Si contains 0.1 to 1.0% in terms of SiO 2 , and Na contains 0.2 to 5% in terms of Na 2 O.
アルミナ質電鋳耐火物の具体例としては、α-アルミナ質電鋳耐火物として、MB-A(AGCセラミックス社商品名)、SCIMOS A(サンゴバン ティー エム社商品名)、α,β-アルミナ質電鋳耐火物としてMB-G(AGCセラミックス社商品名)、SCIMOS M(サンゴバン ティー エム社商品名)、ジャガーM(ソシエテ・ユーロピアンヌ・デ・プロデュイ・レフラクテール社商品名)、β-アルミナ質電鋳耐火物として、MB-U(AGCセラミックス社商品名)、SCIMOS H(サンゴバン ティー エム社商品名)、ジャガーH(ソシエテ・ユーロピアンヌ・デ・プロデュイ・レフラクテール社商品名)が挙げられる。
Specific examples of alumina electrocast refractories include α-alumina electrocast refractories, MB-A (trade name of AGC Ceramics), SCIMOS A (trade name of Saint-Gobain T.M), α, β-alumina As electroformed refractories, MB-G (trade name of AGC Ceramics), SCIMOS M (trade name of Saint-Gobain tee M), Jaguar M (trade name of Societe Europian de Prodéy Leflectaire), β-alumina Examples of cast refractories include MB-U (trade name of AGC Ceramics), SCIMOS H (trade name of Saint-Gobain tee M), and Jaguar H (trade name of Societe Europian de Produy Leflectre).
これらの電鋳耐火物の中でも、アルミナ-ジルコニア-シリカ質電鋳耐火物は、α-アルミナ、バデライト、またはこれらの共晶、およびこれら結晶質を取り巻くマトリックスガラスからなる緻密な構造を有しており、重金属元素を高率で含む原料調合物の溶融を行う場合でも、これらの成分が侵入し難く、また、内容物の漏れ出し等の不具合を生じ難いため、好ましい。
Among these electrocast refractories, alumina-zirconia-silica electrocast refractories have a dense structure composed of α-alumina, baderite, or eutectic thereof, and matrix glass surrounding these crystals. Even when a raw material composition containing a heavy metal element at a high rate is melted, it is preferable because these components are difficult to enter and problems such as leakage of contents are unlikely to occur.
また、相対的に溶融温度の低いリン酸化合物の製造においては、耐火物からの汚染が少ない高ジルコニア質電鋳耐火物で形成した容器内で原料調合物を溶融することが好ましい。
Also, in the production of a phosphoric acid compound having a relatively low melting temperature, it is preferable to melt the raw material formulation in a container formed of a high zirconia electroformed refractory with little contamination from the refractory.
容器に用いる電鋳耐火物の耐火温度は1000℃以上であることが好ましい。電鋳耐火物の耐火温度が1000℃未満となると、溶融に用いる容器の耐溶損性が著しく低下する場合がある。ただし、電鋳耐火物の耐火温度が過度に高くなると、使用可能な構成材料が過度に制限される場合がある。このため、電鋳耐火物の耐火温度は1,000~2,000℃の範囲内とすることが好ましく、1,200~1,800℃の範囲内の値とすることがより好ましい。なお、電鋳耐火物の耐火温度は、当該電鋳耐火物を24時間加熱した場合に、顕著な外観変化が観察されない温度を意味する。
The fireproof temperature of the electroformed refractory used for the container is preferably 1000 ° C. or higher. When the fireproof temperature of the electroformed refractory is less than 1000 ° C., the melt resistance of the container used for melting may be significantly reduced. However, when the fireproof temperature of the electroformed refractory becomes excessively high, usable constituent materials may be excessively limited. Therefore, the refractory temperature of the electroformed refractory is preferably in the range of 1,000 to 2,000 ° C., more preferably in the range of 1,200 to 1,800 ° C. In addition, the refractory temperature of the electrocast refractory means a temperature at which no remarkable change in appearance is observed when the electrocast refractory is heated for 24 hours.
電鋳耐火物の表面粗度(Rmax)は、0.035~5mmとすることが好ましい。電鋳耐火物の表面粗度(Rmax)が5mmを超えると、溶融物中のFeやMn等の重金属元素により容器が侵食されやすくなるおそれがある。電鋳耐火物の表面粗度(Rmax)は、0.04~3mmであることがより好ましく、0.05~1mmであることがより好ましい。
なお、かかる電鋳耐火物の表面粗度(Rmax)は、接触式の表面粗さ計を用いて測定することができる。 The surface roughness (Rmax) of the electroformed refractory is preferably 0.035 to 5 mm. If the surface roughness (Rmax) of the electroformed refractory exceeds 5 mm, the container may be easily eroded by heavy metal elements such as Fe and Mn in the melt. The surface roughness (Rmax) of the electroformed refractory is more preferably 0.04 to 3 mm, and more preferably 0.05 to 1 mm.
The surface roughness (Rmax) of the electrocast refractory can be measured using a contact-type surface roughness meter.
なお、かかる電鋳耐火物の表面粗度(Rmax)は、接触式の表面粗さ計を用いて測定することができる。 The surface roughness (Rmax) of the electroformed refractory is preferably 0.035 to 5 mm. If the surface roughness (Rmax) of the electroformed refractory exceeds 5 mm, the container may be easily eroded by heavy metal elements such as Fe and Mn in the melt. The surface roughness (Rmax) of the electroformed refractory is more preferably 0.04 to 3 mm, and more preferably 0.05 to 1 mm.
The surface roughness (Rmax) of the electrocast refractory can be measured using a contact-type surface roughness meter.
電鋳耐火物の気孔率は0.1~5%とすることが好ましい。気孔率が0.1%未満の電鋳耐火物は、現実的には製造が困難である。一方、電鋳耐火物の気孔率が5%を超えると、溶融物に含まれるFeやMn等の重金属元素が耐火物中に侵入しやすくなり、十分な耐蝕性を得られず、また容器からの溶融物の漏れ出しが生じやすくなるおそれがある。
なお、かかる電鋳耐火物の気孔率は、比重法を用いて測定することができる。 The porosity of the electroformed refractory is preferably 0.1 to 5%. An electrocast refractory having a porosity of less than 0.1% is actually difficult to manufacture. On the other hand, if the porosity of the electroformed refractory exceeds 5%, heavy metal elements such as Fe and Mn contained in the melt are likely to enter the refractory, and sufficient corrosion resistance cannot be obtained. There is a possibility that leakage of the molten material is likely to occur.
In addition, the porosity of this electrocast refractory can be measured using a specific gravity method.
なお、かかる電鋳耐火物の気孔率は、比重法を用いて測定することができる。 The porosity of the electroformed refractory is preferably 0.1 to 5%. An electrocast refractory having a porosity of less than 0.1% is actually difficult to manufacture. On the other hand, if the porosity of the electroformed refractory exceeds 5%, heavy metal elements such as Fe and Mn contained in the melt are likely to enter the refractory, and sufficient corrosion resistance cannot be obtained. There is a possibility that leakage of the molten material is likely to occur.
In addition, the porosity of this electrocast refractory can be measured using a specific gravity method.
電鋳耐火物で形成した容器としては、大きさや形状は特に限定されず、小型の円柱状ルツボとして用いることもでき、大型の溶融タンクとして用いることもできる。大型の溶融タンクの場合、電鋳耐火物は、少なくとも溶融物との接触部分に用いればよく、溶融タンク上部構造等の、溶融物との非接触部分は、他の材料で構成してもよい。また、小型の円柱状ルツボとして用いる場合、原料調合物または溶融物の揮発および蒸発を防止するために、当該容器に蓋を装着して、加熱溶融を行うことが好ましい。
The container formed of the electroformed refractory is not particularly limited in size and shape, and can be used as a small cylindrical crucible or a large melting tank. In the case of a large melting tank, the electroformed refractory may be used at least in a contact portion with the melt, and a non-contact portion with the melt, such as the upper structure of the melt tank, may be composed of other materials. . Moreover, when using as a small cylindrical crucible, in order to prevent volatilization and evaporation of a raw material formulation or a molten material, it is preferable to heat-melt by attaching a lid to the container.
加熱炉の熱源としては、特に限定されないが、電気、石油、ガス等、またはこれらの組み合わせを用いることができる。石油またはガスを用い、バーナー燃焼させることが好ましい。バーナーは溶融タンクの上部に配置することが好ましい。
Although it does not specifically limit as a heat source of a heating furnace, Electricity, oil, gas, etc., or these combinations can be used. It is preferable to burn with a burner using oil or gas. The burner is preferably placed at the top of the melt tank.
原料調合物の溶融は、900~1700℃の加熱温度で行うことが好ましい。オリビン型化合物、輝石型化合物、またはナシコン型化合物を含む二次電池用正極材料の原料調合物から、均一な組成を有する溶融物を得られるからである。ここで、加熱温度とは、溶融物自体の温度をいい、熱電対やパイロメーターで測定できる。溶融とは各原料が融解し、目視で透明な状態となることをいう。加熱温度が900℃以上であると、溶融が容易になり、1700℃以下であると原料の揮発がしにくくなる。
溶融をより容易に行うことができるため、溶融は1000℃以上の加熱温度で行うことがより好ましい。また、加熱による電鋳耐火物の損耗が抑制されるため、溶融は1500℃以下の加熱温度で行うことがより好ましい。 The raw material mixture is preferably melted at a heating temperature of 900 to 1700 ° C. This is because a melt having a uniform composition can be obtained from a raw material preparation of a positive electrode material for a secondary battery containing an olivine type compound, pyroxene type compound, or NASICON type compound. Here, the heating temperature refers to the temperature of the melt itself and can be measured with a thermocouple or a pyrometer. Melting means that each raw material melts and becomes transparent with the naked eye. When the heating temperature is 900 ° C. or higher, melting is facilitated, and when it is 1700 ° C. or lower, the raw material is hardly volatilized.
Since melting can be performed more easily, melting is more preferably performed at a heating temperature of 1000 ° C. or higher. Moreover, since wear of the electroformed refractory due to heating is suppressed, melting is more preferably performed at a heating temperature of 1500 ° C. or less.
溶融をより容易に行うことができるため、溶融は1000℃以上の加熱温度で行うことがより好ましい。また、加熱による電鋳耐火物の損耗が抑制されるため、溶融は1500℃以下の加熱温度で行うことがより好ましい。 The raw material mixture is preferably melted at a heating temperature of 900 to 1700 ° C. This is because a melt having a uniform composition can be obtained from a raw material preparation of a positive electrode material for a secondary battery containing an olivine type compound, pyroxene type compound, or NASICON type compound. Here, the heating temperature refers to the temperature of the melt itself and can be measured with a thermocouple or a pyrometer. Melting means that each raw material melts and becomes transparent with the naked eye. When the heating temperature is 900 ° C. or higher, melting is facilitated, and when it is 1700 ° C. or lower, the raw material is hardly volatilized.
Since melting can be performed more easily, melting is more preferably performed at a heating temperature of 1000 ° C. or higher. Moreover, since wear of the electroformed refractory due to heating is suppressed, melting is more preferably performed at a heating temperature of 1500 ° C. or less.
加熱時間は、溶融方法、溶融規模、溶湯の均一度等を考慮して、適宜設定できるが、0.2~24時間が好ましく、0.5~2時間が特に好ましい。加熱時間が0.5時間以上であると溶融物の均一性が充分になり、2時間以下であると原料が揮発しにくい。溶融工程(ii)において、溶融物の均一性を上げるために撹拌してもよい。また、次の冷却工程(iii)を行うまで、溶融時の最高温度より低い温度で溶融物を清澄させてもよい。なお、原料の投入は、1回または複数回で行ってよい。
The heating time can be appropriately set in consideration of the melting method, the melting scale, the uniformity of the molten metal, etc., but is preferably 0.2 to 24 hours, particularly preferably 0.5 to 2 hours. When the heating time is 0.5 hours or more, the uniformity of the melt is sufficient, and when it is 2 hours or less, the raw material is difficult to volatilize. In the melting step (ii), stirring may be performed to increase the uniformity of the melt. Further, the melt may be clarified at a temperature lower than the maximum temperature during melting until the next cooling step (iii) is performed. The raw material may be charged once or a plurality of times.
溶融工程(ii)は、大気下、不活性雰囲気下または還元性雰囲気下で実施することが好ましい。特に、オリビン型化合物では、原料調合物の溶融物中の元素Mが、低酸化数状態(例えば、M=Feの場合はFe2+)であることが好ましいため、溶融工程(ii)は、燃焼雰囲気下、不活性雰囲気下または還元性雰囲気下で行うことが好ましい。一方、輝石型またはナシコン型であって原子Vを含む化合物では、特に制御する必要がない。
溶融の条件は、容器、加熱炉の種類や熱源等の加熱方法に適した条件を選択することができる。圧力は、常圧、加圧、減圧(0.9×105Pa以下)のいずれの条件下で実施してもよい。さらに、加熱炉内に還元剤(例えばグラファイト)を入れた容器を装填してもよい。溶融物がより還元的である方が好ましいが、より酸化的であっても続く加熱工程(v)において還元(例えばM3+からM2+への変化)をすることができる。 The melting step (ii) is preferably performed in the air, in an inert atmosphere, or in a reducing atmosphere. In particular, in the olivine type compound, it is preferable that the element M in the melt of the raw material preparation is in a low oxidation number state (for example, Fe 2+ in the case of M = Fe). It is preferable to carry out in an atmosphere, an inert atmosphere, or a reducing atmosphere. On the other hand, the pyroxene type or NASICON type compound containing the atom V does not require any particular control.
Conditions suitable for the heating method such as the type of container and heating furnace and heat source can be selected as the melting conditions. The pressure may be carried out under any conditions of normal pressure, pressurization, and reduced pressure (0.9 × 10 5 Pa or less). Furthermore, you may charge the container which put the reducing agent (for example, graphite) in the heating furnace. It is preferred that the melt is more reductive, but even if it is more oxidative, it can be reduced (for example changing from M 3+ to M 2+ ) in the subsequent heating step (v).
溶融の条件は、容器、加熱炉の種類や熱源等の加熱方法に適した条件を選択することができる。圧力は、常圧、加圧、減圧(0.9×105Pa以下)のいずれの条件下で実施してもよい。さらに、加熱炉内に還元剤(例えばグラファイト)を入れた容器を装填してもよい。溶融物がより還元的である方が好ましいが、より酸化的であっても続く加熱工程(v)において還元(例えばM3+からM2+への変化)をすることができる。 The melting step (ii) is preferably performed in the air, in an inert atmosphere, or in a reducing atmosphere. In particular, in the olivine type compound, it is preferable that the element M in the melt of the raw material preparation is in a low oxidation number state (for example, Fe 2+ in the case of M = Fe). It is preferable to carry out in an atmosphere, an inert atmosphere, or a reducing atmosphere. On the other hand, the pyroxene type or NASICON type compound containing the atom V does not require any particular control.
