[go: up one dir, main page]

WO2013033946A1 - 噪声消除系统和方法、智能控制方法和装置、通信设备 - Google Patents

噪声消除系统和方法、智能控制方法和装置、通信设备 Download PDF

Info

Publication number
WO2013033946A1
WO2013033946A1 PCT/CN2011/081930 CN2011081930W WO2013033946A1 WO 2013033946 A1 WO2013033946 A1 WO 2013033946A1 CN 2011081930 W CN2011081930 W CN 2011081930W WO 2013033946 A1 WO2013033946 A1 WO 2013033946A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
noise reduction
noise
reduction performance
performance curve
Prior art date
Application number
PCT/CN2011/081930
Other languages
English (en)
French (fr)
Inventor
刘崧
赵剑
楼厦厦
Original Assignee
歌尔声学股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔声学股份有限公司 filed Critical 歌尔声学股份有限公司
Priority to EP11872107.5A priority Critical patent/EP2696597B8/en
Priority to KR1020137021791A priority patent/KR101442450B1/ko
Priority to DK11872107.5T priority patent/DK2696597T3/da
Priority to JP2013552087A priority patent/JP5568694B2/ja
Priority to US14/119,611 priority patent/US9379751B2/en
Publication of WO2013033946A1 publication Critical patent/WO2013033946A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/12Neutralising, balancing, or compensation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1083Reduction of ambient noise
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2410/00Microphones
    • H04R2410/05Noise reduction with a separate noise microphone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2460/00Details of hearing devices, i.e. of ear- or headphones covered by H04R1/10 or H04R5/033 but not provided for in any of their subgroups, or of hearing aids covered by H04R25/00 but not provided for in any of its subgroups
    • H04R2460/01Hearing devices using active noise cancellation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2499/00Aspects covered by H04R or H04S not otherwise provided for in their subgroups
    • H04R2499/10General applications
    • H04R2499/13Acoustic transducers and sound field adaptation in vehicles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/02Circuits for transducers, loudspeakers or microphones for preventing acoustic reaction, i.e. acoustic oscillatory feedback

