WO2013010388A1 - Apparatus for treating landfill leachate and treatment method therefor - Google Patents
Apparatus for treating landfill leachate and treatment method therefor Download PDFInfo
- Publication number
- WO2013010388A1 WO2013010388A1 PCT/CN2012/072076 CN2012072076W WO2013010388A1 WO 2013010388 A1 WO2013010388 A1 WO 2013010388A1 CN 2012072076 W CN2012072076 W CN 2012072076W WO 2013010388 A1 WO2013010388 A1 WO 2013010388A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tank
- wastewater
- landfill leachate
- sludge
- aerobic
- Prior art date
Links
- 238000011282 treatment Methods 0.000 title claims abstract description 67
- 239000000149 chemical water pollutant Substances 0.000 title claims abstract description 59
- 238000000034 method Methods 0.000 title claims abstract description 35
- 238000005868 electrolysis reaction Methods 0.000 claims abstract description 62
- 239000010802 sludge Substances 0.000 claims abstract description 55
- 238000004062 sedimentation Methods 0.000 claims abstract description 44
- 230000007062 hydrolysis Effects 0.000 claims abstract description 17
- 238000006460 hydrolysis reaction Methods 0.000 claims abstract description 17
- 230000020477 pH reduction Effects 0.000 claims abstract description 17
- 230000015271 coagulation Effects 0.000 claims abstract description 16
- 238000005345 coagulation Methods 0.000 claims abstract description 16
- 239000002351 wastewater Substances 0.000 claims description 105
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 56
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 claims description 37
- 241000894006 Bacteria Species 0.000 claims description 31
- 244000005700 microbiome Species 0.000 claims description 15
- 239000005416 organic matter Substances 0.000 claims description 15
- 238000005189 flocculation Methods 0.000 claims description 13
- 230000016615 flocculation Effects 0.000 claims description 13
- 239000007788 liquid Substances 0.000 claims description 13
- 230000001105 regulatory effect Effects 0.000 claims description 13
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 12
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 11
- 239000000706 filtrate Substances 0.000 claims description 10
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 10
- 239000008394 flocculating agent Substances 0.000 claims description 9
- 239000000126 substance Substances 0.000 claims description 9
- 239000002253 acid Substances 0.000 claims description 8
- 239000003002 pH adjusting agent Substances 0.000 claims description 8
- 238000001556 precipitation Methods 0.000 claims description 8
- 238000010992 reflux Methods 0.000 claims description 8
- 230000003197 catalytic effect Effects 0.000 claims description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 6
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 6
- 239000001569 carbon dioxide Substances 0.000 claims description 6
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 6
- 238000001179 sorption measurement Methods 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 5
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 238000000855 fermentation Methods 0.000 claims description 5
- 230000004151 fermentation Effects 0.000 claims description 5
- 229910052742 iron Inorganic materials 0.000 claims description 5
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 claims description 5
- 230000001546 nitrifying effect Effects 0.000 claims description 5
- 238000007034 nitrosation reaction Methods 0.000 claims description 5
- 239000010865 sewage Substances 0.000 claims description 5
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 4
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 claims description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 4
- 239000011790 ferrous sulphate Substances 0.000 claims description 4
- 235000003891 ferrous sulphate Nutrition 0.000 claims description 4
- 229910000359 iron(II) sulfate Inorganic materials 0.000 claims description 4
- 239000010936 titanium Substances 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 241001148471 unidentified anaerobic bacterium Species 0.000 claims description 4
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910001220 stainless steel Inorganic materials 0.000 claims description 3
- 239000010935 stainless steel Substances 0.000 claims description 3
- 239000011701 zinc Substances 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 2
- 235000008733 Citrus aurantifolia Nutrition 0.000 claims description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 2
- JVMRPSJZNHXORP-UHFFFAOYSA-N ON=O.ON=O.ON=O.N Chemical compound ON=O.ON=O.ON=O.N JVMRPSJZNHXORP-UHFFFAOYSA-N 0.000 claims description 2
- 235000011941 Tilia x europaea Nutrition 0.000 claims description 2
- MMDJDBSEMBIJBB-UHFFFAOYSA-N [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] Chemical compound [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] MMDJDBSEMBIJBB-UHFFFAOYSA-N 0.000 claims description 2
- 241001148470 aerobic bacillus Species 0.000 claims description 2
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 claims description 2
- 239000010439 graphite Substances 0.000 claims description 2
- 229910002804 graphite Inorganic materials 0.000 claims description 2
- 150000002505 iron Chemical class 0.000 claims description 2
- 239000004571 lime Substances 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- 229910017604 nitric acid Inorganic materials 0.000 claims description 2
- 230000009935 nitrosation Effects 0.000 claims description 2
- 229910000030 sodium bicarbonate Inorganic materials 0.000 claims description 2
- 235000017557 sodium bicarbonate Nutrition 0.000 claims description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims 2
- 235000011167 hydrochloric acid Nutrition 0.000 claims 1
- 239000000047 product Substances 0.000 claims 1
- 238000004064 recycling Methods 0.000 claims 1
- 235000017550 sodium carbonate Nutrition 0.000 claims 1
- 235000011121 sodium hydroxide Nutrition 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 7
- 230000033228 biological regulation Effects 0.000 abstract 2
- 230000018044 dehydration Effects 0.000 abstract 1
- 238000006297 dehydration reaction Methods 0.000 abstract 1
- 239000000460 chlorine Substances 0.000 description 8
- 229910001385 heavy metal Inorganic materials 0.000 description 8
- 238000000354 decomposition reaction Methods 0.000 description 7
- 150000002500 ions Chemical class 0.000 description 7
- 150000003254 radicals Chemical class 0.000 description 7
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 229910052801 chlorine Inorganic materials 0.000 description 5
- 239000003344 environmental pollutant Substances 0.000 description 5
- 230000001590 oxidative effect Effects 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 231100000719 pollutant Toxicity 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 229910002651 NO3 Inorganic materials 0.000 description 4
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 4
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 4
- 235000015097 nutrients Nutrition 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 3
- 150000001450 anions Chemical class 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000010791 domestic waste Substances 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 238000003672 processing method Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- -1 ammonium ions Chemical class 0.000 description 2
- 150000001491 aromatic compounds Chemical class 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000000084 colloidal system Substances 0.000 description 2
- 238000004042 decolorization Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000002957 persistent organic pollutant Substances 0.000 description 2
- YNPNZTXNASCQKK-UHFFFAOYSA-N phenanthrene Chemical compound C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 230000001953 sensory effect Effects 0.000 description 2
- 150000003384 small molecules Chemical class 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000004065 wastewater treatment Methods 0.000 description 2
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 240000006909 Tilia x europaea Species 0.000 description 1
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- 150000001448 anilines Chemical class 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000004332 deodorization Methods 0.000 description 1
- 230000002074 deregulated effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- DNJIEGIFACGWOD-UHFFFAOYSA-N ethanethiol Chemical compound CCS DNJIEGIFACGWOD-UHFFFAOYSA-N 0.000 description 1
- 238000012851 eutrophication Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000005188 flotation Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 231100001240 inorganic pollutant Toxicity 0.000 description 1
- 229910000358 iron sulfate Inorganic materials 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 150000002678 macrocyclic compounds Chemical class 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 125000005498 phthalate group Chemical class 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002352 surface water Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F9/00—Multistage treatment of water, waste water or sewage
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/52—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F11/00—Treatment of sludge; Devices therefor
- C02F11/12—Treatment of sludge; Devices therefor by de-watering, drying or thickening
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/06—Contaminated groundwater or leachate
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/28—Anaerobic digestion processes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Definitions
- the landfill leachate contains more than 10 kinds of metal ions, and the heavy metal ions can seriously inhibit the biological treatment process.
- the well-known electrolysis technology can effectively remove harmful substances in the landfill leachate, but the conventional electrolysis has low current density, high working potential, low electrical efficiency, large energy consumption, short life, and high cost. The effect of applying it to wastewater treatment is not satisfactory.
- the flocculating agent is aluminum salt (aluminum sulfate, aluminum chloride), iron salt (iron sulfate, ferrous sulfate, ferric chloride), poly aluminum (polyaluminum chloride, polyaluminum sulfate, polymerization) One or more combinations of aluminum silicate), polyferric iron (polyferric chloride, polyferric sulfate, and polymeric ferric silicate);
- the pH adjuster is sulfuric acid, sodium hydroxide, sodium carbonate, sodium hydrogencarbonate, One of the limes.
- Figure 1 is a process flow diagram of the present invention.
- the processing apparatus also includes a mixed liquid return pump 67 that returns a portion of the aerobic tank 7 to the anoxic tank 6.
- the wastewater is subjected to flocculation and sedimentation and then flows into the electrolysis machine 4 for electrolysis.
- the electrolysis machine 4 is a nano catalytic electrolysis machine having an operating voltage of 48 V, a current density of 200 mA/cm 2 , a voltage between the two electrodes of 3.6 V, and waste water in the electrolysis machine 4 .
- the stay time is 10s.
- the highly oxidizing free radicals chlorine [Cl], oxygen [O] and hydroxyl [OH] produced by nanocatalytic microelectrolysis can rapidly oxidize and decompose organic substances in wastewater, and open and break large organic molecules that are difficult to biodegrade in wastewater.
- the invention not only can rapidly reduce COD Cr by electrolysis, but also improves the biodegradability of the wastewater, and the removal rate of ammonia nitrogen can reach 80-90%, and at the same time, the heavy metal ions in the wastewater are effectively removed by electrolytic flocculation and sedimentation for subsequent treatment.
- the process creates better biochemical conditions, and the biological treatment methods of anaerobic treatment and aerobic treatment can further effectively reduce ammonia nitrogen, COD Cr and BOD 5 in the landfill leachate, so the invention has good industrial applicability.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
- Separation Of Suspended Particles By Flocculating Agents (AREA)
Abstract
An apparatus for treating a landfill leachate and a treatment method therefor, comprising a regulation pool (1), a coagulation pool (2), a primary sedimentation pool (3), an electrolysis apparatus (4), a hydrolysis acidification pool (5), an anaerobic pool (6), an aerobic pool (7), a secondary sedimentation pool (8), a sludge pool (9), and a sludge dehydration apparatus (10). Mutual collaborations between each of the processing units allow improved treatment effects for the landfill leachate. While at the same time, the treatment method comprises the following steps: regulation, coagulation, sedimentation, electrolysis, hydrolysis acidification, anaerobic treatment, aerobic treatment, and secondary sedimentation. The treatment method allows not only for the landfill leachate treated to meet national discharge standards but also for greatly reduced costs.
Description
本发明属于环境工程领域,它涉及一种污水的处理装置,特别是指一种成本较低、效果较好的垃圾渗滤液的处理装置;本发明还涉及该垃圾渗滤液的处理方法,经过该方法处理的废水能达到《生活垃圾填埋场污染控制标准》(GB16889-2008)排放标准。
The invention belongs to the field of environmental engineering, and relates to a sewage treatment device, in particular to a treatment device for a landfill leachate with lower cost and better effect; the invention also relates to a treatment method for the landfill leachate, The wastewater treated by the method can meet the discharge standard of the Domestic Waste Landfill Pollution Control Standard (GB16889-2008).
垃圾渗滤液是一种难于进行处理的高浓度有机废水,其主要来自以下三个方面:1、填埋场内的自然降雨和径流;2、垃圾自身含有的水;3、在垃圾填埋后由于微生物的厌氧分解而产生的水;其中填埋场内的降水为主要部分。城市垃圾渗滤液污染物含量典型值如表1
所示。Landfill leachate is a kind of high-concentration organic wastewater that is difficult to treat. It mainly comes from the following three aspects: 1. Natural rainfall and runoff in the landfill; 2. Water contained in the garbage itself; 3. After landfill Water produced by anaerobic decomposition of microorganisms; precipitation in the landfill is the main part. Typical values of municipal landfill leachate pollutants are shown in Table 1.
Shown.
表1 一般垃圾渗滤液的主要成分(除pH、和感观指标外,单位为mg/L)
Table 1 Main components of general landfill leachate (except pH, and sensory index, the unit is mg/L)
项目 | 变化范围 | 项目 | 变化范围 |
感观指标 | 黑色/恶臭 | 氯化物 | 189~3262 |
pH值 | 3.7~8.5 | Fe | 50~600 |
总硬度 | 3000~10000 | Cu | 0.1~1.43 |
CODCr | 1200~100000 | Ca | 200~300 |
BOD5 | 200~60000 | Pb | 0.1~2.0 |
NH3-N | 20~7400 | Cr | 0.01~2.61 |
总磷 | 1~70 | Hg | 0~0.032 |
project | variation range | project | variation range |
Sensory index | Black / stench | chloride | 189~3262 |
pH value | 3.7 to 8.5 | Fe | 50-600 |
total hardness | 3000~10000 | Cu | 0.1 to 1.43 |
COD Cr | 1200~100000 | Ca | 200~300 |
BOD 5 | 200~60000 | Pb | 0.1~2.0 |
NH3-N | 20~7400 | Cr | 0.01 to 2.61 |
| 1 to 70 | Hg | 0~0.032 |
由表1可知,垃圾渗滤液的水质具有以下基本特征:It can be seen from Table 1 that the water quality of landfill leachate has the following basic characteristics:
(1)污染物浓度高,CODCr、BOD
5和氨氮大多为工业污染物国家排放标准的几十~几百倍以上。(1) High concentration of pollutants, CODCr, BOD
5Most of the ammonia nitrogen and ammonia nitrogen are tens to hundreds of times higher than the national emission standards for industrial pollutants.
(2)既有有机污染成分,也有无机污染成分,同时还含有一些微量重金属污染成分,综合污染特征明显。(2) There are both organic and inorganic pollutants, as well as some traces of heavy metal pollution, and the comprehensive pollution characteristics are obvious.
(3)有机污染物种类多,成分复杂。垃圾渗滤液中有机污染物多,高达77种,其中有难以生物降解的萘、菲等非氯化芳香族化合物、氯化芳香族化物,磷酸酯,邻苯二甲酸酯,酚类化合物和苯胺类化合物等。(3) There are many types of organic pollutants and the composition is complex. There are many organic pollutants in landfill leachate, up to 77 kinds, including non-chlorinated aromatic compounds such as naphthalene and phenanthrene, chlorinated aromatic compounds, phosphate esters, phthalates, phenolic compounds and Aniline compounds and the like.
(4)垃圾渗滤液中含有10多种金属离子,其中的重金属离子会对生物处理过程产生严重抑制作用。(4) The landfill leachate contains more than 10 kinds of metal ions, and the heavy metal ions can seriously inhibit the biological treatment process.
(5)渗滤液中微生物营养元素比例严重失调。其中的氨氮浓度很高,C/N比例失调,其营养比例比生物法处理时微生物生长所需要的营养比例相去甚远,给生物处理带来一定的难度。(5) The proportion of microbial nutrients in leachate is seriously deregulated. Among them, the concentration of ammonia nitrogen is very high, and the ratio of C/N is imbalanced. The nutrient ratio is far less than the nutrient ratio required for microbial growth during biological treatment, which brings certain difficulties to biological treatment.
垃圾渗滤液的氨氮含量和CODCr浓度高,使地面水体缺氧,水质恶化;氮磷等营养物质是导致水体富营养化的诱因,还可能严重影响饮用水水源;一般而言,CODCr,BOD
5 ,BOD
5
/CODCr会随填埋场的“年龄”增长而降低,碱度含量则升高。此外,随着堆放年限的增加,新鲜垃圾逐渐变为陈腐垃圾,渗滤液中有机物含量有所下降,但氨氮含量增加,且可生化性降低,因此处理难度非常大。Ammonia nitrogen content and COD of landfill leachateCrThe high concentration makes the surface water body lack of oxygen and the water quality deteriorates; nutrients such as nitrogen and phosphorus are the cause of eutrophication of water bodies, and may also seriously affect drinking water sources; in general, CODCr, BOD
5 , BOD
5
/CODCrIt will decrease with the “age” of the landfill, and the alkalinity will increase. In addition, with the increase of the stacking period, the fresh garbage gradually turns into old garbage, and the organic matter content in the leachate decreases, but the ammonia nitrogen content increases and the biodegradability decreases, so the treatment is very difficult.
对垃圾渗滤液进行治理的重点是COD和氨氮的处理,尤其是氨氮的处理。现有技术中出现了多种用于对垃圾渗滤液进行处理的工艺和设备。例如在专利文件CN1485280A中就公开了一种利用浸没燃烧蒸发工艺来填埋垃圾渗滤液的处理工艺,该工艺主要是通过将有机物氧化成二氧化碳和水,并通过蒸发和浓缩的方式处理渗透液。而在专利文件CN1440941中则公开了利用厌氧分子分解方法来处理垃圾渗滤液的技术,该方法包括预分解步骤、厌氧步骤、分解氧化步骤、吸附步骤、絮凝沉淀步骤以及过滤步骤,该方法结合了物理化学处理和生物处理两方面的手段。与此类似,专利文件CN1478737中所公开的垃圾渗滤液也是采用物化处理与生物处理相结合的方案,在该工艺中,利用陶瓷膜对经过电解氧化处理的渗滤液进行反渗透处理。The treatment of landfill leachate is focused on the treatment of COD and ammonia nitrogen, especially the treatment of ammonia nitrogen. A variety of processes and equipment for treating landfill leachate have appeared in the prior art. For example, in the patent document CN1485280A, a treatment process for landfill leachate by immersion combustion evaporation process is disclosed, which mainly processes the permeate by oxidizing organic matter into carbon dioxide and water and by evaporation and concentration. In the patent document CN1440941, a technique for treating landfill leachate by using an anaerobic molecular decomposition method is disclosed, which comprises a pre-decomposition step, an anaerobic step, a decomposition oxidation step, an adsorption step, a flocculation precipitation step, and a filtration step. It combines both physical and chemical treatments and biological treatments. Similarly, the landfill leachate disclosed in the patent document CN1478737 is also a combination of physicochemical treatment and biological treatment, in which the leachate subjected to electrolytic oxidation treatment is subjected to reverse osmosis treatment using a ceramic membrane.
在上述处理方法中,尤其是对氨氮进行处理而采用的方法有加碱吹脱法、氯折点法。就目前技术水平而言,加碱吹脱法由于废水中悬浮物高且处理成本高(20元/m3)而无法获得推广;氯折点法因氨氮含量高、且需要大量的氯气和氢氧化钠而使成本很高(30元/m
3 ),也无法推广。Among the above treatment methods, in particular, the method used for treating ammonia nitrogen is an alkali stripping method or a chlorine folding method. As far as the current state of the art is concerned, the alkali stripping method cannot be popularized because of high suspended matter in the wastewater and high processing cost (20 yuan/m 3 ); the chlorine folding method has high ammonia nitrogen content and requires a large amount of chlorine gas and hydroxide. Sodium makes the cost very high (30 yuan / m 3 ), and it cannot be promoted.
另外,现有公知的电解技术能有效去除垃圾渗滤液中的有害物质,但是传统的电解的电流密度低、工作电位高、电效率很低、耗能较大、寿命短、成本较高,因此将其应用于废水处理方面效果并不理想。In addition, the well-known electrolysis technology can effectively remove harmful substances in the landfill leachate, but the conventional electrolysis has low current density, high working potential, low electrical efficiency, large energy consumption, short life, and high cost. The effect of applying it to wastewater treatment is not satisfactory.
本发明提供了垃圾渗滤液的处理装置,通过该处理装置处理后的垃圾渗滤液能达到排放标准;本发明还提供了一种工艺简单、成本低廉且处理效果理想的垃圾渗滤液的处理方法,其目的在于克服现有技术存在的工艺复杂、成本高的缺陷。
The invention provides a treatment device for landfill leachate, and the landfill leachate treated by the treatment device can meet the discharge standard; the invention also provides a method for treating landfill leachate with simple process, low cost and good treatment effect, The purpose is to overcome the drawbacks of the prior art that the process is complicated and costly.
本发明的技术方案如下:The technical solution of the present invention is as follows:
垃圾渗滤液的处理装置,它包括调节池、混凝池、初沉池、电解机、水解酸化池、缺氧池、好氧池、二沉池、污泥池和污泥脱水装置;所述的调节池的进口与垃圾渗滤液的出口联接,调节池出水口与混凝池进水口联接,混凝池出水口与初沉池进水口联接,初沉池出水口与电解机进水口联接,电解机出水口与水解酸化池进水口联接,水解酸化池出水口与缺氧池进水口联接,缺氧池出水口与好氧池进水口联接,好氧池出水口与二沉池进水口联接,二沉池出水口与污水排放管道联接,初沉池和二沉池的污泥出口与污泥池联接,污泥池和污泥脱水装置之间设有污泥泵。a treatment device for landfill leachate, comprising a regulating tank, a coagulation tank, a primary sedimentation tank, an electrolysis machine, a hydrolysis acidification tank, an anoxic tank, an aerobic tank, a secondary settling tank, a sludge tank and a sludge dewatering device; The inlet of the regulating tank is connected with the outlet of the landfill leachate, the water outlet of the regulating tank is connected with the water inlet of the concrete pool, the water outlet of the concrete pool is connected with the water inlet of the primary sedimentation tank, and the water outlet of the primary sedimentation tank is connected with the water inlet of the electrolytic machine. The water outlet of the electrolysis machine is connected with the water inlet of the hydrolysis acidification tank, the water outlet of the hydrolysis acidification tank is connected with the water inlet of the anoxic tank, the water outlet of the anoxic tank is connected with the inlet of the aerobic tank, and the water outlet of the aerobic tank is connected with the inlet of the second settling tank. The outlet of the secondary sedimentation tank is connected with the sewage discharge pipeline, the sludge outlet of the primary sedimentation tank and the secondary sedimentation tank is connected with the sludge tank, and a sludge pump is arranged between the sludge tank and the sludge dewatering device.
所述调节池和混凝池上分别有一个pH调节剂加药装置和絮凝剂加药装置。The adjustment tank and the coagulation tank respectively have a pH adjusting agent dosing device and a flocculating agent dosing device.
所述处理装置还包括一使好氧池的部分混合液回流至缺氧池的混合液回流泵,所述混合液的回流比为3:1或2:1。The processing apparatus further includes a mixed liquid reflux pump for returning a portion of the mixed liquid of the aerobic tank to the anoxic tank, the reflux ratio of the mixed liquid being 3:1 or 2:1.
本发明所述的垃圾渗滤液处理方法通过采用如上所述的垃圾渗滤液处理装置,并经过如下步骤实现的:The landfill leachate treatment method according to the present invention is realized by adopting the landfill leachate treatment device as described above and through the following steps:
a、絮凝沉淀a, flocculation and sedimentation
垃圾渗滤液经管道进入调节池,使得来自垃圾填埋场各处的不同性质的垃圾渗滤液的流量及参数得以充分调节,便于后续单元的处理。在调节池中加入pH调节剂调节pH值为7-10后流入混凝池,通过加药装置加入絮凝剂,反应完全后进入初沉池,沉淀(即污泥)经过泵和管道送入污泥池中,最后在污泥脱水装置中进行过滤分离,废水则进入电解机;The landfill leachate enters the regulating tank through the pipeline, so that the flow and parameters of the different types of landfill leachate from all parts of the landfill can be fully adjusted to facilitate the subsequent unit treatment. Add pH adjuster to the adjustment tank to adjust the pH value to 7-10, then flow into the coagulation tank, add flocculant through the dosing device, enter the primary sedimentation tank after the reaction is complete, and the sediment (ie sludge) is sent to the sewage through the pump and pipeline. In the mud pool, finally, the filter is separated in the sludge dewatering device, and the wastewater enters the electrolysis machine;
b、电解b, electrolysis
将絮凝沉淀处理后的废水泵入电解机电解。电解的工作电压为2~1000V,
相邻两电极间的电压为2~12V,电流密度为1~320mA/cm2,废水在电解机中的停留时间为2~50s;The wastewater after flocculation and sedimentation treatment is pumped into the electrolysis machine for electrolysis. The working voltage of electrolysis is 2 to 1000V, the voltage between adjacent electrodes is 2 to 12V, the current density is 1 to 320 mA/cm 2 , and the residence time of wastewater in the electrolysis machine is 2 to 50 s;
c、厌氧处理c, anaerobic treatment
电解处理后的废水依次进入水解酸化池和缺氧池中,使废水中的大分子有机物在产酸菌的作用下水解酸化成小分子有机物,再经过缺氧池中厌氧菌、兼氧菌等各种微生物的吸附、发酵、产甲烷等共同作用下分解成甲烷和二氧化碳,提高B/C值,改善可生化性;同时通过缺氧池中反硝化细菌的反硝化作用脱除废水中的氨氮;The electrolyzed wastewater enters the hydrolysis acidification tank and the anoxic tank in turn, so that the macromolecular organic matter in the wastewater is hydrolyzed and acidified into small molecule organic matter by the acid-producing bacteria, and then passes through the anaerobic and facultative bacteria in the anoxic tank. Decompose into methane and carbon dioxide by adsorption, fermentation, and methanogenesis of various microorganisms, increase B/C value, improve biodegradability, and remove denitrification from denitrifying bacteria in anoxic tank. Ammonia nitrogen
d、好氧处理d, aerobic treatment
厌氧处理后的废水进入含有好氧菌和硝酸细菌的好氧池内,利用好氧微生物进一步氧化分解废水中的有机物,深度去除废水中的CODCr和BOD5,同时利用硝化细菌的硝化作用和亚硝化细菌的亚硝化作用使氨态氮转化为硝态氮或亚硝态氮;The anaerobic treated wastewater enters an aerobic tank containing aerobic bacteria and nitric acid bacteria, and further decomposes the organic matter in the wastewater by aerobic microorganisms, deeply removes COD Cr and BOD 5 from the wastewater, and utilizes the nitrification of nitrifying bacteria and Nitrosation of nitrosated bacteria converts ammonia nitrogen into nitrate nitrogen or nitrite nitrogen;
e、沉淀e, precipitation
好氧处理后的废水流入二沉池,进一步去除废水中的CODCr、BOD5
、SS等,二沉池的出水可达标排放,二沉池底部的污泥一部分经泵回流至缺氧池中,另一部分通过管道流入污泥池中,再经污泥脱水装置过滤分离成滤液和泥饼,滤液经管道回流至调节池中,而泥饼则外运。The aerobic treated wastewater flows into the secondary settling tank to further remove COD Cr , BOD 5 , SS, etc. from the wastewater. The effluent from the secondary settling tank can reach the standard discharge, and a part of the sludge at the bottom of the secondary settling tank is pumped back to the anoxic tank. The other part flows into the sludge tank through the pipeline, and then is separated into the filtrate and the mud cake by the sludge dewatering device. The filtrate is returned to the adjustment tank through the pipeline, and the mud cake is transported.
在步骤a中,所述的絮凝剂为铝盐(硫酸铝、氯化铝)、铁盐(硫酸铁、硫酸亚铁、氯化铁)、聚铝(聚合氯化铝、聚合硫酸铝、聚合硅酸铝)、聚铁(聚合氯化铁、聚合硫酸铁、聚合硅酸铁)中的一种或多种组合;所述pH调节剂为硫酸、氢氧化钠、碳酸钠、碳酸氢钠、石灰中的一种。In the step a, the flocculating agent is aluminum salt (aluminum sulfate, aluminum chloride), iron salt (iron sulfate, ferrous sulfate, ferric chloride), poly aluminum (polyaluminum chloride, polyaluminum sulfate, polymerization) One or more combinations of aluminum silicate), polyferric iron (polyferric chloride, polyferric sulfate, and polymeric ferric silicate); the pH adjuster is sulfuric acid, sodium hydroxide, sodium carbonate, sodium hydrogencarbonate, One of the limes.
在步骤a中,所述的最佳絮凝剂为聚合硫酸铁(PFS),投加量为每吨废水200~2000g。In the step a, the optimal flocculating agent is polyferric sulfate (PFS), and the dosage is 200-2000 g per ton of wastewater.
在步骤a中,所述的最佳絮凝剂为硫酸亚铁(FeSO4),投加量为每吨废水230~1800g。In the step a, the optimal flocculant is ferrous sulfate (FeSO 4 ), and the dosage is 230-1800 g per ton of wastewater.
在步骤b中,所述电解机的阳极为金属或石墨电极,所述电解机的阴极为铁阴极、铝阴极、不锈钢阴极、镍阴极、钛或锌阴极。In step b, the anode of the electrolyzer is a metal or graphite electrode, and the cathode of the electrolyzer is an iron cathode, an aluminum cathode, a stainless steel cathode, a nickel cathode, a titanium or a zinc cathode.
进一步的,在步骤b中,所述的纳米催化电解机的结构见中国专利CN102010038A,阳极为以钛为基板,在基板表面覆盖有晶粒为15~32nm的纳米贵金属氧气物涂层的惰性电极。所述纳米催化电解机的阴极为铁阴极、铝阴极、不锈钢阴极、镍阴极、钛或锌阴极等。所述纳米催化电解机的工作电压为2~500V,两电极间的电压为2~8V,电解密度为10~300mA/cm2
,保持废水在纳米催化电解机中的停留时间为2~30s。Further, in step b, the structure of the nano catalytic electrolyzer is described in Chinese patent CN102010038A, the anode is a substrate made of titanium, and the surface of the substrate is covered with an inert electrode of a nanometer precious metal oxygen coating with a crystal grain size of 15 to 32 nm. . The cathode of the nano catalytic electrolysis machine is an iron cathode, an aluminum cathode, a stainless steel cathode, a nickel cathode, a titanium or a zinc cathode, and the like. The working voltage of the nano catalytic electrolysis machine is 2 to 500 V, the voltage between the two electrodes is 2 to 8 V, the electrolytic density is 10 to 300 mA/cm 2 , and the residence time of the wastewater in the nano catalytic electrolysis machine is 2 to 30 s.
纳米催化电解垃圾渗滤液时,产生的游离基氯[Cl]、游离基氧[O]和羟基[OH]等杀灭废水中微生物、氧化分解废水中的有机物、铵离子,使废水中的有机物质大环开环,长链断链,既消除了废水的色度,也去除了臭味,还提高废水的可生化性,并使废水在电场作用下脱稳,废水中的悬浮物、胶体、带电微粒,形成较大颗粒。此外,废水中的阳离子、阴离子分别向阴极和阳极移动,在阴极和阳极发生双电层作用和多电层作用,形成沉淀诱发絮凝作用,加速杂质沉降;电解产生的氢气小气泡还具有气浮效果。When the nano-catalyzed landfill leachate is produced, the free radical chlorine [Cl], free radical oxygen [O] and hydroxyl [OH] are produced to kill microorganisms in the wastewater, oxidize and decompose organic matter and ammonium ions in the wastewater, and make the organic in the wastewater. The material is opened in a large ring and the long chain is broken. It not only eliminates the chromaticity of the wastewater, but also removes the odor. It also improves the biodegradability of the wastewater and destabilizes the wastewater under the action of an electric field. Suspended matter and colloid in the wastewater. , charged particles, forming larger particles. In addition, the cations and anions in the wastewater move to the cathode and the anode, respectively, and an electric double layer and a multi-electrode layer act on the cathode and the anode to form a precipitation-induced flocculation and accelerate the sedimentation of the impurities; the small bubbles of hydrogen generated by the electrolysis also have an air flotation. effect.
采用纳米催化具有如下突出效果:The use of nanocatalysis has the following outstanding effects:
首先,通过电解使废水中的大环化合物开环,长链断链,产生的游离基氧化分解有机物,快速降低CODCr,提高了废水的可生化性,从而为后续的厌氧单元创造了更好的生化条件。First, the macrocyclic compound in the wastewater is opened by electrolysis, and the long chain is broken, and the generated radical oxidizes and decomposes the organic matter, rapidly lowers the COD Cr , and improves the biodegradability of the wastewater, thereby creating a more anaerobic unit for the subsequent anaerobic unit. Good biochemical conditions.
其次,通过电解产生的多种游离基(强氧化性物质)杀灭废水中的微生物,使后续的厌氧处理中能培育出更大的优势菌群,发挥更好的生化效果,使厌氧处理的出水水质更好。Secondly, a variety of free radicals (strong oxidizing substances) produced by electrolysis kill microorganisms in the wastewater, so that subsequent anaerobic treatment can produce a larger dominant flora, exert better biochemical effects, and make anaerobic The treated effluent water quality is better.
第三,氧化分解废水中的无机铵,使铵离子转化为氮气、硝酸根、亚硝酸根和水,氨氮的脱除率可达80~90%,使进入生化前废水的氨氮小于100mg/L,同时消除水中臭味。Third, the inorganic ammonium in the wastewater is oxidatively decomposed, and the ammonium ion is converted into nitrogen, nitrate, nitrite and water. The removal rate of ammonia nitrogen can reach 80-90%, and the ammonia nitrogen entering the pre-biochemical wastewater is less than 100 mg/L. At the same time, eliminate the smell of water.
第四,大幅度降低废水的色度,电解产生的氯[Cl]、羟基[OH]和氧[O]等强氧化性自由基可以氧化分解残留于废水中发色基团、助色基团,降低废水色度,达到脱色的目的。Fourth, the chromaticity of the wastewater is greatly reduced. The strong oxidizing radicals such as chlorine [Cl], hydroxyl [OH] and oxygen [O] generated by electrolysis can oxidatively decompose the chromophores and the color-assisting groups remaining in the wastewater. , to reduce the color of the wastewater, to achieve the purpose of decolorization.
第五,除臭,电解产生的多种游离基(强氧化性物质)氧化分解废水中的发臭基团,去除废水中的恶臭。Fifth, deodorization, various radicals (strong oxidizing substances) generated by electrolysis oxidize and decompose the odorous groups in the wastewater to remove malodors in the wastewater.
第六,电解时废水中的阳离子和阴离子分别向电解机电解槽的阴极和阳极移动,发生双电层作用,在阴极和阳极附近形成沉淀,从而降低废水中的重金属离子含量,从而减轻重金属离子对后续单元中厌氧、好氧微生物的抑制、毒害作用。Sixth, during the electrolysis, the cations and anions in the wastewater move to the cathode and anode of the electrolysis cell, respectively, and an electric double layer acts to form a precipitate near the cathode and the anode, thereby reducing the heavy metal ion content in the wastewater, thereby reducing heavy metal ions. The inhibition and toxic effects of anaerobic and aerobic microorganisms in subsequent units.
在步骤d中,所述好氧池内的混合液部分回流至缺氧池中,回流比为3:1或2:1,有利于缺氧池中反硝化细菌的反硝化作用脱除废水的氨氮。In the step d, the mixed liquid in the aerobic tank is partially returned to the anoxic tank, and the reflux ratio is 3:1 or 2:1, which is beneficial to the denitrification of the denitrifying bacteria in the anoxic tank to remove the ammonia nitrogen of the wastewater. .
由上述对本发明的描述可知,和现有技术相比,本发明的优点在于: From the above description of the invention, it is apparent that the advantages of the present invention over the prior art are:
(1)通过电解步骤,不仅可以快速降低CODCr,提高了废水的可生化性,而且对氨氮的脱除率可达80~90%,同时通过电解絮凝沉淀作用有效去除废水中重金属离子,为后续的处理工艺创造更好的生化条件。(1) Through the electrolysis step, not only can COD Cr be quickly reduced, but also the biodegradability of wastewater can be improved, and the removal rate of ammonia nitrogen can reach 80-90%. At the same time, heavy metal ions in wastewater can be effectively removed by electrolytic flocculation and sedimentation. Subsequent processing creates better biochemical conditions.
(2)纳米催化电解机采用表面覆盖有具有良好催化效果晶粒为15~32nm的纳米催化涂层的惰性电极作阳极,阳极不消耗,成本低,电效率高,是普通电极电解效率的10倍以上,吨废水处理消耗的电能大幅度减少。
(2) The nano-catalytic electrolysis machine adopts an inert electrode whose surface is covered with a nano-catalytic coating with a good catalytic effect of 15 to 32 nm as an anode. The anode is not consumed, the cost is low, and the electric efficiency is high, which is the electrolysis efficiency of the common electrode. More than double, the electrical energy consumed by tons of wastewater treatment is greatly reduced.
(3)通过厌氧处理和好氧处理的生物处理方法能进一步有效降低垃圾渗滤液中的氨氮、CODCr和BOD5。(3) The biological treatment methods of anaerobic treatment and aerobic treatment can further effectively reduce ammonia nitrogen, COD Cr and BOD 5 in landfill leachate.
(4)通过上述各步骤有序配合能保证垃圾渗滤液处理后的达到《生活垃圾填埋场污染控制标准》(GB16889-2008)排放标准。
(4) Through the orderly cooperation of the above steps, it can ensure that the discharge standard of the Domestic Waste Landfill Pollution Control Standard (GB16889-2008) is met after the landfill leachate treatment.
图1为本发明的工艺流程图。 Figure 1 is a process flow diagram of the present invention.
下面参照附图1说明本发明的具体实施方式。 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to FIG.
参照图1,垃圾渗滤液的处理装置,它包括:调节池1、混凝池2、初沉池3、电解机4、水解酸化池5、缺氧池6、好氧池7、二沉池8、污泥池9和污泥脱水装置10;调节池1的进口与垃圾渗滤液的出口联接,调节池1出水口与混凝池2进水口联接,混凝池2出水口与初沉池3进水口联接,初沉池3出水口经水泵34与电解机4进水口联接,电解机4出水口与水解酸化池5进水口联接,水解酸化池5出水口与缺氧池6进水口联接,缺氧池6出水口与好氧池7进水口联接,好氧池7出水口与二沉池8进水口联接,二沉池8出水口与污水排放管道联接。而初沉池3和二沉池8的污泥出口则与污泥池9联接,污泥池9和污泥脱水装置10之间设有污泥泵11,污泥泵11能将污泥池9中的污泥泵入污泥脱水装置10中处理。调节池1和混凝池2上分别有一个pH调节剂加药装置(图中未画出)和絮凝剂加药装置(图中未画出),上述加药装置能分别对调节池1和混凝池2中加入pH调节剂和絮凝剂。
Referring to Fig. 1, a treatment device for landfill leachate comprises: a regulating tank 1, a coagulation tank 2, a primary sedimentation tank 3, an electrolysis machine 4, a hydrolysis acidification tank 5, an anoxic tank 6, an aerobic tank 7, and a secondary sedimentation tank. 8. Sludge tank 9 and sludge dewatering device 10; the inlet of the regulating tank 1 is connected with the outlet of the landfill leachate, the water outlet of the regulating tank 1 is connected with the water inlet of the coagulation tank 2, and the water outlet of the concrete pool 2 and the primary sedimentation tank 3 Inlet connection, the outlet of the primary sedimentation tank 3 is connected to the inlet of the electrolysis machine 4 via the water pump 34, the outlet of the electrolysis machine 4 is connected with the inlet of the hydrolysis acidification tank 5, and the outlet of the hydrolysis acidification tank 5 is connected with the inlet of the anoxic tank 6 The water outlet of the anoxic tank 6 is connected with the inlet of the aerobic tank 7, the outlet of the aerobic tank 7 is connected with the inlet of the second settling tank 8, and the outlet of the secondary settling tank 8 is connected with the sewage discharge pipe. The sludge outlets of the primary sedimentation tank 3 and the secondary sedimentation tank 8 are connected to the sludge tank 9, and a sludge pump 11 is provided between the sludge tank 9 and the sludge dewatering device 10, and the sludge pump 11 can be used for the sludge tank. The sludge in 9 is pumped into the sludge dewatering device 10 for treatment. The adjusting tank 1 and the coagulation tank 2 respectively have a pH adjusting agent dosing device (not shown) and a flocculating agent dosing device (not shown), and the dosing device can respectively adjust the adjusting tank 1 and A pH adjuster and a flocculant are added to the coagulation tank 2.
从图1中可看出,处理装置还包括一个使好氧池7的部分混合液回流至缺氧池6的混合液回流泵67。 As can be seen in Figure 1, the processing apparatus also includes a mixed liquid return pump 67 that returns a portion of the aerobic tank 7 to the anoxic tank 6.
以下结合图1给出垃圾渗滤液处理装置方法的具体实施例。 A specific embodiment of the landfill leachate treatment apparatus method is given below in conjunction with FIG.
实施例1 Example 1
某垃圾卫生填埋场800吨/日的渗滤液处理工程 Leachate treatment project of 800 tons/day in a garbage sanitary landfill
所述的垃圾渗滤液原水经测定指标如表2所示。 The measured indexes of the raw water of the landfill leachate are shown in Table 2.
表2 垃圾渗滤液原水的水质情况。
Table 2 Water quality of landfill leachate raw water.
序号 | 项目 | 单位 | 测定值 | 序号 | 项目 | 单位 | 测定值 |
1 | CODCr | mg/L | 4000 | 5 | 氨氮 | mg/L | 900 |
2 | SS | mg/L | 600 | 6 | 色度 | 倍 | 1000 |
3 | 浊度 | NTU | 510 | 7 | pH值 | - | 7.0 |
4 | BOD5 | mg/L | 2500 | 8 | 电导率 | µS/cm | 8500 |
Serial number | project | unit | measured value | Serial number | project | unit | measured |
1 | COD Cr | Mg/L | 4000 | 5 | Ammonia nitrogen | Mg/L | 900 |
2 | SS | Mg/L | 600 | 6 | Chroma | Times | 1000 |
3 | Turbidity | NTU | 510 | 7 | pH value | - | 7.0 |
4 | BOD 5 | Mg/L | 2500 | 8 | Conductivity | μS/cm | 8500 |
从表2中可看出,垃圾渗滤液的污染物浓度高,CODCr
、BOD5
和氨氮大多为工业污染物国家排放标准的几十~几百倍以上。本实施例能有效利用上述处理装置处理垃圾渗滤液,其具体的处理方法如下:It can be seen from Table 2 that the concentration of pollutants in landfill leachate is high, and COD Cr , BOD 5 and ammonia nitrogen are mostly tens to hundreds of times higher than the national emission standards for industrial pollutants. This embodiment can effectively utilize the above processing device to treat landfill leachate, and the specific processing method is as follows:
步骤a、絮凝沉淀Step a, flocculation and sedimentation
废水经水按40m3/h的流速进入调节池1,充分混合后进入混凝池2,每吨废水加入300g聚合硫酸铁(PFS)的反应完全后进入初沉池3,初沉池3的污泥沉淀经泵和管道送入污泥池9中,最后在污泥脱水装置10中进行过滤分离,初沉池3的废水则通过泵34流入电解机4。The wastewater enters the adjustment tank 1 at a flow rate of 40 m 3 /h through water, and is fully mixed and then enters the coagulation tank 2. The reaction of adding 300 g of polyferric sulfate (PFS) per ton of wastewater is completed and then enters the primary settling tank 3, and the primary settling tank 3 The sludge is sent to the sludge tank 9 through a pump and a pipe, and finally filtered and separated in the sludge dewatering device 10, and the wastewater of the primary sedimentation tank 3 flows into the electrolysis machine 4 through the pump 34.
步骤b、电解Step b, electrolysis
废水经过絮凝沉淀后流入电解机4电解,所述电解机4为纳米催化电解机,其工作电压为48V,电流密度为200mA/cm2,两极间的电压为3.6
V,废水在电解机4内的停留时间为10s。纳米催化微电解产生的强氧化性的自由基氯[Cl]、氧[O]和羟基[OH]能快速氧化分解废水中的有机物质,使废水中难于生化降解的大有机分子开环、断链、大分子分解为小分子,降低CODCr
和提高废水的可生化,为生化提供更好的条件;同时使废水中的染料分子的发色基团、助色基团氧化或还原为无色基团,达到脱色的目的;再者,废水中的阳离子和阴离子分别向电解机4电解槽的阴极和阳极移动,在阴极和阳极附近形成沉淀,从而降低废水中的重金属离子含量,从而减轻重金属离子对后续单元中厌氧、好氧微生物的抑制、毒害作用;此外,还可以杀灭废水中微生物,并使废水中的悬浮物、胶体、带电微粒在电场作用下形成较大颗粒。The wastewater is subjected to flocculation and sedimentation and then flows into the electrolysis machine 4 for electrolysis. The electrolysis machine 4 is a nano catalytic electrolysis machine having an operating voltage of 48 V, a current density of 200 mA/cm 2 , a voltage between the two electrodes of 3.6 V, and waste water in the electrolysis machine 4 . The stay time is 10s. The highly oxidizing free radicals chlorine [Cl], oxygen [O] and hydroxyl [OH] produced by nanocatalytic microelectrolysis can rapidly oxidize and decompose organic substances in wastewater, and open and break large organic molecules that are difficult to biodegrade in wastewater. The chain and macromolecules are decomposed into small molecules, which reduce COD Cr and improve the biodegradability of wastewater, and provide better conditions for biochemistry. At the same time, the chromophore and the chromophore of the dye molecules in the wastewater are oxidized or reduced to colorless. The group achieves the purpose of decolorization; in addition, the cations and anions in the wastewater move to the cathode and anode of the electrolysis cell 4, respectively, forming a precipitate near the cathode and the anode, thereby reducing the heavy metal ion content in the wastewater, thereby reducing heavy metals. The ions inhibit the anaerobic and aerobic microorganisms in the subsequent unit; in addition, the microorganisms in the wastewater can be killed, and the suspended solids, colloids and charged particles in the wastewater form larger particles under the action of the electric field.
步骤c、厌氧处理Step c, anaerobic treatment
电解处理后的废水依次进入水解酸化池5和缺氧池6中,使废水中的大分子有机物在产酸菌的作用下水解酸化成小分子有机物,再经过缺氧池6中厌氧菌、兼氧菌等各种微生物的吸附、发酵、产甲烷等共同作用下分解成甲烷和二氧化碳,提高B/C值,改善可生化性;同时通过缺氧池6中反硝化细菌的反硝化作用脱除废水中的氨氮。The electrolyzed wastewater enters the hydrolysis acidification tank 5 and the anoxic acid tank 6 in turn, so that the macromolecular organic matter in the wastewater is hydrolyzed and acidified into small molecular organic substances by the acid-producing bacteria, and then passes through the anaerobic bacteria in the anoxic tank 6, Decomposition into methane and carbon dioxide by adsorption, fermentation, and methanogenesis of various microorganisms such as facultative bacteria, increasing B/C value and improving biodegradability; and denitrifying by denitrifying bacteria in anoxic cell 6 In addition to ammonia nitrogen in wastewater.
步骤d、好氧处理Step d, aerobic treatment
厌氧处理后的废水依次进入好氧池7内,利用好氧微生物进一步氧化分解废水中的有机物,深度去除废水中的CODCr
和BOD5
,同时利用硝化细菌的硝化作用和亚硝化细菌的亚硝化作用使氨态氮转化为硝态氮或亚硝态氮。好氧池7中的混合液通过混合液回流泵67以2:1的比例回流至缺氧池6中,利用缺氧池6中的反硝化细菌的反硝化作用脱除废水的氨氮。The anaerobic treated wastewater enters the aerobic tank 7 in turn, and further decomposes the organic matter in the wastewater by aerobic microorganisms, and deeply removes COD Cr and BOD 5 from the wastewater, while utilizing the nitrification of nitrifying bacteria and the sub-nitrosation bacteria. Nitrification converts ammonia nitrogen into nitrate or nitrite. The mixed liquid in the aerobic tank 7 is returned to the anoxic tank 6 through the mixed liquid reflux pump 67 at a ratio of 2:1, and the ammonia nitrogen of the wastewater is removed by denitrification of the denitrifying bacteria in the anoxic tank 6.
步骤e、沉淀Step e, precipitation
好氧处理后的废水流入二沉池8进行沉淀分离,进一步去除废水中的CODCr
、BOD5
、SS等,二沉池8的出水可达标排放,出水的水质情况如表3所示;二沉池8底部的污泥一部分经泵68回流至缺氧池6中,另一部分通过管道流入污泥池9中,再经污泥脱水装置10过滤分离成滤液和泥饼,滤液经管道回流至调节池1中,而泥饼则外运。
The aerobic treated wastewater flows into the secondary settling tank 8 for sedimentation and separation, further removing COD Cr , BOD 5 , SS, etc. from the wastewater. The effluent of the secondary settling tank 8 can reach the standard discharge, and the water quality of the effluent is shown in Table 3; A part of the sludge at the bottom of the sinking tank 8 is returned to the anoxic tank 6 via the pump 68, and the other part flows into the sludge tank 9 through the pipeline, and is separated into a filtrate and a mud cake by the sludge dewatering device 10, and the filtrate is returned to the pipeline through the pipeline. Adjust the pool 1 while the mud cake is shipped out.
表3 处理后的垃圾渗滤液的出水水质情况
Table 3 Water quality of landfill leachate after treatment
序号 | 项目 | 单位 | 测定值 | 序号 | 项目 | 单位 | 测定值 |
1 | CODCr | mg/L | 80 | 5 | 氨氮 | mg/L | 10 |
2 | SS | mg/L | 30 | 6 | 色度 | 倍 | 10 |
3 | 浊度 | NTU | 22 | 7 | pH值 | - | 7.5 |
4 | BOD5 | mg/L | 30 | 8 | 电导率 | µS/cm | 6100 |
Serial number | project | unit | measured value | Serial number | project | unit | measured | |
1 | COD Cr | Mg/L | 80 | 5 | Ammonia nitrogen | Mg/ | 10 | |
2 | SS | Mg/L | 30 | 6 | | Times | 10 | |
3 | Turbidity | NTU | twenty two | 7 | pH value | - | 7.5 | |
4 | BOD 5 | Mg/L | 30 | 8 | Conductivity | μS/cm | 6100 |
从表3可知,CODCr和氨氮的含量明显减少,各项指标都能达到《生活垃圾填埋场污染控制标准》(GB16889-2008)排放标准。It can be seen from Table 3 that the content of COD Cr and ammonia nitrogen is significantly reduced, and all the indicators can meet the discharge standard of “Standard for Pollution Control of Domestic Waste Landfill” (GB16889-2008).
实施例2 Example 2
某垃圾卫生填埋场500吨/日的渗滤液处理工程 Leachate treatment project of 500 tons/day in a garbage sanitary landfill
所述的垃圾渗滤液原水经测定指标如表4所示。 The measured indexes of the raw water of the landfill leachate are shown in Table 4.
表4 垃圾渗滤液原水的水质情况。
Table 4 Water quality of landfill leachate raw water.
序号 | 项目 | 单位 | 测定值 | 序号 | 项目 | 单位 | 测定值 |
1 | CODCr | mg/L | 3610 | 5 | 氨氮 | mg/L | 250 |
2 | SS | mg/L | 248 | 6 | 色度 | 倍 | 600 |
3 | 浊度 | NTU | 300 | 7 | pH值 | - | 7.0 |
4 | BOD5 | mg/L | 1920 | 8 | 电导率 | µS/cm | 7480 |
Serial number | project | unit | measured value | Serial number | project | unit | measured |
1 | COD Cr | Mg/L | 3610 | 5 | Ammonia nitrogen | Mg/L | 250 |
2 | SS | Mg/L | 248 | 6 | Chroma | Times | 600 |
3 | Turbidity | NTU | 300 | 7 | pH value | - | 7.0 |
4 | BOD 5 | Mg/L | 1920 | 8 | Conductivity | μS/cm | 7480 |
本实施例能有效利用上述处理装置处理垃圾渗滤液,其具体的处理方法如下:This embodiment can effectively utilize the above processing device to treat landfill leachate, and the specific processing method is as follows:
步骤a、絮凝沉淀Step a, flocculation and sedimentation
废水经水按25m3/h的流速进入调节池1,充分混合后进入混凝池2,每吨废水加入500g硫酸亚铁,反应完全后进入初沉池3,初沉池3的污泥沉淀经泵和管道送入污泥池9中,最后在污泥脱水装置10中进行过滤分离,初沉池3的废水则通过泵34流入电解机4。The wastewater enters the adjustment tank 1 at a flow rate of 25 m 3 /h through water, and is fully mixed and then enters the coagulation tank 2, 500 g of ferrous sulfate is added per ton of wastewater, and after completion of the reaction, it enters the primary settling tank 3, and the sludge of the primary settling tank 3 is precipitated. It is sent to the sludge tank 9 via a pump and a pipe, and finally filtered and separated in the sludge dewatering device 10, and the wastewater of the primary settling tank 3 flows into the electrolysis machine 4 through the pump 34.
步骤b、电解Step b, electrolysis
废水经过絮凝沉淀后流入电解机4电解,所述电解机4工作电压为4V,电流密度为15mA/cm2,两极间的电压为2
V,废水在电解机4内的停留时间为10s。The wastewater is subjected to flocculation and sedimentation and then flows into the electrolysis machine 4 for electrolysis. The electrolysis machine 4 has an operating voltage of 4 V, a current density of 15 mA/cm 2 , a voltage between the two electrodes of 2 V, and a residence time of the wastewater in the electrolysis machine 4 of 10 s.
步骤c、厌氧处理Step c, anaerobic treatment
电解处理后的废水依次进入水解酸化池5和缺氧池6中,使废水中的大分子有机物在产酸菌的作用下水解酸化成小分子有机物,再经过缺氧池6中厌氧菌、兼氧菌等各种微生物的吸附、发酵、产甲烷等共同作用下分解成甲烷和二氧化碳,提高B/C值,改善可生化性;同时通过缺氧池6中反硝化细菌的反硝化作用脱除废水中的氨氮。The electrolyzed wastewater enters the hydrolysis acidification tank 5 and the anoxic acid tank 6 in turn, so that the macromolecular organic matter in the wastewater is hydrolyzed and acidified into small molecular organic substances by the acid-producing bacteria, and then passes through the anaerobic bacteria in the anoxic tank 6, Decomposition into methane and carbon dioxide by adsorption, fermentation, and methanogenesis of various microorganisms such as facultative bacteria, increasing B/C value and improving biodegradability; and denitrifying by denitrifying bacteria in anoxic cell 6 In addition to ammonia nitrogen in wastewater.
步骤d、好氧处理Step d, aerobic treatment
厌氧处理后的废水依次进入好氧池7内,利用好氧微生物进一步氧化分解废水中的有机物,深度去除废水中的CODCr
和BOD5
,同时利用硝化细菌的硝化作用和亚硝化细菌的亚硝化作用使氨态氮转化为硝态氮或亚硝态氮。好氧池7中的混合液通过混合液回流泵67以3:1的比例回流至缺氧池6中,利用缺氧池6中的反硝化细菌的反硝化作用脱除废水的氨氮。The anaerobic treated wastewater enters the aerobic tank 7 in turn, and further decomposes the organic matter in the wastewater by aerobic microorganisms, and deeply removes COD Cr and BOD 5 from the wastewater, while utilizing the nitrification of nitrifying bacteria and the sub-nitrosation bacteria. Nitrification converts ammonia nitrogen into nitrate or nitrite. The mixture in the aerobic tank 7 is returned to the anoxic tank 6 through the mixed liquid reflux pump 67 at a ratio of 3:1, and the ammonia nitrogen of the wastewater is removed by denitrification of the denitrifying bacteria in the anoxic tank 6.
步骤e、沉淀Step e, precipitation
好氧处理后的废水流入二沉池8进行沉淀分离,进一步去除废水中的CODCr
、BOD5
、SS等,二沉池8的出水可达标排放,出水的水质情况如表5所示;二沉池8底部的污泥一部分经泵68回流至缺氧池6中,另一部分通过管道流入污泥池9中,再经污泥脱水装置10过滤分离成滤液和泥饼,滤液经管道回流至调节池1中,而泥饼则外运。
The aerobic treated wastewater flows into the secondary settling tank 8 for sedimentation and separation, further removing COD Cr , BOD 5 , SS, etc. from the wastewater. The effluent of the secondary settling tank 8 can reach the standard discharge, and the water quality of the effluent is shown in Table 5; A part of the sludge at the bottom of the sinking tank 8 is returned to the anoxic tank 6 via the pump 68, and the other part flows into the sludge tank 9 through the pipeline, and is separated into a filtrate and a mud cake by the sludge dewatering device 10, and the filtrate is returned to the pipeline through the pipeline. Adjust the pool 1 while the mud cake is shipped out.
表5 处理后的垃圾渗滤液的出水水质情况
Table 5 effluent quality of landfill leachate after treatment
序号 | 项目 | 单位 | 测定值 | 序号 | 项目 | 单位 | 测定值 |
1 | CODCr | mg/L | 69 | 5 | 氨氮 | mg/L | 9.2 |
2 | SS | mg/L | 25 | 6 | 色度 | 倍 | 5 |
3 | 浊度 | NTU | 20 | 7 | pH值 | - | 7.5 |
4 | BOD5 | mg/L | 30 | 8 | 电导率 | µS/cm | 5350 |
Serial number | project | unit | measured value | Serial number | project | unit | measured |
1 | COD Cr | Mg/L | 69 | 5 | Ammonia nitrogen | Mg/L | 9.2 |
2 | SS | Mg/L | 25 | 6 | Chroma | Times | 5 |
3 | Turbidity | NTU | 20 | 7 | pH value | - | 7.5 |
4 | BOD 5 | Mg/L | 30 | 8 | Conductivity | μS/cm | 5350 |
实施例3 Example 3
某垃圾卫生填埋场1000吨/日的渗滤液处理工程 Leachate treatment project of 1000 tons/day in a garbage sanitary landfill
所述的垃圾渗滤液原水经测定指标如表6所示。 The measured indexes of the raw water of the landfill leachate are shown in Table 6.
表6 垃圾渗滤液原水的水质情况。
Table 6 Water quality of landfill leachate raw water.
序号 | 项目 | 单位 | 测定值 | 序号 | 项目 | 单位 | 测定值 |
1 | CODCr | mg/L | 5000 | 5 | 氨氮 | mg/L | 400 |
2 | SS | mg/L | 420 | 6 | 色度 | 倍 | 680 |
3 | 浊度 | NTU | 400 | 7 | pH值 | - | 6.5 |
4 | BOD5 | mg/L | 3100 | 8 | 电导率 | µS/cm | 8040 |
Serial number | project | unit | measured value | Serial number | project | unit | measured |
1 | COD Cr | Mg/L | 5000 | 5 | Ammonia nitrogen | Mg/L | 400 |
2 | SS | Mg/L | 420 | 6 | Chroma | Times | 680 |
3 | Turbidity | NTU | 400 | 7 | pH value | - | 6.5 |
4 | BOD 5 | Mg/L | 3100 | 8 | Conductivity | μS/cm | 8040 |
本实施例能有效利用上述处理装置处理垃圾渗滤液,其具体的处理方法如下:This embodiment can effectively utilize the above processing device to treat landfill leachate, and the specific processing method is as follows:
步骤a、絮凝沉淀Step a, flocculation and sedimentation
废水经水按50m3/h的流速进入调节池1,充分混合后进入混凝池2,每吨废水加入1500g聚合硫酸铁(PFS)的反应完全后进入初沉池3,初沉池3的污泥沉淀经泵和管道送入污泥池9中,最后在污泥脱水装置10中进行过滤分离,初沉池3的废水则通过泵34流入电解机4。The wastewater enters the adjustment tank 1 at a flow rate of 50 m 3 /h through water, and is fully mixed and then enters the coagulation tank 2. The reaction of adding 1500 g of polyferric sulfate (PFS) per ton of wastewater is completed and then enters the primary settling tank 3, and the primary settling tank 3 The sludge is sent to the sludge tank 9 through a pump and a pipe, and finally filtered and separated in the sludge dewatering device 10, and the wastewater of the primary sedimentation tank 3 flows into the electrolysis machine 4 through the pump 34.
步骤b、电解Step b, electrolysis
废水经过絮凝沉淀后流入电解机4电解,所述电解机4其工作电压为960V,电流密度为320mA/cm2,两极间的电压为12
V,废水在电解机4内的停留时间为50s。The wastewater is subjected to flocculation and sedimentation and flows into the electrolysis machine 4 for electrolysis. The electrolysis machine 4 has an operating voltage of 960 V, a current density of 320 mA/cm 2 , a voltage between the two electrodes of 12 V, and a residence time of the wastewater in the electrolysis machine 4 of 50 s.
步骤c、厌氧处理Step c, anaerobic treatment
电解处理后的废水依次进入水解酸化池5和缺氧池6中,使废水中的大分子有机物在产酸菌的作用下水解酸化成小分子有机物,再经过缺氧池6中厌氧菌、兼氧菌等各种微生物的吸附、发酵、产甲烷等共同作用下分解成甲烷和二氧化碳,提高B/C值,改善可生化性;同时通过缺氧池6中反硝化细菌的反硝化作用脱除废水中的氨氮。The electrolyzed wastewater enters the hydrolysis acidification tank 5 and the anoxic acid tank 6 in turn, so that the macromolecular organic matter in the wastewater is hydrolyzed and acidified into small molecular organic substances by the acid-producing bacteria, and then passes through the anaerobic bacteria in the anoxic tank 6, Decomposition into methane and carbon dioxide by adsorption, fermentation, and methanogenesis of various microorganisms such as facultative bacteria, increasing B/C value and improving biodegradability; and denitrifying by denitrifying bacteria in anoxic cell 6 In addition to ammonia nitrogen in wastewater.
步骤d、好氧处理Step d, aerobic treatment
厌氧处理后的废水依次进入好氧池7内,利用好氧微生物进一步氧化分解废水中的有机物,深度去除废水中的CODCr
和BOD5
,同时利用硝化细菌的硝化作用和亚硝化细菌的亚硝化作用使氨态氮转化为硝态氮或亚硝态氮。好氧池7中的混合液通过混合液回流泵67以2:1的比例回流至缺氧池6中,利用缺氧池6中的反硝化细菌的反硝化作用脱除废水的氨氮。The anaerobic treated wastewater enters the aerobic tank 7 in turn, and further decomposes the organic matter in the wastewater by aerobic microorganisms, and deeply removes COD Cr and BOD 5 from the wastewater, while utilizing the nitrification of nitrifying bacteria and the sub-nitrosation bacteria. Nitrification converts ammonia nitrogen into nitrate or nitrite. The mixed liquid in the aerobic tank 7 is returned to the anoxic tank 6 through the mixed liquid reflux pump 67 at a ratio of 2:1, and the ammonia nitrogen of the wastewater is removed by denitrification of the denitrifying bacteria in the anoxic tank 6.
步骤e、沉淀Step e, precipitation
好氧处理后的废水流入二沉池8进行沉淀分离,进一步去除废水中的CODCr
、BOD5
、SS等,二沉池8的出水可达标排放,出水的水质情况如表7所示;二沉池8底部的污泥一部分经泵68回流至缺氧池6中,另一部分通过管道流入污泥池9中,再经污泥脱水装置10过滤分离成滤液和泥饼,滤液经管道回流至调节池1中,而泥饼则外运。
The aerobic treated wastewater flows into the secondary settling tank 8 for sedimentation and separation, further removing COD Cr , BOD 5 , SS, etc. from the wastewater. The effluent of the secondary settling tank 8 can reach the standard discharge, and the water quality of the effluent is shown in Table 7; A part of the sludge at the bottom of the sinking tank 8 is returned to the anoxic tank 6 via the pump 68, and the other part flows into the sludge tank 9 through the pipeline, and is separated into a filtrate and a mud cake by the sludge dewatering device 10, and the filtrate is returned to the pipeline through the pipeline. Adjust the pool 1 while the mud cake is shipped out.
表7 处理后的垃圾渗滤液的出水水质情况
Table 7 Water quality of landfill leachate after treatment
序号 | 项目 | 单位 | 测定值 | 序号 | 项目 | 单位 | 测定值 |
1 | CODCr | mg/L | 75 | 5 | 氨氮 | mg/L | 12 |
2 | SS | mg/L | 30 | 6 | 色度 | 倍 | 5 |
3 | 浊度 | NTU | 28 | 7 | pH值 | - | 7.0 |
4 | BOD5 | mg/L | 24 | 8 | 电导率 | µS/cm | 5400 |
Serial number | project | unit | measured value | Serial number | project | unit | measured |
1 | COD Cr | Mg/L | 75 | 5 | Ammonia nitrogen | Mg/L | 12 |
2 | SS | Mg/L | 30 | 6 | Chroma | Times | 5 |
3 | Turbidity | NTU | 28 | 7 | pH value | - | 7.0 |
4 | BOD 5 | Mg/L | twenty four | 8 | Conductivity | μS/cm | 5400 |
本发明通过电解不仅可以快速降低CODCr,提高了废水的可生化性,而且对氨氮的脱除率可达80~90%,同时通过电解絮凝沉淀作用有效去除废水中重金属离子,为后续的处理工艺创造更好的生化条件,通过厌氧处理和好氧处理的生物处理方法能进一步有效降低垃圾渗滤液中的氨氮、CODCr和BOD5,因此本发明具有良好的工业实用性。
The invention not only can rapidly reduce COD Cr by electrolysis, but also improves the biodegradability of the wastewater, and the removal rate of ammonia nitrogen can reach 80-90%, and at the same time, the heavy metal ions in the wastewater are effectively removed by electrolytic flocculation and sedimentation for subsequent treatment. The process creates better biochemical conditions, and the biological treatment methods of anaerobic treatment and aerobic treatment can further effectively reduce ammonia nitrogen, COD Cr and BOD 5 in the landfill leachate, so the invention has good industrial applicability.
Claims (9)
- 垃圾渗滤液的处理装置,其特征在于它包括:调节池、混凝池、初沉池、电解机、水解酸化池、缺氧池、好氧池、二沉池、污泥池和污泥脱水装置;所述的调节池的进口与垃圾渗滤液的出口联接,调节池出水口与混凝池进水口联接,混凝池出水口与初沉池进水口联接,初沉池出水口与电解机进水口联接,电解机出水口与水解酸化池进水口联接,水解酸化池出水口与缺氧池进水口联接,缺氧池出水口与好氧池进水口联接,好氧池出水口与二沉池进水口联接,二沉池出水口与污水排放管道联接,初沉池和二沉池的污泥出口与污泥池联接,污泥池和污泥脱水装置之间设有污泥泵。 The treatment device for landfill leachate is characterized in that it comprises: regulating tank, coagulation tank, primary sedimentation tank, electrolysis machine, hydrolysis acidification tank, anoxic tank, aerobic tank, secondary sedimentation tank, sludge tank and sludge dewatering The inlet of the regulating tank is connected with the outlet of the landfill leachate, the water outlet of the regulating tank is connected with the water inlet of the concrete pool, the water outlet of the concrete pool is connected with the water inlet of the primary sedimentation tank, the water outlet of the primary sedimentation tank and the electrolysis machine The water inlet is connected, the water outlet of the electrolysis machine is connected with the water inlet of the hydrolysis acidification tank, the water outlet of the hydrolysis acidification tank is connected with the water inlet of the anoxic tank, the water outlet of the anoxic tank is connected with the inlet of the aerobic pool, the outlet of the aerobic tank and the second sink The water inlet of the pool is connected, the water outlet of the secondary sedimentation tank is connected with the sewage discharge pipeline, the sludge outlet of the primary sedimentation tank and the secondary sedimentation tank is connected with the sludge tank, and a sludge pump is arranged between the sludge tank and the sludge dewatering device.
- 如权利要求1所述的垃圾渗滤液的处理装置,其特征在于:所述调节池和混凝池上分别有一个pH调节剂加药装置和絮凝剂加药装置。 The treatment device for landfill leachate according to claim 1, wherein the regulating tank and the coagulation tank respectively have a pH adjusting agent dosing device and a flocculating agent dosing device.
- 如权利要求1所述的垃圾渗滤液的处理装置,其特征在于:所述处理装置还包括一个使好氧池的部分混合液回流至缺氧池的混合液回流泵,所述混合液的回流比为3:1或2:1。The treatment device for landfill leachate according to claim 1, wherein the treatment device further comprises a mixed liquid reflux pump for returning a part of the mixed liquid of the aerobic tank to the anoxic tank, and the reflux of the mixed liquid The ratio is 3:1 or 2:1.
- 如权利要求1所述的一种发制品废水循环利用装置,其特征在于:所述电解机的阳极为金属或石墨电极,所述电解机的阴极为铁阴极、铝阴极、不锈钢阴极、镍阴极、钛或锌阴极。A hair product waste water recycling device according to claim 1, wherein the anode of the electrolysis machine is a metal or graphite electrode, and the cathode of the electrolysis machine is an iron cathode, an aluminum cathode, a stainless steel cathode, and a nickel cathode. , titanium or zinc cathode.
- 一种垃圾渗滤液的处理方法,其特征在于,它采用权利要求1所述的垃圾渗滤液的处理装置,所述处理方法采用以下步骤:A method for treating landfill leachate, characterized in that it uses the treatment device for landfill leachate according to claim 1, the treatment method adopting the following steps:a、絮凝沉淀a, flocculation and sedimentation垃圾渗滤液经管道进入调节池,并在调节池中加入pH调节剂将pH值调节为7-10后流入混凝池,在混凝池中加入适量絮凝剂,反应完全后进入初沉池,初沉池的沉淀经过泵和管道送入污泥池中,最后在污泥脱水装置中进行过滤分离;初沉池的废水则泵入电解机中;The landfill leachate enters the regulating tank through the pipeline, and the pH adjusting agent is added to the regulating tank to adjust the pH value to 7-10, and then flows into the coagulation tank, and an appropriate amount of flocculating agent is added into the coagulation tank, and the reaction is completed and then enters the primary settling tank. The sedimentation of the primary sedimentation tank is sent to the sludge tank through the pump and pipeline, and finally filtered and separated in the sludge dewatering device; the wastewater from the primary sedimentation tank is pumped into the electrolysis machine;b、电解b, electrolysis电解机的工作电压为2~1000V, 相邻两电极间的电压为2~12V,电流密度为1~320mA/cm2,废水在电解机中的停留时间为2~50s;The working voltage of the electrolysis machine is 2 to 1000V, the voltage between adjacent electrodes is 2 to 12V, the current density is 1 to 320 mA/cm 2 , and the residence time of the wastewater in the electrolysis machine is 2 to 50 s;c、厌氧处理c, anaerobic treatment电解处理后的废水依次进入水解酸化池和缺氧池中,在水解酸化池内废水中的大分子有机物在产酸菌的作用下水解酸化成小分子有机物,再经过缺氧池中厌氧菌、兼氧菌的吸附、发酵、产甲烷共同作用下分解成甲烷和二氧化碳,提高B/C值,改善可生化性;同时通过缺氧池中反硝化细菌的反硝化作用脱除废水中的氨氮;The electrolyzed wastewater enters the hydrolysis acidification tank and the anoxic tank in turn, and the macromolecular organic matter in the wastewater in the hydrolysis acidification tank is hydrolyzed and acidified into small molecular organic substances by the acid-producing bacteria, and then passes through the anaerobic bacteria in the anoxic tank. The adsorption, fermentation and methanogenesis of facultative bacteria are decomposed into methane and carbon dioxide to increase the B/C value and improve biodegradability. At the same time, the ammonia nitrogen in the wastewater is removed by denitrification of denitrifying bacteria in the anoxic tank;d、好氧处理d, aerobic treatment厌氧处理后的废水进入含有好氧菌和硝酸细菌的好氧池内,利用好氧微生物进一步氧化分解废水中的有机物,深度去除废水中的CODCr和BOD5,同时利用硝化细菌的硝化作用和亚硝化细菌的亚硝化作用使氨态氮转化为硝态氮或亚硝态氮;The anaerobic treated wastewater enters an aerobic tank containing aerobic bacteria and nitric acid bacteria, and further decomposes the organic matter in the wastewater by aerobic microorganisms, deeply removes COD Cr and BOD 5 from the wastewater, and utilizes the nitrification of nitrifying bacteria and Nitrosation of nitrosated bacteria converts ammonia nitrogen into nitrate nitrogen or nitrite nitrogen;e、沉淀e, precipitation好氧处理后的废水流入二沉池,进一步去除废水中的CODCr、BOD5、SS等,二沉池的出水可达标排放,二沉池底部的污泥一部分经泵回流至缺氧池中,另一部分通过管道流入污泥池中,再经污泥脱水装置过滤分离成滤液和泥饼,滤液经管道回流至调节池中,而泥饼则外运。The aerobic treated wastewater flows into the secondary settling tank to further remove COD Cr , BOD 5 , SS, etc. from the wastewater. The effluent from the secondary settling tank can reach the standard discharge, and a part of the sludge at the bottom of the secondary settling tank is pumped back to the anoxic tank. The other part flows into the sludge tank through the pipeline, and then is separated into the filtrate and the mud cake by the sludge dewatering device. The filtrate is returned to the adjustment tank through the pipeline, and the mud cake is transported.
- 如权利要求5所述的一种垃圾渗滤液的处理方法,其特征在于:步骤a中所述的絮凝剂为铝盐、铁盐、聚铝、聚铁中的一种或多种组合;所述pH调节剂为硫酸、盐酸、氢氧化钠、碳酸钠、碳酸氢钠、石灰中的一种。The method for treating landfill leachate according to claim 5, wherein the flocculating agent in step a is one or a combination of aluminum salt, iron salt, poly aluminum, and poly iron; The pH adjusting agent is one of sulfuric acid, hydrochloric acid, sodium hydroxide, sodium carbonate, sodium hydrogencarbonate, and lime.
- 如权利要求5所述的一种垃圾渗滤液的处理方法,其特征在于:步骤b中所述的最佳电解是纳米催化电解,电解的工作电压为2~500V, 相邻两电极间的电压为2~8 V,电流密度为10~300mA/cm2,废水在电解机中的停留时间为2~30s。The method for treating landfill leachate according to claim 5, wherein the optimal electrolysis described in step b is nano catalytic electrolysis, and the working voltage of electrolysis is 2 to 500 V, and the voltage between adjacent electrodes It is 2 to 8 V, the current density is 10 to 300 mA/cm 2 , and the residence time of the wastewater in the electrolysis machine is 2 to 30 s.
- 如权利要求5所述的一种垃圾渗滤液的处理方法,其特征在于:所述步骤a中的最佳絮凝剂为聚合硫酸铁,其投加量为每吨废水200~2000g。The method for treating landfill leachate according to claim 5, wherein the optimal flocculating agent in the step a is polyferric sulfate, and the dosage is 200-2000 g per ton of wastewater.
- 如权利要求5所述的一种垃圾渗滤液的处理方法,其特征在于:所述步骤a中的最佳絮凝剂为硫酸亚铁,其投加量为每吨废水230~1800g。The method for treating landfill leachate according to claim 5, wherein the optimal flocculating agent in the step a is ferrous sulfate, and the dosage is 230-1800 g per ton of wastewater.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110204870.7 | 2011-07-21 | ||
CN2011102048707A CN102276117A (en) | 2011-07-21 | 2011-07-21 | Treatment device and method for garbage percolate |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013010388A1 true WO2013010388A1 (en) | 2013-01-24 |
Family
ID=45101917
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/072076 WO2013010388A1 (en) | 2011-07-21 | 2012-03-08 | Apparatus for treating landfill leachate and treatment method therefor |
Country Status (2)
Country | Link |
---|---|
CN (2) | CN102276117A (en) |
WO (1) | WO2013010388A1 (en) |
Cited By (63)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106045231A (en) * | 2016-08-04 | 2016-10-26 | 北京荣蒂盛环境科技有限公司 | Building garbage aggregate sewage treatment system |
CN106698861A (en) * | 2017-03-07 | 2017-05-24 | 鞍钢集团工程技术有限公司 | Oversize steel enterprise comprehensive wastewater advanced treatment recycling technique and system |
CN106746356A (en) * | 2017-01-23 | 2017-05-31 | 同舟纵横(厦门)流体技术有限公司 | A kind of agricultural chemicals waste water processing system and handling process |
CN107176749A (en) * | 2016-03-11 | 2017-09-19 | 浙江国清环保科技有限公司 | Integral continuous Fenton oxidation-reduction sewage disposal device |
CN107253806A (en) * | 2017-08-08 | 2017-10-17 | 邓州市华鑫纸业有限公司 | Pulp and paper industry comprehensive wastewater treatment system |
CN107318752A (en) * | 2017-08-11 | 2017-11-07 | 池州市忠友生态农业开发有限公司 | A kind of aquiculture waste water circulating treating system |
CN107555705A (en) * | 2016-07-01 | 2018-01-09 | 江苏巨昌环保集团有限公司 | Oligodynamic equipment for treating household sewage |
CN107720990A (en) * | 2017-10-26 | 2018-02-23 | 莱州洁宇机械设备有限公司 | A kind of refuse leachate and urban sewage treating device |
CN107840444A (en) * | 2017-12-11 | 2018-03-27 | 中国恩菲工程技术有限公司 | A kind of processing unit of garbage leachate |
CN108033651A (en) * | 2017-12-29 | 2018-05-15 | 深圳市睿维盛环保科技有限公司 | A kind of electroplating wastewater zero system |
CN108046545A (en) * | 2018-01-26 | 2018-05-18 | 安溪县贤彩茶叶机械有限公司 | A kind of sewage disposal and detection integration apparatus |
CN108059318A (en) * | 2017-12-20 | 2018-05-22 | 中科鼎实环境工程股份有限公司 | It is a kind of to improve the method for microorganism aerobic degradation condition and its device by controlling leachate tail water |
CN108529821A (en) * | 2018-04-25 | 2018-09-14 | 青铜峡市祥云皮草有限责任公司 | Sheepskin processes effluent cycle and utilizes processing system and treatment process |
CN108996839A (en) * | 2018-08-27 | 2018-12-14 | 深圳市凯宏膜环保科技有限公司 | A kind of refuse transfer station waste water treatment process and equipment |
CN109081510A (en) * | 2018-08-31 | 2018-12-25 | 武汉天源环保股份有限公司 | A kind of leachate integrated treating method and apparatus of small towns refuse transfer station |
CN109354339A (en) * | 2018-12-14 | 2019-02-19 | 湖南军信环保股份有限公司 | A kind of anaerobic sludge digestion liquid cooperates with the method and system of processing with high-concentration garbage percolate |
CN109748458A (en) * | 2019-01-25 | 2019-05-14 | 新乡市护神特种织物有限公司 | A desizing water treatment system |
CN109879572A (en) * | 2019-04-08 | 2019-06-14 | 重庆港力环保股份有限公司 | Landfill leachate advanced purification process system |
CN109970291A (en) * | 2019-04-30 | 2019-07-05 | 广东工业大学 | A waste water treatment system and its device and waste water treatment method |
CN110028199A (en) * | 2019-04-19 | 2019-07-19 | 漳州环境再生能源有限公司 | A kind of garbage percolation liquid treating system and method |
CN110092512A (en) * | 2019-05-20 | 2019-08-06 | 清华大学深圳研究生院 | A kind of processing system and method for landfill leachate |
CN110204109A (en) * | 2019-05-15 | 2019-09-06 | 华电电力科学研究院有限公司 | A kind of the Application of Circulating Waste Water in Thermal Power Plants advanced treatment system and method for municipal administration water resource of reclaimed water |
CN110240357A (en) * | 2019-06-17 | 2019-09-17 | 重庆耐德环境技术有限公司 | A kind of processing equipment and method of landfill leachate |
CN110294567A (en) * | 2019-05-09 | 2019-10-01 | 花园药业股份有限公司 | A kind of technique for promoting tea extract and extracting wastewater biodegradability |
CN110668639A (en) * | 2019-09-30 | 2020-01-10 | 华东理工大学 | A kind of treatment method for zero discharge of polyoxymethylene production wastewater |
EP3611135A1 (en) * | 2018-08-15 | 2020-02-19 | Nanjing University | Device and method for pharmaceutical wastewater treatment with high efficiency resource recovery and low energy consumption |
CN111018156A (en) * | 2019-12-24 | 2020-04-17 | 常熟浦发第二热电能源有限公司 | Garbage leachate shunting treatment method |
CN111138044A (en) * | 2020-02-24 | 2020-05-12 | 上海世渊环保科技有限公司 | Landfill leachate treatment system |
CN111186957A (en) * | 2019-04-01 | 2020-05-22 | 麦王环境技术股份有限公司 | Advanced treatment equipment and treatment process for oil refining and chemical conversion port storage sewage |
CN111285550A (en) * | 2020-03-11 | 2020-06-16 | 东莞市粤绿环保有限公司 | Garbage leachate micro-electrolysis membrane method integrated treatment equipment for garbage transfer station |
CN111635081A (en) * | 2020-06-30 | 2020-09-08 | 福州科力恩生物科技有限公司 | Mixed garbage treatment system and treatment method thereof |
CN111807609A (en) * | 2020-06-18 | 2020-10-23 | 陆良中金环保科技有限公司 | Method for treating vegetable leaf/fruit and vegetable garbage waste water biogas slurry |
CN111892240A (en) * | 2020-07-22 | 2020-11-06 | 宜昌三峡普诺丁生物制药有限公司 | A method for treating amino acid extraction wastewater by using slaked lime to replace neutralizer and flocculant |
CN111977909A (en) * | 2020-08-22 | 2020-11-24 | 杭州乾景环保工程有限公司 | Leachate denitrification device for garbage transfer station and use method |
CN112624337A (en) * | 2020-12-04 | 2021-04-09 | 安徽欣瑞环保科技有限公司 | Landfill leachate treatment device |
CN112645547A (en) * | 2021-01-19 | 2021-04-13 | 江西楚杭环保科技有限公司 | Sewage treatment process and system for refuse landfill |
CN112723666A (en) * | 2020-12-17 | 2021-04-30 | 天津创业环保集团股份有限公司 | AHCR-A2O sewage treatment system and sewage treatment method |
CN112897785A (en) * | 2021-02-01 | 2021-06-04 | 上海瀛济环境科技有限公司 | Garbage leachate and fermentation biogas slurry wastewater zero-discharge process |
CN113024023A (en) * | 2021-03-05 | 2021-06-25 | 广西迎春丝绸有限公司 | Treatment method of silk production wastewater |
CN113045118A (en) * | 2021-03-17 | 2021-06-29 | 青岛海以达环境能源科技有限公司 | Industrial wastewater circulating treatment system |
CN113072259A (en) * | 2021-04-20 | 2021-07-06 | 武汉环联环境工程有限公司 | Sewage treatment process for garbage transfer station |
CN113233698A (en) * | 2021-04-19 | 2021-08-10 | 东营市天诚建材有限公司 | Sewage treatment agent and sewage treatment method |
CN113233705A (en) * | 2021-05-18 | 2021-08-10 | 河北首朗新能源科技有限公司 | Equipment and method for treating organic wastewater containing medium-long chain fatty acid |
CN113292184A (en) * | 2021-06-02 | 2021-08-24 | 皓禹(厦门)环保有限公司 | Mobile photoelectric complementary sewage deep purification system and method |
CN113292148A (en) * | 2021-06-23 | 2021-08-24 | 北京首钢国际工程技术有限公司 | Device for integrally removing ammonia nitrogen in wastewater |
CN113336321A (en) * | 2021-05-08 | 2021-09-03 | 中国恩菲工程技术有限公司 | Garbage leachate membrane bioreactor |
CN113620459A (en) * | 2021-07-30 | 2021-11-09 | 山东金隆环境工程有限公司 | Garbage leachate combined catalytic oxidation reactor |
CN114105394A (en) * | 2020-08-27 | 2022-03-01 | 苏州希图环保科技有限公司 | High-efficiency percolate total nitrogen removal treatment method |
CN114516702A (en) * | 2020-11-18 | 2022-05-20 | 北京科泰兴达高新技术有限公司 | Landfill leachate treatment process |
CN114573180A (en) * | 2020-11-18 | 2022-06-03 | 北京科泰兴达高新技术有限公司 | Standard treatment process for landfill leachate |
CN114751586A (en) * | 2022-03-31 | 2022-07-15 | 中天钢铁集团(南通)有限公司 | Combined treatment system and process for coking wastewater |
CN114772846A (en) * | 2022-04-11 | 2022-07-22 | 湖南子宏生态科技股份有限公司 | High-efficient nitrogen and phosphorus removal processing system |
CN114790068A (en) * | 2022-04-02 | 2022-07-26 | 广东高景太阳能科技有限公司 | Pretreatment equipment and process for muddy water in photovoltaic slice wastewater |
CN114835338A (en) * | 2022-04-24 | 2022-08-02 | 东莞市新东欣环保投资有限公司 | Method for treating percolate concentrated solution of refuse landfill |
CN115228228A (en) * | 2022-06-24 | 2022-10-25 | 江水 | Circulating industrial waste gas treatment process |
CN115231774A (en) * | 2022-07-26 | 2022-10-25 | 苏州科技大学 | Treatment method and system for aged landfill leachate |
CN115572012A (en) * | 2022-10-21 | 2023-01-06 | 广西博世科环保科技股份有限公司 | Treatment equipment and method for full-scale treatment of landfill leachate |
CN115849600A (en) * | 2022-11-24 | 2023-03-28 | 大连重工环保工程有限公司 | Sled dress formula integration dust removal water seal tank wastewater treatment retrieval and utilization device |
CN115992041A (en) * | 2022-12-10 | 2023-04-21 | 太原理工大学 | Device and method for hydrogen production by electric fermentation of excess sludge and blue iron ore recovery with built-in iron-carbon double anode |
CN116022960A (en) * | 2022-12-30 | 2023-04-28 | 安徽蓝鼎环保能源科技有限公司 | Microporous aeration-based full-quantification zero-emission treatment process for landfill leachate |
CN116216964A (en) * | 2021-12-02 | 2023-06-06 | 中冶长天国际工程有限责任公司 | Method and system for treating industrial wastewater in membrane production |
CN117486436A (en) * | 2024-01-02 | 2024-02-02 | 晋江市本草纺织科技有限公司 | Tail water treatment process and device for dyeing and finishing textile fabric |
CN118929956A (en) * | 2024-08-14 | 2024-11-12 | 北京欧美环境工程有限公司 | System and method for treating and recycling formaldehyde-containing wastewater |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102276117A (en) * | 2011-07-21 | 2011-12-14 | 波鹰(厦门)科技有限公司 | Treatment device and method for garbage percolate |
CN202594925U (en) * | 2012-02-29 | 2012-12-12 | 波鹰(厦门)科技有限公司 | Sludge regeneration and utilization device of sewage plant |
CN102786183B (en) * | 2012-03-29 | 2013-06-12 | 波鹰(厦门)科技有限公司 | Method for processing garbage leachate |
CN103241910B (en) * | 2013-05-31 | 2014-02-26 | 波鹰(厦门)科技有限公司 | Treatment method of tobacco sheet production wastewater |
CN105271608A (en) * | 2014-11-14 | 2016-01-27 | 南京万德斯环保科技有限公司 | A method for advanced treatment of landfill leachate |
CN105403607B (en) * | 2015-11-28 | 2017-12-01 | 浙江大学 | A kind of New Carbon Paste Electrode for adulterating Polyferric Sulfate and its preparation method and application |
CN107352707A (en) * | 2017-09-22 | 2017-11-17 | 河北工程大学 | A kind of river sewage processing unit |
CN109592845A (en) * | 2018-12-06 | 2019-04-09 | 上海金山环境再生能源有限公司 | The treatment process of Domestic Waste Leachate |
CN110066086A (en) * | 2019-03-13 | 2019-07-30 | 杭州电子科技大学 | The processing method of leachate in garbage transfer station |
CN110665931A (en) * | 2019-10-29 | 2020-01-10 | 中冶南方都市环保工程技术股份有限公司 | In-situ remediation system and method for aerobic-anaerobic circulation of refuse landfill |
CN112108500B (en) * | 2020-09-14 | 2021-11-30 | 安徽清扬水处理设备科技有限公司 | High-efficiency treatment process for landfill leachate |
CN112759151A (en) * | 2021-01-12 | 2021-05-07 | 厦门水汇环境技术有限公司 | Movable integrated landfill leachate treatment system and purification method thereof |
CN113045115A (en) * | 2021-03-12 | 2021-06-29 | 南通寰宇博新化工环保科技有限公司 | Landfill leachate treatment method based on electrocatalytic oxidation coupled biochemistry |
CN113264646A (en) * | 2021-06-17 | 2021-08-17 | 陕西金禹科技发展有限公司 | Landfill leachate treatment system and treatment process |
CN114044604A (en) * | 2021-09-30 | 2022-02-15 | 宋娜 | Landfill leachate treatment system and method based on combination of electrolytic denitrification and biological membrane |
CN115196814A (en) * | 2022-05-23 | 2022-10-18 | 陕西化工研究院有限公司 | A kind of treatment method of landfill leachate |
CN114853289B (en) * | 2022-06-15 | 2023-02-28 | 福建省粤华环保科技有限公司 | Domestic waste filtration liquid high efficiency processing system |
CN115340254A (en) * | 2022-07-25 | 2022-11-15 | 马鞍山市申锐建设工程有限公司 | Sewage recovery purifier for municipal administration |
CN115159791A (en) * | 2022-08-10 | 2022-10-11 | 中电环保股份有限公司 | Landfill Leachate Treatment System |
CN117049636B (en) * | 2023-08-31 | 2024-03-15 | 青岛水务集团有限公司 | Foam eliminating method for sedimentation tank |
CN117401862A (en) * | 2023-11-27 | 2024-01-16 | 徐州徐工环境技术有限公司 | A non-membrane integrated equipment and method for leachate treatment in small garbage transfer stations |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6471873B1 (en) * | 2000-01-26 | 2002-10-29 | Bernard Greenberg | Electrolytic process and apparatus for purifying contaminated aqueous solutions and method for using same to remediate soil |
CN101314510A (en) * | 2007-05-31 | 2008-12-03 | 上海科域环境工程有限公司 | Method for processing high-toxicity high-concentration highly salt-containing organic waste water with biochemistry combination process of catalytic oxidation |
CN101538107A (en) * | 2009-05-12 | 2009-09-23 | 青岛银河环保股份有限公司 | Method for treating wastewater in textile printing and dyeing industry |
CN102249501A (en) * | 2011-07-15 | 2011-11-23 | 波鹰(厦门)科技有限公司 | Device and method for treating wastewater produced by hair-product manufacturing |
CN102276117A (en) * | 2011-07-21 | 2011-12-14 | 波鹰(厦门)科技有限公司 | Treatment device and method for garbage percolate |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100336749C (en) * | 2004-09-14 | 2007-09-12 | 北京大学 | Garbage percolation liquid treating system and method |
CN101234836B (en) * | 2008-02-20 | 2010-12-08 | 重庆钢铁集团三峰科技有限公司 | Garbage percolate treatment technique |
CN101671090B (en) * | 2009-04-29 | 2011-05-04 | 四川宇阳环境工程有限公司 | Combined processing technique of garbage percolates |
CN102010038B (en) * | 2010-12-30 | 2012-07-04 | 波鹰(厦门)科技有限公司 | Nano catalytic electrolysis flocculation device |
-
2011
- 2011-07-21 CN CN2011102048707A patent/CN102276117A/en active Pending
-
2012
- 2012-03-08 WO PCT/CN2012/072076 patent/WO2013010388A1/en active Application Filing
- 2012-03-14 CN CN201210065756.5A patent/CN102603119B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6471873B1 (en) * | 2000-01-26 | 2002-10-29 | Bernard Greenberg | Electrolytic process and apparatus for purifying contaminated aqueous solutions and method for using same to remediate soil |
CN101314510A (en) * | 2007-05-31 | 2008-12-03 | 上海科域环境工程有限公司 | Method for processing high-toxicity high-concentration highly salt-containing organic waste water with biochemistry combination process of catalytic oxidation |
CN101538107A (en) * | 2009-05-12 | 2009-09-23 | 青岛银河环保股份有限公司 | Method for treating wastewater in textile printing and dyeing industry |
CN102249501A (en) * | 2011-07-15 | 2011-11-23 | 波鹰(厦门)科技有限公司 | Device and method for treating wastewater produced by hair-product manufacturing |
CN102276117A (en) * | 2011-07-21 | 2011-12-14 | 波鹰(厦门)科技有限公司 | Treatment device and method for garbage percolate |
Cited By (70)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107176749A (en) * | 2016-03-11 | 2017-09-19 | 浙江国清环保科技有限公司 | Integral continuous Fenton oxidation-reduction sewage disposal device |
CN107555705A (en) * | 2016-07-01 | 2018-01-09 | 江苏巨昌环保集团有限公司 | Oligodynamic equipment for treating household sewage |
CN106045231A (en) * | 2016-08-04 | 2016-10-26 | 北京荣蒂盛环境科技有限公司 | Building garbage aggregate sewage treatment system |
CN106746356A (en) * | 2017-01-23 | 2017-05-31 | 同舟纵横(厦门)流体技术有限公司 | A kind of agricultural chemicals waste water processing system and handling process |
CN106698861A (en) * | 2017-03-07 | 2017-05-24 | 鞍钢集团工程技术有限公司 | Oversize steel enterprise comprehensive wastewater advanced treatment recycling technique and system |
CN107253806A (en) * | 2017-08-08 | 2017-10-17 | 邓州市华鑫纸业有限公司 | Pulp and paper industry comprehensive wastewater treatment system |
CN107318752A (en) * | 2017-08-11 | 2017-11-07 | 池州市忠友生态农业开发有限公司 | A kind of aquiculture waste water circulating treating system |
CN107720990A (en) * | 2017-10-26 | 2018-02-23 | 莱州洁宇机械设备有限公司 | A kind of refuse leachate and urban sewage treating device |
CN107840444A (en) * | 2017-12-11 | 2018-03-27 | 中国恩菲工程技术有限公司 | A kind of processing unit of garbage leachate |
CN107840444B (en) * | 2017-12-11 | 2024-04-30 | 中国恩菲工程技术有限公司 | Treatment device for garbage leachate |
CN108059318A (en) * | 2017-12-20 | 2018-05-22 | 中科鼎实环境工程股份有限公司 | It is a kind of to improve the method for microorganism aerobic degradation condition and its device by controlling leachate tail water |
CN108059318B (en) * | 2017-12-20 | 2024-03-01 | 中科鼎实环境工程有限公司 | Method and device for improving aerobic degradation condition of microorganism by controlling percolate circulation |
CN108033651A (en) * | 2017-12-29 | 2018-05-15 | 深圳市睿维盛环保科技有限公司 | A kind of electroplating wastewater zero system |
CN108033651B (en) * | 2017-12-29 | 2024-04-12 | 深圳市睿维盛环保科技有限公司 | Electroplating wastewater zero discharge system |
CN108046545A (en) * | 2018-01-26 | 2018-05-18 | 安溪县贤彩茶叶机械有限公司 | A kind of sewage disposal and detection integration apparatus |
CN108529821A (en) * | 2018-04-25 | 2018-09-14 | 青铜峡市祥云皮草有限责任公司 | Sheepskin processes effluent cycle and utilizes processing system and treatment process |
EP3611135A1 (en) * | 2018-08-15 | 2020-02-19 | Nanjing University | Device and method for pharmaceutical wastewater treatment with high efficiency resource recovery and low energy consumption |
CN108996839A (en) * | 2018-08-27 | 2018-12-14 | 深圳市凯宏膜环保科技有限公司 | A kind of refuse transfer station waste water treatment process and equipment |
CN109081510A (en) * | 2018-08-31 | 2018-12-25 | 武汉天源环保股份有限公司 | A kind of leachate integrated treating method and apparatus of small towns refuse transfer station |
CN109354339B (en) * | 2018-12-14 | 2023-11-14 | 湖南军信环保股份有限公司 | Method and system for cooperatively treating sludge anaerobic digestion solution and high-concentration landfill leachate |
CN109354339A (en) * | 2018-12-14 | 2019-02-19 | 湖南军信环保股份有限公司 | A kind of anaerobic sludge digestion liquid cooperates with the method and system of processing with high-concentration garbage percolate |
CN109748458A (en) * | 2019-01-25 | 2019-05-14 | 新乡市护神特种织物有限公司 | A desizing water treatment system |
CN111186957A (en) * | 2019-04-01 | 2020-05-22 | 麦王环境技术股份有限公司 | Advanced treatment equipment and treatment process for oil refining and chemical conversion port storage sewage |
CN109879572A (en) * | 2019-04-08 | 2019-06-14 | 重庆港力环保股份有限公司 | Landfill leachate advanced purification process system |
CN110028199A (en) * | 2019-04-19 | 2019-07-19 | 漳州环境再生能源有限公司 | A kind of garbage percolation liquid treating system and method |
CN109970291A (en) * | 2019-04-30 | 2019-07-05 | 广东工业大学 | A waste water treatment system and its device and waste water treatment method |
CN110294567A (en) * | 2019-05-09 | 2019-10-01 | 花园药业股份有限公司 | A kind of technique for promoting tea extract and extracting wastewater biodegradability |
CN110204109A (en) * | 2019-05-15 | 2019-09-06 | 华电电力科学研究院有限公司 | A kind of the Application of Circulating Waste Water in Thermal Power Plants advanced treatment system and method for municipal administration water resource of reclaimed water |
CN110092512A (en) * | 2019-05-20 | 2019-08-06 | 清华大学深圳研究生院 | A kind of processing system and method for landfill leachate |
CN110240357A (en) * | 2019-06-17 | 2019-09-17 | 重庆耐德环境技术有限公司 | A kind of processing equipment and method of landfill leachate |
CN110668639A (en) * | 2019-09-30 | 2020-01-10 | 华东理工大学 | A kind of treatment method for zero discharge of polyoxymethylene production wastewater |
CN111018156A (en) * | 2019-12-24 | 2020-04-17 | 常熟浦发第二热电能源有限公司 | Garbage leachate shunting treatment method |
CN111138044A (en) * | 2020-02-24 | 2020-05-12 | 上海世渊环保科技有限公司 | Landfill leachate treatment system |
CN111285550A (en) * | 2020-03-11 | 2020-06-16 | 东莞市粤绿环保有限公司 | Garbage leachate micro-electrolysis membrane method integrated treatment equipment for garbage transfer station |
CN111807609A (en) * | 2020-06-18 | 2020-10-23 | 陆良中金环保科技有限公司 | Method for treating vegetable leaf/fruit and vegetable garbage waste water biogas slurry |
CN111635081A (en) * | 2020-06-30 | 2020-09-08 | 福州科力恩生物科技有限公司 | Mixed garbage treatment system and treatment method thereof |
CN111892240A (en) * | 2020-07-22 | 2020-11-06 | 宜昌三峡普诺丁生物制药有限公司 | A method for treating amino acid extraction wastewater by using slaked lime to replace neutralizer and flocculant |
CN111977909A (en) * | 2020-08-22 | 2020-11-24 | 杭州乾景环保工程有限公司 | Leachate denitrification device for garbage transfer station and use method |
CN114105394A (en) * | 2020-08-27 | 2022-03-01 | 苏州希图环保科技有限公司 | High-efficiency percolate total nitrogen removal treatment method |
CN114573180A (en) * | 2020-11-18 | 2022-06-03 | 北京科泰兴达高新技术有限公司 | Standard treatment process for landfill leachate |
CN114516702A (en) * | 2020-11-18 | 2022-05-20 | 北京科泰兴达高新技术有限公司 | Landfill leachate treatment process |
CN112624337A (en) * | 2020-12-04 | 2021-04-09 | 安徽欣瑞环保科技有限公司 | Landfill leachate treatment device |
CN112723666A (en) * | 2020-12-17 | 2021-04-30 | 天津创业环保集团股份有限公司 | AHCR-A2O sewage treatment system and sewage treatment method |
CN112645547A (en) * | 2021-01-19 | 2021-04-13 | 江西楚杭环保科技有限公司 | Sewage treatment process and system for refuse landfill |
CN112897785A (en) * | 2021-02-01 | 2021-06-04 | 上海瀛济环境科技有限公司 | Garbage leachate and fermentation biogas slurry wastewater zero-discharge process |
CN113024023A (en) * | 2021-03-05 | 2021-06-25 | 广西迎春丝绸有限公司 | Treatment method of silk production wastewater |
CN113045118A (en) * | 2021-03-17 | 2021-06-29 | 青岛海以达环境能源科技有限公司 | Industrial wastewater circulating treatment system |
CN113233698A (en) * | 2021-04-19 | 2021-08-10 | 东营市天诚建材有限公司 | Sewage treatment agent and sewage treatment method |
CN113072259A (en) * | 2021-04-20 | 2021-07-06 | 武汉环联环境工程有限公司 | Sewage treatment process for garbage transfer station |
CN113336321A (en) * | 2021-05-08 | 2021-09-03 | 中国恩菲工程技术有限公司 | Garbage leachate membrane bioreactor |
CN113233705B (en) * | 2021-05-18 | 2024-03-08 | 河北首朗新能源科技有限公司 | Organic wastewater treatment equipment and method containing medium-long chain fatty acid |
CN113233705A (en) * | 2021-05-18 | 2021-08-10 | 河北首朗新能源科技有限公司 | Equipment and method for treating organic wastewater containing medium-long chain fatty acid |
CN113292184A (en) * | 2021-06-02 | 2021-08-24 | 皓禹(厦门)环保有限公司 | Mobile photoelectric complementary sewage deep purification system and method |
CN113292148A (en) * | 2021-06-23 | 2021-08-24 | 北京首钢国际工程技术有限公司 | Device for integrally removing ammonia nitrogen in wastewater |
CN113620459A (en) * | 2021-07-30 | 2021-11-09 | 山东金隆环境工程有限公司 | Garbage leachate combined catalytic oxidation reactor |
CN116216964A (en) * | 2021-12-02 | 2023-06-06 | 中冶长天国际工程有限责任公司 | Method and system for treating industrial wastewater in membrane production |
CN114751586A (en) * | 2022-03-31 | 2022-07-15 | 中天钢铁集团(南通)有限公司 | Combined treatment system and process for coking wastewater |
CN114790068A (en) * | 2022-04-02 | 2022-07-26 | 广东高景太阳能科技有限公司 | Pretreatment equipment and process for muddy water in photovoltaic slice wastewater |
CN114772846A (en) * | 2022-04-11 | 2022-07-22 | 湖南子宏生态科技股份有限公司 | High-efficient nitrogen and phosphorus removal processing system |
CN114835338A (en) * | 2022-04-24 | 2022-08-02 | 东莞市新东欣环保投资有限公司 | Method for treating percolate concentrated solution of refuse landfill |
CN115228228A (en) * | 2022-06-24 | 2022-10-25 | 江水 | Circulating industrial waste gas treatment process |
CN115231774A (en) * | 2022-07-26 | 2022-10-25 | 苏州科技大学 | Treatment method and system for aged landfill leachate |
CN115572012A (en) * | 2022-10-21 | 2023-01-06 | 广西博世科环保科技股份有限公司 | Treatment equipment and method for full-scale treatment of landfill leachate |
CN115849600A (en) * | 2022-11-24 | 2023-03-28 | 大连重工环保工程有限公司 | Sled dress formula integration dust removal water seal tank wastewater treatment retrieval and utilization device |
CN115992041A (en) * | 2022-12-10 | 2023-04-21 | 太原理工大学 | Device and method for hydrogen production by electric fermentation of excess sludge and blue iron ore recovery with built-in iron-carbon double anode |
CN116022960B (en) * | 2022-12-30 | 2024-01-09 | 安徽蓝鼎环保能源科技有限公司 | Microporous aeration-based full-quantification zero-emission treatment process for landfill leachate |
CN116022960A (en) * | 2022-12-30 | 2023-04-28 | 安徽蓝鼎环保能源科技有限公司 | Microporous aeration-based full-quantification zero-emission treatment process for landfill leachate |
CN117486436A (en) * | 2024-01-02 | 2024-02-02 | 晋江市本草纺织科技有限公司 | Tail water treatment process and device for dyeing and finishing textile fabric |
CN117486436B (en) * | 2024-01-02 | 2024-03-08 | 晋江市本草纺织科技有限公司 | Tail water treatment process and device for dyeing and finishing textile fabric |
CN118929956A (en) * | 2024-08-14 | 2024-11-12 | 北京欧美环境工程有限公司 | System and method for treating and recycling formaldehyde-containing wastewater |
Also Published As
Publication number | Publication date |
---|---|
CN102603119B (en) | 2014-10-01 |
CN102276117A (en) | 2011-12-14 |
CN102603119A (en) | 2012-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013010388A1 (en) | Apparatus for treating landfill leachate and treatment method therefor | |
WO2013143506A1 (en) | Waste percolate treatment method | |
WO2012083674A1 (en) | Tanning wastewater treatment and reuse apparatus and method therefor | |
CN101417850B (en) | Novel process for treating coking waste water by charging activated sludge process | |
CN102897979B (en) | Coking wastewater treatment method | |
WO2013156002A1 (en) | Nano catalyst electrolysis flocculation air flotation device | |
WO2012088867A1 (en) | Nano catalytic electrolysis and flocculation apparatus | |
EP2657198B1 (en) | Printing and dyeing wastewater treatment and reuse apparatus and method therefor | |
WO2013163963A1 (en) | Device for sewage treatment and regenerative recycling and method thereof | |
WO2012055263A1 (en) | Apparatus and method for treating and recycling tannery wastewater based on nano catalytic electrolysis technology and membrane technology | |
CN102786182B (en) | Device for processing landfill leachate | |
CN101423313B (en) | Fluorescent whitening agent production waste water treatment process | |
CN106315981A (en) | Strengthened control method for Electro-Fenton pretreatment of coking organic wastewater | |
WO2014190876A1 (en) | Device and method for processing waste water from production of tobacco sheet | |
WO2012126316A2 (en) | Sewage recycling device based on electrolysis and mbr technologies and method thereof | |
CN101092262A (en) | Preparation method of treating wastewater from middle stage of straw pulp papermaking | |
CN102249501B (en) | Device and method for treating wastewater produced by hair-product manufacturing | |
WO2013156003A1 (en) | New nano catalyst electrolysis device | |
CN101041531A (en) | Multiple Combination Process for Treatment of High Concentration Refractory Organic Wastewater | |
CN106554126A (en) | A kind of reverse osmosis concentrated water depth standard processing method and system | |
KR20170010679A (en) | Treatnent system for organic livestock wastewater by electrolytic oxidation and treatment method thereof | |
CN102329048B (en) | Method for treating wastewater produced during chemical synthesis of vitamin B6 | |
CN1323958C (en) | Method for processing urban sewage deeply | |
CN103241912B (en) | Method for treating tobacco sheet production wastewater | |
CN110894125A (en) | Sewage treatment process for recycling N-methyl pyrrolidone |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12814581 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12814581 Country of ref document: EP Kind code of ref document: A1 |