WO2013042383A1 - Wireless equipment - Google Patents
Wireless equipment Download PDFInfo
- Publication number
- WO2013042383A1 WO2013042383A1 PCT/JP2012/006033 JP2012006033W WO2013042383A1 WO 2013042383 A1 WO2013042383 A1 WO 2013042383A1 JP 2012006033 W JP2012006033 W JP 2012006033W WO 2013042383 A1 WO2013042383 A1 WO 2013042383A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- packet signal
- unit
- packet
- data
- size
- Prior art date
Links
- 238000012545 processing Methods 0.000 claims description 54
- 238000004891 communication Methods 0.000 claims description 45
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 230000005540 biological transmission Effects 0.000 description 85
- 238000000034 method Methods 0.000 description 16
- 238000000605 extraction Methods 0.000 description 15
- 230000003068 static effect Effects 0.000 description 11
- 238000012546 transfer Methods 0.000 description 10
- 101100172132 Mus musculus Eif3a gene Proteins 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 230000001360 synchronised effect Effects 0.000 description 5
- 238000013459 approach Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000008054 signal transmission Effects 0.000 description 2
- 238000004590 computer program Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/16—Anti-collision systems
- G08G1/161—Decentralised systems, e.g. inter-vehicle communication
- G08G1/163—Decentralised systems, e.g. inter-vehicle communication involving continuous checking
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/06—Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/30—Services specially adapted for particular environments, situations or purposes
- H04W4/40—Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
- H04W4/44—Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/30—Services specially adapted for particular environments, situations or purposes
- H04W4/40—Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
- H04W4/46—Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0006—Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
- H04L1/0007—Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format by modifying the frame length
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/12—Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
Definitions
- the present invention relates to communication technology, and more particularly, to a radio apparatus that broadcasts a signal including predetermined information.
- Road-to-vehicle communication is being studied to prevent collisions at intersections.
- information on the situation of the intersection is communicated between the roadside device and the vehicle-mounted device.
- Road-to-vehicle communication requires the installation of roadside equipment, which increases labor and cost.
- installation of a roadside machine will become unnecessary.
- the current position information is detected in real time by GPS (Global Positioning System), etc., and the position information is exchanged between the vehicle-mounted devices so that the own vehicle and the other vehicle each enter the intersection. (See, for example, Patent Document 1).
- the present invention has been made in view of such a situation, and an object thereof is to provide a technique for efficiently executing processing when a plurality of packet signals are generated.
- a radio apparatus includes a generation unit that generates a plurality of packet signals by dividing the data into a plurality of partial data and then including the partial data in the packet signal. And a notification unit for reporting a plurality of packet signals generated by the generation unit.
- a generation unit that generates a plurality of packet signals by dividing the data into a plurality of partial data and then including the partial data in the packet signal.
- a notification unit for reporting a plurality of packet signals generated by the generation unit.
- the processing when a plurality of packet signals are generated, the processing can be executed efficiently.
- FIGS. 3A to 3D are diagrams showing frame formats defined in the communication system of FIG. 4A and 4B are diagrams showing the format of a packet signal generated by the base station apparatus of FIG.
- FIGS. 5A and 5B are diagrams showing the configuration of layers defined in the communication system of FIG.
- FIGS. 6A and 6B are diagrams showing a configuration of a road and vehicle transmission period used by the base station apparatus of FIG. It is a figure which shows the structure of the terminal device mounted in the vehicle of FIG.
- ITS Intelligent Transport Systems
- 700 MHz band highway traffic system standards General Electric Industries Association
- the communication forms are various. At that time, if the data broadcasted by road-to-vehicle communication increases, it becomes necessary to divide the data in order to store it in the packet signal.
- Embodiments of the present invention relate to a communication system that performs vehicle-to-vehicle communication between terminal devices mounted on a vehicle, and also executes road-to-vehicle communication from a base station device installed at an intersection or the like to a terminal device.
- the terminal device broadcasts a packet signal that stores information such as the speed or position of the vehicle.
- the other terminal device receives the packet signal and recognizes the approach of the vehicle based on the above-described information.
- the base station apparatus repeatedly defines a frame including a plurality of subframes. The base station apparatus selects any of a plurality of subframes for road-to-vehicle communication, and broadcasts a packet signal in which control information and the like are stored during the period of the head portion of the selected subframe.
- the control information includes information related to a period (hereinafter referred to as “road vehicle transmission period”) for the base station apparatus to broadcast the packet signal.
- the terminal device specifies a road and vehicle transmission period based on the control information, and transmits a packet signal by the CSMA method in a period other than the road and vehicle transmission period (hereinafter referred to as “vehicle transmission period”).
- vehicle transmission period a period other than the road and vehicle transmission period
- the collision probability of packet signals between them is reduced. That is, when the terminal device recognizes the content of the control information, interference between road-vehicle communication and vehicle-to-vehicle communication is reduced.
- a terminal device that cannot receive control information from the base station device that is, a terminal device that exists outside the area formed by the base station device transmits a packet signal by the CSMA method regardless of the frame configuration.
- the base station apparatus broadcasts a packet signal during the road-to-vehicle transmission period, but a maximum value is determined for the size of data that can be stored in the packet signal.
- the base station apparatus broadcasts a plurality of packet signals in the road and vehicle transmission period by dividing the data into a plurality of data.
- the base station apparatus executes the following processing.
- the base station apparatus divides the data so that the size of the packet signal is limited to two types. Specifically, the base station apparatus sequentially divides the data so that the maximum value that can be stored in the packet signal is obtained, and finally acquires divided data having a size smaller than the maximum value.
- FIG. 1 shows a configuration of a communication system 100 according to an embodiment of the present invention. This corresponds to a case where one intersection is viewed from above.
- the communication system 100 includes a base station device 10, a first vehicle 12a, a second vehicle 12b, a third vehicle 12c, a fourth vehicle 12d, a fifth vehicle 12e, a sixth vehicle 12f, and a seventh vehicle 12g, collectively referred to as a vehicle 12. , The eighth vehicle 12h, and the network 202.
- the eighth vehicle 12h and the network 202.
- the eighth vehicle 12h and the network 202.
- An area 212 is formed around the base station apparatus 10, and an outside area 214 is formed outside the area 212.
- the road that goes in the horizontal direction of the drawing that is, the left and right direction
- intersects the vertical direction of the drawing that is, the road that goes in the up and down direction, at the central portion.
- the upper side of the drawing corresponds to the direction “north”
- the left side corresponds to the direction “west”
- the lower side corresponds to the direction “south”
- the right side corresponds to the direction “east”.
- the intersection of the two roads is an “intersection”.
- the first vehicle 12a and the second vehicle 12b are traveling from left to right
- the third vehicle 12c and the fourth vehicle 12d are traveling from right to left
- the fifth vehicle 12e and the sixth vehicle 12f are traveling from the top to the bottom
- the seventh vehicle 12g and the eighth vehicle 12h are traveling from the bottom to the top.
- the base station apparatus 10 is fixedly installed at an intersection.
- the base station device 10 controls communication between terminal devices.
- Base station apparatus 10 repeatedly generates a frame including a plurality of subframes based on a signal received from a GPS satellite (not shown) or a frame formed by another base station apparatus 10 (not shown).
- the road vehicle transmission period can be set at the head of each subframe.
- the base station apparatus 10 selects a subframe in which the road and vehicle transmission period is not set by another base station apparatus 10 from among a plurality of subframes in the frame.
- the base station apparatus 10 sets a road and vehicle transmission period at the beginning of the selected subframe.
- the base station apparatus 10 broadcasts a packet signal during the set road and vehicle transmission period.
- a plurality of packet signals may be notified.
- data to be included in the packet signal for example, dynamic data and static data are defined.
- Dynamic data is data whose contents are frequently updated
- static data is data whose update frequency is lower than that of dynamic data.
- the former is data with high real-time property, and the latter can be said to be data with low real-time property.
- dynamic data is sensor information and signal information
- static data is road alignment, area, information on obstacles, and sensor position.
- the packet signal also includes information related to the timing at which the road and vehicle transmission period is set or control information related to the frame.
- the terminal device 14 Since the terminal device 14 is mounted on the vehicle 12 as described above, the terminal device 14 is movable. When the terminal device 14 receives the packet signal from the base station device 10, the terminal device 14 generates a frame based on the control information included in the packet signal, in particular, the information on the timing when the road-to-vehicle transmission period is set or the information on the frame. To do. As a result, the frame generated in each of the plurality of terminal devices 14 is synchronized with the frame generated in the base station device 10. The terminal device 14 notifies the packet signal during the vehicle transmission period. Although the vehicle transmission period will be described later, it can be said that this is a period different from the road and vehicle transmission period in the frame.
- CSMA / CA is executed in the vehicle transmission period.
- the terminal device 14 acquires data and stores the data in a packet signal.
- the data includes, for example, information related to the location.
- the terminal device 14 also stores control information received from the base station device 10 in the packet signal. That is, the control information transmitted from the base station device 10 is transferred by the terminal device 14.
- the terminal apparatus 14 notifies the packet signal by executing CSMA / CA regardless of the frame configuration.
- FIG. 2 shows the configuration of the base station apparatus 10.
- the base station apparatus 10 includes an antenna 20, an RF unit 22, a modem unit 24, a processing unit 26, a control unit 28, and a network communication unit 30.
- the processing unit 26 includes a frame defining unit 32, a selecting unit 34, and a generating unit 36.
- the RF unit 22 receives a packet signal from the terminal device 14 (not shown) or another base station device 10 by the antenna 20 as a reception process.
- the RF unit 22 performs frequency conversion on the received radio frequency packet signal to generate a baseband packet signal. Further, the RF unit 22 outputs a baseband packet signal to the modem unit 24.
- baseband packet signals are formed by in-phase and quadrature components, so two signal lines should be shown, but here only one signal line is shown for clarity. Shall be shown.
- the RF unit 22 also includes an LNA (Low Noise Amplifier), a mixer, an AGC, and an A / D conversion unit.
- LNA Low Noise Amplifier
- the RF unit 22 performs frequency conversion on the baseband packet signal input from the modem unit 24 as a transmission process, and generates a radio frequency packet signal. Further, the RF unit 22 transmits a radio frequency packet signal from the antenna 20 during the road-vehicle transmission period.
- the RF unit 22 also includes a PA (Power Amplifier), a mixer, and a D / A conversion unit.
- PA Power Amplifier
- the modem unit 24 demodulates the baseband packet signal from the RF unit 22 as a reception process. Further, the modem unit 24 outputs the demodulated result to the processing unit 26. The modem unit 24 also modulates the data from the processing unit 26 as a transmission process. Further, the modem unit 24 outputs the modulated result to the RF unit 22 as a baseband packet signal.
- the modem unit 24 since the communication system 100 corresponds to the OFDM (Orthogonal Frequency Division Multiplexing) modulation method, the modem unit 24 also executes FFT (Fast Fourier Transform) as reception processing and IFFT (Inverse TransFastFast) as transmission processing. Also execute.
- the frame defining unit 32 receives a signal from a GPS satellite (not shown), and acquires time information based on the received signal.
- the frame defining unit 32 generates a plurality of frames based on the time information. For example, the frame defining unit 32 generates ten “100 msec” frames by dividing the “1 sec” period into ten on the basis of the timing indicated by the time information. By repeating such processing, the frame is defined to be repeated.
- the frame defining unit 32 may detect control information from the demodulation result and generate a frame based on the detected control information. Such processing corresponds to generating a frame synchronized with the timing of the frame formed by another base station apparatus 10.
- FIGS. 3A to 3D show frame formats defined in the communication system 100.
- FIG. FIG. 3A shows the structure of the frame.
- the frame is formed of N subframes indicated as the first subframe to the Nth subframe.
- the terminal device 14 forms a frame by multiplexing a plurality of subframes that can be used for notification for a plurality of hours.
- N may be other than 8.
- the selection unit 34 selects a subframe in which a road and vehicle transmission period is to be set from among a plurality of subframes included in the frame. More specifically, the selection unit 34 receives a frame defined by the frame defining unit 32. Here, an instruction regarding a subframe to be selected is received from the outside. Although details of this processing will be described later, the selection unit 34 selects a subframe in accordance with the instruction. Multiple subframes may be selected. In addition, the road and vehicle transmission period which can be used for alerting
- the selection unit 34 may automatically select a subframe.
- the selection unit 34 inputs a demodulation result from another base station device 10 or the terminal device 14 (not shown) via the RF unit 22 and the modem unit 24.
