WO2013042622A1 - Display device and drive method for same - Google Patents
Display device and drive method for same Download PDFInfo
- Publication number
- WO2013042622A1 WO2013042622A1 PCT/JP2012/073594 JP2012073594W WO2013042622A1 WO 2013042622 A1 WO2013042622 A1 WO 2013042622A1 JP 2012073594 W JP2012073594 W JP 2012073594W WO 2013042622 A1 WO2013042622 A1 WO 2013042622A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal lines
- signal
- voltage
- data signal
- display device
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 38
- 230000015572 biosynthetic process Effects 0.000 claims description 88
- 239000011159 matrix material Substances 0.000 claims description 11
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 claims description 4
- 239000004973 liquid crystal related substance Substances 0.000 description 52
- 238000010586 diagram Methods 0.000 description 23
- 239000003990 capacitor Substances 0.000 description 14
- 101100392125 Caenorhabditis elegans gck-1 gene Proteins 0.000 description 8
- 230000004048 modification Effects 0.000 description 8
- 238000012986 modification Methods 0.000 description 8
- 201000005569 Gout Diseases 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000010409 thin film Substances 0.000 description 3
- 239000012464 large buffer Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
- G09G3/3611—Control of matrices with row and column drivers
- G09G3/3614—Control of polarity reversal in general
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
- G09G3/3611—Control of matrices with row and column drivers
- G09G3/3674—Details of drivers for scan electrodes
- G09G3/3677—Details of drivers for scan electrodes suitable for active matrices only
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
- G09G3/3611—Control of matrices with row and column drivers
- G09G3/3685—Details of drivers for data electrodes
- G09G3/3688—Details of drivers for data electrodes suitable for active matrices only
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2310/00—Command of the display device
- G09G2310/02—Addressing, scanning or driving the display screen or processing steps related thereto
- G09G2310/0202—Addressing of scan or signal lines
- G09G2310/0205—Simultaneous scanning of several lines in flat panels
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2310/00—Command of the display device
- G09G2310/02—Addressing, scanning or driving the display screen or processing steps related thereto
- G09G2310/0243—Details of the generation of driving signals
- G09G2310/0245—Clearing or presetting the whole screen independently of waveforms, e.g. on power-on
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2310/00—Command of the display device
- G09G2310/02—Addressing, scanning or driving the display screen or processing steps related thereto
- G09G2310/0243—Details of the generation of driving signals
- G09G2310/0248—Precharge or discharge of column electrodes before or after applying exact column voltages
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2310/00—Command of the display device
- G09G2310/02—Addressing, scanning or driving the display screen or processing steps related thereto
- G09G2310/0264—Details of driving circuits
- G09G2310/0286—Details of a shift registers arranged for use in a driving circuit
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2310/00—Command of the display device
- G09G2310/08—Details of timing specific for flat panels, other than clock recovery
Definitions
- the present invention relates to a display device and a driving method thereof, and more particularly to a display device having a high-definition display unit or a display unit (display panel) driven at high speed and a driving method thereof.
- liquid crystal display devices have come to use high-definition display units and display units driven at high speed.
- the load on the source signal line increases due to high definition even though the video signal must be written to the pixel formation portion formed in the display portion at high speed. It is difficult to write in.
- Japanese Unexamined Patent Application Publication No. 2010-26528 describes a display device that can suppress a shortage of gradation voltage. Specifically, after the gate driver selects pixels for four rows at a time, the other four rows of pixels are sequentially selected for each row by double gate driving. At this time, the source driver collectively supplies gradation voltages corresponding to black data to the pixels for four rows, and then sequentially supplies gradation voltages corresponding to image data to the pixels for the other four rows. Thereby, since the shortage of gradation voltage is suppressed, the display device can display a high-quality image.
- the pixel formation portion is precharged by using a signal that depends on the gradation voltage corresponding to the image data several lines before by double gate driving. Done. If black data is written in this precharge, the precharge becomes insufficient, and the display device cannot write the gradation voltage corresponding to the image data to the pixel formation portion at high speed.
- an object of the present invention is to provide a display device capable of writing a video signal in a pixel formation portion at a high speed and a driving method thereof.
- a first aspect of the present invention is an active matrix display device,
- the plurality of data signal lines, the plurality of scanning signal lines intersecting with the plurality of data signal lines, and the intersections of the plurality of data signal lines and the plurality of scanning signal lines are arranged in a matrix.
- a display unit having a plurality of pixel formation units;
- a data signal line driving circuit for driving the plurality of data signal lines;
- a scanning signal line driving circuit for driving the plurality of scanning signal lines,
- the data signal line driving circuit generates a plurality of video signals representing a video to be displayed as a signal whose voltage polarity is inverted for each data signal line and every predetermined number of frame periods, to the plurality of data signal lines.
- Each of the plurality of data signal lines is applied with a precharge signal having a voltage corresponding to an intermediate gray level of a video signal in order to precharge the plurality of pixel formation portions in the blanking period of the frame period.
- the scanning signal line driving circuit applies a collective driving signal for simultaneously selecting the plurality of scanning signal lines to the plurality of scanning signal lines during the blanking period, and the plurality of video signals are the plurality of video signals.
- a scanning signal for sequentially selecting the plurality of scanning signal lines is applied to each of the plurality of scanning signal lines.
- the voltage of the precharge signal is different between a data signal line to which a positive video signal is applied and a data signal line to which a negative video signal is applied.
- the backlight unit is lit in a period from when each of the plurality of video signals is written to all of the plurality of pixel formation portions to when the next frame period starts.
- the scanning signal line drive circuit and the data signal line drive circuit stop operating in a period from when the plurality of video signals are written to all of the plurality of pixel formation portions until the next frame period starts. It is characterized by.
- each pixel forming portion arranged in parallel with the plurality of data signal lines is connected to a data signal line adjacent in the same direction.
- each pixel forming portion arranged in parallel with the plurality of data signal lines alternately has a predetermined number of data signal lines adjacent in the same direction and data signal lines adjacent in the opposite direction. It is connected.
- the scanning signal line driving circuit has a configuration in which a plurality of unit circuits each composed of a transistor of the same conductivity type are connected in multiple stages, and includes a shift register that operates based on a two-phase clock composed of a first clock and a second clock.
- the unit circuit is An output terminal for outputting the scanning signal and the collective driving signal to the scanning signal line; An output signal generation circuit that generates an on-voltage and an off-voltage and outputs the output voltage as the scanning signal to the output terminal; A collective drive circuit that outputs an on-voltage to the output terminal as the collective drive signal; When an ON voltage is simultaneously applied to the collective drive circuit of the plurality of unit circuits during the blanking period of the frame period, the collective drive circuit simultaneously outputs the collective drive signal to the plurality of scanning signal lines. It is characterized by.
- the collective drive circuit has one transistor, The transistor has one conduction terminal connected to the output terminal, and outputs the pulse signal applied to the other conduction terminal to the output terminal as the collective drive signal when the ON voltage is applied to the control terminal. It is characterized by that.
- the collective drive circuit has one transistor, The transistor has one conduction terminal connected to the output terminal and outputs the power supply voltage connected to the other conduction terminal to the output terminal as a collective drive signal when the ON voltage is applied to the control terminal. It is characterized by.
- a plurality of data signal lines, a plurality of scanning signal lines intersecting with the plurality of data signal lines, and intersections of the plurality of data signal lines and the plurality of scanning signal lines are respectively provided.
- a drive method for an active matrix display device comprising a plurality of pixel forming portions arranged correspondingly in a matrix, In a blanking period of a frame period, a precharge signal having a voltage corresponding to an intermediate gray level of a video signal is applied to the plurality of data signal lines in order to precharge the plurality of pixel formation units, and the plurality of data signal lines Simultaneously writing the precharge signal to the plurality of pixel forming portions by applying a collective driving signal for simultaneously selecting the scanning signal lines to the plurality of scanning signal lines;
- a plurality of video signals representing video to be displayed are generated for each data signal line as a signal whose voltage polarity is inverted every predetermined number of frame periods, applied to each of the plurality of data signal lines, and Applying scanning signals for sequentially selecting scanning signal lines to the plurality of scanning signal lines, respectively, and writing the plurality of video signals to the plurality of pixel forming portions, respectively.
- a plurality of scanning signal lines are simultaneously applied to the plurality of scanning signal lines to simultaneously select the plurality of scanning signal lines, thereby selecting the plurality of scanning signal lines.
- a precharge signal having a voltage corresponding to an intermediate gray level of the video signal is applied to the plurality of data signal lines.
- a precharge signal having a voltage close to the voltage of the video signal to be written next is written in all the pixel formation portions.
- scanning signals for sequentially selecting a plurality of scanning signal lines are applied to the plurality of scanning signal lines, the plurality of scanning signal lines are sequentially selected, and a plurality of video signals representing the video to be displayed are displayed for each data signal line.
- a signal whose polarity is inverted every predetermined number of frame periods is generated and applied to a plurality of data signal lines.
- each scanning signal line is selected in order, and a video signal is written for each pixel formation portion connected to the same scanning signal line.
- a voltage close to the voltage of the video signal to be written next is charged in advance in each pixel formation portion, so that the video signal can be written in the pixel formation portion at a high speed.
- a positive video signal is then applied to a data signal line to which a precharge signal having a positive polarity voltage is applied among two different voltages.
- a negative video signal is then applied to the data signal line to which a precharge signal having a negative voltage is applied.
- the backlight is irradiated from the back surface of the display portion.
- the scanning signal line drive circuit and the data signal line drive circuit stop operating in a period from when the video signal is written to all of the plurality of pixel formation portions until the next frame period starts. To do. As a result, variations in the effective voltage in the screen during one frame period can be reduced, so that the display quality of the video can be maintained above a certain level.
- each pixel forming portion arranged in parallel with the data signal line among the plurality of pixel forming portions is connected to the data signal line adjacent in the same direction. Wiring is not complicated. Thereby, the aperture ratio of a pixel formation part can be improved.
- each pixel forming portion arranged in parallel with the data signal line among the plurality of pixel forming portions has a predetermined number of data signal lines adjacent in the same direction and a data signal line adjacent in the opposite direction. Each number is connected alternately.
- the display device is driven by the pseudo dot inversion driving method. As a result, the occurrence of flicker and crosstalk is suppressed, so that the display quality of the display device can be improved.
- the shift register included in the scanning signal line driving circuit includes a plurality of unit circuits connected in cascade.
- the collective drive circuit When an ON voltage is applied to the collective drive circuit of each unit circuit during the blanking period of each frame period, the collective drive circuit outputs a collective drive signal to each of the plurality of scanning signal lines simultaneously.
- the precharge signal can be simultaneously written in all the pixel formation portions.
- the pulse signal applied to the other conduction terminal is output to the output terminal as the collective drive signal.
- a collective drive circuit having such a simple configuration can simultaneously output collective drive signals to the scanning signal lines.
- the power supply voltage applied to the other conduction terminal is output to the output terminal as the collective drive signal.
- the collective driving circuit applies the power supply voltage to the drain terminal of the transistor, so that it is not necessary to generate a pulse signal to be applied to the drain terminal. For this reason, the display device can be easily designed, and the cost can be reduced. Further, since the power supply voltage applied to the drain terminal is not a pulse signal, the voltage of each scanning signal line can be stabilized in a short time.
- FIG. 1 is a block diagram showing an overall configuration of an active matrix liquid crystal display device according to a first embodiment of the present invention.
- FIG. 6 is a diagram for explaining a column inversion driving method as a driving method of the liquid crystal display device in the first embodiment, and more specifically, (A) explains a column inversion driving method in an odd-numbered frame period. (B) is a diagram for explaining a column inversion driving method in an even-numbered frame period.
- FIG. 3 is a block diagram showing a configuration of a gate driver of the liquid crystal display device in the first embodiment.
- FIG. 3 is a block diagram illustrating a configuration of a shift register included in the gate driver of the liquid crystal display device in the first embodiment.
- FIG. 4 is a circuit diagram of a unit circuit constituting a shift register included in the gate driver of the liquid crystal display device in the first embodiment.
- FIG. 4 is a timing chart showing an operation of a unit circuit in the first embodiment.
- 4 is a timing chart illustrating an operation of the liquid crystal display device according to the first embodiment. It is a block diagram which shows the whole structure of the liquid crystal display device which has a backlight unit which concerns on the said 1st Embodiment. It is a block diagram which shows the structure of the shift register contained in the gate driver of the liquid crystal display device which concerns on the modification of 1st Embodiment.
- FIG. 4 is a circuit diagram of a unit circuit constituting a shift register included in the gate driver of the liquid crystal display device in the first embodiment.
- FIG. 4 is a timing chart showing an operation of a unit circuit in the first embodiment.
- 4 is a timing chart illustrating an operation of the liquid crystal display device according to the first embodiment.
- It is a block diagram which shows the whole
- FIG. 6 is a circuit diagram of a unit circuit that constitutes a shift register included in a gate driver of a liquid crystal display device according to a modification of the first embodiment.
- 6 is a timing chart showing an operation of a unit circuit in a modification of the first embodiment.
- 6 is a timing chart illustrating an operation of a liquid crystal display device according to a modified example of the first embodiment.
- FIG. 7 is a diagram for explaining a pseudo dot inversion driving method which is a driving method of a liquid crystal display device in a second embodiment of the present invention, and more specifically, (A) is a pseudo dot inversion driving in an odd-numbered frame period.
- FIG. 10 is a diagram for explaining another pseudo dot inversion driving method which is a driving method of the liquid crystal display device in the second embodiment, and more specifically, (A) shows another pseudo dot in an odd-numbered frame period. It is a figure for demonstrating an inversion drive system, (B) is a figure for demonstrating the other pseudo dot inversion drive systems in the even-numbered frame period.
- FIG. 1 is a block diagram showing the overall configuration of an active matrix liquid crystal display device according to a first embodiment of the present invention.
- the liquid crystal display device includes a display unit 10, a display control circuit 20, a source driver (data signal line driving circuit) 30, and a gate driver (scanning signal line driving circuit) 40.
- the display unit 10 includes a plurality (m) of source signal lines (data signal lines) SL1 to SLm, a plurality (n) of gate signal lines (scanning signal lines) GL1 to GLn, and these source signal lines SL1.
- a plurality of (n ⁇ m) pixel forming portions provided corresponding to the respective intersections of .about.SLm and the gate signal lines GL1 to GLn are provided.
- a plurality of pixel forming portions are arranged in a matrix to form a pixel array.
- Each pixel formation portion includes a thin film transistor (TFT) 11 that is a switching element having a gate terminal connected to a gate signal line passing through a corresponding intersection and a source terminal connected to a source signal line passing through the intersection.
- TFT thin film transistor
- a pixel electrode connected to the drain terminal of the TFT 11 and a counter electrode Ec provided in common to the plurality of pixel formation portions are provided, and a liquid crystal is provided between the pixel electrodes of the plurality of pixel formation portions and the counter electrode Ec. Layers are sandwiched. These pixel electrode, counter electrode Ec, and liquid crystal layer form a pixel capacitor Cp.
- the pixel capacitor Cp further includes an auxiliary capacitor connected in parallel to the liquid crystal capacitor so that the voltage can be reliably held.
- the auxiliary capacitor is not directly related to the present invention, in the present specification, the pixel capacitor Cp will be described as being composed of only a liquid crystal capacitor.
- the display control circuit 20 receives an externally supplied digital video signal DAT and a timing signal group TG such as a horizontal synchronizing signal and a vertical synchronizing signal, and receives a digital video signal DV and a source start for controlling video display on the display unit 10.
- the source driver 30 receives the digital video signal DV, the source start pulse signal SSP, the source clock signal SCK, and the latch strobe signal LS output from the display control circuit 20, and drives the video signals for the source signal lines SL1 to SLm. S (1) to S (m) are respectively applied.
- the source driver 30 has an odd column source signal line SL (2j + 1) (j is an integer greater than or equal to zero) and an even column source signal line SL (2j) having different polarities for each frame period. Apply the video signal. For example, in a certain frame period, a positive video signal is applied to the odd-numbered source signal line SL (2j + 1), and a negative video signal is applied to the even-numbered source signal line SL (2j).
- the negative video signal is applied to the odd-numbered source signal line SL (2j + 1), and the positive video signal is applied to the even-numbered source signal line SL (2j).
- the configuration of the source driver 30 that applies the video signal having the opposite polarity to each source signal line for each frame period is well known, the description thereof is omitted.
- the gate driver 40 is active every frame period (one vertical scanning period) based on the first gate clock signal GCK1, the second gate clock signal GCK2, and the gate start pulse signal GSP output from the display control circuit 20.
- the scanning signals GOUT1 to GOUTn are sequentially applied to the corresponding gate signal lines GL1 to GLn. Further, the gate driver 40 simultaneously applies the high-level collective drive signal VBD to the gate signal lines GL1 to GLn based on the precharge voltage signal VGP and the all-on control signal AON at the beginning of each frame period.
- the video signals S (1) to S (m) are applied to the source signal lines SL1 to SLm, respectively, and the scanning signals GOUT1 to GOUTn are applied to the gate signal lines GL1 to GLn, respectively.
- An image based on the digital video signal DAT supplied from the outside is displayed on the display unit 10.
- the collective drive signal VBD is simultaneously applied to the gate signal lines GL1 to GLn, so that all the pixel forming portions are precharged simultaneously.
- the median value of the positive polarity gradation voltage (hereinafter referred to as “the intermediate voltage on the positive polarity side”) is precharged in the pixel formation portion where the positive polarity video signal is written, and at the same time the negative polarity video signal
- the pixel formation portion to be written is precharged with a median value of negative gradation voltage (hereinafter referred to as “intermediate voltage on the negative polarity side”).
- the voltage precharged in the pixel formation portion may be different between the pixel formation portion to which the positive video signal is written and the pixel formation portion to which the negative video signal is written. Further, the precharged voltage may be a voltage corresponding to an intermediate gray level of the video signal regardless of the polarity of the video signal.
- Polarity inversion driving method of liquid crystal display device When driving a liquid crystal display device, if a direct current voltage (DC voltage) is continuously applied to liquid crystal molecules for a long time, the characteristics of the liquid crystal deteriorate. Therefore, in order to prevent the deterioration of characteristics, the liquid crystal display device uses a polarity inversion driving method in which driving is performed while periodically inverting the polarity of the voltage applied to the liquid crystal layer.
- Such polarity inversion driving methods include a line inversion driving method, a column inversion driving method, a dot inversion driving method, and the like, but this embodiment is applied to a liquid crystal display device driven by a column inversion method. Therefore, the column inversion driving method will be described.
- FIG. 2 is a diagram for explaining the column inversion driving method.
- a positive video signal is applied to the odd-numbered source signal line SL (2j + 1), and the even-numbered source signal line SL is applied.
- a negative video signal is applied to (2j).
- a negative video signal is applied to the odd-numbered source signal line SL (2j + 1), and the even-numbered source signal line SL (2j) is applied.
- a positive video signal is applied.
- positive and negative video signals are respectively transmitted.
- the polarity of the video signal applied to each source signal line may be opposite to the polarity shown in FIG.
- FIG. 3 is a block diagram showing a configuration of the gate driver 40.
- the gate driver 40 includes a shift register 410 in which n unit circuits SRa (1) to SRa (n) are connected in cascade.
- the n unit circuits SRa are provided in a one-to-one correspondence with each row of the pixel array of n rows ⁇ m columns formed in the display unit 10.
- the unit circuits SRa (1) to SRa (n) of the shift register 410 not only output high-level scanning signals to the gate signal lines GL1 to GLn in each row in each frame period, but also in each frame period.
- the high-level collective drive signal VBD is simultaneously output to all the gate signal lines GL1 to GLn.
- FIG. 4 is a block diagram showing the configuration of the shift register 410 in the gate driver 40.
- signals provided to the input terminals of the unit circuits SRa (1) to SRa (n) constituting the shift register 410 will be described.
- first clock two-phase clocks
- second clock two-phase clocks
- An input terminal for receiving, an input terminal for receiving the precharge voltage signal VGP, and an output terminal for outputting the scanning signals GOUT1 to GOUTn or the collective driving signal VBD to the gate signal lines GL1 to GLn are provided. Yes.
- the first clock CKA and the second clock CKB will be described.
- the first gate clock signal GCK1 is supplied as the first clock CKA
- the second gate clock signal GCK2 is supplied as the second clock CKB.
- the second gate clock signal GCK2 is supplied as the first clock CKA
- the first gate clock signal GCK1 is supplied as the second clock CKB.
- the unit circuits SRa (3) to SRa (n) from the third stage to the nth stage also have two stages similar to the above-described unit circuits SRa (1) and SRa (2) of the first stage and the second stage. Repeated one by one.
- the first gate clock signal GCK1 and the second gate clock signal GCK2 are signals that are 180 degrees out of phase with each other.
- the set signal SET will be described. Focusing on the unit circuit SRa (k) in the k-th stage (k is a positive integer), the scanning signal GOUT (k ⁇ 1) output from the unit circuit SRa (k ⁇ 1) in the (k ⁇ 1) -th stage Unit circuit SRa (k) is applied as set signal SET. However, the first stage unit circuit SRa (1) is supplied with the gate start pulse signal GSP as the set signal SET.
- the reset signal RESET will be described. Focusing on the k-th unit circuit SRa (k), the scanning signal GOUT (k + 1) output from the (k + 1) -th unit circuit SRa (k + 1) is given to the unit circuit SRa (k) as the reset signal RESET. . However, an externally input signal is given as a reset signal RESET to the nth unit circuit SRa (n) which is the final stage. Instead of inputting from the outside, a dummy unit circuit SRa (n + 1) is provided at the (n + 1) stage, and the scanning signal GOUT (n + 1) output from the unit circuit SRa (n + 1) is supplied to the unit circuit SRa (n). The reset signal RESET may be used.
- a scanning signal GOUTk for selecting the k-th gate signal line GLk is output from the output terminal of the k-th unit circuit SRa (k).
- the scanning signal GOUTk is supplied to the unit circuit SRa (k ⁇ 1) at the (k ⁇ 1) stage as the reset signal RESET and to the unit circuit SRa (k + 1) at the (k + 1) stage as the set signal SET. It is done. Further, the unit circuit SRa (k) outputs the high-level collective drive signal VBD to the gate signal line GLk during the blanking period of each frame period.
- FIG. 5 is a circuit diagram showing a configuration of the unit circuit SRa included in the shift register 410.
- the unit circuit SRa includes five thin film transistors (hereinafter referred to as “transistors”) T1 to T5 of the same conductivity type, and one capacitor C.
- the voltage (signal level) that turns on the transistor when applied to the gate terminal is referred to as on-voltage (on level)
- the voltage (signal level) that turns off the transistor is referred to as off-voltage (off level).
- a high level voltage is an on-voltage (high level signal is on level)
- a low level voltage is an off voltage (low level signal is off level).
- P-channel transistors In the following description, the transistors included in the unit circuit SRa are all assumed to be N-channel type, but may be all P-channel type.
- the unit circuit SRa has six input terminals 41 to 46 and one output terminal 61. These input terminals 41 to 46 are an input terminal 41 for receiving a set signal SET, an input terminal 42 for receiving a reset signal RESET, an input terminal 43 for receiving a first clock CKA, and an input terminal for receiving a second clock CKB. 44, an input terminal 45 for receiving the all-on signal, and an input terminal 46 for receiving the precharge voltage signal VGP.
- connection relationship of each component in this unit circuit SRa will be described.
- a connection portion where the source terminal of the transistor T1, the drain terminal of the transistor T2, and the gate terminal of the transistor T3 are connected to each other is referred to as a node NC.
- the drain terminal and the gate terminal are connected to the input terminal 41 (that is, diode connection), and the source terminal is connected to the node NC.
- the gate terminal is connected to the input terminal 42, the drain terminal is connected to the node NC, and the source terminal is connected to the low-level power supply voltage VSS.
- the gate terminal is connected to the node NC, the drain terminal is connected to the input terminal 43, and the source terminal is connected to the output terminal 61.
- the gate terminal is connected to the input terminal 44, the drain terminal is connected to the output terminal 61, and the source terminal is connected to the low-level power supply voltage VSS.