Definitions

  • Noise cancellation system and method intelligent control method and device, communication device
  • the invention relates to the technical field of noise cancellation of a receiving end of a communication device, and more particularly to a non-closed feedforward active noise canceling system, a non-closed active noise canceling method, and a non-closed feedforward method.
  • the improvement of social information level enables people to communicate and communicate anytime and anywhere.
  • the wide application of various communication devices mobile phones, Bluetooth headsets, stereo headphones, etc.
  • technology greatly facilitates people's lives and improves. Work efficiency.
  • a serious problem brought about by the development of society is the noise problem. Communication in a noisy environment seriously affects the clarity and intelligibility of communication speech. When the noise is high enough, not only communication cannot be performed, but also It will hurt people's hearing and physical and mental health.
  • the existing technical solutions perform speech enhancement and noise reduction processing from the following two aspects:
  • the signal of the voice signal picked up by the microphone is improved by using the acoustic signal processing technology at the transmitting end of the communication device.
  • the noise ratio enables the remote user to hear the speech of the near-end user.
  • the signal-to-noise ratio of the voice of the receiving end needs to be increased at the receiving end of the communication device, so that the near-end can hear the voice signal sent by the remote user.
  • One method is to use automatic volume control technology (see Chinese invention patent application disclosure)
  • CN1507293A In the method, when the external noise is high, the power output to the speaker unit is automatically increased.
  • This is a passive noise reduction method, and due to the power of the speaker unit itself and the industry standard limit of the sound pressure applied to the human ear, the volume of the speaker unit cannot be increased without limit; in addition, the high-intensity voice from the speaker It can also cause harm to the user's own hearing and physical and mental health. Therefore, the noise enhancement method of this noise reduction processing method is limited.
  • Another method is to apply a conventional active/passive combined noise control technique (see Chinese Invention Patent Application Publication No. CN101432798A, CN101001481A) to a closed communication headset.
  • the closed earphones are divided into two types: a headphone type and an earphone type.
  • the closed type earphones generally adopt a coupling form in which the structure and the material are sealed with the human ear.
  • the medium and high-frequency noise is reduced by the sound absorption and sound insulation of the material, and the low-frequency (mainly below 500 Hz) noise is effectively reduced by the active noise control technology, thereby realizing the external noise in the entire frequency band.
  • the better elimination thereby effectively improving the voice signal to noise ratio of the receiving end of the communication headset.
  • Figure 1 is a schematic diagram of conventional noise cancellation using a non-closed feedforward active noise control technique at the receiving end of a communication device.
  • the implementation of the feedforward active noise control system is based on the assumption that external noise propagates to the microphone first and then to the human ear.
  • the propagation path will be divided into two channels.
  • the first channel is propagated to the human ear in free space along the acoustic channel P as shown in Figure 1, as shown by the solid line in Figure 1, where P is the external noise.
  • the acoustic transfer function that is transmitted to the human ear at the microphone.
  • the other channel will be the propagation on the electronic circuit, as shown in Figure 1, which propagates from the microphone 102 through the speaker 104 to the human ear to produce an anti-noise propagation path, as indicated by the dashed line in Figure 1, which can be represented as H and G.
  • H the frequency response of the active noise reduction circuit
  • G the transfer function from the speaker to the human ear
  • the communication system with non-closed feedforward noise cancellation has the biggest problem in its implementation.
  • the learning channel P and the secondary channel G vary depending on the coupling state of the communication device to the human ear.
  • the frequency response H of the circuit part remains unchanged, the noise reduction performance generated by different people or the same person when using it different times is inconsistent, that is, sometimes the noise reduction performance is good, and sometimes the noise reduction performance is degraded, and even No noise reduction effect is felt at all.
  • FIG. 2a shows a possible implementation of the in-ear portion of a non-enclosed communication headset in which the in-ear portion is placed deep into the ear canal with a smaller cuff.
  • Figure 2b shows another technical solution for making changes to the structure of the earphone.
  • a sound-transmissive groove is opened in the upper and lower portions of the earphone portion of the earphone to ensure that there is always a certain degree of sound leakage when the earphones are worn or the earphones are coupled with different size auricles. Therefore, the structure of Fig. 2b not only ensures the wearing comfort, but also ensures that the transfer functions P and G have good consistency when different people wear.
  • DSP digital signal processing
  • FX-LMS fastening filtering
  • the feedforward adaptive noise cancellation algorithm uses the FX-LMS algorithm, which requires the identification of the secondary channel G.
  • the identification error of the secondary channel will directly affect the stability of the system.
  • the non-closed communication system as described above.
  • the secondary channel G itself will have a great change during use, so the stability of the algorithm is difficult to guarantee.
  • an object of the present invention is to provide an intelligent control method and system for non-closed feedforward active noise cancellation, and more particularly to a terminal application of a communication device worn on a human ear.
  • Intelligently controlled non-closed feedforward active noise cancellation technology in which the noise reduction performance in the current coupled state is estimated by installing a monitoring microphone near the human ear of the communication device, and using intelligent feedback control technology to adjust the front
  • the control circuit parameters in the active noise cancellation processing are used to effectively reduce the external environmental noise at the human ear to achieve the best noise reduction performance, thereby ensuring that the non-closed feedforward active noise cancellation technology can be effectively applied to the receiving end of the communication device.
  • an intelligent control method for non-closed feedforward active noise cancellation comprising: receiving a distance from a human ear when detecting that the received end of the communication device has no voice signal output The external noise signal of the reference microphone and the monitoring signal from the monitoring microphone near the human ear; performing performance analysis on the received external noise signal and the monitoring signal to estimate the drop after the feedforward active noise cancellation process a noise performance curve; and adjusting a control circuit parameter in the feedforward active noise cancellation process according to the estimated noise reduction performance curve and a preset noise reduction performance curve, so that the estimated noise reduction performance The difference between the curve and the preset noise reduction performance curve is within a preset range.
  • adjusting the control circuit parameters in the feedforward active noise cancellation process according to the estimated noise reduction performance curve and a preset noise reduction performance curve may include: Comparing the estimated noise reduction performance curve with a preset noise reduction performance curve to determine an adjustment direction of the control circuit parameter; and adjusting the control circuit parameter according to the determined adjustment direction, wherein The adjustment process of the control circuit parameters adopts feedback control, and after each adjustment, the estimated noise reduction performance curve is re-compared to be closer to the preset noise reduction performance curve; if it is closer, the adjustment direction is maintained, If not, the direction is reversed until the difference between the estimated noise reduction performance curve and the preset noise reduction performance curve is within the preset range.
  • a non-closed feedforward active noise cancellation method including: picking up an external noise signal away from a human ear; and performing feedforward active noise cancellation processing on the picked external noise signal, Generating an anti-noise signal for canceling the external noise signal; mixing the generated anti-noise signal with a voice signal received by a receiving end of the communication device; and feeding the mixed signal into the human ear to cancel the passage Free space enters the external noise signal of the human ear, among them,
  • the control circuit parameters in the feedforward active noise cancellation process are adjusted according to the above intelligent control method.
  • an intelligent control apparatus for non-closed feedforward active noise cancellation including: a detecting unit, configured to detect whether a voice signal output exists at a receiving end of a communication device; And receiving an external noise signal from a reference microphone remote from the human ear and a monitoring signal from a monitoring microphone near the human ear when detecting that the received signal has no voice signal output; the noise reduction performance estimating unit, Performing performance analysis on the received external noise signal and the monitoring signal to estimate a noise reduction performance curve in the feedforward active noise cancellation process; and a first adjustment unit, configured to perform noise reduction according to the estimate a performance curve and a preset noise reduction performance curve, and adjusting a control circuit parameter in the feedforward active noise cancellation process to make a difference between the estimated noise reduction performance curve and the preset noise reduction performance curve Within the preset range.
  • a non-closed feedforward active noise cancellation system comprising: a reference microphone for picking up an external noise signal away from a human ear; an anti-noise signal generating unit, configured to The external noise signal performs feedforward active noise cancellation processing to generate an anti-noise signal for canceling the external noise signal; a signal mixing unit for receiving the anti-noise signal and the receiving end of the communication device a voice signal mixing; and a feeding unit for feeding the mixed signal into the human ear; monitoring the microphone for picking up a monitoring signal near the human ear, the detecting signal is entering the outside of the human ear through free space a signal obtained by superimposing a noise signal and an output signal of the feeding unit at a human ear; and the foregoing intelligent control device, configured to: when the speech terminal has no speech signal output, to the anti-noise signal generating unit The control circuit parameters of the feedforward active noise cancellation process are adjusted.
  • a communication device including the non-closed feedforward active noise cancellation system as described above is provided.
  • the non-closed feedforward active noise cancellation system and the intelligent control method and apparatus thereof according to the present invention estimate the noise reduction performance under the current coupling state by installing a monitoring microphone near the human ear of the communication device, and are in a non-closed manner
  • the intelligent control module is added to the feedforward active noise cancellation system to ensure the consistency of the noise reduction performance between the communication device and the human ear in different coupling situations.
  • the feedforward active noise elimination technology with intelligent control is realized on the communication device under the premise of coupling with the human ear by using the non-closed structure to ensure wearing comfort, and can effectively
  • the non-closed feedforward active noise cancellation technology is applied to the stability of the communication device, and the inconsistency of the noise reduction performance due to the difference in coupling with the human ear during the use of the communication device is avoided, thereby achieving non-conformity at the receiving end of the communication device. Closed active noise cancellation, greatly improving the clarity and intelligibility of the voice at the receiver.
  • Figure 1 is a schematic diagram of conventional noise cancellation using a non-closed feedforward active noise control technique at the receiving end of a communication device
  • FIG. 2a and 2b are schematic views showing the structure of an in-ear portion of a non-closed communication earphone; and FIG. 3 is a schematic diagram showing an intelligent control principle for applying noise cancellation according to the present invention
  • FIG. 4a, 4b, 4c, and 4d are respectively an exemplary diagram of a communication device to which the present invention is applied; and FIG. 5 is a schematic diagram showing the effect of different users in achieving noise reduction when a conventional feedforward active noise control technique is applied. ;
  • FIG. 6 shows a block schematic diagram of an example of a non-closed feedforward active noise cancellation system in accordance with an embodiment of the present invention
  • Figure 7 is a block diagram showing the intelligent control device of Figure 6;
  • Figure 8 is a block diagram showing a communication device having a non-closed feedforward active noise cancellation system in accordance with the present invention.
  • FIG. 9 is a flow chart of a noise cancellation method for non-closed feedforward active noise cancellation, in accordance with an embodiment of the present invention.
  • FIG. 10 is a flow chart of an intelligent control method for non-closed feedforward active noise cancellation according to an embodiment of the present invention
  • FIG. 11 is a schematic diagram showing a comparison of ideal and actual noise reduction performance curves using an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of comparison of noise reduction effects of different users after applying the intelligent control provided by the present invention.
  • the non-closed feedforward active noise cancellation system and the intelligent control method and device thereof for use in a communication device provided by the present invention are applied to a noise reduction intelligent control technology of a communication device receiving end in a noise environment, and the implementation method thereof comprises Intelligent control technology based on reference microphone and monitoring microphone is adopted on the non-closed feedforward noise cancellation system to solve the problem of inconsistent noise reduction performance caused by coupling difference caused by non-closed feedforward noise cancellation technology applied to communication equipment. .
  • the non-enclosed structure is adopted at the receiving end of the communication device, and the non-closed receiving end can ensure the comfort of wearing for a long time with respect to the receiving end of the in-ear structure.
  • a method for implementing a feedforward active noise cancellation technique in a non-closed communication device to improve a speech signal to noise ratio of a receiver is shown in FIG. 1.
  • the external reference noise signal picked up by the reference microphone 102 placed outside the auricle is Circuit H performs amplification, inversion, and phase compensation to generate an anti-noise signal for canceling the original external noise signal.
  • the anti-noise signal has the same amplitude and opposite phase as the original external noise signal; the anti-noise signal is the same as the input speech signal.
  • the added mixed signal is directly fed into the human ear by the speaker 104;
  • the signal fed into the human ear via the speaker 104 includes an anti-noise signal and a voice signal, an anti-noise signal and an original propagation from space
  • the amplitude of the original noise signal to the human ear is the same in opposite phase, so the purpose of canceling each other is achieved, and the amplitude of the speech signal is not changed.
  • the noise signal can be greatly reduced, and the voice is unchanged, thereby effectively improving the signal-to-noise ratio of the voice of the receiving end of the communication device.
  • FIG. 3 is a schematic diagram of an intelligent control principle for applying the non-closed feedforward active noise cancellation intelligent control device of the present invention to the receiving end of the communication device for noise cancellation.
  • the intelligent control system of the present invention adds a microphone to the communication device near the human ear, compared to the conventional hardware that uses the feedforward active noise control technique to perform noise cancellation on the receiving end of the communication device.
  • the monitoring microphone 122 herein, the sound pressure at the monitoring microphone 122 represents the sound pressure at the human ear.
  • the signals picked up by the reference microphone 112 and the monitoring microphone 122 are input into the intelligent control device.
  • the wisdom The control unit can be implemented using a DSP (Digital Signal Processing) module.
  • the intelligent control device can also be implemented using other modules having digital signal processing capabilities.
  • the energy reaching the reference microphone 112 and the monitoring microphone 122 should be equivalent, but after the active noise cancellation is applied, the noise energy picked up by the reference microphone 112 does not change.
  • the energy at the monitoring microphone 122 is a superposition of the energy that the noise propagates along the acoustic channel P in the physical space to the human ear and the energy of the anti-noise formed by the H, G electron propagation channel, due to the addition of anti-noise energy,
  • the energy at the monitoring microphone 122 is reduced, and by comparing the energy difference in the specific frequency band at the reference microphone 112 and the monitoring microphone 122, it can be judged whether the effect of the active noise cancellation is expected, if If the expectations are not met, the intelligent control device (for example, the DSP module) will output an intelligent control signal to adjust the parameters of the circuit H, and then judge the active noise cancellation effect again, so repeatedly, through the intelligent feedback control, the final active noise cancellation is achieved.
  • the intelligent control device for example, the DSP module
  • the parameters of the adjusted circuit H typically include a gain system and phase adjustment parameters.
  • the circuit H herein includes an amplifier and a phase adjustment unit for converting an external noise signal picked up by the reference microphone into an anti-noise signal capable of canceling the reference noise signal.
  • the amplitude of the anti-noise signal is the same as the amplitude of the ambient noise signal, but the phase is opposite. In this case, the noise can be completely eliminated at the human ear.
  • the phase adjustment unit referred to herein may include a phase compensator. In another example, the phase adjustment unit may also include an inverter and a phase compensator.
  • FIG. 4a, 4b, 4c, and 4d are respectively exemplary diagrams of a communication device to which the present invention is applied, wherein FIG. 4a is a mobile phone, FIG. 4b is a Bluetooth earphone, FIG. 4c is a stereo in-ear earphone, and FIG. 4d is a stereo headset. headset.
  • the reference microphone 112 is generally disposed at a distance from the speaker 312 of the communication device facing away from the receiving end, and the monitoring microphone 122 is disposed at the signal output position of the speaker 312 of the receiving end.
  • the reference speaker 112 is located outside of the user's auricle and the monitoring microphone 122 is located in the user's auricle.
  • FIG. 4a When applying the non-closed communication device as shown in FIG. 4a, FIG. 4b, FIG. 4c and FIG. 4d, there are inevitably different people or the same person due to the user's usage habits and the human ear structure itself. There are cases where there are relatively large differences between the acoustic channel P and the secondary channel G. Therefore, in order to achieve a more consistent ideal noise reduction effect, the requirements for the anti-noise circuit H will be different.
  • Figure 5 shows the effect of different users using the same circuit H to achieve noise reduction when using the traditional feedforward active noise control technology. It can be seen from Fig. 5 that when the same circuit H is used, the noise reduction performance of three different users shows a very large difference, and the noise reduction consistency is difficult to guarantee.
  • Figure 6 shows a block diagram of a noise cancellation system 100 for use in non-closed feedforward active noise cancellation.