Conditions suitable for the heating method such as the type of container and heating furnace and heat source can be selected as the melting conditions. The pressure may be carried out under any conditions of normal pressure, pressurization, and reduced pressure (0.9 × 10 5 Pa or less). Furthermore, you may charge the container which put the reducing agent (for example, graphite) in the heating furnace. It is preferred that the melt is more reductive, but even if it is more oxidative, it can be reduced (for example changing from M 3+ to M 2+ ) in the subsequent heating step (v).
ここで、不活性雰囲気とは、窒素(N2)、ヘリウム(He)およびアルゴン(Ar)等の希ガスからなる群より選ばれる少なくとも1種の不活性ガスを99体積%以上含む気体条件であることをいう。
還元性雰囲気とは、上記した不活性ガスが、還元性を有するガスを含み、実質的に酸素を含まない気体条件であることをいう。還元性を有するガスとしては、水素(H2)、一酸化炭素(CO)、およびアンモニア(NH3)等が挙げられる。不活性ガス中の還元性を有するガスの量は、全ガス中に還元性を有するガスが0.1体積%以上であるのが好ましく、1~10体積%がより好ましい。酸素の含有量は、該ガス中に1体積%以下が好ましく、0.1体積%以下がより好ましい。 Here, the inert atmosphere is a gas condition including 99% by volume or more of at least one inert gas selected from the group consisting of noble gases such as nitrogen (N 2 ), helium (He), and argon (Ar). Say something.
The reducing atmosphere means that the above-described inert gas is a gas condition that contains a gas having a reducing property and does not substantially contain oxygen. Examples of the reducing gas include hydrogen (H 2 ), carbon monoxide (CO), and ammonia (NH 3 ). The amount of the reducing gas in the inert gas is preferably 0.1% by volume or more, more preferably 1 to 10% by volume of the reducing gas in the total gas. The oxygen content is preferably 1% by volume or less in the gas, and more preferably 0.1% by volume or less.
還元性雰囲気とは、上記した不活性ガスが、還元性を有するガスを含み、実質的に酸素を含まない気体条件であることをいう。還元性を有するガスとしては、水素(H2)、一酸化炭素(CO)、およびアンモニア(NH3)等が挙げられる。不活性ガス中の還元性を有するガスの量は、全ガス中に還元性を有するガスが0.1体積%以上であるのが好ましく、1~10体積%がより好ましい。酸素の含有量は、該ガス中に1体積%以下が好ましく、0.1体積%以下がより好ましい。 Here, the inert atmosphere is a gas condition including 99% by volume or more of at least one inert gas selected from the group consisting of noble gases such as nitrogen (N 2 ), helium (He), and argon (Ar). Say something.
The reducing atmosphere means that the above-described inert gas is a gas condition that contains a gas having a reducing property and does not substantially contain oxygen. Examples of the reducing gas include hydrogen (H 2 ), carbon monoxide (CO), and ammonia (NH 3 ). The amount of the reducing gas in the inert gas is preferably 0.1% by volume or more, more preferably 1 to 10% by volume of the reducing gas in the total gas. The oxygen content is preferably 1% by volume or less in the gas, and more preferably 0.1% by volume or less.
溶融工程(ii)は、バッチ式でおこなってもよく、連続式で行ってもよい。
The melting step (ii) may be performed batchwise or continuously.
なお、本工程で元素Mの還元処理を行うことも可能であるが、後工程で加熱処理を行うことにより、還元処理が可能であるため、複雑な設備や工程を要する場合には、必ずしも本工程で行わなくてもよい。
Although the reduction treatment of the element M can be performed in this step, the reduction treatment can be performed by performing the heat treatment in the subsequent step. It does not have to be performed in the process.
[冷却工程(iii)]
溶融工程(ii)の後、得られた溶融物を室温(20~25℃)付近まで冷却して固化物を得る冷却工程(iii)を行うことが好ましい。 [Cooling step (iii)]
After the melting step (ii), it is preferable to perform a cooling step (iii) in which the obtained melt is cooled to around room temperature (20 to 25 ° C.) to obtain a solidified product.
溶融工程(ii)の後、得られた溶融物を室温(20~25℃)付近まで冷却して固化物を得る冷却工程(iii)を行うことが好ましい。 [Cooling step (iii)]
After the melting step (ii), it is preferable to perform a cooling step (iii) in which the obtained melt is cooled to around room temperature (20 to 25 ° C.) to obtain a solidified product.
固化物は非晶質物であることが好ましいが、固化物の一部は結晶化物であってもよい。固化物が非晶質物を含むことで、次の粉砕工程(iv)が実施しやすくなり、得られる化合物の組成および粒子径を制御しやすくなる。固化物が結晶化物を含む場合、後述する加熱工程(v)で結晶化物が結晶核となり、結晶化しやすくなる。固化物中の結晶化物量は、固化物の全質量に対して0~30質量%であることが好ましい。結晶化物を多く含むと粒状やフレーク状の固化物を得ることが困難となる。また、冷却機器の損耗を早め、その後の粉砕工程(iv)の負担が大きくなる。
The solidified product is preferably an amorphous material, but a part of the solidified product may be a crystallized product. When the solidified product contains an amorphous material, the next pulverization step (iv) can be easily performed, and the composition and particle size of the resulting compound can be easily controlled. In the case where the solidified product contains a crystallized product, the crystallized product becomes a crystal nucleus in the heating step (v) described later, and it is easy to crystallize. The amount of crystallized material in the solidified product is preferably 0 to 30% by mass with respect to the total mass of the solidified product. When a large amount of crystallized material is contained, it becomes difficult to obtain a granular or flaky solidified material. Moreover, the wear of the cooling device is accelerated, and the burden of the subsequent pulverization step (iv) is increased.
溶融物の冷却は、設備等が簡便であることから、大気中、不活性雰囲気下、還元性雰囲気下で冷却する方法が好ましい。不活性雰囲気および還元性雰囲気の好ましい条件は、溶融工程(ii)で説明したのと同様である。
The cooling of the melt is preferably performed in the air, under an inert atmosphere, or under a reducing atmosphere because the equipment is simple. Preferred conditions for the inert atmosphere and the reducing atmosphere are the same as those described in the melting step (ii).
1000℃から50℃までの冷却速度は1×103℃/秒以上が好ましく、1×104℃/秒以上が特に好ましい。冷却速度を1×103℃/秒以上にすると非晶質物が得られやすい。冷却速度が速いほど非晶質物が得やすくなるが、製造設備や大量生産性を考慮すると、1×1010℃/秒以下が好ましく、実用性の点からは1×108℃/秒以下が特に好ましい。
The cooling rate is preferably more than 1 × 10 3 ℃ / sec from 1000 ° C. to 50 ° C., more 1 × 10 4 ℃ / sec is particularly preferable. When the cooling rate is 1 × 10 3 ° C./second or more, an amorphous material is easily obtained. The faster the cooling rate, the easier it is to obtain an amorphous material. However, in consideration of production equipment and mass productivity, it is preferably 1 × 10 10 ° C./second or less, and from the point of practical use, it is 1 × 10 8 ° C./second or less. Particularly preferred.
冷却方法としては、例えば、高速で回転する双ローラの間に溶融物を滴下してフレーク状の固化物を得る方法、回転する単ローラに溶融物を滴下してフレーク状または板状の固化物を掃引して得る方法、冷却したカーボン板や金属板に溶融物をプレスして塊状の固化物を得る方法、溶融物を空気中または水中に、小粒状で吹き付けて塊状の固化物を得る方法、を採用することが好ましい。なかでも、双ローラを用いた冷却方法が、冷却速度が速く、大量に処理できるのでより好ましい。双ローラとしては、金属製、カーボン製、セラミックス製のものを用いることが好ましい。
Cooling methods include, for example, a method in which a melt is dropped between twin rollers rotating at high speed to obtain a flake-like solidified product, and a flake-like or plate-like solidified product by dropping the melt on a rotating single roller , A method of obtaining a lump solidified product by pressing a melt on a cooled carbon plate or metal plate, a method of obtaining a lump solidified product by spraying the melt into air or water in small particles It is preferable to adopt. Among these, a cooling method using twin rollers is more preferable because the cooling rate is high and a large amount of processing can be performed. As the double roller, it is preferable to use one made of metal, carbon or ceramic.
上記のように、溶融工程(ii)の後、冷却速度1×103℃/秒以上で溶融物を急速冷却することで、得られる固化物が非晶質物となりやすく、固化物の化学組成の均一性が高められるため好ましい。
なお、冷却速度1×103℃/秒以上での、いわゆる急冷処理は、電鋳耐火物で形成した容器から流し出した溶融物に対してそのまま行ってもよく、当該容器内で溶融した溶融物を、一旦通常の速度で冷却した後、再溶融したものに対して行ってもよい。 As described above, after the melting step (ii), by rapidly cooling the melt at a cooling rate of 1 × 10 3 ° C./second or more, the obtained solidified product tends to be an amorphous material, and the chemical composition of the solidified product This is preferable because uniformity is improved.
The so-called rapid cooling treatment at a cooling rate of 1 × 10 3 ° C./second or more may be performed as it is on the melt flowed out of the container formed of the electroformed refractory, and the melt melted in the container The product may be once cooled at a normal rate and then remelted.
なお、冷却速度1×103℃/秒以上での、いわゆる急冷処理は、電鋳耐火物で形成した容器から流し出した溶融物に対してそのまま行ってもよく、当該容器内で溶融した溶融物を、一旦通常の速度で冷却した後、再溶融したものに対して行ってもよい。 As described above, after the melting step (ii), by rapidly cooling the melt at a cooling rate of 1 × 10 3 ° C./second or more, the obtained solidified product tends to be an amorphous material, and the chemical composition of the solidified product This is preferable because uniformity is improved.
The so-called rapid cooling treatment at a cooling rate of 1 × 10 3 ° C./second or more may be performed as it is on the melt flowed out of the container formed of the electroformed refractory, and the melt melted in the container The product may be once cooled at a normal rate and then remelted.
固化物は、フレーク状または繊維状が好ましい。フレーク状の場合には、その平均厚さが200μm以下が好ましく、100μm以下がより好ましい。フレーク状の厚さ方向に垂直な面の平均直径は、特に限定されない。繊維状の場合には、その平均直径が50μm以下が好ましく、30μm以下がより好ましい。平均厚さや平均直径の上限値以下であると、続く粉砕工程(iv)の負担を軽減でき、加熱工程(v)における結晶化効率を高くすることができる。
フレーク状の固化物の平均厚さは、ノギスやマイクロメータにより測定することができる。また、繊維状の固化物の平均直径は、上記方法または顕微鏡での観察により測定することができる。 The solidified product is preferably flaky or fibrous. In the case of flakes, the average thickness is preferably 200 μm or less, and more preferably 100 μm or less. The average diameter of the surface perpendicular to the flake thickness direction is not particularly limited. In the case of a fibrous form, the average diameter is preferably 50 μm or less, and more preferably 30 μm or less. When the average thickness or the average diameter is not more than the upper limit value, the burden of the subsequent pulverization step (iv) can be reduced, and the crystallization efficiency in the heating step (v) can be increased.
The average thickness of the flaky solidified product can be measured with a caliper or a micrometer. Further, the average diameter of the fibrous solidified product can be measured by the above method or observation with a microscope.
フレーク状の固化物の平均厚さは、ノギスやマイクロメータにより測定することができる。また、繊維状の固化物の平均直径は、上記方法または顕微鏡での観察により測定することができる。 The solidified product is preferably flaky or fibrous. In the case of flakes, the average thickness is preferably 200 μm or less, and more preferably 100 μm or less. The average diameter of the surface perpendicular to the flake thickness direction is not particularly limited. In the case of a fibrous form, the average diameter is preferably 50 μm or less, and more preferably 30 μm or less. When the average thickness or the average diameter is not more than the upper limit value, the burden of the subsequent pulverization step (iv) can be reduced, and the crystallization efficiency in the heating step (v) can be increased.
The average thickness of the flaky solidified product can be measured with a caliper or a micrometer. Further, the average diameter of the fibrous solidified product can be measured by the above method or observation with a microscope.
[粉砕工程(iv)]
冷却工程(iii)の後、得られた固化物を粉砕して粉砕物を得る粉砕工程(iv)を行うことが好ましい。 [Crushing step (iv)]
After the cooling step (iii), it is preferable to perform a pulverization step (iv) in which the obtained solidified product is pulverized to obtain a pulverized product.
冷却工程(iii)の後、得られた固化物を粉砕して粉砕物を得る粉砕工程(iv)を行うことが好ましい。 [Crushing step (iv)]
After the cooling step (iii), it is preferable to perform a pulverization step (iv) in which the obtained solidified product is pulverized to obtain a pulverized product.
冷却工程(iii)で得られる固化物は通常の場合、非晶質物を多く含むかまたは非晶質物からなるため、粉砕がしやすい利点がある。また粉砕に使用する装置に負担をかけずに粉砕ができかつ粒子径の制御がしやすい利点がある。また、例えば固相反応により正極材料を得る場合には、焼成の後に粉砕を行うが、この場合には、粉砕によって残留応力が生じ、電池特性を悪化させる場合がある。これに対し、後述する加熱工程(v)の前に粉砕工程(iv)を行うことで、粉砕によって生じた残留応力を、加熱処理によって低減または除去することができる。
The solidified product obtained in the cooling step (iii) usually has an advantage of being easily pulverized because it contains a lot of amorphous material or consists of an amorphous material. Further, there is an advantage that the apparatus used for pulverization can be pulverized without imposing a burden and the particle diameter can be easily controlled. For example, when a positive electrode material is obtained by a solid phase reaction, pulverization is performed after firing. In this case, residual stress may be generated by pulverization and battery characteristics may be deteriorated. In contrast, by performing the pulverization step (iv) before the heating step (v) described later, the residual stress generated by the pulverization can be reduced or removed by the heat treatment.
粉砕工程(iv)では、有機化合物および炭素系導電物質からなる群より選ばれる少なくとも1種を炭素源として添加してもよい。
有機化合物または炭素系導電物質は、後述する加熱工程(v)後に導電材として機能するため、二次電池用正極材料の導電性を高めることができる。また、有機化合物または炭素系導電物質を添加することによって、粉砕工程(iv)や加熱工程(v)における酸化を防止し、さらに還元を促進することもできる。 In the pulverization step (iv), at least one selected from the group consisting of an organic compound and a carbon-based conductive material may be added as a carbon source.
Since the organic compound or the carbon-based conductive material functions as a conductive material after the heating step (v) described later, the conductivity of the positive electrode material for the secondary battery can be increased. Further, by adding an organic compound or a carbon-based conductive material, oxidation in the pulverization step (iv) and the heating step (v) can be prevented, and further reduction can be promoted.
有機化合物または炭素系導電物質は、後述する加熱工程(v)後に導電材として機能するため、二次電池用正極材料の導電性を高めることができる。また、有機化合物または炭素系導電物質を添加することによって、粉砕工程(iv)や加熱工程(v)における酸化を防止し、さらに還元を促進することもできる。 In the pulverization step (iv), at least one selected from the group consisting of an organic compound and a carbon-based conductive material may be added as a carbon source.
Since the organic compound or the carbon-based conductive material functions as a conductive material after the heating step (v) described later, the conductivity of the positive electrode material for the secondary battery can be increased. Further, by adding an organic compound or a carbon-based conductive material, oxidation in the pulverization step (iv) and the heating step (v) can be prevented, and further reduction can be promoted.
該粉砕工程(iv)で炭素源を添加する場合には、固化物と炭素源とを混合した後に粉砕する工程、固化物と炭素源とをそれぞれ粉砕した後に混合する工程、または、固化物を粉砕した後に炭素源を添加する工程であるのが好ましい。なお、炭素源が有機化合物のみである場合には、粉砕せずに、固化物と混合できる。
When the carbon source is added in the pulverization step (iv), the solidified product and the carbon source are mixed and then pulverized, the solidified product and the carbon source are pulverized and mixed, or the solidified product is added. A step of adding a carbon source after pulverization is preferred. In addition, when a carbon source is only an organic compound, it can mix with a solidified material, without grind | pulverizing.
次工程の加熱工程(v)で得られる化合物(α)は絶縁体であるため、二次電池用正極材料として使用するためには、電気伝導度を高めることが好ましい。
該炭素源として炭素系導電物質を用いた場合、炭素系導電物質が導電性炭素として、化合物(α)の表面の少なくとも一部を被覆する。また、有機化合物を用いた場合には、次工程の加熱工程(v)を行うことで、有機化合物の少なくとも一部が炭化され、導電性炭素として、化合物(α)の表面の少なくとも一部を被覆する。該導電性炭素は化合物(α)の導電材として機能するため、二次電池用正極材料の電気伝導性を高めることができる。 Since the compound (α) obtained in the heating step (v) of the next step is an insulator, it is preferable to increase the electrical conductivity for use as a positive electrode material for a secondary battery.
When a carbon-based conductive material is used as the carbon source, the carbon-based conductive material serves as conductive carbon and covers at least a part of the surface of the compound (α). Further, when an organic compound is used, at least a part of the organic compound is carbonized by performing the heating step (v) of the next step, and at least a part of the surface of the compound (α) is formed as conductive carbon. Cover. Since the conductive carbon functions as a conductive material for the compound (α), the electrical conductivity of the positive electrode material for a secondary battery can be increased.
該炭素源として炭素系導電物質を用いた場合、炭素系導電物質が導電性炭素として、化合物(α)の表面の少なくとも一部を被覆する。また、有機化合物を用いた場合には、次工程の加熱工程(v)を行うことで、有機化合物の少なくとも一部が炭化され、導電性炭素として、化合物(α)の表面の少なくとも一部を被覆する。該導電性炭素は化合物(α)の導電材として機能するため、二次電池用正極材料の電気伝導性を高めることができる。 Since the compound (α) obtained in the heating step (v) of the next step is an insulator, it is preferable to increase the electrical conductivity for use as a positive electrode material for a secondary battery.
When a carbon-based conductive material is used as the carbon source, the carbon-based conductive material serves as conductive carbon and covers at least a part of the surface of the compound (α). Further, when an organic compound is used, at least a part of the organic compound is carbonized by performing the heating step (v) of the next step, and at least a part of the surface of the compound (α) is formed as conductive carbon. Cover. Since the conductive carbon functions as a conductive material for the compound (α), the electrical conductivity of the positive electrode material for a secondary battery can be increased.
炭素源としての有機化合物は、不活性雰囲気下または還元性雰囲気下で加熱した際に熱分解反応し、酸素や水素が離脱して炭化する化合物が好ましい。有機化合物としては、糖類、アミノ酸類、ペプチド類、アルデヒド類、ケトン類、カルボン酸類、テルペン類、複素環式アミン類、脂肪酸および官能基を有する脂肪族非環状ポリマーからなる群より選ばれる少なくとも1種が好ましい。
The organic compound as the carbon source is preferably a compound that undergoes a thermal decomposition reaction when heated in an inert atmosphere or a reducing atmosphere, and oxygen and hydrogen are released and carbonized. The organic compound is at least one selected from the group consisting of saccharides, amino acids, peptides, aldehydes, ketones, carboxylic acids, terpenes, heterocyclic amines, fatty acids and aliphatic acyclic polymers having functional groups. Species are preferred.
炭素源としての炭素系導電物質は、カーボンブラック、グラファイト、アセチレンブラック、カーボンファイバおよびアモルファスカーボンからなる群より選ばれる少なくとも1種が好ましい。アモルファスカーボンとしては、FTIR分析において、正極材料の導電性低下の原因となるC-O結合ピークやC-H結合ピークが実質的に検出されないものが好ましい。
The carbon conductive material as the carbon source is preferably at least one selected from the group consisting of carbon black, graphite, acetylene black, carbon fiber, and amorphous carbon. As the amorphous carbon, those in which the CO bond peak and CH bond peak causing the decrease in the conductivity of the positive electrode material are not substantially detected in the FTIR analysis are preferable.
炭素源の質量の割合は、炭素源中の炭素換算量(質量)が、固化物の質量と、該炭素源中の炭素換算量(質量)との合計質量に対して、0.1~20質量%となる量が好ましく、2~10質量%となる量がより好ましい。
有機化合物および炭素系導電物質は、併用する場合にはこれらの合計量が上記範囲となるように調整する。炭素量を0.1質量%以上にすることで、化合物(α)からなる二次電池用正極材料の導電性を十分に高めることができる。また、炭素量を20質量%以下とすることで、二次電池用正極材料としての特性を高いまま保持しつつ、導電性を十分に高めることができる。 The ratio of the mass of the carbon source is such that the carbon equivalent (mass) in the carbon source is 0.1 to 20 with respect to the total mass of the mass of the solidified product and the carbon equivalent (mass) in the carbon source. An amount of mass% is preferable, and an amount of 2 to 10 mass% is more preferable.
The organic compound and the carbon-based conductive material are adjusted so that the total amount thereof falls within the above range when used in combination. By making the amount of carbon 0.1% by mass or more, the conductivity of the positive electrode material for a secondary battery made of the compound (α) can be sufficiently increased. Moreover, electroconductivity can fully be improved, keeping the characteristic as a positive electrode material for secondary batteries high by making carbon amount 20 mass% or less.
有機化合物および炭素系導電物質は、併用する場合にはこれらの合計量が上記範囲となるように調整する。炭素量を0.1質量%以上にすることで、化合物(α)からなる二次電池用正極材料の導電性を十分に高めることができる。また、炭素量を20質量%以下とすることで、二次電池用正極材料としての特性を高いまま保持しつつ、導電性を十分に高めることができる。 The ratio of the mass of the carbon source is such that the carbon equivalent (mass) in the carbon source is 0.1 to 20 with respect to the total mass of the mass of the solidified product and the carbon equivalent (mass) in the carbon source. An amount of mass% is preferable, and an amount of 2 to 10 mass% is more preferable.
The organic compound and the carbon-based conductive material are adjusted so that the total amount thereof falls within the above range when used in combination. By making the amount of carbon 0.1% by mass or more, the conductivity of the positive electrode material for a secondary battery made of the compound (α) can be sufficiently increased. Moreover, electroconductivity can fully be improved, keeping the characteristic as a positive electrode material for secondary batteries high by making carbon amount 20 mass% or less.
粉砕は、カッターミル、ジョークラッシャー、ハンマーミル、ボールミル、ジェットミル、遊星ミル等を用いて行うのが好ましい。また、粒子径により各種法を段階的に用いることで、効率よく粉砕を進めることができる。例えば、カッターミルで予備的に粉砕した後、遊星ミルやボールミルで粉砕することによって、粉砕にかかる時間を短縮できるので好ましい。生産性の観点から、特にボールミルを用いることが好ましい。粉砕メディアとしては、ジルコニアボール、アルミナボール、ガラスボール等を用いることが好ましい。特に、ジルコニアボールは磨耗率が低く、不純物の混入を抑制できるので好ましい。
粉砕メディアの径は0.1~30mmが好ましい。粉砕を多段階にし、大きい粉砕メディアで粉砕を行った後、粉砕メディアと粉砕物を分離し、さらに小さい粉砕メディアを用いて粉砕してもよい。該方法であると、未粉砕粒子の残存を抑制できる。
粉砕容器は特に限定されないが、容器内に粉砕メディアと固化物とを容器容積の30~80%まで入れると粉砕効率がよい。ボールミルを用いる場合、粉砕時間は6~360時間が好ましく、6~120時間がより好ましく、12~96時間が特に好ましい。粉砕時間が6時間以上であると充分に粉砕を進めることができ、360時間以下であると過粉砕が抑制できる。 The pulverization is preferably performed using a cutter mill, jaw crusher, hammer mill, ball mill, jet mill, planetary mill or the like. Moreover, pulverization can be efficiently advanced by using various methods stepwise depending on the particle diameter. For example, preliminarily pulverizing with a cutter mill and then pulverizing with a planetary mill or ball mill is preferable because the time required for pulverization can be shortened. From the viewpoint of productivity, it is particularly preferable to use a ball mill. As the grinding media, it is preferable to use zirconia balls, alumina balls, glass balls or the like. In particular, zirconia balls are preferable because they have a low wear rate and can suppress the mixing of impurities.
The diameter of the grinding media is preferably 0.1 to 30 mm. After pulverization is performed in multiple stages and pulverization is performed with a large pulverization medium, the pulverization medium and the pulverized product may be separated and pulverized using a smaller pulverization medium. With this method, the remaining of unground particles can be suppressed.
The pulverization container is not particularly limited, but the pulverization efficiency is good when the pulverization medium and the solidified material are placed in the container up to 30 to 80% of the container volume. When a ball mill is used, the pulverization time is preferably 6 to 360 hours, more preferably 6 to 120 hours, and particularly preferably 12 to 96 hours. If the pulverization time is 6 hours or more, the pulverization can be sufficiently advanced, and if it is 360 hours or less, excessive pulverization can be suppressed.
粉砕メディアの径は0.1~30mmが好ましい。粉砕を多段階にし、大きい粉砕メディアで粉砕を行った後、粉砕メディアと粉砕物を分離し、さらに小さい粉砕メディアを用いて粉砕してもよい。該方法であると、未粉砕粒子の残存を抑制できる。
粉砕容器は特に限定されないが、容器内に粉砕メディアと固化物とを容器容積の30~80%まで入れると粉砕効率がよい。ボールミルを用いる場合、粉砕時間は6~360時間が好ましく、6~120時間がより好ましく、12~96時間が特に好ましい。粉砕時間が6時間以上であると充分に粉砕を進めることができ、360時間以下であると過粉砕が抑制できる。 The pulverization is preferably performed using a cutter mill, jaw crusher, hammer mill, ball mill, jet mill, planetary mill or the like. Moreover, pulverization can be efficiently advanced by using various methods stepwise depending on the particle diameter. For example, preliminarily pulverizing with a cutter mill and then pulverizing with a planetary mill or ball mill is preferable because the time required for pulverization can be shortened. From the viewpoint of productivity, it is particularly preferable to use a ball mill. As the grinding media, it is preferable to use zirconia balls, alumina balls, glass balls or the like. In particular, zirconia balls are preferable because they have a low wear rate and can suppress the mixing of impurities.
The diameter of the grinding media is preferably 0.1 to 30 mm. After pulverization is performed in multiple stages and pulverization is performed with a large pulverization medium, the pulverization medium and the pulverized product may be separated and pulverized using a smaller pulverization medium. With this method, the remaining of unground particles can be suppressed.
The pulverization container is not particularly limited, but the pulverization efficiency is good when the pulverization medium and the solidified material are placed in the container up to 30 to 80% of the container volume. When a ball mill is used, the pulverization time is preferably 6 to 360 hours, more preferably 6 to 120 hours, and particularly preferably 12 to 96 hours. If the pulverization time is 6 hours or more, the pulverization can be sufficiently advanced, and if it is 360 hours or less, excessive pulverization can be suppressed.
粉砕は乾式または湿式のいずれで行ってもよいが、粉砕物の粒子径を小さくできる点から、湿式で行うのが好ましい。また、粉砕工程(iv)で炭素源を添加する場合には、固化物と炭素源とを均一に混合できる点からも、湿式で行うのが好ましい。すなわち、粉砕工程(iv)は溶媒(粉砕溶媒)を用いて実施するのが好ましい。粉砕溶媒は、粉砕メディアが入った状態で、容器容積の30~80%まで充填すると粉砕効率がよくなる。粉砕工程(iv)を湿式で行った場合は、粉砕溶媒を沈降、濾過、減圧乾燥、加熱乾燥等で除去した後に、加熱工程(v)を実施するのが好ましい。ただし、粉砕溶媒に対する固形分の割合が30%以上の場合には、粉砕溶媒を含んだ粉砕物のままで加熱工程(v)に供してもよい。
The pulverization may be performed either dry or wet, but is preferably performed in a wet manner from the viewpoint that the particle size of the pulverized product can be reduced. Moreover, when adding a carbon source at the grinding | pulverization process (iv), it is preferable to carry out by a wet point also from the point which can mix a solidified material and a carbon source uniformly. That is, the pulverization step (iv) is preferably performed using a solvent (pulverization solvent). When the grinding solvent is filled up to 30 to 80% of the container volume with the grinding media contained, the grinding efficiency is improved. When the pulverization step (iv) is performed in a wet manner, it is preferable to carry out the heating step (v) after removing the pulverization solvent by sedimentation, filtration, drying under reduced pressure, drying by heating, or the like. However, when the ratio of the solid content with respect to the grinding solvent is 30% or more, the pulverized product containing the grinding solvent may be used in the heating step (v).
粉砕溶媒としては、固化物が溶けにくく、炭素源となじみのよい適度の極性を持つ溶媒であって、固化物および炭素源と混合した際に粘度が著しく上昇しない溶媒が好ましい。コストや安全性の面からは水が好ましい。一方、固化物が溶出してしまう等の問題が発生する場合には、有機溶媒が好ましい。有機溶媒としては、エタノール、イソプロピルアルコール、アセトン、ヘキサン、トルエン等が挙げられる。粉砕溶媒は、水、アセトンおよびイソプロピルアルコールからなる群より選ばれる少なくとも1種がより好ましく、特にアセトンが好ましい。
As the pulverization solvent, a solvent having an appropriate polarity that is difficult to dissolve the solidified product and is compatible with the carbon source, and does not significantly increase the viscosity when mixed with the solidified product and the carbon source is preferable. Water is preferable from the viewpoint of cost and safety. On the other hand, when a problem such as elution of the solidified product occurs, an organic solvent is preferable. Examples of the organic solvent include ethanol, isopropyl alcohol, acetone, hexane, toluene and the like. The grinding solvent is more preferably at least one selected from the group consisting of water, acetone and isopropyl alcohol, and acetone is particularly preferred.
粉砕溶媒の使用量は、固化物および炭素源の合計量の濃度が1~80%となる量が好ましく、10~40%となる量が特に好ましい。粉砕溶媒の使用量を1%以上とすることで、生産性を高めることができる。また、粉砕溶媒の使用量を80%以下とすることで、固化物および炭素源の混合、粉砕を効率よく進めることができる。
The amount of the grinding solvent used is preferably such that the total concentration of the solidified product and the carbon source is 1 to 80%, particularly preferably 10 to 40%. Productivity can be improved by making the usage-amount of a grinding | pulverization solvent into 1% or more. Moreover, mixing and grinding | pulverization of a solidified material and a carbon source can be advanced efficiently because the usage-amount of a grinding | pulverization solvent shall be 80% or less.
粉砕物の平均粒子径は、二次電池用正極材料に適用した場合により高い導電性を得る観点から、体積基準のメディアン径で10nm~10μmが好ましく、10nm~5μmが特に好ましい。平均粒子径が10nm以上であると、加熱工程(v)を実施するときに、化合物(α)の粒子同士が焼結して粒子径が大きくなりすぎることがない。平均粒子径が10μm以下であると、高い導電性を示す二次電池正極材料を得やすく、その高容量化、および高エネルギー密度化を実現しやすくなる。ただし、粒子径が10nm未満というような非常に細かい粒子が多く含まれると、加熱工程(v)を実施するときに焼結助剤の作用をし、加熱後の平均粒子径を大きくする。
本明細書において、平均粒子径は、主にはレーザ回折/散乱式粒子径測定装置(堀場製作所製、商品名:LA-950)により得られるものであるが、上記の装置により粒子径の測定が困難な場合は、沈降法、フロー式画像分析装置を用いることができる。 The average particle size of the pulverized product is preferably 10 nm to 10 μm, particularly preferably 10 nm to 5 μm in terms of volume-based median diameter, from the viewpoint of obtaining higher conductivity when applied to a positive electrode material for a secondary battery. When the average particle size is 10 nm or more, when the heating step (v) is performed, the particles of the compound (α) do not sinter and the particle size does not become too large. When the average particle size is 10 μm or less, it is easy to obtain a secondary battery positive electrode material exhibiting high conductivity, and it becomes easy to realize a higher capacity and a higher energy density. However, if a lot of very fine particles having a particle size of less than 10 nm are contained, the sintering aid acts when the heating step (v) is performed, and the average particle size after heating is increased.
In this specification, the average particle size is obtained mainly by a laser diffraction / scattering particle size measuring device (trade name: LA-950, manufactured by Horiba, Ltd.). If this is difficult, a sedimentation method or a flow image analyzer can be used.
本明細書において、平均粒子径は、主にはレーザ回折/散乱式粒子径測定装置(堀場製作所製、商品名:LA-950)により得られるものであるが、上記の装置により粒子径の測定が困難な場合は、沈降法、フロー式画像分析装置を用いることができる。 The average particle size of the pulverized product is preferably 10 nm to 10 μm, particularly preferably 10 nm to 5 μm in terms of volume-based median diameter, from the viewpoint of obtaining higher conductivity when applied to a positive electrode material for a secondary battery. When the average particle size is 10 nm or more, when the heating step (v) is performed, the particles of the compound (α) do not sinter and the particle size does not become too large. When the average particle size is 10 μm or less, it is easy to obtain a secondary battery positive electrode material exhibiting high conductivity, and it becomes easy to realize a higher capacity and a higher energy density. However, if a lot of very fine particles having a particle size of less than 10 nm are contained, the sintering aid acts when the heating step (v) is performed, and the average particle size after heating is increased.
In this specification, the average particle size is obtained mainly by a laser diffraction / scattering particle size measuring device (trade name: LA-950, manufactured by Horiba, Ltd.). If this is difficult, a sedimentation method or a flow image analyzer can be used.
[加熱工程(v)]
粉砕工程(iv)の後、得られた粉砕物を不活性雰囲気下または還元性雰囲気下で加熱し、固化物の粉砕物から所定の組成を有する化合物(α)を合成する加熱工程(v)を行うことが好ましい。
加熱工程(v)は、粉砕により生じた応力の緩和、粉砕物の結晶核生成および粒成長を含むことが好ましい。このような加熱工程(v)を、上述した粉砕工程(iv)後に行うことで、粉砕による残留応力を低減または除去しつつ、結晶成長させた二次電池用正極材料を得ることができる。 [Heating step (v)]
After the pulverization step (iv), the obtained pulverized product is heated in an inert atmosphere or a reducing atmosphere to synthesize a compound (α) having a predetermined composition from the pulverized product of the solidified product (v). It is preferable to carry out.
The heating step (v) preferably includes relaxation of stress generated by pulverization, crystal nucleation of the pulverized product, and grain growth. By performing such a heating step (v) after the pulverization step (iv) described above, it is possible to obtain a positive electrode material for a secondary battery in which crystals are grown while reducing or removing residual stress due to pulverization.
粉砕工程(iv)の後、得られた粉砕物を不活性雰囲気下または還元性雰囲気下で加熱し、固化物の粉砕物から所定の組成を有する化合物(α)を合成する加熱工程(v)を行うことが好ましい。
加熱工程(v)は、粉砕により生じた応力の緩和、粉砕物の結晶核生成および粒成長を含むことが好ましい。このような加熱工程(v)を、上述した粉砕工程(iv)後に行うことで、粉砕による残留応力を低減または除去しつつ、結晶成長させた二次電池用正極材料を得ることができる。 [Heating step (v)]
After the pulverization step (iv), the obtained pulverized product is heated in an inert atmosphere or a reducing atmosphere to synthesize a compound (α) having a predetermined composition from the pulverized product of the solidified product (v). It is preferable to carry out.
The heating step (v) preferably includes relaxation of stress generated by pulverization, crystal nucleation of the pulverized product, and grain growth. By performing such a heating step (v) after the pulverization step (iv) described above, it is possible to obtain a positive electrode material for a secondary battery in which crystals are grown while reducing or removing residual stress due to pulverization.
加熱工程(v)においては、例えばリン酸化合物(1)の粒子、またはケイ酸化合物(2)の粒子を得ることが好ましく、リン酸化合物(1)またはケイ酸化合物(2)の結晶粒子を得ることがより好ましく、オリビン型の結晶構造を有するリン酸化合物(1)の結晶粒子またはオリビン型の結晶構造を有するケイ酸化合物(2)の結晶粒子を得ることが特に好ましい。
得られた化合物は非晶質物を含まないことが好ましい。化合物が非晶質物を含まない場合には、X線回折でハローパターンが検出されない。 In the heating step (v), for example, it is preferable to obtain particles of the phosphoric acid compound (1) or particles of the silicic acid compound (2), and crystal particles of the phosphoric acid compound (1) or the silicic acid compound (2) are obtained. It is more preferable to obtain, and it is particularly preferable to obtain crystal particles of the phosphoric acid compound (1) having an olivine type crystal structure or crystal particles of the silicate compound (2) having an olivine type crystal structure.
It is preferable that the obtained compound does not contain an amorphous substance. When the compound does not contain an amorphous substance, a halo pattern is not detected by X-ray diffraction.
得られた化合物は非晶質物を含まないことが好ましい。化合物が非晶質物を含まない場合には、X線回折でハローパターンが検出されない。 In the heating step (v), for example, it is preferable to obtain particles of the phosphoric acid compound (1) or particles of the silicic acid compound (2), and crystal particles of the phosphoric acid compound (1) or the silicic acid compound (2) are obtained. It is more preferable to obtain, and it is particularly preferable to obtain crystal particles of the phosphoric acid compound (1) having an olivine type crystal structure or crystal particles of the silicate compound (2) having an olivine type crystal structure.
It is preferable that the obtained compound does not contain an amorphous substance. When the compound does not contain an amorphous substance, a halo pattern is not detected by X-ray diffraction.
粉砕工程(iv)で粉砕物の表面に付着した有機化合物や炭素系導電物質は、加熱工程(v)で生成した化合物(α)、好ましくはその結晶粒子の表面に結合して導電材として機能する。有機化合物は加熱工程(v)で熱分解され、さらに少なくとも一部が炭化物となって導電材として機能する。粉砕工程(iv)を湿式で行った場合には、分散媒の除去を加熱時に同時に行なってもよい。
The organic compound or carbon-based conductive substance adhering to the surface of the pulverized product in the pulverization step (iv) is bonded to the surface of the compound (α), preferably its crystal particles, generated in the heating step (v), and functions as a conductive material. To do. The organic compound is thermally decomposed in the heating step (v), and at least a part thereof becomes a carbide to function as a conductive material. When the pulverization step (iv) is performed in a wet manner, the dispersion medium may be removed simultaneously with heating.
化合物(α)を合成するための加熱温度は、400~1,000℃が好ましく、500~900℃が特に好ましい。加熱温度が400℃以上であると、反応が生じやすく、1,000℃以下であると粉砕物が融解しにくく、結晶系や粒子径を制御しやすい。また、該加熱温度であると、適度な結晶性、粒子径、粒子径分布等を有する化合物(α)、好ましくはその結晶粒子、さらに好ましくはオリビン型の結晶粒子が得られやすくなる。加熱は、一定温度で保持することに限らず、多段階に保持温度を設定して行ってもよい。加熱温度を高くするほど、生成する粒子の粒子径が大きくなる傾向があるため、所望の粒子径に応じて加熱温度を設定するのが好ましい。
加熱時間(加熱温度による保持時間)は所望の粒子径を考慮して1~72時間が好ましい。加熱は、電気、石油、ガス等を熱源とする、ボックス炉、トンネルキルン、ローラーハースキルン、ロータリーキルン、マイクロウェーブ加熱炉等で行うのが好ましい。 The heating temperature for synthesizing the compound (α) is preferably 400 to 1,000 ° C., particularly preferably 500 to 900 ° C. When the heating temperature is 400 ° C. or higher, a reaction is likely to occur, and when it is 1,000 ° C. or lower, the pulverized product is difficult to melt and the crystal system and particle diameter are easily controlled. Further, at the heating temperature, it becomes easy to obtain a compound (α) having an appropriate crystallinity, particle size, particle size distribution, etc., preferably its crystal particles, more preferably olivine type crystal particles. The heating is not limited to being held at a constant temperature, and may be performed by setting the holding temperature in multiple stages. As the heating temperature is increased, the particle diameter of the generated particles tends to increase. Therefore, it is preferable to set the heating temperature according to a desired particle diameter.
The heating time (holding time depending on the heating temperature) is preferably 1 to 72 hours in consideration of the desired particle size. Heating is preferably performed in a box furnace, tunnel kiln, roller hearth kiln, rotary kiln, microwave heating furnace, or the like that uses electricity, oil, gas, or the like as a heat source.
加熱時間(加熱温度による保持時間)は所望の粒子径を考慮して1~72時間が好ましい。加熱は、電気、石油、ガス等を熱源とする、ボックス炉、トンネルキルン、ローラーハースキルン、ロータリーキルン、マイクロウェーブ加熱炉等で行うのが好ましい。 The heating temperature for synthesizing the compound (α) is preferably 400 to 1,000 ° C., particularly preferably 500 to 900 ° C. When the heating temperature is 400 ° C. or higher, a reaction is likely to occur, and when it is 1,000 ° C. or lower, the pulverized product is difficult to melt and the crystal system and particle diameter are easily controlled. Further, at the heating temperature, it becomes easy to obtain a compound (α) having an appropriate crystallinity, particle size, particle size distribution, etc., preferably its crystal particles, more preferably olivine type crystal particles. The heating is not limited to being held at a constant temperature, and may be performed by setting the holding temperature in multiple stages. As the heating temperature is increased, the particle diameter of the generated particles tends to increase. Therefore, it is preferable to set the heating temperature according to a desired particle diameter.
The heating time (holding time depending on the heating temperature) is preferably 1 to 72 hours in consideration of the desired particle size. Heating is preferably performed in a box furnace, tunnel kiln, roller hearth kiln, rotary kiln, microwave heating furnace, or the like that uses electricity, oil, gas, or the like as a heat source.
加熱工程(v)は大気下、不活性雰囲気下または還元性雰囲気下で実施することが好ましい。不活性雰囲気および還元性雰囲気の好ましい条件は、溶融工程(ii)で説明したのと同様である。雰囲気圧力は、常圧、加圧、減圧(0.9×105Pa以下)のいずれであってもよい。
また、加熱炉内に還元剤(例えばグラファイト)を入れた容器を装填してもよい。
加熱工程(v)を不活性雰囲気下または還元性雰囲気下で実施すれば、粉砕物中のMイオンの還元(例えばM3+からM2+への変化)を促進できる。 The heating step (v) is preferably performed in the air, in an inert atmosphere, or in a reducing atmosphere. Preferred conditions for the inert atmosphere and the reducing atmosphere are the same as those described in the melting step (ii). The atmospheric pressure may be any of normal pressure, pressurization, and reduced pressure (0.9 × 10 5 Pa or less).
Moreover, you may charge the container which put the reducing agent (for example, graphite) in the heating furnace.
If the heating step (v) is performed in an inert atmosphere or a reducing atmosphere, reduction of M ions in the pulverized product (for example, change from M 3+ to M 2+ ) can be promoted.
また、加熱炉内に還元剤(例えばグラファイト)を入れた容器を装填してもよい。
加熱工程(v)を不活性雰囲気下または還元性雰囲気下で実施すれば、粉砕物中のMイオンの還元(例えばM3+からM2+への変化)を促進できる。 The heating step (v) is preferably performed in the air, in an inert atmosphere, or in a reducing atmosphere. Preferred conditions for the inert atmosphere and the reducing atmosphere are the same as those described in the melting step (ii). The atmospheric pressure may be any of normal pressure, pressurization, and reduced pressure (0.9 × 10 5 Pa or less).
Moreover, you may charge the container which put the reducing agent (for example, graphite) in the heating furnace.
If the heating step (v) is performed in an inert atmosphere or a reducing atmosphere, reduction of M ions in the pulverized product (for example, change from M 3+ to M 2+ ) can be promoted.
加熱の後は、通常は室温まで冷却する。該冷却における冷却速度は30℃/時間~300℃/時間が好ましい。冷却速度を該範囲にすることにより、加熱による歪みを除去でき、生成物が結晶体である場合は、結晶構造を保ったまま目的物を得ることができる。冷却は、放置して室温まで冷却させるのが好ましい。冷却は不活性雰囲気下または還元性雰囲気下で行うのが好ましい。
After heating, it is usually cooled to room temperature. The cooling rate in the cooling is preferably 30 ° C./hour to 300 ° C./hour. By setting the cooling rate within this range, distortion due to heating can be removed, and when the product is a crystal, the target product can be obtained while maintaining the crystal structure. The cooling is preferably allowed to cool to room temperature. Cooling is preferably performed in an inert atmosphere or a reducing atmosphere.
加熱工程(v)で炭素源を添加することもできる。この場合、粉砕工程(iv)で得られた粉砕物(炭素源を含まない粉砕物であることが好ましい。)を加熱して化合物(α)を得た後、該化合物(α)と炭素源とを含む粉砕物を得て、次いで該粉砕物を加熱する製法を採ることが好ましい。
Carbon source can be added in the heating step (v). In this case, the pulverized product obtained in the pulverization step (iv) (preferably a pulverized product containing no carbon source) is heated to obtain the compound (α), and then the compound (α) and the carbon source are obtained. It is preferable to adopt a production method in which a pulverized product containing the following is obtained, and then the pulverized product is heated.
上述した溶融、冷却、粉砕、加熱の各工程を経ることによって、二次電池用正極材料としての、所定の組成を有する化合物(α)が製造される。化合物(α)は結晶粒子を含むことが好ましく、またオリビン型であることが好ましい。このような組成および結晶系であると、前述したように多電子型の理論電気容量の材料を得ることができる。
特にケイ酸化合物は、二次電池用正極材料に使用する場合に、二次電池の単位体積(質量)当たりの容量を高くできるため好ましい。ケイ酸化合物はオリビン型が好ましく、該オリビン型ケイ酸化合物は二次電池用正極材料として好適である。また、リン酸化合物は、二次電池用正極材料に使用する場合には、二次電池の性能の信頼性を高くできるため好ましい。リン酸化合物はオリビン型が好ましく、該オリビン型リン酸化合物は二次電池用正極材料として好適である。 The compound (α) having a predetermined composition as a positive electrode material for a secondary battery is manufactured through the above-described melting, cooling, pulverization, and heating steps. The compound (α) preferably contains crystal particles and is preferably an olivine type. With such a composition and crystal system, as described above, a multi-electron type material having a theoretical electric capacity can be obtained.
In particular, a silicate compound is preferable because it can increase the capacity per unit volume (mass) of the secondary battery when used as a positive electrode material for a secondary battery. The silicate compound is preferably an olivine type, and the olivine type silicate compound is suitable as a positive electrode material for a secondary battery. A phosphoric acid compound is preferable when used as a positive electrode material for a secondary battery because the reliability of the performance of the secondary battery can be increased. The phosphate compound is preferably an olivine type, and the olivine type phosphate compound is suitable as a positive electrode material for a secondary battery.
特にケイ酸化合物は、二次電池用正極材料に使用する場合に、二次電池の単位体積(質量)当たりの容量を高くできるため好ましい。ケイ酸化合物はオリビン型が好ましく、該オリビン型ケイ酸化合物は二次電池用正極材料として好適である。また、リン酸化合物は、二次電池用正極材料に使用する場合には、二次電池の性能の信頼性を高くできるため好ましい。リン酸化合物はオリビン型が好ましく、該オリビン型リン酸化合物は二次電池用正極材料として好適である。 The compound (α) having a predetermined composition as a positive electrode material for a secondary battery is manufactured through the above-described melting, cooling, pulverization, and heating steps. The compound (α) preferably contains crystal particles and is preferably an olivine type. With such a composition and crystal system, as described above, a multi-electron type material having a theoretical electric capacity can be obtained.
In particular, a silicate compound is preferable because it can increase the capacity per unit volume (mass) of the secondary battery when used as a positive electrode material for a secondary battery. The silicate compound is preferably an olivine type, and the olivine type silicate compound is suitable as a positive electrode material for a secondary battery. A phosphoric acid compound is preferable when used as a positive electrode material for a secondary battery because the reliability of the performance of the secondary battery can be increased. The phosphate compound is preferably an olivine type, and the olivine type phosphate compound is suitable as a positive electrode material for a secondary battery.
本発明により得られる二次電池用正極材料の比表面積は0.2m2/g~200m2/gが好ましく、1m2/g~100m2/gがより好ましい。比表面積を該範囲とすることにより、導電性が高くなる。比表面積は、例えば窒素吸着法による比表面積測定装置で測定できる。
The specific surface area of the positive electrode material for a secondary battery obtained by the present invention is preferably 0.2 m 2 / g to 200 m 2 / g, more preferably 1 m 2 / g to 100 m 2 / g. By setting the specific surface area within this range, the conductivity is increased. The specific surface area can be measured by, for example, a specific surface area measuring apparatus using a nitrogen adsorption method.
二次電池用正極材料の結晶粒子の平均粒子径は粒子の導電性を高めるために、体積換算のメディアン径で10nm~10μmが好ましく、10nm~2μmがより好ましい。
なお、本発明により得られる二次電池用正極材料の平均粒子径は、結晶粒子だけでなく非晶質粒子を含んでいたとしても同様に、体積換算のメディアン径で10nm~10μmが好ましく、10nm~2μmがより好ましい。 The average particle diameter of the crystal particles of the positive electrode material for a secondary battery is preferably 10 nm to 10 μm, more preferably 10 nm to 2 μm in terms of volume median diameter in order to increase the conductivity of the particles.
The average particle diameter of the positive electrode material for a secondary battery obtained by the present invention is preferably 10 nm to 10 μm in terms of volume median diameter even if it contains not only crystal particles but also amorphous particles. More preferably, it is ˜2 μm.
なお、本発明により得られる二次電池用正極材料の平均粒子径は、結晶粒子だけでなく非晶質粒子を含んでいたとしても同様に、体積換算のメディアン径で10nm~10μmが好ましく、10nm~2μmがより好ましい。 The average particle diameter of the crystal particles of the positive electrode material for a secondary battery is preferably 10 nm to 10 μm, more preferably 10 nm to 2 μm in terms of volume median diameter in order to increase the conductivity of the particles.
The average particle diameter of the positive electrode material for a secondary battery obtained by the present invention is preferably 10 nm to 10 μm in terms of volume median diameter even if it contains not only crystal particles but also amorphous particles. More preferably, it is ˜2 μm.
本発明によれば、鉄、マンガン等の重金属元素を含むオリビン型化合物、輝石型化合物、またはナシコン型化合物の原料調合物の加熱溶融を、電鋳耐火物製の容器内で行う。そのため、溶融物に含まれるFe、Mn等の重金属元素による侵食を抑制でき、加熱溶融に用いる容器の損耗を防止できるため、メンテナンスの頻度を低減し、二次電池用正極材料の製造コストを低減することができる。また、容器に由来する成分が、当該容器内の溶融物中に混入するのを抑制でき、純度に優れる二次電池用正極材料を得ることができる。
本発明において、溶融工程(ii)において大型の溶融タンクを用いる場合、バッチ式では1kg/バッチ以上、連続式では1t/日以上の生産を実施可能である。 According to the present invention, the raw material mixture of an olivine type compound, pyroxene type compound, or NASICON type compound containing heavy metal elements such as iron and manganese is heated and melted in a container made of electroformed refractory. Therefore, erosion due to heavy metal elements such as Fe and Mn contained in the melt can be suppressed, and wear of containers used for heat melting can be prevented, reducing the frequency of maintenance and reducing the manufacturing cost of the positive electrode material for secondary batteries. can do. Moreover, it can suppress that the component derived from a container mixes in the melt in the said container, and can obtain the positive electrode material for secondary batteries excellent in purity.
In the present invention, when a large melting tank is used in the melting step (ii), it is possible to produce 1 kg / batch or more in the batch type and 1 t / day or more in the continuous type.
本発明において、溶融工程(ii)において大型の溶融タンクを用いる場合、バッチ式では1kg/バッチ以上、連続式では1t/日以上の生産を実施可能である。 According to the present invention, the raw material mixture of an olivine type compound, pyroxene type compound, or NASICON type compound containing heavy metal elements such as iron and manganese is heated and melted in a container made of electroformed refractory. Therefore, erosion due to heavy metal elements such as Fe and Mn contained in the melt can be suppressed, and wear of containers used for heat melting can be prevented, reducing the frequency of maintenance and reducing the manufacturing cost of the positive electrode material for secondary batteries. can do. Moreover, it can suppress that the component derived from a container mixes in the melt in the said container, and can obtain the positive electrode material for secondary batteries excellent in purity.
In the present invention, when a large melting tank is used in the melting step (ii), it is possible to produce 1 kg / batch or more in the batch type and 1 t / day or more in the continuous type.
<二次電池用正極および二次電池の製造方法>
本発明の製造方法によって得られる二次電池用正極材料を用いることによって、二次電池用正極および二次電池を製造できる。二次電池としては、金属リチウム二次電池、リチウムイオン二次電池、リチウムポリマー二次電池等が挙げられるが、リチウムイオン二次電池が好ましい。電池形状は制限されることはなく、例えば円筒状、角型、コイン型等の種々の形状およびサイズを適宜採用できる。 <Positive electrode for secondary battery and method for producing secondary battery>
By using the secondary battery positive electrode material obtained by the production method of the present invention, a secondary battery positive electrode and a secondary battery can be produced. Examples of the secondary battery include a metal lithium secondary battery, a lithium ion secondary battery, and a lithium polymer secondary battery, and a lithium ion secondary battery is preferable. The battery shape is not limited, and various shapes and sizes such as a cylindrical shape, a square shape, and a coin shape can be appropriately employed.
本発明の製造方法によって得られる二次電池用正極材料を用いることによって、二次電池用正極および二次電池を製造できる。二次電池としては、金属リチウム二次電池、リチウムイオン二次電池、リチウムポリマー二次電池等が挙げられるが、リチウムイオン二次電池が好ましい。電池形状は制限されることはなく、例えば円筒状、角型、コイン型等の種々の形状およびサイズを適宜採用できる。 <Positive electrode for secondary battery and method for producing secondary battery>
By using the secondary battery positive electrode material obtained by the production method of the present invention, a secondary battery positive electrode and a secondary battery can be produced. Examples of the secondary battery include a metal lithium secondary battery, a lithium ion secondary battery, and a lithium polymer secondary battery, and a lithium ion secondary battery is preferable. The battery shape is not limited, and various shapes and sizes such as a cylindrical shape, a square shape, and a coin shape can be appropriately employed.
二次電池用正極は、本発明の製造方法で得られる二次電池用正極材料を用いて、公知の電極の製造方法にしたがって製造できる。例えば、本発明により得られる二次電池用正極材料を必要に応じて公知の結着材(ポリテトラフルオロエチレン、ポリビニリデンフルオライド、ポリビニルクロライド、エチレンプロピレンジエンポリマー、スチレン-ブタジエンゴム、アクリロニトリル-ブタジエンゴム、フッ素ゴム、ポリ酢酸ビニル、ポリメチルメタクリレート、ポリエチレン、ニトロセルロース等)と混合した後、さらに、公知の有機溶媒(N-メチルピロリドン、トルエン、シクロヘキサン、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N-N-ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフラン等)を用いてスラリーとし、公知の集電体(アルミニウム、またはステンレスの金属箔等)に塗布する等の方法によって、製造できる。
The positive electrode for a secondary battery can be manufactured according to a known electrode manufacturing method using the positive electrode material for a secondary battery obtained by the manufacturing method of the present invention. For example, a positive electrode material for a secondary battery obtained according to the present invention may be prepared by using a known binder (polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl chloride, ethylene propylene diene polymer, styrene-butadiene rubber, acrylonitrile-butadiene as required. After mixing with rubber, fluoro rubber, polyvinyl acetate, polymethyl methacrylate, polyethylene, nitrocellulose, etc., further known organic solvents (N-methylpyrrolidone, toluene, cyclohexane, dimethylformamide, dimethylacetamide, methyl ethyl ketone, methyl acetate) , Methyl acrylate, diethyltriamine, NN-dimethylaminopropylamine, ethylene oxide, tetrahydrofuran, etc.) to form a slurry, and a known current collector (aluminum, By a method such as coating to the metal foil or the like) of stainless steel, it can be produced.
二次電池の構造は、本発明の製造方法で得られる二次電池用正極材料を電極として用いる以外は、公知の二次電池における構造を採用することができる。セパレータ、電池ケース等についても同様である。負極としては、活物質として公知の負極用活物質を使用でき、炭素材料、アルカリ金属材料およびアルカリ土類金属材料からなる群から選ばれる少なくとも1種を用いることが好ましい。電解液としては、非水系の電解液が好ましい。すなわち、本発明の製造方法で得られる二次電池用正極材料を用いた二次電池としては、非水電解質リチウムイオン二次電池が好ましい。
As the structure of the secondary battery, a structure in a known secondary battery can be adopted except that the positive electrode material for a secondary battery obtained by the production method of the present invention is used as an electrode. The same applies to separators, battery cases, and the like. As the negative electrode, a known negative electrode active material can be used as the active material, and at least one selected from the group consisting of carbon materials, alkali metal materials, and alkaline earth metal materials is preferably used. As the electrolytic solution, a non-aqueous electrolytic solution is preferable. That is, as the secondary battery using the positive electrode material for a secondary battery obtained by the production method of the present invention, a nonaqueous electrolyte lithium ion secondary battery is preferable.
本発明を実施例を挙げて具体的に説明するが、本発明は以下の説明に限定されない。
The present invention will be specifically described with reference to examples, but the present invention is not limited to the following description.
<実施例1>
(原料調合工程(i))
溶融物の組成がLi2O、FeO、およびP2O5換算量(単位:モル%)で、それぞれ、25.0モル%、50.0モル%、および25.0モル%となるように、炭酸リチウム(Li2CO3)、四酸化三鉄(Fe3O4)、およびリン酸水素アンモニウム(NH4H2PO4)を秤量し、乾式で混合・粉砕して、原料調合物を得た。 <Example 1>
(Raw material preparation step (i))
Composition Li 2 O melt, FeO, and P 2 O 5 equivalent amount (unit: mol%) in each 25.0 mol%, 50.0 mol%, and so that 25.0 mol% , Lithium carbonate (Li 2 CO 3 ), triiron tetroxide (Fe 3 O 4 ), and ammonium hydrogen phosphate (NH 4 H 2 PO 4 ) are weighed, mixed and pulverized in a dry process, Obtained.
(原料調合工程(i))
溶融物の組成がLi2O、FeO、およびP2O5換算量(単位:モル%)で、それぞれ、25.0モル%、50.0モル%、および25.0モル%となるように、炭酸リチウム(Li2CO3)、四酸化三鉄(Fe3O4)、およびリン酸水素アンモニウム(NH4H2PO4)を秤量し、乾式で混合・粉砕して、原料調合物を得た。 <Example 1>
(Raw material preparation step (i))
Composition Li 2 O melt, FeO, and P 2 O 5 equivalent amount (unit: mol%) in each 25.0 mol%, 50.0 mol%, and so that 25.0 mol% , Lithium carbonate (Li 2 CO 3 ), triiron tetroxide (Fe 3 O 4 ), and ammonium hydrogen phosphate (NH 4 H 2 PO 4 ) are weighed, mixed and pulverized in a dry process, Obtained.
(溶融工程(ii))
原料調合物を、内径20mm、高さ40mmのアルミナ-ジルコニア-シリカ質電鋳耐火物製(AGCセラミックス社製、商品名:ZB-1711、気孔率0.3%)のルツボに充填した。次に、ルツボをケイ化モリブデン製の発熱体を備えた電気炉(モトヤマ社製、装置名:NH-3035)の中に入れた。該電気炉内を2L/分でN2ガスを流通しつつ、300℃/時間の速度で昇温し、1,250℃で0.5時間保持、加熱して、溶融物を得た。 (Melting step (ii))
The raw material mixture was filled in a crucible made of alumina-zirconia-silica electrocast refractory (AGC Ceramics, trade name: ZB-1711, porosity 0.3%) having an inner diameter of 20 mm and a height of 40 mm. Next, the crucible was placed in an electric furnace (manufactured by Motoyama, apparatus name: NH-3035) equipped with a heating element made of molybdenum silicide. While flowing N 2 gas at a rate of 2 L / min in the electric furnace, the temperature was raised at a rate of 300 ° C./hour, held at 1,250 ° C. for 0.5 hours, and heated to obtain a melt.
原料調合物を、内径20mm、高さ40mmのアルミナ-ジルコニア-シリカ質電鋳耐火物製(AGCセラミックス社製、商品名:ZB-1711、気孔率0.3%)のルツボに充填した。次に、ルツボをケイ化モリブデン製の発熱体を備えた電気炉(モトヤマ社製、装置名:NH-3035)の中に入れた。該電気炉内を2L/分でN2ガスを流通しつつ、300℃/時間の速度で昇温し、1,250℃で0.5時間保持、加熱して、溶融物を得た。 (Melting step (ii))
The raw material mixture was filled in a crucible made of alumina-zirconia-silica electrocast refractory (AGC Ceramics, trade name: ZB-1711, porosity 0.3%) having an inner diameter of 20 mm and a height of 40 mm. Next, the crucible was placed in an electric furnace (manufactured by Motoyama, apparatus name: NH-3035) equipped with a heating element made of molybdenum silicide. While flowing N 2 gas at a rate of 2 L / min in the electric furnace, the temperature was raised at a rate of 300 ° C./hour, held at 1,250 ° C. for 0.5 hours, and heated to obtain a melt.
(冷却工程(iii))
溶融工程(ii)で得たルツボ中の溶融物を、毎分400回転する直径約15cmのステンレス製双ローラを通すことにより、1×105℃/秒で室温になるまで冷却し、フレーク状の固化物を得た。 (Cooling step (iii))
The molten material in the crucible obtained in the melting step (ii) is cooled to room temperature at 1 × 10 5 ° C./second by passing through a stainless steel double roller having a diameter of about 15 cm rotating at 400 revolutions per minute. A solidified product was obtained.
溶融工程(ii)で得たルツボ中の溶融物を、毎分400回転する直径約15cmのステンレス製双ローラを通すことにより、1×105℃/秒で室温になるまで冷却し、フレーク状の固化物を得た。 (Cooling step (iii))
The molten material in the crucible obtained in the melting step (ii) is cooled to room temperature at 1 × 10 5 ° C./second by passing through a stainless steel double roller having a diameter of about 15 cm rotating at 400 revolutions per minute. A solidified product was obtained.
(粉砕工程(iv))
得られたフレーク状の固化物を軽く手で揉んで細かくした後、乳棒と乳鉢を用いて粗粉砕した。さらに、粉砕メディアとしてジルコニア製ボール500gを用いた遊星ミル(伊藤製作所社製、装置名:LP-4)を用いて、粗粉砕後の固化物を毎分250回転で4時間、アセトンを溶媒として湿式で粉砕して粉砕物を得た。得られた粉砕物の平均粒子径は、体積基準のメディアン径で0.15μmであった。 (Crushing step (iv))
The obtained flaky solidified product was lightly crushed by hand and then coarsely pulverized using a pestle and mortar. Furthermore, using a planetary mill (product name: LP-4, manufactured by Ito Seisakusho Co., Ltd.) using 500 g of zirconia balls as grinding media, the coarsely ground solidified product is 250 rpm for 4 hours with acetone as a solvent. A pulverized product was obtained by wet pulverization. The average particle diameter of the obtained pulverized product was 0.15 μm in terms of volume-based median diameter.
得られたフレーク状の固化物を軽く手で揉んで細かくした後、乳棒と乳鉢を用いて粗粉砕した。さらに、粉砕メディアとしてジルコニア製ボール500gを用いた遊星ミル(伊藤製作所社製、装置名:LP-4)を用いて、粗粉砕後の固化物を毎分250回転で4時間、アセトンを溶媒として湿式で粉砕して粉砕物を得た。得られた粉砕物の平均粒子径は、体積基準のメディアン径で0.15μmであった。 (Crushing step (iv))
The obtained flaky solidified product was lightly crushed by hand and then coarsely pulverized using a pestle and mortar. Furthermore, using a planetary mill (product name: LP-4, manufactured by Ito Seisakusho Co., Ltd.) using 500 g of zirconia balls as grinding media, the coarsely ground solidified product is 250 rpm for 4 hours with acetone as a solvent. A pulverized product was obtained by wet pulverization. The average particle diameter of the obtained pulverized product was 0.15 μm in terms of volume-based median diameter.
(加熱工程(v))
粉砕工程(iv)で得た粉砕物を、電気炉(モトヤマ社製、装置名;SKM-3035)を用い、H2ガスを3体積%含むArガス雰囲気中で、700℃で8時間加熱し、次いで室温まで冷却し、リン酸鉄リチウム粒子を析出させた。 (Heating step (v))
The pulverized product obtained in the pulverization step (iv) was heated at 700 ° C. for 8 hours in an Ar gas atmosphere containing 3% by volume of H 2 gas using an electric furnace (manufactured by Motoyama, apparatus name; SKM-3035). Then, the mixture was cooled to room temperature to precipitate lithium iron phosphate particles.
粉砕工程(iv)で得た粉砕物を、電気炉(モトヤマ社製、装置名;SKM-3035)を用い、H2ガスを3体積%含むArガス雰囲気中で、700℃で8時間加熱し、次いで室温まで冷却し、リン酸鉄リチウム粒子を析出させた。 (Heating step (v))
The pulverized product obtained in the pulverization step (iv) was heated at 700 ° C. for 8 hours in an Ar gas atmosphere containing 3% by volume of H 2 gas using an electric furnace (manufactured by Motoyama, apparatus name; SKM-3035). Then, the mixture was cooled to room temperature to precipitate lithium iron phosphate particles.
得られたリン酸鉄リチウム粒子の鉱物相を、X線回折装置(リガク社製、装置名:RINT TTRIII)を用いて測定した。回折パターンから、得られたリン酸鉄リチウム粒子は、斜方晶のオリビン型LiFePO4であることが確認された。また、得られたリン酸鉄リチウム粒子の比表面積を比表面積測定装置(島津製作所社製、装置名:ASAP2020)で測定したところ、28m2/gであった。さらに、得られたリン酸鉄リチウム粒子の平均粒子径をレーザ回折/散乱式粒子径分析計(堀場製作所社製、装置名:LA-950)を用いて測定したところ、体積換算のメディアン径は0.18μmであった。
冷却工程(iii)後のルツボは、外見上、変形は認められなかった。また、ルツボを切断し、侵食量を測定したところ、約50μmであった。なお、侵食量は、フラックスラインで測定した最大侵食深さ(μm)で示す。 The mineral phase of the obtained lithium iron phosphate particles was measured using an X-ray diffraction apparatus (manufactured by Rigaku Corporation, apparatus name: RINT TTRIII). From the diffraction pattern, it was confirmed that the obtained lithium iron phosphate particles were orthorhombic olivine type LiFePO 4 . Moreover, it was 28 m < 2 > / g when the specific surface area of the obtained lithium iron phosphate particle was measured with the specific surface area measuring apparatus (Shimadzu Corporation make, apparatus name: ASAP2020). Further, when the average particle size of the obtained lithium iron phosphate particles was measured using a laser diffraction / scattering particle size analyzer (manufactured by Horiba, Ltd., apparatus name: LA-950), the median diameter in terms of volume was It was 0.18 μm.
The crucible after the cooling step (iii) was not deformed in appearance. Moreover, when the crucible was cut and the amount of erosion was measured, it was about 50 μm. The amount of erosion is indicated by the maximum erosion depth (μm) measured with the flux line.
冷却工程(iii)後のルツボは、外見上、変形は認められなかった。また、ルツボを切断し、侵食量を測定したところ、約50μmであった。なお、侵食量は、フラックスラインで測定した最大侵食深さ(μm)で示す。 The mineral phase of the obtained lithium iron phosphate particles was measured using an X-ray diffraction apparatus (manufactured by Rigaku Corporation, apparatus name: RINT TTRIII). From the diffraction pattern, it was confirmed that the obtained lithium iron phosphate particles were orthorhombic olivine type LiFePO 4 . Moreover, it was 28 m < 2 > / g when the specific surface area of the obtained lithium iron phosphate particle was measured with the specific surface area measuring apparatus (Shimadzu Corporation make, apparatus name: ASAP2020). Further, when the average particle size of the obtained lithium iron phosphate particles was measured using a laser diffraction / scattering particle size analyzer (manufactured by Horiba, Ltd., apparatus name: LA-950), the median diameter in terms of volume was It was 0.18 μm.
The crucible after the cooling step (iii) was not deformed in appearance. Moreover, when the crucible was cut and the amount of erosion was measured, it was about 50 μm. The amount of erosion is indicated by the maximum erosion depth (μm) measured with the flux line.
<実施例2>
(耐食性試験)
実施例1と同様にして、原料調合工程(i)、溶融工程(ii)、冷却工程(iii)を行い、得られた固化物を、蓋付の、内径20mm、高さ40mmのアルミナ-ジルコニア-シリカ質電鋳耐火物製(AGCセラミックス社製、商品名:ZB-1711)のルツボに充填した。
次に、固化物を入れたルツボをケイ化モリブデン製の発熱体を備えた電気炉(モトヤマ社製、装置名:NH-3035)の中に入れた。該電気炉内を2L/分でN2ガスを流通しつつ、300℃/時間の速度で昇温し、1,300℃に達した後、48時間保持、加熱した。加熱処理終了後、冷却したルツボを切断し、侵食量を測定したところ、50μm以下であった。 <Example 2>
(Corrosion resistance test)
In the same manner as in Example 1, the raw material preparation step (i), the melting step (ii), and the cooling step (iii) were performed, and the obtained solidified product was coated with alumina-zirconia having an inner diameter of 20 mm and a height of 40 mm. -A crucible made of siliceous electroformed refractory (manufactured by AGC Ceramics, trade name: ZB-1711) was filled.
Next, the crucible containing the solidified material was placed in an electric furnace (manufactured by Motoyama, apparatus name: NH-3035) equipped with a heating element made of molybdenum silicide. While flowing N 2 gas at a rate of 2 L / min in the electric furnace, the temperature was increased at a rate of 300 ° C./hour, and after reaching 1,300 ° C., the temperature was maintained and heated for 48 hours. After the heat treatment, the cooled crucible was cut and the amount of erosion was measured.
(耐食性試験)
実施例1と同様にして、原料調合工程(i)、溶融工程(ii)、冷却工程(iii)を行い、得られた固化物を、蓋付の、内径20mm、高さ40mmのアルミナ-ジルコニア-シリカ質電鋳耐火物製(AGCセラミックス社製、商品名:ZB-1711)のルツボに充填した。
次に、固化物を入れたルツボをケイ化モリブデン製の発熱体を備えた電気炉(モトヤマ社製、装置名:NH-3035)の中に入れた。該電気炉内を2L/分でN2ガスを流通しつつ、300℃/時間の速度で昇温し、1,300℃に達した後、48時間保持、加熱した。加熱処理終了後、冷却したルツボを切断し、侵食量を測定したところ、50μm以下であった。 <Example 2>
(Corrosion resistance test)
In the same manner as in Example 1, the raw material preparation step (i), the melting step (ii), and the cooling step (iii) were performed, and the obtained solidified product was coated with alumina-zirconia having an inner diameter of 20 mm and a height of 40 mm. -A crucible made of siliceous electroformed refractory (manufactured by AGC Ceramics, trade name: ZB-1711) was filled.
Next, the crucible containing the solidified material was placed in an electric furnace (manufactured by Motoyama, apparatus name: NH-3035) equipped with a heating element made of molybdenum silicide. While flowing N 2 gas at a rate of 2 L / min in the electric furnace, the temperature was increased at a rate of 300 ° C./hour, and after reaching 1,300 ° C., the temperature was maintained and heated for 48 hours. After the heat treatment, the cooled crucible was cut and the amount of erosion was measured.
<実施例3>
溶融物の組成がLi2O、FeO、およびSiO2換算量(単位:モル%)で、それぞれ、14.3モル%、28.6モル%、および57.1モル%となるように、炭酸リチウム(Li2CO3)、四酸化三鉄(Fe2O3)、二酸化ケイ素(SiO2)を秤量し、乾式で混合・粉砕して、原料調合物を得た(原料調合工程(i))。 <Example 3>
Composition Li 2 O melt, FeO, and SiO 2 in terms of the amount (unit: mol%) in each 14.3 mol%, so that 28.6 mol%, and 57.1 mol%, carbonate Lithium (Li 2 CO 3 ), triiron tetroxide (Fe 2 O 3 ), and silicon dioxide (SiO 2 ) were weighed, mixed and pulverized in a dry process to obtain a raw material preparation (raw material preparation step (i) ).
溶融物の組成がLi2O、FeO、およびSiO2換算量(単位:モル%)で、それぞれ、14.3モル%、28.6モル%、および57.1モル%となるように、炭酸リチウム(Li2CO3)、四酸化三鉄(Fe2O3)、二酸化ケイ素(SiO2)を秤量し、乾式で混合・粉砕して、原料調合物を得た(原料調合工程(i))。 <Example 3>
Composition Li 2 O melt, FeO, and SiO 2 in terms of the amount (unit: mol%) in each 14.3 mol%, so that 28.6 mol%, and 57.1 mol%, carbonate Lithium (Li 2 CO 3 ), triiron tetroxide (Fe 2 O 3 ), and silicon dioxide (SiO 2 ) were weighed, mixed and pulverized in a dry process to obtain a raw material preparation (raw material preparation step (i) ).
溶融工程(ii)を、実施例1と同様のアルミナ-ジルコニア-シリカ質電鋳耐火物製のルツボを用いて1380℃で行い、加熱工程(v)を大気雰囲気下で行ったこと以外は、実施例1と同様にして、溶融工程(ii)、冷却工程(iii)、粉砕工程(iv)、加熱工程(v)を行い、ケイ酸鉄リチウム粒子の析出を行った。得られたケイ酸鉄リチウム粒子の鉱物相を、X線回折装置を用いて測定したところ、粒子は、斜方晶の輝石型LiFeSi2O6であることが確認された。また、ケイ酸鉄リチウム粒子の比表面積を測定したところ、27m2/gであった。さらに、ケイ酸鉄リチウム粒子の平均粒子径を測定したところ、体積換算のメディアン径は0.067μmであった。
冷却工程(iii)後のルツボは、外見上、変形は認められなかった。また、ルツボを切断し、侵食量を測定したところ、約100μmであった。 The melting step (ii) was performed at 1380 ° C. using the same crucible made of alumina-zirconia-silica electrocast refractory as in Example 1, and the heating step (v) was performed in an air atmosphere. In the same manner as in Example 1, the melting step (ii), the cooling step (iii), the pulverization step (iv), and the heating step (v) were performed to deposit lithium iron silicate particles. When the mineral phase of the obtained lithium iron silicate particles was measured using an X-ray diffractometer, it was confirmed that the particles were orthorhombic pyroxene-type LiFeSi 2 O 6 . Moreover, it was 27 m < 2 > / g when the specific surface area of the lithium iron silicate particle | grains was measured. Furthermore, when the average particle diameter of the lithium iron silicate particles was measured, the median diameter in terms of volume was 0.067 μm.
The crucible after the cooling step (iii) was not deformed in appearance. Moreover, when the crucible was cut and the amount of erosion was measured, it was about 100 μm.
冷却工程(iii)後のルツボは、外見上、変形は認められなかった。また、ルツボを切断し、侵食量を測定したところ、約100μmであった。 The melting step (ii) was performed at 1380 ° C. using the same crucible made of alumina-zirconia-silica electrocast refractory as in Example 1, and the heating step (v) was performed in an air atmosphere. In the same manner as in Example 1, the melting step (ii), the cooling step (iii), the pulverization step (iv), and the heating step (v) were performed to deposit lithium iron silicate particles. When the mineral phase of the obtained lithium iron silicate particles was measured using an X-ray diffractometer, it was confirmed that the particles were orthorhombic pyroxene-type LiFeSi 2 O 6 . Moreover, it was 27 m < 2 > / g when the specific surface area of the lithium iron silicate particle | grains was measured. Furthermore, when the average particle diameter of the lithium iron silicate particles was measured, the median diameter in terms of volume was 0.067 μm.
The crucible after the cooling step (iii) was not deformed in appearance. Moreover, when the crucible was cut and the amount of erosion was measured, it was about 100 μm.
<実施例4>
溶融物の組成がLi2O、FeO、およびP2O5換算量(単位:モル%)で、それぞれ、37.5モル%、25.0モル%、および37.5モル%となるように、炭酸リチウム(Li2CO3)、三酸化二鉄(Fe2O3)、およびリン酸水素アンモニウム(NH4H2PO4)を秤量し、乾式で混合・粉砕して、原料調合物を得た(原料調合工程(i))。 <Example 4>
Composition Li 2 O melt, FeO, and P 2 O 5 equivalent amount (unit: mol%) in each 37.5 mol%, 25.0 mol%, and so that 37.5 mol% , Lithium carbonate (Li 2 CO 3 ), ferric trioxide (Fe 2 O 3 ), and ammonium hydrogen phosphate (NH 4 H 2 PO 4 ) are weighed, mixed and pulverized in a dry process, Obtained (raw material preparation step (i)).
溶融物の組成がLi2O、FeO、およびP2O5換算量(単位:モル%)で、それぞれ、37.5モル%、25.0モル%、および37.5モル%となるように、炭酸リチウム(Li2CO3)、三酸化二鉄(Fe2O3)、およびリン酸水素アンモニウム(NH4H2PO4)を秤量し、乾式で混合・粉砕して、原料調合物を得た(原料調合工程(i))。 <Example 4>
Composition Li 2 O melt, FeO, and P 2 O 5 equivalent amount (unit: mol%) in each 37.5 mol%, 25.0 mol%, and so that 37.5 mol% , Lithium carbonate (Li 2 CO 3 ), ferric trioxide (Fe 2 O 3 ), and ammonium hydrogen phosphate (NH 4 H 2 PO 4 ) are weighed, mixed and pulverized in a dry process, Obtained (raw material preparation step (i)).
原料調合物を、内径20mm、高さ40mmの高ジルコニア質電鋳耐火物製(AGCセラミックス社製、商品名:ZB-X950、気孔率0.2%)のルツボに充填した。原料調合物を、大気中で1,200℃で溶融したこと以外は、実施例1と同様にして、溶融工程(ii)を行った。また、実施例1と同様にして、冷却工程(iii)、粉砕工程(iv)を行い、粉砕物を得た。
粉砕工程(iv)で得た粉砕物を、電気炉(モトヤマ社製、装置名:SK-3035F)を用い、大気中で、650℃で8時間加熱し、次いで室温まで冷却し、リン酸鉄リチウム粒子を析出させた(加熱工程(v))。
得られたリン酸鉄リチウム粒子の鉱物相を測定したところ、得られたリン酸鉄リチウム粒子は、単斜晶のナシコン型Li3Fe2(PO4)3であることが確認された。また、得られたリン酸鉄リチウム粒子の比表面積を測定したところ、比表面積は25m2/gであった。さらに、リン酸鉄リチウム粒子の平均粒子径を測定したところ、体積換算のメディアン径は0.23μmであった。
冷却工程(iii)後のルツボは、外見上、変形は認められなかった。また、ルツボを切断し、侵食量を測定したところ、50μm以下であった。 The raw material mixture was filled in a crucible made of high zirconia electrocast refractory (AGC Ceramics, trade name: ZB-X950, porosity 0.2%) having an inner diameter of 20 mm and a height of 40 mm. The melting step (ii) was performed in the same manner as in Example 1 except that the raw material formulation was melted at 1,200 ° C. in the air. Moreover, it carried out similarly to Example 1, and performed the cooling process (iii) and the grinding | pulverization process (iv), and obtained the ground material.
The pulverized product obtained in the pulverization step (iv) was heated in the atmosphere at 650 ° C. for 8 hours using an electric furnace (manufactured by Motoyama, apparatus name: SK-3035F), then cooled to room temperature, and then iron phosphate Lithium particles were precipitated (heating step (v)).
When the mineral phase of the obtained lithium iron phosphate particles was measured, it was confirmed that the obtained lithium iron phosphate particles were monoclinic Nasicon type Li 3 Fe 2 (PO 4 ) 3 . Moreover, when the specific surface area of the obtained lithium iron phosphate particle was measured, the specific surface area was 25 m 2 / g. Furthermore, when the average particle diameter of the lithium iron phosphate particles was measured, the median diameter in terms of volume was 0.23 μm.
The crucible after the cooling step (iii) was not deformed in appearance. Moreover, when the crucible was cut | disconnected and the amount of erosion was measured, it was 50 micrometers or less.
粉砕工程(iv)で得た粉砕物を、電気炉(モトヤマ社製、装置名:SK-3035F)を用い、大気中で、650℃で8時間加熱し、次いで室温まで冷却し、リン酸鉄リチウム粒子を析出させた(加熱工程(v))。
得られたリン酸鉄リチウム粒子の鉱物相を測定したところ、得られたリン酸鉄リチウム粒子は、単斜晶のナシコン型Li3Fe2(PO4)3であることが確認された。また、得られたリン酸鉄リチウム粒子の比表面積を測定したところ、比表面積は25m2/gであった。さらに、リン酸鉄リチウム粒子の平均粒子径を測定したところ、体積換算のメディアン径は0.23μmであった。
冷却工程(iii)後のルツボは、外見上、変形は認められなかった。また、ルツボを切断し、侵食量を測定したところ、50μm以下であった。 The raw material mixture was filled in a crucible made of high zirconia electrocast refractory (AGC Ceramics, trade name: ZB-X950, porosity 0.2%) having an inner diameter of 20 mm and a height of 40 mm. The melting step (ii) was performed in the same manner as in Example 1 except that the raw material formulation was melted at 1,200 ° C. in the air. Moreover, it carried out similarly to Example 1, and performed the cooling process (iii) and the grinding | pulverization process (iv), and obtained the ground material.
The pulverized product obtained in the pulverization step (iv) was heated in the atmosphere at 650 ° C. for 8 hours using an electric furnace (manufactured by Motoyama, apparatus name: SK-3035F), then cooled to room temperature, and then iron phosphate Lithium particles were precipitated (heating step (v)).
When the mineral phase of the obtained lithium iron phosphate particles was measured, it was confirmed that the obtained lithium iron phosphate particles were monoclinic Nasicon type Li 3 Fe 2 (PO 4 ) 3 . Moreover, when the specific surface area of the obtained lithium iron phosphate particle was measured, the specific surface area was 25 m 2 / g. Furthermore, when the average particle diameter of the lithium iron phosphate particles was measured, the median diameter in terms of volume was 0.23 μm.
The crucible after the cooling step (iii) was not deformed in appearance. Moreover, when the crucible was cut | disconnected and the amount of erosion was measured, it was 50 micrometers or less.
<比較例1>
実施例1と同様の組成を有する原料調合物を、ロジウムを20質量%含む白金合金製(内容量100mL)のルツボに充填し、実施例1と同様に、原料調合工程(i)、溶融工程(ii)、冷却工程(iii)を行い、固化物を得た。
ついで、得られた固化物中のPt含量およびRh含量を以下のようにして定量した。すなわち、固化物をHF-HClO4で分解した後、HClで再溶解し、溶解液中のPt含量およびRh含量をICP発光分光分析法によって測定した。その結果、固化物中のPt含量は9.6μg/gであり、Rh含量は23μg/gであった。
なお、実施例1および4で得られたリン酸鉄リチウム粒子並びに実施例3で得られたケイ酸鉄リチウム粒子について、上記と同様にして、Pt含量およびRh含量を測定したところ、いずれも0.1μg/g以下であった。 <Comparative Example 1>
A raw material preparation having the same composition as in Example 1 is filled in a crucible made of platinum alloy (internal volume 100 mL) containing 20% by mass of rhodium, and in the same manner as in Example 1, the raw material preparation step (i), the melting step (Ii) The cooling step (iii) was performed to obtain a solidified product.
Subsequently, the Pt content and the Rh content in the obtained solidified product were quantified as follows. That is, the solidified product was decomposed with HF-HClO 4 and then redissolved with HCl, and the Pt content and Rh content in the solution were measured by ICP emission spectroscopy. As a result, the Pt content in the solidified product was 9.6 μg / g, and the Rh content was 23 μg / g.
The lithium iron phosphate particles obtained in Examples 1 and 4 and the lithium iron silicate particles obtained in Example 3 were measured for the Pt content and Rh content in the same manner as described above. It was 1 μg / g or less.
実施例1と同様の組成を有する原料調合物を、ロジウムを20質量%含む白金合金製(内容量100mL)のルツボに充填し、実施例1と同様に、原料調合工程(i)、溶融工程(ii)、冷却工程(iii)を行い、固化物を得た。
ついで、得られた固化物中のPt含量およびRh含量を以下のようにして定量した。すなわち、固化物をHF-HClO4で分解した後、HClで再溶解し、溶解液中のPt含量およびRh含量をICP発光分光分析法によって測定した。その結果、固化物中のPt含量は9.6μg/gであり、Rh含量は23μg/gであった。
なお、実施例1および4で得られたリン酸鉄リチウム粒子並びに実施例3で得られたケイ酸鉄リチウム粒子について、上記と同様にして、Pt含量およびRh含量を測定したところ、いずれも0.1μg/g以下であった。 <Comparative Example 1>
A raw material preparation having the same composition as in Example 1 is filled in a crucible made of platinum alloy (internal volume 100 mL) containing 20% by mass of rhodium, and in the same manner as in Example 1, the raw material preparation step (i), the melting step (Ii) The cooling step (iii) was performed to obtain a solidified product.
Subsequently, the Pt content and the Rh content in the obtained solidified product were quantified as follows. That is, the solidified product was decomposed with HF-HClO 4 and then redissolved with HCl, and the Pt content and Rh content in the solution were measured by ICP emission spectroscopy. As a result, the Pt content in the solidified product was 9.6 μg / g, and the Rh content was 23 μg / g.
The lithium iron phosphate particles obtained in Examples 1 and 4 and the lithium iron silicate particles obtained in Example 3 were measured for the Pt content and Rh content in the same manner as described above. It was 1 μg / g or less.
<比較例2>
実施例1と同様の組成を有する原料調合物を、蓋付の、外径46mm、高さ53mmのアルミナ製の焼結ルツボ(ニッカトー社製、商品名:SSA-S)に充填した。ついで、実施例1と同様の条件で昇温して、1,250℃に達した後、2時間保持、加熱して溶融工程(ii)を行った。その後、300℃/時間の速度で降温し、室温になるまで冷却した。
冷却工程(iii)後のルツボを目視で観察したところ、ルツボ表面に亀裂が生じていた。また、ルツボの一部を切断し、侵食量を測定したところ、600μmであった。 <Comparative example 2>
A raw material formulation having the same composition as in Example 1 was filled in an alumina sintered crucible (made by Nikkato, trade name: SSA-S) with an outer diameter of 46 mm and a height of 53 mm. Next, the temperature was raised under the same conditions as in Example 1, and reached 1,250 ° C., then held for 2 hours and heated to perform the melting step (ii). Thereafter, the temperature was lowered at a rate of 300 ° C./hour and cooled to room temperature.
When the crucible after the cooling step (iii) was visually observed, cracks were generated on the surface of the crucible. Moreover, when a part of crucible was cut and the amount of erosion was measured, it was 600 μm.
実施例1と同様の組成を有する原料調合物を、蓋付の、外径46mm、高さ53mmのアルミナ製の焼結ルツボ(ニッカトー社製、商品名:SSA-S)に充填した。ついで、実施例1と同様の条件で昇温して、1,250℃に達した後、2時間保持、加熱して溶融工程(ii)を行った。その後、300℃/時間の速度で降温し、室温になるまで冷却した。
冷却工程(iii)後のルツボを目視で観察したところ、ルツボ表面に亀裂が生じていた。また、ルツボの一部を切断し、侵食量を測定したところ、600μmであった。 <Comparative example 2>
A raw material formulation having the same composition as in Example 1 was filled in an alumina sintered crucible (made by Nikkato, trade name: SSA-S) with an outer diameter of 46 mm and a height of 53 mm. Next, the temperature was raised under the same conditions as in Example 1, and reached 1,250 ° C., then held for 2 hours and heated to perform the melting step (ii). Thereafter, the temperature was lowered at a rate of 300 ° C./hour and cooled to room temperature.
When the crucible after the cooling step (iii) was visually observed, cracks were generated on the surface of the crucible. Moreover, when a part of crucible was cut and the amount of erosion was measured, it was 600 μm.
本発明によれば、純度に優れた二次電池用正極材料を、低コストでかつ効率的に製造することができる。
なお、2011年9月22日に出願された日本特許出願2011-207025号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 ADVANTAGE OF THE INVENTION According to this invention, the positive electrode material for secondary batteries excellent in purity can be manufactured efficiently at low cost.
The entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2011-207025 filed on September 22, 2011 are incorporated herein as the disclosure of the specification of the present invention. Is.
なお、2011年9月22日に出願された日本特許出願2011-207025号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 ADVANTAGE OF THE INVENTION According to this invention, the positive electrode material for secondary batteries excellent in purity can be manufactured efficiently at low cost.
The entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2011-207025 filed on September 22, 2011 are incorporated herein as the disclosure of the specification of the present invention. Is.
Claims (10)
- オリビン型、輝石型、またはナシコン型の結晶構造を有する化合物を含む二次電池用正極材料を製造する方法であって、
原料を調合して原料調合物を準備する原料調合工程と、
前記原料調合物を、電鋳耐火物で形成した容器内で溶融し、溶融物を得る溶融工程と、を含むことを特徴とする二次電池用正極材料の製造方法。 A method for producing a positive electrode material for a secondary battery comprising a compound having an olivine type, pyroxene type, or NASICON type crystal structure,
Raw material preparation step of preparing raw material preparation by preparing raw materials,
A method for producing a positive electrode material for a secondary battery, comprising: melting a raw material preparation in a container formed of an electroformed refractory to obtain a melt. - 前記電鋳耐火物が、アルミナ-ジルコニア-シリカ質電鋳耐火物、高ジルコニア質電鋳耐火物、およびアルミナ質電鋳耐火物からなる群より選ばれる少なくとも1種である請求項1に記載の二次電池用正極材料の製造方法。 2. The electrocast refractory is at least one selected from the group consisting of an alumina-zirconia-silica electrocast refractory, a high zirconia electrocast refractory, and an alumina electrocast refractory. A method for producing a positive electrode material for a secondary battery.
- 前記溶融工程を900℃~1700℃で行う請求項1または2に記載の二次電池用正極材料の製造方法。 The method for producing a positive electrode material for a secondary battery according to claim 1 or 2, wherein the melting step is performed at 900 ° C to 1700 ° C.
- 前記溶融工程で得られた溶融物を冷却して固化物を得る冷却工程を有する請求項1~3のいずれか一項に記載の二次電池用正極材料の製造方法。 The method for producing a positive electrode material for a secondary battery according to any one of claims 1 to 3, further comprising a cooling step of cooling the melt obtained in the melting step to obtain a solidified product.
- 前記冷却工程において、前記溶融物を1×103℃/秒以上の冷却速度で冷却する請求項4に記載の二次電池用正極材料の製造方法。 5. The method for producing a positive electrode material for a secondary battery according to claim 4, wherein, in the cooling step, the melt is cooled at a cooling rate of 1 × 10 3 ° C./second or more.
- 前記冷却工程で得られた固化物を粉砕して粉砕物を得る粉砕工程を有する請求項4または5に記載の二次電池用正極材料の製造方法。 The method for producing a positive electrode material for a secondary battery according to claim 4 or 5, further comprising a pulverization step of pulverizing the solidified product obtained in the cooling step to obtain a pulverized product.
- 前記粉砕工程において、前記固化物に、有機化合物および炭素系導電物質からなる群より選ばれる少なくとも1種を添加して粉砕する請求項6に記載の二次電池用正極材料の製造方法。 The method for producing a positive electrode material for a secondary battery according to claim 6, wherein in the pulverizing step, at least one selected from the group consisting of an organic compound and a carbon-based conductive material is added to the solidified product and pulverized.
- 前記粉砕工程で得られた粉砕物を加熱する加熱工程を有する請求項6または7に記載の二次電池用正極材料の製造方法。 The manufacturing method of the positive electrode material for secondary batteries of Claim 6 or 7 which has a heating process which heats the ground material obtained at the said grinding | pulverization process.
- 前記二次電池用正極材料が下記式(1)で表されるリン酸化合物を含む請求項1~8のいずれか一項に記載の二次電池用正極材料の製造方法。
AM1-aX1 aP1-bZ1 bO4+c (1)
(式中、AはLi、Na、およびKからなる群より選ばれる少なくとも1種の原子を示し、MはFe、Mn、Co、およびNiからなる群より選ばれる少なくとも1種の原子を示し、X1はZr、Ti、Nb、Ta、Mo、およびWからなる群より選ばれる少なくとも1種の原子を示し、Z1はSi、B、Al、およびVからなる群より選ばれる少なくとも1種の原子を示す。aは0≦a≦0.2であり、bは0≦b≦0.2であり、cは、aおよびbの数値、ならびにMの価数、X1の価数およびZ1の価数に依存し、電気的中性を満たす数である。) The method for producing a positive electrode material for a secondary battery according to any one of claims 1 to 8, wherein the positive electrode material for a secondary battery contains a phosphoric acid compound represented by the following formula (1).
AM 1-a X 1 a P 1-b Z 1 b O 4 + c (1)
(In the formula, A represents at least one atom selected from the group consisting of Li, Na, and K, M represents at least one atom selected from the group consisting of Fe, Mn, Co, and Ni; X 1 represents at least one atom selected from the group consisting of Zr, Ti, Nb, Ta, Mo, and W, and Z 1 represents at least one type selected from the group consisting of Si, B, Al, and V A is 0 ≦ a ≦ 0.2, b is 0 ≦ b ≦ 0.2, c is the numerical value of a and b, and the valence of M, the valence of X 1 and Z It is a number that depends on the valence of 1 and satisfies electrical neutrality.) - 前記二次電池用正極材料が下記式(2)で表されるケイ酸化合物を含む請求項1~8のいずれか一項に記載の二次電池用正極材料の製造方法。
A2M1-dX2 dSi1-eZ2 eO4+f (2)
(式中、AはLi、Na、およびKからなる群より選ばれる少なくとも1種の原子を示し、MはFe、Mn、Co、およびNiからなる群より選ばれる少なくとも1種の原子を示し、X2はZr、Ti、Nb、Ta、Mo、およびWからなる群より選ばれる少なくとも1種の原子を示し、Z2はP、B、Al、およびVからなる群より選ばれる少なくとも1種の原子を示す。dは0≦d≦0.2であり、eは0≦e≦0.2であり、fは、dおよびeの数値、ならびにMの価数、X2の価数およびZ2の価数に依存し、電気的中性を満たす数である。) The method for producing a positive electrode material for a secondary battery according to any one of claims 1 to 8, wherein the positive electrode material for a secondary battery contains a silicate compound represented by the following formula (2).
A 2 M 1-d X 2 d Si 1-e Z 2 e O 4 + f (2)
(In the formula, A represents at least one atom selected from the group consisting of Li, Na, and K, M represents at least one atom selected from the group consisting of Fe, Mn, Co, and Ni; X 2 represents at least one atom selected from the group consisting of Zr, Ti, Nb, Ta, Mo, and W, and Z 2 represents at least one type selected from the group consisting of P, B, Al, and V D is 0 ≦ d ≦ 0.2, e is 0 ≦ e ≦ 0.2, f is the numerical value of d and e, and the valence of M, the valence of X 2 and Z It is a number that depends on the valence of 2 and satisfies electrical neutrality.)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011207025 | 2011-09-22 | ||
JP2011-207025 | 2011-09-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013042777A1 true WO2013042777A1 (en) | 2013-03-28 |
Family
ID=47914536
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/074269 WO2013042777A1 (en) | 2011-09-22 | 2012-09-21 | Production method for positive electrode material for secondary battery |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2013042777A1 (en) |
WO (1) | WO2013042777A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013258035A (en) * | 2012-06-12 | 2013-12-26 | Denso Corp | Electrode active material for lithium ion secondary battery, and lithium ion secondary battery |
WO2014050086A1 (en) * | 2012-09-28 | 2014-04-03 | トヨタ自動車株式会社 | Negative electrode for batteries, battery, vehicle and battery-equipped device |
JP2015523682A (en) * | 2012-05-29 | 2015-08-13 | クラリアント・(カナダ)・インコーポレイテッド | Method for producing crystalline electrode material and material obtained therefrom |
US20210343996A1 (en) * | 2020-04-29 | 2021-11-04 | Schott Ag | Solid-state lithium ion conductor |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS553319B2 (en) * | 1972-02-21 | 1980-01-24 | ||
JPH1030132A (en) * | 1996-07-19 | 1998-02-03 | Mitsui Mining & Smelting Co Ltd | Method for reducing oxygen in hydrogen storage alloy |
JPH11100214A (en) * | 1997-09-26 | 1999-04-13 | Nippon Electric Glass Co Ltd | Glass melting furnace |
JP2000247647A (en) * | 1999-02-26 | 2000-09-12 | Asahi Glass Co Ltd | Furnace material for vacuum degassing equipment for molten glass and vacuum degassing equipment |
JP2008293661A (en) * | 2007-05-22 | 2008-12-04 | Nec Tokin Corp | Positive electrode for lithium secondary battery and lithium secondary battery using the same |
WO2009093663A1 (en) * | 2008-01-22 | 2009-07-30 | Agc Ceramics Co., Ltd. | Aggregate particles for molds |
JP2011001242A (en) * | 2009-06-22 | 2011-01-06 | Asahi Glass Co Ltd | Method for producing lithium iron phosphate particle and lithium iron phosphate particle |
JP2011076793A (en) * | 2009-09-29 | 2011-04-14 | Furukawa Battery Co Ltd:The | Method of synthesizing olivine-type m lithium silicate, and lithium ion secondary cell |
WO2011065337A1 (en) * | 2009-11-24 | 2011-06-03 | 旭硝子株式会社 | Process for production of phosphoric acid compound, and process for production of secondary battery |
WO2011111628A1 (en) * | 2010-03-09 | 2011-09-15 | 旭硝子株式会社 | Phosphate compound, positive electrode for secondary battery and method for producing secondary battery |
-
2012
- 2012-09-21 JP JP2013534771A patent/JPWO2013042777A1/en active Pending
- 2012-09-21 WO PCT/JP2012/074269 patent/WO2013042777A1/en active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS553319B2 (en) * | 1972-02-21 | 1980-01-24 | ||
JPH1030132A (en) * | 1996-07-19 | 1998-02-03 | Mitsui Mining & Smelting Co Ltd | Method for reducing oxygen in hydrogen storage alloy |
JPH11100214A (en) * | 1997-09-26 | 1999-04-13 | Nippon Electric Glass Co Ltd | Glass melting furnace |
JP2000247647A (en) * | 1999-02-26 | 2000-09-12 | Asahi Glass Co Ltd | Furnace material for vacuum degassing equipment for molten glass and vacuum degassing equipment |
JP2008293661A (en) * | 2007-05-22 | 2008-12-04 | Nec Tokin Corp | Positive electrode for lithium secondary battery and lithium secondary battery using the same |
WO2009093663A1 (en) * | 2008-01-22 | 2009-07-30 | Agc Ceramics Co., Ltd. | Aggregate particles for molds |
JP2011001242A (en) * | 2009-06-22 | 2011-01-06 | Asahi Glass Co Ltd | Method for producing lithium iron phosphate particle and lithium iron phosphate particle |
JP2011076793A (en) * | 2009-09-29 | 2011-04-14 | Furukawa Battery Co Ltd:The | Method of synthesizing olivine-type m lithium silicate, and lithium ion secondary cell |
WO2011065337A1 (en) * | 2009-11-24 | 2011-06-03 | 旭硝子株式会社 | Process for production of phosphoric acid compound, and process for production of secondary battery |
WO2011111628A1 (en) * | 2010-03-09 | 2011-09-15 | 旭硝子株式会社 | Phosphate compound, positive electrode for secondary battery and method for producing secondary battery |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015523682A (en) * | 2012-05-29 | 2015-08-13 | クラリアント・(カナダ)・インコーポレイテッド | Method for producing crystalline electrode material and material obtained therefrom |
JP2013258035A (en) * | 2012-06-12 | 2013-12-26 | Denso Corp | Electrode active material for lithium ion secondary battery, and lithium ion secondary battery |
WO2014050086A1 (en) * | 2012-09-28 | 2014-04-03 | トヨタ自動車株式会社 | Negative electrode for batteries, battery, vehicle and battery-equipped device |
JPWO2014050086A1 (en) * | 2012-09-28 | 2016-08-22 | トヨタ自動車株式会社 | Negative electrode for secondary battery, secondary battery, vehicle and battery-equipped equipment |
US20210343996A1 (en) * | 2020-04-29 | 2021-11-04 | Schott Ag | Solid-state lithium ion conductor |
US12255306B2 (en) * | 2020-04-29 | 2025-03-18 | Schott Ag | Solid-state lithium ion conductor |
Also Published As
Publication number | Publication date |
---|---|
JPWO2013042777A1 (en) | 2015-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6049713B2 (en) | Manufacturing method for molten products | |
JP2014056722A (en) | Phosphate compound, positive electrode material for secondary battery, and method for producing secondary battery | |
WO2011162348A1 (en) | Silicic acid compound, positive electrode for secondary cell, and method for producing secondary cell | |
JP2011001242A (en) | Method for producing lithium iron phosphate particle and lithium iron phosphate particle | |
CN103402921A (en) | Method for the production of an LMO product | |
WO2012133584A1 (en) | Positive electrode active material for secondary battery, positive electrode for secondary battery, and method for producing secondary battery | |
KR102444648B1 (en) | Positive electrode active material for sodium ion secondary batteries and method for producing same | |
CN102024939A (en) | Process for preparing electroactive insertion compounds and electrode materials obtained therefrom | |
US20210343996A1 (en) | Solid-state lithium ion conductor | |
WO2011138964A1 (en) | (silicic acid)-(phosphoric acid) compound, positive electrode for secondary battery, and process for production of secondary battery | |
WO2012133581A1 (en) | Positive electrode active material for secondary battery, positive electrode for secondary battery, and method for producing secondary battery | |
US20120217451A1 (en) | Process for producing phosphate compound and method for producing secondary battery | |
WO2012057341A1 (en) | Silicate compound, secondary-battery positive electrode, secondary battery, and manufacturing methods therefor | |
WO2012067249A1 (en) | Silicate compound, secondary-battery positive electrode, secondary battery, and manufacturing methods therefor | |
WO2013042777A1 (en) | Production method for positive electrode material for secondary battery | |
WO2012086722A1 (en) | Silicic acid-vanadic acid compound, positive electrode for secondary battery, and manufacturing method for secondary battery | |
JP2013067543A (en) | Silicate compound, positive electrode for secondary battery, and method for producing secondary battery | |
JP2013069526A (en) | Method of manufacturing positive electrode material for secondary battery | |
WO2013042780A1 (en) | Production method for positive electrode material for secondary battery | |
JP2014055085A (en) | Phosphate compound, cathode material for second battery, and method for producing second battery | |
JP2013047162A (en) | Methods for production of silicic acid compound, positive electrode for secondary battery and secondary battery | |
WO2012057340A1 (en) | Silicate-phosphate compound, secondary-battery positive electrode, secondary battery, and manufacturing methods therefor | |
WO2013042778A1 (en) | Production method for positive electrode material for secondary battery | |
WO2012067250A1 (en) | Silicate compound, secondary-battery positive electrode, secondary battery, and manufacturing methods therefor | |
JP2013047161A (en) | Silicate compound, positive electrode for secondary battery, and method for producing secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12833467 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013534771 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12833467 Country of ref document: EP Kind code of ref document: A1 |