- the gate terminal is connected to the input terminal 45, the drain terminal is connected to the input terminal 46, and the source terminal is connected to the output terminal 61.
- One end of the capacitor C is connected to the node NC, and the other end is connected to the output terminal 61.
- FIG. 6 is a timing chart showing the operation of the unit circuit SRa.
- the unit circuit SRa outputs an output signal that becomes the scanning signal GOUT as an ordinary shift register to the output terminal 61 and outputs an output signal that becomes the collective drive signal VBD.
- the periods t0 to t3 correspond to a blanking period
- the periods t1 to t3 correspond to a part of the display period.
- the on-level all-on control signal AON is given to the input terminal 45, so that the transistor T5 is turned on.
- the precharge voltage signal VGP changes from the high level to the low level during the period t02
- the voltage at the output terminal 61 also changes from the high level to the low level.
- the transistor T5 is turned off. Further, in the period t03, since the all-on control signal AON given to the input terminal 45 changes from the on level to the off level, the transistor T5 is turned off. Further, in the period t03, the input terminal 41 is supplied with the set signal SET that is turned on. As a result, the transistor T1 is turned on, and the voltage at the node NC increases.
- the first clock CKA applied to the input terminal 43 changes from low level to high level.
- the transistor T3 is turned on, and the voltage at the output terminal 61 is increased.
- the capacitor C is provided between the node NC and the output terminal 61, the voltage at the node NC further increases as the voltage at the output terminal 61 increases (the node NC is bootstrapped).
- a voltage higher than the ON voltage is applied to the gate terminal of the transistor T3, and the level of the first clock CKA is output to the output terminal 61 without being lowered by the threshold voltage of the transistor T3.
- the voltage of the output terminal 61 becomes the same voltage as the high level voltage of the first clock CKA, so that the gate signal line connected to the output terminal 61 of the unit circuit SRa is selected. Note that in the period t1, since the second clock CKB is in the off level, the transistor T4 maintains the off state. For this reason, the voltage of the drain terminal of the transistor T4, that is, the output terminal 61 does not become low level.
- the on-level second clock CKB is supplied to the input terminal 44.
- the transistor T4 is turned on, and the voltage of the output terminal 61 becomes low level.
- an on-level reset signal RESET is given to the input terminal 42.
- the transistor T2 is turned on, and the voltage at the node NC is also low.
- the transistors T1 to T4 and the capacitor C function as an output signal generation circuit that generates and outputs a scanning signal
- the transistor T5 functions as a collective drive circuit that outputs a collective drive signal.
- FIG. 7 is a timing chart in one frame period of the liquid crystal display device.
- the period from the period t01 to the period t (n + 1) is one frame period.
- a period t01 to a period t03 is a blanking period
- a period t1 to a period t (n + 1) is a display period.
- Each of the periods t01 to tn is one horizontal period
- the period t (n + 1) is a period longer than one horizontal period.
- the length of the period t (n + 1) is depicted as a period having the same length as the period t1 or the like, but actually, the length of the period t (n + 1) is the period t1 or the like. Is set to a sufficiently long period.
- the period t01 to t03 will be described.
- all the unit circuits SRa (1) to SRa (n) are supplied with the on-level all-on control signal AON, and during the period t01, the high-level precharge voltage signal VGP is applied.
- the unit circuits SRa (1) to SRa (n) apply the high-level collective drive signal VBD to the corresponding gate signal lines GL1 to GLn, respectively, during the period t01.
- the high-level collective driving signal VBD is simultaneously applied to the gate signal lines GL1 to GLn regardless of the levels of the first gate clock signal GCK1 and the second gate clock signal GCK2. Thereby, the TFTs 11 of all the pixel formation portions are turned on.
- the positive intermediate voltage SPC + is applied from the source driver 30 to the odd-numbered source signal lines SL (2j + 1), and the intermediate signal is applied to all the pixel formation portions connected to the odd-numbered source signal lines SL (2j + 1).
- the voltage SPC + is charged.
- the intermediate voltage SPC ⁇ on the negative polarity side is applied to the source signal line SL (2j) in the even column, and the intermediate voltage SPC ⁇ is applied to all the pixel formation portions connected to the source signal line SL (2j) in the even column.
- a signal having an intermediate voltage SPC + on the positive polarity side and an intermediate voltage SPC ⁇ on the negative polarity side is sometimes referred to as a precharge signal.
- the voltage of the output terminal 61 also becomes the low level.
- the voltages of the gate signal lines GL1 to GLn corresponding to the unit circuits SRa (1) to SRa (n) respectively become low level, and the TFTs 11 of all the pixel formation portions are turned off.
- the pixel formation portion connected to the odd-numbered column source signal line SL (2j + 1) holds the intermediate voltage SPC + on the positive polarity side, and the pixel formation portion connected to the even-numbered column source signal line SL (2j) The intermediate voltage SPC ⁇ on the negative polarity side is maintained. In this way, all the pixel forming portions are precharged.
- an on-level gate start pulse signal GSP is given as the set signal SET to the drain terminal of the transistor T1.
- GSP on-level gate start pulse signal
- period t1 the gate start pulse signal GSP given to the unit circuit SRa (1) is turned off.
- the transistor T1 is turned off and the node NC is in a floating state. Since the high-level first clock CKA is applied to the drain terminal of the transistor T3, the voltage at the node NC is bootstrapped by the capacitor C and becomes higher than the on-voltage of the transistor T3, and the transistor T3 becomes fully conductive. In this state, when the high-level first clock CKA is applied to the drain terminal of the transistor T3, the high-level first clock CKA is output to the output terminal without being lowered by the threshold voltage of the transistor T3.
- the unit circuit SRa (1) at the stage applies the high level scanning signal GOUT1 to the gate signal line GL1.
- a positive video signal is supplied from the source driver 30 to the odd-numbered source signal line SL (2j + 1), and a negative video signal is supplied to the even-numbered source signal line SL (2j). Therefore, among the pixel formation portions connected to the gate signal line GL1 in the first row, the pixel formation portions connected to the odd-numbered source signal lines SL (2j + 1) are charged with the voltage of the positive video signal. The Further, the voltage of the negative-polarity video signal is charged in the pixel formation portion connected to the even-numbered source signal line SL (2j). As described above, in the pixel forming portion, since the writing of the video signal is started while the intermediate voltage SPC + or SPC ⁇ close to the voltage of the video signal to be written is held, the video signal is written at a high speed.
- the high-level scanning signal GOUT1 output from the first stage unit circuit SRa (1) is also supplied as the set signal SET of the transistor T1 of the second stage unit circuit SRa (2).
- the transistor T1 of the unit circuit SRa (2) is turned on, and the voltage at the node NC of the unit circuit SRa (2) increases.
- the second clock CKB at the on level is supplied to the transistor T4.
- the transistor T4 is turned on, and the voltage of the output terminal 61 becomes low level.
- the voltage of the gate signal line GL1 connected to the unit circuit SRa (1) becomes low level.
- the TFT 11 in each pixel formation portion in the first row is turned off, and each pixel formation portion in the first row holds the voltage of the written video signal.
- the high level scanning signal GOUT1 is supplied as the set signal SET from the unit circuit SRa (1) to the transistor T1 of the second stage unit circuit SRa (2).
- the transistor T1 of the unit circuit SRa (2) is turned on, and the voltage at the node NC increases. Therefore, when the first clock CKA at the high level is applied to the drain terminal of the transistor T3, the voltage at the node NC is bootstrapped, and the transistor T3 is brought into a complete conduction state. In this state, when the high-level first clock CKA is applied to the drain terminal of the transistor T3, the first clock CKA is output to the output terminal without being lowered by the threshold voltage of the transistor T3.
- the unit circuit SRa (2) applies the high level scanning signal GOUT2 to the gate signal line GL2.
- a positive video signal is applied from the source driver 30 to the odd-numbered source signal lines SL (2j + 1), and a negative video signal is applied to the even-numbered source signal lines SL (2j).
- the pixel formation portions connected to the gate signal line GL2 in the second row are charged with the voltage of the video signal having the positive polarity.
- the pixel formation portion connected to the source signal line SL (2j) is charged with a negative video signal voltage.
- the high-level scanning signal GOUT2 output from the second stage unit circuit SRa (2) is also supplied as the set signal SET of the transistor T1 of the third stage unit circuit SRa (3).
- the transistor T1 of the unit circuit SRa (3) is turned on, and the voltage at the node NC increases.
- the high-level scanning signal GOUT2 output from the second stage unit circuit SRa (2) is also supplied as the reset signal RESET of the transistor T2 of the first stage unit circuit SRa (1).
- the transistor T2 of the unit circuit SRa (1) is turned on, and the voltage at the node NC changes from the high level to the low level.
- the on-level second clock CKB is supplied to the transistor T4 of the second stage unit circuit SRa (2).
- the transistor T4 is turned on, and the voltage of the output terminal becomes low level.
- the voltage of the gate signal line GL2 connected to the unit circuit SRa (2) becomes low level.
- the TFT 11 in each pixel formation portion in the second row is turned off, and each pixel formation portion in the second row holds the voltage of the written video signal.
- the high-level scanning signal GOUT2 is given as the set signal SET to the transistor T1 of the third-stage unit circuit SRa (3) from the second-stage unit circuit SRa (2).
- the transistor T1 of the third-stage unit circuit SRa (3) is turned on, and the voltage at the node NC increases.
- the high-level first clock CKA is applied to the drain terminal of the transistor T3, the voltage at the node NC is bootstrapped and the transistor T3 is brought into a fully conductive state. In this state, the level of the first clock CKA is output to the output terminal without being lowered by the threshold voltage of the transistor T3, and the unit circuit SRa (3) at the third stage outputs the high level scanning signal GOUT3 to the gate signal line GL3. Is applied.
- a positive video signal is supplied from the source driver 30 to the odd-numbered source signal line SL (2j + 1), and a negative video signal is supplied to the even-numbered source signal line SL (2j).
- the pixel formation portions connected to the gate signal line GL3 in the third row are charged with the voltage of the positive video signal,
- the pixel forming portion connected to the source signal line SL (2j) is charged with a negative video signal voltage.
- the high-level scanning signal GOUT3 is supplied as the set signal SET to the transistor T1 of the fourth-stage unit circuit SRa (4) from the third-stage unit circuit SRa (3).
- the transistor T1 of the unit circuit SRa (4) is turned on, and the voltage at the node NC increases.
- the high-level scanning signal GOUT3 is supplied as the reset signal RESET from the third-stage unit circuit SRa (3) to the transistor T2 of the second-stage unit circuit SRa (2).
- the transistor T2 of the unit circuit SRa (2) is turned on, and the voltage at the node NC becomes low level.
- the on-level second clock CKB is supplied to the transistor T4 of the third-stage unit circuit SRa (3). For this reason, like the TFT 11 of each pixel formation portion in the first row, the TFT 11 of each pixel formation portion in the third row is turned off, and each pixel formation portion in the third row applies the voltage of the written video signal. Hold.
- the unit circuits SRa (4) to SRa (n) apply the high level scanning signals GOUT1 to GOUTn to the gate signal lines GL3 to GLn in order in the same manner for each period up to the period tn.
- the high level scanning signals GOUT4 to GOUTn are sequentially applied to the gate signal lines GL1 to GLn, respectively.
- the pixel formation portion connected to the odd-numbered source signal line SL (2j + 1) is the voltage of the positive video signal.
- the pixel formation portion connected to the source signal line SL (2j) in the even-numbered column holds the voltage of the negative video signal.
- the liquid crystal display device displays an image on the display unit 10 based on the voltage of the image signal held in each pixel formation unit.
- a period t (n + 1) longer than one horizontal period is provided at the end of one frame period.
- the effective voltage applied to the liquid crystal layer during one frame period is the pixel formation portion in the first row even in the pixel formation portion in the nth row having the longest time from precharging to writing the video signal. Since the voltage is almost the same as the effective voltage at, the video display quality can be kept above a certain level.
- the polarity of the video signal held in each pixel formation portion is reversed.
- the pixel formation portion connected to the odd-numbered source signal line SL (2j + 1) holds the voltage of the negative video signal
- the pixel formation portion connected to the even-numbered source signal line SL (2j) has the positive polarity. Hold the video signal voltage.
- the liquid crystal display device is suitable for displaying an image by pause driving for reducing power consumption by providing a pause period during which the operations of the source driver 30 and the gate driver 40 are stopped.
- FIG. 8 is a block diagram showing the overall configuration of the liquid crystal display device having the backlight unit 50.
- the backlight unit 50 is disposed on the back surface of the display unit 10, and the backlight unit 50 is turned on when the period t (n + 1) is reached. Thereby, the light from the backlight unit 50 is irradiated on the back surface of the display unit 10, and an image is displayed on the display unit 10. Since the constituent elements other than the backlight unit 50 are the same as the constituent elements of the liquid crystal display device shown in FIG. 1, the same reference numerals are given and description thereof is omitted. Further, in a liquid crystal display device that displays an image by pause driving, variation in the screen of the effective voltage applied to the liquid crystal layer during one frame period can be reduced, so that the display quality of the image can be maintained above a certain level.
- the polarity of the video signal applied to the adjacent source signal line is inverted every frame period.
- the polarity of the video signal applied to the source signal line may be inverted, for example, every 2 frame periods or every 3 frame periods.
- the pixel formation portions arranged in one column are all connected to the same source signal line, wiring in the pixel formation portion does not become complicated. Thereby, the aperture ratio of a pixel formation part can be improved.
- FIG. 9 is a block diagram showing a configuration of the shift register 420 in a modification of the present embodiment
- FIG. 10 is a circuit diagram showing a configuration of the unit circuit SRb included in the shift register 420 shown in FIG.
- the shift register 420 is configured by cascading n unit circuits SRb (1) to SRb (n).
- the n unit circuits SRb (1) to SRb (n) are provided so as to have a one-to-one correspondence with the gate signal lines GL1 to GLn of each row of the pixel array of n rows ⁇ m columns formed in the display unit 10. ing.
- the shift register 420 not only sequentially outputs the high level scanning signals GOUT1 to GOUTn to the gate signal lines GL1 to GLn, but also shifts the high level during the blanking period of each frame period. Simultaneously output the level collective drive signal VBD.
- the clear signal CLR is supplied to all the unit circuits SRb (1) to SRb (n) instead of the precharge voltage signal VGP in the blanking period.
- the configuration of the unit circuit SRb included in the shift register 420 is partially different from the configuration of the unit circuit SRa shown in FIG. Therefore, in the unit circuit SRb, the same constituent elements as those of the unit circuit SRa are denoted by the same reference numerals, description thereof is omitted, and different constituent elements will be described.
- a transistor T6 and an input terminal 47 connected to the transistor T6 are further added to the unit circuit SRa. Accordingly, the unit circuit SRb has six transistors T1 to T6 of the same conductivity type, one capacitor C, six input terminals 41 to 45, 47, and one output terminal 61. ing.
- the gate terminal of the transistor T6 is connected to the input terminal 47, the drain terminal is connected to the output terminal 61, and the source terminal is connected to the low-level power supply voltage VSS.
- the drain terminal of the transistor T5 is connected to the high-level power supply voltage VDD instead of the input terminal 46 that supplies the precharge voltage signal VGP.
- the transistors T1 to T4 and T6 and the capacitor C function as an output signal generation circuit that generates and outputs a scanning signal, and the transistor T5 is collectively driven. It functions as a collective drive circuit that outputs signals.
- FIG. 11 is a timing chart showing the operation of the unit circuit SRb.
- the unit circuit SRb also outputs an output signal as a scanning signal as an ordinary shift register to the output terminal 61 and outputs an output signal as a collective drive signal VBD to the output terminal 61.
- the operation of the unit circuit SRb when outputting an output signal as a scanning signal as a normal shift register is the same as the operation of the unit circuit SRa. Therefore, hereinafter, an operation when an output signal serving as the collective drive signal VBD is output will be described.
- the off-level clear signal CLR is supplied to the input terminal 47 in the period t01, so that the transistor T6 is in the off state.
- the on-level all-on control signal AON is applied to the input terminal 45, the transistor T5 is turned on, and the high-level power supply voltage VDD connected to the drain terminal is output to the output terminal 61.
- an output signal serving as the collective drive signal VBD is output to the output terminal 61.
- the all-on control signal AON changed from the on level to the off level is given to the input terminal 45, so that the transistor T5 is turned off.
- the on-level clear signal CLR is applied to the input terminal 47, the transistor T6 is turned on, and the output terminal 61 becomes the low-level power supply voltage VSS.
- the voltages of the gate signal lines GL1 to GLn corresponding to the unit circuits SRb (1) to SRb (n) become low level.
- the high-level gate start pulse signal GSP is supplied as the set signal SET to the drain terminal of the transistor T1.
- the voltage at the node NC increases, and the transistor T3 is turned on.
- timing chart in the period t1 to t (n + 1) corresponding to the display period is the same as the timing chart shown in FIG.
- FIG. 12 is a timing chart of the shift register 420 in one frame period.
- the operation of the shift register 420 in the period t1 to t (n + 1) is the same as the operation of the shift register 410 shown in FIG. 7, and thus the description thereof is omitted, and only the period t01 to t03 that is the blanking period. explain.
- all unit control circuits SRb (1) to SRb (n) are supplied with the on-level all-on control signal AON.
- the TFTs 5 of the unit circuits SRb (1) to SRb (n) are turned on, and the high level power supply voltage VDD connected to the drain terminal of the TFT 5 is changed to the unit circuits SRb (1) to SRb (n). Is output to the output terminal.
- the unit circuits SRb (1) to SRb (n) apply the high-level scanning signals GOUT1 to GOUTn to the corresponding gate signal lines GL1 to GLn, respectively.
- the shift register 420 simultaneously applies the high-level collective drive signal VBD to the gate signal lines GL1 to GLn in the period t01 regardless of the levels of the first gate clock signal GCK1 and the second gate clock signal GCK2. To do. Thereby, the TFTs 11 of all the pixel formation portions are turned on.
- the positive intermediate voltage SPC + is applied from the source driver 30 to the odd-numbered source signal lines SL (2j + 1), and the intermediate signal is applied to all the pixel formation portions connected to the odd-numbered source signal lines SL (2j + 1).
- the voltage SPC + is charged.
- the intermediate voltage SPC ⁇ on the negative polarity side is output to the source signal line SL (2j) in the even column, and the intermediate voltage SPC ⁇ is applied to all the pixel formation portions connected to the source signal line SL (2j) in the even column. Charged.
- the all-on control signal AON changes from the on level to the off level, so that the transistor T5 is turned off.
- the clear signal CLR of the on level is given to the gate terminal of the transistor T6, and the transistor T6 is turned on.
- the voltages at the output terminals of the unit circuits SRb (1) to SRb (n) become low level, and the TFTs 11 of all the pixel formation portions connected to the gate signal lines GL1 to GLn are turned off.
- the pixel formation portion connected to the odd-numbered column source signal line SL (2j + 1) holds the intermediate voltage SPC + on the positive polarity side, and the pixel formation portion connected to the even-numbered column source signal line SL (2j) The intermediate voltage SPC ⁇ on the negative polarity side is maintained. In this way, all the pixel forming portions are precharged.
- the voltages of the output terminals of the unit circuits SRb (1) to SRb (n) remain at the low level, so that the voltages of the gate signal lines GL1 to GLn also maintain the low level.
- the precharge voltage signal VGP used in the unit circuit SRa is a pulse signal for simultaneously turning on / off all the gate signal lines GL1 to GLn, and therefore a large buffer circuit capable of driving a large load is provided in the display control circuit 20. There is a need.
- the power supply voltage VDD is applied to the drain terminal of the transistor T5
- cost can be reduced.
- the power supply voltage VDD applied to the input terminal is not a pulse signal like the precharge voltage signal VGP, the voltages of the gate signal lines GL1 to GLn can be stabilized in a short time.
- a liquid crystal display device according to a second embodiment of the present invention.
- the block diagram showing the configuration of the liquid crystal display device is substantially the same as the block diagram showing the configuration of the liquid crystal display device shown in FIG.
- the clear signal CLR is applied instead of the precharge voltage signal VGP. It is done.
- FIG. 13 is a diagram for explaining the pseudo dot inversion driving method of the present embodiment.
- the pseudo dot inversion driving method of the present embodiment is applied to the odd-numbered source signal lines SL (2j + 1) in the first frame period, as shown in FIG. 13A.
- a positive video signal is applied, and a negative video signal is applied to the even-numbered source signal lines SL (2j).
- each of the pixel formation portions arranged in the column direction is not connected to the source signal line on the left side, but alternately on the left side. It is connected to the source signal line or connected to the source signal line on the right.
- the odd-row pixel formation portions are connected to the odd-column source signal lines SL (2j + 1), and the even-row pixel formation portions are connected to the even-column source signal lines SL (2j).
- the polarity of the video signal written in each pixel formation portion is positive or negative in both the row direction and the column direction.
- the configuration and timing chart of the shift register included in the gate driver 40 of such a liquid crystal display device are the same as the shift register 410 and its timing chart shown in FIGS. 4 and 7, respectively.
- the configuration of the unit circuit and its timing chart Are the same as the unit circuit SRa and its timing chart shown in FIGS. 5 and 6, respectively. For this reason, those figures and description are omitted.
- the shift register 420 shown in FIG. 9 and the unit circuit SRb shown in FIG. 10 which are modifications of the first embodiment, can be used.
- the liquid crystal display device of the present embodiment is driven by the pseudo dot inversion driving method, the occurrence of flicker and crosstalk is suppressed. Thereby, the display quality of a liquid crystal display device can be improved.
- FIG. 14 is a diagram for explaining a pseudo dot inversion driving method in which the polarity of the video signal held in the pixel formation unit is inverted every two gate signal lines.
- a video signal having the same polarity as that of the source signal line shown in FIG. 13 is applied to each source signal line.
- the upper two rows of pixel formation portions are connected to the odd-numbered column source signal lines SL (2j + 1), and the next two rows of pixel formation portions are the even-numbered column source signal lines SL (2j).
- the upper two rows of pixel forming units alternately hold positive and negative video signals in order from the left side
- the next two rows of pixel formation units alternately hold a negative video signal and a positive video signal in order from the left.
- the polarity of the video signal held in each pixel formation portion is opposite to that shown in FIG.
- the polarity of the video signal written in each pixel forming unit is such that the pixel forming unit holding the positive and negative video signals every two rows in the row direction and every column in the column direction.
- the liquid crystal display device having the display unit 10 having such an arrangement also has the same effect as the liquid crystal display device having the arrangement shown in FIG. Note that the number of gate signal lines connected together to the odd-numbered source signal lines SL (2j + 1) and the even-numbered source signal lines SL (2j) is not limited to two, and may be more than that. Good.
- the display device of the present invention can be used for a high-definition display device because a video signal can be written to the pixel formation portion at high speed.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
- Liquid Crystal (AREA)
Abstract
Provided are a display device capable of rapidly writing an image signal onto a pixel-forming unit, and a drive method therefor. A batch drive signal (VBD) for simultaneously bring a plurality of scanning signal lines into a selection state is simultaneously applied to the plurality of scanning signal lines in a blanking period, whereby a selection is made and a plurality of pixel-forming units are simultaneously pre-charged. Next, a plurality of scanning signal lines are selected in order, a plurality of image signals representing an image which should be displayed are generated as signals where the voltage polarity on each individual data signal line is inverted, and each are applied to the plurality of data signal lines. At this time, given that charging is started from a state in which a voltage close to the image signal voltage has been previously charged in each pixel-forming unit, it is possible to write the image signal rapidly onto the pixel forming unit.
Description
本発明は、表示装置およびその駆動方法に関し、特に、高精細化された表示部または高速駆動される表示部(表示パネル)を有する表示装置およびその駆動方法に関する。
The present invention relates to a display device and a driving method thereof, and more particularly to a display device having a high-definition display unit or a display unit (display panel) driven at high speed and a driving method thereof.
近年、液晶表示装置には、表示品位を向上させるために、高精細化された表示部や、高速駆動される表示部が用いられるようになってきた。これに伴い、表示部に形成された画素形成部に映像信号を高速で書き込まなければならないにもかかわらず、高精細化によりソース信号線の負荷が大きくなるので、画素形成部に映像信号を高速で書き込むことが難しくなっている。
Recently, in order to improve the display quality, liquid crystal display devices have come to use high-definition display units and display units driven at high speed. As a result, the load on the source signal line increases due to high definition even though the video signal must be written to the pixel formation portion formed in the display portion at high speed. It is difficult to write in.