  • the noise cancellation system 100 includes a reference microphone 112, an anti-noise generating unit 114, a signal mixing unit 116, a feeding unit 118, a monitoring microphone 122, and an intelligent control device 120.
  • the reference microphone 112 is disposed away from the human ear for picking up external noise signals away from the human ear, as shown in Figures 4a-4d.
  • the anti-noise signal generating unit 114 is configured to perform feedforward active noise canceling processing on the external noise signal to generate an anti-noise signal capable of canceling the external noise signal.
  • the anti-noise signal generating unit 114 is equivalent to the circuit unit H shown in Fig. 3.
  • the anti-noise signal generating unit 114 is configured to perform processing such as amplification and phase compensation on the external noise signal picked up by the reference microphone to convert the external noise signal into an effect of canceling the external noise signal received at the human ear when entering the human ear. Anti-noise signal.
  • the anti-noise signal generating unit 114 may include an amplifier (not shown) and a phase adjustment unit (not shown) for gain-amplifying the external noise signal from the reference microphone 112.
  • the phase adjustment unit is configured to phase adjust the external noise signal from the reference microphone 112 so that the phase-adjusted signal can cancel the external noise signal.
  • the gain coefficient of the amplifier and the phase adjustment parameter of the phase adjustment unit are selected such that the phase-adjusted signal has a phase that is exactly opposite to the external noise signal and equal in amplitude, thereby completely canceling the external noise signal.
  • the signal mixing unit 116 is disposed to be connected to the anti-noise signal generating unit 114 and the output of the receiving end of the communication device for receiving the anti-noise signal output from the anti-noise signal generating unit 114, And when there is a voice signal output at the receiving end, receiving the voice signal output by the receiving end, and mixing the anti-noise signal and the voice signal output by the receiving end.
  • the signal mixing unit 116 may be an adder.
  • the feeding unit 118 is connected to the signal mixing unit 116 for feeding the signal mixed by the signal mixing unit 116 into the human ear to cancel the external noise signal entering the human ear through the free space.
  • the feed unit 118 can be a speaker. In other examples of the invention, the feed unit 118 may also employ other voice output units.
  • the feedforward active noise cancellation system 100 in accordance with the present invention also includes a monitoring microphone 122 and an intelligent control device 120 as compared to existing feedforward active noise cancellation systems.
  • the monitoring microphone 122 and the intelligent control device 120 will be described in detail below.
  • the monitoring microphone 122 is configured to be placed near the human ear during use for picking up a monitoring signal near the human ear.
  • the monitoring signal is a signal obtained by superimposing an external noise signal entering the human ear through free space and an output signal of the feeding unit 118 at the human ear.
  • the output signal of the feeding unit 118 is a signal obtained by performing feedforward active noise canceling processing on the external noise signal.
  • the output signal of the feeding unit 118 is a signal obtained by performing feedforward active noise cancellation processing on the external noise signal and outputted by the receiving end of the communication device. The signal obtained after the speech signal is superimposed.
  • the intelligent control device 120 includes a detecting unit 124, a receiving unit 125, a noise reduction performance estimating unit 126, and a first adjusting unit 128.
  • the detecting unit 124 is configured to detect whether there is a voice signal output at the receiving end of the communication device.
  • the signal picked up by the monitoring microphone 122 includes an external noise signal and a voice signal, but since the monitoring microphone 122 is very close to the sounding port of the speaker 312, the monitoring microphone 122 picks up The voice signal of the receiving end will dominate, and the reference microphone 112 is farther from the sound outlet of the speaker 312, and the picked up signal is mainly The external noise signal, at this time, the signals picked up by the two microphones have low correlation in the low frequency band, and the noise reduction performance cannot be estimated by comparing the noise component energy difference picked up by the reference microphone 112 and the monitoring microphone 122.
  • the external far-field noise signal picked up by the reference microphone 112 and the monitoring microphone 122 has a good correlation in the low frequency band, and can be estimated by comparing the energy difference of the noise components picked up by the reference microphone 112 and the monitoring microphone 122. Noise reduction performance.
  • the intelligent control of the active noise reduction is performed, gP, and the anti-noise generating unit 114 is adjusted.
  • the parameters (such as circuit H) (ie, control circuit parameters, such as gain factor and phase adjustment parameters) enable the anti-noise signal to better cancel the external noise signal entering the human ear, thereby optimizing the noise reduction performance; When there is a voice signal output, the parameters of circuit H remain unchanged.
  • the detecting unit 124 may detect whether there is a voice signal output at the receiving end by calculating the correlation of the signals picked up by the two microphones, thereby determining whether to perform active noise cancellation intelligence. control.
  • the detecting unit 124 may further include a framing sampling module, a calculating module, and a correlation determining module (not shown).
  • the framing sampling module is configured to perform framing processing on the signals picked up by the reference microphone 112 and the monitoring microphone 122, respectively; the calculating module is configured to calculate the correlation of the two frames of data after the framing processing; the correlation determining module The correlation between the calculated two-frame data of the reference microphone 112 and the monitoring microphone 122 is compared with a predetermined threshold to determine the correlation of the reference microphone and the signal picked up by the monitoring microphone.
  • the signals picked up by the reference microphone 112 and the monitoring microphone 122 are first subjected to frame processing, 512 sampling points per frame, and 50% of adjacent frames. The data is overlapped, and then the two frames of the reference microphone 112 and the monitoring microphone 122 are correlated. If the correlation is greater than an upper threshold (0.8 in the present embodiment), it is determined that there is no signal output at the receiving end, and intelligent control of noise reduction is performed; If the correlation is less than a lower threshold (0.6 in the present embodiment), it is judged that the receiving end has a signal output, and no intelligent control of the noise reduction is performed. If the correlation is between the upper and lower limits, the previous judgment result is maintained.
  • an upper threshold 0.8 in the present embodiment
  • a lower threshold 0.6 in the present embodiment
  • the detecting unit 124 can also be implemented in other manners. For example, whether the voice signal output of the receiving end exists can be determined by directly detecting the energy amount of the output signal of the receiving end. Since the energy of the external noise signal is relatively small, usually lower than a certain threshold, when the energy of the output signal of the detected terminal is greater than the threshold, the voice signal output is considered to be present, otherwise, Then, there is no voice signal output.
  • the detecting unit may include: an energy detecting module (not shown) for detecting an energy level of an output signal of the receiving end; and a voice signal existence determining module (not shown), And comparing the detected energy amount with a predetermined threshold, wherein, when the detected energy amount is greater than a predetermined threshold, the voice signal existence determining module determines that the voice signal output exists at the receiving end.
  • the receiving unit 125 is coupled to the reference microphone 112 and the monitoring microphone 122 for receiving an external noise signal from the reference microphone 112 and a monitoring signal from the monitoring microphone 122 when no speech signal output is detected at the receiving end.
  • the receiving unit 125 is controlled by the detecting unit 124, and the receiving unit 125 receives the external noise signal from the reference microphone 112 and from the monitoring only when the detecting unit detects that the receiving end has no voice signal output.
  • the anti-noise signal of the microphone 122 Noise reduction performance estimation unit
  • the noise reduction performance estimating unit 126 is configured to perform performance analysis on the received external noise signal and the monitoring signal to estimate a noise reduction performance curve after the feedforward active noise cancellation processing.
  • the reference microphone 112 picks up the external noise
  • the monitoring signal picked up by the monitoring microphone 122 is the external noise signal and the signal obtained after the feedforward active cancellation processing of the external noise signal is superimposed.
  • the obtained signal is the signal after the noise reduction process. Therefore, in the above case, the noise reduction performance at the monitoring microphone can be judged by comparing the low frequency energy at the reference microphone and the monitoring microphone.
  • the noise reduction performance estimating unit 126 performs performance analysis on the received external noise signal and the monitoring signal in a specific frequency band. In this particular frequency band, the noise reduction effect is more pronounced.
  • Fig. 11 is a view showing a comparison of ideal and actual noise reduction performance curves in an embodiment of the present invention, wherein an ideal noise reduction performance curve NR_idea is shown by a solid line in Fig. 11.
  • the present embodiment preferably only calculates the noise reduction performance of the main noise reduction band of 500 to 1 kHz to achieve estimation of the noise reduction performance. It can be known from the intelligent control principle shown in Figure 2: P - HG
  • the noise reduction performance NR in the 500 ⁇ lkHz band will approach the ideal noise reduction performance curve NR_idea.
  • the noise reduction performance NR1 of the current time in the frequency band 500 ⁇ lkHz can be calculated by the formula (2).
  • NR_idea and NR1 the difference between the current noise reduction performance and the ideal noise reduction performance in the 500 ⁇ lkHz band can be known.
  • the first adjusting unit 128 is configured to: according to the noise reduction performance curve estimated by the noise reduction performance estimating unit 126 and the preset noise reduction performance curve, the control circuit parameter in the feedforward active noise cancellation process (ie, the anti-noise generating unit)
  • the circuit parameters are adjusted so that the difference between the estimated noise reduction performance curve and the preset noise reduction performance curve is within a preset range.
  • the control circuit parameters adjusted by monitoring the noise reduction performance at the microphone 122 include gain coefficients and phase adjustment parameters.
  • the first adjusting unit 128 further includes an adjustment direction determining module and a second adjusting module (not shown).
  • the adjustment direction determining module is configured to compare the estimated noise reduction performance curve with a preset noise reduction performance curve to determine an adjustment direction of the control circuit parameter (ie, a circuit parameter of the anti-noise generating unit).
  • the second adjustment module is configured to adjust the control circuit parameters according to the determined adjustment direction.
  • the second adjustment module may include a gain coefficient adjustment unit and/or a phase adjustment amount adjustment unit (not shown).
  • the gain coefficient adjustment unit adjusts the external The gain coefficient of the amplifier that amplifies the boundary noise signal;
  • the phase adjustment amount adjustment unit is configured to adjust the phase adjustment amount of the phase adjustment unit that performs phase adjustment on the external noise signal.
  • the anti-noise signal generating unit includes an amplifier and a phase adjusting unit.
  • the gain coefficient adjustment unit and the phase adjustment amount adjustment unit may also be combined in the second adjustment module, and the second adjustment module performs the gain coefficient adjustment and the phase adjustment amount adjustment.
  • the adjustment process of the control circuit parameters in the feedforward active noise cancellation process adopts feedback control, and each time the parameter is adjusted, the estimated noise reduction performance curve is re-compared to be closer to the preset noise reduction performance curve; If it is closer, the adjustment direction is maintained, and if not, the adjustment direction is reversed until the difference between the estimated noise reduction performance curve and the preset noise reduction performance curve is within a preset range.
  • circuit H when it is judged that parameter adjustment is required, by comparing NR1 and NR_idea, it can be known whether the circuit H needs to adjust whether it is a high frequency portion or a low frequency portion. However, some adjustment criteria need to be made. From equation (3), ⁇ ⁇ is directly related to A NR, so circuit H can be adjusted based on feedback control theory. The adjustment process is divided into gain adjustment and phase adjustment.
  • Both the gain and phase adjustments have two adjustment directions, respectively, which are positive adjustment and negative adjustment, if the current noise reduction performance curve is compared with the ideal noise reduction performance curve (ie, the preset noise reduction curve in this paper). The main difference is that the noise reduction is not enough.
  • the circuit gain needs to be adjusted at the beginning. If the current noise reduction performance curve and the ideal noise reduction performance curve are mainly different in the noise reduction band, the circuit phase needs to be started at the beginning. Make adjustments.
  • the noise reduction performance curve NR_new is closer to the ideal noise reduction performance curve NR_idea than the unreduced noise reduction performance curve NR1, and then the parameter adjustment direction is determined to be correct, and the circuit parameters are continuously adjusted in the direction. If it is judged that the noise reduction performance curve NR_new is worse than NR1 under the new circuit parameters, it is judged that the initial adjustment direction is wrong, and the control circuit parameters are adjusted in the opposite direction. After finding the correct adjustment direction, the parameter adjustment can be continuously performed in this direction. After each adjustment, the noise reduction performance curve NR_new under the new circuit parameters is estimated until the difference between the new noise reduction performance curve NR_new and NR_idea Within the predetermined threshold range, the above adjustment is stopped.
  • the parameter adjustment function can be started again.
  • the noise reduction performance NR_new can never reach the optimal NR_idea. At this point, the system can be stabilized in the parameters with the best noise reduction performance found during the adjustment process.
  • the digital capacitor and the digital control resistor can be used in the main filter device resistance and capacitance part of the anti-noise generating unit (ie, circuit H), and the DSP module can perform the resistance and capacitance of the circuit H through I2C or GPIO. Adjust to achieve the desired frequency response.
  • Figure 8 shows a block schematic diagram of a communication device 10 having a non-closed feedforward active noise cancellation system 100 in accordance with the present invention.
  • the noise cancellation system 100 of Figure 8 can include various variations of the noise cancellation system 100 shown in Figure 6.
  • the structure of the intelligent control device 120, the noise canceling system 110, and the communication device 10 according to the present invention will be described above with reference to FIGS. 3 through 8, and a non-closed feedforward active noise canceling process according to the present invention will be described below with reference to FIGS. 9 and 10. Its intelligent control process.
  • Figure 9 shows a flow chart of a noise cancellation method for non-closed feedforward active noise cancellation in accordance with an embodiment of the present invention.
  • step S910 an external noise signal away from the human ear is picked up. That is, the external noise signal is picked up by referring to the microphone.
  • step S920 it is detected whether there is a voice signal output at the called end of the communication device. If there is a voice signal output, go to step S940. Otherwise, the process goes to step S930, in which the control circuit parameters for the non-closed feedforward active noise canceling process are intelligently controlled.
  • the intelligent control process for the control circuit parameters of the feedforward active noise canceling process will be described later with reference to FIG.
  • step S940 the fed-out ambient noise signal is subjected to feedforward active noise cancellation processing using the current control circuit parameters to generate an anti-noise signal for canceling the external noise signal.
  • step S950 the generated anti-noise signal is mixed with the speech signal received by the receiving end of the communication device.
  • step S960 the mixed signal is fed into the human ear through the feeding unit to cancel the external noise signal entering the human ear through the free space. So far, the non-closed feedforward active noise cancellation process according to the present invention is completed.
  • step S931 an external noise signal from the reference microphone and a monitoring noise signal from the monitoring microphone are received, where the monitoring signal
  • the signal generated by the anti-noise signal generating unit by using the current control circuit parameter to perform feedforward active noise canceling processing on the picked-out external noise signal and the external noise signal entering the human ear through the free space are superimposed near the human ear.
  • step S932 performing performance analysis on the received external noise signal and the monitoring noise signal to estimate a noise reduction performance curve after the feedforward active noise cancellation processing.
  • step S933 After estimating the noise reduction performance curve after the feedforward active noise cancellation processing, adjusting the control circuit parameters of the feedforward active noise cancellation processing according to the estimated noise reduction performance curve and the preset noise reduction performance curve So that the difference between the estimated noise reduction performance curve and the preset noise reduction performance curve is within a preset range. Specifically, in step S933, comparing the estimated noise reduction performance curve with a preset noise reduction performance curve, determining whether the difference between the estimated noise reduction performance curve and the preset noise reduction performance curve is in advance Set within the scope. If the difference between the estimated noise reduction performance curve and the preset noise reduction performance curve is not within the preset range, proceeding to step S934, the control for the feedforward active noise cancellation processing of the anti-noise generating unit The circuit parameters are adjusted.
  • the process returns to step S931, and the adjustment is continued as above until the difference between the estimated noise reduction performance curve and the preset noise reduction performance curve is within a preset range.
  • the monitoring signal received when returning to S931 is a signal obtained by superimposing a signal generated by the anti-noise signal generating unit with the adjusted control circuit parameter and an external noise signal entering the human ear through free space at the human ear. If the difference between the estimated noise reduction performance curve and the preset noise reduction performance curve is within a preset range, the flow ends.
  • FIG. 12 is a schematic diagram of comparison of noise reduction effects of different users after applying the intelligent control provided by the present invention.
  • the noise reduction performance of different users is not much different, and the same circuit H is used by different users when applying the traditional feedforward active noise control technology shown in FIG.
  • the noise reduction effect diagram it can be clearly seen that applying the intelligent feedback control provided by the present invention to the conventional feedforward active noise control technology can maintain the good consistency of the noise reduction performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Headphones And Earphones (AREA)
  • Telephone Function (AREA)

Abstract

本发明公开了一种噪声消除系统和方法、智能控制方法和装置、通信设备。其中,所述智能控制方法包括:在检测到通信设备的受话端没有语音信号输出时,接收来自远离人耳处的参考传声器的外界噪声信号以及来自靠近人耳处的监测传声器的监测信号;对所接收的外界噪声信号和监测信号进行性能分析,以估计出经过前馈主动噪声消除处理后的降噪性能曲线;以及根据该降噪性能曲线与预设的降噪性能曲线,对前馈主动噪声消除处理中的控制电路参数进行调整,以使得所估计的降噪性能曲线与预设的降噪性能曲线的差在预设范围内。利用本发明,能够有效提高通信设备中的降噪稳定性,避免通信设备在使用过程中由于与人耳耦合的差异导致降噪性能存在的不一致性。

Description

噪声消除系统和方法、 智能控制方法和装置、 通信设备 技术领域
本发明涉及通信设备受话端的噪声消除技术领域, 更为具体地, 涉及一 种非封闭式前馈主动噪声消除系统、 一种非封闭式主动噪声消除方法、 一种 用于非封闭式前馈主动噪声消除中的智能控制方法和装置, 以及一种具有上 述非封闭式前馈主动噪声消除系统的通信设备。 背景技术
社会信息化程度的提高使得人们能随时随地的进行通信和交流, 各种各 样的通信设备 (手机、 蓝牙耳机、 立体声耳机等) 和技术的广泛应用极大地 方便了人们的生活, 并且提高了工作效率。 然而社会的发展带来的一个比较 严重的问题是噪声问题, 在噪声环境中进行通信, 严重影响到通信语音的清 晰度和可懂度, 当噪声高到一定程度时, 不但通信无法进行, 而且会伤害到 人的听力和身心健康。
针对在强噪声背景下进行通信问题, 现有的技术方案从以下两个方面进 行语音增强和降噪处理: 一方面是在通信设备送话端采用声学信号处理技术 提高传声器拾取的语音信号的信噪比, 使得远端用户能够听清近端用户的讲 话; 另一方面需要在通信设备受话端提高受话端语音的信噪比, 使得近端能 够听清远端用户送过来的语音信号。
然而, 提高通信设备受话端的语音信噪比一直是本领域的技术难题之一。 为了提高通信设备受话端的语音信噪比, 现有技术中给出了两种方法。
一种方法是采用自动音量控制技术 (参见中国发明专利申请公开
CN1507293A) , 在该方法中, 当外界噪声高时, 自动地提高输出给扬声器单 元的功率。 这是一种被动的降噪处理方法, 并且由于扬声器单元本身的功率 及馈入人耳声压的行业标准的限制, 扬声器单元的音量不可能无限制提高; 此外, 扬声器发出的高强度的语音对使用者本身的听力和身心健康也会产生 伤害。 因此, 这种降噪处理方法的语音增强幅度有限。 另一种方法是把传统的主动 /被动相结合的噪声控制技术 (参见中国发明 专利申请公开 CN101432798A, CN101001481A) 应用于封闭式通信耳机。 这 种封闭式耳机分为头戴式和耳塞型两种, 封闭式耳机一般采用结构及材料与 人耳进行密封性的耦合形式。 在这种封闭式耳机中, 通过材料的吸声和隔声 来降低中、 高频噪声, 以及通过主动噪声控制技术有效地降低低频 (主要在 500Hz 以下) 噪声, 从而在全频带实现对外界噪声的较好消除, 由此较有效 地提高通信耳机受话端的语音信噪比。 但是长期佩戴密封式的通信耳机, 使 用者会有耳道内外气压不均衡的感觉, 佩戴的舒适性是制约这种结构的主动 降噪技术不能广泛应用于通信设备的主要原因。
在保证通信设备 (手机、 蓝牙耳机、 立体声耳机等) 具有非封闭式结构 的情况下, 实现前馈主动噪声消除技术来提高通信设备受话端语音信噪比是 一个有迫切需求而又非常挑战的课题。
图 1 为传统的利用非封闭式前馈主动噪声控制技术在通信设备受话端进 行噪声消除的示意图。 如图 1 所示, 前馈主动噪声控制系统的实现是建立在 外界噪声都是先传播到传声器处、 然后再传播到人耳处的假设基础上的, 当 噪声传播到传声器 102处时, 其传播路径将分为两个通道, 第一个通道是沿 着如图 1所示的声学通道 P在自由空间上传播到人耳处, 如图 1中实线所示, 其中 P为外界噪声从传声器处传播到人耳处的声学传递函数。 另一个通道将 是在电子线路上的传播, 如图 1所示的从传声器 102经扬声器 104传播到人 耳处的产生反噪声的传播途径, 图 1中虚线所示,可以表示为 H和 G的串联, 其中 H为主动降噪电路的频率响应, G为扬声器到人耳处的传递函数, 称之 为次级通道。 假设在降噪的频带上设计为 P=-GH, 即 P和 GH幅度相同, 相 位刚好相反, 那么经过两个通道传播过来的原始噪声和反噪声在人耳处相互 叠加抵消, 从而达到降噪的目的。
关于如何在降噪频带上将声学传递函数 P、 主动降噪电路的频率响应 H 以及扬声器到人耳处的传递函数 G设计为 P=-GH, 目前通常通过对扬声器单 体的前、 后腔进行设计和处理, 例如, 调整前后腔的大小和开孔尺寸来改善 扬声器单元的传递函数 G, 从而使得声学传递函数 P、 频率响应 H和传递函 数 G刚好满足 P=-GH,由此在经过一次噪声消除处理后就可以完全消除噪声。
采用非封闭式前馈噪声消除的通信系统, 在实现上存在的最大问题是声 学通道 P和次级通道 G会随着通信设备与人耳的耦合状态不同而存在变化。 在电路部分频响 H保持不变的情况下, 不同人或者同一人不同次使用时所产 生的降噪性能是不一致的, 即有时降噪性能很好, 而有时降噪性能会下降, 甚至会完全感受不到降噪效果。
为了实现佩戴的舒适性以及降噪的一致性, 中国发明专利申请公开 CN101432798A提出一种对耳机结构进行改变的技术方案。 在该技术方案中, 通过改变耳机与人耳部分的耦合方式来实现佩戴的舒适性以及降噪的一致 性。 图 2a示出了非封闭式通信耳机的入耳部分的一种可能实现结构, 在该结 构中, 入耳部分采用较小的收口深入耳道内。 通过使得收口深入耳道中, 从 扬声器到人耳的空间传输路径变短, 从而保证不同人佩戴时其声学传递函数 具有较好的一致性。 图 2b示出了另一种对耳机结构进行改变的技术方案。 在 图 2b中示出的声学结构中, 在耳机入耳部分上下各开一道透声槽, 从而保证 无论佩戴松紧或者是耳机与不同大小耳廓耦合时都始终存在一定程度的声音 泄露。 由此, 图 2b这种结构不但能保证佩戴的舒适性, 而且能保证不同人佩 戴时传递函数 P和 G都有较好的一致性。 但是上述图 2a和图 2b方案主要基 于耳机的结构改变来实现降噪性能一致, 而且这种结构上的改变只能起到改 善作用, 不能从根本上解决非封闭式前馈降噪技术应用于通信设备降噪性能 不一致的问题。
为了针对所有类型的通信设备能够实现降噪性能一致, 目前主要是采用 DSP (数字信号处理)进行自适应有源噪声消除,但这种技术应用到比如手机、 非封闭式蓝牙、 立体声耳机等通信设备上存在两方面的局限性。 一方面, 前 馈自适应噪声消除算法采用 FX-LMS算法, 这需要对次级通道 G进行辨识得 到 , 次级通道的辨识误差将直接影响系统的稳定性, 如上所述的非封闭式 通信系统在使用过程中次级通道 G本身会存在很大的变化, 所以算法的稳定 性很难保证。 另一方面, 对于比如手机、 非封闭式蓝牙、 立体声耳机等通信 设备, 由于通信设备本身的体积限制, 其声学通道 P 的时延非常小, 如果采 用 DSP进行自适应噪声消除, 对系统采样率要求非常高, 系统功耗及降噪频 带都会受到非常大的局限性。 发明内容 鉴于上述问题, 本发明的目的是提供一种针对非封闭式前馈主动噪声消 除的智能控制方法和系统, 更为具体地, 涉及一种对在佩戴在人耳上的通信 设备受话端应用智能控制的非封闭式前馈主动噪声消除技术, 在该技术中, 通过在通信设备接近人耳处安装一监测传声器来估计当前耦合状态下的降噪 性能, 并采用智能反馈控制技术来调整前馈主动噪声消除处理中的控制电路 参数, 以有效降低人耳处的外界环境噪声, 达到降噪性能最优, 从而保证非 封闭式前馈主动噪声消除技术能有效应用于通信设备受话端, 提高通信设备 受话端的语音信噪比, 实现受话端语音增强功能。
根据本发明的一个方面, 提供了一种用于非封闭式前馈主动噪声消除中 的智能控制方法, 包括: 在检测到通信设备的受话端没有语音信号输出时, 接收来自远离人耳处的参考传声器的外界噪声信号以及来自靠近人耳处的监 测传声器的监测信号; 对所接收的所述外界噪声信号和所述监测信号进行性 能分析, 以估计经过前馈主动噪声消除处理后的降噪性能曲线; 以及根据所 述估计出的降噪性能曲线与预设的降噪性能曲线, 对所述前馈主动噪声消除 处理中的控制电路参数进行调整, 以使得所述估计的降噪性能曲线与所述预 设的降噪性能曲线的差在预设范围内。
此外, 在一个或多个实施例, 根据所述估计出的降噪性能曲线与预设的 降噪性能曲线, 对所述前馈主动噪声消除处理中的控制电路参数进行调整可 以包括: 将所述估计出的降噪性能曲线与预设的降噪性能曲线进行比较, 以 确定所述控制电路参数的调整方向; 以及根据所确定的调整方向, 对所述控 制电路参数进行调整, 其中, 所述控制电路参数的调整过程采用反馈控制, 每调整一次后都重新比较所述估计出的降噪性能曲线是否更加接近所述预设 的降噪性能曲线; 如果更接近则维持所述调整方向, 如果不是则反向所述调 整方向, 直到所述估计出的降噪性能曲线与所述预设的降噪性能曲线的差在 所述预设范围内。
根据本发明的另一方面, 提供了一种非封闭式前馈主动噪声消除方法, 包括: 拾取远离人耳处的外界噪声信号; 对所拾取的外界噪声信号进行前馈 主动噪声消除处理, 以生成用于抵消所述外界噪声信号的反噪声信号; 将所 生成的反噪声信号与通信设备的受话端所接收的语音信号混合; 以及将混合 后的信号馈入人耳中, 以抵消通过自由空间进入人耳的外界噪声信号, 其中, 在所述通信设备的受话端没有语音信号输出时, 所述前馈主动噪声消除处理 中的控制电路参数按照上述的智能控制方法进行调整。
根据本发明的再一方面, 提供了一种用于非封闭式前馈主动噪声消除中 的智能控制装置, 包括: 检测单元, 用于检测通信设备的受话端是否存在语 音信号输出; 接收单元, 用于在检测到所述受话端没有语音信号输出时, 接 收来自远离人耳处的参考传声器的外界噪声信号以及来自靠近人耳处的监测 传声器的监测信号; 降噪性能估计单元, 用于对所接收的外界噪声信号以及 所述监测信号进行性能分析, 以估计所述前馈主动噪声消除处理中的降噪性 能曲线; 以及第一调整单元, 用于根据所述估计出的降噪性能曲线与预设的 降噪性能曲线, 对所述前馈主动噪声消除处理中的控制电路参数进行调整, 以使得所述估计的降噪性能曲线与所述预设的降噪性能曲线的差在预设范围 内。
根据本发明的再一方面, 提供了一种非封闭式前馈主动噪声消除系统, 包括: 参考传声器, 用于拾取远离人耳处的外界噪声信号; 反噪声信号生成 单元, 用于对所述外界噪声信号进行前馈主动噪声消除处理, 以生成用于抵 消所述外界噪声信号的反噪声信号; 信号混合单元, 用于将所述反噪声信号 和所述通信设备的受话端所接收的语音信号混合; 以及馈入单元, 用于将所 混合的信号馈入到人耳中; 监测传声器, 用于拾取靠近人耳处的监测信号, 所述检测信号是通过自由空间进入人耳的外界噪声信号与所述馈入单元的输 出信号在人耳处叠加后获得的信号; 以及前述智能控制装置, 用于在所述受 话端没有语音信号输出时, 对所述反噪声信号生成单元的前馈主动噪声消除 处理的控制电路参数进行调整。
根据本发明的另一方面, 提供了一种包括如上所述的非封闭式前馈主动 噪声消除系统的通信设备。
上述根据本发明的非封闭式前馈主动噪声消除系统及其智能控制方法和 装置, 通过在通信设备接近人耳处安装一监测传声器来估计当前耦合状态下 的降噪性能, 并在非封闭式前馈主动噪声消除系统上增加智能控制模块, 保 证通信设备与人耳处在不同耦合情况下降噪性能的一致性。
利用本发明, 在采用非封闭式结构与人耳进行耦合来保证佩戴舒适性的 前提下, 在通信设备上实现了智能控制的前馈主动噪声消除技术, 能够有效 提高非封闭式前馈主动噪声消除技术应用于通信设备的稳定性, 避免通信设 备在使用过程中由于与人耳耦合的差异导致降噪性能存在的不一致性, 从而 在通信设备受话端实现非封闭式主动噪声消除功能, 极大改善受话端语音的 清晰度和可懂度。
为了实现上述以及相关目的, 本发明的一个或多个方面包括后面将详细 说明并在权利要求中特别指出的特征。 下面的说明以及附图详细说明了本发 明的某些示例性方面。 然而, 这些方面指示的仅仅是可使用本发明的原理的 各种方式中的一些方式。 此外, 本发明旨在包括所有这些方面以及它们的等 同物。 附图说明
通过参考以下结合附图的说明及权利要求书的内容, 并且随着对本发明 的更全面理解, 本发明的其它目的及结果将更加明白及易于理解。 在附图中: 图 1 为传统的利用非封闭式前馈主动噪声控制技术在通信设备受话端进 行噪声消除的示意图;
图 2a和 2b示出了非封闭式通信耳机的入耳部分结构的示意图; 图 3为应用本发明进行噪声消除的智能控制原理示意图;
图 4a、 图 4 b、 图 4c和图 4d分别为本发明所应用的通信设备的示例图; 图 5 示出了应用传统的前馈主动噪声控制技术时不同使用者所能达到降 噪效果示意图;
图 6示出了根据本发明实施例的非封闭式前馈主动噪声消除系统的示例 的方框示意图;
图 7示出了图 6中的智能控制装置的方框示意图;
图 8示出了具有根据本发明的非封闭式前馈主动噪声消除系统的通信设 备的方框示意图;
图 9为根据本发明实施例的用于非封闭式前馈主动噪声消除的噪声消除 方法的流程图;
图 10为根据本发明实施例的用于非封闭式前馈主动噪声消除中的智能控 制方法的流程图;
图 11为应用本发明实施例的理想与实际降噪性能曲线比较示意图; 和 图 12 为应用本发明提供的智能控制后不同使用者的降噪效果比较示意 图。
在所有附图中相同的标号指示相似或相应的特征或功能。 具体实施方式 以下将结合附图对本发明的技术方案和具体实施例进行详细描述。
本发明所提供的用于在通信设备中进行非封闭式前馈主动噪声消除系统 及其智能控制方法和装置是在噪声环境下应用于通信设备受话端的降噪智能 控制技术, 其实现方法包括在非封闭式前馈噪声消除系统上采用基于参考传 声器和监测传声器的智能控制技术, 以解决非封闭式前馈噪声消除技术应用 于通信设备所存在由于耦合差异所导致的降噪性能不一致的问题。
在通信设备受话端采用非封闭式结构, 相对于入耳式结构的受话端而言, 这种非封闭式的受话端能够保证长时间佩戴的舒适性。 在非封闭式通信设备 中采用前馈主动噪声消除技术来提高受话端语音信噪比的实现方法如图 1 所 示, 将置于耳廓外部的参考传声器 102拾取的外界参考噪声信号, 由电路 H 进行放大、 反相以及相位补偿, 产生用于抵消原始外界噪声信号的反噪声信 号, 理想状态下, 反噪声信号与原始外界噪声信号幅度相同、 相位相反; 反 噪声信号同输入的语音信号在电路上相加; 相加后的混合信号直接由扬声器 104发出馈入人耳;经由扬声器 104馈入人耳处的信号包括反噪声信号和语音 信号, 反噪声信号和原始的从空间中传播到人耳处的原始噪声信号幅度相同 相位相反, 所以达到相互抵消的目的, 而语音信号的幅度则没有改变。 利用 这种主动噪声消除方法, 能够使噪声信号大大降低, 语音不变, 从而有效提 高通信设备受话端语音的信噪比。
图 3 为将本发明的非封闭式前馈主动噪声消除的智能控制装置应用在通 信设备受话端进行噪声消除的智能控制原理示意图。
如图 3所示, 相比较于传统的利用前馈主动噪声控制技术在通信设备受 话端进行噪声消除所应用的硬件而言, 本发明的智能控制系统在通信设备靠 近人耳处增加一传声器, 在本文中称为监测传声器 122, 监测传声器 122处的 声压代表人耳处的声压。 在进行智能控制时, 参考传声器 112和监测传声器 122所拾取的信号都会输入进智能控制装置中。在本发明的一个示例中, 该智 能控制装置可以利用 DSP (数字信号处理) 模块实现。 在本发明的其他示例 中, 该智能控制装置也可以利用其它具有数字信号处理能力的模块实现。
在本发明中, 当没有应用主动噪声消除时, 对于远场低频噪声, 到达参 考传声器 112和监测传声器 122处的能量应该相当, 但应用主动噪声消除后, 参考传声器 112拾取的噪声能量不变, 而监测传声器 122处的能量为噪声沿 声学通道 P在物理空间上传播到人耳处的能量与经 H、 G电子传播通道所形 成的反噪声的能量的叠加, 由于反噪声能量的加入, 相对于参考传声器处的 噪声能量而言, 监测传声器 122处的能量得到了降低, 通过比较参考传声器 112和监测传声器 122处的特定频带内能量差异就可以判断主动噪声消除的效 果是否达到了预期, 如果没有达到预期, 则智能控制装置 (例如, DSP模块) 会输出一个智能控制信号来调整电路 H的参数, 然后再次判断主动噪声消除 效果, 如此反复, 通过智能反馈控制, 使得最终的主动噪声消除达到预期的 降噪效果, 从而解决因为通信设备与人耳耦合差别所带来的降噪效果不一致 的问题。 这里, 被调整的电路 H的参数 (即, 前馈主动噪声消除处理中的控 制电路参数) 通常包括增益系统和相位调整参数。 相应地, 此处的电路 H包 括放大器以及相位调整单元, 其目的在于将参考传声器所拾取的外界噪声信 号转变为能够抵消该参考噪声信号的反噪声信号。 最优选地, 该反噪声信号 的幅度与外界噪声信号的幅度相同, 但相位相反。 在这种情况下, 在人耳处 可以将噪声完全消除。 此外, 这里所说的相位调整单元可以包括相位补偿器。 在另一示例中, 所述相位调整单元也可以包括反向器和相位补偿器。
图 4a、 图 4 b、 图 4c和图 4d分别为本发明所应用的通信设备的示例图, 其中图 4a为手机, 图 4b为蓝牙耳机, 图 4c为立体声入耳耳机, 图 4d为立体 声头戴耳机。
如图 4a、 图 4 b、 图 4c和图 4d所示, 参考传声器 112—般设置在通信设 备背离受话端的扬声器 312—定距离处, 监测传声器 122设置在受话端的扬 声器 312信号输出位置, 在应用过程中, 参考扬声器 112位于使用者的耳廓 外部, 监测传声器 122位于使用者的耳廓中。
在应用如图 4a、 图 4b、 图 4c和图 4d所示的非封闭式通信设备时, 由于 使用者使用习惯及人耳结构本身存在较大差异, 不可避免地会存在不同人或 者同一人不同次使用其声学通道 P和次级通道 G都存在比较大的差异的情况。 因此, 为了达到比较一致的理想降噪效果, 对反噪声电路 H的要求也会不同。 图 5所示为应用传统的利用前馈主动噪声控制技术时不同使用者采用相 同电路 H所能达到降噪效果。 从图 5中可以看出, 采用同一电路 H时 3个不 同用户降噪性能出现了非常大的差异, 降噪一致性很难保证。
由于不同使用者以及同一使用者在每次使用通信设备时对电路 H的要求 都不可避免地存在或大或小的差别, 因此采用相同电路 H降噪性能一致性很 难保证, 必须针对不同的通信设备与人耳的耦合状态来调整电路 H的参数, 来达到不同用户具有相当的降噪效果。 对应于图 3所示的智能控制原理, 本 发明所提供的应用于非封闭式通信设备的前馈主动噪声消除系统的逻辑框架 如图 6所示。
图 6示出了用于非封闭式前馈主动噪声消除中的噪声消除系统 100的方 框示意图。 如图 6中所示, 所述噪声消除系统 100包括参考传声器 112、 反噪 声生成单元 114、 信号混合单元 116、 馈入单元 118、 监测传声器 122和智能 控制装置 120。
所述参考传声器 112被设置在远离人耳处, 用于拾取远离人耳处的外界 噪声信号, 如图 4a-4d中所示。所述反噪声信号生成单元 114用于对所述外界 噪声信号进行前馈主动噪声消除处理, 以生成能够抵消所述外界噪声信号的 反噪声信号。 这里, 所述反噪声信号生成单元 114等效于图 3中所示的电路 单元 H。 反噪声信号生成单元 114用于对参考传声器所拾取的外界噪声信号 进行放大和相位补偿等处理, 以将外界噪声信号变换为能够在进入人耳时抵 消在人耳处接收到外界噪声信号的影响的反噪声信号。 在本发明的一个示例 中, 反噪声信号生成单元 114可以包括放大器(未示出)和相位调整单元(未 示出), 其中所述放大器用于对来自参考传声器 112的外界噪声信号进行增益 放大, 所述相位调整单元用于对来自参考传声器 112 的外界噪声信号进行相 位调整, 以使得经过相位调整后的信号能够抵消外界噪声信号。 优选地, 选 择所述放大器的增益系数以及所述相位调整单元的相位调整参数, 使得经过 相位调整后的信号的相位刚好与外界噪声信号相反并且幅度相等, 从而完全 抵消外界噪声信号。
信号混合单元 116被设置为与反噪声信号生成单元 114以及通信设备的 受话端的输出相连, 用于接收从反噪声信号生成单元 114输出的反噪声信号, 以及在受话端存在语音信号输出时, 接收受话端输出的语音信号, 并且混合 所述反噪声信号和所述受话端输出的语音信号。 这里, 在本发明的一个示例 中, 所述信号混合单元 116可以是加法器。
馈入单元 118与信号混合单元 116相连, 用于将经过信号混合单元 116 混合后的信号馈入到人耳中, 以抵消通过自由空间进入人耳的外界噪声信号。 在本发明的一个示例中, 所述馈入单元 118 可以是扬声器。 在本发明的其他 示例中, 所述馈入单元 118也可以采用其它语音输出单元。
与现有的前馈主动噪声消除系统相比, 根据本发明的前馈主动噪声消除 系统 100还包括监测传声器 122和智能控制装置 120。 下面对监测传声器 122 和智能控制装置 120进行详细说明。
( 1 ) 监测传声器
如图 6中所示, 所述监测传声器 122被设置为在使用时靠近人耳处, 用 于拾取靠近人耳处的监测信号。 所述监测信号是通过自由空间进入人耳的外 界噪声信号与馈入单元 118 的输出信号在人耳处叠加后获得的信号。 这里, 在所述通信设备的受话端没有语音信号输出时, 所述馈入单元 118 的输出信 号是对该外界噪声信号进行前馈主动噪声消除处理后得到的信号。 在所述通 信设备的受话端具有语音信号输出时, 所述馈入单元 118 的输出信号是对该 外界噪声信号进行前馈主动噪声消除处理后得到的信号与通信设备的受话端 输出的语音信号叠加后获得的信号。
(2) 智能控制装置
下面参照图 7来说明图 6中的智能控制装置 120的细节。 如图 7所示, 所述智能控制装置 120包括检测单元 124、 接收单元 125、 降噪性能估计单元 126和第一调整单元 128。
检测单元
检测单元 124用于检测通信设备的受话端是否存在语音信号输出。
当受话端扬声器 312播放语音信号 (比如音乐) 时, 监测传声器 122拾 取到的信号中包括外界噪声信号和语音信号, 但是由于监测传声器 122与扬 声器 312的出声口非常近, 监测传声器 122拾取的受话端的语音信号将占主 导成分, 而参考传声器 112距离扬声器 312出声口较远, 拾取的信号主要是 外界噪声信号, 此时两个传声器拾取的信号在低频段相关性低, 无法通过比 较参考传声器 112和监测传声器 122拾取得的噪声成分能量差异来估计降噪 的性能。 而当只存在噪声时, 参考传声器 112和监测传声器 122拾取的外界 远场噪声信号在低频段具有很好的相关性, 能够通过比较参考传声器 112和 监测传声器 122拾取得的噪声成分能量差异来估计降噪的性能。
因此, 在本发明中需要对受话端的信号进行检测, 只有检测到受话端没 有语音信号输出时才进行主动降噪的智能控制, gP, 调整反噪声生成单元 114
(如电路 H) 的参数 (即, 控制电路参数, 例如增益系数和相位调整参数), 使得反噪声信号能够更好地抵消进入人耳的外界噪声信号, 从而优化降噪性 能; 而在受话端有语音信号输出时, 电路 H的参数维持不变。
在本发明的一个实施例中, 在进行检测时, 检测单元 124可以通过计算 两个传声器拾取到的信号的相关性来检测受话端是否存在语音信号输出, 从 而确定是否进行主动噪声消除的智能控制。 在这种情况下, 检测单元 124还 可以进一步包括分帧采样模块、 计算模块和相关性确定模块 (图中未示出)。 其中, 分帧采样模块用于分别对参考传声器 112和监测传声器 122拾取到的 信号进行分帧处理; 计算模块, 用于计算所述分帧处理后的两帧数据的相关 性; 相关性确定模块用于将计算出的参考传声器 112和监测传声器 122的两 帧数据的相关性与预定阈值进行比较, 以确定参考传声器和监测传声器拾取 到的信号的相关性。
具体地, 作为示例, 在对受话端的信号进行检测的过程中, 首先对参考 传声器 112和监测传声器 122拾取到的信号进行分帧处理, 每帧 512个采样 点, 相邻帧有 50%的数据重叠, 然后对参考传声器 112和监测传声器 122的 两帧数据进行相关计算, 若相关性大于一个上限阈值 (本实施方式取 0.8) 则 判断受话端没有信号输出, 进行降噪的智能控制; 若相关性小于一个下限阈 值 (本实施方式取 0.6), 则判断受话端有信号输出, 不进行降噪的智能控制, 如果相关性处在上, 下限之间, 则维持上一次判断结果。
此外, 检测单元 124也可以采用其他的一些方式来实现, 例如, 可以通 过直接检测受话端的输出信号的能量大小来判断受话端是否存在语音信号输 出。 由于外界噪声信号的能量大小比较小, 通常低于某一阈值, 因此, 当检 测受话端的输出信号的能量大于该阈值时, 则认为存在语音信号输出, 否则, 则认为不存在语音信号输出。 在这种情况下, 所述检测单元可以包括: 能量 检测模块 (未示出), 用于检测所述受话端的输出信号的能量大小; 以及语音 信号存在性确定模块(未示出), 用于将所检测到的能量大小与预定阈值进行 比较, 其中, 在所检测到的能量大小大于预定阈值时, 所述语音信号存在性 确定模块确定所述受话端存在语音信号输出。 接收单元
接收单元 125与参考传声器 112和监测传声器 122相连, 用于在检测到 受话端没有语音信号输出时, 接收来自参考传声器 112 的外界噪声信号以及 来自监测传声器 122的监测信号。 这里, 所述接收单元 125 由所述检测单元 124控制, 只有在所述检测单元检测到受话端没有语音信号输出时, 所述接收 单元 125才接收来自参考传声器 112的外界噪声信号以及来自监测传声器 122 的反噪声信号。 降噪性能估计单元
降噪性能估计单元 126用于对所接收的外界噪声信号以及监测信号进行 性能分析, 以估计经过前馈主动噪声消除处理后的降噪性能曲线。 当检测到 受话端没有语音信号输出时, 参考传声器 112拾取的将是外界噪声, 监测传 声器 122拾取的监测信号为外界噪声信号和对外界噪声信号进行前馈主动消 除处理后获得的信号叠加后得到的信号, 即经过降噪处理后的信号。 因此, 在上述情况下, 通过比较参考传声器和监测传声器处的低频能量就可以判断 监测传声器处的降噪性能。 通常, 所述降噪性能估计单元 126在特定频带内 对所接收的外界噪声信号以及监测信号进行性能分析。 在该特定频带内, 降 噪效果更加明显。
具体地, 作为示例, 在进行降噪性能估计的过程中, 首先需要设定一个 理想的降噪性能曲线 NR_idea。 图 11为应用本发明实施例的理想与实际降噪 性能曲线比较示意图,其中理想的降噪性能曲线 NR_idea如图 11中实线所示。
为了减小计算量及排除其他一些因素的干扰, 本实施例优选只计算主要 降噪频带 500〜lkHz的降噪性能以实现对降噪性能的估计。 由图 2所示的智 能控制原理可知: P - HG
Figure imgf000015_0001
定义降噪性能 NR为
Figure imgf000015_0002
当 H逼近理想电路 H_idea时,在 500〜lkHz频带内的降噪性能 NR将逼 近理想降噪性能曲线 NR_idea。 在任一时刻通过公式 (2)可以计算当前时刻在 频带 500〜lkHz内的降噪性能 NR1 ,通过比较 NR_idea和 NR1即可以知道当 前降噪性能与理想降噪性能在 500〜lkHz频带内的差别, 判定出当前电路 H 与理想电路 H_idea差别主要体现在低频还是高频部分, 从而明确电路 H参数 调整的大概方向, 以便进入第一调整单元 128进行参数调整,通过调整电路 H (反噪声信号生成单元 114) 的频率响应 (包括增益和相位) 来使得电路 H 的频率响应逼近理想电路 H_idea的频率响应。 其中存在如下推导公式:
P HG
N
p, - H;J
Figure imgf000015_0003
第一调整单元
第一调整单元 128用于根据降噪性能估计单元 126所估计出的降噪性能 曲线与预设的降噪性能曲线, 对前馈主动噪声消除处理中的控制电路参数 (即, 反噪声生成单元的电路参数) 进行调整, 以使得所估计的降噪性能曲 线与预设的降噪性能曲线的差在预设范围内。 具体地, 通过监测传声器 122 处的降噪性能调整的控制电路参数包括增益系数和相位调整参数。
在本发明的一个优选实施方式中, 第一调整单元 128进一步包括调整方 向确定模块和第二调整模块(图中未示出)。 调整方向确定模块用于将所估计 出的降噪性能曲线与预设的降噪性能曲线进行比较, 以确定所述控制电路参 数 (即, 反噪声生成单元的电路参数) 的调整方向。 第二调整模块用于根据 所确定的调整方向, 对所述控制电路参数进行调整。
在本发明的一个示例中, 所述第二调整模块可以包括增益系数调节单元 和 /或相位调整量调节单元(图中未示出)。其中, 增益系数调节单元调整对外 界噪声信号进行放大的放大器的增益系数; 相位调整量调节单元用于调整对 外界噪声信号进行相位调整的相位调整单元的相位调整量。 在这种情况下, 对应地, 所述反噪声信号生成单元包括放大器和相位调整单元。 此外, 在本 发明的另一示例中, 所述增益系数调节单元和相位调整量调节单元也可以合 并在第二调整模块中, 由第二调整模块来执行上述增益系数调整和相位调整 量调整。
此外, 前馈主动噪声消除处理中的控制电路参数的调整过程采用反馈控 制, 每调整一次参数后都重新比较所估计出的降噪性能曲线是否更加接近所 述预设的降噪性能曲线; 如果更接近则维持该调整方向, 如果不是则反向该 调整方向, 直到所估计出的降噪性能曲线与预设的降噪性能曲线的差异在预 设范围内。
具体地,作为示例,当判断需要进行参数调整时,通过比较 NR1和 NR_idea 可以知道电路 H需要调整的是高频部分还是低频部分。 但还需要制定一些调 整的准则, 从式 (3)可知, Δ Η与 A NR直接相关, 所以可以基于反馈控制理论 来对电路 H进行调整, 调整过程分为增益调节和相位调节。
增益和相位调节都分别有两个调整方向, 分别为正向调节提高, 负向调 节减小, 如果当前降噪性能曲线与理想降噪性能曲线 (即, 本文中的预设降 噪曲线) 比较主要差异体现在降噪幅度不够, 则开始阶段先需要对电路增益 进行调整, 如果当前降噪性能曲线与理想降噪性能曲线比较主要差异体现在 降噪频带不一致, 则开始阶段先需要对电路相位进行调整。 作为示例, 在调 整的初始阶段, 可以尝试着往增益减小和相位趋近 180度方向调节, 然后在 新的控制电路参数 H的情况下估计降噪性能曲线 NR_neW, 如果判断新电路 参数下, 降噪性能曲线 NR_new比未调整前的降噪性能曲线 NR1更接近理想 降噪性能曲线 NR_idea, 则判断参数调整方向正确, 继续往该方向调整电路参 数。 如果判断新电路参数下, 降噪性能曲线 NR_new比 NR1更差, 则判断初 始调整方向错误, 改为往相反方向调整控制电路参数。 找到正确的调整方向 后, 可以持续地在此方向上进行参数调节, 每次调整后都会对新的电路参数 下的降噪性能曲线 NR_new 进行估计, 直到新的降噪性能曲线 NR_new 与 NR_idea的差在预定阈值范围内, 则停止上述调整。
停止参数调整后,继续对降噪性能 NR进行实时检测,如果重新发现降噪 性能达不到预期的效果, 则可再次启动参数调整功能。 另外, 在极个别情况 下, 也可能出现降噪性能 NR_new始终不能到达最优 NR_idea的情况, 此时 可以把系统稳定在调整过程中找到的降噪性能最好的参数上。
在具体的硬件实施方面, 可以在反噪声生成单元 (即, 电路 H) 的主要 滤波器件电阻和电容部分采用数控电容和数控电阻, DSP 模块通过 I2C 或 GPIO等方式对电路 H的电阻和电容进行调节来达到理想的频率响应。
图 8示出了具有根据本发明的非封闭式前馈主动噪声消除系统 100的通 信设备 10的方框示意图。 图 8中的噪声消除系统 100可以包括图 6中示出的 噪声消除系统 100的各种变型。
如上参照图 3到图 8描述根据本发明的智能控制装置 120、噪声消除系统 110以及通信设备 10的结构,下面将参考图 9和图 10描述根据发明的非封闭 式前馈主动噪声消除过程及其智能控制过程。
图 9示出了根据本发明实施例的用于非封闭式前馈主动噪声消除的噪声 消除方法的流程图。
如图 9中所示, 首先, 在步骤 S910, 拾取远离人耳处的外界噪声信号。 也就是说, 通过参考传声器拾取外界噪声信号。
然后, 在步骤 S920, 检测通信设备的受话端是否存在语音信号输出。 如 果存在语音信号输出, 则转到步骤 S940。否则, 转到步骤 S930, 在步骤 S930 中, 对用于非封闭式前馈主动噪声消除处理的控制电路参数进行智能控制。 关于对所述前馈主动噪声消除处理的控制电路参数的智能控制过程将在后面 参照图 10进行说明。
在步骤 S940中, 利用当前的控制电路参数, 对所拾取的外界噪声信号进 行前馈主动噪声消除处理, 以生成用于抵消外界噪声信号的反噪声信号。
随后, 在步骤 S950中, 将所生成的反噪声信号与通信设备的受话端所接 收的语音信号混合。
在完成上述混合后, 在步骤 S960中, 通过馈入单元将混合后的信号馈入 人耳中, 以抵消通过自由空间进入人耳的外界噪声信号。 至此, 完成根据本 发明的非封闭式前馈主动噪声消除过程。
图 10为根据本发明实施例的用于非封闭式前馈主动噪声消除中的智能控 制方法的流程图。 如图 10所示, 在检测到通信设备的受话端没有语音信号输出时, 首先在 步骤 S931中, 接收来自参考传声器的外界噪声信号以及来自监测传声器的监 测噪声信号, 这里, 所述监控信号是所述反噪声信号生成单元利用当前的控 制电路参数对所拾取的外界噪声信号进行前馈主动噪声消除处理而生成的信 号与通过自由空间进入人耳的外界噪声信号在靠近人耳处叠加后获得的信 号。。 然后, 在接收到上述信号后, 在步骤 S932 中, 对所接收的所述外界噪 声信号和所述监测噪声信号进行性能分析, 以估计经过前馈主动噪声消除处 理后的降噪性能曲线。
在估计出经过前馈主动噪声消除处理后的降噪性能曲线后, 根据所述估 计出的降噪性能曲线和预设的降噪性能曲线, 对前馈主动噪声消除处理的控 制电路参数进行调整, 以使得所述估计的降噪性能曲线与预设的降噪性能曲 线的差在预设范围内。 具体地, 在步骤 S933 , 将所述估计出的降噪性能曲线 与预设降噪性能曲线进行比较, 判断所述估计出的降噪性能曲线与预设的降 噪性能曲线的差是否在预设范围内。 如果所述估计出的降噪性能曲线与预设 的降噪性能曲线之间的差不在预设范围内, 则进行到步骤 S934, 对反噪声生 成单元的用于前馈主动噪声消除处理的控制电路参数进行调整。 然后返回到 步骤 S931 , 如上继续进行调整, 直到所估计的降噪性能曲线与预设的降噪性 能曲线的差在预设范围内。 这里, 返回到 S931时所接收的监测信号是反噪声 信号生成单元利用调整后的控制电路参数生成的信号与通过自由空间进入人 耳的外界噪声信号在人耳处叠加后获得的信号。 如果所述估计出的降噪性能 曲线与预设的降噪性能曲线之间的差在预设范围内, 则流程结束。
图 12 为应用本发明提供的智能控制后不同使用者的降噪效果比较示意 图。 如图 12所示, 经过本发明所提供的智能反馈控制后, 不同用户降噪性能 相差不大, 与图 5所示的应用传统的前馈主动噪声控制技术时不同使用者采 用相同电路 H所能达到降噪效果图相比, 可以明显看出, 将本发明所提供的 智能反馈控制应用到传统的前馈主动噪声控制技术中, 能够使降噪性能保持 很好的一致性。 如上参照附图以示例的方式描述了根据本发明的用于非封闭式前馈主动 噪声消除中的智能控制方法和装置, 用于非封闭式前馈主动噪声消除的噪声 消除方法及非封闭式前馈主动噪声消除系统, 以及具有上述非封闭式前馈主 动噪声消除系统的通信设备。 但是, 本领域技术人员应当理解, 对于上述本 发明所提出的用于非封闭式前馈主动噪声消除中的智能控制方法和装置, 用 于非封闭式前馈主动噪声消除的噪声消除方法及非封闭式前馈主动噪声消除 系统, 以及具有上述非封闭式前馈主动噪声消除系统的通信设备, 还可以在 不脱离本发明内容的基础上做出各种改进。 因此, 本发明的保护范围应当由 所附的权利要求书的内容确定。

Claims

权 利 要 求 书
1、 一种用于非封闭式前馈主动噪声消除中的智能控制方法, 包括: 在检测到通信设备的受话端没有语音信号输出时, 接收来自远离人耳处 的参考传声器的外界噪声信号以及来自靠近人耳处的监测传声器的监测信 号;
对所接收的所述外界噪声信号和所述监测信号进行性能分析, 以估计出 经过所述前馈主动噪声消除处理后的降噪性能曲线; 以及
根据所述估计出的降噪性能曲线与预设的降噪性能曲线, 对所述前馈主 动噪声消除处理中的控制电路参数进行调整, 以使得所述估计的降噪性能曲 线与所述预设的降噪性能曲线的差在预设范围内。
2、 如权利要求 1所述的智能控制方法, 其中, 根据所述估计出的降噪性 能曲线与预设的降噪性能曲线, 对所述前馈主动噪声消除处理中的控制电路 参数进行调整包括:
将所述估计出的降噪性能曲线与预设的降噪性能曲线进行比较, 以确定 所述控制电路参数的调整方向; 以及
根据所确定的调整方向, 对所述控制电路参数进行调整, 其中, 所述控制电路参数的调整过程采用反馈控制, 每调整一次后都重新比较 所述估计出的降噪性能曲线是否更加接近所述预设的降噪性能曲线; 如果更 接近则维持所述调整方向, 如果不是则反向所述调整方向, 直到所述估计出 的降噪性能曲线与所述预设的降噪性能曲线的差在所述预设范围内。
3、 如权利要求 1所述的智能控制方法, 其中, 所述控制电路参数包括增 益系数和相位调整参数。
4、 如权利要求 1所述的智能控制方法, 其中, 检测通信设备的受话端是 否存在语音信号输出包括: 通过计算所述外界噪声信号和所述监测信号之间 的相关性或者通过检测所述受话端的输出信号能量大小来确定。
5、 如权利要求 4所述的智能控制方法, 其中, 通过计算所述外界噪声信 号和所述监测信号之间的相关性来检测所述通信设备的受话端是否存在语音 信号输出包括:
分别对所述参考传声器和所述监测传声器拾取到的信号进行分帧处理; 计算所述分帧处理后的两帧数据的相关性; 以及
将所计算出的相关性与预定阈值比较, 以确定所述参考传声器和所述监 测传声器拾取到的信号的相关性。
6、 一种非封闭式前馈主动噪声消除方法, 包括:
拾取远离人耳处的外界噪声信号;
对所拾取的外界噪声信号进行前馈主动噪声消除处理, 以生成用于抵消 所述外界噪声信号的反噪声信号;
将所生成的反噪声信号与通信设备的受话端所接收的语音信号混合; 以 及
将混合后的信号馈入人耳中, 以抵消通过自由空间进入人耳的外界噪声 信号,
其中, 在所述通信设备的受话端没有语音信号输出时所述前馈主动噪声 消除处理中的控制电路参数是按照如权利要求 1到 5中任一项所述的智能控 制方法调整。
7、 一种用于非封闭式前馈主动噪声消除中的智能控制装置, 包括: 检测单元, 用于检测通信设备的受话端是否存在语音信号输出; 接收单元, 用于在检测到所述受话端没有语音信号输出时, 接收来自远 离人耳处的参考传声器的外界噪声信号以及来自靠近人耳处的监测传声器的 监测目号;
降噪性能估计单元, 用于对所接收的所述外界噪声信号和所述监测信号 进行性能分析, 以估计出经过前馈主动噪声消除处理后的降噪性能曲线; 以 及
第一调整单元, 用于根据所述估计出的降噪性能曲线与预设的降噪性能 曲线, 对所述前馈主动噪声消除处理中的控制电路参数进行调整, 以使得所 述估计的降噪性能曲线与所述预设的降噪性能曲线的差在预设范围内。
8、 如权利要求 7所述的智能控制装置, 其中, 所述第一调整单元包括: 调整方向确定模块, 用于将所述估计出的降噪性能曲线与预设的降噪性 能曲线进行比较, 以确定所述控制电路参数的调整方向; 以及
第二调整模块, 用于根据所确定的调整方向, 对所述控制电路参数进行 调整;
其中, 所述控制电路参数的调整过程采用反馈控制, 每调整一次后都重 新比较所述估计出的降噪性能曲线是否更加接近所述预设的降噪性能曲线; 如果更接近则维持所述调整方向, 如果不是则反向所述调整方向, 直到所述 估计出的降噪性能曲线与所述预设的降噪性能曲线的差在所述预设范围内。
9、 如权利要求 7所述的智能控制装置, 其中, 所述检测单元通过计算所 述参考传声器和所述监测传声器拾取到的信号的相关性或者通过检测所述受 话端的输出信号能量大小来确定所述受话端是否存在语音信号输出。
10、 如权利要求 9所述的智能控制装置, 其中, 在所述检测单元通过计 算所述参考传声器和所述监测传声器拾取到的信号的相关性来确定所述受话 端是否存在语音信号输出时, 所述检测单元进一步包括:
分帧采样模块, 用于分别对所述参考传声器和所述监测传声器拾取到的 信号进行分帧处理;
计算模块, 用于计算分帧处理后的两帧数据的相关性; 以及
相关性确定模块, 用于将所计算出的相关性与预定阈值进行比较, 以确 定所述参考传声器和所述监测传声器拾取到的信号的相关性。
11、 一种非封闭式前馈主动噪声消除系统, 包括:
参考传声器, 用于拾取远离人耳处的外界噪声信号;
反噪声信号生成单元, 用于对所述外界噪声信号进行前馈主动噪声消除 处理, 以生成用于抵消所述外界噪声信号的反噪声信号;
信号混合单元, 用于将所述反噪声信号与通信设备的受话端所接收的语 音信号混合;
馈入单元, 用于将所混合的信号馈入到人耳中;
监测传声器, 用于拾取靠近人耳处的监测信号, 所述监测信号是通过自 由空间进入人耳的外界噪声信号与所述馈入单元的输出信号在人耳处叠加后 获得的信号; 以及
如权利要求 7〜10 中任一项所述的智能控制装置, 用于在所述受话端没 有语音信号输出时, 对所述反噪声信号生成单元的前馈主动噪声消除处理的 控制电路参数进行调整。
12、 一种通信设备, 包括如权利要求 11所述的非封闭式前馈主动噪声消
PCT/CN2011/081930 2011-09-10 2011-11-08 噪声消除系统和方法、智能控制方法和装置、通信设备 WO2013033946A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP11872107.5A EP2696597B8 (en) 2011-09-10 2011-11-08 Method and system for noise reduction, smart control method and device, and communication device
KR1020137021791A KR101442450B1 (ko) 2011-09-10 2011-11-08 소음제거시스템 및 방법, 지능제어방법 및 장치, 통신설비
DK11872107.5T DK2696597T3 (da) 2011-09-10 2011-11-08 Fremgangsmåde og system til støjreduktion, intelligent styringsfremgangsmåde og -indretning, samt kommunikationsindretning
JP2013552087A JP5568694B2 (ja) 2011-09-10 2011-11-08 ノイズキャンセリングシステム及び方法、知能制御方法及び装置、並びに通信機器
US14/119,611 US9379751B2 (en) 2011-09-10 2011-11-08 Noise canceling system and method, smart control method and device and communication equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110267999.2A CN102348151B (zh) 2011-09-10 2011-09-10 噪声消除系统和方法、智能控制方法和装置、通信设备
CN201110267999.2 2011-09-10

Publications (1)

Publication Number Publication Date
WO2013033946A1 true WO2013033946A1 (zh) 2013-03-14

Family

ID=45546369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/081930 WO2013033946A1 (zh) 2011-09-10 2011-11-08 噪声消除系统和方法、智能控制方法和装置、通信设备

Country Status (7)

Country Link
US (1) US9379751B2 (zh)
EP (1) EP2696597B8 (zh)
JP (1) JP5568694B2 (zh)
KR (1) KR101442450B1 (zh)
CN (1) CN102348151B (zh)
DK (1) DK2696597T3 (zh)
WO (1) WO2013033946A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016541222A (ja) * 2013-12-16 2016-12-28 クゥアルコム・インコーポレイテッドQualcomm Incorporated フィードバック検出のためのシステムおよび方法
CN110970044A (zh) * 2019-11-27 2020-04-07 武汉大学 一种面向语音识别的语音增强方法
CN113490089A (zh) * 2021-06-02 2021-10-08 安克创新科技股份有限公司 降噪控制方法、电子设备及计算机可读存储装置
CN114007157A (zh) * 2021-10-28 2022-02-01 中北大学 一种智能降噪通信耳机
CN114268875A (zh) * 2021-12-13 2022-04-01 歌尔科技有限公司 低频共振效应的消除电路、系统及方法
CN114844976A (zh) * 2022-03-25 2022-08-02 东莞市天翼通讯电子有限公司 一种通过手机app调整蓝牙耳机anc深度方法及系统