- the selection part 34 extracts the demodulation result from the other base station apparatus 10 among the input demodulation results.
- the selection unit 34 specifies the subframe that has not received the demodulation result by specifying the subframe that has received the demodulation result.
- the selection unit 34 selects one subframe at random.
- the selection unit 34 acquires reception power corresponding to the demodulation result, and gives priority to subframes with low reception power.
- FIG. 3B shows a configuration of a frame generated by the first base station apparatus 10a.
- the first base station apparatus 10a sets a road and vehicle transmission period at the beginning of the first subframe.
- the 1st base station apparatus 10a sets a vehicle transmission period following the road and vehicle transmission period in a 1st sub-frame.
- the vehicle transmission period is a period during which the terminal device 14 can notify the packet signal. That is, the first base station apparatus 10a can notify the packet signal in the road and vehicle transmission period which is the first period of the first subframe, and the terminal apparatus in the vehicle and vehicle transmission period other than the road and vehicle transmission period in the frame. It is specified that 14 can broadcast the packet signal. Furthermore, the first base station apparatus 10a sets only the vehicle transmission period from the second subframe to the Nth subframe.
- FIG. 3C shows a configuration of a frame generated by the second base station apparatus 10b.
- the second base station apparatus 10b sets a road and vehicle transmission period at the beginning of the second subframe.
- the second base station apparatus 10b sets the vehicle transmission period from the first stage of the road and vehicle transmission period in the second subframe, from the first subframe and the third subframe to the Nth subframe.
- FIG. 3D shows a configuration of a frame generated by the third base station apparatus 10c.
- the third base station apparatus 10c sets a road and vehicle transmission period at the beginning of the third subframe.
- the third base station apparatus 10c sets the vehicle transmission period from the first stage of the road and vehicle transmission period in the third subframe, the first subframe, the second subframe, and the fourth subframe to the Nth subframe.
- the plurality of base station apparatuses 10 select different subframes, and set the road and vehicle transmission period at the head portion of the selected subframe.
- the selection unit 34 outputs the selected subframe number to the generation unit 36.
- the generation unit 36 receives a subframe number from the selection unit 34.
- the generation unit 36 sets the road and vehicle transmission period in the subframe of the received subframe number.
- generation part 36 produces
- the generation unit 36 generates at least one partial data by dividing the data for each maximum value of data that can be stored in the packet signal. Such processing is repeated until data having a size smaller than the maximum value remains, and the generation unit 36 sets the remaining data as the last partial data.
- the size of the packet signal generated by the generation unit 36 is limited to two types: a maximum value defined as the size of the packet signal and a value smaller than the maximum value.
- Each packet signal is composed of, for example, control information and a data payload.
- the control information includes a subframe number in which a road and vehicle transmission period is set.
- the partial data is stored in the data payload. Note that static data or dynamic data that is data before division is acquired from the network 202 (not shown) by the network communication unit 30.
- FIG. 4A shows a physical frame format.
- “PLCP preamble”, “signal”, “service”, “MAC header”, “RSU control header”, “payload”, “FCS”, and “tail bit” are arranged in order from the top.
- a physical frame corresponds to the packet signal described above.
- the “PLCP preamble” is a known signal defined in the physical layer
- the “signal” is a control signal defined in the physical layer
- the “MAC header” is a control signal defined in the MAC layer. It is.
- the “RSU control header” is a control signal commonly used in road-to-vehicle communication and vehicle-to-vehicle communication, and details will be described later.
- a “payload” is a data signal. Therefore, it can be said that a data signal is arranged in the packet signal following the control signal.
- FIG. 4B is a diagram illustrating a configuration of the RSU control header generated by the generation unit 36.
- RSU control header “protocol version”, “transmission node type”, “transfer count / reuse count”, “reserve”, “TSF timer”, “RSU transmission period length”, and “reserve” are arranged.
- the protocol version indicates the version of the corresponding protocol.
- the transmission node type indicates the type of the transmission node.
- Base station apparatus 10 and terminal apparatus 14 are defined as types of transmission nodes.
- the transfer count / reuse count indicates an index of validity when the RSU control header is transferred by the terminal device 14, and the TSF timer indicates the transmission time.
- the RSU transmission period length indicates the length of the road and vehicle transmission period, and can be said to be information relating to the road and vehicle transmission period.
- the processing unit 26 causes the modem unit 24 and the RF unit 22 to broadcast-transmit a plurality of packet signals during the road and vehicle transmission period.
- a plurality of packet signals are broadcast at SIFS (Short Inter Frame Space) intervals.
- the control unit 28 controls processing of the entire base station device 10.
- FIGS. 5A and 5B show layer configurations defined in the communication system 100.
- FIG. FIG. 5A shows a layer configuration for transmission processing
- FIG. 5B shows a layer configuration for reception processing. Therefore, in the case of road-to-vehicle communication, the former corresponds to the layer configuration in the base station device 10 and the latter corresponds to the layer configuration in the terminal device 14.
- FIG. 5A will be described.
- the transmission control layer, the packet division / combination layer, the security layer, the MAC layer, and the PHY layer are included in the modem unit 24 and the processing unit 26 in FIG. 2, and radio signal transmission is included in the RF unit 22 in FIG.
- the packet division / combination layer, security layer, MAC layer, and PHY layer are grouped as baseband processing, and radio signal transmission is grouped as RF processing.
- the size of the static data is 4 kB
- the size of the dynamic data is 3 kB
- the maximum size of the data payload is 1.5 kB, and can be transmitted in the road and vehicle transmission period. Assume that the maximum size is 4 kB. Note that the present invention is not limited to these values. In the above values, redundant bits generated by security processing or encoding are ignored, and they may be considered.
- the transmission control layer accepts static data and dynamic data separately. This corresponds to accepting data for each application program.
- the transmission control layer divides each data so that the maximum is about 4 kB. As described above, if the size of static data is 4 kB and the size of dynamic data is 3 kB, no division is required. That is, the maximum size of data output from the transmission control layer is a size that can be transmitted in one road-vehicle transmission period.
- the transmission control layer outputs static data and dynamic data separately.
- the packet division / combination layer divides data within the road and vehicle transmission period when the data size from the application exceeds the number of bytes that can be transmitted with one packet signal. That is, the packet division / combination layer performs division on the static data and the dynamic data so that the data size is smaller than 1.5 kB. This is because each data is stored in the data payload. At that time, a plurality of packet signals are generated. If the size of static data or dynamic data received from the transmission control layer does not exceed 1.5 kB, the packet division / combination layer does not have to execute division.
- the security layer executes security processing for each data.
- the MAC layer generates a MAC frame based on the data from the security layer, and the PHY layer generates a packet signal so as to store the MAC frame, and executes IFFT. As a result, a plurality of packet signals can be generated even for one road and vehicle transmission period. FIG. 5B will be described later.
- FIGS. 6A to 6B show the configuration of the road and vehicle transmission period used by the base station apparatus 10.
- FIG. 6A shows that the first to M-th packet signals are broadcast at SIFS intervals during the road and vehicle transmission period.
- the size of the first to M ⁇ 1th packet signals is a maximum value
- the size of the Mth packet signal is a value smaller than the maximum value, that is, a fraction.
- the advantage of such division is that the size of partial data other than the partial data to be stored in the last packet signal is fixed, so that the division processing is simplified.
- the number of packet signals after division is minimized, and the addition and processing of control information necessary for each packet signal is reduced.
- a variable-length packet signal (hereinafter referred to as “the 0th packet signal”) may be notified before the first packet signal.
- the size of the 0th packet signal is variable depending on the header contents. The advantage of such division is that the portion whose size varies depending on the header content and the large data portion are processed separately, so that even if the size changes depending on the header content, the processing becomes simple.
- the generation unit 36 equally divides the data into a plurality of partial data, and then includes the partial data in the packet signal. As a result, a plurality of packet signals of one kind of size are generated.
- the size of the packet signal is determined according to the number of packet signals that can be notified during the road and vehicle transmission period. That is, a plurality of minimum-size packet signals are generated under the condition that the sizes are uniform.
- This configuration can be realized in terms of hardware by a CPU, memory, or other LSI of any computer, and in terms of software, it can be realized by a program loaded in the memory, but here it is realized by their cooperation.
- Draw functional blocks Accordingly, those skilled in the art will understand that these functional blocks can be realized in various forms only by hardware, or by a combination of hardware and software.
- FIG. 7 shows the configuration of the terminal device 14 mounted on the vehicle 12.
- the terminal device 14 includes an antenna 50, an RF unit 52, a modem unit 54, a processing unit 56, and a control unit 58.
- the processing unit 56 includes a timing specifying unit 60, a transfer determination unit 62, an acquisition unit 64, a generation unit 66, and a notification unit 70.
- the timing identification unit 60 includes an extraction unit 72 and a carrier sense unit 74.
- the antenna 50, the RF unit 52, and the modem unit 54 execute the same processing as the antenna 20, the RF unit 22, and the modem unit 24 in FIG. Here, the difference will be mainly described.
- the modem unit 54 and the processing unit 56 receive a packet signal from another terminal device 14 or the base station device 10 (not shown) in the reception process. As described above, the modem unit 54 and the processing unit 56 receive a packet signal from the base station apparatus 10 during the road-to-vehicle transmission period, and receive packet signals from other terminal apparatuses 14 during the vehicle-to-vehicle transmission period. To do.
- the extraction unit 72 specifies the timing of the subframe in which the road and vehicle transmission period is arranged when the demodulation result from the modem unit 54 is a packet signal from the base station device 10 (not shown). Specifically, the extraction unit 72 determines whether or not the packet signal is from the base station apparatus 10 based on the control information included in the packet signal. In addition, the extraction unit 72 generates a frame based on the subframe timing and the timing information included in the control information. As a result, the extraction unit 72 generates a frame synchronized with the frame formed in the base station device 10. When the notification source of the packet signal is another terminal device 14, the extraction unit 72 omits the synchronized frame generation process.
- the extraction unit 72 specifies the remaining vehicle transmission period after specifying the road and vehicle transmission period in use based on the control information.
- the extraction unit 72 outputs information on frame and subframe timing and vehicle transmission period to the carrier sense unit 74.
- the extraction unit 72 selects a timing unrelated to the frame configuration.
- the extraction unit 72 instructs the carrier sense unit 74 to perform carrier sensing unrelated to the frame configuration. This corresponds to the operation outside the area 214 in FIG.
- the carrier sense unit 74 receives information on frame and subframe timing and vehicle transmission period from the extraction unit 72. The carrier sense unit 74 determines the transmission timing by starting CSMA / CA within the vehicle transmission period. On the other hand, when the carrier sense unit 74 is instructed to perform carrier sense from the extraction unit 72, the carrier sense unit 74 determines the transmission timing by executing CSMA / CA without considering the frame configuration. The carrier sense unit 74 notifies the modem unit 54 and the RF unit 52 of the determined transmission timing, and broadcasts the packet signal.
- the transfer determination unit 62 controls transfer of control information.
- the transfer determination unit 62 extracts information to be transferred from the control information.
- the transfer determination unit 62 generates information to be transferred based on the extracted information. Here, the description of this process is omitted.
- the transfer determination unit 62 outputs information to be transferred, that is, a part of the control information, to the generation unit 66.
- the acquisition unit 64 includes a GPS receiver (not shown), a gyroscope, a vehicle speed sensor, and the like. Based on data supplied from these, the location of the vehicle 12 (not shown), that is, the position of the vehicle 12 on which the terminal device 14 is mounted, the progress The direction, the moving speed, etc. (hereinafter collectively referred to as “position information”) are acquired.
- the existence position is indicated by latitude and longitude. Since a known technique may be used for these acquisitions, description thereof is omitted here.
- the GPS receiver, gyroscope, vehicle speed sensor, and the like may be outside the terminal device 14.
- the acquisition unit 64 outputs the position information to the generation unit 66.
- the generation unit 66 receives position information from the acquisition unit 64 and receives a part of control information from the transfer determination unit 62.
- the generation unit 66 generates a packet signal by storing part of the control information in the control information and storing the position information in the payload.
- the notification unit 70 acquires a packet signal from the base station device 10 (not shown) in the road and vehicle transmission period, and acquires a packet signal from another terminal device 14 (not shown) in the vehicle and vehicle transmission period. As a process for the acquired packet signal, the notification unit 70 notifies the driver of the approach of another vehicle 12 (not shown) or the like via a monitor or a speaker according to the content of the data stored in the packet signal.
- the control unit 58 controls the operation of the terminal device 14.