日本の特開2010-26528号公報には、階調電圧の不足を抑制することができる表示装置が記載されている。具体的には、ゲートドライバが4行分の画素をまとめて選択した後に、他の4行分の画素を1行ごとに、かつダブルゲート駆動で順次選択する。このとき、ソースドライバは、4行分の画素に黒データに応じた階調電圧をまとめて供給した後に、他の4行分の画素に画像データに応じた階調電圧を順次供給する。これにより、階調電圧の不足が抑制されるので、表示装置は高品位の画像を表示することができる。
Japanese Unexamined Patent Application Publication No. 2010-26528 describes a display device that can suppress a shortage of gradation voltage. Specifically, after the gate driver selects pixels for four rows at a time, the other four rows of pixels are sequentially selected for each row by double gate driving. At this time, the source driver collectively supplies gradation voltages corresponding to black data to the pixels for four rows, and then sequentially supplies gradation voltages corresponding to image data to the pixels for the other four rows. Thereby, since the shortage of gradation voltage is suppressed, the display device can display a high-quality image.
しかし、日本の特開2010-26528号公報に記載の表示装置では、画素形成部のプリチャージは、ダブルゲート駆動により、数ライン前の画像データに応じた階調電圧に依存する信号を用いて行なわれる。このプリチャージにおいて黒データが書き込まれれば、プリチャージは不十分になり、表示装置は画素形成部に画像データに応じた階調電圧を高速で書き込むことができない。
However, in the display device described in Japanese Patent Application Laid-Open No. 2010-26528, the pixel formation portion is precharged by using a signal that depends on the gradation voltage corresponding to the image data several lines before by double gate driving. Done. If black data is written in this precharge, the precharge becomes insufficient, and the display device cannot write the gradation voltage corresponding to the image data to the pixel formation portion at high speed.
そこで、本発明は、画素形成部に映像信号を高速で書き込むことができる表示装置およびその駆動方法を提供することを目的とする。
Therefore, an object of the present invention is to provide a display device capable of writing a video signal in a pixel formation portion at a high speed and a driving method thereof.
本発明の第1の局面は、アクティブマトリクス型の表示装置であって、
複数のデータ信号線と、前記複数のデータ信号線と交差する複数の走査信号線と、前記複数のデータ信号線と前記複数の走査信号線との交差点にそれぞれ対応してマトリクス状に配置された複数の画素形成部とを有する表示部と、
前記複数のデータ信号線を駆動するデータ信号線駆動回路と、
前記複数の走査信号線を駆動する走査信号線駆動回路とを備え、
前記データ信号線駆動回路は、表示すべき映像を表す複数の映像信号をデータ信号線ごとにかつ所定数のフレーム期間ごとに電圧の極性が反転する信号として生成して前記複数のデータ信号線にそれぞれ印加すると共に、前記フレーム期間のブランキング期間に、前記複数の画素形成部をプリチャージするために映像信号の中間階調に相当する電圧を有するプリチャージ信号を前記複数のデータ信号線にそれぞれ印加し、
前記走査信号線駆動回路は、前記ブランキング期間には、前記複数の走査信号線を同時に選択状態にする一括駆動信号を前記複数の走査信号線に印加し、前記複数の映像信号が前記複数のデータ信号線にそれぞれ印加されるときには、前記複数の走査信号線を順に選択する走査信号を前記複数の走査信号線にそれぞれ印加することを特徴とする。 A first aspect of the present invention is an active matrix display device,
The plurality of data signal lines, the plurality of scanning signal lines intersecting with the plurality of data signal lines, and the intersections of the plurality of data signal lines and the plurality of scanning signal lines are arranged in a matrix. A display unit having a plurality of pixel formation units;
A data signal line driving circuit for driving the plurality of data signal lines;
A scanning signal line driving circuit for driving the plurality of scanning signal lines,
The data signal line driving circuit generates a plurality of video signals representing a video to be displayed as a signal whose voltage polarity is inverted for each data signal line and every predetermined number of frame periods, to the plurality of data signal lines. Each of the plurality of data signal lines is applied with a precharge signal having a voltage corresponding to an intermediate gray level of a video signal in order to precharge the plurality of pixel formation portions in the blanking period of the frame period. Applied,
The scanning signal line driving circuit applies a collective driving signal for simultaneously selecting the plurality of scanning signal lines to the plurality of scanning signal lines during the blanking period, and the plurality of video signals are the plurality of video signals. When applied to each of the data signal lines, a scanning signal for sequentially selecting the plurality of scanning signal lines is applied to each of the plurality of scanning signal lines.
複数のデータ信号線と、前記複数のデータ信号線と交差する複数の走査信号線と、前記複数のデータ信号線と前記複数の走査信号線との交差点にそれぞれ対応してマトリクス状に配置された複数の画素形成部とを有する表示部と、
前記複数のデータ信号線を駆動するデータ信号線駆動回路と、
前記複数の走査信号線を駆動する走査信号線駆動回路とを備え、
前記データ信号線駆動回路は、表示すべき映像を表す複数の映像信号をデータ信号線ごとにかつ所定数のフレーム期間ごとに電圧の極性が反転する信号として生成して前記複数のデータ信号線にそれぞれ印加すると共に、前記フレーム期間のブランキング期間に、前記複数の画素形成部をプリチャージするために映像信号の中間階調に相当する電圧を有するプリチャージ信号を前記複数のデータ信号線にそれぞれ印加し、
前記走査信号線駆動回路は、前記ブランキング期間には、前記複数の走査信号線を同時に選択状態にする一括駆動信号を前記複数の走査信号線に印加し、前記複数の映像信号が前記複数のデータ信号線にそれぞれ印加されるときには、前記複数の走査信号線を順に選択する走査信号を前記複数の走査信号線にそれぞれ印加することを特徴とする。 A first aspect of the present invention is an active matrix display device,
The plurality of data signal lines, the plurality of scanning signal lines intersecting with the plurality of data signal lines, and the intersections of the plurality of data signal lines and the plurality of scanning signal lines are arranged in a matrix. A display unit having a plurality of pixel formation units;
A data signal line driving circuit for driving the plurality of data signal lines;
A scanning signal line driving circuit for driving the plurality of scanning signal lines,
The data signal line driving circuit generates a plurality of video signals representing a video to be displayed as a signal whose voltage polarity is inverted for each data signal line and every predetermined number of frame periods, to the plurality of data signal lines. Each of the plurality of data signal lines is applied with a precharge signal having a voltage corresponding to an intermediate gray level of a video signal in order to precharge the plurality of pixel formation portions in the blanking period of the frame period. Applied,
The scanning signal line driving circuit applies a collective driving signal for simultaneously selecting the plurality of scanning signal lines to the plurality of scanning signal lines during the blanking period, and the plurality of video signals are the plurality of video signals. When applied to each of the data signal lines, a scanning signal for sequentially selecting the plurality of scanning signal lines is applied to each of the plurality of scanning signal lines.
本発明の第2の局面は、本発明の第1の局面において、
前記プリチャージ信号の電圧は、正極性の映像信号が印加されるデータ信号線と、負極性の映像信号が印加されるデータ信号線とで異なる電圧であることを特徴とする。 According to a second aspect of the present invention, in the first aspect of the present invention,
The voltage of the precharge signal is different between a data signal line to which a positive video signal is applied and a data signal line to which a negative video signal is applied.
前記プリチャージ信号の電圧は、正極性の映像信号が印加されるデータ信号線と、負極性の映像信号が印加されるデータ信号線とで異なる電圧であることを特徴とする。 According to a second aspect of the present invention, in the first aspect of the present invention,
The voltage of the precharge signal is different between a data signal line to which a positive video signal is applied and a data signal line to which a negative video signal is applied.
本発明の第3の局面は、本発明の第2の局面において、
前記表示部の背面に設けられたバックライトユニットをさらに含み、
前記バックライトユニットは、前記複数の画素形成部のすべてに前記複数の映像信号がそれぞれ書き込まれてから次のフレーム期間が始まるまでの期間に点灯されることを特徴とする。 According to a third aspect of the present invention, in the second aspect of the present invention,
Further comprising a backlight unit provided on the back of the display unit,
The backlight unit is lit in a period from when each of the plurality of video signals is written to all of the plurality of pixel formation portions to when the next frame period starts.
前記表示部の背面に設けられたバックライトユニットをさらに含み、
前記バックライトユニットは、前記複数の画素形成部のすべてに前記複数の映像信号がそれぞれ書き込まれてから次のフレーム期間が始まるまでの期間に点灯されることを特徴とする。 According to a third aspect of the present invention, in the second aspect of the present invention,
Further comprising a backlight unit provided on the back of the display unit,
The backlight unit is lit in a period from when each of the plurality of video signals is written to all of the plurality of pixel formation portions to when the next frame period starts.
本発明の第4の局面は、本発明の第2の局面において、
前記走査信号線駆動回路および前記データ信号線駆動回路は、前記複数の画素形成部のすべてに前記複数の映像信号がそれぞれ書き込まれてから次のフレーム期間が始まるまでの期間に動作を停止することを特徴とする。 According to a fourth aspect of the present invention, in the second aspect of the present invention,
The scanning signal line drive circuit and the data signal line drive circuit stop operating in a period from when the plurality of video signals are written to all of the plurality of pixel formation portions until the next frame period starts. It is characterized by.
前記走査信号線駆動回路および前記データ信号線駆動回路は、前記複数の画素形成部のすべてに前記複数の映像信号がそれぞれ書き込まれてから次のフレーム期間が始まるまでの期間に動作を停止することを特徴とする。 According to a fourth aspect of the present invention, in the second aspect of the present invention,
The scanning signal line drive circuit and the data signal line drive circuit stop operating in a period from when the plurality of video signals are written to all of the plurality of pixel formation portions until the next frame period starts. It is characterized by.
本発明の第5の局面は、本発明の第2の局面において、
前記複数の画素形成部のうち前記複数のデータ信号線と平行に配置された各画素形成部は、同じ方向に隣接するデータ信号線と接続されていることを特徴とする。 According to a fifth aspect of the present invention, in the second aspect of the present invention,
Of the plurality of pixel forming portions, each pixel forming portion arranged in parallel with the plurality of data signal lines is connected to a data signal line adjacent in the same direction.
前記複数の画素形成部のうち前記複数のデータ信号線と平行に配置された各画素形成部は、同じ方向に隣接するデータ信号線と接続されていることを特徴とする。 According to a fifth aspect of the present invention, in the second aspect of the present invention,
Of the plurality of pixel forming portions, each pixel forming portion arranged in parallel with the plurality of data signal lines is connected to a data signal line adjacent in the same direction.
本発明の第6の局面は、本発明の第2の局面において、
前記複数の画素形成部のうち前記複数のデータ信号線と平行に配置された各画素形成部は、同じ方向に隣接するデータ信号線および反対方向に隣接するデータ信号線と所定数ごとに交互に接続されていることを特徴とする。 According to a sixth aspect of the present invention, in the second aspect of the present invention,
Among the plurality of pixel forming portions, each pixel forming portion arranged in parallel with the plurality of data signal lines alternately has a predetermined number of data signal lines adjacent in the same direction and data signal lines adjacent in the opposite direction. It is connected.
前記複数の画素形成部のうち前記複数のデータ信号線と平行に配置された各画素形成部は、同じ方向に隣接するデータ信号線および反対方向に隣接するデータ信号線と所定数ごとに交互に接続されていることを特徴とする。 According to a sixth aspect of the present invention, in the second aspect of the present invention,
Among the plurality of pixel forming portions, each pixel forming portion arranged in parallel with the plurality of data signal lines alternately has a predetermined number of data signal lines adjacent in the same direction and data signal lines adjacent in the opposite direction. It is connected.
本発明の第7の局面は、本発明の第1の局面において、
前記走査信号線駆動回路は、同一導電型のトランジスタで構成された複数の単位回路を多段接続した構成を有し、第1および第2クロックからなる2相のクロックに基づいて動作するシフトレジスタを備え、
前記単位回路は、
前記走査信号線に前記走査信号および前記一括駆動信号を出力するための出力端子と、
オン電圧およびオフ電圧を生成し、前記出力端子に前記走査信号として出力する出力信号生成回路と、
前記出力端子にオン電圧を前記一括駆動信号として出力する一括駆動回路とを含み、
前記フレーム期間の前記ブランキング期間に、オン電圧が前記複数の単位回路の前記一括駆動回路に同時に与えられると、前記一括駆動回路は前記一括駆動信号を前記複数の走査信号線に同時に出力することを特徴とする。 According to a seventh aspect of the present invention, in the first aspect of the present invention,
The scanning signal line driving circuit has a configuration in which a plurality of unit circuits each composed of a transistor of the same conductivity type are connected in multiple stages, and includes a shift register that operates based on a two-phase clock composed of a first clock and a second clock. Prepared,
The unit circuit is
An output terminal for outputting the scanning signal and the collective driving signal to the scanning signal line;
An output signal generation circuit that generates an on-voltage and an off-voltage and outputs the output voltage as the scanning signal to the output terminal;
A collective drive circuit that outputs an on-voltage to the output terminal as the collective drive signal;
When an ON voltage is simultaneously applied to the collective drive circuit of the plurality of unit circuits during the blanking period of the frame period, the collective drive circuit simultaneously outputs the collective drive signal to the plurality of scanning signal lines. It is characterized by.
前記走査信号線駆動回路は、同一導電型のトランジスタで構成された複数の単位回路を多段接続した構成を有し、第1および第2クロックからなる2相のクロックに基づいて動作するシフトレジスタを備え、
前記単位回路は、
前記走査信号線に前記走査信号および前記一括駆動信号を出力するための出力端子と、
オン電圧およびオフ電圧を生成し、前記出力端子に前記走査信号として出力する出力信号生成回路と、
前記出力端子にオン電圧を前記一括駆動信号として出力する一括駆動回路とを含み、
前記フレーム期間の前記ブランキング期間に、オン電圧が前記複数の単位回路の前記一括駆動回路に同時に与えられると、前記一括駆動回路は前記一括駆動信号を前記複数の走査信号線に同時に出力することを特徴とする。 According to a seventh aspect of the present invention, in the first aspect of the present invention,
The scanning signal line driving circuit has a configuration in which a plurality of unit circuits each composed of a transistor of the same conductivity type are connected in multiple stages, and includes a shift register that operates based on a two-phase clock composed of a first clock and a second clock. Prepared,
The unit circuit is
An output terminal for outputting the scanning signal and the collective driving signal to the scanning signal line;
An output signal generation circuit that generates an on-voltage and an off-voltage and outputs the output voltage as the scanning signal to the output terminal;
A collective drive circuit that outputs an on-voltage to the output terminal as the collective drive signal;
When an ON voltage is simultaneously applied to the collective drive circuit of the plurality of unit circuits during the blanking period of the frame period, the collective drive circuit simultaneously outputs the collective drive signal to the plurality of scanning signal lines. It is characterized by.
本発明の第8の局面は、本発明の第7の局面において、
前記一括駆動回路は1個のトランジスタを有し、
前記トランジスタは、一方の導通端子を前記出力端子に接続され、制御端子に前記オン電圧を印加されたとき、他方の導通端子に与えられたパルス信号を前記一括駆動信号として前記出力端子に出力することを特徴とする。 According to an eighth aspect of the present invention, in the seventh aspect of the present invention,
The collective drive circuit has one transistor,
The transistor has one conduction terminal connected to the output terminal, and outputs the pulse signal applied to the other conduction terminal to the output terminal as the collective drive signal when the ON voltage is applied to the control terminal. It is characterized by that.
前記一括駆動回路は1個のトランジスタを有し、
前記トランジスタは、一方の導通端子を前記出力端子に接続され、制御端子に前記オン電圧を印加されたとき、他方の導通端子に与えられたパルス信号を前記一括駆動信号として前記出力端子に出力することを特徴とする。 According to an eighth aspect of the present invention, in the seventh aspect of the present invention,
The collective drive circuit has one transistor,
The transistor has one conduction terminal connected to the output terminal, and outputs the pulse signal applied to the other conduction terminal to the output terminal as the collective drive signal when the ON voltage is applied to the control terminal. It is characterized by that.
本発明の第9の局面は、本発明の第7の局面において、
前記一括駆動回路は1個のトランジスタを有し、
前記トランジスタは、一方の導通端子を前記出力端子に接続され、制御端子に前記オン電圧を印加されたとき、他方の導通端子に接続された電源電圧を一括駆動信号として前記出力端子に出力することを特徴とする。 According to a ninth aspect of the present invention, in a seventh aspect of the present invention,
The collective drive circuit has one transistor,
The transistor has one conduction terminal connected to the output terminal and outputs the power supply voltage connected to the other conduction terminal to the output terminal as a collective drive signal when the ON voltage is applied to the control terminal. It is characterized by.
前記一括駆動回路は1個のトランジスタを有し、
前記トランジスタは、一方の導通端子を前記出力端子に接続され、制御端子に前記オン電圧を印加されたとき、他方の導通端子に接続された電源電圧を一括駆動信号として前記出力端子に出力することを特徴とする。 According to a ninth aspect of the present invention, in a seventh aspect of the present invention,
The collective drive circuit has one transistor,
The transistor has one conduction terminal connected to the output terminal and outputs the power supply voltage connected to the other conduction terminal to the output terminal as a collective drive signal when the ON voltage is applied to the control terminal. It is characterized by.
本発明の第10の局面は、複数のデータ信号線と、前記複数のデータ信号線と交差する複数の走査信号線と、前記複数のデータ信号線と前記複数の走査信号線との交差点にそれぞれ対応してマトリクス状に配置された複数の画素形成部とを備える、アクティブマトリクス型の表示装置の駆動方法であって、
フレーム期間のブランキング期間に、前記複数の画素形成部をプリチャージするために映像信号の中間階調に相当する電圧を有するプリチャージ信号を前記複数のデータ信号線に印加すると共に、前記複数の走査信号線を同時に選択状態にする一括駆動信号を前記複数の走査信号線に印加することによって、前記プリチャージ信号を前記複数の画素形成部に同時に書き込むステップと、
表示すべき映像を表す複数の映像信号をデータ信号線ごとにかつ所定数のフレーム期間ごとに電圧の極性が反転する信号として生成して前記複数のデータ信号線にそれぞれ印加すると共に、前記複数の走査信号線を順に選択する走査信号を前記複数の走査信号線にそれぞれ印加することによって、前記複数の画素形成部に前記複数の映像信号をそれぞれ書き込むステップとを備えることを特徴とする。 According to a tenth aspect of the present invention, a plurality of data signal lines, a plurality of scanning signal lines intersecting with the plurality of data signal lines, and intersections of the plurality of data signal lines and the plurality of scanning signal lines are respectively provided. A drive method for an active matrix display device comprising a plurality of pixel forming portions arranged correspondingly in a matrix,
In a blanking period of a frame period, a precharge signal having a voltage corresponding to an intermediate gray level of a video signal is applied to the plurality of data signal lines in order to precharge the plurality of pixel formation units, and the plurality of data signal lines Simultaneously writing the precharge signal to the plurality of pixel forming portions by applying a collective driving signal for simultaneously selecting the scanning signal lines to the plurality of scanning signal lines;
A plurality of video signals representing video to be displayed are generated for each data signal line as a signal whose voltage polarity is inverted every predetermined number of frame periods, applied to each of the plurality of data signal lines, and Applying scanning signals for sequentially selecting scanning signal lines to the plurality of scanning signal lines, respectively, and writing the plurality of video signals to the plurality of pixel forming portions, respectively.
フレーム期間のブランキング期間に、前記複数の画素形成部をプリチャージするために映像信号の中間階調に相当する電圧を有するプリチャージ信号を前記複数のデータ信号線に印加すると共に、前記複数の走査信号線を同時に選択状態にする一括駆動信号を前記複数の走査信号線に印加することによって、前記プリチャージ信号を前記複数の画素形成部に同時に書き込むステップと、
表示すべき映像を表す複数の映像信号をデータ信号線ごとにかつ所定数のフレーム期間ごとに電圧の極性が反転する信号として生成して前記複数のデータ信号線にそれぞれ印加すると共に、前記複数の走査信号線を順に選択する走査信号を前記複数の走査信号線にそれぞれ印加することによって、前記複数の画素形成部に前記複数の映像信号をそれぞれ書き込むステップとを備えることを特徴とする。 According to a tenth aspect of the present invention, a plurality of data signal lines, a plurality of scanning signal lines intersecting with the plurality of data signal lines, and intersections of the plurality of data signal lines and the plurality of scanning signal lines are respectively provided. A drive method for an active matrix display device comprising a plurality of pixel forming portions arranged correspondingly in a matrix,
In a blanking period of a frame period, a precharge signal having a voltage corresponding to an intermediate gray level of a video signal is applied to the plurality of data signal lines in order to precharge the plurality of pixel formation units, and the plurality of data signal lines Simultaneously writing the precharge signal to the plurality of pixel forming portions by applying a collective driving signal for simultaneously selecting the scanning signal lines to the plurality of scanning signal lines;
A plurality of video signals representing video to be displayed are generated for each data signal line as a signal whose voltage polarity is inverted every predetermined number of frame periods, applied to each of the plurality of data signal lines, and Applying scanning signals for sequentially selecting scanning signal lines to the plurality of scanning signal lines, respectively, and writing the plurality of video signals to the plurality of pixel forming portions, respectively.
上記第1の局面によれば、フレーム期間のブランキング期間に、複数の走査信号線を同時に選択状態にする一括駆動信号を複数の走査信号線に同時に印加して複数の走査信号線を選択し、複数の画素形成部をプリチャージするために前記映像信号の中間階調に相当する電圧を有するプリチャージ信号を複数のデータ信号線に印加する。これにより、すべての画素形成部に、次に書き込まれる映像信号の電圧に近い電圧を有するプリチャージ信号が書き込まれる。次に、複数の走査信号線を順に選択する走査信号を複数の走査信号線に印加して複数の走査信号線を順に選択し、表示すべき映像を表す複数の映像信号をデータ信号線ごとにかつ所定数のフレーム期間ごとに電圧の極性が反転する信号として生成して複数のデータ信号線に印加する。これにより、各走査信号線が順に選択され、同じ走査信号線に接続された画素形成部ごとに映像信号が書き込まれる。このとき、各画素形成部には、次に書き込まれる映像信号の電圧に近い電圧が予め充電されているので、画素形成部に映像信号を高速で書き込むことができる。
According to the first aspect, during the blanking period of the frame period, a plurality of scanning signal lines are simultaneously applied to the plurality of scanning signal lines to simultaneously select the plurality of scanning signal lines, thereby selecting the plurality of scanning signal lines. In order to precharge a plurality of pixel formation portions, a precharge signal having a voltage corresponding to an intermediate gray level of the video signal is applied to the plurality of data signal lines. Thereby, a precharge signal having a voltage close to the voltage of the video signal to be written next is written in all the pixel formation portions. Next, scanning signals for sequentially selecting a plurality of scanning signal lines are applied to the plurality of scanning signal lines, the plurality of scanning signal lines are sequentially selected, and a plurality of video signals representing the video to be displayed are displayed for each data signal line. In addition, a signal whose polarity is inverted every predetermined number of frame periods is generated and applied to a plurality of data signal lines. Thereby, each scanning signal line is selected in order, and a video signal is written for each pixel formation portion connected to the same scanning signal line. At this time, a voltage close to the voltage of the video signal to be written next is charged in advance in each pixel formation portion, so that the video signal can be written in the pixel formation portion at a high speed.
上記第2の局面によれば、異なる2つの電圧のうち、正極性側の電圧を有するプリチャージ信号が印加されたデータ信号線には、その後正極性の映像信号が印加される。また、負極性側の電圧を有するプリチャージ信号が印加されたデータ信号線には、その後負極性の映像信号が印加される。これにより、いずれのデータ信号線に接続された画素形成部にも映像信号をその極性によらず高速で書き込むことができる。
According to the second aspect, a positive video signal is then applied to a data signal line to which a precharge signal having a positive polarity voltage is applied among two different voltages. A negative video signal is then applied to the data signal line to which a precharge signal having a negative voltage is applied. As a result, a video signal can be written at high speed in the pixel formation portion connected to any data signal line regardless of its polarity.