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9271076B2 (en) * 2012-11-08 2016-02-23 Dsp Group Ltd. Enhanced stereophonic audio recordings in handheld devices
CN103945293A (zh) * 2013-01-22 2014-07-23 深圳富泰宏精密工业有限公司 降噪系统、具有该降噪系统的耳机及便携式电子装置
US9100732B1 (en) * 2013-03-29 2015-08-04 Google Inc. Hertzian dipole headphone speaker
US9462376B2 (en) * 2013-04-16 2016-10-04 Cirrus Logic, Inc. Systems and methods for hybrid adaptive noise cancellation
CN105489212A (zh) * 2014-09-17 2016-04-13 中兴通讯股份有限公司 下行主动降噪装置、方法及移动终端
CN104602163B (zh) * 2014-12-31 2017-12-01 歌尔股份有限公司 主动降噪耳机及应用于该耳机的降噪控制方法和系统
CN104602155B (zh) * 2015-01-14 2019-03-15 中山市天键电声有限公司 基于智能移动终端的无线降噪耳机
CN104602157B (zh) * 2015-01-28 2018-11-02 深圳市冠旭电子股份有限公司 一种耳机降噪方法及装置
US9860652B2 (en) * 2015-03-23 2018-01-02 Etymonic Design Incorporated Test apparatus for binaurally-coupled acoustic devices
US11087775B2 (en) * 2015-12-11 2021-08-10 Sony Corporation Device and method of noise suppression based on noise source positions
CN106941637B (zh) * 2016-01-04 2020-05-05 科大讯飞股份有限公司 一种自适应主动降噪的方法、系统及耳机
JP6535765B2 (ja) * 2016-02-05 2019-06-26 本田技研工業株式会社 能動型振動騒音制御装置及び能動型振動騒音制御回路
WO2018174310A1 (ko) * 2017-03-22 2018-09-27 삼성전자 주식회사 잡음 환경에 적응적인 음성 신호 처리방법 및 장치
CN106412788B (zh) * 2016-10-31 2019-08-02 歌尔科技有限公司 一种前馈主动降噪耳机的测试方法和测试系统
US10468020B2 (en) * 2017-06-06 2019-11-05 Cypress Semiconductor Corporation Systems and methods for removing interference for audio pattern recognition
CN107945784A (zh) * 2017-12-14 2018-04-20 成都必盛科技有限公司 一种主动降噪音频设备的自动校准方法及装置
CN108156551A (zh) * 2018-02-09 2018-06-12 会听声学科技(北京)有限公司 主动降噪系统、主动降噪耳机及主动降噪方法
CN109247287B (zh) * 2018-03-21 2021-01-29 南师大科技园栖霞管理(南京)有限公司 云计算式驱动电机噪声屏蔽方法
CN108575857B (zh) * 2018-03-21 2020-11-20 温岭市维尔峰机电有限公司 云计算式驱动电机噪声屏蔽平台
CN108810692A (zh) * 2018-05-25 2018-11-13 会听声学科技(北京)有限公司 主动降噪系统、主动降噪方法及耳机
CN109121034B (zh) * 2018-08-01 2020-06-12 Oppo广东移动通信有限公司 基于音量的主从切换方法及相关产品
EP3610989A1 (de) 2018-08-14 2020-02-19 Hilti Aktiengesellschaft Kopfhörer zur aktiven lärmunterdrückung, helm mit einem derartigen kopfhörer, system mit einem derartigen kopfhörer und einer handwerkzeugmaschine
CN108896665A (zh) * 2018-08-27 2018-11-27 国网山东省电力公司电力科学研究院 工作场所防噪耳塞的适用性评估方法
KR102570384B1 (ko) 2018-12-27 2023-08-25 삼성전자주식회사 가전기기 및 이의 음성 인식 방법
CN109511041B (zh) * 2018-12-28 2020-06-26 歌尔科技有限公司 一种耳机的开机设定的方法、装置以及耳机
CN109511044A (zh) * 2019-01-07 2019-03-22 哈尔滨工业大学(深圳) 混合结构主动降噪耳机、降噪方法及存储介质
US11996074B2 (en) 2019-10-03 2024-05-28 Sony Group Corporation Signal processing device and signal processing device, and sound device
US11164557B2 (en) * 2019-11-14 2021-11-02 Bose Corporation Active noise cancellation systems with convergence detection
CN112019977A (zh) * 2020-09-04 2020-12-01 广州郝舜科技有限公司 一种大数据采集用音频采集装置
CN112309363B (zh) * 2020-11-03 2023-07-11 三一重机有限公司 工程机械及其降噪方法、装置
CN112420066B (zh) * 2020-11-05 2024-05-14 深圳市卓翼科技股份有限公司 降噪方法、装置、计算机设备和计算机可读存储介质
CN117501710A (zh) * 2021-04-25 2024-02-02 深圳市韶音科技有限公司 一种开放式耳机
CN116918350A (zh) 2021-04-25 2023-10-20 深圳市韶音科技有限公司 声学装置
CN113242490B (zh) * 2021-06-22 2023-02-28 安克创新科技股份有限公司 一种信号处理方法、装置、头戴耳机及存储介质
CN113490098A (zh) * 2021-07-07 2021-10-08 东莞市逸音电子科技有限公司 一种anc耳机主动降噪滤波器主动优化算法
CN113490123B (zh) * 2021-07-07 2023-10-31 东莞市逸音电子科技有限公司 基于ai的主动降噪自动生产测试方法
CN113645533B (zh) * 2021-08-31 2024-02-02 恒玄科技(上海)股份有限公司 一种主动降噪耳机及其降噪方法
KR102671092B1 (ko) 2021-11-19 2024-05-31 썬전 샥 컴퍼니 리미티드 개방형 음향장치
CN114845231B (zh) * 2022-03-25 2023-01-24 东莞市天翼通讯电子有限公司 一种通过电声测试设备测试enc降噪效果的方法及系统
CN114786083A (zh) * 2022-04-21 2022-07-22 歌尔股份有限公司 降噪方法、装置、耳机设备及存储介质
DK202270529A1 (en) * 2022-10-31 2024-06-14 Lizn Aps Speech enhancement with active masking control

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1507293A (zh) 2002-12-09 2004-06-23 Ӣҵ�O�ţ��Ϻ������Ӽ������޹�˾ 智能化调节移动通讯装置耳机音量的方法
CN1700305A (zh) * 2004-05-18 2005-11-23 中国科学院声学研究所 子带自适应谷点降噪系统和方法
CN101001481A (zh) 2006-01-14 2007-07-18 三星电子株式会社 降低耳机噪声装置和方法、降噪耳机和便携音频再现装置
CN101365259A (zh) * 2007-08-10 2009-02-11 奥迪康有限公司 听力装置中的有源噪声消除
CN101375328A (zh) * 2006-01-26 2009-02-25 沃福森微电子股份有限公司 环境噪声降低装置
CN101432798A (zh) 2006-04-26 2009-05-13 伯斯有限公司 利用主动降噪的头戴式耳机的通信

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000059876A (ja) 1998-08-13 2000-02-25 Sony Corp 音響装置およびヘッドホン
US7031460B1 (en) * 1998-10-13 2006-04-18 Lucent Technologies Inc. Telephonic handset employing feed-forward noise cancellation
US6757395B1 (en) 2000-01-12 2004-06-29 Sonic Innovations, Inc. Noise reduction apparatus and method
US6996241B2 (en) * 2001-06-22 2006-02-07 Trustees Of Dartmouth College Tuned feedforward LMS filter with feedback control
GB2441835B (en) * 2007-02-07 2008-08-20 Sonaptic Ltd Ambient noise reduction system
GB2456501B (en) 2007-11-13 2009-12-23 Wolfson Microelectronics Plc Ambient noise-reduction system
JP4950930B2 (ja) 2008-04-03 2012-06-13 株式会社東芝 音声/非音声を判定する装置、方法およびプログラム
AU2009287904B2 (en) 2008-09-04 2015-02-12 Temco Japan Co., Ltd. Ear muff-type headset for two-way communication
JP2010268188A (ja) 2009-05-14 2010-11-25 Panasonic Corp フィードバック型ノイズキャンセリングヘッドホン
ATE550754T1 (de) * 2009-07-30 2012-04-15 Nxp Bv Verfahren und vorrichtung zur aktiven geräuschsminderung unter anwendung von wahrnehmungsmaskierung
CN102118667B (zh) * 2009-12-31 2016-05-25 歌尔声学股份有限公司 非封闭式耳塞型耳机及其受话端语音增强装置
CN202261773U (zh) * 2011-09-10 2012-05-30 歌尔声学股份有限公司 噪声消除系统、智能控制装置和通信设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1507293A (zh) 2002-12-09 2004-06-23 Ӣҵ�O�ţ��Ϻ������Ӽ������޹�˾ 智能化调节移动通讯装置耳机音量的方法
CN1700305A (zh) * 2004-05-18 2005-11-23 中国科学院声学研究所 子带自适应谷点降噪系统和方法
CN101001481A (zh) 2006-01-14 2007-07-18 三星电子株式会社 降低耳机噪声装置和方法、降噪耳机和便携音频再现装置
CN101375328A (zh) * 2006-01-26 2009-02-25 沃福森微电子股份有限公司 环境噪声降低装置
CN101432798A (zh) 2006-04-26 2009-05-13 伯斯有限公司 利用主动降噪的头戴式耳机的通信
CN101365259A (zh) * 2007-08-10 2009-02-11 奥迪康有限公司 听力装置中的有源噪声消除

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016541222A (ja) * 2013-12-16 2016-12-28 クゥアルコム・インコーポレイテッドQualcomm Incorporated フィードバック検出のためのシステムおよび方法
CN110970044A (zh) * 2019-11-27 2020-04-07 武汉大学 一种面向语音识别的语音增强方法
CN113490089A (zh) * 2021-06-02 2021-10-08 安克创新科技股份有限公司 降噪控制方法、电子设备及计算机可读存储装置
CN114007157A (zh) * 2021-10-28 2022-02-01 中北大学 一种智能降噪通信耳机
CN114268875A (zh) * 2021-12-13 2022-04-01 歌尔科技有限公司 低频共振效应的消除电路、系统及方法
CN114844976A (zh) * 2022-03-25 2022-08-02 东莞市天翼通讯电子有限公司 一种通过手机app调整蓝牙耳机anc深度方法及系统

Also Published As

Publication number Publication date
EP2696597A4 (en) 2014-12-10
KR20130106887A (ko) 2013-09-30
EP2696597A1 (en) 2014-02-12
EP2696597B1 (en) 2017-09-06
JP5568694B2 (ja) 2014-08-06
EP2696597B8 (en) 2017-10-18
KR101442450B1 (ko) 2014-10-30
CN102348151A (zh) 2012-02-08
US20140141724A1 (en) 2014-05-22
DK2696597T3 (da) 2017-11-27
CN102348151B (zh) 2015-07-29
US9379751B2 (en) 2016-06-28
JP2014507894A (ja) 2014-03-27

Similar Documents

Publication Publication Date Title
WO2013033946A1 (zh) 噪声消除系统和方法、智能控制方法和装置、通信设备
JP5513690B2 (ja) 通信イヤホンの音声増強方法、装置及びノイズ低減通信イヤホン
US9369557B2 (en) Frequency-dependent sidetone calibration
US11330358B2 (en) Wearable audio device with inner microphone adaptive noise reduction
US8831238B2 (en) Noise cancellation system
EP2999234B1 (en) Squeal suppression method and device for active noise removal (anr) earphone
US9479860B2 (en) Systems and methods for enhancing performance of audio transducer based on detection of transducer status
WO2016041247A1 (zh) 下行主动降噪装置、方法及移动终端
CN108140381A (zh) 具有滤波误差麦克风信号的混合自适应噪声消除系统
CN110782912A (zh) 音源的控制方法以及扬声设备
KR20120034085A (ko) 이어폰 구조체 및 그 작동 방법
CN202261773U (zh) 噪声消除系统、智能控制装置和通信设备
CN102118667A (zh) 非封闭式耳塞型耳机及其受话端语音增强装置及方法
JP6301508B2 (ja) 通信ヘッドセットにおける自己音声フィードバック
CN108352158A (zh) 用于分布式自适应噪声消除的系统及方法
US11335315B2 (en) Wearable electronic device with low frequency noise reduction
JPH0630490A (ja) イヤーセット型送受話器
CN115398934A (zh) 再现音频信号时主动抑制闭塞效应的方法、装置、耳机及计算机程序
CN113347527A (zh) 声学路径的确定方法、装置、可读存储介质及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11872107

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013552087

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137021791

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2011872107

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011872107

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14119611

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE