[go: up one dir, main page]

WO2013027290A1 - 車両、および、車両の制御方法ならびに制御装置 - Google Patents

車両、および、車両の制御方法ならびに制御装置 Download PDF

Info

Publication number
WO2013027290A1
WO2013027290A1 PCT/JP2011/069150 JP2011069150W WO2013027290A1 WO 2013027290 A1 WO2013027290 A1 WO 2013027290A1 JP 2011069150 W JP2011069150 W JP 2011069150W WO 2013027290 A1 WO2013027290 A1 WO 2013027290A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
power
storage device
power storage
battery
Prior art date
Application number
PCT/JP2011/069150
Other languages
English (en)
French (fr)
Inventor
啓介 森崎
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to CN201180073010.2A priority Critical patent/CN103747995B/zh
Priority to PCT/JP2011/069150 priority patent/WO2013027290A1/ja
Priority to US14/238,550 priority patent/US9333863B2/en
Priority to EP11871319.7A priority patent/EP2749467B1/en
Priority to JP2013529823A priority patent/JP5747988B2/ja
Publication of WO2013027290A1 publication Critical patent/WO2013027290A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2045Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for optimising the use of energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/11Controlling the power contribution of each of the prime movers to meet required power demand using model predictive control [MPC] strategies, i.e. control methods based on models predicting performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/20Inrush current reduction, i.e. avoiding high currents when connecting the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0604Throttle position
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a vehicle, a vehicle control method, and a control device, and in particular, in a vehicle equipped with a first power storage device and a second power storage device, power is supplied from the first power storage device to the second power storage device.
  • a vehicle equipped with a first power storage device and a second power storage device
  • power is supplied from the first power storage device to the second power storage device.
  • a hybrid vehicle equipped with an electric motor as a driving source or an electric vehicle equipped with a cruising distance extension function is known.
  • vehicles such as these for example, as described in Japanese Patent Application Laid-Open No. 2005-39886 (Patent Document 1), a motor torque equivalent to the engine torque that can be output from the engine is output from the electric motor to The fuel supply amount is reduced.
  • the hybrid vehicle when the hybrid vehicle is a relatively small vehicle, a large battery, that is, a battery having a large capacity cannot be mounted. Therefore, the charging power of the battery is larger than the charging power of the battery in the large hybrid vehicle. small. Therefore, in a hybrid vehicle equipped with a small battery, it is difficult to obtain an opportunity to operate the engine in a high load region where the efficiency of the engine is high in order to generate a large amount of electric power charged in the battery. As a result, the engine must be operated in a low load region where the engine efficiency is low.
  • An object of the present invention is to improve engine efficiency.
  • a vehicle supplies power to a second power storage device from a first power storage device that stores power, a second power storage device connected to the first power storage device, and the first power storage device.
  • a supply device and an engine that operates with a load corresponding to the electric power supplied from the first power storage device to the second power storage device.
  • the supply device supplies power from the first power storage device to the second power storage device when the engine load is smaller than the threshold during engine load operation.
  • the engine load is increased by supplying power from the first power storage device to the second power storage device. Therefore, the engine efficiency is improved in the engine having the characteristic that the efficiency is high in the high load operation region.
  • the supply device stops the power supply from the first power storage device to the second power storage device during no-load operation of the engine.
  • the supply device stops the power supply from the first power storage device to the second power storage device while the engine is idling.
  • a vehicle is driven by an engine to generate power, and a generator that supplies power corresponding to power supplied from the first power storage device to the second power storage device to the first power storage device. Further prepare.
  • the engine is operated with a load corresponding to the power generated by the generator.
  • the efficiency of the engine can be improved in the vehicle that stores the electric power generated using the engine in the power storage device.
  • the supply device is a converter. According to this configuration, power can be supplied from the first power storage device to the second power storage device via the converter at a desired voltage.
  • the engine efficiency is improved in the engine having the characteristic that the efficiency is high in the high load operation region.
  • the hybrid vehicle includes an engine 100, a first motor generator 110, a second motor generator 120, a power split mechanism 130, a speed reducer 140, and a battery 150.
  • This vehicle travels by driving force from at least one of engine 100 and second motor generator 120.
  • Engine 100, first motor generator 110, and second motor generator 120 are connected via power split mechanism 130.
  • the power generated by the engine 100 is divided into two paths by the power split mechanism 130.
  • One is a path for driving the front wheels 160 via the speed reducer 140.
  • the other is a path for driving the first motor generator 110 to generate power.
  • the first motor generator 110 is a three-phase AC rotating electric machine including a U-phase coil, a V-phase coil, and a W-phase coil.
  • First motor generator 110 generates power using the power of engine 100 divided by power split mechanism 130.
  • the electric power generated by the first motor generator 110 is selectively used according to the traveling state of the vehicle and the state of the remaining capacity (SOC) of the battery 150. For example, during normal traveling, the electric power generated by first motor generator 110 becomes electric power for driving second motor generator 120 as it is.
  • the remaining capacity of battery 150 is lower than a predetermined value, the electric power generated by first motor generator 110 is converted from AC to DC by an inverter described later. Thereafter, the voltage is adjusted by a converter described later and stored in the battery 150.
  • the first motor generator 110 When the first motor generator 110 is acting as a generator, the first motor generator 110 generates a negative torque.
  • the negative torque means a torque that becomes a load on engine 100.
  • first motor generator 110 When first motor generator 110 is supplied with electric power and acts as a motor, first motor generator 110 generates positive torque.
  • the positive torque means a torque that does not become a load on the engine 100, that is, a torque that assists the rotation of the engine 100. The same applies to the second motor generator 120.
  • first motor generator 110 acts as a motor.
  • the engine 100 is cranked by the first motor generator 110.
  • first motor generator 110 acts as a generator to generate negative torque.
  • first motor generator 110 is controlled such that the crank angle becomes a predetermined angle.
  • the second motor generator 120 is a three-phase AC rotating electric machine including a U-phase coil, a V-phase coil, and a W-phase coil. Second motor generator 120 is driven by at least one of the electric power stored in battery 150 and the electric power generated by first motor generator 110.
  • the second motor generator 120 is provided so that torque is transmitted to and from the wheels. Torque of the second motor generator 120 is transmitted to the front wheels 160 via the speed reducer 140. As a result, the second motor generator 120 assists the engine 100 or causes the vehicle to run with the torque from the second motor generator 120.
  • the rear wheels may be driven instead of or in addition to the front wheels 160.
  • the second motor generator 120 is driven by the front wheels 160 via the speed reducer 140, and the second motor generator 120 operates as a generator. Accordingly, second motor generator 120 operates as a regenerative brake that converts braking energy into electric power.
  • the electric power generated by second motor generator 120 is stored in battery 150.
  • the power split mechanism 130 includes a planetary gear including a sun gear, a pinion gear, a carrier, and a ring gear.
  • the pinion gear engages with the sun gear and the ring gear.
  • the carrier supports the pinion gear so that it can rotate.
  • the sun gear is connected to the rotation shaft of first motor generator 110.
  • the carrier is connected to the crankshaft of engine 100.
  • the ring gear is connected to the rotation shaft of second motor generator 120 and speed reducer 140.
  • the engine 100, the first motor generator 110, and the second motor generator 120 are connected via a power split mechanism 130 that is a planetary gear, so that the rotational speeds of the engine 100, the first motor generator 110, and the second motor generator 120 are increased. As shown in FIG. 2, the relationship is connected by a straight line in the nomograph.
  • the traveling battery 150 is an assembled battery configured by connecting a plurality of battery modules in which a plurality of battery cells are integrated in series.
  • the voltage of the battery 150 is about 200V, for example.
  • the battery 150 is charged with electric power supplied from the first motor generator 110 and the second motor generator 120.
  • the charging power to the battery 150 is determined based on parameters including the remaining capacity and temperature of the battery 150.
  • the electric power stored in the battery 150 is supplied to the first motor generator 110 and the second motor generator 120, and is also supplied to the auxiliary battery 240 via the DC / DC converter 230 during the load operation of the engine 100. .
  • the remaining capacity of the battery 150 is reduced according to the electric power supplied to the auxiliary battery 240.
  • charging power from first motor generator 110 to battery 150 is supplied from battery 150 to auxiliary battery 240. It depends on the power to be used.
  • the charging power from the first motor generator 110 to the battery 150 may be determined in consideration of the power supplied from the battery 150 to the auxiliary battery 240 as a parameter at all times.
  • ECU 170 Electronic Control Unit 170
  • Engine 100, first motor generator 110, second motor generator 120, and DC / DC converter 230 are controlled by an ECU (Electronic Control Unit) 170.
  • ECU 170 may be divided into a plurality of ECUs.
  • the electric system of the hybrid vehicle will be further described with reference to FIG.
  • the hybrid vehicle is provided with a converter 200, a first inverter 210, a second inverter 220, a DC / DC converter 230, an auxiliary battery 240, and an SMR (System Main Relay) 250.
  • a converter 200 a first inverter 210, a second inverter 220, a DC / DC converter 230, an auxiliary battery 240, and an SMR (System Main Relay) 250.
  • SMR System Main Relay
  • Converter 200 includes a reactor, two npn transistors, and two diodes. Reactor has one end connected to the positive electrode side of battery 150 and the other end connected to a connection point of two npn transistors.
  • the two npn type transistors are connected in series.
  • the npn transistor is controlled by the ECU 170.
  • a diode is connected between the collector and emitter of each npn transistor so that a current flows from the emitter side to the collector side.
  • an IGBT Insulated Gate Bipolar Transistor
  • a power switching element such as a power MOSFET (Metal Oxide Semiconductor Field-Effect Transistor) can be used instead of the npn transistor.
  • MOSFET Metal Oxide Semiconductor Field-Effect Transistor
  • the voltage is boosted by the converter 200. Conversely, when charging the battery 150 with the electric power generated by the first motor generator 110 or the second motor generator 120, the voltage is stepped down by the converter 200.
  • the system voltage VH between the converter 200 and the first inverter 210 and the second inverter 220 is detected by a voltmeter 180.
  • the detection result of the voltmeter 180 is transmitted to the ECU 170.
  • First inverter 210 includes a U-phase arm, a V-phase arm, and a W-phase arm.
  • the U-phase arm, V-phase arm and W-phase arm are connected in parallel.
  • Each of the U-phase arm, the V-phase arm, and the W-phase arm has two npn transistors connected in series. Between the collector and emitter of each npn-type transistor, a diode for flowing current from the emitter side to the collector side is connected.
  • a connection point of each npn transistor in each arm is connected to an end portion different from neutral point 112 of each coil of first motor generator 110.
  • the first inverter 210 converts the direct current supplied from the battery 150 into an alternating current and supplies the alternating current to the first motor generator 110.
  • the first inverter 210 converts the alternating current generated by the first motor generator 110 into a direct current.
  • the second inverter 220 includes a U-phase arm, a V-phase arm, and a W-phase arm.
  • the U-phase arm, V-phase arm and W-phase arm are connected in parallel.
  • Each of the U-phase arm, the V-phase arm, and the W-phase arm has two npn transistors connected in series. Between the collector and emitter of each npn-type transistor, a diode for flowing current from the emitter side to the collector side is connected.
  • a connection point of each npn transistor in each arm is connected to an end portion different from neutral point 122 of each coil of second motor generator 120.
  • the second inverter 220 converts the direct current supplied from the battery 150 into an alternating current and supplies the alternating current to the second motor generator 120. Second inverter 220 converts the alternating current generated by second motor generator 120 into a direct current.
  • DC / DC converter 230 is connected in parallel with converter 200 between battery 150 and converter 200.
  • the DC / DC converter 230 steps down the direct current voltage.
  • the electric power output from the DC / DC converter 230 is charged in the auxiliary battery 240.
  • the electric power charged in the auxiliary battery 240 is supplied to the auxiliary machine 242 such as an electric oil pump and the ECU 170.
  • SMR (System Main Relay) 250 is provided between battery 150 and DC / DC converter 230.
  • the SMR 250 is a relay that switches between a state where the battery 150 and the electrical system are connected and a state where the battery 150 is disconnected. When SMR 250 is open, battery 150 is disconnected from the electrical system. When SMR 250 is closed, battery 150 is connected to the electrical system.
  • the battery 150 is electrically disconnected from the DC / DC converter 230, the auxiliary battery 240, the auxiliary machine 242, the ECU 170, and the like.
  • the SMR 250 is in a closed state, power can be supplied from the battery 150 to the DC / DC converter 230, the auxiliary battery 240, the auxiliary machine 242, the ECU 170, and the like.
  • the control mode of the engine 100 will be further described with reference to FIG. 6, when the traveling power of the hybrid vehicle is smaller than the engine start threshold value, engine 100 is stopped and the hybrid vehicle travels using only the driving force of second motor generator 120.
  • the traveling power of the hybrid vehicle exceeds the engine start threshold value, engine 100 is driven.
  • the hybrid vehicle travels using the driving force of engine 100 in addition to or instead of the driving force of second motor generator 120.
  • the electric power generated by first motor generator 110 using the driving force of engine 100 is directly supplied to second motor generator 120.
  • the traveling power is calculated by the ECU 170 according to a map having, for example, an accelerator pedal opening (accelerator opening) and a vehicle speed operated by a driver as parameters. That is, in the present embodiment, the traveling power of the hybrid vehicle represents the power required by the driver. Note that the method of calculating the traveling power is not limited to this. In the present embodiment, the unit of power is kW (kilowatt).
  • the hybrid vehicle is controlled so that the traveling power is shared by the engine 100 and the second motor generator 120.
  • first motor generator 110 does not generate power
  • the sum of the output power of engine 100 and the output power of second motor generator 120 is controlled to be substantially the same as the traveling power. Therefore, when the output power of engine 100 is zero, the output power of second motor generator 120 is controlled to be substantially the same as the traveling power.
  • control is performed so that the output power of engine 100 is substantially the same as the traveling power.
  • the output power control mode is not limited to this.
  • the engine 100 corresponds to the generated electric power of the first motor generator 110. Controlled to output extra power.
  • the sum of the power shared by the engine 100 from the traveling power of the hybrid vehicle and the power that should be output by the engine 100 to cause the first motor generator 110 to generate power and charge the battery 150 is also referred to as engine required power. To do.
  • the operating point of the engine 100 that is, the engine speed NE and the load (that is, the output torque TE) are determined by the intersection of the engine required power and the fuel efficiency optimum line.
  • the engine required power is indicated by an isopower line. Since the load on engine 100 is determined by the intersection of the engine required power and the fuel efficiency optimum line, in this embodiment, the lower the engine required power, the lower the load.
  • the engine 100 when the first motor generator 110 is operated as a generator and the generated power is supplied from the first motor generator 110 to the battery 150, the engine 100 corresponds to the generated power of the first motor generator 110. It is controlled to output extra power. Therefore, as a result, engine 100 operates with a load corresponding to the power generated by first motor generator 110.
  • the generated electric power of the first motor generator 110 is charged to the battery 150. It is determined according to electric power. As an example, the electric power generated by the first motor generator 110 coincides with or substantially coincides with the electric power charged in the battery 150.
  • the charging power from first motor generator 110 to battery 150 is determined according to the power supplied from battery 150 to auxiliary battery 240. Therefore, as a result, engine 100 operates with a load corresponding to the electric power supplied from traveling battery 150 to auxiliary battery 240 via DC / DC converter 230.
  • the fuel efficiency optimal line is a line that connects the operating points where the engine 100 is efficient.
  • the fuel efficiency optimum line is indicated by a solid line, and the efficiency of the engine 100 at each operating point is indicated by a broken line equal engine efficiency line.
  • the fuel efficiency optimal line is obtained by connecting the operating points with the highest efficiency among the operating points on each equal power line.
  • the fuel efficiency optimal line is predetermined by the developer based on the results of experiments and simulations.
  • FIG. 8 as a general characteristic of the efficiency, it is shown that if the operating point is moved in the high rotation direction along the fuel efficiency optimal line so that the load, that is, the torque becomes high, the efficiency of the engine is improved. . That is, in the present embodiment, the efficiency increases as the load on engine 100 increases.
  • DC / DC converter 230 causes battery for traveling when load of engine 100 is smaller than a threshold value during load operation of engine 100. Control is performed by ECU 170 so that electric power is supplied from 150 to auxiliary battery 240.
  • the auxiliary battery is connected from the traveling battery 150 via the DC / DC converter 230. Electric power is supplied to the battery 240.
  • a value such that the efficiency of the engine 100 is a predetermined value or less is determined as the threshold value.
  • the DC / DC converter 230 is controlled by the ECU 170 so as to stop the power supply from the traveling battery 150 to the auxiliary battery 240 during the no-load operation of the engine 100.
  • the DC / DC converter 230 is controlled by the ECU 170 so that the power supply from the traveling battery 150 to the auxiliary battery 240 is stopped during the idling operation of the engine 100.
  • DC / DC converter 230 supplies power from traveling battery 150 to auxiliary battery 240 when engine 100 load (engine required power) is smaller than a threshold value.
  • the ECU 170 is controlled. Idle operation is an example of no-load operation.
  • processing executed by ECU 170 in the present embodiment will be described.
  • the following processing may be realized by software, may be realized by software, or may be realized by cooperation of software and hardware.
  • step (hereinafter step is abbreviated as S) 100 it is determined whether engine 100 is in a load operation. For example, when the accelerator opening is larger than zero, and when the first motor generator 110 is operated as a generator and the engine 100 is operated to charge the battery 150, it is determined that the engine 100 is in a load operation. Is done. Whether or not the engine 100 is in a load operation may be determined by using a known general technique, and thus detailed description thereof will not be repeated here.
  • auxiliary battery 240 If the engine required power is equal to or higher than the threshold value (NO in S102), power is supplied from traveling battery 150 to auxiliary battery 240 via DC / DC converter 230 as necessary in S106. Is done. As an example, when the voltage of the auxiliary battery 240 falls below a predetermined value, electric power is supplied from the traveling battery 150 to the auxiliary battery 240 via the DC / DC converter 230.
  • the DC / DC converter is configured so that power supply from traveling battery 150 to auxiliary battery 240 is stopped in S108. 230 is controlled.
  • DC / DC converter 230 is controlled in S108 so that power supply from traveling battery 150 to auxiliary battery 240 is stopped. .
  • the auxiliary battery is connected from traveling battery 150 via DC / DC converter 230. Electric power is supplied to the battery 240.
  • the load on the engine 100 is increased as a result. Therefore, in the engine 100 having the characteristic that the efficiency is high in the high load operation region, the efficiency of the engine 100 is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

 車両は、電力を蓄える走行用バッテリと、走行用バッテリに接続された補機バッテリと、走行用バッテリから補機バッテリにに電力を供給するDC/DCコンバータと、走行用バッテリから補機バッテリに供給される電力に応じた負荷で運転するエンジンとを備える。DC/DCコンバータは、エンジンの負荷運転中において、エンジンの負荷がしきい値よりも小さいと、走行用バッテリから補機バッテリに電力を供給する。

Description

車両、および、車両の制御方法ならびに制御装置
 本発明は、車両、および、車両の制御方法ならびに制御装置に関し、特に、第1の蓄電装置と第2の蓄電装置とを搭載した車両において、第1の蓄電装置から第2の蓄電装置へ電力を供給する技術に関する。
 エンジンに加えて、駆動源として電動モータを搭載したハイブリッド車、あるいは航続距離延長機能(レンジエクステンダー)を備えた電気自動車が知られている。これらのような車両では、たとえば特開2005-39886号公報(特許文献1)に記載のように、エンジンから出力可能なエンジントルクと同等のモータトルクを電動モータから出力することによって、エンジンへの燃料供給量が低減される。
2005-39886号公報
 しかしながら、たとえば、ハイブリッド車が比較的小型の車両である場合、大きなバッテリ、すなわち容量が大きなバッテリを搭載することができないため、バッテリの充電電力は、大型のハイブリッド車におけるバッテリの充電電力に比べて小さい。したがって、小さいバッテリを搭載したハイブリッド車においては、バッテリに充電される大きな電力を発電するために、エンジンの効率が高い高負荷領域でエンジンを運転する機会を得がたい。その結果、エンジンの効率が低い低負荷領域でエンジンを運転せざるを得ない。
 本発明の目的は、エンジンの効率を向上することである。
 ある実施例において、車両は、電力を蓄える第1の蓄電装置と、第1の蓄電装置に接続された第2の蓄電装置と、第1の蓄電装置から第2の蓄電装置に電力を供給する供給装置と、第1の蓄電装置から第2の蓄電装置に供給される電力に応じた負荷で運転するエンジンとを備える。供給装置は、エンジンの負荷運転中において、エンジンの負荷がしきい値よりも小さいと、第1の蓄電装置から第2の蓄電装置に電力を供給する。
 この構成によると、第1の蓄電装置から第2の蓄電装置に電力を供給することにより、エンジンの負荷が増大される。そのため、高負荷運転領域において効率がよいという特性を有するエンジンにおいて、エンジンの効率が向上される。
 別の実施例において、供給装置は、エンジンの無負荷運転中において、第1の蓄電装置から第2の蓄電装置への電力供給を停止する。
 この構成によると、効率を改善するためにエンジンの負荷を増大することができない場合には、第1の蓄電装置から第2の蓄電装置への電力供給に起因する損失が低減される。
 さらに別の実施例において、供給装置は、エンジンのアイドル運転中において、第1の蓄電装置から第2の蓄電装置への電力供給を停止する。
 この構成によると、効率を改善するためにエンジンの負荷を増大することができない場合には、第1の蓄電装置から第2の蓄電装置への電力供給に起因する損失が低減される。
 さらに別の実施例において、車両は、エンジンによって駆動されて発電し、第1の蓄電装置から第2の蓄電装置に供給される電力に応じた電力を第1の蓄電装置に供給する発電機をさらに備える。エンジンは、発電機の発電電力に応じた負荷で運転する。
 この構成によると、エンジンを用いて発電した電力を蓄電装置に蓄える車両において、エンジンの効率を向上できる。
 さらに別の実施例において、供給装置は、コンバータである。
 この構成によると、コンバータを介して第1の蓄電装置から第2の蓄電装置に所望の電圧で電力を供給できる。
 エンジンの負荷が増大されるため、高負荷運転領域において効率がよいという特性を有するエンジンにおいて、エンジンの効率が向上される。
ハイブリッド車を示す概略構成図である。 動力分割機構の共線図を示す図である。 エンジンを始動するための制御を実行したときの共線図を示す図である。 エンジンを停止するための制御を実行したときの共線図を示す図である。 ハイブリッド車の電気システムを示す図である。 エンジン始動しきい値を示す図である。 燃費最適ラインを示す図である。 燃費最適ラインと等エンジン効率ラインとを示す図である。 ECUが実行する処理を示すフローチャートである。
 以下、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同一である。したがって、それらについての詳細な説明は繰返さない。
 図1を参照して、ハイブリッド車は、エンジン100と、第1モータジェネレータ110と、第2モータジェネレータ120と、動力分割機構130と、減速機140と、バッテリ150とを備える。
 この車両は、エンジン100および第2モータジェネレータ120のうちの少なくともいずれか一方からの駆動力により走行する。
 エンジン100、第1モータジェネレータ110および第2モータジェネレータ120は、動力分割機構130を介して接続されている。エンジン100が発生する動力は、動力分割機構130により、2経路に分割される。一方は減速機140を介して前輪160を駆動する経路である。もう一方は、第1モータジェネレータ110を駆動させて発電する経路である。
 第1モータジェネレータ110は、U相コイル、V相コイルおよびW相コイルを備える、三相交流回転電機である。第1モータジェネレータ110は、動力分割機構130により分割されたエンジン100の動力により発電する。第1モータジェネレータ110により発電された電力は、車両の走行状態や、バッテリ150の残存容量(SOC)の状態に応じて使い分けられる。たとえば、通常走行時では、第1モータジェネレータ110により発電された電力はそのまま第2モータジェネレータ120を駆動させる電力となる。一方、バッテリ150の残存容量が予め定められた値よりも低い場合、第1モータジェネレータ110により発電された電力は、後述するインバータにより交流から直流に変換される。その後、後述するコンバータにより電圧が調整されてバッテリ150に蓄えられる。
 第1モータジェネレータ110が発電機として作用している場合、第1モータジェネレータ110は負のトルクを発生している。ここで、負のトルクとは、エンジン100の負荷となるようなトルクをいう。第1モータジェネレータ110が電力の供給を受けてモータとして作用している場合、第1モータジェネレータ110は正のトルクを発生する。ここで、正のトルクとは、エンジン100の負荷とならないようなトルク、すなわち、エンジン100の回転をアシストするようなトルクをいう。なお、第2モータジェネレータ120についても同様である。
 本実施の形態では、エンジン100を始動するための制御が実行されると、第1モータジェネレータ110がモータとして作用する。第1モータジェネレータ110により、エンジン100がクランキングされる。エンジン100を停止するための制御が実行されると、第1モータジェネレータ110は負のトルクを発生するために発電機として作用する。第1モータジェネレータ110によりエンジン100を停止するための制御では、クランク角が予め定められた角度になるように第1モータジェネレータ110が制御される。
 第2モータジェネレータ120は、U相コイル、V相コイルおよびW相コイルを備える、三相交流回転電機である。第2モータジェネレータ120は、バッテリ150に蓄えられた電力および第1モータジェネレータ110により発電された電力のうちの少なくともいずれかの電力により駆動する。
 第2モータジェネレータ120は、車輪との間でトルクが伝達されるように設けられる。第2モータジェネレータ120のトルクは、減速機140を介して前輪160に伝えられる。これにより、第2モータジェネレータ120はエンジン100をアシストしたり、第2モータジェネレータ120からのトルクにより車両を走行させたりする。なお、前輪160の代わりにもしくは加えて後輪を駆動するようにしてもよい。
 ハイブリッド車の回生制動時には、減速機140を介して前輪160により第2モータジェネレータ120が駆動され、第2モータジェネレータ120が発電機として作動する。これにより第2モータジェネレータ120は、制動エネルギを電力に変換する回生ブレーキとして作動する。第2モータジェネレータ120により発電された電力は、バッテリ150に蓄えられる。
 動力分割機構130は、サンギヤと、ピニオンギヤと、キャリアと、リングギヤとを含む遊星歯車から構成される。ピニオンギヤは、サンギヤおよびリングギヤと係合する。キャリアは、ピニオンギヤが自転可能であるように支持する。サンギヤは第1モータジェネレータ110の回転軸に連結される。キャリアはエンジン100のクランクシャフトに連結される。リングギヤは第2モータジェネレータ120の回転軸および減速機140に連結される。
 エンジン100、第1モータジェネレータ110および第2モータジェネレータ120が、遊星歯車からなる動力分割機構130を介して連結されることで、エンジン100、第1モータジェネレータ110および第2モータジェネレータ120の回転数は、図2に示すように、共線図において直線で結ばれる関係になる。
 エンジン100を始動するための制御が実行されると、図3に示すように、第1モータジェネレータ110によりエンジン100の回転数が上昇される。クランク角が予め定められた角度になるようにエンジン100を停止するための制御が実行されたときには、図4に示すように、第1モータジェネレータ110によりエンジン100の回転数が下げられる。
 図1に戻って、走行用のバッテリ150は、複数のバッテリセルを一体化したバッテリモジュールを、さらに複数直列に接続して構成された組電池である。バッテリ150の電圧は、たとえば200V程度である。バッテリ150には、第1モータジェネレータ110および第2モータジェネレータ120から供給される電力が充電される。
 バッテリ150への充電電力は、バッテリ150の残存容量および温度などを含むパラメータに基づいて定められる。バッテリ150に蓄えられた電力は、第1モータジェネレータ110および第2モータジェネレータ120に供給される他、エンジン100の負荷運転中に、DC/DCコンバータ230を介して補機バッテリ240に供給される。DC/DCコンバータ230を介してバッテリ150から補機バッテリ240に電力が供給されると、補機バッテリ240に供給される電力に応じてバッテリ150の残存容量が低下する。結果的に、DC/DCコンバータ230を介してバッテリ150から補機バッテリ240に電力が供給される場合、第1モータジェネレータ110からバッテリ150への充電電力は、バッテリ150から補機バッテリ240に供給される電力に応じて定まる。
 第1モータジェネレータ110からバッテリ150への充電電力を、バッテリ150から補機バッテリ240に供給される電力をパラメータとして常に考慮して定めるようにしてもよい。
 エンジン100、第1モータジェネレータ110、第2モータジェネレータ120、DC/DCコンバータ230は、ECU(Electronic Control Unit)170により制御される。なお、ECU170は複数のECUに分割するようにしてもよい。
 図5を参照して、ハイブリッド車の電気システムについてさらに説明する。ハイブリッド車には、コンバータ200と、第1インバータ210と、第2インバータ220と、DC/DCコンバータ230と、補機バッテリ240と、SMR(System Main Relay)250とが設けられる。
 コンバータ200は、リアクトルと、二つのnpn型トランジスタと、二つダイオードとを含む。リアクトルは、バッテリ150の正極側に一端が接続され、2つのnpn型トランジスタの接続点に他端が接続される。
 2つのnpn型トランジスタは、直列に接続される。npn型トランジスタは、ECU170により制御される。各npn型トランジスタのコレクタ-エミッタ間には、エミッタ側からコレクタ側へ電流を流すようにダイオードがそれぞれ接続される。
 なお、npn型トランジスタとして、たとえば、IGBT(Insulated Gate Bipolar Transistor)を用いることができる。npn型トランジスタに代えて、パワーMOSFET(Metal Oxide Semiconductor Field-Effect Transistor)等の電力スイッチング素子を用いることができる。
 バッテリ150から放電された電力を第1モータジェネレータ110もしくは第2モータジェネレータ120に供給する際、電圧がコンバータ200により昇圧される。逆に、第1モータジェネレータ110もしくは第2モータジェネレータ120により発電された電力をバッテリ150に充電する際、電圧がコンバータ200により降圧される。
 コンバータ200と、第1インバータ210および第2インバータ220との間のシステム電圧VHは、電圧計180により検出される。電圧計180の検出結果は、ECU170に送信される。
 第1インバータ210は、U相アーム、V相アームおよびW相アームを含む。U相アーム、V相アームおよびW相アームは並列に接続される。U相アーム、V相アームおよびW相アームは、それぞれ、直列に接続された2つのnpn型トランジスタを有する。各npn型トランジスタのコレクタ-エミッタ間には、エミッタ側からコレクタ側へ電流を流すダイオードがそれぞれ接続される。そして、各アームにおける各npn型トランジスタの接続点は、第1モータジェネレータ110の各コイルの中性点112とは異なる端部にそれぞれ接続される。
 第1インバータ210は、バッテリ150から供給される直流電流を交流電流に変換し、第1モータジェネレータ110に供給する。また、第1インバータ210は、第1モータジェネレータ110により発電された交流電流を直流電流に変換する。
 第2インバータ220は、U相アーム、V相アームおよびW相アームを含む。U相アーム、V相アームおよびW相アームは並列に接続される。U相アーム、V相アームおよびW相アームは、それぞれ、直列に接続された2つのnpn型トランジスタを有する。各npn型トランジスタのコレクタ-エミッタ間には、エミッタ側からコレクタ側へ電流を流すダイオードがそれぞれ接続される。そして、各アームにおける各npn型トランジスタの接続点は、第2モータジェネレータ120の各コイルの中性点122とは異なる端部にそれぞれ接続される。
 第2インバータ220は、バッテリ150から供給される直流電流を交流電流に変換し、第2モータジェネレータ120に供給する。また、第2インバータ220は、第2モータジェネレータ120により発電された交流電流を直流電流に変換する。
 DC/DCコンバータ230は、バッテリ150と、コンバータ200との間において、コンバータ200と並列に接続される。DC/DCコンバータ230は、直流電圧を降圧する。DC/DCコンバータ230から出力される電力は、補機バッテリ240に充電される。補機バッテリ240に充電された電力は、電動オイルポンプ等の補機242およびECU170に供給される。
 SMR(System Main Relay)250は、バッテリ150とDC/DCコンバータ230との間に設けられる。SMR250は、バッテリ150と電気システムとを接続した状態および遮断した状態を切換えるリレーである。SMR250が開いた状態であると、バッテリ150が電気システムから遮断される。SMR250が閉じた状態であると、バッテリ150が電気システムに接続される。
 すなわち、SMR250が開いた状態であると、バッテリ150が、DC/DCコンバータ230、補機バッテリ240、補機242およびECU170等から電気的に遮断される。SMR250が閉じた状態であると、バッテリ150から、DC/DCコンバータ230、補機バッテリ240、補機242およびECU170等への電力の供給が可能になる。
 図6を参照して、エンジン100の制御態様についてさらに説明する。図6に示すように、ハイブリッド車の走行パワーがエンジン始動しきい値より小さいと、エンジン100が停止され、第2モータジェネレータ120の駆動力のみを用いてハイブリッド車が走行する。
 一方、ハイブリッド車の走行パワーがエンジン始動しきい値以上になると、エンジン100が駆動される。これにより、第2モータジェネレータ120の駆動力に加えて、もしくは代わりに、エンジン100の駆動力を用いてハイブリッド車が走行する。また、エンジン100の駆動力を用いて第1モータジェネレータ110が発電した電力が第2モータジェネレータ120に直接供給される。
 走行パワーは、たとえば、ドライバにより操作されるアクセルペダルの開度(アクセル開度)および車速などをパラメータに有するマップに従ってECU170により算出される。すなわち、本実施の形態において、ハイブリッド車の走行パワーは、運転者が要求するパワーを表わす。なお、走行パワーを算出する方法はこれに限らない。なお、本実施の形態において、パワーの単位はkW(キロワット)である。
 ハイブリッド車は、走行パワーを、エンジン100と第2モータジェネレータ120とで分担して実現するように制御される。たとえば、第1モータジェネレータ110が発電しない場合であれば、エンジン100の出力パワーと第2モータジェネレータ120の出力パワーとの和が、走行パワーと略同じになるように制御される。したがって、エンジン100の出力パワーが零であると、第2モータジェネレータ120の出力パワーが、走行パワーと略同じになるように制御される。第2モータジェネレータ120の出力パワーが零であると、エンジン100の出力パワーが走行パワーと略同じになるように制御される。
 エンジン100を運転する場合、たとえば、車速が高いほど、第2モータジェネレータ120の出力トルクが低下されて、走行パワーに対するエンジン100の出力パワーの比率が大きくされる。一例として、車速がしきい値よりも高い場合には、第2モータジェネレータ120の出力トルクが零まで低下されて、エンジン100の駆動力のみを用いてハイブリッド車が走行する。なお、出力パワーの制御態様はこれに限らない。
 その他、たとえば、第1モータジェネレータ110を発電機として作動させ、発電された電力が第1モータジェネレータ110からバッテリ150へ供給される場合、エンジン100は、第1モータジェネレータ110の発電電力に相当するパワーを余分に出力するように制御される。
 以下、ハイブリッド車の走行パワーからエンジン100に分担されたパワーと、第1モータジェネレータ110に発電させ、バッテリ150を充電するためにエンジン100が出力すべきパワーとの和を、エンジン要求パワーとも記載する。
 図7に示すように、エンジン100の動作点、すなわちエンジン回転数NEおよび負荷(すなわち出力トルクTE)は、エンジン要求パワーと燃費最適ラインとの交点により定まる。エンジン要求パワーは、等パワー線によって示される。エンジン100の負荷はエンジン要求パワーと燃費最適ラインとの交点により定まるため、本実施の形態においては、エンジン要求パワーが低いほど、負荷が低くなる。
 上述したように、第1モータジェネレータ110を発電機として作動させ、発電された電力が第1モータジェネレータ110からバッテリ150へ供給される場合、エンジン100は、第1モータジェネレータ110の発電電力に相当するパワーを余分に出力するように制御される。そのため、結果的に、エンジン100は、第1モータジェネレータ110の発電電力に応じた負荷で運転する。
 また、第1モータジェネレータ110を発電機として作動させ、発電された電力が第1モータジェネレータ110からバッテリ150へ供給される場合には、第1モータジェネレータ110の発電電力は、バッテリ150への充電電力に応じて定められる。一例として、第1モータジェネレータ110の発電電力は、バッテリ150への充電電力と一致、または略一致する。ここで、第1モータジェネレータ110からバッテリ150への充電電力は、バッテリ150から補機バッテリ240への供給電力に応じて定まる。そのため、結果的に、エンジン100は、走行用のバッテリ150から補機バッテリ240に、DC/DCコンバータ230を介して供給される電力に応じた負荷で運転する。
 図8に示すように、燃費最適ラインは、エンジン100の効率がよい動作点を結ぶ線である。図8においては、燃費最適ラインを実線で示し、各動作点におけるエンジン100の効率を破線の等エンジン効率ラインで示す。燃費最適ラインは、各等パワー線上の動作点のうちの効率が最も高い動作点を結ぶことによって得られる。燃費最適ラインは、実験およびシミュレーションの結果に基づいて、開発者により予め定められる。
 図8においては、効率の概略的な特徴として、負荷、すなわちトルクが高くなるように、動作点を燃費最適ラインに沿って高回転方向に移動させると、エンジンの効率が向上することが示される。すなわち、本実施の形態においては、エンジン100の負荷が増大することに伴って、効率が増大する。
 図8から理解されるように、エンジン100の負荷が低い運転状態では、すなわちパワーが低い運転状態では、エンジン100の効率が改善される余地がある。本実施においては、負荷運転中におけるエンジン100の効率を向上するため、DC/DCコンバータ230は、エンジン100の負荷運転中において、エンジン100の負荷がしきい値よりも小さいと、走行用のバッテリ150から補機バッテリ240に電力を供給するように、ECU170によって制御される。
 より具体的には、負荷運転中において、エンジン100が出力すべきパワーとして定められるエンジン要求パワーが、しきい値より小さいと、DC/DCコンバータ230を介して、走行用のバッテリ150から補機バッテリ240に電力が供給される。
 たとえば、エンジン100の効率が所定値以下となるような値がしきい値として定められる。
 一方、DC/DCコンバータ230は、エンジン100の無負荷運転中において、走行用のバッテリ150から補機バッテリ240への電力供給を停止するように、ECU170によって制御される。
 一例として、DC/DCコンバータ230は、エンジン100のアイドル運転中において、走行用のバッテリ150から補機バッテリ240への電力供給を停止するように、ECU170によって制御される。アイドル運転ではない運転中において、DC/DCコンバータ230は、エンジン100の負荷(エンジン要求パワー)がしきい値よりも小さいと、走行用のバッテリ150から補機バッテリ240に電力を供給するように、ECU170によって制御される。アイドル運転は無負荷運転の一例である。
 図9を参照して、本実施の形態においてECU170が実行する処理について説明する。以下の処理は、ソフトウェアにより実現するようにしてもよく、ソフトウェアにより実現するようにしてもよく、ソフトウェアとハードウェアとの協働により実現するようにしてもよい。
 ステップ(以下、ステップをSと略す)100にて、エンジン100が負荷運転中であるか否が判断される。一例として、アクセル開度が零より大きい場合、ならびに第1モータジェネレータ110を発電機として作動させ、バッテリ150を充電するためにエンジン100を運転する場合に、エンジン100が負荷運転中であると判断される。エンジン100が負荷運転中であるか否は、周知の一般的な技術を利用すればよいため、ここではその詳細な説明は繰り返さない。
 エンジン100の負荷運転中において(S100にてYES)、エンジン要求パワーがしきい値よりも小さいと(S102にてYES)、S104にて、DC/DCコンバータ230を介して、走行用のバッテリ150から補機バッテリ240に電力が供給される。
 エンジン要求パワーがしきい値以上である場合(S102にてNO)、S106にて、必要に応じて、DC/DCコンバータ230を介して、走行用のバッテリ150から補機バッテリ240に電力が供給される。一例として、補機バッテリ240の電圧が予め定められた値を下回ると、DC/DCコンバータ230を介して、走行用のバッテリ150から補機バッテリ240に電力が供給される。
 一方、エンジン100の無負荷運転中、たとえばアイドル運転中は(S100にてNO)、S108にて、走行用のバッテリ150から補機バッテリ240への電力供給が停止するように、DC/DCコンバータ230が制御される。
 同様に、エンジン100が停止中にも(S100にてNO)、S108にて、走行用のバッテリ150から補機バッテリ240への電力供給が停止するように、DC/DCコンバータ230が制御される。
 以上のように、本実施の形態においては、エンジン100の負荷運転中において、エンジン100の負荷がしきい値よりも小さいと、DC/DCコンバータ230を介して、走行用のバッテリ150から補機バッテリ240に電力が供給される。走行用のバッテリ150から補機バッテリ240に電力が供給されることにより、エンジン100の負荷が結果的に増大される。そのため、高負荷運転領域において効率がよいという特性を有するエンジン100において、エンジン100の効率が向上される。
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
100 エンジン、110 第1モータジェネレータ、150 バッテリ、170 ECU、230 DC/DCコンバータ、240 補機バッテリ。

Claims (7)

  1.  電力を蓄える第1の蓄電装置と、
     前記第1の蓄電装置に接続された第2の蓄電装置と、
     前記第1の蓄電装置から前記第2の蓄電装置に電力を供給する供給装置と、
     前記第1の蓄電装置から前記第2の蓄電装置に供給される電力に応じた負荷で運転するエンジンとを備え、
     前記供給装置は、前記エンジンの負荷運転中において、前記エンジンの負荷がしきい値よりも小さいと、前記第1の蓄電装置から前記第2の蓄電装置に電力を供給する、車両。
  2.  前記供給装置は、前記エンジンの無負荷運転中において、前記第1の蓄電装置から前記第2の蓄電装置への電力供給を停止する、請求項1に記載の車両。
  3.  前記供給装置は、前記エンジンのアイドル運転中において、前記第1の蓄電装置から前記第2の蓄電装置への電力供給を停止する、請求項1に記載の車両。
  4.  前記エンジンによって駆動されて発電し、前記第1の蓄電装置から前記第2の蓄電装置に供給される電力に応じた電力を前記第1の蓄電装置に供給する発電機をさらに備え、
     前記エンジンは、前記発電機の発電電力に応じた負荷で運転する、請求項1に記載の車両。
  5.  前記供給装置は、コンバータである、請求項1に記載の車両。
  6.  電力を蓄える第1の蓄電装置と、前記第1の蓄電装置に接続された第2の蓄電装置と、前記第1の蓄電装置から前記第2の蓄電装置に電力を供給する供給装置と、前記第1の蓄電装置から前記第2の蓄電装置に供給される電力に応じた負荷で運転するエンジンとを備えた車両の制御方法であって、
     前記エンジンを負荷運転するステップと、
     前記エンジンの負荷運転中において、前記エンジンの負荷がしきい値よりも小さいと、前記第1の蓄電装置から前記第2の蓄電装置に電力を供給するステップとを備える車両の制御方法。
  7.  電力を蓄える第1の蓄電装置と、前記第1の蓄電装置に接続された第2の蓄電装置と、前記第1の蓄電装置から前記第2の蓄電装置に電力を供給する供給装置と、前記第1の蓄電装置から前記第2の蓄電装置に供給される電力に応じた負荷で運転するエンジンとを備えた車両の制御装置であって、
     前記エンジンを負荷運転するための手段と、
     前記エンジンの負荷運転中において、前記エンジンの負荷がしきい値よりも小さいと、前記第1の蓄電装置から前記第2の蓄電装置に電力を供給するための手段とを備える車両の制御装置。
PCT/JP2011/069150 2011-08-25 2011-08-25 車両、および、車両の制御方法ならびに制御装置 WO2013027290A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201180073010.2A CN103747995B (zh) 2011-08-25 2011-08-25 车辆、车辆的控制方法以及控制装置
PCT/JP2011/069150 WO2013027290A1 (ja) 2011-08-25 2011-08-25 車両、および、車両の制御方法ならびに制御装置
US14/238,550 US9333863B2 (en) 2011-08-25 2011-08-25 Vehicle, and control method and control device for vehicle
EP11871319.7A EP2749467B1 (en) 2011-08-25 2011-08-25 Vehicle, and control method and control device for vehicle
JP2013529823A JP5747988B2 (ja) 2011-08-25 2011-08-25 車両、および、車両の制御方法ならびに制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/069150 WO2013027290A1 (ja) 2011-08-25 2011-08-25 車両、および、車両の制御方法ならびに制御装置

Publications (1)

Publication Number Publication Date
WO2013027290A1 true WO2013027290A1 (ja) 2013-02-28

Family

ID=47746070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069150 WO2013027290A1 (ja) 2011-08-25 2011-08-25 車両、および、車両の制御方法ならびに制御装置

Country Status (5)

Country Link
US (1) US9333863B2 (ja)
EP (1) EP2749467B1 (ja)
JP (1) JP5747988B2 (ja)
CN (1) CN103747995B (ja)
WO (1) WO2013027290A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103538484A (zh) * 2013-09-24 2014-01-29 南车株洲电力机车研究所有限公司 一种以永磁同步发电机组为主的车载供电站输出方法
CN104071017A (zh) * 2013-03-26 2014-10-01 上海电驱动股份有限公司 功率平衡式纯电驱动电动汽车的动力系统
EP3083355A4 (en) * 2013-12-20 2017-08-02 Volvo Truck Corporation Vehicle comprising a vehicle system controller for controlling energy flows within the vehicle

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204915334U (zh) * 2015-09-11 2015-12-30 深圳市安顺节能科技发展有限公司 一种增程式全电驱动低速牵引车
JP6387947B2 (ja) * 2015-12-07 2018-09-12 トヨタ自動車株式会社 ハイブリッド自動車
JP6976083B2 (ja) * 2016-09-21 2021-12-01 Ntn株式会社 車両動力補助システムおよび車両従動輪回生システム
CN107623360A (zh) * 2017-10-31 2018-01-23 北京新能源汽车股份有限公司 一种车辆的充电控制方法、装置、系统及汽车

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001211506A (ja) * 2000-01-20 2001-08-03 Hitachi Ltd パラレル・ハイブリッド車両の駆動制御装置
JP2005039886A (ja) 2003-07-15 2005-02-10 Honda Motor Co Ltd ハイブリッド車両の制御装置
JP2007237905A (ja) * 2006-03-08 2007-09-20 Denso Corp ハイブリッド型車両用のプログラム書き換えシステム及び電子制御装置
JP2008094233A (ja) * 2006-10-11 2008-04-24 Toyota Motor Corp 自動車およびその制御方法
JP2008105639A (ja) * 2006-10-27 2008-05-08 Toyota Motor Corp ハイブリッド車両の制御装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6323608B1 (en) * 2000-08-31 2001-11-27 Honda Giken Kogyo Kabushiki Kaisha Dual voltage battery for a motor vehicle
JP2004229461A (ja) * 2003-01-27 2004-08-12 Toshiba Corp 充電制御装置及び車両
JP4413565B2 (ja) 2003-09-17 2010-02-10 本田技研工業株式会社 電源供給システム
JP4399311B2 (ja) 2004-04-13 2010-01-13 株式会社豊田自動織機 荷役作業用産業車両の荷役装置
JP4258731B2 (ja) * 2004-08-24 2009-04-30 株式会社デンソー 2電源方式の車両用電源装置
JP2007252072A (ja) * 2006-03-15 2007-09-27 Toyota Motor Corp 電源制御装置および電源装置の制御方法
JP4245624B2 (ja) * 2006-09-20 2009-03-25 トヨタ自動車株式会社 ハイブリッド車両の電源制御装置および電源制御方法
JP2008189236A (ja) 2007-02-07 2008-08-21 Fuji Heavy Ind Ltd ハイブリッド車両の制御装置
JP4179383B2 (ja) * 2007-02-13 2008-11-12 トヨタ自動車株式会社 駆動力発生システムおよびそれを備える車両、ならびにその制御方法
JP5015073B2 (ja) * 2008-06-20 2012-08-29 株式会社竹内製作所 充電システム
JP4466772B2 (ja) * 2008-09-03 2010-05-26 トヨタ自動車株式会社 車両の制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001211506A (ja) * 2000-01-20 2001-08-03 Hitachi Ltd パラレル・ハイブリッド車両の駆動制御装置
JP2005039886A (ja) 2003-07-15 2005-02-10 Honda Motor Co Ltd ハイブリッド車両の制御装置
JP2007237905A (ja) * 2006-03-08 2007-09-20 Denso Corp ハイブリッド型車両用のプログラム書き換えシステム及び電子制御装置
JP2008094233A (ja) * 2006-10-11 2008-04-24 Toyota Motor Corp 自動車およびその制御方法
JP2008105639A (ja) * 2006-10-27 2008-05-08 Toyota Motor Corp ハイブリッド車両の制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2749467A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104071017A (zh) * 2013-03-26 2014-10-01 上海电驱动股份有限公司 功率平衡式纯电驱动电动汽车的动力系统
CN103538484A (zh) * 2013-09-24 2014-01-29 南车株洲电力机车研究所有限公司 一种以永磁同步发电机组为主的车载供电站输出方法
CN103538484B (zh) * 2013-09-24 2018-08-21 南车株洲电力机车研究所有限公司 一种以永磁同步发电机组为主的车载供电站输出方法
EP3083355A4 (en) * 2013-12-20 2017-08-02 Volvo Truck Corporation Vehicle comprising a vehicle system controller for controlling energy flows within the vehicle

Also Published As

Publication number Publication date
EP2749467B1 (en) 2018-01-10
US9333863B2 (en) 2016-05-10
CN103747995A (zh) 2014-04-23
JPWO2013027290A1 (ja) 2015-03-05
EP2749467A4 (en) 2016-03-02
EP2749467A1 (en) 2014-07-02
US20140210261A1 (en) 2014-07-31
JP5747988B2 (ja) 2015-07-15
CN103747995B (zh) 2016-09-21

Similar Documents

Publication Publication Date Title
CN103079870B (zh) 电动车辆及其控制方法
JP5051210B2 (ja) 車両の制御装置
JP5716829B2 (ja) 車両、車両の制御方法および車両の制御装置
JP5747988B2 (ja) 車両、および、車両の制御方法ならびに制御装置
JP2015051692A (ja) ハイブリッド車両およびハイブリッド車両の制御方法
JP2014184910A (ja) 車両の制御装置
JP5382232B2 (ja) エンジンの制御装置および制御方法
CN108515844A (zh) 混合动力汽车及混合动力汽车的控制方法
JP2021084537A (ja) ハイブリッド車両
US10549746B2 (en) Hybrid vehicle
JP2018154237A (ja) ハイブリッド自動車
CN108189829B (zh) 混合动力汽车
CN108189830B (zh) 混合动力汽车
JP2011083072A (ja) 電気システム
JP5549730B2 (ja) ハイブリッド車の制御装置、ハイブリッド車の制御方法およびハイブリッド車
JP5365189B2 (ja) 電源装置およびこれを搭載する車両
JP2014189252A (ja) 車両の制御装置
JP5621264B2 (ja) 車両の電気システム
JP2012228902A (ja) 車両の制御装置
JP2013124084A (ja) ハイブリッド車
CN108528435A (zh) 混合动力汽车
JP2012240469A (ja) 車両の制御装置
WO2012114504A1 (ja) 車両、車両の制御方法および制御装置
JP2012254763A (ja) 車両の制御装置
WO2012105018A1 (ja) 車両および車両の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11871319

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013529823

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14238550

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011871319

Country of ref document: EP