- FIG. 5B shows the layer structure of the reception process as described above.
- the reception control layer, the packet division / combination layer, the security layer, the MAC layer, and the PHY layer are included in the modulation / demodulation unit 54 and the processing unit 56 in FIG. 7, and radio signal reception is included in the RF unit 52 in FIG.
- the packet division / combination layer, security layer, MAC layer, and PHY layer are grouped as baseband processing, and reception of radio signals is grouped as RF processing. These execute processing corresponding to each layer shown in FIG.
- the processing can be simplified. Further, since the division is repeated at the maximum value and the remaining partial data has a different size, the division can be executed mechanically. Further, since the maximum value is used as a unit of division, the size of the packet signal after division can be increased. Further, since the size of the packet signal is increased, the ratio of redundant components is reduced, and the frequency utilization efficiency can be improved. Moreover, since the size of the packet signal is increased, the number of packet signals can be reduced. Note that the packet signal size may be one type instead of two. In this case, since the data is divided so that the size of the packet signal becomes one type, the processing can be simplified. Further, since the size of the packet signal is reduced, the influence of fluctuations in the propagation environment can be reduced.
- the generation unit 36 divides data on the basis of the data size.
- the present invention is not limited to this.
- the generation unit 36 determines the size of the packet signal according to the communication speed of the packet signal. May be.
- the communication speed is defined by a combination of modulation scheme, coding rate, and the like.
- the division is performed so that the size of the packet signal becomes smaller as the communication speed becomes higher. For example, in the case of an error-prone parameter such as 16QAM and a coding rate of 3/4, division is performed so that the size of the packet signal is reduced.
- the packet is The division is performed so that the size of the signal is increased. According to this modification, frequency use efficiency can be reduced while reducing the occurrence of errors. Even when packet signals of the same size are transmitted, the transmission time varies depending on whether 16QAM and coding rate 1/2 or QPSK and coding rate 1/2. Since the road-vehicle transmission period is defined by time, the size of the division may be determined in consideration of the packet size to be transmitted during the road-vehicle transmission period.
- the generation unit 36 divides data on the basis of the data size.
- the present invention is not limited to this.
- the generation unit 36 responds to a multiple of the block size of the encryption processing.
- the size of the packet signal may be determined.
- the encryption processing block size for example, AES (Advanced Encryption Standard)
- it is divided by a multiple of 16 bytes.
- security block processing can be executed in units of packet signals, and it is not necessary to hold fractional data, and processing can be simplified.
- a wireless device includes: a generation unit configured to generate a plurality of packet signals by dividing the data into a plurality of partial data and then including the partial data in the packet signal; An informing unit for informing the packet signal. There are two types of packet signals generated in the generation unit.
- the size of the packet signal generated in the generation unit may be a maximum value defined as the size of the packet signal and a value smaller than the maximum value. In this case, since the maximum value is set as a unit of division, the size of the divided packet signal can be increased.
- Another aspect of the present invention is also a wireless device.
- This apparatus divides data into a plurality of partial data, and then includes the partial data in the packet signal, thereby generating a plurality of packet signals and a notification for reporting the plurality of packet signals generated in the generation unit A part.
- the size of the plurality of packet signals generated in the generation unit is one type.
- the processing can be simplified.
- the notification unit reports a plurality of packet signals in a predetermined period, and the size of the packet signal generated in the generation unit may be determined according to the number of packet signals that can be notified in the predetermined period. Good.
- the communication speed of the packet signal notified from the notification section is variable, and the size of the packet signal generated in the generation section may be determined according to the communication speed of the packet signal notified from the notification section. In this case, the frequency utilization efficiency can be reduced while reducing the occurrence of errors.
- the partial data in the generation unit is generated by dividing the encrypted data into a plurality of pieces, and the size of the packet signal generated in the generation unit is determined according to a multiple of the block size of the encryption process. May be.
- security block processing can be executed in packet signal units, and it is no longer necessary to hold fractional data, thereby simplifying the processing.
- the processing when a plurality of packet signals are generated, the processing can be executed efficiently.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Traffic Control Systems (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
A generating section (36) divides data into a plurality of partial data items and generates a plurality of packet signals by including the partial data items in the packet signals. The plurality of packet signals generated in the generating section (36) may be of two different sizes. Specifically, the size of the packet signal generated in the generating section (36) may have a maximum value that is specified as the packet signal size, or a value smaller than the maximum value. A modem section (24) and an RF section (22) report the plurality of packet signals that are generated.
Description
本発明は、通信技術に関し、特に所定の情報が含まれた信号を報知する無線装置に関する。
The present invention relates to communication technology, and more particularly, to a radio apparatus that broadcasts a signal including predetermined information.
交差点の出会い頭の衝突事故を防止するために、路車間通信の検討がなされている。路車間通信では、路側機と車載器との間において交差点の状況に関する情報が通信される。路車間通信では、路側機の設置が必要になり、手間と費用が大きくなる。これに対して、車車間通信、つまり車載器間で情報を通信する形態であれば、路側機の設置が不要になる。その場合、例えば、GPS(Global Positioning System)等によって現在の位置情報をリアルタイムに検出し、その位置情報を車載器同士で交換しあうことによって、自車両および他車両がそれぞれ交差点へ進入するどの道路に位置するかを判断する(例えば、特許文献1参照)。
路 Road-to-vehicle communication is being studied to prevent collisions at intersections. In the road-to-vehicle communication, information on the situation of the intersection is communicated between the roadside device and the vehicle-mounted device. Road-to-vehicle communication requires the installation of roadside equipment, which increases labor and cost. On the other hand, if it is the form which communicates information between vehicle-to-vehicle communication, ie, onboard equipment, installation of a roadside machine will become unnecessary. In this case, for example, the current position information is detected in real time by GPS (Global Positioning System), etc., and the position information is exchanged between the vehicle-mounted devices so that the own vehicle and the other vehicle each enter the intersection. (See, for example, Patent Document 1).
送信するデータのサイズが大きくなると、データを分割する必要が生じる。データを分割して複数のパケット信号を生成する場合であっても、効率的な処理が望まれる。
When the size of the data to be transmitted increases, it becomes necessary to divide the data. Even when data is divided to generate a plurality of packet signals, efficient processing is desired.
本発明はこうした状況に鑑みてなされたものであり、その目的は、複数のパケット信号を生成する場合に処理を効率的に実行する技術を提供することにある。
The present invention has been made in view of such a situation, and an object thereof is to provide a technique for efficiently executing processing when a plurality of packet signals are generated.
上記課題を解決するために、本発明のある態様の無線装置は、データを複数の部分データに分割してから、部分データをパケット信号に含めることによって、複数のパケット信号を生成する生成部と、生成部において生成した複数のパケット信号を報知する報知部とを備える。生成部において生成される複数のパケット信号のサイズは2種類である。
In order to solve the above problems, a radio apparatus according to an aspect of the present invention includes a generation unit that generates a plurality of packet signals by dividing the data into a plurality of partial data and then including the partial data in the packet signal. And a notification unit for reporting a plurality of packet signals generated by the generation unit. There are two types of packet signals generated in the generation unit.
なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システム、記録媒体、コンピュータプログラムなどの間で変換したものもまた、本発明の態様として有効である。
It should be noted that an arbitrary combination of the above-described components and a conversion of the expression of the present invention between a method, an apparatus, a system, a recording medium, a computer program, etc. are also effective as an aspect of the present invention.
本発明によれば、複数のパケット信号を生成する場合に処理を効率的に実行できる。
According to the present invention, when a plurality of packet signals are generated, the processing can be executed efficiently.
本発明の実施例を具体的に説明する前に、基礎となった知見を説明する。IEEE802.11等の規格に準拠した無線LAN(Local Area Network)では、CSMA/CA(Carrier Sense Multiple Access with Collision Avoidance)と呼ばれるアクセス制御機能が使用されている。そのため、当該無線LANでは、複数の端末装置によって同一の無線チャネルが共有される。このようなCSMA/CAでは、キャリアセンスによって他のパケット信号が送信されていないことを確認した後に、パケット信号が送信される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Prior to specific description of embodiments of the present invention, the knowledge that is the basis will be described. In a wireless LAN (Local Area Network) compliant with a standard such as IEEE 802.11, an access control function called CSMA / CA (Carrier Sense Multiple Access Avididance) is used. Therefore, in the wireless LAN, the same wireless channel is shared by a plurality of terminal devices. In such CSMA / CA, a packet signal is transmitted after confirming that no other packet signal is transmitted by carrier sense.
一方、ITS(Intelligent Transport Systems)は、例えば、700MHz帯高度道路交通システムの標準規格(一般社団法人電波産業会)に規定されている。ITSのような車車間通信に無線LANを適用する場合、不特定多数の端末装置へ情報を送信する必要があるために、信号はブロードキャストにて送信されることが望ましい。しかしながら、交差点などでは、車両数の増加、つまり端末装置数の増加がトラヒックを増加させることによって、パケット信号の衝突の増加が想定される。その結果、パケット信号に含まれたデータが他の端末装置へ伝送されなくなる。このような状態が、車車間通信において発生すれば、交差点の出会い頭の衝突事故を防止するという目的が達成されなくなる。さらに、車車間通信に加えて路車間通信が実行されれば、通信形態が多様になる。その際、路車間通信によってブロードキャスト送信されるデータが大きくなれば、パケット信号に格納するために、データを分割する必要が生じる。
On the other hand, ITS (Intelligent Transport Systems) is stipulated in, for example, 700 MHz band highway traffic system standards (General Electric Industries Association). When a wireless LAN is applied to inter-vehicle communication such as ITS, it is necessary to transmit information to an unspecified number of terminal devices, and therefore it is desirable that the signal be transmitted by broadcast. However, at an intersection or the like, an increase in the number of vehicles, that is, an increase in the number of terminal devices increases traffic, and therefore, an increase in packet signal collision is assumed. As a result, data included in the packet signal is not transmitted to other terminal devices. If such a situation occurs in vehicle-to-vehicle communication, the objective of preventing a collision accident at the intersection encounter will not be achieved. Furthermore, if the road-to-vehicle communication is executed in addition to the vehicle-to-vehicle communication, the communication forms are various. At that time, if the data broadcasted by road-to-vehicle communication increases, it becomes necessary to divide the data in order to store it in the packet signal.
次に、本発明の実施例の概要を述べる。本発明の実施例は、車両に搭載された端末装置間において車車間通信を実行するとともに、交差点等に設置された基地局装置から端末装置へ路車間通信も実行する通信システムに関する。車車間通信として、端末装置は、車両の速度あるいは位置等の情報を格納したパケット信号をブロードキャスト送信する。また、他の端末装置は、パケット信号を受信するとともに、前述の情報をもとに車両の接近等を認識する。ここで、基地局装置は、複数のサブフレームが含まれたフレームを繰り返し規定する。基地局装置は、路車間通信のために、複数のサブフレームのいずれかを選択し、選択したサブフレームの先頭部分の期間において、制御情報等が格納されたパケット信号をブロードキャスト送信する。
Next, the outline of the embodiment of the present invention will be described. Embodiments of the present invention relate to a communication system that performs vehicle-to-vehicle communication between terminal devices mounted on a vehicle, and also executes road-to-vehicle communication from a base station device installed at an intersection or the like to a terminal device. As inter-vehicle communication, the terminal device broadcasts a packet signal that stores information such as the speed or position of the vehicle. In addition, the other terminal device receives the packet signal and recognizes the approach of the vehicle based on the above-described information. Here, the base station apparatus repeatedly defines a frame including a plurality of subframes. The base station apparatus selects any of a plurality of subframes for road-to-vehicle communication, and broadcasts a packet signal in which control information and the like are stored during the period of the head portion of the selected subframe.
制御情報には、当該基地局装置がパケット信号をブローキャスト送信するための期間(以下、「路車送信期間」という)に関する情報が含まれている。端末装置は、制御情報をもとに路車送信期間を特定し、路車送信期間以外の期間(以下、「車車送信期間」という)においてCSMA方式にてパケット信号を送信する。このように、路車間通信と車車間通信とが時間分割多重されるので、両者間のパケット信号の衝突確率が低減される。つまり、端末装置が制御情報の内容を認識することによって、路車間通信と車車間通信との干渉が低減される。なお、基地局装置からの制御情報を受信できない端末装置、つまり基地局装置によって形成されたエリアの外に存在する端末装置は、フレームの構成に関係なくCSMA方式にてパケット信号を送信する。
The control information includes information related to a period (hereinafter referred to as “road vehicle transmission period”) for the base station apparatus to broadcast the packet signal. The terminal device specifies a road and vehicle transmission period based on the control information, and transmits a packet signal by the CSMA method in a period other than the road and vehicle transmission period (hereinafter referred to as “vehicle transmission period”). Thus, since the road-to-vehicle communication and the vehicle-to-vehicle communication are time-division multiplexed, the collision probability of packet signals between them is reduced. That is, when the terminal device recognizes the content of the control information, interference between road-vehicle communication and vehicle-to-vehicle communication is reduced. Note that a terminal device that cannot receive control information from the base station device, that is, a terminal device that exists outside the area formed by the base station device transmits a packet signal by the CSMA method regardless of the frame configuration.
基地局装置は、路車送信期間においてパケット信号をブロードキャスト送信するが、パケット信号に格納可能なデータのサイズには、最大値が定められている。ブロードキャスト送信すべきデータのサイズが最大値を超える場合、基地局装置は、データを複数に分割することによって、路車送信期間において複数のパケット信号をブロードキャスト送信する。その際、複数に分割されたパケット信号に対する処理の増加を抑制することが望まれる。これに対応するために、本実施例に係る基地局装置は、次の処理を実行する。基地局装置は、パケット信号のサイズが2種類に限定されるようにデータを分割する。具体的に説明すると、基地局装置は、パケット信号に格納可能な最大値となるように、データを順に分割していき、最大値よりも小さなサイズの分割データを最後に取得する。
The base station apparatus broadcasts a packet signal during the road-to-vehicle transmission period, but a maximum value is determined for the size of data that can be stored in the packet signal. When the size of data to be broadcast exceeds the maximum value, the base station apparatus broadcasts a plurality of packet signals in the road and vehicle transmission period by dividing the data into a plurality of data. At this time, it is desired to suppress an increase in processing for a packet signal divided into a plurality of parts. In order to cope with this, the base station apparatus according to the present embodiment executes the following processing. The base station apparatus divides the data so that the size of the packet signal is limited to two types. Specifically, the base station apparatus sequentially divides the data so that the maximum value that can be stored in the packet signal is obtained, and finally acquires divided data having a size smaller than the maximum value.
図1は、本発明の実施例に係る通信システム100の構成を示す。これは、ひとつの交差点を上方から見た場合に相当する。通信システム100は、基地局装置10、車両12と総称される第1車両12a、第2車両12b、第3車両12c、第4車両12d、第5車両12e、第6車両12f、第7車両12g、第8車両12h、ネットワーク202を含む。ここでは、第1車両12aのみに示しているが、各車両12には、端末装置14が搭載されている。また、エリア212が、基地局装置10の周囲に形成され、エリア外214が、エリア212の外側に形成されている。
FIG. 1 shows a configuration of a communication system 100 according to an embodiment of the present invention. This corresponds to a case where one intersection is viewed from above. The communication system 100 includes a base station device 10, a first vehicle 12a, a second vehicle 12b, a third vehicle 12c, a fourth vehicle 12d, a fifth vehicle 12e, a sixth vehicle 12f, and a seventh vehicle 12g, collectively referred to as a vehicle 12. , The eighth vehicle 12h, and the network 202. Here, only the first vehicle 12 a is shown, but each vehicle 12 is equipped with a terminal device 14. An area 212 is formed around the base station apparatus 10, and an outside area 214 is formed outside the area 212.
図示のごとく、図面の水平方向、つまり左右の方向に向かう道路と、図面の垂直方向、つまり上下の方向に向かう道路とが中心部分で交差している。ここで、図面の上側が方角の「北」に相当し、左側が方角の「西」に相当し、下側が方角の「南」に相当し、右側が方角の「東」に相当する。また、ふたつの道路の交差部分が「交差点」である。第1車両12a、第2車両12bが、左から右へ向かって進んでおり、第3車両12c、第4車両12dが、右から左へ向かって進んでいる。また、第5車両12e、第6車両12fが、上から下へ向かって進んでおり、第7車両12g、第8車両12hが、下から上へ向かって進んでいる。
As shown in the figure, the road that goes in the horizontal direction of the drawing, that is, the left and right direction, intersects the vertical direction of the drawing, that is, the road that goes in the up and down direction, at the central portion. Here, the upper side of the drawing corresponds to the direction “north”, the left side corresponds to the direction “west”, the lower side corresponds to the direction “south”, and the right side corresponds to the direction “east”. The intersection of the two roads is an “intersection”. The first vehicle 12a and the second vehicle 12b are traveling from left to right, and the third vehicle 12c and the fourth vehicle 12d are traveling from right to left. Further, the fifth vehicle 12e and the sixth vehicle 12f are traveling from the top to the bottom, and the seventh vehicle 12g and the eighth vehicle 12h are traveling from the bottom to the top.
通信システム100において、基地局装置10は、交差点に固定して設置される。基地局装置10は、端末装置間の通信を制御する。基地局装置10は、図示しないGPS衛星から受信した信号、あるいは図示しない他の基地局装置10にて形成されたフレームをもとに、複数のサブフレームが含まれたフレームを繰り返し生成する。ここで、各サブフレームの先頭部分に路車送信期間が設定可能であるような規定がなされている。基地局装置10は、フレーム中の複数のサブフレームのうち、他の基地局装置10によって路車送信期間が設定されていないサブフレームを選択する。基地局装置10は、選択したサブフレームの先頭部分に路車送信期間を設定する。
In the communication system 100, the base station apparatus 10 is fixedly installed at an intersection. The base station device 10 controls communication between terminal devices. Base station apparatus 10 repeatedly generates a frame including a plurality of subframes based on a signal received from a GPS satellite (not shown) or a frame formed by another base station apparatus 10 (not shown). Here, the road vehicle transmission period can be set at the head of each subframe. The base station apparatus 10 selects a subframe in which the road and vehicle transmission period is not set by another base station apparatus 10 from among a plurality of subframes in the frame. The base station apparatus 10 sets a road and vehicle transmission period at the beginning of the selected subframe.
基地局装置10は、設定した路車送信期間においてパケット信号を報知する。路車送信期間において、複数のパケット信号が報知されることもある。また、パケット信号に含まれるべきデータとして、例えば、動的データと静的データとが規定される。動的データは、内容が頻繁に更新されるデータであり、静的データは、動的データよりも更新頻度の低いデータである。前者は、リアルタイム性の高いデータであり、後者は、リアルタイム性の低いデータともいえる。例えば、動的データがセンサ情報、信号情報であり、静的データが道路線形、エリア、障害物に関する情報、センサ位置である。なお、パケット信号には、路車送信期間が設定されたタイミングに関する情報あるいはフレームに関する制御情報も含まれる。
The base station apparatus 10 broadcasts a packet signal during the set road and vehicle transmission period. In the road and vehicle transmission period, a plurality of packet signals may be notified. In addition, as data to be included in the packet signal, for example, dynamic data and static data are defined. Dynamic data is data whose contents are frequently updated, and static data is data whose update frequency is lower than that of dynamic data. The former is data with high real-time property, and the latter can be said to be data with low real-time property. For example, dynamic data is sensor information and signal information, and static data is road alignment, area, information on obstacles, and sensor position. Note that the packet signal also includes information related to the timing at which the road and vehicle transmission period is set or control information related to the frame.
端末装置14は、前述のごとく、車両12に搭載されているので、移動可能である。端末装置14は、基地局装置10からのパケット信号を受信すると、パケット信号に含まれた制御情報、特に路車送信期間が設定されたタイミングに関する情報あるいはフレームに関する情報をもとに、フレームを生成する。その結果、複数の端末装置14のそれぞれにおいて生成されるフレームは、基地局装置10において生成されるフレームに同期する。端末装置14は、車車送信期間においてパケット信号を報知する。車車送信期間の説明は後述するが、これは、フレーム中の路車送信期間とは異なった期間であるといえる。ここで、車車送信期間においてCSMA/CAが実行される。
Since the terminal device 14 is mounted on the vehicle 12 as described above, the terminal device 14 is movable. When the terminal device 14 receives the packet signal from the base station device 10, the terminal device 14 generates a frame based on the control information included in the packet signal, in particular, the information on the timing when the road-to-vehicle transmission period is set or the information on the frame. To do. As a result, the frame generated in each of the plurality of terminal devices 14 is synchronized with the frame generated in the base station device 10. The terminal device 14 notifies the packet signal during the vehicle transmission period. Although the vehicle transmission period will be described later, it can be said that this is a period different from the road and vehicle transmission period in the frame. Here, CSMA / CA is executed in the vehicle transmission period.
端末装置14は、データを取得し、データをパケット信号に格納する。データには、例えば、存在位置に関する情報が含まれる。また、端末装置14は、基地局装置10から受信した制御情報もパケット信号に格納する。つまり、基地局装置10から送信された制御情報は、端末装置14によって転送される。一方、端末装置14は、エリア外214に存在していると推定した場合、フレームの構成に関係なく、CSMA/CAを実行することによって、パケット信号を報知する。
The terminal device 14 acquires data and stores the data in a packet signal. The data includes, for example, information related to the location. The terminal device 14 also stores control information received from the base station device 10 in the packet signal. That is, the control information transmitted from the base station device 10 is transferred by the terminal device 14. On the other hand, when it is estimated that the terminal apparatus 14 exists outside the area 214, the terminal apparatus 14 notifies the packet signal by executing CSMA / CA regardless of the frame configuration.
図2は、基地局装置10の構成を示す。基地局装置10は、アンテナ20、RF部22、変復調部24、処理部26、制御部28、ネットワーク通信部30を含む。また、処理部26は、フレーム規定部32、選択部34、生成部36を含む。
FIG. 2 shows the configuration of the base station apparatus 10. The base station apparatus 10 includes an antenna 20, an RF unit 22, a modem unit 24, a processing unit 26, a control unit 28, and a network communication unit 30. Further, the processing unit 26 includes a frame defining unit 32, a selecting unit 34, and a generating unit 36.
RF部22は、受信処理として、図示しない端末装置14あるいは他の基地局装置10からのパケット信号をアンテナ20にて受信する。RF部22は、受信した無線周波数のパケット信号に対して周波数変換を実行し、ベースバンドのパケット信号を生成する。さらに、RF部22は、ベースバンドのパケット信号を変復調部24に出力する。一般的に、ベースバンドのパケット信号は、同相成分と直交成分によって形成されるので、ふたつの信号線が示されるべきであるが、ここでは、図を明瞭にするためにひとつの信号線だけを示すものとする。RF部22には、LNA(Low Noise Amplifier)、ミキサ、AGC、A/D変換部も含まれる。
The RF unit 22 receives a packet signal from the terminal device 14 (not shown) or another base station device 10 by the antenna 20 as a reception process. The RF unit 22 performs frequency conversion on the received radio frequency packet signal to generate a baseband packet signal. Further, the RF unit 22 outputs a baseband packet signal to the modem unit 24. In general, baseband packet signals are formed by in-phase and quadrature components, so two signal lines should be shown, but here only one signal line is shown for clarity. Shall be shown. The RF unit 22 also includes an LNA (Low Noise Amplifier), a mixer, an AGC, and an A / D conversion unit.
RF部22は、送信処理として、変復調部24から入力したベースバンドのパケット信号に対して周波数変換を実行し、無線周波数のパケット信号を生成する。さらに、RF部22は、路車送信期間において、無線周波数のパケット信号をアンテナ20から送信する。また、RF部22には、PA(Power Amplifier)、ミキサ、D/A変換部も含まれる。
The RF unit 22 performs frequency conversion on the baseband packet signal input from the modem unit 24 as a transmission process, and generates a radio frequency packet signal. Further, the RF unit 22 transmits a radio frequency packet signal from the antenna 20 during the road-vehicle transmission period. The RF unit 22 also includes a PA (Power Amplifier), a mixer, and a D / A conversion unit.
変復調部24は、受信処理として、RF部22からのベースバンドのパケット信号に対して、復調を実行する。さらに、変復調部24は、復調した結果を処理部26に出力する。また、変復調部24は、送信処理として、処理部26からのデータに対して、変調を実行する。さらに、変復調部24は、変調した結果をベースバンドのパケット信号としてRF部22に出力する。ここで、通信システム100は、OFDM(Orthogonal Frequency Division Multiplexing)変調方式に対応するので、変復調部24は、受信処理としてFFT(Fast Fourier Transform)も実行し、送信処理としてIFFT(Inverse Fast Fourier Transform)も実行する。
The modem unit 24 demodulates the baseband packet signal from the RF unit 22 as a reception process. Further, the modem unit 24 outputs the demodulated result to the processing unit 26. The modem unit 24 also modulates the data from the processing unit 26 as a transmission process. Further, the modem unit 24 outputs the modulated result to the RF unit 22 as a baseband packet signal. Here, since the communication system 100 corresponds to the OFDM (Orthogonal Frequency Division Multiplexing) modulation method, the modem unit 24 also executes FFT (Fast Fourier Transform) as reception processing and IFFT (Inverse TransFastFast) as transmission processing. Also execute.
フレーム規定部32は、図示しないGPS衛星からの信号を受信し、受信した信号をもとに時刻の情報を取得する。なお、時刻の情報の取得には公知の技術が使用されればよいので、ここでは説明を省略する。フレーム規定部32は、時刻の情報をもとに、複数のフレームを生成する。例えば、フレーム規定部32は、時刻の情報にて示されたタイミングを基準にして、「1sec」の期間を10分割することによって、「100msec」のフレームを10個生成する。このような処理を繰り返すことによって、フレームが繰り返されるように規定される。なお、フレーム規定部32は、復調結果から制御情報を検出し、検出した制御情報をもとにフレームを生成してもよい。このような処理は、他の基地局装置10によって形成されたフレームのタイミングに同期したフレームを生成することに相当する。
The frame defining unit 32 receives a signal from a GPS satellite (not shown), and acquires time information based on the received signal. In addition, since a well-known technique should just be used for acquisition of the information of time, description is abbreviate | omitted here. The frame defining unit 32 generates a plurality of frames based on the time information. For example, the frame defining unit 32 generates ten “100 msec” frames by dividing the “1 sec” period into ten on the basis of the timing indicated by the time information. By repeating such processing, the frame is defined to be repeated. The frame defining unit 32 may detect control information from the demodulation result and generate a frame based on the detected control information. Such processing corresponds to generating a frame synchronized with the timing of the frame formed by another base station apparatus 10.
図3(a)-(d)は、通信システム100において規定されるフレームのフォーマットを示す。図3(a)は、フレームの構成を示す。フレームは、第1サブフレームから第Nサブフレームと示されるN個のサブフレームによって形成されている。これは、端末装置14が報知に使用可能なサブフレームを複数時間多重することによってフレームが形成されているといえる。例えば、フレームの長さが100msecであり、Nが8である場合、12.5msecの長さのサブフレームが規定される。Nは、8以外であってもよい。図3(b)-(d)の説明は、後述し、図2に戻る。
FIGS. 3A to 3D show frame formats defined in the communication system 100. FIG. FIG. 3A shows the structure of the frame. The frame is formed of N subframes indicated as the first subframe to the Nth subframe. This can be said that the terminal device 14 forms a frame by multiplexing a plurality of subframes that can be used for notification for a plurality of hours. For example, when the frame length is 100 msec and N is 8, a subframe having a length of 12.5 msec is defined. N may be other than 8. The description of FIGS. 3B to 3D will be described later, and returns to FIG.
選択部34は、フレームに含まれた複数のサブフレームのうち、路車送信期間を設定すべきサブフレームを選択する。具体的に説明すると、選択部34は、フレーム規定部32にて規定されたフレームを受けつける。ここでは、選択すべきサブフレームに関する指示を外部から受けつける。この処理の詳細は後述するが、選択部34は、指示に応じたサブフレームを選択する。複数のサブフレームを選択することもある。なお、フレームに含まれた各サブフレームには、基地局装置10が報知に使用可能な路車送信期間を設定可能である。
The selection unit 34 selects a subframe in which a road and vehicle transmission period is to be set from among a plurality of subframes included in the frame. More specifically, the selection unit 34 receives a frame defined by the frame defining unit 32. Here, an instruction regarding a subframe to be selected is received from the outside. Although details of this processing will be described later, the selection unit 34 selects a subframe in accordance with the instruction. Multiple subframes may be selected. In addition, the road and vehicle transmission period which can be used for alerting | reporting by the base station apparatus 10 can be set to each sub-frame contained in the frame.
これとは別に、選択部34は、自動的にサブフレームを選択してもよい。その際、選択部34は、RF部22、変復調部24を介して、図示しない他の基地局装置10あるいは端末装置14からの復調結果を入力する。選択部34は、入力した復調結果のうち、他の基地局装置10からの復調結果を抽出する。選択部34は、復調結果を受けつけたサブフレームを特定することによって、復調結果を受けつけていないサブフレームを特定する。
Alternatively, the selection unit 34 may automatically select a subframe. At this time, the selection unit 34 inputs a demodulation result from another base station device 10 or the terminal device 14 (not shown) via the RF unit 22 and the modem unit 24. The selection part 34 extracts the demodulation result from the other base station apparatus 10 among the input demodulation results. The selection unit 34 specifies the subframe that has not received the demodulation result by specifying the subframe that has received the demodulation result.
これは、他の基地局装置10によって路車送信期間が設定されていないサブフレーム、つまり未使用のサブフレームを特定することに相当する。未使用のサブフレームが複数存在する場合、選択部34は、ランダムにひとつのサブフレームを選択する。未使用のサブフレームが存在しない場合、つまり複数のサブフレームのそれぞれが使用されている場合に、選択部34は、復調結果に対応した受信電力を取得し、受信電力の小さいサブフレームを優先的に選択する。
This corresponds to specifying a subframe in which the road and vehicle transmission period is not set by another base station apparatus 10, that is, an unused subframe. When there are a plurality of unused subframes, the selection unit 34 selects one subframe at random. When there are no unused subframes, that is, when each of a plurality of subframes is used, the selection unit 34 acquires reception power corresponding to the demodulation result, and gives priority to subframes with low reception power. Select
図3(b)は、第1基地局装置10aによって生成されるフレームの構成を示す。第1基地局装置10aは、第1サブフレームの先頭部分に路車送信期間を設定する。また、第1基地局装置10aは、第1サブフレームにおいて路車送信期間につづいて車車送信期間を設定する。車車送信期間とは、端末装置14がパケット信号を報知可能な期間である。つまり、第1基地局装置10aは、第1サブフレームの先頭期間である路車送信期間においてパケット信号を報知可能であり、かつフレームのうち、路車送信期間以外の車車送信期間において端末装置14がパケット信号を報知可能であるような規定がなされる。さらに、第1基地局装置10aは、第2サブフレームから第Nサブフレームに車車送信期間のみを設定する。
FIG. 3B shows a configuration of a frame generated by the first base station apparatus 10a. The first base station apparatus 10a sets a road and vehicle transmission period at the beginning of the first subframe. Moreover, the 1st base station apparatus 10a sets a vehicle transmission period following the road and vehicle transmission period in a 1st sub-frame. The vehicle transmission period is a period during which the terminal device 14 can notify the packet signal. That is, the first base station apparatus 10a can notify the packet signal in the road and vehicle transmission period which is the first period of the first subframe, and the terminal apparatus in the vehicle and vehicle transmission period other than the road and vehicle transmission period in the frame. It is specified that 14 can broadcast the packet signal. Furthermore, the first base station apparatus 10a sets only the vehicle transmission period from the second subframe to the Nth subframe.
図3(c)は、第2基地局装置10bによって生成されるフレームの構成を示す。第2基地局装置10bは、第2サブフレームの先頭部分に路車送信期間を設定する。また、第2基地局装置10bは、第2サブフレームにおける路車送信期間の後段、第1サブフレーム、第3サブフレームから第Nサブフレームに車車送信期間を設定する。図3(d)は、第3基地局装置10cによって生成されるフレームの構成を示す。第3基地局装置10cは、第3サブフレームの先頭部分に路車送信期間を設定する。また、第3基地局装置10cは、第3サブフレームにおける路車送信期間の後段、第1サブフレーム、第2サブフレーム、第4サブフレームから第Nサブフレームに車車送信期間を設定する。このように、複数の基地局装置10は、互いに異なったサブフレームを選択し、選択したサブフレームの先頭部分に路車送信期間を設定する。図2に戻る。選択部34は、選択したサブフレームの番号を生成部36へ出力する。
FIG. 3C shows a configuration of a frame generated by the second base station apparatus 10b. The second base station apparatus 10b sets a road and vehicle transmission period at the beginning of the second subframe. Also, the second base station apparatus 10b sets the vehicle transmission period from the first stage of the road and vehicle transmission period in the second subframe, from the first subframe and the third subframe to the Nth subframe. FIG. 3D shows a configuration of a frame generated by the third base station apparatus 10c. The third base station apparatus 10c sets a road and vehicle transmission period at the beginning of the third subframe. Also, the third base station apparatus 10c sets the vehicle transmission period from the first stage of the road and vehicle transmission period in the third subframe, the first subframe, the second subframe, and the fourth subframe to the Nth subframe. As described above, the plurality of base station apparatuses 10 select different subframes, and set the road and vehicle transmission period at the head portion of the selected subframe. Returning to FIG. The selection unit 34 outputs the selected subframe number to the generation unit 36.
生成部36は、選択部34から、サブフレームの番号を受けつける。生成部36は、受けつけたサブフレーム番号のサブフレームに路車送信期間を設定する。また、生成部36は、報知対象となるデータを複数の部分データに分割してから、部分データをパケット信号に含めることによって、路車送信期間において報知すべき複数のパケット信号を生成する。ここで、生成部36は、パケット信号に格納可能なデータの最大値ごとにデータを分割することによって、少なくともひとつの部分データを生成する。最大値よりも小さいサイズのデータが残るまでこのような処理を繰り返し、生成部36は、残ったデータを最後の部分データとする。
The generation unit 36 receives a subframe number from the selection unit 34. The generation unit 36 sets the road and vehicle transmission period in the subframe of the received subframe number. Moreover, the production | generation part 36 produces | generates the some packet signal which should be alert | reported in a road and vehicle transmission period by dividing the data used as alert | reporting object into several partial data, and including a partial data in a packet signal. Here, the generation unit 36 generates at least one partial data by dividing the data for each maximum value of data that can be stored in the packet signal. Such processing is repeated until data having a size smaller than the maximum value remains, and the generation unit 36 sets the remaining data as the last partial data.
このような処理の結果、生成部36において生成されるパケット信号のサイズは、パケット信号のサイズとして規定された最大値と、最大値よりも小さい値との2種類に限定される。各パケット信号は、例えば、制御情報、データペイロードによって構成されている。制御情報には、路車送信期間を設定したサブフレーム番号等が含まれている。データペイロードには、前述の部分データが格納される。なお、分割する前のデータである静的データあるいは動的データは、ネットワーク通信部30によって、図示しないネットワーク202から取得される。
As a result of such processing, the size of the packet signal generated by the generation unit 36 is limited to two types: a maximum value defined as the size of the packet signal and a value smaller than the maximum value. Each packet signal is composed of, for example, control information and a data payload. The control information includes a subframe number in which a road and vehicle transmission period is set. The partial data is stored in the data payload. Note that static data or dynamic data that is data before division is acquired from the network 202 (not shown) by the network communication unit 30.
図4(a)-(b)は、基地局装置10によって生成されるパケット信号のフォーマットを示す。図4(a)は、物理フレームのフォーマットを示す。物理フレームは、先頭から順に、「PLCPプリアンブル」、「シグナル」、「サービス」、「MACヘッダ」、「RSUコントロールヘッダ」、「ペイロード」、「FCS」、「テールビット」を配置する。なお、物理フレームが前述のパケット信号に相当する。
4 (a)-(b) show the format of a packet signal generated by the base station apparatus 10. FIG. FIG. 4A shows a physical frame format. In the physical frame, “PLCP preamble”, “signal”, “service”, “MAC header”, “RSU control header”, “payload”, “FCS”, and “tail bit” are arranged in order from the top. A physical frame corresponds to the packet signal described above.
「PLCPプリアンブル」は、物理レイヤにおいて規定されている既知信号であり、「シグナル」は、物理レイヤにおいて規定されている制御信号であり、「MACヘッダ」は、MACレイヤにおいて規定されている制御信号である。「RSUコントロールヘッダ」は、路車間通信および車車間通信において共通に使用される制御信号であり、詳細は後述する。「ペイロード」は、データ信号である。そのため、パケット信号には、制御信号につづいてデータ信号が配置されているといえる。
The “PLCP preamble” is a known signal defined in the physical layer, the “signal” is a control signal defined in the physical layer, and the “MAC header” is a control signal defined in the MAC layer. It is. The “RSU control header” is a control signal commonly used in road-to-vehicle communication and vehicle-to-vehicle communication, and details will be described later. A “payload” is a data signal. Therefore, it can be said that a data signal is arranged in the packet signal following the control signal.
図4(b)は、生成部36によって生成されるRSUコントロールヘッダの構成を示す図である。RSUコントロールヘッダには、「プロトコルバージョン」、「送信ノード種別」、「転送回数/再利用回数」、「リザーブ」、「TSFタイマ」、「RSU送信期間長」、「リザーブ」が配置される。プロトコルバージョンは、対応しているプロトコルのバージョンを示す。送信ノード種別は、送信ノードの種別を示す。送信ノードの種別として、基地局装置10、端末装置14が規定されている。
FIG. 4B is a diagram illustrating a configuration of the RSU control header generated by the generation unit 36. In the RSU control header, “protocol version”, “transmission node type”, “transfer count / reuse count”, “reserve”, “TSF timer”, “RSU transmission period length”, and “reserve” are arranged. The protocol version indicates the version of the corresponding protocol. The transmission node type indicates the type of the transmission node. Base station apparatus 10 and terminal apparatus 14 are defined as types of transmission nodes.
転送回数/再利用回数は、RSUコントロールヘッダが端末装置14によって転送される場合の有効性の指標を示し、TSFタイマは、送信時刻を示す。RSU送信期間長は、路車送信期間の長さを示しており、路車送信期間に関する情報といえる。図2に戻る。処理部26は、変復調部24、RF部22に対して、路車送信期間において複数のパケット信号をブロードキャスト送信させる。ここでは、例えば、SIFS(Short Inter Frame Space)間隔で複数のパケット信号が報知される。制御部28は、基地局装置10全体の処理を制御する。
The transfer count / reuse count indicates an index of validity when the RSU control header is transferred by the terminal device 14, and the TSF timer indicates the transmission time. The RSU transmission period length indicates the length of the road and vehicle transmission period, and can be said to be information relating to the road and vehicle transmission period. Returning to FIG. The processing unit 26 causes the modem unit 24 and the RF unit 22 to broadcast-transmit a plurality of packet signals during the road and vehicle transmission period. Here, for example, a plurality of packet signals are broadcast at SIFS (Short Inter Frame Space) intervals. The control unit 28 controls processing of the entire base station device 10.
以下では、路車送信期間の設定、静的データおよび動的データに関する処理を詳細に説明する。図5(a)-(b)は、通信システム100において規定されるレイヤの構成を示す。図5(a)が送信処理のレイヤ構成であり、図5(b)が受信処理のレイヤ構成である。そのため、路車間通信の場合、前者が基地局装置10におけるレイヤ構成に相当し、後者が端末装置14におけるレイヤ構成に相当する。ここでは、図5(a)を説明する。送信制御レイヤ、パケット分割・結合レイヤ、セキュリティレイヤ、MACレイヤ、PHYレイヤは、図2の変復調部24、処理部26に含まれ、無線信号送信は、図2のRF部22に含まれる。また、パケット分割・結合レイヤ、セキュリティレイヤ、MACレイヤ、PHYレイヤは、ベースバンド処理としてまとめられるとともに、無線信号送信は、RF処理としてまとめられる。
In the following, the processing related to setting of road and vehicle transmission period, static data and dynamic data will be described in detail. FIGS. 5A and 5B show layer configurations defined in the communication system 100. FIG. FIG. 5A shows a layer configuration for transmission processing, and FIG. 5B shows a layer configuration for reception processing. Therefore, in the case of road-to-vehicle communication, the former corresponds to the layer configuration in the base station device 10 and the latter corresponds to the layer configuration in the terminal device 14. Here, FIG. 5A will be described. The transmission control layer, the packet division / combination layer, the security layer, the MAC layer, and the PHY layer are included in the modem unit 24 and the processing unit 26 in FIG. 2, and radio signal transmission is included in the RF unit 22 in FIG. The packet division / combination layer, security layer, MAC layer, and PHY layer are grouped as baseband processing, and radio signal transmission is grouped as RF processing.
さらに、説明を具体的にするために、静的データのサイズは4kBであり、動的データのサイズは3kBであり、データペイロードの最大サイズは1.5kBであり、路車送信期間で送信可能な最大サイズは4kBであると仮定する。なお、これらの値に限定されるものではない。また、上記の値では、セキュリティ処理あるいは符号化によって生成される冗長ビットを無視しており、それらが考慮されてもよい。
Furthermore, for concrete explanation, the size of the static data is 4 kB, the size of the dynamic data is 3 kB, the maximum size of the data payload is 1.5 kB, and can be transmitted in the road and vehicle transmission period. Assume that the maximum size is 4 kB. Note that the present invention is not limited to these values. In the above values, redundant bits generated by security processing or encoding are ignored, and they may be considered.
送信制御レイヤは、静的データと動的データを別々に受けつける。これは、アプリケーションプログラムごとにデータを受けつけることに相当する。送信制御レイヤは、最大4kB程度になるように各データを分割する。前述ごとく、静的データのサイズは4kBであり、動的データのサイズは3kBであれば、分割がなされなくてもよい。つまり、送信制御レイヤから出力されるデータの最大サイズは、ひとつの路車送信期間で送信可能なサイズとされる。送信制御レイヤは、静的データと動的データを別々に出力する。
The transmission control layer accepts static data and dynamic data separately. This corresponds to accepting data for each application program. The transmission control layer divides each data so that the maximum is about 4 kB. As described above, if the size of static data is 4 kB and the size of dynamic data is 3 kB, no division is required. That is, the maximum size of data output from the transmission control layer is a size that can be transmitted in one road-vehicle transmission period. The transmission control layer outputs static data and dynamic data separately.
パケット分割・結合レイヤは、アプリケーションからのデータサイズがひとつのパケット信号で送信可能なバイト数を超えたら、路車送信期間内でデータを分割する。つまり、パケット分割・結合レイヤは、静的データと動的データのそれぞれに対して、データのサイズが1.5kBより小さくなるように分割を実行する。これは、各データをデータペイロードに格納するためである。その際、複数のパケット信号が生成される。なお、送信制御レイヤから受けつけた静的データあるいは動的データのサイズが、1.5kBを超えなければ、パケット分割・結合レイヤは分割を実行しなくてもよい。セキュリティレイヤは、データごとにセキュリティ処理を実行する。MACレイヤは、セキュリティレイヤからのデータをもとにMACフレームを生成し、PHYレイヤは、MACフレームを格納するようにパケット信号を生成し、IFFTを実行する。その結果、ひとつの路車送信期間に対しても、複数のパケット信号が生成されうる。図5(b)については、後述する。
The packet division / combination layer divides data within the road and vehicle transmission period when the data size from the application exceeds the number of bytes that can be transmitted with one packet signal. That is, the packet division / combination layer performs division on the static data and the dynamic data so that the data size is smaller than 1.5 kB. This is because each data is stored in the data payload. At that time, a plurality of packet signals are generated. If the size of static data or dynamic data received from the transmission control layer does not exceed 1.5 kB, the packet division / combination layer does not have to execute division. The security layer executes security processing for each data. The MAC layer generates a MAC frame based on the data from the security layer, and the PHY layer generates a packet signal so as to store the MAC frame, and executes IFFT. As a result, a plurality of packet signals can be generated even for one road and vehicle transmission period. FIG. 5B will be described later.
以下では、基地局装置10によって設定される路車送信期間の構成を説明する。図6(a)-(b)は、基地局装置10によって使用される路車送信期間の構成を示す。図6(a)では、路車送信期間において、第1パケット信号から第Mパケット信号がSIFS間隔で報知されることを示す。ここで、第1パケット信号から第M-1パケット信号のサイズは、最大値であり、第Mパケット信号のサイズは、最大値よりも小さい値、つまり端数である。このような分割によるメリットは、最後のパケット信号に格納すべき部分データ以外の部分データのサイズは固定であるので、分割処理が簡易になることである。また、分割後のパケット信号数が最小となり、パケット信号ごとに必要な制御情報の付加および処理が低減される。
Hereinafter, the configuration of the road and vehicle transmission period set by the base station apparatus 10 will be described. FIGS. 6A to 6B show the configuration of the road and vehicle transmission period used by the base station apparatus 10. FIG. 6A shows that the first to M-th packet signals are broadcast at SIFS intervals during the road and vehicle transmission period. Here, the size of the first to M−1th packet signals is a maximum value, and the size of the Mth packet signal is a value smaller than the maximum value, that is, a fraction. The advantage of such division is that the size of partial data other than the partial data to be stored in the last packet signal is fixed, so that the division processing is simplified. In addition, the number of packet signals after division is minimized, and the addition and processing of control information necessary for each packet signal is reduced.
また、図6(a)の変形例として、第1パケット信号の前に、可変長のパケット信号(以下、「第0パケット信号」という)を報知してもよい。第0パケット信号は、ヘッダ内容によってサイズが可変になる。このような分割によるメリットは、ヘッダ内容によってサイズが可変する部分と、大きなサイズのデータ部分を別に処理するので、ヘッダ内容によってサイズが変わる場合でも、処理が簡易になる。
Further, as a modification of FIG. 6A, a variable-length packet signal (hereinafter referred to as “the 0th packet signal”) may be notified before the first packet signal. The size of the 0th packet signal is variable depending on the header contents. The advantage of such division is that the portion whose size varies depending on the header content and the large data portion are processed separately, so that even if the size changes depending on the header content, the processing becomes simple.
これまでは、2種類のサイズとなるような複数のパケット信号を生成していたが、図6(b)のように、1種類となるような複数のパケット信号を生成してもよい。その際、生成部36は、データを均等に複数の部分データに分割してから、部分データをパケット信号に含める。その結果、1種類のサイズのパケット信号が複数生成される。ここで、パケット信号のサイズは、路車送信期間において報知可能なパケット信号数に応じて定められる。つまり、サイズが均等であるという条件下において、最小サイズのパケット信号が複数生成される。このような分割によるメリットは、サイズを小さくすることによってパケット信号内の周波数変動の影響が低減される。
Up to now, a plurality of packet signals having two types of sizes have been generated, but a plurality of packet signals having one type may be generated as shown in FIG. 6B. At that time, the generation unit 36 equally divides the data into a plurality of partial data, and then includes the partial data in the packet signal. As a result, a plurality of packet signals of one kind of size are generated. Here, the size of the packet signal is determined according to the number of packet signals that can be notified during the road and vehicle transmission period. That is, a plurality of minimum-size packet signals are generated under the condition that the sizes are uniform. An advantage of such division is that the influence of frequency fluctuations in the packet signal is reduced by reducing the size.
この構成は、ハードウエア的には、任意のコンピュータのCPU、メモリ、その他のLSIで実現でき、ソフトウエア的にはメモリにロードされたプログラムなどによって実現されるが、ここではそれらの連携によって実現される機能ブロックを描いている。したがって、これらの機能ブロックがハードウエアのみ、ハードウエアとソフトウエアの組合せによっていろいろな形で実現できることは、当業者には理解されるところである。
This configuration can be realized in terms of hardware by a CPU, memory, or other LSI of any computer, and in terms of software, it can be realized by a program loaded in the memory, but here it is realized by their cooperation. Draw functional blocks. Accordingly, those skilled in the art will understand that these functional blocks can be realized in various forms only by hardware, or by a combination of hardware and software.
図7は、車両12に搭載された端末装置14の構成を示す。端末装置14は、アンテナ50、RF部52、変復調部54、処理部56、制御部58を含む。処理部56は、タイミング特定部60、転送決定部62、取得部64、生成部66、通知部70を含む。タイミング特定部60は、抽出部72、キャリアセンス部74を含む。アンテナ50、RF部52、変復調部54は、図2のアンテナ20、RF部22、変復調部24と同様の処理を実行する。ここでは差異を中心に説明する。
FIG. 7 shows the configuration of the terminal device 14 mounted on the vehicle 12. The terminal device 14 includes an antenna 50, an RF unit 52, a modem unit 54, a processing unit 56, and a control unit 58. The processing unit 56 includes a timing specifying unit 60, a transfer determination unit 62, an acquisition unit 64, a generation unit 66, and a notification unit 70. The timing identification unit 60 includes an extraction unit 72 and a carrier sense unit 74. The antenna 50, the RF unit 52, and the modem unit 54 execute the same processing as the antenna 20, the RF unit 22, and the modem unit 24 in FIG. Here, the difference will be mainly described.
変復調部54、処理部56は、受信処理において、図示しない他の端末装置14あるいは基地局装置10からのパケット信号を受信する。なお、前述のごとく、変復調部54、処理部56は、路車送信期間において、基地局装置10からのパケット信号を受信し、車車送信期間において、他の端末装置14からのパケット信号を受信する。
The modem unit 54 and the processing unit 56 receive a packet signal from another terminal device 14 or the base station device 10 (not shown) in the reception process. As described above, the modem unit 54 and the processing unit 56 receive a packet signal from the base station apparatus 10 during the road-to-vehicle transmission period, and receive packet signals from other terminal apparatuses 14 during the vehicle-to-vehicle transmission period. To do.
抽出部72は、変復調部54からの復調結果が、図示しない基地局装置10からのパケット信号である場合に、路車送信期間が配置されたサブフレームのタイミングを特定する。具体的に説明すると、抽出部72は、パケット信号に含まれた制御情報をもとに、基地局装置10からのパケット信号であるか否かを判定する。また、抽出部72は、サブフレームのタイミングと、制御情報に含まれたタイミング情報とをもとに、フレームを生成する。その結果、抽出部72は、基地局装置10において形成されたフレームに同期したフレームを生成する。パケット信号の報知元が、他の端末装置14である場合、抽出部72は、同期したフレームの生成処理を省略する。
The extraction unit 72 specifies the timing of the subframe in which the road and vehicle transmission period is arranged when the demodulation result from the modem unit 54 is a packet signal from the base station device 10 (not shown). Specifically, the extraction unit 72 determines whether or not the packet signal is from the base station apparatus 10 based on the control information included in the packet signal. In addition, the extraction unit 72 generates a frame based on the subframe timing and the timing information included in the control information. As a result, the extraction unit 72 generates a frame synchronized with the frame formed in the base station device 10. When the notification source of the packet signal is another terminal device 14, the extraction unit 72 omits the synchronized frame generation process.
抽出部72は、制御情報をもとに、使用されている路車送信期間を特定した後、残りの車車送信期間を特定する。抽出部72は、フレームおよびサブフレームのタイミング、車車送信期間に関する情報をキャリアセンス部74へ出力する。一方、抽出部72は、基地局装置10からのパケット信号を受けつけていない場合、つまり基地局装置10に同期したフレームを生成していない場合、フレームの構成と無関係のタイミングを選択する。抽出部72は、フレームの構成と無関係のタイミングを選択すると、フレームの構成に関係のないキャリアセンスの実行をキャリアセンス部74に指示する。これは、図1のエリア外214での動作に相当する。
The extraction unit 72 specifies the remaining vehicle transmission period after specifying the road and vehicle transmission period in use based on the control information. The extraction unit 72 outputs information on frame and subframe timing and vehicle transmission period to the carrier sense unit 74. On the other hand, when the extraction unit 72 does not receive a packet signal from the base station apparatus 10, that is, when a frame synchronized with the base station apparatus 10 is not generated, the extraction unit 72 selects a timing unrelated to the frame configuration. When the extraction unit 72 selects a timing unrelated to the frame configuration, the extraction unit 72 instructs the carrier sense unit 74 to perform carrier sensing unrelated to the frame configuration. This corresponds to the operation outside the area 214 in FIG.
キャリアセンス部74は、抽出部72から、フレームおよびサブフレームのタイミング、車車送信期間に関する情報を受けつける。キャリアセンス部74は、車車送信期間内でCSMA/CAを開始することによって送信タイミングを決定する。一方、キャリアセンス部74は、抽出部72から、キャリアセンスの実行を指示された場合、フレームの構成を考慮せずに、CSMA/CAを実行することによって、送信タイミングを決定する。キャリアセンス部74は、決定した送信タイミングを変復調部54、RF部52へ通知し、パケット信号をブロードキャスト送信させる。
The carrier sense unit 74 receives information on frame and subframe timing and vehicle transmission period from the extraction unit 72. The carrier sense unit 74 determines the transmission timing by starting CSMA / CA within the vehicle transmission period. On the other hand, when the carrier sense unit 74 is instructed to perform carrier sense from the extraction unit 72, the carrier sense unit 74 determines the transmission timing by executing CSMA / CA without considering the frame configuration. The carrier sense unit 74 notifies the modem unit 54 and the RF unit 52 of the determined transmission timing, and broadcasts the packet signal.
転送決定部62は、制御情報の転送を制御する。転送決定部62は、制御情報のうち、転送対象となる情報を抽出する。転送決定部62は、抽出した情報をもとに、転送すべき情報を生成する。ここでは、この処理の説明を省略する。転送決定部62は、転送すべき情報、つまり制御情報のうちの一部を生成部66に出力する。取得部64は、図示しないGPS受信機、ジャイロスコープ、車速センサ等を含んでおり、それらから供給されるデータによって、図示しない車両12、つまり端末装置14が搭載された車両12の存在位置、進行方向、移動速度等(以下、「位置情報」と総称する)を取得する。なお、存在位置は、緯度・経度によって示される。これらの取得には公知の技術が使用されればよいので、ここでは説明を省略する。また、GPS受信機、ジャイロスコープ、車速センサ等は端末装置14の外部にあってもよい。取得部64は、位置情報を生成部66へ出力する。
The transfer determination unit 62 controls transfer of control information. The transfer determination unit 62 extracts information to be transferred from the control information. The transfer determination unit 62 generates information to be transferred based on the extracted information. Here, the description of this process is omitted. The transfer determination unit 62 outputs information to be transferred, that is, a part of the control information, to the generation unit 66. The acquisition unit 64 includes a GPS receiver (not shown), a gyroscope, a vehicle speed sensor, and the like. Based on data supplied from these, the location of the vehicle 12 (not shown), that is, the position of the vehicle 12 on which the terminal device 14 is mounted, the progress The direction, the moving speed, etc. (hereinafter collectively referred to as “position information”) are acquired. The existence position is indicated by latitude and longitude. Since a known technique may be used for these acquisitions, description thereof is omitted here. The GPS receiver, gyroscope, vehicle speed sensor, and the like may be outside the terminal device 14. The acquisition unit 64 outputs the position information to the generation unit 66.
生成部66は、取得部64から位置情報を受けつけ、転送決定部62から制御情報の一部を受けつける。生成部66は、制御情報の一部を制御情報に格納し、位置情報をペイロードに格納することによって、パケット信号を生成する。通知部70は、路車送信期間において、図示しない基地局装置10からのパケット信号を取得するとともに、車車送信期間において、図示しない他の端末装置14からのパケット信号を取得する。通知部70は、取得したパケット信号に対する処理として、パケット信号に格納されたデータの内容に応じて、図示しない他の車両12の接近等を運転者へモニタあるいはスピーカを介して通知する。制御部58は、端末装置14の動作を制御する。
The generation unit 66 receives position information from the acquisition unit 64 and receives a part of control information from the transfer determination unit 62. The generation unit 66 generates a packet signal by storing part of the control information in the control information and storing the position information in the payload. The notification unit 70 acquires a packet signal from the base station device 10 (not shown) in the road and vehicle transmission period, and acquires a packet signal from another terminal device 14 (not shown) in the vehicle and vehicle transmission period. As a process for the acquired packet signal, the notification unit 70 notifies the driver of the approach of another vehicle 12 (not shown) or the like via a monitor or a speaker according to the content of the data stored in the packet signal. The control unit 58 controls the operation of the terminal device 14.
図5(b)は、前述のごとく、受信処理のレイヤ構成である。受信制御レイヤ、パケット分割・結合レイヤ、セキュリティレイヤ、MACレイヤ、PHYレイヤは、図7の変復調部54、処理部56に含まれ、無線信号受信は、図7のRF部52に含まれる。また、パケット分割・結合レイヤ、セキュリティレイヤ、MACレイヤ、PHYレイヤは、ベースバンド処理としてまとめられるとともに、無線信号受信は、RF処理としてまとめられる。これらは、図5(a)に示された各レイヤに対応した処理を実行する。
FIG. 5B shows the layer structure of the reception process as described above. The reception control layer, the packet division / combination layer, the security layer, the MAC layer, and the PHY layer are included in the modulation / demodulation unit 54 and the processing unit 56 in FIG. 7, and radio signal reception is included in the RF unit 52 in FIG. The packet division / combination layer, security layer, MAC layer, and PHY layer are grouped as baseband processing, and reception of radio signals is grouped as RF processing. These execute processing corresponding to each layer shown in FIG.
本発明の実施例によれば、パケット信号のサイズが2種類になるように、データを分割するので、処理を簡易にできる。また、最大値にて分割を繰り返し、残った部分データを別のサイズとするので、機械的に分割を実行できる。また、最大値を分割の単位にするので、分割後のパケット信号のサイズを大きくできる。また、パケット信号のサイズが大きくなるので、冗長成分の割合が小さくなり、周波数利用効率を向上できる。また、パケット信号のサイズが大きくなるので、パケット信号の数を低減できる。なお、パケット信号のサイズを、2種類ではなく、1種類としてもよい。この場合、パケット信号のサイズが1種類になるように、データを分割するので、処理を簡易できる。また、パケット信号のサイズを小さくするので、伝搬環境の変動の影響を低減できる。
According to the embodiment of the present invention, since the data is divided so that there are two types of packet signal sizes, the processing can be simplified. Further, since the division is repeated at the maximum value and the remaining partial data has a different size, the division can be executed mechanically. Further, since the maximum value is used as a unit of division, the size of the packet signal after division can be increased. Further, since the size of the packet signal is increased, the ratio of redundant components is reduced, and the frequency utilization efficiency can be improved. Moreover, since the size of the packet signal is increased, the number of packet signals can be reduced. Note that the packet signal size may be one type instead of two. In this case, since the data is divided so that the size of the packet signal becomes one type, the processing can be simplified. Further, since the size of the packet signal is reduced, the influence of fluctuations in the propagation environment can be reduced.
以上、本発明を実施例をもとに説明した。この実施例は例示であり、それらの各構成要素あるいは各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
The present invention has been described based on the embodiments. This embodiment is an exemplification, and it will be understood by those skilled in the art that various modifications can be made to each of those constituent elements or combinations of processing processes, and such modifications are also within the scope of the present invention. .
本発明の実施例において、生成部36は、データサイズを基準にして、データを分割している。しかしながらこれに限らず例えば、変復調部24、RF部22からから報知されるパケット信号の通信速度が可変である場合に、生成部36は、パケット信号の通信速度に応じてパケット信号のサイズを定めてもよい。通信速度は、変調方式、符号化率等の組合せによって規定される。ここでは、通信速度が高速になるほど、パケット信号のサイズが小さくなるように分割がなされる。例えば、16QAM、符号化率3/4のような誤りを起こしやすいパラメータの場合は、パケット信号のサイズが小さくなるような分割がなされ、QPSK、符号化率1/2のような場合は、パケット信号のサイズが大きくなるように分割がなされる。本変形例によれば、誤りの発生を低減しながら、周波数利用効率を低減できる。なお、同じサイズのパケット信号を送信する場合でも、16QAM、符号化率1/2であるか、QPSK、符号化率1/2であるかによって、送信時間が変わる。路車送信期間が時間で定義されるので、路車送信期間中に送信完了するパケットサイズを考慮して分割のサイズが決定されてもよい。
In the embodiment of the present invention, the generation unit 36 divides data on the basis of the data size. However, the present invention is not limited to this. For example, when the communication speed of the packet signal notified from the modem unit 24 and the RF unit 22 is variable, the generation unit 36 determines the size of the packet signal according to the communication speed of the packet signal. May be. The communication speed is defined by a combination of modulation scheme, coding rate, and the like. Here, the division is performed so that the size of the packet signal becomes smaller as the communication speed becomes higher. For example, in the case of an error-prone parameter such as 16QAM and a coding rate of 3/4, division is performed so that the size of the packet signal is reduced. In the case of QPSK and a coding rate of 1/2, the packet is The division is performed so that the size of the signal is increased. According to this modification, frequency use efficiency can be reduced while reducing the occurrence of errors. Even when packet signals of the same size are transmitted, the transmission time varies depending on whether 16QAM and coding rate 1/2 or QPSK and coding rate 1/2. Since the road-vehicle transmission period is defined by time, the size of the division may be determined in consideration of the packet size to be transmitted during the road-vehicle transmission period.
本発明の実施例において、生成部36は、データサイズを基準にして、データを分割している。しかしながらこれに限らず例えば、生成部36における部分データが、暗号化処理されたデータを複数に分割することによって生成されている場合に、生成部36は、暗号化処理のブロックサイズの倍数に応じてパケット信号のサイズを定めてもよい。受信側において、部分パケットをセキュリティ処理前後で結合する必要がある場合、暗号処理ブロックサイズ、例えば、AES(Advanced Encryption Standard)ならば16バイトの倍数で分割される。本変形例によれば、パケット信号単位でセキュリティのブロック処理を実行でき、端数のデータの保持が必要なくなって処理を簡易化できる。
In the embodiment of the present invention, the generation unit 36 divides data on the basis of the data size. However, the present invention is not limited to this. For example, when the partial data in the generation unit 36 is generated by dividing the encrypted data into a plurality of pieces, the generation unit 36 responds to a multiple of the block size of the encryption processing. Thus, the size of the packet signal may be determined. When it is necessary on the receiving side to combine partial packets before and after security processing, if the encryption processing block size, for example, AES (Advanced Encryption Standard), it is divided by a multiple of 16 bytes. According to this modification, security block processing can be executed in units of packet signals, and it is not necessary to hold fractional data, and processing can be simplified.
本発明の一態様の概要は、次の通りである。本発明のある態様の無線装置は、データを複数の部分データに分割してから、部分データをパケット信号に含めることによって、複数のパケット信号を生成する生成部と、生成部において生成した複数のパケット信号を報知する報知部とを備える。生成部において生成される複数のパケット信号のサイズは2種類である。
The outline of one embodiment of the present invention is as follows. A wireless device according to an aspect of the present invention includes: a generation unit configured to generate a plurality of packet signals by dividing the data into a plurality of partial data and then including the partial data in the packet signal; An informing unit for informing the packet signal. There are two types of packet signals generated in the generation unit.
この態様によると、パケット信号のサイズが2種類になるように、データを分割するので、処理を簡易にできる。
According to this aspect, since the data is divided so that there are two types of packet signal sizes, the processing can be simplified.
生成部において生成されるパケット信号のサイズは、パケット信号のサイズとして規定された最大値と、最大値よりも小さい値であってもよい。この場合、最大値を分割の単位にするので、分割後のパケット信号のサイズを大きくできる。
The size of the packet signal generated in the generation unit may be a maximum value defined as the size of the packet signal and a value smaller than the maximum value. In this case, since the maximum value is set as a unit of division, the size of the divided packet signal can be increased.
本発明の別の態様もまた、無線装置である。この装置は、データを複数の部分データに分割してから、部分データをパケット信号に含めることによって、複数のパケット信号を生成する生成部と、生成部において生成した複数のパケット信号を報知する報知部とを備える。生成部において生成される複数のパケット信号のサイズは1種類である。
Another aspect of the present invention is also a wireless device. This apparatus divides data into a plurality of partial data, and then includes the partial data in the packet signal, thereby generating a plurality of packet signals and a notification for reporting the plurality of packet signals generated in the generation unit A part. The size of the plurality of packet signals generated in the generation unit is one type.
この態様によると、パケット信号のサイズが1種類になるように、データを分割するので、処理を簡易できる。
According to this aspect, since the data is divided so that the size of the packet signal becomes one type, the processing can be simplified.
報知部は、所定の期間において複数のパケット信号を報知しており、生成部において生成されるパケット信号のサイズは、報知部が所定の期間において報知可能なパケット信号数に応じて定められてもよい。
The notification unit reports a plurality of packet signals in a predetermined period, and the size of the packet signal generated in the generation unit may be determined according to the number of packet signals that can be notified in the predetermined period. Good.
報知部から報知されるパケット信号の通信速度は可変であり、生成部において生成されるパケット信号のサイズは、報知部から報知されるパケット信号の通信速度に応じて定められてもよい。この場合、誤りの発生を低減しながら、周波数利用効率を低減できる。
The communication speed of the packet signal notified from the notification section is variable, and the size of the packet signal generated in the generation section may be determined according to the communication speed of the packet signal notified from the notification section. In this case, the frequency utilization efficiency can be reduced while reducing the occurrence of errors.
生成部における部分データは、暗号化処理されたデータを複数に分割することによって生成されており、生成部において生成されるパケット信号のサイズは、暗号化処理のブロックサイズの倍数に応じて定められてもよい。この場合、パケット信号単位でセキュリティのブロック処理を実行でき、端数のデータの保持が必要なくなって処理を簡易化できる。
The partial data in the generation unit is generated by dividing the encrypted data into a plurality of pieces, and the size of the packet signal generated in the generation unit is determined according to a multiple of the block size of the encryption process. May be. In this case, security block processing can be executed in packet signal units, and it is no longer necessary to hold fractional data, thereby simplifying the processing.
10 基地局装置、 12 車両、 14 端末装置、 20 アンテナ、 22 RF部、 24 変復調部、 26 処理部、 28 制御部、 30 ネットワーク通信部、 32 フレーム規定部、 34 選択部、 36 生成部、 50 アンテナ、 52 RF部、 54 変復調部、 56 処理部、 58 制御部、 60 タイミング特定部、 62 転送決定部、 64 取得部、 66 生成部、 70 通知部、 72 抽出部、 74 キャリアセンス部、 100 通信システム。
10 base station devices, 12 vehicles, 14 terminal devices, 20 antennas, 22 RF units, 24 modulation / demodulation units, 26 processing units, 28 control units, 30 network communication units, 32 frame definition units, 34 selection units, 36 generation units, 50 Antenna, 52 RF section, 54 modulation / demodulation section, 56 processing section, 58 control section, 60 timing identification section, 62 transfer determination section, 64 acquisition section, 66 generation section, 70 notification section, 72 extraction section, 74 carrier sense section, 100 Communications system.
本発明によれば、複数のパケット信号を生成する場合に処理を効率的に実行できる。
According to the present invention, when a plurality of packet signals are generated, the processing can be executed efficiently.
Claims (6)
- データを複数の部分データに分割してから、部分データをパケット信号に含めることによって、複数のパケット信号を生成する生成部と、
前記生成部において生成した複数のパケット信号を報知する報知部とを備え、
前記生成部において生成される複数のパケット信号のサイズは2種類であることを特徴とする無線装置。 A generator that generates a plurality of packet signals by dividing the data into a plurality of partial data and then including the partial data in the packet signal;
A notification unit for reporting a plurality of packet signals generated in the generation unit,
The wireless device characterized in that the plurality of packet signals generated in the generation unit are of two types. - 前記生成部において生成されるパケット信号のサイズは、パケット信号のサイズとして規定された最大値と、最大値よりも小さい値であることを特徴とする請求項1に記載の無線装置。 The radio apparatus according to claim 1, wherein the size of the packet signal generated by the generation unit is a maximum value defined as the size of the packet signal and a value smaller than the maximum value.
- データを複数の部分データに分割してから、部分データをパケット信号に含めることによって、複数のパケット信号を生成する生成部と、
前記生成部において生成した複数のパケット信号を報知する報知部とを備え、
前記生成部において生成される複数のパケット信号のサイズは1種類であることを特徴とする無線装置。 A generator that generates a plurality of packet signals by dividing the data into a plurality of partial data and then including the partial data in the packet signal;
A notification unit for reporting a plurality of packet signals generated in the generation unit,
The radio apparatus according to claim 1, wherein the plurality of packet signals generated by the generation unit have one size. - 前記報知部は、所定の期間において複数のパケット信号を報知しており、
前記生成部において生成されるパケット信号のサイズは、前記報知部が所定の期間において報知可能なパケット信号数に応じて定められることを特徴とする請求項1から3のいずれかに記載の無線装置。 The notification unit broadcasts a plurality of packet signals in a predetermined period,
The size of the packet signal produced | generated in the said production | generation part is defined according to the number of packet signals which the said alerting | reporting part can alert | report in a predetermined period, The radio | wireless apparatus in any one of Claim 1 to 3 characterized by the above-mentioned. . - 前記報知部から報知されるパケット信号の通信速度は可変であり、
前記生成部において生成されるパケット信号のサイズは、前記報知部から報知されるパケット信号の通信速度に応じて定められることを特徴とする請求項1から3のいずれかに記載の無線装置。 The communication speed of the packet signal notified from the notification unit is variable,
The size of the packet signal produced | generated in the said production | generation part is defined according to the communication speed of the packet signal alert | reported from the said alerting | reporting part, The radio | wireless apparatus in any one of Claim 1 to 3 characterized by the above-mentioned. - 前記生成部における部分データは、暗号化処理されたデータを複数に分割することによって生成されており、
前記生成部において生成されるパケット信号のサイズは、暗号化処理のブロックサイズの倍数に応じて定められることを特徴とする請求項1から5のいずれかに記載の無線装置。 The partial data in the generation unit is generated by dividing the encrypted data into a plurality of pieces,
The radio apparatus according to claim 1, wherein the size of the packet signal generated by the generation unit is determined according to a multiple of a block size of encryption processing.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-207229 | 2011-09-22 | ||
JP2011207229 | 2011-09-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013042383A1 true WO2013042383A1 (en) | 2013-03-28 |
Family
ID=47914169
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/006033 WO2013042383A1 (en) | 2011-09-22 | 2012-09-21 | Wireless equipment |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2013042383A1 (en) |
WO (1) | WO2013042383A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004260658A (en) * | 2003-02-27 | 2004-09-16 | Matsushita Electric Ind Co Ltd | Wireless LAN device |
JP2008219746A (en) * | 2007-03-07 | 2008-09-18 | Fujitsu Ltd | Information transmitting apparatus, information transmitting method, information transmitting program, and recording medium recording the program |
JP2011097352A (en) * | 2009-10-29 | 2011-05-12 | Sumitomo Electric Ind Ltd | Communication control device, and road-side communication instrument |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000244512A (en) * | 1999-02-18 | 2000-09-08 | Nippon Telegr & Teleph Corp <Ntt> | Wireless channel access control method and wireless transmission device |
JP4371938B2 (en) * | 2004-08-02 | 2009-11-25 | 株式会社東芝 | Routing method for packets including a plurality of destination addresses and the router device |
JP3961000B2 (en) * | 2005-05-26 | 2007-08-15 | 株式会社日立コミュニケーションテクノロジー | Packet transfer apparatus and network system |
-
2012
- 2012-09-21 WO PCT/JP2012/006033 patent/WO2013042383A1/en active Application Filing
- 2012-09-21 JP JP2013534606A patent/JPWO2013042383A1/en not_active Ceased
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004260658A (en) * | 2003-02-27 | 2004-09-16 | Matsushita Electric Ind Co Ltd | Wireless LAN device |
JP2008219746A (en) * | 2007-03-07 | 2008-09-18 | Fujitsu Ltd | Information transmitting apparatus, information transmitting method, information transmitting program, and recording medium recording the program |
JP2011097352A (en) * | 2009-10-29 | 2011-05-12 | Sumitomo Electric Ind Ltd | Communication control device, and road-side communication instrument |
Also Published As
Publication number | Publication date |
---|---|
JPWO2013042383A1 (en) | 2015-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5895199B2 (en) | Wireless device | |
US9096166B2 (en) | Terminal device | |
US20120236841A1 (en) | Base station apparatus for transmitting or receiving a signal including predetermined information | |
WO2013179557A1 (en) | Wireless device | |
WO2011001982A1 (en) | Communication method and base station device utilizing same | |
WO2012020563A1 (en) | Base-station device | |
JP6072328B2 (en) | Wireless device | |
JP6057901B2 (en) | Base station equipment | |
WO2013042383A1 (en) | Wireless equipment | |
WO2011158484A1 (en) | Terminal device | |
WO2013046655A1 (en) | Wireless device | |
WO2012131830A1 (en) | Terminal device | |
JP5901458B2 (en) | Terminal device | |
JP6267781B2 (en) | Wireless device | |
JP5830259B2 (en) | Wireless device | |
WO2013018318A1 (en) | Communication system, base station device, and wireless device | |
JP5793694B2 (en) | Receiver | |
JP2013077963A (en) | Base station device | |
WO2013136748A1 (en) | Radio device | |
JP2012199860A (en) | Portable terminal | |
JP2014199962A (en) | Communication system and base station device | |
JP6083544B2 (en) | Terminal device and processing device | |
JP2014199961A (en) | Radio device | |
JP5963599B2 (en) | Portable terminal device | |
JP2011182137A (en) | Base station device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12833576 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013534606 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12833576 Country of ref document: EP Kind code of ref document: A1 |