上記第3の局面によれば、複数の画素形成部のすべてに映像信号が書き込まれた後に、表示部の背面からバックライト光を照射する。これにより、最も映像信号を保持する時間が短い画素形成部でも最低限の保持時間を確保することができるので、映像の表示品位を一定以上に保つことができる。
According to the third aspect, after the video signal is written in all of the plurality of pixel forming portions, the backlight is irradiated from the back surface of the display portion. As a result, since the minimum holding time can be secured even in the pixel forming portion where the video signal is held for the shortest time, the display quality of the video can be maintained above a certain level.
上記第4の局面によれば、走査信号線駆動回路とデータ信号線駆動回路は、複数の画素形成部のすべてに映像信号が書き込まれてから次のフレーム期間が始まるまでの期間に動作を停止する。これにより、1フレーム期間における実効電圧の画面内のばらつきを低減できるので、映像の表示品位を一定以上に保つことができる。
According to the fourth aspect, the scanning signal line drive circuit and the data signal line drive circuit stop operating in a period from when the video signal is written to all of the plurality of pixel formation portions until the next frame period starts. To do. As a result, variations in the effective voltage in the screen during one frame period can be reduced, so that the display quality of the video can be maintained above a certain level.
上記第5の局面によれば、複数の画素形成部のうちデータ信号線と平行に配置された各画素形成部は、同じ方向に隣接するデータ信号線と接続されているので、画素形成部内の配線が複雑にならない。これにより、画素形成部の開口率を向上させることができる。
According to the fifth aspect, each pixel forming portion arranged in parallel with the data signal line among the plurality of pixel forming portions is connected to the data signal line adjacent in the same direction. Wiring is not complicated. Thereby, the aperture ratio of a pixel formation part can be improved.
上記第6の局面によれば、複数の画素形成部のうちデータ信号線と平行に配置された各画素形成部は、同じ方向に隣接するデータ信号線および反対方向に隣接するデータ信号線と所定数ごとに交互に接続されている。このように、表示装置は擬似ドット反転駆動方式で駆動される。これにより、フリッカやクロストークの発生が抑制されるので、表示装置の表示品位を向上させることができる。
According to the sixth aspect, each pixel forming portion arranged in parallel with the data signal line among the plurality of pixel forming portions has a predetermined number of data signal lines adjacent in the same direction and a data signal line adjacent in the opposite direction. Each number is connected alternately. Thus, the display device is driven by the pseudo dot inversion driving method. As a result, the occurrence of flicker and crosstalk is suppressed, so that the display quality of the display device can be improved.
上記第7の局面によれば、走査信号線駆動回路に含まれるシフトレジスタは、縦続接続された複数の単位回路により構成される。各フレーム期間のブランキング期間に、各単位回路の一括駆動回路にオン電圧が与えられると、一括駆動回路は一括駆動信号を複数の走査信号線のそれぞれに同時に出力する。これより、全ての画素形成部にプリチャージ信号を同時に書き込むことができる。
According to the seventh aspect, the shift register included in the scanning signal line driving circuit includes a plurality of unit circuits connected in cascade. When an ON voltage is applied to the collective drive circuit of each unit circuit during the blanking period of each frame period, the collective drive circuit outputs a collective drive signal to each of the plurality of scanning signal lines simultaneously. Thus, the precharge signal can be simultaneously written in all the pixel formation portions.
上記第8の局面によれば、一括駆動回路に含まれるトランジスタは、制御端子にオン電圧を印加されたとき、他方の導通端子に与えられたパルス信号が一括駆動信号として出力端子に出力される。このような簡単な構成の一括駆動回路により、各走査信号線に一括駆動信号を同時に出力することができる。
According to the eighth aspect, when the on-voltage is applied to the control terminal of the transistor included in the collective drive circuit, the pulse signal applied to the other conduction terminal is output to the output terminal as the collective drive signal. . A collective drive circuit having such a simple configuration can simultaneously output collective drive signals to the scanning signal lines.
上記第9の局面によれば、一括駆動回路に含まれるトランジスタは、制御端子にオン電圧を印加されたとき、他方の導通端子に与えられた電源電圧が一括駆動信号として出力端子に出力される。このように、一括駆動回路は、電源電圧をトランジスタのドレイン端子に印加するので、ドレイン端子に印加するためのパルス信号を生成する必要がない。このため、表示装置の設計が容易になり、コストを低減することができる。また、ドレイン端子に印加する電源電圧はパルス信号ではないので、各走査信号線の電圧を短時間で安定させることができる。
According to the ninth aspect, when the on-voltage is applied to the control terminal of the transistor included in the collective drive circuit, the power supply voltage applied to the other conduction terminal is output to the output terminal as the collective drive signal. . In this way, the collective driving circuit applies the power supply voltage to the drain terminal of the transistor, so that it is not necessary to generate a pulse signal to be applied to the drain terminal. For this reason, the display device can be easily designed, and the cost can be reduced. Further, since the power supply voltage applied to the drain terminal is not a pulse signal, the voltage of each scanning signal line can be stabilized in a short time.
以下、添付図面を参照しつつ、本発明の実施形態について説明する。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
<1.第1の実施形態>
<1.1 全体構成および動作>
図1は、本発明の第1の実施形態に係るアクティブマトリクス型液晶表示装置の全体構成を示すブロック図である。図1に示すように、この液晶表示装置は、表示部10と表示制御回路20とソースドライバ(データ信号線駆動回路)30とゲートドライバ(走査信号線駆動回路)40とを備えている。 <1. First Embodiment>
<1.1 Overall configuration and operation>
FIG. 1 is a block diagram showing the overall configuration of an active matrix liquid crystal display device according to a first embodiment of the present invention. As shown in FIG. 1, the liquid crystal display device includes adisplay unit 10, a display control circuit 20, a source driver (data signal line driving circuit) 30, and a gate driver (scanning signal line driving circuit) 40.
<1.1 全体構成および動作>
図1は、本発明の第1の実施形態に係るアクティブマトリクス型液晶表示装置の全体構成を示すブロック図である。図1に示すように、この液晶表示装置は、表示部10と表示制御回路20とソースドライバ(データ信号線駆動回路)30とゲートドライバ(走査信号線駆動回路)40とを備えている。 <1. First Embodiment>
<1.1 Overall configuration and operation>
FIG. 1 is a block diagram showing the overall configuration of an active matrix liquid crystal display device according to a first embodiment of the present invention. As shown in FIG. 1, the liquid crystal display device includes a
表示部10には、複数(m本)のソース信号線(データ信号線)SL1~SLmと、複数(n本)のゲート信号線(走査信号線)GL1~GLnと、これらのソース信号線SL1~SLmとゲート信号線GL1~GLnとの各交差点にそれぞれ対応して設けられた複数(n×m個)の画素形成部とが設けられている。
The display unit 10 includes a plurality (m) of source signal lines (data signal lines) SL1 to SLm, a plurality (n) of gate signal lines (scanning signal lines) GL1 to GLn, and these source signal lines SL1. A plurality of (n × m) pixel forming portions provided corresponding to the respective intersections of .about.SLm and the gate signal lines GL1 to GLn are provided.
複数の画素形成部はマトリクス状に配置されて画素アレイを構成する。各画素形成部には、対応する交差点を通過するゲート信号線にゲート端子が接続されると共に当該交差点を通過するソース信号線にソース端子が接続されたスイッチング素子である薄膜トランジスタ(TFT)11と、当該TFT11のドレイン端子に接続された画素電極と、複数の画素形成部に共通的に設けられた対向電極Ecとが設けられ、複数の画素形成部の画素電極と対向電極Ecとの間に液晶層が挟持されている。これらの画素電極と対向電極Ecと液晶層とは画素容量Cpを構成する。なお、画素容量Cpは、電圧を確実に保持できるように、さらに液晶容量に並列に接続された補助容量を有する場合が多い。しかし、補助容量は本発明には直接に関係しないので、本明細書では画素容量Cpは液晶容量のみからなるとして説明する。
A plurality of pixel forming portions are arranged in a matrix to form a pixel array. Each pixel formation portion includes a thin film transistor (TFT) 11 that is a switching element having a gate terminal connected to a gate signal line passing through a corresponding intersection and a source terminal connected to a source signal line passing through the intersection. A pixel electrode connected to the drain terminal of the TFT 11 and a counter electrode Ec provided in common to the plurality of pixel formation portions are provided, and a liquid crystal is provided between the pixel electrodes of the plurality of pixel formation portions and the counter electrode Ec. Layers are sandwiched. These pixel electrode, counter electrode Ec, and liquid crystal layer form a pixel capacitor Cp. In many cases, the pixel capacitor Cp further includes an auxiliary capacitor connected in parallel to the liquid crystal capacitor so that the voltage can be reliably held. However, since the auxiliary capacitor is not directly related to the present invention, in the present specification, the pixel capacitor Cp will be described as being composed of only a liquid crystal capacitor.
表示制御回路20は、外部から供給されたデジタルビデオ信号DATおよび水平同期信号や垂直同期信号などのタイミング信号群TGを受け取り、デジタル映像信号DV、表示部10における映像表示を制御するためのソーススタートパルス信号SSP,ソースクロック信号SCK,ラッチストローブ信号LS,走査開始信号としてのゲートスタートパルス信号GSP,第1ゲートクロック信号GCK1,第2ゲートクロック信号GCK2,全オン制御信号AON,およびプリチャージ電圧信号VGPを出力する。
The display control circuit 20 receives an externally supplied digital video signal DAT and a timing signal group TG such as a horizontal synchronizing signal and a vertical synchronizing signal, and receives a digital video signal DV and a source start for controlling video display on the display unit 10. Pulse signal SSP, source clock signal SCK, latch strobe signal LS, gate start pulse signal GSP as scanning start signal, first gate clock signal GCK1, second gate clock signal GCK2, all-on control signal AON, and precharge voltage signal Outputs VGP.
ソースドライバ30は、表示制御回路20から出力されるデジタル映像信号DV,ソーススタートパルス信号SSP,ソースクロック信号SCK,およびラッチストローブ信号LSを受け取り、各ソース信号線SL1~SLmに駆動用の映像信号S(1)~S(m)をそれぞれ印加する。ソースドライバ30はカラム反転駆動をするために、奇数列のソース信号線SL(2j+1)(jはゼロ以上の整数)と偶数列のソース信号線SL(2j)には、フレーム期間ごとに異なる極性の映像信号を印加する。例えば、あるフレーム期間において奇数列のソース信号線SL(2j+1)に正極性の映像信号を印加し、偶数列のソース信号線SL(2j)に負極性の映像信号を印加し、次のフレーム期間には、奇数列のソース信号線SL(2j+1)に負極性の映像信号を印加し、偶数列のソース信号線SL(2j)に正極性の映像信号を印加する。このように、フレーム期間ごとに逆の極性の映像信号を各ソース信号線に印加するソースドライバ30の構成は周知であるので、その説明を省略する。
The source driver 30 receives the digital video signal DV, the source start pulse signal SSP, the source clock signal SCK, and the latch strobe signal LS output from the display control circuit 20, and drives the video signals for the source signal lines SL1 to SLm. S (1) to S (m) are respectively applied. In order to perform column inversion driving, the source driver 30 has an odd column source signal line SL (2j + 1) (j is an integer greater than or equal to zero) and an even column source signal line SL (2j) having different polarities for each frame period. Apply the video signal. For example, in a certain frame period, a positive video signal is applied to the odd-numbered source signal line SL (2j + 1), and a negative video signal is applied to the even-numbered source signal line SL (2j). The negative video signal is applied to the odd-numbered source signal line SL (2j + 1), and the positive video signal is applied to the even-numbered source signal line SL (2j). As described above, since the configuration of the source driver 30 that applies the video signal having the opposite polarity to each source signal line for each frame period is well known, the description thereof is omitted.
ゲートドライバ40は、表示制御回路20から出力される第1ゲートクロック信号GCK1,第2ゲートクロック信号GCK2,およびゲートスタートパルス信号GSPに基づいて、1フレーム期間(1垂直走査期間)ごとに、アクティブな走査信号GOUT1~GOUTnをそれぞれ対応するゲート信号線GL1~GLnに順に印加する。また、ゲートドライバ40は、各フレーム期間の最初に、プリチャージ電圧信号VGPおよび全オン制御信号AONに基づいて、ゲート信号線GL1~GLnにハイレベルの一括駆動信号VBDを同時に印加する。
The gate driver 40 is active every frame period (one vertical scanning period) based on the first gate clock signal GCK1, the second gate clock signal GCK2, and the gate start pulse signal GSP output from the display control circuit 20. The scanning signals GOUT1 to GOUTn are sequentially applied to the corresponding gate signal lines GL1 to GLn. Further, the gate driver 40 simultaneously applies the high-level collective drive signal VBD to the gate signal lines GL1 to GLn based on the precharge voltage signal VGP and the all-on control signal AON at the beginning of each frame period.
以上のようにして、各ソース信号線SL1~SLmに映像信号S(1)~S(m)がそれぞれ印加され、各ゲート信号線GL1~GLnに走査信号GOUT1~GOUTnがそれぞれ印加されることにより、外部から供給されたデジタルビデオ信号DATに基づく映像が表示部10に表示される。
As described above, the video signals S (1) to S (m) are applied to the source signal lines SL1 to SLm, respectively, and the scanning signals GOUT1 to GOUTn are applied to the gate signal lines GL1 to GLn, respectively. An image based on the digital video signal DAT supplied from the outside is displayed on the display unit 10.
また、各フレーム期間のブランキング期間に、一括駆動信号VBDを各ゲート信号線GL1~GLnに同時に印加することによって、すべての画素形成部を同時にプリチャージする。すなわち、正極性の映像信号が書き込まれる画素形成部には、正極性の階調電圧の中央値(以下、「正極性側の中間電圧」という)がプリチャージされ、同時に負極性の映像信号が書き込まれる画素形成部には、負極性の階調電圧の中央値(以下、「負極性側の中間電圧」という)がプリチャージされる。なお、画素形成部にプリチャージされる電圧は、正極性の映像信号が書き込まれる画素形成部と負極性の映像信号が書き込まれる画素形成部とで異なっていてもよい。また、プリチャージされる電圧は、映像信号の極性によらず、映像信号の中間階調に相当する電圧であってもよい。
In the blanking period of each frame period, the collective drive signal VBD is simultaneously applied to the gate signal lines GL1 to GLn, so that all the pixel forming portions are precharged simultaneously. In other words, the median value of the positive polarity gradation voltage (hereinafter referred to as “the intermediate voltage on the positive polarity side”) is precharged in the pixel formation portion where the positive polarity video signal is written, and at the same time the negative polarity video signal The pixel formation portion to be written is precharged with a median value of negative gradation voltage (hereinafter referred to as “intermediate voltage on the negative polarity side”). Note that the voltage precharged in the pixel formation portion may be different between the pixel formation portion to which the positive video signal is written and the pixel formation portion to which the negative video signal is written. Further, the precharged voltage may be a voltage corresponding to an intermediate gray level of the video signal regardless of the polarity of the video signal.
<1.2 液晶表示装置の極性反転駆動方式>
液晶表示装置を駆動する際に、液晶分子に直流電圧(DC電圧)を長時間印加し続けると液晶の特性が劣化する。そこで、特性の劣化を防止するために、液晶表示装置では、液晶層に印加する電圧の極性を周期的に反転させながら駆動する極性反転駆動方式が用いられる。このような極性反転駆動方式には、ライン反転駆動方式、カラム反転駆動方式、ドット反転駆動方式等の方式があるが、本実施形態はカラム反転方式で駆動される液晶表示装置に適用される。そこで、カラム反転駆動方式について説明する。 <1.2 Polarity inversion driving method of liquid crystal display device>
When driving a liquid crystal display device, if a direct current voltage (DC voltage) is continuously applied to liquid crystal molecules for a long time, the characteristics of the liquid crystal deteriorate. Therefore, in order to prevent the deterioration of characteristics, the liquid crystal display device uses a polarity inversion driving method in which driving is performed while periodically inverting the polarity of the voltage applied to the liquid crystal layer. Such polarity inversion driving methods include a line inversion driving method, a column inversion driving method, a dot inversion driving method, and the like, but this embodiment is applied to a liquid crystal display device driven by a column inversion method. Therefore, the column inversion driving method will be described.
液晶表示装置を駆動する際に、液晶分子に直流電圧(DC電圧)を長時間印加し続けると液晶の特性が劣化する。そこで、特性の劣化を防止するために、液晶表示装置では、液晶層に印加する電圧の極性を周期的に反転させながら駆動する極性反転駆動方式が用いられる。このような極性反転駆動方式には、ライン反転駆動方式、カラム反転駆動方式、ドット反転駆動方式等の方式があるが、本実施形態はカラム反転方式で駆動される液晶表示装置に適用される。そこで、カラム反転駆動方式について説明する。 <1.2 Polarity inversion driving method of liquid crystal display device>
When driving a liquid crystal display device, if a direct current voltage (DC voltage) is continuously applied to liquid crystal molecules for a long time, the characteristics of the liquid crystal deteriorate. Therefore, in order to prevent the deterioration of characteristics, the liquid crystal display device uses a polarity inversion driving method in which driving is performed while periodically inverting the polarity of the voltage applied to the liquid crystal layer. Such polarity inversion driving methods include a line inversion driving method, a column inversion driving method, a dot inversion driving method, and the like, but this embodiment is applied to a liquid crystal display device driven by a column inversion method. Therefore, the column inversion driving method will be described.
図2は、カラム反転駆動方式を説明するための図である。カラム反転駆動方式では、図2(A)に示すように、第1フレーム期間において、例えば奇数列のソース信号線SL(2j+1)に正極性の映像信号が印加され、偶数列のソース信号線SL(2j)に負極性の映像信号が印加される。次に、図2(B)に示すように、第2フレーム期間において、奇数列のソース信号線SL(2j+1)に負極性の映像信号が印加され、偶数列のソース信号線SL(2j)に正極性の映像信号が印加される。以下同様にして、奇数番目のフレーム期間には第1フレーム期間の場合と同様に、偶数番目のフレーム期間には第2フレーム期間の場合と同様に、正極性および負極性の映像信号がそれぞれ各ソース信号線SL1~SLmに印加される。画素形成部は列ごとに左側に隣接する各ソース信号線SL1~SLmと接続されているので、図2(A)に示すように、第1フレーム期間には、奇数列の画素形成部に正極性の映像信号の電圧が充電され、偶数列の画素形成部に負極性の映像信号の電圧が充電される。また、図2(B)に示すように、第2フレーム期間には、各画素形成部にそれぞれ逆の極性の映像信号の電圧が充電される。
FIG. 2 is a diagram for explaining the column inversion driving method. In the column inversion driving method, as shown in FIG. 2A, in the first frame period, for example, a positive video signal is applied to the odd-numbered source signal line SL (2j + 1), and the even-numbered source signal line SL is applied. A negative video signal is applied to (2j). Next, as shown in FIG. 2B, in the second frame period, a negative video signal is applied to the odd-numbered source signal line SL (2j + 1), and the even-numbered source signal line SL (2j) is applied. A positive video signal is applied. Similarly, in the same manner as in the first frame period in the odd-numbered frame period, and in the same manner as in the second frame period in the even-numbered frame period, positive and negative video signals are respectively transmitted. Applied to the source signal lines SL1 to SLm. Since the pixel formation portion is connected to each of the source signal lines SL1 to SLm adjacent to the left side for each column, as shown in FIG. 2A, in the first frame period, a positive electrode is connected to the pixel formation portion in the odd column. The voltage of the negative video signal is charged, and the voltage of the negative video signal is charged in the pixel formation portions in the even columns. Further, as shown in FIG. 2B, in the second frame period, the voltage of the video signal having the opposite polarity is charged in each pixel formation portion.
なお、奇数番目のフレーム期間と偶数番目のフレーム期間において、各ソース信号線に印加する映像信号の極性を、図2に示す極性とそれぞれ逆の極性にしてもよい。
Note that in the odd-numbered frame period and the even-numbered frame period, the polarity of the video signal applied to each source signal line may be opposite to the polarity shown in FIG.
<1.3 シフトレジスタの構成>
図3は、ゲートドライバ40の構成を示すブロック図である。図3に示すように、ゲートドライバ40はn個の単位回路SRa(1)~SRa(n)を縦続接続したシフトレジスタ410によって構成されている。n個の単位回路SRaは表示部10に形成されたn行×m列の画素アレイの各行と1対1に対応するように設けられている。また、シフトレジスタ410の各単位回路SRa(1)~SRa(n)は、各フレーム期間においてハイレベルの走査信号を各行のゲート信号線GL1~GLnに順に出力するだけでなく、各フレーム期間のブランキング期間に、ハイレベルの一括駆動信号VBDをすべてのゲート信号線GL1~GLnに同時に出力する。 <1.3 Shift register configuration>
FIG. 3 is a block diagram showing a configuration of thegate driver 40. As shown in FIG. 3, the gate driver 40 includes a shift register 410 in which n unit circuits SRa (1) to SRa (n) are connected in cascade. The n unit circuits SRa are provided in a one-to-one correspondence with each row of the pixel array of n rows × m columns formed in the display unit 10. The unit circuits SRa (1) to SRa (n) of the shift register 410 not only output high-level scanning signals to the gate signal lines GL1 to GLn in each row in each frame period, but also in each frame period. During the blanking period, the high-level collective drive signal VBD is simultaneously output to all the gate signal lines GL1 to GLn.
図3は、ゲートドライバ40の構成を示すブロック図である。図3に示すように、ゲートドライバ40はn個の単位回路SRa(1)~SRa(n)を縦続接続したシフトレジスタ410によって構成されている。n個の単位回路SRaは表示部10に形成されたn行×m列の画素アレイの各行と1対1に対応するように設けられている。また、シフトレジスタ410の各単位回路SRa(1)~SRa(n)は、各フレーム期間においてハイレベルの走査信号を各行のゲート信号線GL1~GLnに順に出力するだけでなく、各フレーム期間のブランキング期間に、ハイレベルの一括駆動信号VBDをすべてのゲート信号線GL1~GLnに同時に出力する。 <1.3 Shift register configuration>
FIG. 3 is a block diagram showing a configuration of the
図4は、ゲートドライバ40内のシフトレジスタ410の構成を示すブロック図である。図4を参照して、シフトレジスタ410を構成する各単位回路SRa(1)~SRa(n)の各入力端子に与えられる信号について説明する。各単位回路SRa(1)~SRa(n)には、位相が互いに180度ずれた2相のクロックCKA(以下、「第1クロック」という),CKB(以下、「第2クロック」という)をそれぞれ受け取るための入力端子と、走査開始用の信号であるセット信号SETを受け取るための入力端子と、走査終了用の信号であるリセット信号RESETを受け取るための入力端子と、全オン制御信号AONを受け取るための入力端子と、プリチャージ電圧信号VGPを受け取るための入力端子と、走査信号GOUT1~GOUTnまたは一括駆動信号VBDを各ゲート信号線GL1~GLnに出力するための出力端子とが設けられている。
FIG. 4 is a block diagram showing the configuration of the shift register 410 in the gate driver 40. As shown in FIG. With reference to FIG. 4, signals provided to the input terminals of the unit circuits SRa (1) to SRa (n) constituting the shift register 410 will be described. In each of the unit circuits SRa (1) to SRa (n), two-phase clocks CKA (hereinafter referred to as “first clock”) and CKB (hereinafter referred to as “second clock”) whose phases are shifted from each other by 180 degrees are provided. An input terminal for receiving each, an input terminal for receiving a set signal SET that is a signal for starting scanning, an input terminal for receiving a reset signal RESET that is a signal for ending scanning, and an all-on control signal AON An input terminal for receiving, an input terminal for receiving the precharge voltage signal VGP, and an output terminal for outputting the scanning signals GOUT1 to GOUTn or the collective driving signal VBD to the gate signal lines GL1 to GLn are provided. Yes.
第1クロックCKAおよび第2クロックCKBについて説明する。1段目の単位回路SRa(1)では、第1ゲートクロック信号GCK1が第1クロックCKAとして与えられ、第2ゲートクロック信号GCK2が第2クロックCKBして与えられる。2段目の単位回路SRa(2)では、第2ゲートクロック信号GCK2が第1クロックCKAとして与えられ、第1ゲートクロック信号GCK1が第2クロックCKBとして与えられる。3段目からn段目の単位回路SRa(3)~SRa(n)についても、上述した1段目および2段目の単位回路SRa(1),SRa(2)と同様の構成が2段ずつ繰り返される。なお、第1ゲートクロック信号GCK1と第2ゲートクロック信号GCK2とは、位相が互いに180度ずれた信号である。
The first clock CKA and the second clock CKB will be described. In the first stage unit circuit SRa (1), the first gate clock signal GCK1 is supplied as the first clock CKA, and the second gate clock signal GCK2 is supplied as the second clock CKB. In the second stage unit circuit SRa (2), the second gate clock signal GCK2 is supplied as the first clock CKA, and the first gate clock signal GCK1 is supplied as the second clock CKB. The unit circuits SRa (3) to SRa (n) from the third stage to the nth stage also have two stages similar to the above-described unit circuits SRa (1) and SRa (2) of the first stage and the second stage. Repeated one by one. The first gate clock signal GCK1 and the second gate clock signal GCK2 are signals that are 180 degrees out of phase with each other.
セット信号SETについて説明する。k段目(kは正の整数)の単位回路SRa(k)に着目すると、(k-1)段目の単位回路SRa(k-1)から出力された走査信号GOUT(k-1)がセット信号SETとして単位回路SRa(k)与えられる。但し、1段目の単位回路SRa(1)には、セット信号SETとしてゲートスタートパルス信号GSPが与えられる。
The set signal SET will be described. Focusing on the unit circuit SRa (k) in the k-th stage (k is a positive integer), the scanning signal GOUT (k−1) output from the unit circuit SRa (k−1) in the (k−1) -th stage Unit circuit SRa (k) is applied as set signal SET. However, the first stage unit circuit SRa (1) is supplied with the gate start pulse signal GSP as the set signal SET.
リセット信号RESETについて説明する。k段目の単位回路SRa(k)に着目すると、(k+1)段目の単位回路SRa(k+1)から出力される走査信号GOUT(k+1)がリセット信号RESETとして単位回路SRa(k)に与えられる。ただし、最終段であるn段目の単位回路SRa(n)には、外部から入力される信号がリセット信号RESETとして与えられる。なお、外部から入力する代わりに、(n+1)段目にダミーの単位回路SRa(n+1)を設け、単位回路SRa(n+1)から出力される走査信号GOUT(n+1)を単位回路SRa(n)のリセット信号RESETとしてもよい。
The reset signal RESET will be described. Focusing on the k-th unit circuit SRa (k), the scanning signal GOUT (k + 1) output from the (k + 1) -th unit circuit SRa (k + 1) is given to the unit circuit SRa (k) as the reset signal RESET. . However, an externally input signal is given as a reset signal RESET to the nth unit circuit SRa (n) which is the final stage. Instead of inputting from the outside, a dummy unit circuit SRa (n + 1) is provided at the (n + 1) stage, and the scanning signal GOUT (n + 1) output from the unit circuit SRa (n + 1) is supplied to the unit circuit SRa (n). The reset signal RESET may be used.
次に、k段目の単位回路SRa(k)の出力端子から出力される信号について説明する。k段目の単位回路SRa(k)の出力端子からは、k行目のゲート信号線GLkを選択するための走査信号GOUTkが出力される。また当該走査信号GOUTkは、リセット信号RESETとして(k-1)段目の単位回路SRa(k-1)に与えられると共に、セット信号SETとして(k+1)段目の単位回路SRa(k+1)に与えられる。さらに、単位回路SRa(k)は、各フレーム期間のブランキング期間に、ハイレベルの一括駆動信号VBDをゲート信号線GLkに出力する。
Next, signals output from the output terminal of the k-th unit circuit SRa (k) will be described. A scanning signal GOUTk for selecting the k-th gate signal line GLk is output from the output terminal of the k-th unit circuit SRa (k). The scanning signal GOUTk is supplied to the unit circuit SRa (k−1) at the (k−1) stage as the reset signal RESET and to the unit circuit SRa (k + 1) at the (k + 1) stage as the set signal SET. It is done. Further, the unit circuit SRa (k) outputs the high-level collective drive signal VBD to the gate signal line GLk during the blanking period of each frame period.
<1.4 単位回路の構成>
図5は、シフトレジスタ410に含まれる単位回路SRaの構成を示す回路図である。図5に示すように、単位回路SRaは、同一導電型の5個の薄膜トランジスタ(以下「トランジスタ」という)T1~T5と、1個のキャパシタCとを備える。以下、ゲート端子に与えたときにトランジスタをオン状態にする電圧(信号レベル)をオン電圧(オンレベル)といい、トランジスタをオフ状態にする電圧(信号レベル)をオフ電圧(オフレベル)という。Nチャネル型トランジスタでは、ハイレベルの電圧がオン電圧(ハイレベルの信号がオンレベル)、ローレベルの電圧がオフ電圧(ローレベルの信号がオフレベル)となる。Pチャネル型トランジスタではその逆になる。以下では、単位回路SRaに含まれるトランジスタはすべてNチャネル型であるとして説明するが、すべてPチャネル型であってもよい。 <1.4 Unit circuit configuration>
FIG. 5 is a circuit diagram showing a configuration of the unit circuit SRa included in theshift register 410. As shown in FIG. 5, the unit circuit SRa includes five thin film transistors (hereinafter referred to as “transistors”) T1 to T5 of the same conductivity type, and one capacitor C. Hereinafter, the voltage (signal level) that turns on the transistor when applied to the gate terminal is referred to as on-voltage (on level), and the voltage (signal level) that turns off the transistor is referred to as off-voltage (off level). In an N-channel transistor, a high level voltage is an on-voltage (high level signal is on level), and a low level voltage is an off voltage (low level signal is off level). The opposite is true for P-channel transistors. In the following description, the transistors included in the unit circuit SRa are all assumed to be N-channel type, but may be all P-channel type.
図5は、シフトレジスタ410に含まれる単位回路SRaの構成を示す回路図である。図5に示すように、単位回路SRaは、同一導電型の5個の薄膜トランジスタ(以下「トランジスタ」という)T1~T5と、1個のキャパシタCとを備える。以下、ゲート端子に与えたときにトランジスタをオン状態にする電圧(信号レベル)をオン電圧(オンレベル)といい、トランジスタをオフ状態にする電圧(信号レベル)をオフ電圧(オフレベル)という。Nチャネル型トランジスタでは、ハイレベルの電圧がオン電圧(ハイレベルの信号がオンレベル)、ローレベルの電圧がオフ電圧(ローレベルの信号がオフレベル)となる。Pチャネル型トランジスタではその逆になる。以下では、単位回路SRaに含まれるトランジスタはすべてNチャネル型であるとして説明するが、すべてPチャネル型であってもよい。 <1.4 Unit circuit configuration>
FIG. 5 is a circuit diagram showing a configuration of the unit circuit SRa included in the
また、単位回路SRaは、6個の入力端子41~46と、1個の出力端子61とを有している。なお、これらの入力端子41~46は、セット信号SETを受け取る入力端子41と、リセット信号RESETを受け取る入力端子42と、第1クロックCKAを受け取る入力端子43と、第2クロックCKBを受け取る入力端子44と、全オン信号を受け取る入力端子45と、プリチャージ電圧信号VGPを受け取る入力端子46である。
The unit circuit SRa has six input terminals 41 to 46 and one output terminal 61. These input terminals 41 to 46 are an input terminal 41 for receiving a set signal SET, an input terminal 42 for receiving a reset signal RESET, an input terminal 43 for receiving a first clock CKA, and an input terminal for receiving a second clock CKB. 44, an input terminal 45 for receiving the all-on signal, and an input terminal 46 for receiving the precharge voltage signal VGP.
この単位回路SRaにおける各構成要素の接続関係を説明する。なお、以下の説明では、トランジスタT1のソース端子,トランジスタT2のドレイン端子,トランジスタT3のゲート端子が互いに接続されている接続部を節点NCいう。
The connection relationship of each component in this unit circuit SRa will be described. In the following description, a connection portion where the source terminal of the transistor T1, the drain terminal of the transistor T2, and the gate terminal of the transistor T3 are connected to each other is referred to as a node NC.
トランジスタT1については、ドレイン端子とゲート端子は入力端子41に接続され(すなわち、ダイオード接続となっている)、ソース端子は節点NCに接続されている。トランジスタT2については、ゲート端子は入力端子42に接続され、ドレイン端子は節点NCに接続され、ソース端子はローレベルの電源電圧VSSに接続されている。トランジスタT3については、ゲート端子は節点NCに接続され、ドレイン端子は入力端子43に接続され、ソース端子は出力端子61に接続されている。トランジスタT4については、ゲート端子は入力端子44に接続され、ドレイン端子は出力端子61に接続され、ソース端子はローレベルの電源電圧VSSに接続されている。トランジスタT5については、ゲート端子は入力端子45に接続され、ドレイン端子は入力端子46に接続され、ソース端子は出力端子61に接続されている。また、キャパシタCの一端は節点NCに接続され、他端は出力端子61に接続されている。
As for the transistor T1, the drain terminal and the gate terminal are connected to the input terminal 41 (that is, diode connection), and the source terminal is connected to the node NC. As for the transistor T2, the gate terminal is connected to the input terminal 42, the drain terminal is connected to the node NC, and the source terminal is connected to the low-level power supply voltage VSS. As for the transistor T3, the gate terminal is connected to the node NC, the drain terminal is connected to the input terminal 43, and the source terminal is connected to the output terminal 61. As for the transistor T4, the gate terminal is connected to the input terminal 44, the drain terminal is connected to the output terminal 61, and the source terminal is connected to the low-level power supply voltage VSS. As for the transistor T5, the gate terminal is connected to the input terminal 45, the drain terminal is connected to the input terminal 46, and the source terminal is connected to the output terminal 61. One end of the capacitor C is connected to the node NC, and the other end is connected to the output terminal 61.
次に、単位回路SRaの動作について説明する。図6は、単位回路SRaの動作を示すタイミングチャートである。この単位回路SRaは、出力端子61に通常のシフトレジスタとして走査信号GOUTとなる出力信号を出力するときと、一括駆動信号VBDとなる出力信号を出力するときとがある。
Next, the operation of the unit circuit SRa will be described. FIG. 6 is a timing chart showing the operation of the unit circuit SRa. The unit circuit SRa outputs an output signal that becomes the scanning signal GOUT as an ordinary shift register to the output terminal 61 and outputs an output signal that becomes the collective drive signal VBD.
まず、出力端子61に一括駆動信号VBDを出力するときの動作を説明する。期間t0~t3のうち、期間t0~t03はブランキング期間に相当し、期間t1~t3は表示期間の一部に相当する。期間t01~t02において、入力端子45にオンレベルの全オン制御信号AONが与えられるので、トランジスタT5はオン状態になる。このうち、期間t01では、入力端子46にハイレベルのプリチャージ電圧信号VGPが与えられるので、出力端子61に一括駆動信号VBDとなる出力信号が出力される。しかし、期間t02になると、プリチャージ電圧信号VGPがハイレベルからローレベルに変化するので、それに伴って出力端子61の電圧もハイレベルからローレベルになる。
First, the operation when the collective drive signal VBD is output to the output terminal 61 will be described. Of the periods t0 to t3, the periods t0 to t03 correspond to a blanking period, and the periods t1 to t3 correspond to a part of the display period. In the period t01 to t02, the on-level all-on control signal AON is given to the input terminal 45, so that the transistor T5 is turned on. Among these, in the period t01, since the high-level precharge voltage signal VGP is supplied to the input terminal 46, an output signal serving as the collective drive signal VBD is output to the output terminal 61. However, since the precharge voltage signal VGP changes from the high level to the low level during the period t02, the voltage at the output terminal 61 also changes from the high level to the low level.
期間t03において、入力端子45に与えられる全オン制御信号AONがオンレベルからオフレベルになるので、トランジスタT5はオフ状態になる。また、期間t03には、入力端子41にオンレベルとなるセット信号SETが与えられる。これにより、トランジスタT1はオン状態になり、節点NCの電圧が上昇する。
In the period t03, since the all-on control signal AON given to the input terminal 45 changes from the on level to the off level, the transistor T5 is turned off. Further, in the period t03, the input terminal 41 is supplied with the set signal SET that is turned on. As a result, the transistor T1 is turned on, and the voltage at the node NC increases.
期間t1において、入力端子43に与えられる第1クロックCKAがローレベルからハイレベルに変化する。このとき、節点NCの電圧が上昇しているので、トランジスタT3はオン状態になり、出力端子61の電圧が上昇する。さらに節点NCと出力端子61との間にキャパシタCが設けられているので、出力端子61の電圧の上昇と共に節点NCの電圧もさらに上昇する(節点NCがブートストラップされる)。その結果、トランジスタT3のゲート端子には、オン電圧よりも大きな電圧が印加され、第1クロックCKAはそのレベルがトランジスタT3の閾値電圧によって低下することなく出力端子61に出力される。これにより、出力端子61の電圧は、第1クロックCKAのハイレベルの電圧と同じ電圧になるので、この単位回路SRaの出力端子61に接続されているゲート信号線が選択される。なお、期間t1では、第2クロックCKBはオフレベルになっているので、トランジスタT4はオフ状態を維持する。このため、トランジスタT4のドレイン端子、すなわち出力端子61の電圧がローレベルになることはない。
During the period t1, the first clock CKA applied to the input terminal 43 changes from low level to high level. At this time, since the voltage at the node NC is increased, the transistor T3 is turned on, and the voltage at the output terminal 61 is increased. Further, since the capacitor C is provided between the node NC and the output terminal 61, the voltage at the node NC further increases as the voltage at the output terminal 61 increases (the node NC is bootstrapped). As a result, a voltage higher than the ON voltage is applied to the gate terminal of the transistor T3, and the level of the first clock CKA is output to the output terminal 61 without being lowered by the threshold voltage of the transistor T3. As a result, the voltage of the output terminal 61 becomes the same voltage as the high level voltage of the first clock CKA, so that the gate signal line connected to the output terminal 61 of the unit circuit SRa is selected. Note that in the period t1, since the second clock CKB is in the off level, the transistor T4 maintains the off state. For this reason, the voltage of the drain terminal of the transistor T4, that is, the output terminal 61 does not become low level.
期間t2において、オンレベルの第2クロックCKBが入力端子44に与えられる。これにより、トランジスタT4はオン状態になり、出力端子61の電圧はローレベルになる。また、入力端子42にオンレベルのリセット信号RESETが与えられる。これにより、トランジスタT2はオン状態になり、節点NCの電圧もローレベルになる。
During the period t2, the on-level second clock CKB is supplied to the input terminal 44. As a result, the transistor T4 is turned on, and the voltage of the output terminal 61 becomes low level. Further, an on-level reset signal RESET is given to the input terminal 42. As a result, the transistor T2 is turned on, and the voltage at the node NC is also low.
なお、単位回路SRaにおいては、トランジスタT1~T4とキャパシタCとは、走査信号を生成して出力する出力信号生成回路として機能し、トランジスタT5は一括駆動信号を出力する一括駆動回路として機能する。
In the unit circuit SRa, the transistors T1 to T4 and the capacitor C function as an output signal generation circuit that generates and outputs a scanning signal, and the transistor T5 functions as a collective drive circuit that outputs a collective drive signal.
<1.5 シフトレジスタの動作>
次に、液晶表示装置の動作を、タイミングチャートを用いて説明する。図7は液晶表示装置の1フレーム期間におけるタイミングチャートである。なお、図7では、期間t01から期間t(n+1)までが1フレーム期間である。また1フレーム期間のうち、期間t01から期間t03まではブランキング期間であり、期間t1から期間t(n+1)までは表示期間である。各期間t01~tnはそれぞれ1水平期間であり、期間t(n+1)は1水平期間よりも長い期間である。なお、図7では、便宜上、期間t(n+1)の長さは、期間t1等と同じ長さの期間として描かれているが、実際には、期間t(n+1)の長さは期間t1等よりも十分長い期間に設定されている。 <1.5 Shift register operation>
Next, the operation of the liquid crystal display device will be described using a timing chart. FIG. 7 is a timing chart in one frame period of the liquid crystal display device. In FIG. 7, the period from the period t01 to the period t (n + 1) is one frame period. Further, in one frame period, a period t01 to a period t03 is a blanking period, and a period t1 to a period t (n + 1) is a display period. Each of the periods t01 to tn is one horizontal period, and the period t (n + 1) is a period longer than one horizontal period. In FIG. 7, for the sake of convenience, the length of the period t (n + 1) is depicted as a period having the same length as the period t1 or the like, but actually, the length of the period t (n + 1) is the period t1 or the like. Is set to a sufficiently long period.
次に、液晶表示装置の動作を、タイミングチャートを用いて説明する。図7は液晶表示装置の1フレーム期間におけるタイミングチャートである。なお、図7では、期間t01から期間t(n+1)までが1フレーム期間である。また1フレーム期間のうち、期間t01から期間t03まではブランキング期間であり、期間t1から期間t(n+1)までは表示期間である。各期間t01~tnはそれぞれ1水平期間であり、期間t(n+1)は1水平期間よりも長い期間である。なお、図7では、便宜上、期間t(n+1)の長さは、期間t1等と同じ長さの期間として描かれているが、実際には、期間t(n+1)の長さは期間t1等よりも十分長い期間に設定されている。 <1.5 Shift register operation>
Next, the operation of the liquid crystal display device will be described using a timing chart. FIG. 7 is a timing chart in one frame period of the liquid crystal display device. In FIG. 7, the period from the period t01 to the period t (n + 1) is one frame period. Further, in one frame period, a period t01 to a period t03 is a blanking period, and a period t1 to a period t (n + 1) is a display period. Each of the periods t01 to tn is one horizontal period, and the period t (n + 1) is a period longer than one horizontal period. In FIG. 7, for the sake of convenience, the length of the period t (n + 1) is depicted as a period having the same length as the period t1 or the like, but actually, the length of the period t (n + 1) is the period t1 or the like. Is set to a sufficiently long period.
まず、期間t01~t03について説明する。期間t01~t02に、すべての単位回路SRa(1)~SRa(n)に、オンレベルの全オン制御信号AONが与えられ、期間t01にハイレベルのプリチャージ電圧信号VGPが与えられる。これにより、各単位回路SRa(1)~SRa(n)は、期間t01に、対応する各ゲート信号線GL1~GLnにハイレベルの一括駆動信号VBDをそれぞれ印加する。このように、期間t01には、第1ゲートクロック信号GCK1および第2ゲートクロック信号GCK2のレベルとは無関係に、ハイレベルの一括駆動信号VBDが各ゲート信号線GL1~GLnに同時に印加される。これにより、すべての画素形成部のTFT11はオン状態になる。
First, the period t01 to t03 will be described. During the period t01 to t02, all the unit circuits SRa (1) to SRa (n) are supplied with the on-level all-on control signal AON, and during the period t01, the high-level precharge voltage signal VGP is applied. As a result, the unit circuits SRa (1) to SRa (n) apply the high-level collective drive signal VBD to the corresponding gate signal lines GL1 to GLn, respectively, during the period t01. As described above, in the period t01, the high-level collective driving signal VBD is simultaneously applied to the gate signal lines GL1 to GLn regardless of the levels of the first gate clock signal GCK1 and the second gate clock signal GCK2. Thereby, the TFTs 11 of all the pixel formation portions are turned on.
このとき、ソースドライバ30から奇数列のソース信号線SL(2j+1)に正極性側の中間電圧SPC+が印加され、奇数列のソース信号線SL(2j+1)に接続されたすべての画素形成部に中間電圧SPC+が充電される。また、偶数列のソース信号線SL(2j)に負極性側の中間電圧SPC-が印加され、偶数列のソース信号線SL(2j)に接続されたすべての画素形成部に中間電圧SPC-が充電される。なお、正極性側の中間電圧SPC+および負極性側の中間電圧SPC-を有する信号をプリチャージ信号ということがある。
At this time, the positive intermediate voltage SPC + is applied from the source driver 30 to the odd-numbered source signal lines SL (2j + 1), and the intermediate signal is applied to all the pixel formation portions connected to the odd-numbered source signal lines SL (2j + 1). The voltage SPC + is charged. Further, the intermediate voltage SPC− on the negative polarity side is applied to the source signal line SL (2j) in the even column, and the intermediate voltage SPC− is applied to all the pixel formation portions connected to the source signal line SL (2j) in the even column. Charged. A signal having an intermediate voltage SPC + on the positive polarity side and an intermediate voltage SPC− on the negative polarity side is sometimes referred to as a precharge signal.
期間t02において、プリチャージ電圧信号VGPがハイレベルからローレベルに変化するので、出力端子61の電圧もローレベルになる。これにより、各単位回路SRa(1)~SRa(n)にそれぞれ対応する各ゲート信号線GL1~GLnの電圧はローレベルになり、すべての画素形成部のTFT11はオフ状態になる。その結果、奇数列のソース信号線SL(2j+1)に接続された画素形成部は正極性側の中間電圧SPC+を保持し、偶数列のソース信号線SL(2j)に接続された画素形成部は負極性側の中間電圧SPC-を保持する。このようにして、すべての画素形成部がプリチャージされる。
In the period t02, since the precharge voltage signal VGP changes from the high level to the low level, the voltage of the output terminal 61 also becomes the low level. As a result, the voltages of the gate signal lines GL1 to GLn corresponding to the unit circuits SRa (1) to SRa (n) respectively become low level, and the TFTs 11 of all the pixel formation portions are turned off. As a result, the pixel formation portion connected to the odd-numbered column source signal line SL (2j + 1) holds the intermediate voltage SPC + on the positive polarity side, and the pixel formation portion connected to the even-numbered column source signal line SL (2j) The intermediate voltage SPC− on the negative polarity side is maintained. In this way, all the pixel forming portions are precharged.
また、単位回路SRa(1)では、トランジスタT1のドレイン端子にセット信号SETとしてオンレベルのゲートスタートパルス信号GSPが与えられる。これにより、単位回路SRa(1)の節点NCの電圧が上昇する。
In the unit circuit SRa (1), an on-level gate start pulse signal GSP is given as the set signal SET to the drain terminal of the transistor T1. As a result, the voltage at the node NC of the unit circuit SRa (1) increases.
次に、表示期間(以下「期間」と略す)t1~t(n+1)について説明する。期間t1において、単位回路SRa(1)に与えられるゲートスタートパルス信号GSPはオフレベルになる。これにより、トランジスタT1はオフ状態になり、節点NCはフローティング状態になる。ハイレベルの第1クロックCKAがトランジスタT3のドレイン端子に与えられるので、節点NCの電圧はキャパシタCによってブートストラップされてトランジスタT3のオン電圧よりも高くなり、トランジスタT3は完全導通状態になる。この状態で、ハイレベルの第1クロックCKAがトランジスタT3のドレイン端子に与えられると、ハイレベルの第1クロックCKAはそのレベルがトランジスタT3の閾値電圧によって低下することなく出力端子に出力され、1段目の単位回路SRa(1)はゲート信号線GL1にハイレベルの走査信号GOUT1を印加する。このとき、ソースドライバ30から奇数列のソース信号線SL(2j+1)に対して正極性の映像信号が与えられ、偶数列のソース信号線SL(2j)に対して負極性の映像信号が与えられるので、1行目のゲート信号線GL1に接続された画素形成部のうち、奇数列のソース信号線SL(2j+1)に接続された画素形成部には、正極性の映像信号の電圧が充電される。また、偶数列のソース信号線SL(2j)に接続された画素形成部には、負極性の映像信号の電圧が充電される。このように、画素形成部では、書き込まれる映像信号の電圧に近い中間電圧SPC+またはSPC-を保持した状態で映像信号の書込みが開始されるので、映像信号は高速で書き込まれる。
Next, display periods (hereinafter referred to as “periods”) t1 to t (n + 1) will be described. In the period t1, the gate start pulse signal GSP given to the unit circuit SRa (1) is turned off. As a result, the transistor T1 is turned off and the node NC is in a floating state. Since the high-level first clock CKA is applied to the drain terminal of the transistor T3, the voltage at the node NC is bootstrapped by the capacitor C and becomes higher than the on-voltage of the transistor T3, and the transistor T3 becomes fully conductive. In this state, when the high-level first clock CKA is applied to the drain terminal of the transistor T3, the high-level first clock CKA is output to the output terminal without being lowered by the threshold voltage of the transistor T3. The unit circuit SRa (1) at the stage applies the high level scanning signal GOUT1 to the gate signal line GL1. At this time, a positive video signal is supplied from the source driver 30 to the odd-numbered source signal line SL (2j + 1), and a negative video signal is supplied to the even-numbered source signal line SL (2j). Therefore, among the pixel formation portions connected to the gate signal line GL1 in the first row, the pixel formation portions connected to the odd-numbered source signal lines SL (2j + 1) are charged with the voltage of the positive video signal. The Further, the voltage of the negative-polarity video signal is charged in the pixel formation portion connected to the even-numbered source signal line SL (2j). As described above, in the pixel forming portion, since the writing of the video signal is started while the intermediate voltage SPC + or SPC− close to the voltage of the video signal to be written is held, the video signal is written at a high speed.
また、1段目の単位回路SRa(1)から出力されたハイレベルの走査信号GOUT1は2段目の単位回路SRa(2)のトランジスタT1のセット信号SETとしても与えられる。これにより、単位回路SRa(2)のトランジスタT1はオン状態になり、単位回路SRa(2)の節点NCの電圧が上昇する。
The high-level scanning signal GOUT1 output from the first stage unit circuit SRa (1) is also supplied as the set signal SET of the transistor T1 of the second stage unit circuit SRa (2). As a result, the transistor T1 of the unit circuit SRa (2) is turned on, and the voltage at the node NC of the unit circuit SRa (2) increases.
期間t2において、1段目の単位回路SRa(1)ではオンレベルの第2クロックCKBがトランジスタT4に与えられる。これにより、トランジスタT4はオン状態になり、出力端子61の電圧はローレベルになる。このため、単位回路SRa(1)に接続されたゲート信号線GL1の電圧はローレベルになる。その結果、1行目の各画素形成部のTFT11はオフ状態になり、1行目の各画素形成部は書き込まれた映像信号の電圧を保持する。
In the period t2, in the first-stage unit circuit SRa (1), the second clock CKB at the on level is supplied to the transistor T4. As a result, the transistor T4 is turned on, and the voltage of the output terminal 61 becomes low level. For this reason, the voltage of the gate signal line GL1 connected to the unit circuit SRa (1) becomes low level. As a result, the TFT 11 in each pixel formation portion in the first row is turned off, and each pixel formation portion in the first row holds the voltage of the written video signal.
また、単位回路SRa(1)から2段目の単位回路SRa(2)のトランジスタT1に、セット信号SETとしてハイレベルの走査信号GOUT1が与えられる。これにより、単位回路SRa(2)のトランジスタT1はオン状態になり、節点NCの電圧は上昇する。そこで、ハイレベルの第1クロックCKAがトランジスタT3のドレイン端子に与えられると、節点NCの電圧はブートストラップされてトランジスタT3は完全導通状態になる。この状態で、ハイレベルの第1クロックCKAがトランジスタT3のドレイン端子に与えられると、第1クロックCKAはそのレベルがトランジスタT3の閾値電圧によって低下することなく出力端子に出力され、2段目の単位回路SRa(2)はゲート信号線GL2にハイレベルの走査信号GOUT2を印加する。このとき、ソースドライバ30から奇数列のソース信号線SL(2j+1)に対して正極性の映像信号が印加され、偶数列のソース信号線SL(2j)に対して負極性の映像信号が印加される。2行目のゲート信号線GL2に接続された画素形成部のうち、奇数列のソース信号線SL(2j+1)に接続された画素形成部には正極性の映像信号の電圧が充電され、偶数列のソース信号線SL(2j)に接続された画素形成部には負極性の映像信号の電圧が充電される。
Further, the high level scanning signal GOUT1 is supplied as the set signal SET from the unit circuit SRa (1) to the transistor T1 of the second stage unit circuit SRa (2). As a result, the transistor T1 of the unit circuit SRa (2) is turned on, and the voltage at the node NC increases. Therefore, when the first clock CKA at the high level is applied to the drain terminal of the transistor T3, the voltage at the node NC is bootstrapped, and the transistor T3 is brought into a complete conduction state. In this state, when the high-level first clock CKA is applied to the drain terminal of the transistor T3, the first clock CKA is output to the output terminal without being lowered by the threshold voltage of the transistor T3. The unit circuit SRa (2) applies the high level scanning signal GOUT2 to the gate signal line GL2. At this time, a positive video signal is applied from the source driver 30 to the odd-numbered source signal lines SL (2j + 1), and a negative video signal is applied to the even-numbered source signal lines SL (2j). The Among the pixel formation portions connected to the gate signal line GL2 in the second row, the pixel formation portions connected to the odd-numbered source signal lines SL (2j + 1) are charged with the voltage of the video signal having the positive polarity. The pixel formation portion connected to the source signal line SL (2j) is charged with a negative video signal voltage.
このとき、2段目の単位回路SRa(2)から出力されたハイレベルの走査信号GOUT2は、3段目の単位回路SRa(3)のトランジスタT1のセット信号SETとしても与えられる。これにより、単位回路SRa(3)のトランジスタT1はオン状態になり、節点NCの電圧は上昇する。また、2段目の単位回路SRa(2)から出力されたハイレベルの走査信号GOUT2は、1段目の単位回路SRa(1)のトランジスタT2のリセット信号RESETとしても与えられる。これにより、単位回路SRa(1)のトランジスタT2はオン状態になり、節点NCの電圧はハイレベルからローレベルに変化する。
At this time, the high-level scanning signal GOUT2 output from the second stage unit circuit SRa (2) is also supplied as the set signal SET of the transistor T1 of the third stage unit circuit SRa (3). As a result, the transistor T1 of the unit circuit SRa (3) is turned on, and the voltage at the node NC increases. The high-level scanning signal GOUT2 output from the second stage unit circuit SRa (2) is also supplied as the reset signal RESET of the transistor T2 of the first stage unit circuit SRa (1). As a result, the transistor T2 of the unit circuit SRa (1) is turned on, and the voltage at the node NC changes from the high level to the low level.
期間t3において、オンレベルの第2クロックCKBが2段目の単位回路SRa(2)のトランジスタT4に与えられる。これにより、トランジスタT4はオン状態になり、出力端子の電圧はローレベルになる。このため、単位回路SRa(2)に接続されたゲート信号線GL2の電圧はローレベルになる。その結果、2行目の各画素形成部のTFT11はオフ状態になり、2行目の各画素形成部は書き込まれた映像信号の電圧を保持する。
During the period t3, the on-level second clock CKB is supplied to the transistor T4 of the second stage unit circuit SRa (2). As a result, the transistor T4 is turned on, and the voltage of the output terminal becomes low level. For this reason, the voltage of the gate signal line GL2 connected to the unit circuit SRa (2) becomes low level. As a result, the TFT 11 in each pixel formation portion in the second row is turned off, and each pixel formation portion in the second row holds the voltage of the written video signal.
また、2段目の単位回路SRa(2)から3段目の単位回路SRa(3)のトランジスタT1に、セット信号SETとしてハイレベルの走査信号GOUT2が与えられる。これにより、3段目の単位回路SRa(3)のトランジスタT1はオン状態になり、節点NCの電圧は上昇する。ハイレベルの第1クロックCKAがトランジスタT3のドレイン端子に与えられると、節点NCの電圧はブートストラップされてトランジスタT3は完全導通状態になる。この状態で、第1クロックCKAはそのレベルがトランジスタT3の閾値電圧によって低下することなく出力端子に出力され、3段目の単位回路SRa(3)はゲート信号線GL3にハイレベルの走査信号GOUT3を印加する。このとき、ソースドライバ30から奇数列のソース信号線SL(2j+1)に対して正極性の映像信号が与えられ、偶数列のソース信号線SL(2j)に対して負極性の映像信号が与えられる。3行目のゲート信号線GL3に接続された画素形成部のうち、奇数列のソース信号線SL(2j+1)に接続された画素形成部に正極性の映像信号の電圧が充電され、偶数列のソース信号線SL(2j)に接続された画素形成部に負極性の映像信号の電圧が充電される。
Further, the high-level scanning signal GOUT2 is given as the set signal SET to the transistor T1 of the third-stage unit circuit SRa (3) from the second-stage unit circuit SRa (2). As a result, the transistor T1 of the third-stage unit circuit SRa (3) is turned on, and the voltage at the node NC increases. When the high-level first clock CKA is applied to the drain terminal of the transistor T3, the voltage at the node NC is bootstrapped and the transistor T3 is brought into a fully conductive state. In this state, the level of the first clock CKA is output to the output terminal without being lowered by the threshold voltage of the transistor T3, and the unit circuit SRa (3) at the third stage outputs the high level scanning signal GOUT3 to the gate signal line GL3. Is applied. At this time, a positive video signal is supplied from the source driver 30 to the odd-numbered source signal line SL (2j + 1), and a negative video signal is supplied to the even-numbered source signal line SL (2j). . Of the pixel formation portions connected to the gate signal line GL3 in the third row, the pixel formation portions connected to the odd-numbered source signal lines SL (2j + 1) are charged with the voltage of the positive video signal, The pixel forming portion connected to the source signal line SL (2j) is charged with a negative video signal voltage.
また、3段目の単位回路SRa(3)から4段目の単位回路SRa(4)のトランジスタT1に、セット信号SETとしてハイレベルの走査信号GOUT3が与えられる。これにより、単位回路SRa(4)のトランジスタT1はオン状態になり、節点NCの電圧は上昇する。また、3段目の単位回路SRa(3)から2段目の単位回路SRa(2)のトランジスタT2に、リセット信号RESETとしてハイレベルの走査信号GOUT3が与えられる。これにより、単位回路SRa(2)のトランジスタT2はオン状態になり、節点NCの電圧はローレベルになる。
Further, the high-level scanning signal GOUT3 is supplied as the set signal SET to the transistor T1 of the fourth-stage unit circuit SRa (4) from the third-stage unit circuit SRa (3). As a result, the transistor T1 of the unit circuit SRa (4) is turned on, and the voltage at the node NC increases. The high-level scanning signal GOUT3 is supplied as the reset signal RESET from the third-stage unit circuit SRa (3) to the transistor T2 of the second-stage unit circuit SRa (2). As a result, the transistor T2 of the unit circuit SRa (2) is turned on, and the voltage at the node NC becomes low level.
また、期間t4において、オンレベルの第2クロックCKBが3段目の単位回路SRa(3)のトランジスタT4に与えられる。このため、1行目の各画素形成部のTFT11と同様に、3行目の各画素形成部のTFT11はオフ状態になり、3行目の各画素形成部は書き込まれた映像信号の電圧を保持する。
In the period t4, the on-level second clock CKB is supplied to the transistor T4 of the third-stage unit circuit SRa (3). For this reason, like the TFT 11 of each pixel formation portion in the first row, the TFT 11 of each pixel formation portion in the third row is turned off, and each pixel formation portion in the third row applies the voltage of the written video signal. Hold.
以下同様にして、単位回路SRa(4)~SRa(n)も、期間tnまでの期間ごとに同様にしてハイレベルの走査信号GOUT1~GOUTnをゲート信号線GL3~GLnに順に印加する。このようにして、ハイレベルの走査信号GOUT4~GOUTnが各ゲート信号線GL1~GLnにそれぞれ順に印加される。これにより、4~n行目のゲート信号線GL4~GLnに接続された画素形成部のうち、奇数列のソース信号線SL(2j+1)に接続された画素形成部は正極性の映像信号の電圧を保持し、偶数列のソース信号線SL(2j)に接続された画素形成部は負極性の映像信号の電圧を保持する。
Similarly, the unit circuits SRa (4) to SRa (n) apply the high level scanning signals GOUT1 to GOUTn to the gate signal lines GL3 to GLn in order in the same manner for each period up to the period tn. In this way, the high level scanning signals GOUT4 to GOUTn are sequentially applied to the gate signal lines GL1 to GLn, respectively. As a result, among the pixel formation portions connected to the gate signal lines GL4 to GLn in the 4th to nth rows, the pixel formation portion connected to the odd-numbered source signal line SL (2j + 1) is the voltage of the positive video signal. And the pixel formation portion connected to the source signal line SL (2j) in the even-numbered column holds the voltage of the negative video signal.
次に、期間t(n+1)において、液晶表示装置は、各画素形成部に保持された映像信号の電圧に基づいて表示部10に映像を表示する。ここで、1フレーム期間の最後に1水平期間よりも長い期間t(n+1)を設けた理由を説明する。期間t(n+1)を設けることにより、n行目のゲート信号線GLnに走査信号GOUTnを印加してから次のフレーム期間が始まるまでの時間を十分に確保することができる。その結果、プリチャージを行ってから映像信号を書き込むまでの時間が最も長いn行目の画素形成部でも、1フレーム期間中に液晶層に印加される実効電圧は、1行目の画素形成部における実効電圧とほぼ同じ電圧になるので、映像の表示品位を一定以上に保つことができる。
Next, in the period t (n + 1), the liquid crystal display device displays an image on the display unit 10 based on the voltage of the image signal held in each pixel formation unit. Here, the reason why a period t (n + 1) longer than one horizontal period is provided at the end of one frame period will be described. By providing the period t (n + 1), a sufficient time can be secured from the application of the scanning signal GOUTn to the gate signal line GLn in the n-th row until the start of the next frame period. As a result, the effective voltage applied to the liquid crystal layer during one frame period is the pixel formation portion in the first row even in the pixel formation portion in the nth row having the longest time from precharging to writing the video signal. Since the voltage is almost the same as the effective voltage at, the video display quality can be kept above a certain level.
上述のようにして、期間t(n+1)が経過すると、次のフレーム期間になり、再び期間t01における動作を開始する。ただし、このフレーム期間では、各画素形成部に保持される映像信号の極性が逆になる。すなわち、奇数列のソース信号線SL(2j+1)に接続された画素形成部は負極性の映像信号の電圧を保持し、偶数列のソース信号線SL(2j)に接続された画素形成部は正極性の映像信号の電圧を保持する。
As described above, when the period t (n + 1) elapses, the next frame period starts, and the operation in the period t01 is started again. However, in this frame period, the polarity of the video signal held in each pixel formation portion is reversed. In other words, the pixel formation portion connected to the odd-numbered source signal line SL (2j + 1) holds the voltage of the negative video signal, and the pixel formation portion connected to the even-numbered source signal line SL (2j) has the positive polarity. Hold the video signal voltage.
上記のような駆動方法は、例えばフィールドシーケンシャル駆動のように、映像信号を全画素形成部に書き込んでからバックライトを点灯して映像を表示したり、n行目のゲート信号線GLnにハイレベルの走査信号GOUTnを出力した後に、ソースドライバ30およびゲートドライバ40の動作を停止させる休止期間を設けて低消費電力化を図る休止駆動によって映像を表示したりする液晶表示装置に適している。
In the driving method as described above, for example, as in field sequential driving, a video signal is written to all the pixel forming portions and then the backlight is turned on to display the video, or the n-th gate signal line GLn is set to the high level. After the scanning signal GOUTn is output, the liquid crystal display device is suitable for displaying an image by pause driving for reducing power consumption by providing a pause period during which the operations of the source driver 30 and the gate driver 40 are stopped.
図8は、バックライトユニット50を有する液晶表示装置の全体構成を示すブロック図である。図8に示すように、表示部10の背面にバックライトユニット50が配置され、期間t(n+1)になると、バックライトユニット50が点灯する。これにより、バックライトユニット50からの光が表示部10の背面に照射され、表示部10に映像が表示される。なお、バックライトユニット50以外の構成要素は、図1に示す液晶表示装置の構成要素と同じであるので、同じ参照符号を付してそれらの説明を省略する。また、休止駆動によって映像を表示する液晶表示装置では、1フレーム期間中に液晶層に印加される実効電圧の画面内のばらつきを低減できるので、映像の表示品位を一定以上に保つことができる。
FIG. 8 is a block diagram showing the overall configuration of the liquid crystal display device having the backlight unit 50. As shown in FIG. 8, the backlight unit 50 is disposed on the back surface of the display unit 10, and the backlight unit 50 is turned on when the period t (n + 1) is reached. Thereby, the light from the backlight unit 50 is irradiated on the back surface of the display unit 10, and an image is displayed on the display unit 10. Since the constituent elements other than the backlight unit 50 are the same as the constituent elements of the liquid crystal display device shown in FIG. 1, the same reference numerals are given and description thereof is omitted. Further, in a liquid crystal display device that displays an image by pause driving, variation in the screen of the effective voltage applied to the liquid crystal layer during one frame period can be reduced, so that the display quality of the image can be maintained above a certain level.
なお上記実施形態では、1フレーム期間ごとに隣接するソース信号線に印加される映像信号の極性を反転させた。しかし、例えばソース信号線に印加される映像信号の極性を例えば2フレーム期間ごと、または3フレーム期間ごと等に反転させてもよい。
In the above embodiment, the polarity of the video signal applied to the adjacent source signal line is inverted every frame period. However, for example, the polarity of the video signal applied to the source signal line may be inverted, for example, every 2 frame periods or every 3 frame periods.
<1.6 効果>
上記実施形態によれば、カラム反転駆動方式の液晶表示装置において、各フレーム期間の最初に設けられたブランキング期間である期間t01~t03に、すべての画素形成部を正極性側または負極性側の中間電圧SPC+,SPC-にプリチャージする。このため、各画素形成部に映像信号の電圧を充電する際には、映像信号の電圧に近い電圧が予め充電された状態から開始することができる。これにより、各画素形成部に映像信号の電圧を高速で充電することができるので、高精細化された表示部10を有したり、高速駆動される液晶表示装置の表示品位を向上させたりすることができる。 <1.6 Effect>
According to the above embodiment, in the column inversion drive type liquid crystal display device, all the pixel forming portions are placed on the positive polarity side or the negative polarity side during the period t01 to t03 which is the blanking period provided at the beginning of each frame period. Are precharged to intermediate voltages SPC + and SPC−. For this reason, when charging the voltage of the video signal to each pixel forming portion, it is possible to start from a state in which a voltage close to the voltage of the video signal is charged in advance. Accordingly, the voltage of the video signal can be charged to each pixel formation portion at high speed, so that thedisplay portion 10 having high definition can be provided or the display quality of the liquid crystal display device driven at high speed can be improved. be able to.
上記実施形態によれば、カラム反転駆動方式の液晶表示装置において、各フレーム期間の最初に設けられたブランキング期間である期間t01~t03に、すべての画素形成部を正極性側または負極性側の中間電圧SPC+,SPC-にプリチャージする。このため、各画素形成部に映像信号の電圧を充電する際には、映像信号の電圧に近い電圧が予め充電された状態から開始することができる。これにより、各画素形成部に映像信号の電圧を高速で充電することができるので、高精細化された表示部10を有したり、高速駆動される液晶表示装置の表示品位を向上させたりすることができる。 <1.6 Effect>
According to the above embodiment, in the column inversion drive type liquid crystal display device, all the pixel forming portions are placed on the positive polarity side or the negative polarity side during the period t01 to t03 which is the blanking period provided at the beginning of each frame period. Are precharged to intermediate voltages SPC + and SPC−. For this reason, when charging the voltage of the video signal to each pixel forming portion, it is possible to start from a state in which a voltage close to the voltage of the video signal is charged in advance. Accordingly, the voltage of the video signal can be charged to each pixel formation portion at high speed, so that the
また、1列に配置された画素形成部はすべて同じソース信号線に接続されているので、画素形成部内の配線が複雑にならない。これにより、画素形成部の開口率を向上させることができる。
In addition, since the pixel formation portions arranged in one column are all connected to the same source signal line, wiring in the pixel formation portion does not become complicated. Thereby, the aperture ratio of a pixel formation part can be improved.
<1.7 変形例>
図9は本実施形態の変形例におけるシフトレジスタ420の構成を示すブロック図であり、図10は図9に示すシフトレジスタ420に含まれる単位回路SRbの構成を示す回路図である。 <1.7 Modification>
FIG. 9 is a block diagram showing a configuration of theshift register 420 in a modification of the present embodiment, and FIG. 10 is a circuit diagram showing a configuration of the unit circuit SRb included in the shift register 420 shown in FIG.
図9は本実施形態の変形例におけるシフトレジスタ420の構成を示すブロック図であり、図10は図9に示すシフトレジスタ420に含まれる単位回路SRbの構成を示す回路図である。 <1.7 Modification>
FIG. 9 is a block diagram showing a configuration of the
図9に示すように、シフトレジスタ420は、n個の単位回路SRb(1)~SRb(n)を縦続接続することによって構成されている。n個の単位回路SRb(1)~SRb(n)は表示部10に形成されたn行×m列の画素アレイの各行のゲート信号線GL1~GLnと1対1に対応するように設けられている。また、シフトレジスタ420は、図4に示すシフトレジスタ410と同様に、ハイレベルの走査信号GOUT1~GOUTnをゲート信号線GL1~GLnに順に出力するだけでなく、各フレーム期間のブランキング期間にハイレベルの一括駆動信号VBDを同時に出力する。
As shown in FIG. 9, the shift register 420 is configured by cascading n unit circuits SRb (1) to SRb (n). The n unit circuits SRb (1) to SRb (n) are provided so as to have a one-to-one correspondence with the gate signal lines GL1 to GLn of each row of the pixel array of n rows × m columns formed in the display unit 10. ing. Similarly to the shift register 410 shown in FIG. 4, the shift register 420 not only sequentially outputs the high level scanning signals GOUT1 to GOUTn to the gate signal lines GL1 to GLn, but also shifts the high level during the blanking period of each frame period. Simultaneously output the level collective drive signal VBD.
このシフトレジスタ420において、図4に示すシフトレジスタ410と異なる構成要素について説明し、同じ構成要素については同じ参照符号を付してその説明を省略する。シフトレジスタ420では、ブランキング期間において、すべての単位回路SRb(1)~SRb(n)に、プリチャージ電圧信号VGPの代わりに、クリア信号CLRが与えられる。
In this shift register 420, components that are different from the shift register 410 shown in FIG. 4 will be described, and the same components will be denoted by the same reference numerals and description thereof will be omitted. In the shift register 420, the clear signal CLR is supplied to all the unit circuits SRb (1) to SRb (n) instead of the precharge voltage signal VGP in the blanking period.
また、図10に示すように、シフトレジスタ420に含まれる単位回路SRbの構成も、図5に示す単位回路SRaの構成と一部において異なる。そこで、単位回路SRbのうち、単位回路SRaと同じ構成要素については同じ参照符号を付してその説明を省略し、異なる構成要素について説明する。単位回路SRbには、単位回路SRaにさらにトランジスタT6と、トランジスタT6に接続された入力端子47が追加されている。これにより、単位回路SRbは、同一導電型の6個のトランジスタT1~T6と、1個のキャパシタCと、6個の入力端子41~45,47と、1個の出力端子61とを有している。
As shown in FIG. 10, the configuration of the unit circuit SRb included in the shift register 420 is partially different from the configuration of the unit circuit SRa shown in FIG. Therefore, in the unit circuit SRb, the same constituent elements as those of the unit circuit SRa are denoted by the same reference numerals, description thereof is omitted, and different constituent elements will be described. In the unit circuit SRb, a transistor T6 and an input terminal 47 connected to the transistor T6 are further added to the unit circuit SRa. Accordingly, the unit circuit SRb has six transistors T1 to T6 of the same conductivity type, one capacitor C, six input terminals 41 to 45, 47, and one output terminal 61. ing.
次に、トランジスタT6の接続関係を説明する。トランジスタT6のゲート端子は入力端子47に接続され、ドレイン端子は出力端子61に接続され、ソース端子はローレベルの電源電圧VSSに接続されている。また、トランジスタT5のドレイン端子は、プリチャージ電圧信号VGPを与える入力端子46の代わりに、ハイレベルの電源電圧VDDに接続されている。
Next, the connection relationship of the transistor T6 will be described. The gate terminal of the transistor T6 is connected to the input terminal 47, the drain terminal is connected to the output terminal 61, and the source terminal is connected to the low-level power supply voltage VSS. The drain terminal of the transistor T5 is connected to the high-level power supply voltage VDD instead of the input terminal 46 that supplies the precharge voltage signal VGP.
なお、単位回路SRbにおいては、単位回路SRaの場合と同様に、トランジスタT1~T4,T6とキャパシタCとは、走査信号を生成して出力する出力信号生成回路として機能し、トランジスタT5は一括駆動信号を出力する一括駆動回路として機能する。
In the unit circuit SRb, similarly to the unit circuit SRa, the transistors T1 to T4 and T6 and the capacitor C function as an output signal generation circuit that generates and outputs a scanning signal, and the transistor T5 is collectively driven. It functions as a collective drive circuit that outputs signals.
次に、単位回路SRbの動作について説明する。図11は、単位回路SRbの動作を示すタイミングチャートである。この単位回路SRbも、通常のシフトレジスタとして走査信号となる出力信号を出力端子61に出力するときと、一括駆動信号VBDとなる出力信号を出力端子61に出力するときがある。しかし、通常のシフトレジスタとして走査信号となる出力信号を出力するときの単位回路SRbの動作は、単位回路SRaの動作と同じである。そこで以下では、一括駆動信号VBDとなる出力信号を出力するときの動作について説明する。
Next, the operation of the unit circuit SRb will be described. FIG. 11 is a timing chart showing the operation of the unit circuit SRb. The unit circuit SRb also outputs an output signal as a scanning signal as an ordinary shift register to the output terminal 61 and outputs an output signal as a collective drive signal VBD to the output terminal 61. However, the operation of the unit circuit SRb when outputting an output signal as a scanning signal as a normal shift register is the same as the operation of the unit circuit SRa. Therefore, hereinafter, an operation when an output signal serving as the collective drive signal VBD is output will be described.
ブランキング期間に相当する期間t01~t03のうち、期間t01において、入力端子47にはオフレベルのクリア信号CLRが与えられるので、トランジスタT6はオフ状態である。このとき、入力端子45にオンレベルの全オン制御信号AONが与えられるので、トランジスタT5はオン状態になり、そのドレイン端子に接続されたハイレベルの電源電圧VDDが出力端子61に出力される。これにより、出力端子61に一括駆動信号VBDとなる出力信号が出力される。
Among the periods t01 to t03 corresponding to the blanking period, the off-level clear signal CLR is supplied to the input terminal 47 in the period t01, so that the transistor T6 is in the off state. At this time, since the on-level all-on control signal AON is applied to the input terminal 45, the transistor T5 is turned on, and the high-level power supply voltage VDD connected to the drain terminal is output to the output terminal 61. As a result, an output signal serving as the collective drive signal VBD is output to the output terminal 61.
期間t02において、入力端子45にオンレベルからオフレベルに変化した全オン制御信号AONが与えられるので、トランジスタT5はオフ状態になる。このとき、入力端子47にはオンレベルのクリア信号CLRが与えられるので、トランジスタT6はオン状態になり、出力端子61はローレベルの電源電圧VSSになる。これにより、各単位回路SRb(1)~SRb(n)に対応する各ゲート信号線GL1~GLnの電圧はローレベルになる。
In the period t02, the all-on control signal AON changed from the on level to the off level is given to the input terminal 45, so that the transistor T5 is turned off. At this time, since the on-level clear signal CLR is applied to the input terminal 47, the transistor T6 is turned on, and the output terminal 61 becomes the low-level power supply voltage VSS. As a result, the voltages of the gate signal lines GL1 to GLn corresponding to the unit circuits SRb (1) to SRb (n) become low level.
また、期間t03において、トランジスタT1のドレイン端子にセット信号SETとしてハイレベルのゲートスタートパルス信号GSPが与えられる。これにより、節点NCの電圧が上昇し、トランジスタT3がオン状態になる。
In the period t03, the high-level gate start pulse signal GSP is supplied as the set signal SET to the drain terminal of the transistor T1. As a result, the voltage at the node NC increases, and the transistor T3 is turned on.
なお、表示期間に相当する期間t1~t(n+1)におけるタイミングチャートは図6に示すタイミングチャートと同じであるので、その説明を省略する。
Note that the timing chart in the period t1 to t (n + 1) corresponding to the display period is the same as the timing chart shown in FIG.
次に、本変形例におけるシフトレジスタ420の動作を、タイミングチャートを用いて説明する。図12はシフトレジスタ420の1フレーム期間におけるタイミングチャートである。以下では、期間t1~t(n+1)おけるシフトレジスタ420の動作は、図7に示すシフトレジスタ410の動作と同じであるので、その説明を省略し、ブランキング期間である期間t01~t03についてのみ説明する。
Next, the operation of the shift register 420 in this modification will be described using a timing chart. FIG. 12 is a timing chart of the shift register 420 in one frame period. In the following, the operation of the shift register 420 in the period t1 to t (n + 1) is the same as the operation of the shift register 410 shown in FIG. 7, and thus the description thereof is omitted, and only the period t01 to t03 that is the blanking period. explain.
期間t01において、すべての単位回路SRb(1)~SRb(n)に、オンレベルの全オン制御信号AONが与えられる。これにより、各単位回路SRb(1)~SRb(n)のTFT5はオン状態になり、TFT5のドレイン端子に接続されたハイレベルの電源電圧VDDが各単位回路SRb(1)~SRb(n)の出力端子に出力される。その結果、期間t01において、各単位回路SRb(1)~SRb(n)は対応する各ゲート信号線GL1~GLnにハイレベルの走査信号GOUT1~GOUTnをそれぞれ印加する。このように、シフトレジスタ420は、第1ゲートクロック信号GCK1および第2ゲートクロック信号GCK2のレベルとは無関係に、期間t01においてハイレベルの一括駆動信号VBDを各ゲート信号線GL1~GLnに同時に印加する。これにより、すべての画素形成部のTFT11はオン状態になる。
During period t01, all unit control circuits SRb (1) to SRb (n) are supplied with the on-level all-on control signal AON. As a result, the TFTs 5 of the unit circuits SRb (1) to SRb (n) are turned on, and the high level power supply voltage VDD connected to the drain terminal of the TFT 5 is changed to the unit circuits SRb (1) to SRb (n). Is output to the output terminal. As a result, in the period t01, the unit circuits SRb (1) to SRb (n) apply the high-level scanning signals GOUT1 to GOUTn to the corresponding gate signal lines GL1 to GLn, respectively. As described above, the shift register 420 simultaneously applies the high-level collective drive signal VBD to the gate signal lines GL1 to GLn in the period t01 regardless of the levels of the first gate clock signal GCK1 and the second gate clock signal GCK2. To do. Thereby, the TFTs 11 of all the pixel formation portions are turned on.
このとき、ソースドライバ30から奇数列のソース信号線SL(2j+1)に正極性側の中間電圧SPC+が印加され、奇数列のソース信号線SL(2j+1)に接続されたすべての画素形成部に中間電圧SPC+が充電される。また、偶数列のソース信号線SL(2j)に負極性側の中間電圧SPC-が出力され、偶数列のソース信号線SL(2j)に接続されたすべての画素形成部に中間電圧SPC-が充電される。
At this time, the positive intermediate voltage SPC + is applied from the source driver 30 to the odd-numbered source signal lines SL (2j + 1), and the intermediate signal is applied to all the pixel formation portions connected to the odd-numbered source signal lines SL (2j + 1). The voltage SPC + is charged. Further, the intermediate voltage SPC− on the negative polarity side is output to the source signal line SL (2j) in the even column, and the intermediate voltage SPC− is applied to all the pixel formation portions connected to the source signal line SL (2j) in the even column. Charged.
期間t02において、全オン制御信号AONはオンレベルからオフレベルになるので、トランジスタT5はオフ状態になる。一方、トランジスタT6のゲート端子にオンレベルのクリア信号CLRが与えられ、トランジスタT6はオン状態になる。これにより、各単位回路SRb(1)~SRb(n)の出力端子の電圧はローレベルになり、ゲート信号線GL1~GLnに接続されたすべての画素形成部のTFT11はオフ状態になる。その結果、奇数列のソース信号線SL(2j+1)に接続された画素形成部は正極性側の中間電圧SPC+を保持し、偶数列のソース信号線SL(2j)に接続された画素形成部は負極性側の中間電圧SPC-を保持する。このようにして、すべての画素形成部がプリチャージされる。
In the period t02, the all-on control signal AON changes from the on level to the off level, so that the transistor T5 is turned off. On the other hand, the clear signal CLR of the on level is given to the gate terminal of the transistor T6, and the transistor T6 is turned on. As a result, the voltages at the output terminals of the unit circuits SRb (1) to SRb (n) become low level, and the TFTs 11 of all the pixel formation portions connected to the gate signal lines GL1 to GLn are turned off. As a result, the pixel formation portion connected to the odd-numbered column source signal line SL (2j + 1) holds the intermediate voltage SPC + on the positive polarity side, and the pixel formation portion connected to the even-numbered column source signal line SL (2j) The intermediate voltage SPC− on the negative polarity side is maintained. In this way, all the pixel forming portions are precharged.
期間t03においても、各単位回路SRb(1)~SRb(n)の出力端子の電圧はローレベルのままであるので、各ゲート信号線GL1~GLnの電圧もローレベルを維持する。
Also during the period t03, the voltages of the output terminals of the unit circuits SRb (1) to SRb (n) remain at the low level, so that the voltages of the gate signal lines GL1 to GLn also maintain the low level.
このような単位回路SRbによれば、図4に示す単位回路SRaと異なり、プリチャージ電圧信号VGPを用いないので、以下のような効果がある。すなわち、単位回路SRaで用いるプリチャージ電圧信号VGPは、すべてのゲート信号線GL1~GLnを同時にオン/オフするパルス信号であり、そのために大きな負荷を駆動できる大きなバッファ回路を表示制御回路20に設ける必要がある。これに対して、単位回路SRbでは、電源電圧VDDをトランジスタT5のドレイン端子に印加するので、上記のような大きなバッファ回路を表示制御回路20に設ける必要がない。これにより、コストを低減することができる。また、入力端子に印加する電源電圧VDDは、プリチャージ電圧信号VGPのようなパルス信号ではないので、各ゲート信号線GL1~GLnの電圧を短時間で安定させることができる。
According to such a unit circuit SRb, unlike the unit circuit SRa shown in FIG. 4, since the precharge voltage signal VGP is not used, the following effects are obtained. That is, the precharge voltage signal VGP used in the unit circuit SRa is a pulse signal for simultaneously turning on / off all the gate signal lines GL1 to GLn, and therefore a large buffer circuit capable of driving a large load is provided in the display control circuit 20. There is a need. On the other hand, in the unit circuit SRb, since the power supply voltage VDD is applied to the drain terminal of the transistor T5, it is not necessary to provide the large buffer circuit as described above in the display control circuit 20. Thereby, cost can be reduced. Further, since the power supply voltage VDD applied to the input terminal is not a pulse signal like the precharge voltage signal VGP, the voltages of the gate signal lines GL1 to GLn can be stabilized in a short time.
<2.第2の実施形態>
次に、本発明の第2の実施形態に係る液晶表示装置について説明する。この液晶表示装置の構成を示すブロック図は、図1に示す液晶表示装置の構成を示すブロック図と概略同じであるので、図およびその説明を省略する。なお、本実施形態に係る液晶表示装置では、図1に示す液晶表示装置と異なり、表示制御回路20からゲートドライバ40に与えられる信号のうち、プリチャージ電圧信号VGPに代わってクリア信号CLRが与えられる。 <2. Second Embodiment>
Next, a liquid crystal display device according to a second embodiment of the present invention will be described. The block diagram showing the configuration of the liquid crystal display device is substantially the same as the block diagram showing the configuration of the liquid crystal display device shown in FIG. In the liquid crystal display device according to the present embodiment, unlike the liquid crystal display device shown in FIG. 1, among the signals supplied from thedisplay control circuit 20 to the gate driver 40, the clear signal CLR is applied instead of the precharge voltage signal VGP. It is done.
次に、本発明の第2の実施形態に係る液晶表示装置について説明する。この液晶表示装置の構成を示すブロック図は、図1に示す液晶表示装置の構成を示すブロック図と概略同じであるので、図およびその説明を省略する。なお、本実施形態に係る液晶表示装置では、図1に示す液晶表示装置と異なり、表示制御回路20からゲートドライバ40に与えられる信号のうち、プリチャージ電圧信号VGPに代わってクリア信号CLRが与えられる。 <2. Second Embodiment>
Next, a liquid crystal display device according to a second embodiment of the present invention will be described. The block diagram showing the configuration of the liquid crystal display device is substantially the same as the block diagram showing the configuration of the liquid crystal display device shown in FIG. In the liquid crystal display device according to the present embodiment, unlike the liquid crystal display device shown in FIG. 1, among the signals supplied from the
<2.1 液晶表示装置の極性反転駆動方式>
本実施形態に係る液晶表示装置は、カラム反転駆動方式を変形した駆動方式(以下、「擬似ドット反転駆動方式」という)によって駆動される。図13は、本実施形態の擬似ドット反転駆動方式を説明するための図である。本実施形態の擬似ドット反転駆動方式は、図2に示すカラム反転方式と同様に、第1フレーム期間においては、図13(A)に示すように、奇数列のソース信号線SL(2j+1)に正極性の映像信号が印加され、偶数列のソース信号線SL(2j)に負極性の映像信号が印加される。次に、図13(B)に示すように、第2フレーム期間においては、奇数列のソース信号線SL(2j+1)に負極性の映像信号が印加され、偶数列のソース信号線SL(2j)に正極性の映像信号が印加される。以下同様にして、奇数番目のフレーム期間では第1フレーム期間の場合と同様に、偶数番目のフレーム期間では第2フレーム期間の場合と同様に、正極性および負極性の映像信号が各ソース信号線SL1~SLmのそれぞれに印加される。 <2.1 Polarity inversion drive method of liquid crystal display device>
The liquid crystal display device according to the present embodiment is driven by a driving method (hereinafter referred to as “pseudo dot inversion driving method”) obtained by modifying the column inversion driving method. FIG. 13 is a diagram for explaining the pseudo dot inversion driving method of the present embodiment. As in the column inversion method shown in FIG. 2, the pseudo dot inversion driving method of the present embodiment is applied to the odd-numbered source signal lines SL (2j + 1) in the first frame period, as shown in FIG. 13A. A positive video signal is applied, and a negative video signal is applied to the even-numbered source signal lines SL (2j). Next, as shown in FIG. 13B, in the second frame period, a negative video signal is applied to the odd-numbered source signal line SL (2j + 1), and the even-numbered source signal line SL (2j). A positive video signal is applied to the. Similarly, in the odd-numbered frame period, as in the first frame period, in the even-numbered frame period, as in the second frame period, the positive and negative video signals are transferred to the source signal lines. Applied to each of SL1 to SLm.
本実施形態に係る液晶表示装置は、カラム反転駆動方式を変形した駆動方式(以下、「擬似ドット反転駆動方式」という)によって駆動される。図13は、本実施形態の擬似ドット反転駆動方式を説明するための図である。本実施形態の擬似ドット反転駆動方式は、図2に示すカラム反転方式と同様に、第1フレーム期間においては、図13(A)に示すように、奇数列のソース信号線SL(2j+1)に正極性の映像信号が印加され、偶数列のソース信号線SL(2j)に負極性の映像信号が印加される。次に、図13(B)に示すように、第2フレーム期間においては、奇数列のソース信号線SL(2j+1)に負極性の映像信号が印加され、偶数列のソース信号線SL(2j)に正極性の映像信号が印加される。以下同様にして、奇数番目のフレーム期間では第1フレーム期間の場合と同様に、偶数番目のフレーム期間では第2フレーム期間の場合と同様に、正極性および負極性の映像信号が各ソース信号線SL1~SLmのそれぞれに印加される。 <2.1 Polarity inversion drive method of liquid crystal display device>
The liquid crystal display device according to the present embodiment is driven by a driving method (hereinafter referred to as “pseudo dot inversion driving method”) obtained by modifying the column inversion driving method. FIG. 13 is a diagram for explaining the pseudo dot inversion driving method of the present embodiment. As in the column inversion method shown in FIG. 2, the pseudo dot inversion driving method of the present embodiment is applied to the odd-numbered source signal lines SL (2j + 1) in the first frame period, as shown in FIG. 13A. A positive video signal is applied, and a negative video signal is applied to the even-numbered source signal lines SL (2j). Next, as shown in FIG. 13B, in the second frame period, a negative video signal is applied to the odd-numbered source signal line SL (2j + 1), and the even-numbered source signal line SL (2j). A positive video signal is applied to the. Similarly, in the odd-numbered frame period, as in the first frame period, in the even-numbered frame period, as in the second frame period, the positive and negative video signals are transferred to the source signal lines. Applied to each of SL1 to SLm.
しかし、図2に示すカラム反転方式と異なり、列方向に配置された画素形成部のいずれもが、その左隣のソース信号線に接続されているのではなく、行ごとに交互に左隣のソース信号線に接続されたり、右隣のソース信号線に接続されたりしている。例えば図13に示す場合には、奇数行の画素形成部は、奇数列のソース信号線SL(2j+1)に接続され、偶数行の画素形成部は偶数列のソース信号線SL(2j)に接続されている。これにより、図13(A)に示すように、奇数番目のフレーム期間には、各画素形成部に書き込まれた映像信号の極性は、行方向にも列方向にも正極性と負極性とが交互に配置されたドット反転駆動の場合と実質的に同じ配置(千鳥配置)になる。また、図13(B)に示すように、偶数番目のフレーム期間では、奇数列のソース信号線SL(2j+1)と偶数列のソース信号線SL(2j)にそれぞれ印加される映像信号の極性が図13(A)に示す場合と逆になる。このため、各画素形成部に書き込まれる映像信号の電圧の極性もそれぞれ逆の千鳥配置になる。
However, unlike the column inversion method shown in FIG. 2, each of the pixel formation portions arranged in the column direction is not connected to the source signal line on the left side, but alternately on the left side. It is connected to the source signal line or connected to the source signal line on the right. For example, in the case shown in FIG. 13, the odd-row pixel formation portions are connected to the odd-column source signal lines SL (2j + 1), and the even-row pixel formation portions are connected to the even-column source signal lines SL (2j). Has been. Accordingly, as shown in FIG. 13A, in the odd-numbered frame period, the polarity of the video signal written in each pixel formation portion is positive or negative in both the row direction and the column direction. This is substantially the same arrangement (staggered arrangement) as in the case of alternately arranged dot inversion driving. Further, as shown in FIG. 13B, in the even-numbered frame period, the polarities of the video signals applied to the odd-numbered column source signal lines SL (2j + 1) and the even-numbered column source signal lines SL (2j) respectively. This is the reverse of the case shown in FIG. For this reason, the polarity of the voltage of the video signal written to each pixel forming portion is also reversed.
なお、奇数番目のフレームと偶数番目のフレームにおいて、奇数列のソース信号線SL(2j+1)と偶数列のソース信号線SL(2j)とにそれぞれ印加する映像信号の極性を、図13(A)および図13(B)に示す場合とそれぞれ逆にしてもよい。
Note that the polarities of the video signals applied to the odd-numbered source signal lines SL (2j + 1) and the even-numbered source signal lines SL (2j) in the odd-numbered and even-numbered frames are shown in FIG. Also, the case shown in FIG. 13B may be reversed.
このような液晶表示装置のゲートドライバ40に含まれるシフトレジスタの構成およびそのタイミングチャートはそれぞれ図4および図7に示すシフトレジスタ410およびそのタイミングチャートと同じであり、単位回路の構成およびそのタイミングチャートはそれぞれ図5および図6に示す単位回路SRaおよびそのタイミングチャートと同じである。このため、それらの図および説明を省略する。なお、本実施形態に係る液晶表示装置のシフトレジスタおよび単位回路として、第1の実施形態の変形例である図9に示すシフトレジスタ420および図10に示す単位回路SRbを使用することもできる。
The configuration and timing chart of the shift register included in the gate driver 40 of such a liquid crystal display device are the same as the shift register 410 and its timing chart shown in FIGS. 4 and 7, respectively. The configuration of the unit circuit and its timing chart Are the same as the unit circuit SRa and its timing chart shown in FIGS. 5 and 6, respectively. For this reason, those figures and description are omitted. As the shift register and the unit circuit of the liquid crystal display device according to the present embodiment, the shift register 420 shown in FIG. 9 and the unit circuit SRb shown in FIG. 10, which are modifications of the first embodiment, can be used.
<2.2 効果>
本実施形態の液晶表示装置によれば、第1の実施形態の場合と同様に、各画素形成部に映像信号の電圧を充電する際には、映像信号の電圧に近い電圧が予め充電された状態から充電を開始することができる。これにより、各画素形成部に映像信号を高速で書き込むことができるので、高精細化された表示部10を有したり、高速駆動される液晶表示装置の表示品位を向上させたりすることができる。 <2.2 Effect>
According to the liquid crystal display device of this embodiment, as in the case of the first embodiment, when the voltage of the video signal is charged in each pixel forming unit, a voltage close to the voltage of the video signal is charged in advance. Charging can be started from the state. As a result, a video signal can be written to each pixel formation portion at high speed, so that thedisplay portion 10 with high definition can be provided or the display quality of a liquid crystal display device driven at high speed can be improved. .
本実施形態の液晶表示装置によれば、第1の実施形態の場合と同様に、各画素形成部に映像信号の電圧を充電する際には、映像信号の電圧に近い電圧が予め充電された状態から充電を開始することができる。これにより、各画素形成部に映像信号を高速で書き込むことができるので、高精細化された表示部10を有したり、高速駆動される液晶表示装置の表示品位を向上させたりすることができる。 <2.2 Effect>
According to the liquid crystal display device of this embodiment, as in the case of the first embodiment, when the voltage of the video signal is charged in each pixel forming unit, a voltage close to the voltage of the video signal is charged in advance. Charging can be started from the state. As a result, a video signal can be written to each pixel formation portion at high speed, so that the
また、本実施形態の液晶表示装置は、擬似ドット反転駆動方式で駆動されるので、フリッカやクロストークの発生が抑制される。これにより、液晶表示装置の表示品位を向上させることができる。
Further, since the liquid crystal display device of the present embodiment is driven by the pseudo dot inversion driving method, the occurrence of flicker and crosstalk is suppressed. Thereby, the display quality of a liquid crystal display device can be improved.
<2.3 変形例>
複数のゲート信号線ごとに奇数列のソース信号線SL(2j+1)と偶数列のソース信号線SL(2j)とにそれぞれ印加する映像信号の極性を反転させてもよい。図14は、画素形成部に保持される映像信号の極性を2本のゲート信号線ごとに反転させる擬似ドット反転駆動方式を説明するための図である。各ソース信号線には、図13に示すソース信号線と同じ極性の映像信号が印加されている。しかし、図14に示すように、上側2行の画素形成部は奇数列のソース信号線SL(2j+1)に接続され、次の2行の画素形成部は偶数列のソース信号線SL(2j)に接続されている。このため、図14(A)に示すように、奇数番目のフレーム期間では、上2行の画素形成部は左側から順に正極性の映像信号と、負極性の映像信号とを交互に保持し、次の2行の画素形成部は左側から順に負極性の映像信号と、正極性の映像信号とを交互に保持する。また、図14(B)に示すように、偶数番目のフレーム期間では、各画素形成部に保持される映像信号の極性は図14(A)に示す場合とそれぞれ逆になる。これにより、各画素形成部に書き込まれた映像信号の極性は、行方向には2行ごとに、また列方向には1列ごとに正極性と負極性の映像信号を保持する画素形成部が配置されたドット反転駆動の場合と実質的に同じ配置(千鳥配置)になる。このような配置の表示部10を有する液晶表示装置も図13に示す配置を有する液晶表示装置と同じ効果を奏する。なお、奇数列のソース信号線SL(2j+1)および偶数列のソース信号線SL(2j)にそれぞれまとめて接続するゲート信号線の本数は2本に限定されず、それ以上の本数であってもよい。 <2.3 Modification>
For each of the plurality of gate signal lines, the polarities of the video signals applied to the odd-numbered source signal lines SL (2j + 1) and the even-numbered source signal lines SL (2j) may be reversed. FIG. 14 is a diagram for explaining a pseudo dot inversion driving method in which the polarity of the video signal held in the pixel formation unit is inverted every two gate signal lines. A video signal having the same polarity as that of the source signal line shown in FIG. 13 is applied to each source signal line. However, as shown in FIG. 14, the upper two rows of pixel formation portions are connected to the odd-numbered column source signal lines SL (2j + 1), and the next two rows of pixel formation portions are the even-numbered column source signal lines SL (2j). It is connected to the. For this reason, as shown in FIG. 14A, in the odd-numbered frame period, the upper two rows of pixel forming units alternately hold positive and negative video signals in order from the left side, The next two rows of pixel formation units alternately hold a negative video signal and a positive video signal in order from the left. Further, as shown in FIG. 14B, in the even-numbered frame period, the polarity of the video signal held in each pixel formation portion is opposite to that shown in FIG. As a result, the polarity of the video signal written in each pixel forming unit is such that the pixel forming unit holding the positive and negative video signals every two rows in the row direction and every column in the column direction. This is substantially the same arrangement (staggered arrangement) as in the case of arranged dot inversion driving. The liquid crystal display device having thedisplay unit 10 having such an arrangement also has the same effect as the liquid crystal display device having the arrangement shown in FIG. Note that the number of gate signal lines connected together to the odd-numbered source signal lines SL (2j + 1) and the even-numbered source signal lines SL (2j) is not limited to two, and may be more than that. Good.
複数のゲート信号線ごとに奇数列のソース信号線SL(2j+1)と偶数列のソース信号線SL(2j)とにそれぞれ印加する映像信号の極性を反転させてもよい。図14は、画素形成部に保持される映像信号の極性を2本のゲート信号線ごとに反転させる擬似ドット反転駆動方式を説明するための図である。各ソース信号線には、図13に示すソース信号線と同じ極性の映像信号が印加されている。しかし、図14に示すように、上側2行の画素形成部は奇数列のソース信号線SL(2j+1)に接続され、次の2行の画素形成部は偶数列のソース信号線SL(2j)に接続されている。このため、図14(A)に示すように、奇数番目のフレーム期間では、上2行の画素形成部は左側から順に正極性の映像信号と、負極性の映像信号とを交互に保持し、次の2行の画素形成部は左側から順に負極性の映像信号と、正極性の映像信号とを交互に保持する。また、図14(B)に示すように、偶数番目のフレーム期間では、各画素形成部に保持される映像信号の極性は図14(A)に示す場合とそれぞれ逆になる。これにより、各画素形成部に書き込まれた映像信号の極性は、行方向には2行ごとに、また列方向には1列ごとに正極性と負極性の映像信号を保持する画素形成部が配置されたドット反転駆動の場合と実質的に同じ配置(千鳥配置)になる。このような配置の表示部10を有する液晶表示装置も図13に示す配置を有する液晶表示装置と同じ効果を奏する。なお、奇数列のソース信号線SL(2j+1)および偶数列のソース信号線SL(2j)にそれぞれまとめて接続するゲート信号線の本数は2本に限定されず、それ以上の本数であってもよい。 <2.3 Modification>
For each of the plurality of gate signal lines, the polarities of the video signals applied to the odd-numbered source signal lines SL (2j + 1) and the even-numbered source signal lines SL (2j) may be reversed. FIG. 14 is a diagram for explaining a pseudo dot inversion driving method in which the polarity of the video signal held in the pixel formation unit is inverted every two gate signal lines. A video signal having the same polarity as that of the source signal line shown in FIG. 13 is applied to each source signal line. However, as shown in FIG. 14, the upper two rows of pixel formation portions are connected to the odd-numbered column source signal lines SL (2j + 1), and the next two rows of pixel formation portions are the even-numbered column source signal lines SL (2j). It is connected to the. For this reason, as shown in FIG. 14A, in the odd-numbered frame period, the upper two rows of pixel forming units alternately hold positive and negative video signals in order from the left side, The next two rows of pixel formation units alternately hold a negative video signal and a positive video signal in order from the left. Further, as shown in FIG. 14B, in the even-numbered frame period, the polarity of the video signal held in each pixel formation portion is opposite to that shown in FIG. As a result, the polarity of the video signal written in each pixel forming unit is such that the pixel forming unit holding the positive and negative video signals every two rows in the row direction and every column in the column direction. This is substantially the same arrangement (staggered arrangement) as in the case of arranged dot inversion driving. The liquid crystal display device having the
本発明の表示装置は、画素形成部に映像信号を高速で書き込むことができるので、高精細の表示装置に利用することができる。
The display device of the present invention can be used for a high-definition display device because a video signal can be written to the pixel formation portion at high speed.
10…表示部
11…薄膜トランジスタ
30…ソースドライバ(データ信号線駆動回路)
40…ゲートドライバ(走査信号線駆動回路)
410,420…シフトレジスタ
SRa(1)~SRa(n),SRb(1)~SRb(n)…単位回路
T5…トランジスタ(一括駆動回路)
AON…全オン制御信号
VGP…プリチャージ電圧信号
GCK1,GCK2…第1ゲートクロック信号,第2ゲートクロック信号
CKA,CKB…第1クロック,第2クロック
GL1~GLn…ゲート信号線(走査信号線)
SL1~SLm…ソース信号線(データ信号線)
VBD…一括駆動信号
S(1)~S(m)…映像信号(データ信号)
GOUT1~GOUTn…走査信号
SPC+,SPC-…プリチャージ信号の正極性側の中間電圧,負極性側の中間電圧 DESCRIPTION OFSYMBOLS 10 ... Display part 11 ... Thin-film transistor 30 ... Source driver (data signal line drive circuit)
40. Gate driver (scanning signal line driving circuit)
410, 420: Shift registers SRa (1) to SRa (n), SRb (1) to SRb (n) ... Unit circuit T5 ... Transistor (collective drive circuit)
AON: all-on control signal VGP: precharge voltage signal GCK1, GCK2: first gate clock signal, second gate clock signal CKA, CKB: first clock, second clock GL1-GLn: gate signal lines (scanning signal lines)
SL1 to SLm ... Source signal line (data signal line)
VBD: Batch drive signal S (1) to S (m) ... Video signal (data signal)
GOUT1 to GOUTn: Scanning signal SPC +, SPC-: Intermediate voltage on the positive polarity side and intermediate voltage on the negative polarity side of the precharge signal
11…薄膜トランジスタ
30…ソースドライバ(データ信号線駆動回路)
40…ゲートドライバ(走査信号線駆動回路)
410,420…シフトレジスタ
SRa(1)~SRa(n),SRb(1)~SRb(n)…単位回路
T5…トランジスタ(一括駆動回路)
AON…全オン制御信号
VGP…プリチャージ電圧信号
GCK1,GCK2…第1ゲートクロック信号,第2ゲートクロック信号
CKA,CKB…第1クロック,第2クロック
GL1~GLn…ゲート信号線(走査信号線)
SL1~SLm…ソース信号線(データ信号線)
VBD…一括駆動信号
S(1)~S(m)…映像信号(データ信号)
GOUT1~GOUTn…走査信号
SPC+,SPC-…プリチャージ信号の正極性側の中間電圧,負極性側の中間電圧 DESCRIPTION OF
40. Gate driver (scanning signal line driving circuit)
410, 420: Shift registers SRa (1) to SRa (n), SRb (1) to SRb (n) ... Unit circuit T5 ... Transistor (collective drive circuit)
AON: all-on control signal VGP: precharge voltage signal GCK1, GCK2: first gate clock signal, second gate clock signal CKA, CKB: first clock, second clock GL1-GLn: gate signal lines (scanning signal lines)
SL1 to SLm ... Source signal line (data signal line)
VBD: Batch drive signal S (1) to S (m) ... Video signal (data signal)
GOUT1 to GOUTn: Scanning signal SPC +, SPC-: Intermediate voltage on the positive polarity side and intermediate voltage on the negative polarity side of the precharge signal
Claims (10)
- アクティブマトリクス型の表示装置であって、
複数のデータ信号線と、前記複数のデータ信号線と交差する複数の走査信号線と、前記複数のデータ信号線と前記複数の走査信号線との交差点にそれぞれ対応してマトリクス状に配置された複数の画素形成部とを有する表示部と、
前記複数のデータ信号線を駆動するデータ信号線駆動回路と、
前記複数の走査信号線を駆動する走査信号線駆動回路とを備え、
前記データ信号線駆動回路は、表示すべき映像を表す複数の映像信号をデータ信号線ごとにかつ所定数のフレーム期間ごとに電圧の極性が反転する信号として生成して前記複数のデータ信号線にそれぞれ印加すると共に、前記フレーム期間のブランキング期間に、前記複数の画素形成部をプリチャージするために映像信号の中間階調に相当する電圧を有するプリチャージ信号を前記複数のデータ信号線にそれぞれ印加し、
前記走査信号線駆動回路は、前記ブランキング期間には、前記複数の走査信号線を同時に選択状態にする一括駆動信号を前記複数の走査信号線に印加し、前記複数の映像信号が前記複数のデータ信号線にそれぞれ印加されるときには、前記複数の走査信号線を順に選択する走査信号を前記複数の走査信号線にそれぞれ印加することを特徴とする、表示装置。 An active matrix display device,
The plurality of data signal lines, the plurality of scanning signal lines intersecting with the plurality of data signal lines, and the intersections of the plurality of data signal lines and the plurality of scanning signal lines are arranged in a matrix. A display unit having a plurality of pixel formation units;
A data signal line driving circuit for driving the plurality of data signal lines;
A scanning signal line driving circuit for driving the plurality of scanning signal lines,
The data signal line driving circuit generates a plurality of video signals representing a video to be displayed as a signal whose voltage polarity is inverted for each data signal line and every predetermined number of frame periods, to the plurality of data signal lines. Each of the plurality of data signal lines is applied with a precharge signal having a voltage corresponding to an intermediate gray level of a video signal in order to precharge the plurality of pixel formation portions in the blanking period of the frame period. Applied,
The scanning signal line driving circuit applies a collective driving signal for simultaneously selecting the plurality of scanning signal lines to the plurality of scanning signal lines during the blanking period, and the plurality of video signals are the plurality of video signals. A display device, wherein when applied to each of the data signal lines, a scanning signal for sequentially selecting the plurality of scanning signal lines is applied to each of the plurality of scanning signal lines. - 前記プリチャージ信号の電圧は、正極性の映像信号が印加されるデータ信号線と、負極性の映像信号が印加されるデータ信号線とで異なる電圧であることを特徴とする、請求項1に記載の表示装置。 The voltage of the precharge signal is different between a data signal line to which a positive video signal is applied and a data signal line to which a negative video signal is applied. The display device described.
- 前記表示部の背面に設けられたバックライトユニットをさらに含み、
前記バックライトユニットは、前記複数の画素形成部のすべてに前記複数の映像信号がそれぞれ書き込まれてから次のフレーム期間が始まるまでの期間に点灯されることを特徴とする、請求項2に記載の表示装置。 Further comprising a backlight unit provided on the back of the display unit,
3. The backlight unit according to claim 2, wherein the backlight unit is turned on during a period from when the plurality of video signals are respectively written to all of the plurality of pixel formation portions to when the next frame period starts. Display device. - 前記走査信号線駆動回路および前記データ信号線駆動回路は、前記複数の画素形成部のすべてに前記複数の映像信号がそれぞれ書き込まれてから次のフレーム期間が始まるまでの期間に動作を停止することを特徴とする、請求項2に記載の表示装置。 The scanning signal line drive circuit and the data signal line drive circuit stop operating in a period from when the plurality of video signals are written to all of the plurality of pixel formation portions until the next frame period starts. The display device according to claim 2, wherein:
- 前記複数の画素形成部のうち前記複数のデータ信号線と平行に配置された各画素形成部は、同じ方向に隣接するデータ信号線と接続されていることを特徴とする、請求項2に記載の表示装置。 The pixel formation unit arranged in parallel with the plurality of data signal lines among the plurality of pixel formation units is connected to a data signal line adjacent in the same direction. Display device.
- 前記複数の画素形成部のうち前記複数のデータ信号線と平行に配置された各画素形成部は、同じ方向に隣接するデータ信号線および反対方向に隣接するデータ信号線と所定数ごとに交互に接続されていることを特徴とする、請求項2に記載の表示装置。 Among the plurality of pixel forming portions, each pixel forming portion arranged in parallel with the plurality of data signal lines alternately has a predetermined number of data signal lines adjacent in the same direction and data signal lines adjacent in the opposite direction. The display device according to claim 2, wherein the display device is connected.
- 前記走査信号線駆動回路は、同一導電型のトランジスタで構成された複数の単位回路を多段接続した構成を有し、第1および第2クロックからなる2相のクロックに基づいて動作するシフトレジスタを備え、
単位回路は、
走査信号線に前記走査信号および前記一括駆動信号を出力するための出力端子と、
オン電圧およびオフ電圧を生成し、前記出力端子に前記走査信号として出力する出力信号生成回路と、
前記出力端子にオン電圧を前記一括駆動信号として出力する一括駆動回路とを含み、
前記フレーム期間の前記ブランキング期間に、オン電圧が前記複数の単位回路の前記一括駆動回路に同時に与えられると、前記一括駆動回路は前記一括駆動信号を前記複数の走査信号線に同時に出力することを特徴とする、請求項1に記載の表示装置。 The scanning signal line driving circuit has a configuration in which a plurality of unit circuits each composed of a transistor of the same conductivity type are connected in multiple stages, and includes a shift register that operates based on a two-phase clock composed of a first clock and a second clock. Prepared,
The unit circuit is
An output terminal for outputting the scanning signal and the collective driving signal to a scanning signal line;
An output signal generation circuit that generates an on-voltage and an off-voltage and outputs the output voltage as the scanning signal to the output terminal;
A collective drive circuit that outputs an on-voltage to the output terminal as the collective drive signal;
When an ON voltage is simultaneously applied to the collective drive circuit of the plurality of unit circuits during the blanking period of the frame period, the collective drive circuit simultaneously outputs the collective drive signal to the plurality of scanning signal lines. The display device according to claim 1, wherein: - 前記一括駆動回路は1個のトランジスタを有し、
前記トランジスタは、一方の導通端子を前記出力端子に接続され、制御端子に前記オン電圧を印加されたとき、他方の導通端子に与えられたパルス信号を前記一括駆動信号として前記出力端子に出力することを特徴とする、請求項7に記載の表示装置。 The collective drive circuit has one transistor,
The transistor has one conduction terminal connected to the output terminal, and outputs the pulse signal applied to the other conduction terminal to the output terminal as the collective drive signal when the ON voltage is applied to the control terminal. The display device according to claim 7, wherein: - 前記一括駆動回路は1個のトランジスタを有し、
前記トランジスタは、一方の導通端子を前記出力端子に接続され、制御端子に前記オン電圧を印加されたとき、他方の導通端子に接続された電源電圧を前記一括駆動信号として前記出力端子に出力することを特徴とする、請求項7に記載の表示装置。 The collective drive circuit has one transistor,
The transistor has one conduction terminal connected to the output terminal and outputs the power supply voltage connected to the other conduction terminal to the output terminal as the collective driving signal when the ON voltage is applied to the control terminal. The display device according to claim 7, wherein: - 複数のデータ信号線と、前記複数のデータ信号線と交差する複数の走査信号線と、前記複数のデータ信号線と前記複数の走査信号線との交差点にそれぞれ対応してマトリクス状に配置された複数の画素形成部とを備える、アクティブマトリクス型の表示装置の駆動方法であって、
フレーム期間のブランキング期間に、前記複数の画素形成部をプリチャージするために映像信号の中間階調に相当する電圧を有するプリチャージ信号を前記複数のデータ信号線にそれぞれ印加すると共に、前記複数の走査信号線を同時に選択状態にする一括駆動信号を前記複数の走査信号線に印加することによって、前記プリチャージ信号を前記複数の画素形成部に同時に書き込むステップと、
表示すべき映像を表す複数の映像信号をデータ信号線ごとにかつ所定数のフレーム期間ごとに電圧の極性が反転する信号として生成して前記複数のデータ信号線にそれぞれ印加すると共に、前記複数の走査信号線を順に選択する走査信号を前記複数の走査信号線にそれぞれ印加することによって、前記複数の画素形成部に前記複数の映像信号をそれぞれ書き込むステップとを備えることを特徴とする、表示装置の駆動方法。 The plurality of data signal lines, the plurality of scanning signal lines intersecting with the plurality of data signal lines, and the intersections of the plurality of data signal lines and the plurality of scanning signal lines are arranged in a matrix. A driving method of an active matrix display device comprising a plurality of pixel forming portions,
In the blanking period of the frame period, a precharge signal having a voltage corresponding to an intermediate gray level of a video signal is applied to each of the plurality of data signal lines in order to precharge the plurality of pixel formation portions. Simultaneously writing the precharge signal to the plurality of pixel forming portions by applying a collective driving signal for simultaneously selecting the scanning signal lines to the plurality of scanning signal lines;
A plurality of video signals representing video to be displayed are generated for each data signal line as a signal whose voltage polarity is inverted every predetermined number of frame periods, applied to each of the plurality of data signal lines, and And writing each of the plurality of video signals to the plurality of pixel forming portions by applying a scanning signal for sequentially selecting the scanning signal lines to each of the plurality of scanning signal lines. Driving method.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011208209 | 2011-09-22 | ||
JP2011-208209 | 2011-09-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013042622A1 true WO2013042622A1 (en) | 2013-03-28 |
Family
ID=47914391
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/073594 WO2013042622A1 (en) | 2011-09-22 | 2012-09-14 | Display device and drive method for same |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2013042622A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106297689A (en) * | 2015-06-29 | 2017-01-04 | 三星显示有限公司 | The method driving display floater, the display device performing the method and the equipment of driving |
CN106297682A (en) * | 2015-05-11 | 2017-01-04 | 联咏科技股份有限公司 | Display device and grid driving method thereof |
CN106340274A (en) * | 2015-07-17 | 2017-01-18 | 联咏科技股份有限公司 | Display device and driving method thereof |
CN106531114A (en) * | 2017-01-04 | 2017-03-22 | 京东方科技集团股份有限公司 | Display driving method and display driving system |
CN109410857A (en) * | 2018-11-12 | 2019-03-01 | 惠科股份有限公司 | Cross-voltage compensation method of display panel, display panel and display device |
CN109935200A (en) * | 2018-07-27 | 2019-06-25 | 京东方科技集团股份有限公司 | Shift register cell, gate driving circuit, display device and driving method |
US10416484B2 (en) | 2017-10-03 | 2019-09-17 | Sharp Kabushiki Kaisha | Liquid crystal display device and method of driving liquid crystal display device |
CN111025711A (en) * | 2020-01-02 | 2020-04-17 | 京东方科技集团股份有限公司 | Waveguide display liquid crystal driving circuit, liquid crystal display device and driving method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000214826A (en) * | 1999-01-21 | 2000-08-04 | Seiko Epson Corp | Liquid crystal display device and driving method thereof |
JP2003233362A (en) * | 2001-12-19 | 2003-08-22 | Lg Phillips Lcd Co Ltd | Liquid crystal display |
JP2007328120A (en) * | 2006-06-07 | 2007-12-20 | Sharp Corp | Method for driving liquid crystal display, and device for driving the same |
WO2009084267A1 (en) * | 2007-12-27 | 2009-07-09 | Sharp Kabushiki Kaisha | Shift register and display device |
-
2012
- 2012-09-14 WO PCT/JP2012/073594 patent/WO2013042622A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000214826A (en) * | 1999-01-21 | 2000-08-04 | Seiko Epson Corp | Liquid crystal display device and driving method thereof |
JP2003233362A (en) * | 2001-12-19 | 2003-08-22 | Lg Phillips Lcd Co Ltd | Liquid crystal display |
JP2007328120A (en) * | 2006-06-07 | 2007-12-20 | Sharp Corp | Method for driving liquid crystal display, and device for driving the same |
WO2009084267A1 (en) * | 2007-12-27 | 2009-07-09 | Sharp Kabushiki Kaisha | Shift register and display device |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106297682B (en) * | 2015-05-11 | 2019-04-23 | 联咏科技股份有限公司 | Display device and grid driving method thereof |
CN106297682A (en) * | 2015-05-11 | 2017-01-04 | 联咏科技股份有限公司 | Display device and grid driving method thereof |
CN106297689A (en) * | 2015-06-29 | 2017-01-04 | 三星显示有限公司 | The method driving display floater, the display device performing the method and the equipment of driving |
CN106340274A (en) * | 2015-07-17 | 2017-01-18 | 联咏科技股份有限公司 | Display device and driving method thereof |
US20170018242A1 (en) * | 2015-07-17 | 2017-01-19 | Novatek Microelectronics Corp. | Display apparatus and driving method thereof |
US10163416B2 (en) | 2015-07-17 | 2018-12-25 | Novatek Microelectronics Corp. | Display apparatus and driving method thereof |
CN106531114A (en) * | 2017-01-04 | 2017-03-22 | 京东方科技集团股份有限公司 | Display driving method and display driving system |
US10416484B2 (en) | 2017-10-03 | 2019-09-17 | Sharp Kabushiki Kaisha | Liquid crystal display device and method of driving liquid crystal display device |
CN109935200A (en) * | 2018-07-27 | 2019-06-25 | 京东方科技集团股份有限公司 | Shift register cell, gate driving circuit, display device and driving method |
CN109935200B (en) * | 2018-07-27 | 2022-06-03 | 京东方科技集团股份有限公司 | Shift register unit, gate drive circuit, display device and drive method |
CN109410857A (en) * | 2018-11-12 | 2019-03-01 | 惠科股份有限公司 | Cross-voltage compensation method of display panel, display panel and display device |
WO2020097989A1 (en) * | 2018-11-12 | 2020-05-22 | 惠科股份有限公司 | Display panel cross-voltage compensation method, display panel and display device |
US11626051B2 (en) | 2018-11-12 | 2023-04-11 | HKC Corporation Limited | Cross voltage compensation method for display panel, display panel and display device |
CN111025711A (en) * | 2020-01-02 | 2020-04-17 | 京东方科技集团股份有限公司 | Waveguide display liquid crystal driving circuit, liquid crystal display device and driving method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013042622A1 (en) | Display device and drive method for same | |
JP5372268B2 (en) | Scanning signal line driving circuit, display device including the same, and scanning signal line driving method | |
KR101030528B1 (en) | Shift register and liquid crystal display using the same | |
US8952955B2 (en) | Display driving circuit, display device and display driving method | |
JP5306762B2 (en) | Electro-optical device and electronic apparatus | |
WO2009084267A1 (en) | Shift register and display device | |
US8305324B2 (en) | Scan driver, display device having the same and method of driving a display device | |
WO2010150574A1 (en) | Shift register circuit, display device provided with same, and shift register circuit driving method | |
JP5972267B2 (en) | Liquid crystal display device and driving method of auxiliary capacitance line | |
KR102127510B1 (en) | Display device | |
JP5765205B2 (en) | Liquid crystal display device and pixel inspection method thereof | |
JP6255709B2 (en) | Liquid crystal display | |
CN110415659B (en) | display device | |
JP7512702B2 (en) | Shift register and display device | |
JP5584148B2 (en) | Gate signal line driving circuit and display device | |
WO2012147637A1 (en) | Liquid crystal display device | |
WO2013018595A1 (en) | Display device and method for powering same | |
JP2010049768A (en) | Shift register and display | |
JP2009069562A (en) | Liquid crystal display device | |
JP2006071891A (en) | Liquid crystal display device and driving circuit and driving method thereof | |
KR101351386B1 (en) | A liquid crystal display device and a method for driving the same | |
WO2012029767A1 (en) | Semiconductor circuit and display device | |
US20060274010A1 (en) | Dsd lcd driving method and driving device thereof | |
KR101502174B1 (en) | Control driver and display device having the same | |
KR20180014338A (en) | Display Device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12834526 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12834526 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |