[go: up one dir, main page]

WO2013005780A1 - Matrix for recovering cell fragments for therapeutic use and method for producing cell fragments for therapeutic use using same, and matrix for recovering cell fragments for subculture and method for producing cell fragments for subculture using same - Google Patents

Matrix for recovering cell fragments for therapeutic use and method for producing cell fragments for therapeutic use using same, and matrix for recovering cell fragments for subculture and method for producing cell fragments for subculture using same Download PDF

Info

Publication number
WO2013005780A1
WO2013005780A1 PCT/JP2012/067119 JP2012067119W WO2013005780A1 WO 2013005780 A1 WO2013005780 A1 WO 2013005780A1 JP 2012067119 W JP2012067119 W JP 2012067119W WO 2013005780 A1 WO2013005780 A1 WO 2013005780A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
stimulus
responsive
region
adhesion
Prior art date
Application number
PCT/JP2012/067119
Other languages
French (fr)
Japanese (ja)
Inventor
正敏 黒田
真佐美 奈良
岡野 光夫
大和 雅之
清水 達也
広也 渡邊
恵介 芦葉
Original Assignee
大日本印刷株式会社
学校法人東京女子医科大学
株式会社セルシード
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社, 学校法人東京女子医科大学, 株式会社セルシード filed Critical 大日本印刷株式会社
Publication of WO2013005780A1 publication Critical patent/WO2013005780A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/06Plates; Walls; Drawers; Multilayer plates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0068General culture methods using substrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2539/00Supports and/or coatings for cell culture characterised by properties
    • C12N2539/10Coating allowing for selective detachment of cells, e.g. thermoreactive coating

Definitions

  • the present invention provides a cell fragment recovery base material capable of obtaining a therapeutic cell fragment capable of exerting a therapeutic effect with high reproducibility, and easily obtaining a subculture cell fragment capable of stably culturing cells during subculture operations. It is about.
  • the cell fragment is a cell aggregate in which cells are connected to each other in at least a single layer by intercellular bonding.
  • Non-Patent Document 1 a proteolytic enzyme such as trypsin is allowed to act on a cell sheet formed by seeding and culturing cells on a support, thereby binding between the support and cells and between cells and cells.
  • a cell is detached from a support such as a culture vessel using a proteolytic enzyme, and an operation of planting the detached cells on a new support is performed.
  • a method using a proteolytic enzyme requires problems such as dripping the proteolytic enzyme and stopping the reaction, and the work is complicated, and the cell is damaged by the proteolytic enzyme and the subsequent growth There were problems such as adverse effects on
  • the concentration of proteolytic enzyme and the treatment time cannot be strictly controlled, there is a problem that the cell growth rate varies for each passage operation.
  • the present invention has been made in view of the above problems, and it is easy to obtain a cell fragment capable of exerting a therapeutic effect with good reproducibility and to stably subculture cell fragments during passage operation.
  • the main object is to provide a cell fragment collection substrate that can be obtained.
  • the present inventors have found that cell fragments with irregular sizes and shapes are not obtained by conventional methods using a proteolytic enzyme such as trypsin or by dividing a cell sheet with a wire mesh or the like. Therefore, when cell fragments with irregular sizes and shapes are used, the cell fragments are physically broken when used for transplantation to experimental animals in preclinical studies. It was found that not only invasive fragments but also fragments of irregular sizes were obtained, and the experimental results varied. In addition, the cell-cell bond is cleaved by a proteolytic enzyme such as trypsin at the time of subculture, but the size and shape of the cell fragments formed by such a treatment are not uniform, which prevents subsequent cell growth. It was found that there was variation, and the size of the cell fragment in which cells can efficiently grow, that is, the number of cells contained in one cell fragment was different for each cell, and the present invention was completed. It is.
  • the present invention has a stimulus-responsive region in which cell adhesion is changed by stimulation, and a cell non-adhesive region having cell non-adhesiveness, and the stimulus-responsive region is surrounded by the cell non-adhesive region.
  • a therapeutic cell fragment recovery substrate is provided.
  • the therapeutic cell fragment is controlled to have an arbitrary size and shape by applying a stimulus to the stimulus responsive region by having the stimulus responsive region surrounded by the cell non-adhesive region. Can be easily recovered.
  • the size and shape are controlled, the therapeutic effect by transplantation using such therapeutic cell fragments can be exhibited with good reproducibility.
  • the present invention has a stimulus-responsive region in which cell adhesiveness is changed by stimulation, and a cell non-adhesive region having cell non-adhesiveness, and the stimulus-responsive region is surrounded by the cell non-adhesive region.
  • a substrate for recovering cell fragments for passage is provided.
  • the cell fragment for subculture that has a stimulus-responsive region surrounded by the cell non-adhesion region, and is controlled to have an arbitrary size and shape by applying a stimulus to the stimulus-responsive region.
  • passage operation can be made simple.
  • the use of a proteolytic enzyme such as trypsin can be eliminated, the cells can be stably grown.
  • the size and shape are controlled, when the cells are passaged using such passage cell fragments, the proliferation of the cells can be controlled with high accuracy and can be stably cultured. For this reason, for example, when such a cell fragment collection substrate for passage is used in an automatic culture apparatus, cells can be stably proliferated and cultured.
  • the stimulus-responsive region includes a temperature-responsive material whose cell adhesiveness changes due to a temperature change. This is because it is easy to apply a stimulus.
  • the temperature-responsive material is preferably polyisopropylacrylamide. This is because the cell fragment can be stably recovered because it has cell adhesion at a temperature suitable for cell culture and exhibits cell non-adhesion at a temperature with little damage to the cell.
  • the present invention provides the above-mentioned substrate for cell fragment collection for treatment, seeding and culturing cells on the stimulus-responsive region in a state where the stimulus-responsive region expresses cell adhesion, A cell fragment forming step of forming a therapeutic cell fragment comprising at least one cell adhered to a stimulus responsive region; a stimulus applying step of stimulating the stimulus responsive region to express cell non-adhesiveness; and the stimulus And a recovery step of recovering the therapeutic cell fragment peeled from the responsive region.
  • a method for producing the therapeutic cell fragment is provided.
  • the present invention provides the above-described substrate for recovering cell fragments for passage, and seeding and culturing cells on the stimulus-responsive region in a state where the stimulus-responsive region expresses cell adhesion.
  • a method for producing a passage cell fragment is provided.
  • the therapeutic cell fragment and the passage cell fragment having a controlled size and shape can be easily produced by using the therapeutic cell fragment collection substrate and the passage cell fragment collection substrate. can do.
  • the present invention provides a cell fragment recovery base material capable of obtaining a therapeutic cell fragment capable of exerting a therapeutic effect with high reproducibility, and easily obtaining a subculture cell fragment capable of stably culturing cells during subculture operations. There is an effect that can be provided.
  • FIG. 2 is a sectional view taken along line AA in FIG. 1. It is a schematic plan view which shows the other example of the base material for cell fragment collection
  • the present invention relates to a therapeutic cell fragment collection substrate and a method for producing a therapeutic cell fragment using the same, and a passage cell fragment collection substrate and a method for producing a passage cell fragment using the same. is there.
  • the therapeutic cell fragment collection substrate, passage cell fragment collection substrate, treatment cell fragment production method, and passage cell fragment production method of the present invention are described in detail below.
  • the substrate for cell fragment collection for treatment of the present invention has a stimulus responsive region in which cell adhesion changes by stimulation, and a cell non-adhesive region having cell non-adhesiveness. It is characterized by being surrounded by the cell non-adhesion region.
  • FIG. 1 is a schematic plan view showing an example of the therapeutic cell fragment collection substrate of the present invention
  • FIG. 2 is a cross-sectional view taken along line AA of FIG.
  • the therapeutic cell fragment collection substrate 10 of the present invention includes a stimulus-responsive layer 1 containing a stimulus-responsive material whose cell adhesiveness changes upon stimulation, and cell non-adhesiveness.
  • the present invention by having a stimulus-responsive region surrounded by the cell non-adhesive region, after seeding cells in the stimulus-responsive region and culturing to form a therapeutic cell fragment, by applying a stimulus to the stimulus-responsive region, the therapeutic cell fragment controlled to have an arbitrary size and shape can be easily detached from the stimulus-responsive region and collected.
  • the use of such therapeutic cell fragments is compared to the case of using conventional proteolytic enzymes such as trypsin or cell fragments obtained by pressing a wire mesh.
  • fragments having uniform sizes can be obtained at the time of transplantation to an experimental animal in preclinical research, so that the effect of improving the reproducibility of the experiment can be obtained.
  • the therapeutic cell fragment collection substrate of the present invention has at least a stimulus-responsive region and a cell non-adhesive region.
  • a stimulus-responsive region and a cell non-adhesive region.
  • the stimulus responsive region in the present invention is an exposed range of the surface of the stimulus responsive layer containing the stimulus responsive material, and is surrounded by the cell non-adhesive region.
  • Stimulus responsive region The stimulus responsive region in the present invention is surrounded by the cell non-adherent region, and adheres and detaches cells to be cultured by changing cell adhesiveness by stimulation. It is something that can be done.
  • the stimuli-responsive region in the present invention changes from a state in which cell adhesion has good cell adhesion by specific stimulation to a state in which cell non-adhesion, which is a property of low cell adhesion, is expressed. It can change.
  • the stimulus-responsive region expressing cell adhesion means that the cells are easy to adhere and spread on the stimulus-responsive region and have a high cell adhesion extension rate. is there.
  • a state where the cell adhesion extension rate is high can be a state where the cell adhesion extension rate is 60% or more. In the present invention, it is preferably 80% or more. This is because cells can be efficiently cultured to form therapeutic cell fragments.
  • the cell adhesion spreading rate is such that bovine vascular endothelial cells are seeded in a seeding density range of 4000 cells / cm 2 or more and less than 30000 cells / cm 2 and stored in a 37 ° C. incubator (CO 2 concentration 5%). It represents the percentage of cells that have passed for 3 hours or more and have spread and adhered before the doubling time ( ⁇ (number of cells adhered) / (number of cells seeded) ⁇ ⁇ 100 (%)).
  • the cells are seeded by suspending them in a DMEM medium containing 10% FBS (serum) and seeding them on a culture substrate, and then the culture medium on which the cells are seeded so that the cells are distributed as uniformly as possible.
  • the cell adhesion spread rate is measured after exchanging the medium immediately before the measurement to remove non-adhered cells.
  • the cell adhesion spread rate is measured at a location where the density of cells tends to be specific. The measurement is performed excluding (for example, the center of the predetermined region where the existence density tends to be high and the periphery of the predetermined region where the existence density tends to be low).
  • the case where the stimulus-responsive region expresses cell non-adhesiveness means that the cells are difficult to adhere and spread on the stimulus-responsive region and the cell adhesion extension rate is low. is there.
  • a state where the cell adhesion extension rate is low can be a state where the cell adhesion extension rate is 5% or less.
  • the content is preferably 2% or less. Therefore, when cells are seeded in the stimulus-responsive region, cells can adhere to the stimulus-responsive region when cell adhesion is expressed, and can easily form therapeutic cell fragments. Since cells are inhibited from adhering to the stimulus-responsive area when expressing adhesiveness, the therapeutic cell fragments adhering to the stimulus-responsive area should be easily detached and recovered. Can do it.
  • the shape of the stimulus-responsive region used in the present invention is not particularly limited as long as it can stably recover the therapeutic cell fragment.
  • a circular shape, an elliptical shape, a polygonal shape as illustrated in FIG. 3, a line shape, a lattice shape, a star shape, or the like may be used. Further, a combination of a plurality of shapes may be used.
  • a circular shape or a hexagonal or more polygonal shape is preferable, and a circular shape is particularly preferable. This is because when the stimulus is applied to the stimulus responsive region, the therapeutic cell fragment can be stably detached from the stimulus responsive region.
  • the area per stimulus-responsive region used in the present invention is particularly limited as long as at least one or more cells can adhere and the therapeutic cell fragment can be stably recovered. but it not, specifically, is preferably in the range of 200 [mu] m 2 ⁇ 100000 2, preferably in the range of 1000 .mu.m 2 ⁇ 50000 2, preferably in the range of 10000 ⁇ m 2 ⁇ 40000 ⁇ m 2 . This is because the therapeutic cell fragment can be stably detached and collected by applying a stimulus to the stimulus-responsive region.
  • the arrangement of the stimulus-responsive region used in the present invention is not particularly limited as long as the therapeutic cell fragment can be stably recovered, but the therapeutic cell fragment can be stably added. It is preferable that the largest number of therapeutic cell fragments can be formed within the range obtained. This is because the therapeutic cell fragment can be efficiently obtained by a single operation.
  • the ratio of the stimulus-responsive region used in the present invention is particularly limited as long as it is at least 50% or more when the bottom surface in the therapeutic cell fragment collection substrate of the present invention is 100%. However, it is preferably in the range of 50% to 95%, and more preferably in the range of 70% to 90%. This is because the effect of the present invention that a therapeutic cell fragment having a controlled size and shape can be obtained can be more effectively exhibited.
  • the type of stimulus-responsive region used in the present invention may be only one type or may include a plurality of stimulus-responsive regions that respond to different stimuli.
  • the stimulation-responsive region used in the present invention is surrounded by the cell non-adhesive region, that is, the cell non-adhesive region is arranged around the stimulus responsive region, and the boundary with the cell non-adhesive region on the outer periphery It has a non-adhesive boundary.
  • the non-adhesion boundary is capable of separating the therapeutic cell fragment from the stimulation-responsive region along the non-adhesion boundary when the stimulus-responsive region is stimulated.
  • Such a non-adhesion boundary is usually in contact with the cell non-adhesion region in plan view.
  • the stimulus responsive region is stimulated between the stimulus responsive region and the cell non-adhesion region.
  • it also includes locations where other regions such as a cell adhesion region formed with such a width that the therapeutic cell fragment can be peeled off along the non-adhesion boundary.
  • it is a place that is in contact with the cell non-adhesion region in plan view, that is, a location that does not include other regions between the stimulus-responsive region and the cell non-adhesion region. preferable. This is because the therapeutic cell fragment can be stably formed.
  • the position of the non-adhesion boundary formed on the outer periphery of the stimulus-responsive region in the present invention is that the therapeutic cell fragment is stably detached from the stimulus-responsive region when the stimulus-responsive region is stimulated.
  • Any material can be used, and it can be formed on at least a part of the outer periphery of the stimulus-responsive region. In the present invention, in particular, it is preferably formed on the entire outer periphery of the stimulus responsive region. This is because the therapeutic cell fragment can be stably peeled in the shape of the stimulus-responsive region.
  • the height of the stimulus-responsive region used in the present invention with respect to the cell non-adhesion region is not particularly limited as long as the cell fragment can be stably formed.
  • the adhesion regions may be formed at the same height, that is, on the same plane, or may be different.
  • the stimulus responsive layer used in the present invention includes the stimulus responsive material and has a stimulus responsive region that is an exposed surface in plan view.
  • the stimulus-responsive material used in the present invention includes a stimulus-responsive material that changes cell adhesion depending on the presence or absence of stimulation and can adhere and detach cells to be cultured.
  • a stimulus-responsive material that changes cell adhesion depending on the presence or absence of stimulation and can adhere and detach cells to be cultured.
  • a temperature responsive material for example, a temperature responsive material, a photoresponsive material, a pH responsive material, a potential responsive material in which cell adhesion changes according to temperature, light, pH, potential and magnetic force, and Examples thereof include a magnetic responsive material.
  • a temperature responsive material is preferable. This is because it is easy to apply a stimulus.
  • the change in cell adhesion of the stimulus-responsive material used in the present invention is not particularly limited as long as it can be changed from a state having cell adhesion to a state having cell non-adhesion. However, it may be reversibly changed, or may be changed irreversibly, and is selected depending on the application.
  • the content of the stimulus-responsive material used in the present invention in the stimulus-responsive layer is such that a desired adhesive change can be obtained in the stimulus-responsive region that is the surface of the stimulus-responsive layer by stimulation. If it is not specifically limited, it will differ according to the kind of the said material.
  • the kind of the stimulus responsive material contained in the stimulus responsive layer may be one kind or two or more kinds.
  • the temperature-responsive material used in the present invention is not particularly limited as long as the cell adhesiveness changes due to a temperature change.
  • the temperature range in which the above-mentioned temperature-responsive material exhibits cell adhesion is preferably in the range of 10 ° C. to 45 ° C., and more preferably in the range of 33 ° C. to 40 ° C. preferable. This is because the cells can be stably cultured when the temperature region is within the above range.
  • the temperature range in which the non-adhesive property of the temperature-responsive material is exhibited is preferably in the range of 1 ° C. to 36 ° C., and more preferably in the range of 4 ° C. to 32 ° C. This is because when the temperature range is within the above range, damage to cells can be reduced.
  • temperature-responsive material used in the present invention examples include poly-N-isopropylacrylamide (PIPAAm), poly-Nn-propylacrylamide, poly-Nn-propylmethacrylamide, poly -N-ethoxyethyl acrylamide, poly-N-tetrahydrofurfuryl acrylamide, poly-N-tetrahydrofurfuryl methacrylamide, poly-N, N-diethyl acrylamide, etc. can be mentioned, among them PIPAAm, poly-N- n-Propylmethacrylamide and poly-N, N-diethylacrylamide can be preferably used, and PIPAAm can be particularly preferably used.
  • PIPAAm poly-N-isopropylacrylamide
  • PIPAAm poly-Nn-propylacrylamide
  • poly-Nn-propylmethacrylamide poly-N-ethoxyethyl acrylamide
  • poly-N-tetrahydrofurfuryl acrylamide poly-N-
  • the cell fragment can be stably recovered because it has cell adhesion at a temperature suitable for cell culture and exhibits cell non-adhesion at a temperature with little damage to the cell.
  • the temperature-responsive material may be composed of only one type or may contain two or more types. Further, in order to adjust the temperature region, a material copolymerized with the above temperature-responsive materials and / or other polymers may be used.
  • the photoresponsive material used in the present invention is not particularly limited as long as cell adhesion changes depending on the presence or absence of light irradiation.
  • Photocatalysts and those containing photoresponsive components such as azobenzene, diarylethene, spiropyran, spirooxazine, fulgide and leuco dyes can be used.
  • the potential responsive material used in the present invention is not particularly limited as long as the cell adhesiveness is changed by application of a potential.
  • a potential for example, as disclosed in Japanese Patent Application Laid-Open No. 2008-295382.
  • an electrode and a spacer substance such as alkanethiol, cysteine, and alkanedisulfide having a cell adhesive portion such as a peptide containing an RGD sequence and binding to the electrode surface via thiolate.
  • the magnetic force responsive material used in the present invention is not particularly limited as long as the cell adhesiveness is changed by the application / removal of magnetic force.
  • An example is a positively charged liposome encapsulating magnetic particles in which magnetic particles such as ferrite are encapsulated in positively charged liposomes.
  • the stimulus responsive layer used in the present invention contains at least the stimulus responsive material.
  • additives such as leveling agents, plasticizers, surfactants, antifoaming agents, sensitizers, polyvinyl alcohol, unsaturated polyesters, etc., as necessary, within a range that does not inhibit the stimulus responsiveness.
  • Acrylic resin polyethylene, diallyl phthalate, ethylene propylene diene monomer, epoxy resin, phenol resin, polyurethane, melamine resin, polycarbonate, polyvinyl chloride, polyamide, polyimide, styrene butadiene rubber, chloroprene rubber, polypropylene, polybutylene, polystyrene, polyacetic acid Vinyl, nylon, polyester, polybutadiene, polybenzimidazole, polyacrylonitrile, epichlorohydrin, polysulfide, polyisoprene, polyethylene glycol, MPC polymer (trade name) And they comprise a binder resin zwitterionic polymers such like may.
  • the thickness of the stimulus responsive layer used in the present invention is not particularly limited as long as it can exhibit stimulus responsiveness, and specifically, within a range of 0.5 nm to 300 nm. It is preferable that it is within a range of 1 nm to 100 nm.
  • the method for forming the stimulus-responsive layer used in the present invention is not particularly limited as long as it can be formed in a desired pattern.
  • the stimuli-responsive material composition containing the stimuli-responsive material is applied using a known application method such as spin coating, and patterned by photolithography, gravure printing, flexographic printing, screen printing,
  • coating methods, such as the inkjet method, can be mentioned.
  • the stimulus-responsive layer is made of only an inorganic substance such as a photocatalyst as the stimulus-responsive material
  • a method of using a vacuum film-forming method such as a sputtering method, a CVD method, or a vacuum evaporation method can be cited. it can. This is because a layer having a uniform film thickness can be obtained.
  • Cell non-adhesion region used in the present invention is an exposed range of the surface of the cell non-adhesion layer containing the cell non-adhesion material, and has cell non-adhesion.
  • Cell non-adhesion region used in the present invention includes at least the region surrounding the stimulation-responsive region.
  • the degree of cell adhesiveness of such a cell non-adhesive region is not particularly limited as long as it exhibits a desired cell non-adhesive property, and the stimulation-responsive region expresses cell non-adhesive property. It can be the same as the cell adhesiveness in the case where it is present.
  • the formation site of the cell non-adhesion region used in the present invention is not particularly limited as long as it includes at least a portion surrounding the stimulation-responsive region. For example, as illustrated in FIG. It may be formed in the responsive region.
  • symbol in FIG. 4 since it shows the same member as the thing of FIG. 1, description here is abbreviate
  • the type of the cell non-adhesion region used in the present invention may be only one type, or may include a plurality of cell non-adhesion regions including different cell non-adhesion materials.
  • the width of the cell non-adhesion region used in the present invention from the non-adhesion boundary with the stimulus-responsive region is not particularly limited as long as cells can be adhered and cultured in the shape of the stimulus-responsive region. It is preferably 5 ⁇ m or more, and particularly preferably 10 ⁇ m or more. This is because, when the width is in the above-described range, it is possible to stably suppress cell growth on the cell non-adhesion region.
  • the cell non-adhesion layer used in the present invention contains a cell non-adhesion material.
  • a cell non-adhesive material any material having non-adhesiveness with cells may be used.
  • a material having water repellency or oil repellency, or a material having super hydrophilicity can also be used.
  • ethylene glycol materials using diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, polyethylene glycol diacrylate, polyethylene glycol methacrylate, etc., long chain alkyl materials such as decylmethoxysilane, fluoroalkylsilane, etc.
  • Fluorine-based materials water-repellent materials such as silicon, hydrophilic materials such as polyvinyl alcohol (PVA) and polyacrylamide, phospholipid materials such as MPC polymer, and BSA protein.
  • PVA polyvinyl alcohol
  • polyacrylamide polyacrylamide
  • phospholipid materials such as MPC polymer
  • BSA protein BSA protein.
  • an ethylene glycol-based material can be preferably used. This is because the therapeutic cell fragment can be formed with high pattern accuracy by exhibiting excellent cell non-adhesiveness and cytotoxicity with cells.
  • the additive and binder resin that can be contained in the cell non-adhesive layer used in the present invention, the film thickness, and the formation method can be the same as those described in the above section “1. Stimulus responsive region”. .
  • the therapeutic cell fragment formed on the stimulus-responsive region by the base material for recovering the therapeutic cell fragment of the present invention is one in which the cells are bound to each other, from the stimulus-responsive region. Even if it peels, the state which the said cells couple
  • a cell constituting such a therapeutic cell fragment any tissue existing in a living body and cells derived therefrom can be used as long as it is other than a non-adherent cell such as a blood cell line or a cell having a weak intercellular bond.
  • epithelial cells and endothelial cells that constitute each tissue and organ in the living body skeletal muscle cells that exhibit contractility, smooth muscle cells, cardiomyocytes, neurons that constitute the nervous system, glial cells, fibroblasts, Periodontal ligament cells, endometrial derived cells, vascular cells, chondrocytes, bone cells, liver parenchymal cells related to metabolism in the living body, non-hepatic parenchymal cells and fat cells, cancer cells, various cells with differentiation potential Stem cells present in the tissue, as well as bone marrow cells, ES cells, iPS cells, stem cells, various progenitor cells, various types of cells induced to differentiate from ES cells or iPS cells, and the like can be used.
  • recovery for treatment contains the said stimulation responsive area
  • the stimuli-responsive layer and the non-cell-adhering region are composed of the stimuli-responsive layer and the base material supporting the cell-non-adhering layer. It may be.
  • Such a substrate is not particularly limited as long as it can support the stimulus-responsive layer, the cell non-adhesive layer, and the like.
  • the material of the substrate is polyethylene terephthalate (PET), polystyrene (PS), polycarbonate (PC), TAC (triacetyl cellulose), polyimide (PI), nylon (Ny), low density polyethylene (LDPE). , Medium density polyethylene (MDPE), vinyl chloride, vinylidene chloride, polyphenylene sulfide, polyethersulfone, polyethylene naphthalate, polypropylene, urethane acrylate and other acrylic materials, cellulose, glass and the like.
  • the substrate may be porous.
  • polyethylene terephthalate, polystyrene, and polycarbonate can be preferably used, and polyethylene terephthalate can be particularly preferably used. This is because it excels in properties such as transparency, dimensional stability, mechanical properties, electrical properties, and chemical resistance.
  • the film thickness of the substrate in the present invention is not particularly limited as long as it can stably support the stimulus-responsive layer and the like.
  • it is in the range of 10 ⁇ m to 1000 ⁇ m, preferably , In the range of 50 ⁇ m to 200 ⁇ m.
  • the shape of the base material in the present invention may be a plate shape or a concave shape such as a Petri dish or a multiwell plate.
  • the stimulation-responsive layer or the cell non-adhesion layer is used as a base material for supporting the cell non-adhesion layer 2. It may be a substrate that supports the layer.
  • the method for producing the therapeutic cell fragment recovery base material of the present invention is not particularly limited as long as it can stably form the stimulus-responsive region and the like.
  • a method of forming a stimulus-responsive layer and a cell non-adhesive layer in this order can be mentioned.
  • the therapeutic cell fragment recovery substrate of the present invention is used for the production of cell fragments for treatment such as transplantation, and in particular, the therapeutic cell fragments required to be controlled in size and shape. It can use suitably for manufacture of.
  • the substrate for cell fragment collection for passage of the present invention has a stimulus responsive region in which cell adhesion changes by stimulation, and a cell non-adhesive region having cell non-adhesive properties, and the periphery of the stimulus responsive region Is surrounded by the cell non-adhering region.
  • the cell fragment for subculture that has a stimulus-responsive region surrounded by the cell non-adhesion region, and is controlled to have an arbitrary size and shape by applying a stimulus to the stimulus-responsive region.
  • passage operation can be made simple.
  • the use of a proteolytic enzyme such as trypsin can be eliminated, the cells can be stably grown.
  • the size and shape are controlled, when the cells are passaged using such passage cell fragments, the proliferation of the cells can be controlled with high accuracy and can be stably cultured. For this reason, for example, when such a cell fragment collection substrate for passage is used in an automatic culture apparatus, cells can be stably proliferated and cultured.
  • the substrate for cell fragment collection for passage of the present invention includes at least the stimulation-responsive region and the cell non-adhesion region.
  • the stimulation-responsive region, cell non-adhesion region, obtained cell fragment for passage, other constitution, production method and the like are described in the above section “A.
  • Base material for cell fragment collection for treatment Since it can be the same as that of the contents, description thereof is omitted here.
  • the cell fragment collection substrate for passage of the present invention As a use of the cell fragment collection substrate for passage of the present invention, it is used for culturing and proliferating cells, and in particular, suitable for culturing and proliferating cells that require simplicity and stability, automatic culture apparatuses, etc. Used for.
  • the method for producing a therapeutic cell fragment of the present invention comprises preparing the above-mentioned therapeutic cell fragment collection substrate, and in the state where the stimulus-responsive region expresses cell adhesion, on the stimulus-responsive region.
  • a recovery step of recovering the therapeutic cell fragment peeled from the stimulus-responsive region comprises preparing the above-mentioned therapeutic cell fragment collection substrate, and in the state where the stimulus-responsive region expresses cell adhesion, on the stimulus-responsive region.
  • FIG. 6 is a process diagram showing an example of a method for producing a therapeutic cell fragment of the present invention.
  • the therapeutic cell fragment collection substrate 10 is prepared, and the stimulus responsive region which is the exposed surface of the stimulus responsive layer 1 is prepared.
  • the stimulus-responsive region In a state in which cells are expressing cell adhesion, cells are seeded and cultured on the stimulus-responsive region (FIG. 6 (a)), and used for treatment comprising at least one cell adhered to the stimulus-responsive region
  • the therapeutic cell which formed the cell fragment 21 FIG.
  • FIGS. 6A and 6B are cell fragment forming steps
  • FIG. 6C is a stimulus applying step
  • FIG. 6D is a collecting step.
  • a therapeutic cell fragment having a controlled size and shape can be easily obtained by using the therapeutic cell fragment collection substrate. Accordingly, it is possible to exert effects such as treatment with good reproducibility.
  • the method for producing a therapeutic cell fragment of the present invention comprises at least a cell fragment formation step, a stimulus application step, and a recovery step.
  • a cell fragment formation step a cell fragment formation step
  • a stimulus application step a stimulus application step
  • a recovery step a recovery step
  • the cell fragment formation step in the present invention comprises preparing the above-mentioned therapeutic cell fragment collection base material, and in the state where the stimulus responsive region expresses cell adhesiveness, on the stimulus responsive region. Cells are seeded and cultured to form a therapeutic cell fragment comprising at least one cell adhered to the stimulus-responsive region.
  • the method for expressing cell adhesion in the stimulus responsive region is different depending on the type of the stimulus responsive material constituting the stimulus responsive region, and the above-mentioned cell adhesion can be expressed. It is not particularly limited as long as it can be performed. Specifically, when the stimulus-responsive material is PIPAAm, there is a method of setting the stimulus-responsive region to a temperature condition higher than 32 ° C.
  • the method for seeding the cells in this step is not particularly limited as long as the cells are uniformly seeded on the stimulus-responsive region, and a general seeding method can be used.
  • a general seeding method can be used.
  • recovery for treatment in the culture medium can be mentioned.
  • the method for culturing the cells in this step is not particularly limited as long as it is a method capable of forming a therapeutic cell fragment composed of one or more cells adhered to the stimulus-responsive region. Any culture method can be used.
  • the therapeutic cell fragment formed in this step can be the same as that described in the above section “A. Base material for recovery of therapeutic cell fragment”.
  • the stimulus imparting step in the present invention is a step in which the stimulus responsive region is stimulated to express cell non-adhesiveness.
  • the stimulation-responsive region is stimulated to express cell non-adhesiveness by expressing cell non-adhesiveness in the stimulus-responsive region, and the therapeutic cell fragment is removed from the stimulus-responsive region.
  • Any method can be used as long as it can be peeled off, and it depends on the type of the stimulus-responsive region.
  • the stimulus-responsive material is PIPAAm
  • the therapeutic cell fragment collection substrate to which the therapeutic cell fragment is attached is left in an incubator set at a temperature of 32 ° C. or lower. Or the like can be used.
  • a process of applying external stress such as pipetting to the stimulus responsive region may be performed. This is because the therapeutic cell fragment can be more stably detached.
  • Collection step is a step of collecting the therapeutic cell fragment peeled from the stimulus-responsive region.
  • the method for recovering the therapeutic cell fragment may be any method that can separate the therapeutic cell fragment recovery base material and the therapeutic cell fragment. Examples thereof include a method of adhering the therapeutic cell fragment peeled from the stimulus-responsive region to a recovery base material to which the therapeutic cell fragment can adhere, a method of sucking the therapeutic cell fragment together with a medium, and the like.
  • the method of aspirating the therapeutic cell fragment together with the medium is preferable. This is because it can be recovered as a suspension suspended in a medium, and thus can be easily used for treatment such as transplantation.
  • the method for producing a therapeutic cell fragment of the present invention includes at least a cell fragment formation step, a stimulus applying step, and a recovery step.
  • the substrate for cell fragment collection for passage is prepared, and the stimulus-responsive region is expressing cell adhesiveness on the stimulus-responsive region.
  • a recovery step of recovering the passage cell fragment peeled from the stimulus-responsive region is performed.
  • the method for producing a cell fragment for passage of the present invention can be the same as that described in FIG.
  • the present invention it is possible to easily obtain a cell fragment for passage having a controlled size and shape by using the substrate for cell fragment collection for passage.
  • the method for producing a cell fragment for passage of the present invention comprises at least a cell fragment forming step, a stimulus applying step, and a recovery step.
  • each step included in the method for producing a cell fragment for passage of the present invention is the same as the contents described in the above-mentioned section “C. Method for producing a cell fragment for treatment”, and thus description thereof is omitted here. To do.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.
  • Example 1 Production of temperature-responsive film N-isopropylacrylamide was dissolved in isopropyl alcohol (IPA) to a final concentration of 20% by weight.
  • IPA isopropyl alcohol
  • a commercially available easy-adhesive polyethylene terephthalate film obtained from Sanko Sangyo Co., Ltd., transparent 50-F Sepa 1090
  • easily-adhesive PET was procured and cut into 10 cm squares. The solution was spread on the easy-adhesion surface of easy-adhesion PET and coated with a Miya bar.
  • the sample was irradiated with an electron beam using an electron beam irradiation apparatus (manufactured by Iwasaki Electric Co., Ltd.), and the solution was graft polymerized.
  • the electron beam irradiation dose at this time was 300 kGy.
  • Methacryloxysilane obtained from Momentive Performance Materials, TSL8370 was prepared and diluted with isopropyl alcohol (IPA) to 0.1% by weight.
  • IPA isopropyl alcohol
  • the temperature-responsive film obtained above was fixed to glass with a tape, coated with methacryloxysilane using a spinner (manufactured by Mikasa), and subjected to silane treatment.
  • polyethylene glycol diacrylate (molecular weight 300, obtained from Aldrich) is diluted with pure water so that the final concentration is 50% by weight, and 2-hydroxy-4 ′-(2- Hydroxyethoxy) -2-methylpropiophenone (obtained from Aldrich) was added to a final concentration of 1% by weight.
  • This solution was stirred with a stirrer for 15 minutes. 1 mL of this was developed on a silane-treated temperature-responsive film, and spin coating was performed under the conditions shown in the following table. Then, it processed with the energy of 150 mJ with the exposure apparatus using the photomask.
  • a stimulus responsive region (temperature responsive region) designed so that patches of 200 ⁇ m square were arranged at intervals of 200 ⁇ m was used. Thereafter, it was visually confirmed that polyerylene glycol diacrylate was immobilized on the silane-treated substrate as a cell non-adhesive layer.
  • the cell fragment collection substrate obtained in the examples was sterilized with 70% ethanol. The sterilization time was 1 hour. Thereafter, human-derived mesenchymal stem cells (hMSC) were seeded at 4 ⁇ 10 5 cells / cm 2 and cultured for 7 days. Seven days later, when observed with a phase contrast microscope, it was confirmed that cell fragments composed of a plurality of cells of 200 ⁇ m square were obtained at intervals of 200 ⁇ m. In addition, when a phase contrast image was obtained at a magnification of 10 times the eyepiece and 4 times the objective so that 16 200 ⁇ m square cell fragments were contained in one visual field, and the number of cells contained in each fragment was measured, an average of 7. There were 5 (standard deviation 0.9).
  • the sample was irradiated with an electron beam using an electron beam irradiation apparatus (manufactured by Iwasaki Electric Co., Ltd.), and the solution was graft polymerized.
  • the electron beam irradiation dose at this time was 300 kGy.
  • hMSC human-derived mesenchymal stem cells
  • the sample was irradiated with an electron beam using an electron beam irradiation apparatus (manufactured by Iwasaki Electric Co., Ltd.), and the solution was graft polymerized.
  • the electron beam irradiation dose at this time was 300 kGy.
  • Methacryloxysilane obtained from Momentive Performance Materials, TSL8370 was prepared and diluted with isopropyl alcohol (IPA) to 0.1% by weight.
  • IPA isopropyl alcohol
  • the temperature-responsive film obtained above was fixed to glass with a tape, coated with methacryloxysilane using a spinner (manufactured by Mikasa), and subjected to silane treatment.
  • polyethylene glycol diacrylate molecular weight 300, obtained from Aldrich
  • 2-hydroxy-4 ′-(2- Hydroxyethoxy) -2-methylpropiophenone obtained from Aldrich was added to a final concentration of 1% by weight.
  • This solution was stirred with a stirrer for 15 minutes. 1 mL of this was developed on a silane-treated temperature-responsive film, and spin coating was performed under the conditions shown in the following table. Then, it processed with the energy of 150 mJ with the exposure apparatus using the photomask.
  • a stimulus responsive region temperature responsive region designed so that patches of 200 ⁇ m square were arranged at intervals of 200 ⁇ m was used. Thereafter, it was visually confirmed that polyerylene glycol diacrylate was immobilized on the silane-treated substrate as a cell non-adhesive layer.
  • the cell fragment collection substrate obtained in the examples was sterilized with 70% ethanol. The sterilization time was 1 hour. Thereafter, human-derived mesenchymal stem cells (hMSC) were seeded at 4 ⁇ 10 5 cells / cm 2 and cultured for 7 days. Seven days later, when observed with a phase contrast microscope, it was confirmed that cell fragments composed of a plurality of cells of 200 ⁇ m square were obtained at intervals of 200 ⁇ m. In addition, when a phase contrast image was obtained at a magnification of 10 times the eyepiece and 4 times the objective so that 16 200 ⁇ m square cell fragments were contained in one visual field, and the number of cells contained in each fragment was measured, an average of 7. There were 5 (standard deviation 0.9).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Immunology (AREA)
  • Cell Biology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The main purpose of the present invention is to provide a matrix for recovering cell fragments for therapeutic use whereby cell fragments capable of exerting a therapeutic effect at a high reproducibility can be obtained. The matrix for recovering cell fragments for therapeutic use, which comprises a stimulus-responsive area showing a change in cell adhesiveness due to a stimulus and a cell non-adhesive area having cell non-adhesiveness, characterized in that the circumference of the stimulus-responsive area is surrounded by the cell non-adhesive area. The above-said purpose can be achieved by providing this matrix.

Description

治療用細胞フラグメント回収用基材およびそれを用いた治療用細胞フラグメントの製造方法、ならびに、継代用細胞フラグメント回収用基材およびそれを用いた継代用細胞フラグメントの製造方法Substrates for recovering therapeutic cell fragments, methods for producing therapeutic cell fragments using the same, and substrates for recovering cell fragments for subculture and methods for producing subcellular fragments using the same
 本発明は、治療効果を再現性良く発揮できる治療用細胞フラグメントを得ること、および、継代操作時に細胞を安定的に培養できる継代用細胞フラグメントを容易に得ることができる細胞フラグメント回収用基材に関するものである。 The present invention provides a cell fragment recovery base material capable of obtaining a therapeutic cell fragment capable of exerting a therapeutic effect with high reproducibility, and easily obtaining a subculture cell fragment capable of stably culturing cells during subculture operations. It is about.
 近年、細胞フラグメントが、再生医療などでしばしば用いられるようになってきている。
 ここで、細胞フラグメントとは、細胞間結合で細胞同士が少なくとも単層で連結された細胞集合体である。
In recent years, cell fragments are often used in regenerative medicine and the like.
Here, the cell fragment is a cell aggregate in which cells are connected to each other in at least a single layer by intercellular bonding.
 このような細胞フラグメントの作製方法としては、支持体上に細胞を播種・培養し形成された細胞シートに、トリプシン等のタンパク質分解酵素を作用させ、支持体-細胞間および細胞-細胞間の結合が切断された細胞フラグメントを回収する方法や、支持体上に細胞を播種・培養し形成された細胞シートに金属製の網を押し当て、上記細胞シートを所定のサイズに分断する方法が開示されている(非特許文献1)。
 しかしながら、このような方法で得られた細胞フラグメントを前臨床研究において実験動物への移植に用いた場合には、細胞間結合を物理的に切断しているため侵襲的であるだけでなく、サイズの不揃いなフラグメントしか得られず実験結果がばらつくといった問題があった。
As a method for producing such a cell fragment, a proteolytic enzyme such as trypsin is allowed to act on a cell sheet formed by seeding and culturing cells on a support, thereby binding between the support and cells and between cells and cells. A method for recovering cell fragments that have been cut and a method for dividing the cell sheet into a predetermined size by pressing a metal net against a cell sheet formed by seeding and culturing cells on a support. (Non-Patent Document 1).
However, when the cell fragment obtained by such a method is used for transplantation to an experimental animal in preclinical research, it is not only invasive because it physically breaks the cell-cell junction, but also its size. However, there was a problem that only the irregular fragments were obtained and the experimental results varied.
 また、細胞の継代操作時に、タンパク質分解酵素を用いて培養容器等の支持体から細胞を剥離し、新しい支持体に剥離した細胞を植え継ぐ作業が行われる。
 しかしながら、このようなタンパク質分解酵素を用いる方法では、タンパク質分解酵素の滴下、反応停止等の作業が必要であり作業が煩雑であるといった問題や、タンパク質分解酵素により細胞がダメージを受け、その後の増殖に悪影響が出る等の問題があった。また、タンパク質分解酵素の濃度、処理時間を厳密に管理できていない場合には、継代操作毎に細胞増殖速度にばらつきが出るといった問題があった。
Moreover, at the time of cell passage operation, a cell is detached from a support such as a culture vessel using a proteolytic enzyme, and an operation of planting the detached cells on a new support is performed.
However, such a method using a proteolytic enzyme requires problems such as dripping the proteolytic enzyme and stopping the reaction, and the work is complicated, and the cell is damaged by the proteolytic enzyme and the subsequent growth There were problems such as adverse effects on In addition, when the concentration of proteolytic enzyme and the treatment time cannot be strictly controlled, there is a problem that the cell growth rate varies for each passage operation.
 本発明は、上記問題点に鑑みてなされたものであり、治療効果を再現性良く発揮できる細胞フラグメントを得ること、および、継代操作時に細胞を安定的に培養できる継代用細胞フラグメントを容易に得ることができる細胞フラグメント回収用基材を提供することを主目的とする。 The present invention has been made in view of the above problems, and it is easy to obtain a cell fragment capable of exerting a therapeutic effect with good reproducibility and to stably subculture cell fragments during passage operation. The main object is to provide a cell fragment collection substrate that can be obtained.
 本発明者等は、上記課題を解決すべく研究を重ねた結果、従来のトリプシン等のタンパク質分解酵素を用いる方法や、金網等で細胞シートを分断する方法では、サイズや形状が不揃いな細胞フラグメントなり、このようなサイズおよび形状の不揃いな細胞フラグメントを用いた場合には、上記細胞フラグメントを前臨床研究における実験動物への移植に用いた際に細胞間結合を物理的に切断しているため侵襲的であるだけでなく、サイズの不揃いなフラグメントしか得られず実験結果がばらつくことを見出した。
 また、継代操作時に、トリプシン等のタンパク質分解酵素により細胞-細胞間の結合を切断するが、このような処理により形成される細胞フラグメントのサイズおよび形状が不揃いなことにより、その後の細胞増殖にばらつきがでること、および、細胞が効率よく増殖できる細胞フラグメントのサイズ、すなわち、一つの細胞フラグメントに含まれる細胞の数が細胞毎に異なるものであることを見出し、本発明を完成させるに至ったのである。
As a result of repeated studies to solve the above problems, the present inventors have found that cell fragments with irregular sizes and shapes are not obtained by conventional methods using a proteolytic enzyme such as trypsin or by dividing a cell sheet with a wire mesh or the like. Therefore, when cell fragments with irregular sizes and shapes are used, the cell fragments are physically broken when used for transplantation to experimental animals in preclinical studies. It was found that not only invasive fragments but also fragments of irregular sizes were obtained, and the experimental results varied.
In addition, the cell-cell bond is cleaved by a proteolytic enzyme such as trypsin at the time of subculture, but the size and shape of the cell fragments formed by such a treatment are not uniform, which prevents subsequent cell growth. It was found that there was variation, and the size of the cell fragment in which cells can efficiently grow, that is, the number of cells contained in one cell fragment was different for each cell, and the present invention was completed. It is.
 すなわち、本発明は、刺激により細胞接着性が変化する刺激応答性領域と、細胞非接着性を有する細胞非接着領域と、を有し、上記刺激応答性領域が、上記細胞非接着領域により囲まれていることを特徴とする治療用細胞フラグメント回収用基材を提供する。 That is, the present invention has a stimulus-responsive region in which cell adhesion is changed by stimulation, and a cell non-adhesive region having cell non-adhesiveness, and the stimulus-responsive region is surrounded by the cell non-adhesive region. A therapeutic cell fragment recovery substrate is provided.
 本発明によれば、上記細胞非接着領域により囲まれている刺激応答性領域を有することにより、上記刺激応答性領域への刺激の付与により、任意のサイズおよび形状に制御された治療用細胞フラグメントを容易に回収することができる。
 また、サイズおよび形状が制御されているため、このような治療用細胞フラグメントを用いた移植等による治療効果を再現性良く発揮することができる。
According to the present invention, the therapeutic cell fragment is controlled to have an arbitrary size and shape by applying a stimulus to the stimulus responsive region by having the stimulus responsive region surrounded by the cell non-adhesive region. Can be easily recovered.
In addition, since the size and shape are controlled, the therapeutic effect by transplantation using such therapeutic cell fragments can be exhibited with good reproducibility.
 本発明は、刺激により細胞接着性が変化する刺激応答性領域と、細胞非接着性を有する細胞非接着領域と、を有し、上記刺激応答性領域が、上記細胞非接着領域により囲まれていることを特徴とする継代用細胞フラグメント回収用基材を提供する。 The present invention has a stimulus-responsive region in which cell adhesiveness is changed by stimulation, and a cell non-adhesive region having cell non-adhesiveness, and the stimulus-responsive region is surrounded by the cell non-adhesive region. A substrate for recovering cell fragments for passage is provided.
 本発明によれば、上記細胞非接着領域により囲まれている刺激応答性領域を有することにより、上記刺激応答性領域への刺激の付与により、任意のサイズおよび形状に制御された継代用細胞フラグメントを容易に回収することができる。このため、継代操作を簡便なものとすることができる。また、トリプシン等のタンパク質分解酵素の使用を不要とすることができるため、上記細胞を安定的に増殖させることができる。
 また、サイズおよび形状が制御されているため、このような継代用細胞フラグメントを用いて継代した場合には、上記細胞の増殖を精度良くコントロールでき、安定的に培養することができる。
 このようなことから、例えば、自動培養装置においてこのような継代用細胞フラグメント回収用基材を用いた場合には、安定的に細胞を増殖、培養することができる。
According to the present invention, the cell fragment for subculture that has a stimulus-responsive region surrounded by the cell non-adhesion region, and is controlled to have an arbitrary size and shape by applying a stimulus to the stimulus-responsive region. Can be easily recovered. For this reason, passage operation can be made simple. Moreover, since the use of a proteolytic enzyme such as trypsin can be eliminated, the cells can be stably grown.
In addition, since the size and shape are controlled, when the cells are passaged using such passage cell fragments, the proliferation of the cells can be controlled with high accuracy and can be stably cultured.
For this reason, for example, when such a cell fragment collection substrate for passage is used in an automatic culture apparatus, cells can be stably proliferated and cultured.
 本発明においては、上記刺激応答性領域が、温度変化により細胞接着性が変化する温度応答性材料を含むことが好ましい。刺激の付与が容易だからである。 In the present invention, it is preferable that the stimulus-responsive region includes a temperature-responsive material whose cell adhesiveness changes due to a temperature change. This is because it is easy to apply a stimulus.
 本発明においては、上記温度応答性材料が、ポリイソプロピルアクリルアミドであることが好ましい。細胞の培養に適した温度において細胞接着性を有し、細胞へのダメージの少ない温度で細胞非接着性を発現することから、上記細胞フラグメントを安定的に回収することができるからである。 In the present invention, the temperature-responsive material is preferably polyisopropylacrylamide. This is because the cell fragment can be stably recovered because it has cell adhesion at a temperature suitable for cell culture and exhibits cell non-adhesion at a temperature with little damage to the cell.
 本発明は、上述の治療用細胞フラグメント回収用基材を準備し、上記刺激応答性領域が細胞接着性を発現している状態で、上記刺激応答性領域上に細胞を播種・培養し、上記刺激応答性領域に接着した少なくとも1以上の細胞からなる治療用細胞フラグメントを形成する細胞フラグメント形成工程と、上記刺激応答性領域に刺激を与え細胞非接着性を発現させる刺激付与工程と、上記刺激応答性領域から剥離した上記治療用細胞フラグメントを回収する回収工程と、を有することを特徴とする治療用細胞フラグメントの製造方法を提供する。
 また、本発明は、上述の継代用細胞フラグメント回収用基材を準備し、上記刺激応答性領域が細胞接着性を発現している状態で、上記刺激応答性領域上に細胞を播種・培養し、上記刺激応答性領域に接着した少なくとも1以上の細胞からなる継代用細胞フラグメントを形成する細胞フラグメント形成工程と、上記刺激応答性領域に刺激を与え細胞非接着性を発現させる刺激付与工程と、上記刺激応答性領域から剥離した上記継代用細胞フラグメントを回収する回収工程と、を有することを特徴とする継代用細胞フラグメントの製造方法を提供する。
The present invention provides the above-mentioned substrate for cell fragment collection for treatment, seeding and culturing cells on the stimulus-responsive region in a state where the stimulus-responsive region expresses cell adhesion, A cell fragment forming step of forming a therapeutic cell fragment comprising at least one cell adhered to a stimulus responsive region; a stimulus applying step of stimulating the stimulus responsive region to express cell non-adhesiveness; and the stimulus And a recovery step of recovering the therapeutic cell fragment peeled from the responsive region. A method for producing the therapeutic cell fragment is provided.
In addition, the present invention provides the above-described substrate for recovering cell fragments for passage, and seeding and culturing cells on the stimulus-responsive region in a state where the stimulus-responsive region expresses cell adhesion. A cell fragment forming step of forming a cell fragment for passage consisting of at least one or more cells adhered to the stimulus responsive region, and a stimulus applying step of stimulating the stimulus responsive region to express cell non-adhesiveness, And a recovery step of recovering the passage cell fragment exfoliated from the stimulus-responsive region. A method for producing a passage cell fragment is provided.
 本発明によれば、上記治療用細胞フラグメント回収用基材および継代用細胞フラグメント回収用基材を用いることにより、サイズおよび形状が制御された上記治療用細胞フラグメントおよび継代用細胞フラグメントを容易に製造することができる。 According to the present invention, the therapeutic cell fragment and the passage cell fragment having a controlled size and shape can be easily produced by using the therapeutic cell fragment collection substrate and the passage cell fragment collection substrate. can do.
 本発明は、治療効果を再現性良く発揮できる治療用細胞フラグメントを得ること、および、継代操作時に細胞を安定的に培養できる継代用細胞フラグメントを容易に得ることができる細胞フラグメント回収用基材を提供できるといった効果を奏する。 The present invention provides a cell fragment recovery base material capable of obtaining a therapeutic cell fragment capable of exerting a therapeutic effect with high reproducibility, and easily obtaining a subculture cell fragment capable of stably culturing cells during subculture operations. There is an effect that can be provided.
本発明の治療用細胞フラグメント回収用基材の一例を示す概略平面図である。It is a schematic plan view which shows an example of the base material for cell fragment collection | recovery of this invention. 図1のA-A線断面図である。FIG. 2 is a sectional view taken along line AA in FIG. 1. 本発明の治療用細胞フラグメント回収用基材の他の例を示す概略平面図である。It is a schematic plan view which shows the other example of the base material for cell fragment collection | recovery of this invention. 本発明の治療用細胞フラグメント回収用基材の他の例を示す概略平面図である。It is a schematic plan view which shows the other example of the base material for cell fragment collection | recovery of this invention. 本発明の治療用細胞フラグメント回収用基材の他の例を示す概略断面図である。It is a schematic sectional drawing which shows the other example of the base material for cell fragment collection | recovery of this invention. 本発明の治療用細胞フラグメントの製造方法の一例を示す工程図である。It is process drawing which shows an example of the manufacturing method of the cell fragment for a treatment of this invention.
 本発明は、治療用細胞フラグメント回収用基材およびそれを用いた治療用細胞フラグメントの製造方法、ならびに、継代用細胞フラグメント回収用基材およびそれを用いた継代用細胞フラグメントの製造方法に関するものである。
 以下、本発明の治療用細胞フラグメント回収用基材、継代用細胞フラグメント回収用基材、治療用細胞フラグメントの製造方法、および継代用細胞フラグメントの製造方法について詳細に説明する。
TECHNICAL FIELD The present invention relates to a therapeutic cell fragment collection substrate and a method for producing a therapeutic cell fragment using the same, and a passage cell fragment collection substrate and a method for producing a passage cell fragment using the same. is there.
The therapeutic cell fragment collection substrate, passage cell fragment collection substrate, treatment cell fragment production method, and passage cell fragment production method of the present invention are described in detail below.
A.治療用細胞フラグメント回収用基材
 まず、本発明の治療用細胞フラグメント回収用基材について説明する。
 本発明の治療用細胞フラグメント回収用基材は、刺激により細胞接着性が変化する刺激応答性領域と、細胞非接着性を有する細胞非接着領域と、を有し、上記刺激応答性領域が、上記細胞非接着領域により囲まれていることを特徴とするものである。
A. First, the base material for cell fragment collection for treatment of the present invention will be described.
The substrate for cell fragment collection for treatment of the present invention has a stimulus responsive region in which cell adhesion changes by stimulation, and a cell non-adhesive region having cell non-adhesiveness. It is characterized by being surrounded by the cell non-adhesion region.
 このような本発明の治療用細胞フラグメント回収用基材について図を参照して説明する。図1は、本発明の治療用細胞フラグメント回収用基材の一例を示す概略平面図であり、図2は、図1のA-A線断面図である。
 図1および2に例示するように、本発明の治療用細胞フラグメント回収用基材10は、刺激により細胞接着性が変化する刺激応答性材料を含む刺激応答性層1と、細胞非接着性を有する細胞非接着材料を含む細胞非接着層2と、を有し、上記刺激応答性層1の露出表面である刺激応答性領域11が上記細胞非接着層2の露出表面である細胞非接着領域12により囲まれているものである。また、上記刺激応答性層1および細胞非接着性層2を支持する基材3を有するものである。
Such a therapeutic cell fragment collection substrate of the present invention will be described with reference to the drawings. FIG. 1 is a schematic plan view showing an example of the therapeutic cell fragment collection substrate of the present invention, and FIG. 2 is a cross-sectional view taken along line AA of FIG.
As illustrated in FIGS. 1 and 2, the therapeutic cell fragment collection substrate 10 of the present invention includes a stimulus-responsive layer 1 containing a stimulus-responsive material whose cell adhesiveness changes upon stimulation, and cell non-adhesiveness. A non-cell-adhesive layer 2 containing a non-cell-adhesive material, and a non-adhesive region in which the stimulus-responsive region 11 that is the exposed surface of the stimulus-responsive layer 1 is the exposed surface of the non-cell-adhesive layer 12 is surrounded by 12. Moreover, it has the base material 3 which supports the said stimulus responsive layer 1 and the cell non-adhesive layer 2.
 本発明によれば、上記細胞非接着領域により囲まれている刺激応答性領域を有することにより、上記刺激応答性領域に細胞を播種し、培養することにより治療用細胞フラグメントを形成した後に、上記刺激応答性領域へ刺激を付与することにより、任意のサイズおよび形状に制御された治療用細胞フラグメントを上記刺激応答性領域から容易に剥離し回収することができる。
 また、サイズおよび形状が制御されているため、このような治療用細胞フラグメントを用いた場合には、従来のトリプシン等のタンパク質分解酵素や、金網を押し付ける方法により得られる細胞フラグメントを用いる場合と比較し、前臨床研究における実験動物への移植等の際に、サイズの揃ったフラグメントが得られるため実験の再現性が向上する効果が得られる。
According to the present invention, by having a stimulus-responsive region surrounded by the cell non-adhesive region, after seeding cells in the stimulus-responsive region and culturing to form a therapeutic cell fragment, By applying a stimulus to the stimulus-responsive region, the therapeutic cell fragment controlled to have an arbitrary size and shape can be easily detached from the stimulus-responsive region and collected.
In addition, because the size and shape are controlled, the use of such therapeutic cell fragments is compared to the case of using conventional proteolytic enzymes such as trypsin or cell fragments obtained by pressing a wire mesh. In addition, fragments having uniform sizes can be obtained at the time of transplantation to an experimental animal in preclinical research, so that the effect of improving the reproducibility of the experiment can be obtained.
 本発明の治療用細胞フラグメント回収用基材は、刺激応答性領域および細胞非接着性領域を少なくとも有するものである。
 以下、本発明の治療用細胞フラグメント回収用基材の各構成について詳細に説明する。
The therapeutic cell fragment collection substrate of the present invention has at least a stimulus-responsive region and a cell non-adhesive region.
Hereinafter, each configuration of the therapeutic cell fragment collection substrate of the present invention will be described in detail.
1.刺激応答性領域
 本発明における刺激応答性領域は、刺激応答性材料を含む刺激応答性層の表面のうち、露出した範囲であり、上記細胞非接着領域により囲まれるものである。
1. Stimulus responsive region The stimulus responsive region in the present invention is an exposed range of the surface of the stimulus responsive layer containing the stimulus responsive material, and is surrounded by the cell non-adhesive region.
(1)刺激応答性領域
 本発明における刺激応答性領域は、上記細胞非接着領域により囲まれているものであり、刺激により細胞接着性を変化させることにより培養する細胞の接着および剥離を行なうことができるものである。
(1) Stimulus responsive region The stimulus responsive region in the present invention is surrounded by the cell non-adherent region, and adheres and detaches cells to be cultured by changing cell adhesiveness by stimulation. It is something that can be done.
 本発明における刺激応答性領域は、特定の刺激により細胞接着性が良好な細胞接着性を発現している状態から、細胞の接着性が低い性質である細胞非接着性を発現している状態に変化し得るものである。
 ここで、上記刺激応答性領域が細胞接着性を発現しているとは、上記刺激応答性領域上で、細胞が接着、伸展しやすく、細胞接着伸展率が高い状態であることをいうものである。本発明において、このような細胞接着伸展率が高い状態としては、具体的には、細胞接着伸展率が60%以上である状態とすることができる。
 本発明においては、なかでも、80%以上であることが好ましい。効率的に細胞を培養し、治療用細胞フラグメントを形成させることができるからである。
 なお、本発明における細胞接着伸展率は、播種密度が4000cells/cm以上30000cells/cm未満の範囲内でウシ血管内皮細胞を播種し、37℃インキュベーター内(CO濃度5%)に保管し、3時間以上経過し、倍加時間前に接着伸展している細胞の割合({(接着している細胞数)/(播種した細胞数)}×100(%))を表すものである。
 また、上記細胞の播種は、10%FBS(血清)入りDMEM培地に懸濁させて培養基材上に播種し、その後、上記細胞ができるだけ均一に分布するよう、上記細胞が播種された培養基材をゆっくりと振とうすることにより行うものである。
 さらに、細胞接着伸展率の測定は、測定直前に培地交換を行って接着していない細胞を除去した後に行い、細胞接着伸展率の測定個所としては、細胞の存在密度が特異的になりやすい箇所(例えば、存在密度が高くなりやすい所定領域の中央、存在密度が低くなりやすい所定領域の周縁)を除いて測定を行うものである。
The stimuli-responsive region in the present invention changes from a state in which cell adhesion has good cell adhesion by specific stimulation to a state in which cell non-adhesion, which is a property of low cell adhesion, is expressed. It can change.
Here, the stimulus-responsive region expressing cell adhesion means that the cells are easy to adhere and spread on the stimulus-responsive region and have a high cell adhesion extension rate. is there. In the present invention, specifically, such a state where the cell adhesion extension rate is high can be a state where the cell adhesion extension rate is 60% or more.
In the present invention, it is preferably 80% or more. This is because cells can be efficiently cultured to form therapeutic cell fragments.
In the present invention, the cell adhesion spreading rate is such that bovine vascular endothelial cells are seeded in a seeding density range of 4000 cells / cm 2 or more and less than 30000 cells / cm 2 and stored in a 37 ° C. incubator (CO 2 concentration 5%). It represents the percentage of cells that have passed for 3 hours or more and have spread and adhered before the doubling time ({(number of cells adhered) / (number of cells seeded)} × 100 (%)).
The cells are seeded by suspending them in a DMEM medium containing 10% FBS (serum) and seeding them on a culture substrate, and then the culture medium on which the cells are seeded so that the cells are distributed as uniformly as possible. This is done by shaking the material slowly.
In addition, the cell adhesion spread rate is measured after exchanging the medium immediately before the measurement to remove non-adhered cells. The cell adhesion spread rate is measured at a location where the density of cells tends to be specific. The measurement is performed excluding (for example, the center of the predetermined region where the existence density tends to be high and the periphery of the predetermined region where the existence density tends to be low).
 また、上記刺激応答性領域が細胞非接着性を発現している場合とは、上記刺激応答性領域上で細胞が接着、伸展しにくく、細胞接着伸展率が低い状態であることをいうものである。本発明において、このような細胞接着伸展率が低い状態としては、具体的には、上記細胞接着伸展率が5%以下である状態とすることができる。本発明においては、なかでも2%以下であることが好ましい。
 したがって、上記刺激応答性領域に細胞を播種すると、細胞接着性を発現している際には細胞が上記刺激応答性領域に接着し、容易に治療用細胞フラグメントを形成することができ、細胞非接着性を発現している際には細胞が上記刺激応答性領域に接着することを阻害されるため、上記刺激応答性領域に接着していた治療用細胞フラグメントを容易に剥離し、回収することができるのである。
In addition, the case where the stimulus-responsive region expresses cell non-adhesiveness means that the cells are difficult to adhere and spread on the stimulus-responsive region and the cell adhesion extension rate is low. is there. In the present invention, specifically, such a state where the cell adhesion extension rate is low can be a state where the cell adhesion extension rate is 5% or less. In the present invention, the content is preferably 2% or less.
Therefore, when cells are seeded in the stimulus-responsive region, cells can adhere to the stimulus-responsive region when cell adhesion is expressed, and can easily form therapeutic cell fragments. Since cells are inhibited from adhering to the stimulus-responsive area when expressing adhesiveness, the therapeutic cell fragments adhering to the stimulus-responsive area should be easily detached and recovered. Can do it.
 本発明に用いられる刺激応答性領域の形状としては、安定的に治療用細胞フラグメントを回収することができるものであれば特に限定されるものではなく、例えば、既に説明した図1に示すような円形状や楕円形状、図3に例示するような多角形状、ライン状、格子状、星型等であってもよい。また、複数の形状を組み合わせたものであってもよい。
 本発明においては、なかでも、円形状または六角形状以上の多角形であることが好ましく、特に、円形状であることが好ましい。上記刺激応答性領域に刺激を与えた際に、上記治療用細胞フラグメントを上記刺激応答性領域から安定的に剥離することができるからである。
The shape of the stimulus-responsive region used in the present invention is not particularly limited as long as it can stably recover the therapeutic cell fragment. For example, as shown in FIG. A circular shape, an elliptical shape, a polygonal shape as illustrated in FIG. 3, a line shape, a lattice shape, a star shape, or the like may be used. Further, a combination of a plurality of shapes may be used.
In the present invention, in particular, a circular shape or a hexagonal or more polygonal shape is preferable, and a circular shape is particularly preferable. This is because when the stimulus is applied to the stimulus responsive region, the therapeutic cell fragment can be stably detached from the stimulus responsive region.
 本発明に用いられる刺激応答性領域の一つあたりの面積としては、少なくとも1以上の細胞が接着することができ、上記治療用細胞フラグメントを安定的に回収できるものであれば特に限定されるものではないが、具体的には、200μm~100000μmの範囲内であることが好ましく、1000μm~50000μmの範囲内であることが好ましく、10000μm~40000μmの範囲内であることが好ましい。上記刺激応答性領域に刺激を付与することにより、上記治療用細胞フラグメントを安定的に剥離し、回収することができるからである。 The area per stimulus-responsive region used in the present invention is particularly limited as long as at least one or more cells can adhere and the therapeutic cell fragment can be stably recovered. but it not, specifically, is preferably in the range of 200 [mu] m 2 ~ 100000 2, preferably in the range of 1000 .mu.m 2 ~ 50000 2, preferably in the range of 10000μm 2 ~ 40000μm 2 . This is because the therapeutic cell fragment can be stably detached and collected by applying a stimulus to the stimulus-responsive region.
 本発明に用いられる刺激応答性領域の配置としては、上記治療用細胞フラグメントを安定的に回収することができるものであれば特に限定されるものではないが、上記治療用細胞フラグメントを安定的に得られる範囲で、最も多くの治療用細胞フラグメントを形成できるものであることが好ましい。一回の操作で、効率的に上記治療用細胞フラグメントを得ることができるからである。 The arrangement of the stimulus-responsive region used in the present invention is not particularly limited as long as the therapeutic cell fragment can be stably recovered, but the therapeutic cell fragment can be stably added. It is preferable that the largest number of therapeutic cell fragments can be formed within the range obtained. This is because the therapeutic cell fragment can be efficiently obtained by a single operation.
 本発明に用いられる刺激応答性領域が占める割合としては、本発明の治療用細胞フラグメント回収用基材内の底面を100%とした場合に少なくとも50%以上含まれるものであれば特に限定されるものではないが、50%~95%の範囲内であることが好ましく、なかでも、70%~90%の範囲内であることが好ましい。
 サイズおよび形状が制御された治療用細胞フラグメントを得ることができるとの本発明の効果をより効果的に発揮することができるからである。
The ratio of the stimulus-responsive region used in the present invention is particularly limited as long as it is at least 50% or more when the bottom surface in the therapeutic cell fragment collection substrate of the present invention is 100%. However, it is preferably in the range of 50% to 95%, and more preferably in the range of 70% to 90%.
This is because the effect of the present invention that a therapeutic cell fragment having a controlled size and shape can be obtained can be more effectively exhibited.
 本発明に用いられる刺激応答性領域の種類としては、1種類のみであっても良く、異なる刺激に応答する複数の刺激応答性領域を含むものであっても良い。 The type of stimulus-responsive region used in the present invention may be only one type or may include a plurality of stimulus-responsive regions that respond to different stimuli.
 本発明に用いられる刺激応答性領域は、上記細胞非接着領域により囲まれるもの、すなわち、上記細胞非接着領域が上記刺激応答性領域の周囲に配置され、外周に上記細胞非接着領域との境界である非接着境界を有するものである。
 ここで、上記非接着境界は、上記刺激応答性領域に刺激を与えた際に、上記非接着境界に沿って、上記治療用細胞フラグメントを上記刺激応答性領域から剥離させることができるものであれば特に限定されるものではない。
 このような非接着境界は、通常、平面視上、上記細胞非接着領域と接しているが、例えば、上記刺激応答性領域および細胞非接着領域の間に、上記刺激応答性領域に刺激を与えた際に、上記非接着境界に沿って、上記治療用細胞フラグメントを剥離させることができる程度の幅で形成された細胞接着領域等の他の領域が存在する箇所も含むものである。
 本発明においては、なかでも、平面視上、上記細胞非接着領域と接する箇所であること、すなわち、上記刺激応答性領域および細胞非接着領域の間に他の領域を含まない箇所であることが好ましい。上記治療用細胞フラグメントを安定的に形成することができるからである。
The stimulation-responsive region used in the present invention is surrounded by the cell non-adhesive region, that is, the cell non-adhesive region is arranged around the stimulus responsive region, and the boundary with the cell non-adhesive region on the outer periphery It has a non-adhesive boundary.
Here, the non-adhesion boundary is capable of separating the therapeutic cell fragment from the stimulation-responsive region along the non-adhesion boundary when the stimulus-responsive region is stimulated. There is no particular limitation.
Such a non-adhesion boundary is usually in contact with the cell non-adhesion region in plan view. For example, the stimulus responsive region is stimulated between the stimulus responsive region and the cell non-adhesion region. In this case, it also includes locations where other regions such as a cell adhesion region formed with such a width that the therapeutic cell fragment can be peeled off along the non-adhesion boundary.
In the present invention, in particular, it is a place that is in contact with the cell non-adhesion region in plan view, that is, a location that does not include other regions between the stimulus-responsive region and the cell non-adhesion region. preferable. This is because the therapeutic cell fragment can be stably formed.
 本発明における刺激応答性領域の外周に形成される非接着境界の位置としては、上記刺激応答性領域に刺激を与えた際に、上記治療用細胞フラグメントを上記刺激応答性領域から安定的に剥離できるものであれば良く、上記刺激応答性領域の外周の少なくとも一部に形成されるものとすることができる。
 本発明においては、なかでも、上記刺激応答性領域の全外周に形成されるものであることが好ましい。上記治療用細胞フラグメントを上記刺激応答性領域の形状で安定的に剥離することができるからである。
The position of the non-adhesion boundary formed on the outer periphery of the stimulus-responsive region in the present invention is that the therapeutic cell fragment is stably detached from the stimulus-responsive region when the stimulus-responsive region is stimulated. Any material can be used, and it can be formed on at least a part of the outer periphery of the stimulus-responsive region.
In the present invention, in particular, it is preferably formed on the entire outer periphery of the stimulus responsive region. This is because the therapeutic cell fragment can be stably peeled in the shape of the stimulus-responsive region.
 本発明に用いられる刺激応答性領域の上記細胞非接着領域に対する高さとしては、上記細胞フラグメントを安定的に形成可能であれば特に限定されるものではないが、上記刺激応答性領域および細胞非接着領域が同一の高さ、すなわち同一平面上に形成されるものであっても良く、異なるものであっても良い。 The height of the stimulus-responsive region used in the present invention with respect to the cell non-adhesion region is not particularly limited as long as the cell fragment can be stably formed. The adhesion regions may be formed at the same height, that is, on the same plane, or may be different.
(2)刺激応答性層
 本発明に用いられる刺激応答性層は、上記刺激応答性材料を含み、平面視上、露出した表面である刺激応答性領域を有するものである。
(2) Stimulus responsive layer The stimulus responsive layer used in the present invention includes the stimulus responsive material and has a stimulus responsive region that is an exposed surface in plan view.
(a)刺激応答性材料
 本発明に用いられる刺激応答性材料としては、刺激の有無により細胞接着性が変化し、培養する細胞の接着および剥離を行なうことができる刺激応答性材料を含むものであれば特に限定されるものではなく、例えば、温度、光、pH、電位および磁力によりそれぞれ細胞接着性が変化する温度応答性材料、光応答性材料、pH応答性材料、電位応答性材料、および磁力応答性材料等を挙げることができる。
 本発明においては、なかでも、温度応答性材料であることが好ましい。刺激の付与が容易だからである。
(A) Stimulus-responsive material The stimulus-responsive material used in the present invention includes a stimulus-responsive material that changes cell adhesion depending on the presence or absence of stimulation and can adhere and detach cells to be cultured. There is no particular limitation as long as it is, for example, a temperature responsive material, a photoresponsive material, a pH responsive material, a potential responsive material in which cell adhesion changes according to temperature, light, pH, potential and magnetic force, and Examples thereof include a magnetic responsive material.
In the present invention, among them, a temperature responsive material is preferable. This is because it is easy to apply a stimulus.
 本発明に用いられる刺激応答性材料の細胞接着性の変化としては、少なくとも、細胞接着性を有する状態から細胞非接着性を有する状態に変化することができるものであれば特に限定されるものではなく、可逆的に変化するものであっても良く、非可逆的に変化するものであっても良く、用途によって選択されるものである。 The change in cell adhesion of the stimulus-responsive material used in the present invention is not particularly limited as long as it can be changed from a state having cell adhesion to a state having cell non-adhesion. However, it may be reversibly changed, or may be changed irreversibly, and is selected depending on the application.
 本発明に用いられる刺激応答性材料の上記刺激応答性層中の含有量としては、刺激により上記刺激応答性層の表面である刺激応答性領域に所望の接着性の変化を得られるものであれば特に限定されるものではなく、上記材料の種類等によって異なるものである。 The content of the stimulus-responsive material used in the present invention in the stimulus-responsive layer is such that a desired adhesive change can be obtained in the stimulus-responsive region that is the surface of the stimulus-responsive layer by stimulation. If it is not specifically limited, it will differ according to the kind of the said material.
 本発明において刺激応答性層に含まれる刺激応答性材料の種類としては、1種類であっても良く、2種以上含むものであっても良い。 In the present invention, the kind of the stimulus responsive material contained in the stimulus responsive layer may be one kind or two or more kinds.
 本発明に用いられる温度応答性材料は、温度変化により、細胞接着性が変化するものであれば特に限定されるものではない。
 本発明においては、上記温度応答性材料の細胞接着性を発揮する温度領域が、10℃~45℃の範囲内であることが好ましく、なかでも、33℃~40℃の範囲内であることが好ましい。上記温度領域が上述の範囲内であることにより、細胞を安定的に培養することができるからである。
The temperature-responsive material used in the present invention is not particularly limited as long as the cell adhesiveness changes due to a temperature change.
In the present invention, the temperature range in which the above-mentioned temperature-responsive material exhibits cell adhesion is preferably in the range of 10 ° C. to 45 ° C., and more preferably in the range of 33 ° C. to 40 ° C. preferable. This is because the cells can be stably cultured when the temperature region is within the above range.
 本発明における温度応答性材料の細胞非接着性を発揮する温度領域が、1℃~36℃の範囲内であることが好ましく、なかでも、4℃~32℃の範囲内であることが好ましい。上記温度領域が上述の範囲内であることにより、細胞へのダメージの少ないものとすることができるからである。 In the present invention, the temperature range in which the non-adhesive property of the temperature-responsive material is exhibited is preferably in the range of 1 ° C. to 36 ° C., and more preferably in the range of 4 ° C. to 32 ° C. This is because when the temperature range is within the above range, damage to cells can be reduced.
 このような本発明に用いられる温度応答性材料としては、具体的には、ポリ-N-イソプロピルアクリルアミド(PIPAAm)、ポリ-N-n-プロピルアクリルアミド、ポリ-N-n-プロピルメタクリルアミド、ポリ-N-エトキシエチルアクリルアミド、ポリ-N-テトラヒドロフルフリルアクリルアミド、ポリ-N-テトラヒドロフルフリルメタクリルアミド、及び、ポリ-N,N-ジエチルアクリルアミド等を挙げることができ、なかでもPIPAAm、ポリーN-n―プロピルメタクリルアミド、ポリーN,N-ジエチルアクリルアミドを好ましく用いることができ、特に、PIPAAmを好ましく用いることができる。細胞の培養に適した温度において細胞接着性を有し、細胞へのダメージの少ない温度で細胞非接着性を発現することから、上記細胞フラグメントを安定的に回収することができるからである。
 また、本発明においては、上記温度応答性材料が1種類のみからなるものであっても良く、2種類以上含むものであっても良い。また、温度領域の調整するため、上記温度応答性材料同士および/またはその他のポリマーと共重合したものを用いるものであっても良い。
Specific examples of the temperature-responsive material used in the present invention include poly-N-isopropylacrylamide (PIPAAm), poly-Nn-propylacrylamide, poly-Nn-propylmethacrylamide, poly -N-ethoxyethyl acrylamide, poly-N-tetrahydrofurfuryl acrylamide, poly-N-tetrahydrofurfuryl methacrylamide, poly-N, N-diethyl acrylamide, etc. can be mentioned, among them PIPAAm, poly-N- n-Propylmethacrylamide and poly-N, N-diethylacrylamide can be preferably used, and PIPAAm can be particularly preferably used. This is because the cell fragment can be stably recovered because it has cell adhesion at a temperature suitable for cell culture and exhibits cell non-adhesion at a temperature with little damage to the cell.
In the present invention, the temperature-responsive material may be composed of only one type or may contain two or more types. Further, in order to adjust the temperature region, a material copolymerized with the above temperature-responsive materials and / or other polymers may be used.
 本発明に用いられる光応答性材料としては、光照射の有無により細胞接着性が変化するものであれば特に限定されるものではなく、例えば、特開2005-210936号公報に開示されるような、光触媒や、アゾベンゼン、ジアリールエテン、スピロピラン、スピロオキサジン、フルギドおよびロイコ色素等の光応答成分を含むものを用いることができる。 The photoresponsive material used in the present invention is not particularly limited as long as cell adhesion changes depending on the presence or absence of light irradiation. For example, as disclosed in JP-A-2005-210936 , Photocatalysts, and those containing photoresponsive components such as azobenzene, diarylethene, spiropyran, spirooxazine, fulgide and leuco dyes can be used.
 本発明に用いられる電位応答性材料としては、電位の印加により、細胞接着性が変化するものであれば特に限定されるものではなく、例えば、特開2008-295382号公報に開示されるような、電極と、RGD配列を含むペプチド等の細胞接着性部分を有し、上記電極表面にチオレートを介して結合するアルカンチオール、システイン、アルカンジスルフィド等のスペーサ物質とを有するものを挙げることができる。 The potential responsive material used in the present invention is not particularly limited as long as the cell adhesiveness is changed by application of a potential. For example, as disclosed in Japanese Patent Application Laid-Open No. 2008-295382. And an electrode and a spacer substance such as alkanethiol, cysteine, and alkanedisulfide having a cell adhesive portion such as a peptide containing an RGD sequence and binding to the electrode surface via thiolate.
 本発明に用いられる磁力応答性材料としては、磁力の付与・除去により細胞接着性が変化するものであれば特に限定されるものではなく、例えば、特開2005-312386号公報に開示されるような、フェライト等の磁性粒子を正電荷リポソームに封入した磁性粒子封入正電荷リポソームを挙げることができる。 The magnetic force responsive material used in the present invention is not particularly limited as long as the cell adhesiveness is changed by the application / removal of magnetic force. For example, as disclosed in JP-A-2005-312386. An example is a positively charged liposome encapsulating magnetic particles in which magnetic particles such as ferrite are encapsulated in positively charged liposomes.
(b)刺激応答性層
 本発明に用いられる刺激応答性層は、少なくとも上記刺激応答性材料を含むものである。
 本発明においては、上記刺激応答性を阻害しない範囲内において、必要に応じて、レベリング剤、可塑剤、界面活性剤、消泡剤、増感剤等の添加剤や、ポリビニルアルコール、不飽和ポリエステル、アクリル樹脂、ポリエチレン、ジアリルフタレート、エチレンプロピレンジエンモノマー、エポキシ樹脂、フェノール樹脂、ポリウレタン、メラミン樹脂、ポリカーボネート、ポリ塩化ビニル、ポリアミド、ポリイミド、スチレンブタジエンゴム、クロロプレンゴム、ポリプロピレン、ポリブチレン、ポリスチレン、ポリ酢酸ビニル、ナイロン、ポリエステル、ポリブタジエン、ポリベンズイミダゾール、ポリアクリルニトリル、エピクロルヒドリン、ポリサルファイド、ポリイソプレンや、ポリエチレングリコール、MPCポリマー(商品名)等の両性イオン高分子等のバインダー樹脂を含むものであっても良い。
(B) Stimulus responsive layer The stimulus responsive layer used in the present invention contains at least the stimulus responsive material.
In the present invention, additives such as leveling agents, plasticizers, surfactants, antifoaming agents, sensitizers, polyvinyl alcohol, unsaturated polyesters, etc., as necessary, within a range that does not inhibit the stimulus responsiveness. , Acrylic resin, polyethylene, diallyl phthalate, ethylene propylene diene monomer, epoxy resin, phenol resin, polyurethane, melamine resin, polycarbonate, polyvinyl chloride, polyamide, polyimide, styrene butadiene rubber, chloroprene rubber, polypropylene, polybutylene, polystyrene, polyacetic acid Vinyl, nylon, polyester, polybutadiene, polybenzimidazole, polyacrylonitrile, epichlorohydrin, polysulfide, polyisoprene, polyethylene glycol, MPC polymer (trade name) And they comprise a binder resin zwitterionic polymers such like may.
 本発明に用いられる刺激応答性層の膜厚としては、刺激応答性を発揮することができるものであれば特に限定されるものではなく、具体的には、0.5nm~ 300nmの範囲内であることが好ましく、なかでも1nm~100nmの範囲内であることが好ましい。 The thickness of the stimulus responsive layer used in the present invention is not particularly limited as long as it can exhibit stimulus responsiveness, and specifically, within a range of 0.5 nm to 300 nm. It is preferable that it is within a range of 1 nm to 100 nm.
 本発明に用いられる刺激応答性層の形成方法としては、所望のパターンに形成可能であれば特に限定されるものではない。
 具体的には、上記刺激応答性材料を含む刺激応答性材料組成物をスピンコート等の公知の塗布方法を用いて塗布し、フォトリソ法によりパターニングする方法や、グラビア印刷やフレキソ印刷、スクリーン印刷、インクジェット法などの公知のパターン塗布法を用いて上記刺激応答性材料組成物をパターン状に塗布する方法を挙げることができる。
 また、上記刺激応答性層が、刺激応答性材料として光触媒等の無機物のみからなるものである場合には、スパッタリング法、CVD法、真空蒸着法等の真空製膜法を用いる方法を挙げることができる。均一な膜厚の層とすることができるからである。
The method for forming the stimulus-responsive layer used in the present invention is not particularly limited as long as it can be formed in a desired pattern.
Specifically, the stimuli-responsive material composition containing the stimuli-responsive material is applied using a known application method such as spin coating, and patterned by photolithography, gravure printing, flexographic printing, screen printing, The method of apply | coating the said stimulus responsive material composition in pattern shape using well-known pattern application | coating methods, such as the inkjet method, can be mentioned.
In addition, when the stimulus-responsive layer is made of only an inorganic substance such as a photocatalyst as the stimulus-responsive material, a method of using a vacuum film-forming method such as a sputtering method, a CVD method, or a vacuum evaporation method can be cited. it can. This is because a layer having a uniform film thickness can be obtained.
2.細胞非接着領域
 本発明に用いられる細胞非接着領域は、上記細胞非接着材料を含む細胞非接着層の表面のうち、露出した範囲であり、細胞非接着性を有するものである。
2. Cell non-adhesion region The cell non-adhesion region used in the present invention is an exposed range of the surface of the cell non-adhesion layer containing the cell non-adhesion material, and has cell non-adhesion.
(1)細胞非接着領域
 本発明に用いられる細胞非接着領域は、少なくとも上記刺激応答性領域を囲むものを含むものである。
(1) Cell non-adhesion region The cell non-adhesion region used in the present invention includes at least the region surrounding the stimulation-responsive region.
 このような細胞非接着領域の細胞接着性の程度としては、所望の細胞非接着性を示すものであれば特に限定されるものではなく、上記刺激応答性領域が細胞非接着性を発現している場合の細胞接着性と同様とすることができる。 The degree of cell adhesiveness of such a cell non-adhesive region is not particularly limited as long as it exhibits a desired cell non-adhesive property, and the stimulation-responsive region expresses cell non-adhesive property. It can be the same as the cell adhesiveness in the case where it is present.
 本発明に用いられる細胞非接着領域の形成箇所としては、少なくとも上記刺激応答性領域を囲む箇所を含むものであれば特に限定されるものではなく、例えば、図4に例示するように、上記刺激応答性領域内に形成されるものであっても良い。
 なお、図4中の符号については、図1のものと同一の部材を示すものであるので、ここでの説明は省略する。
The formation site of the cell non-adhesion region used in the present invention is not particularly limited as long as it includes at least a portion surrounding the stimulation-responsive region. For example, as illustrated in FIG. It may be formed in the responsive region.
In addition, about the code | symbol in FIG. 4, since it shows the same member as the thing of FIG. 1, description here is abbreviate | omitted.
 本発明に用いられる細胞非接着領域の種類としては、1種類のみであっても良く、異なる細胞非接着材料を含む複数の細胞非接着領域を含むものであっても良い。 The type of the cell non-adhesion region used in the present invention may be only one type, or may include a plurality of cell non-adhesion regions including different cell non-adhesion materials.
 本発明に用いられる細胞非接着領域の上記刺激応答性領域との非接着境界からの幅としては、上記刺激応答性領域の形状に細胞を接着させ培養することができるものであれば良く、例えば、5μm以上であることが好ましく、なかでも、10μm以上であることが好ましい。上記幅が上述の範囲であることにより、上記細胞非接着領域上に細胞が増殖することを安定的に抑制することができるからである。 The width of the cell non-adhesion region used in the present invention from the non-adhesion boundary with the stimulus-responsive region is not particularly limited as long as cells can be adhered and cultured in the shape of the stimulus-responsive region. It is preferably 5 μm or more, and particularly preferably 10 μm or more. This is because, when the width is in the above-described range, it is possible to stably suppress cell growth on the cell non-adhesion region.
(2)細胞非接着層
 本発明に用いられる細胞非接着層は、細胞非接着材料を含むものである。
 このような細胞非接着材料としては、細胞と非接着性を有するものであれば良く、例えば、撥水性または撥油性を有する材料や、超親水性を有する材料も用いることができる。具体的には、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、ポリエチレングリコールジアクリレート、ポリエチレングリコールメタクリレート等を用いたエチレングリコール系材料、デシルメトキシシランなどの長鎖アルキル系材料、フルオロアルキルシランなどのフッ素系材料、シリコンなどの撥水性材料、ポリビニルアルコール(PVA)、ポリアクリルアミドなどの親水性材料、MPCポリマー等のリン脂質材料、BSAタンパク等が挙げられる。
 本発明においては、なかでも、エチレングリコール系材料を好ましく用いることができる。細胞との優れた細胞非接着性および細胞毒性をほとんど示さないことにより、上記治療用細胞フラグメントをパターン精度良く形成することができるからである。
(2) Cell non-adhesion layer The cell non-adhesion layer used in the present invention contains a cell non-adhesion material.
As such a cell non-adhesive material, any material having non-adhesiveness with cells may be used. For example, a material having water repellency or oil repellency, or a material having super hydrophilicity can also be used. Specifically, ethylene glycol materials using diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, polyethylene glycol diacrylate, polyethylene glycol methacrylate, etc., long chain alkyl materials such as decylmethoxysilane, fluoroalkylsilane, etc. Fluorine-based materials, water-repellent materials such as silicon, hydrophilic materials such as polyvinyl alcohol (PVA) and polyacrylamide, phospholipid materials such as MPC polymer, and BSA protein.
In the present invention, among these, an ethylene glycol-based material can be preferably used. This is because the therapeutic cell fragment can be formed with high pattern accuracy by exhibiting excellent cell non-adhesiveness and cytotoxicity with cells.
 本発明に用いられる細胞非接着層が含有可能な添加剤やバインダー樹脂、ならびに膜厚および形成方法としては、上記「1.刺激応答性領域」の項に記載の内容と同様とすることができる。 The additive and binder resin that can be contained in the cell non-adhesive layer used in the present invention, the film thickness, and the formation method can be the same as those described in the above section “1. Stimulus responsive region”. .
3.治療用細胞フラグメント
 本発明の治療用細胞フラグメント回収用基材により上記刺激応答性領域上で形成される治療用細胞フラグメントは、上記細胞同士が結合しているものであり、上記刺激応答性領域から剥離した場合であっても、上記細胞同士が結合した状態を維持できるものである。
 また、このよう治療用細胞フラグメントを構成する細胞としては、血球系等の非接着性細胞、細胞間結合の弱い細胞以外なら、生体に存在するあらゆる組織とそれに由来する細胞を用いることができる。
 具体的には、生体内の各組織、臓器を構成する上皮細胞や内皮細胞、収縮性を示す骨格筋細胞、平滑筋細胞、心筋細胞、神経系を構成するニューロン、グリア細胞、線維芽細胞、歯根膜細胞、子宮内膜由来細胞、血管系細胞、軟骨細胞、骨細胞、生体の代謝に関係する肝実質細胞、非肝実質細胞や脂肪細胞、がん細胞、分化能を有する細胞として、種々組織に存在する幹細胞、さらには骨髄細胞、ES細胞、iPS細胞、幹細胞、各種前駆細胞、ES細胞やiPS細胞から分化誘導した種種の細胞等を用いることができる。
 その中でも、ヒト由来の間葉系幹細胞を使用するのが好ましい。ヒト由来の間葉系幹細胞は再生医療の標準的なモデル細胞としてよく利用されることが多いためである。
3. Therapeutic cell fragment The therapeutic cell fragment formed on the stimulus-responsive region by the base material for recovering the therapeutic cell fragment of the present invention is one in which the cells are bound to each other, from the stimulus-responsive region. Even if it peels, the state which the said cells couple | bonded can be maintained.
In addition, as a cell constituting such a therapeutic cell fragment, any tissue existing in a living body and cells derived therefrom can be used as long as it is other than a non-adherent cell such as a blood cell line or a cell having a weak intercellular bond.
Specifically, epithelial cells and endothelial cells that constitute each tissue and organ in the living body, skeletal muscle cells that exhibit contractility, smooth muscle cells, cardiomyocytes, neurons that constitute the nervous system, glial cells, fibroblasts, Periodontal ligament cells, endometrial derived cells, vascular cells, chondrocytes, bone cells, liver parenchymal cells related to metabolism in the living body, non-hepatic parenchymal cells and fat cells, cancer cells, various cells with differentiation potential Stem cells present in the tissue, as well as bone marrow cells, ES cells, iPS cells, stem cells, various progenitor cells, various types of cells induced to differentiate from ES cells or iPS cells, and the like can be used.
Among them, it is preferable to use human-derived mesenchymal stem cells. This is because human-derived mesenchymal stem cells are often used as standard model cells for regenerative medicine.
4.治療用細胞フラグメント回収用基材
 本発明の治療用細胞フラグメント回収用基材は、少なくとも、上記刺激応答性領域および細胞非接着領域を含むものである。
 本発明においては、既に説明した図2に示すように、上記刺激応答性領域および細胞非接着領域を構成する刺激応答性層および細胞非接着層を支持する基材等のその他の構成を含むものであっても良い。
4). The base material for cell fragment collection | recovery for treatment The base material for cell fragment collection | recovery of this invention contains the said stimulation responsive area | region and a cell non-adhesion area | region at least.
In the present invention, as shown in FIG. 2 already described, the stimuli-responsive layer and the non-cell-adhering region are composed of the stimuli-responsive layer and the base material supporting the cell-non-adhering layer. It may be.
 このような基材としては、上記刺激応答性層および細胞非接着層等を支持することができるものであれば特に限定されるものではない。
 本発明において上記基材の材料としては、ポリエチレンテレフタレート(PET)、ポリスチレン(PS)、ポリカーボネート(PC)、TAC(トリアセチルセルロース)、ポリイミド(PI)、ナイロン(Ny)、低密度ポリエチレン(LDPE)、中密度ポリエチレン(MDPE)、塩化ビニル、塩化ビニリデン、ポリフェニレンサルファイド、ポリエーテルサルフォン、ポリエチレンナフタレート、ポリプロピレン、ウレタンアクリレートなどのアクリル系材料、セルロース、ガラス等が挙げられる。ポリ乳酸、ポリグリコール酸、ポリカプロラクタン、もしくはその共重合体のような生分解性ポリマーであってもよい。また、基材が多孔質なものであってもよい。
 本発明においては、なかでも、ポリエチレンテレフタレート、ポリスチレン、ポリカーボネートを好ましく用いることができ、特に、ポリエチレンテレフタレートを好ましく用いることができる。透明性、寸法安定性、機械的性質、電気的性質、耐薬品性等の性質に優れているからである。
Such a substrate is not particularly limited as long as it can support the stimulus-responsive layer, the cell non-adhesive layer, and the like.
In the present invention, the material of the substrate is polyethylene terephthalate (PET), polystyrene (PS), polycarbonate (PC), TAC (triacetyl cellulose), polyimide (PI), nylon (Ny), low density polyethylene (LDPE). , Medium density polyethylene (MDPE), vinyl chloride, vinylidene chloride, polyphenylene sulfide, polyethersulfone, polyethylene naphthalate, polypropylene, urethane acrylate and other acrylic materials, cellulose, glass and the like. It may be a biodegradable polymer such as polylactic acid, polyglycolic acid, polycaprolactan, or a copolymer thereof. Further, the substrate may be porous.
In the present invention, among these, polyethylene terephthalate, polystyrene, and polycarbonate can be preferably used, and polyethylene terephthalate can be particularly preferably used. This is because it excels in properties such as transparency, dimensional stability, mechanical properties, electrical properties, and chemical resistance.
 本発明における基材の膜厚としては、上記刺激応答性層等を安定的に支持することができるものであれば特に限定されるものではないが、例えば、10μm~1000μmの範囲内、好ましくは、50μm~200μmの範囲内である。 The film thickness of the substrate in the present invention is not particularly limited as long as it can stably support the stimulus-responsive layer and the like. For example, it is in the range of 10 μm to 1000 μm, preferably , In the range of 50 μm to 200 μm.
 また、本発明における基材の形状としては、板状であっても良く、ペトリディッシュやマルチウェルプレートのような凹状であっても良い。 In addition, the shape of the base material in the present invention may be a plate shape or a concave shape such as a Petri dish or a multiwell plate.
 また、図5に例示するように、上記刺激応答性層1が、上記細胞非接着層2を支持する基材として用いられるように、上記刺激応答性層または上記細胞非接着層が、他の層を支持する基材とするものであっても良い。 In addition, as illustrated in FIG. 5, the stimulation-responsive layer or the cell non-adhesion layer is used as a base material for supporting the cell non-adhesion layer 2. It may be a substrate that supports the layer.
 さらに、必要に応じて、上記各層を接着する接着層等の露出表面を有さない他の層や、他の領域となる露出表面を有する他の層を含むものであっても良い。 Furthermore, if necessary, other layers that do not have an exposed surface such as an adhesive layer that bonds the above-mentioned layers, and other layers that have an exposed surface that becomes another region may be included.
 本発明の治療用細胞フラグメント回収用基材の製造方法としては、上記刺激応答性領域等を安定的に形成できる方法であれば特に限定されるものではなく、例えば、上記基材上に、上記刺激応答性層および細胞非接着層をこの順で形成する方法を挙げることができる。 The method for producing the therapeutic cell fragment recovery base material of the present invention is not particularly limited as long as it can stably form the stimulus-responsive region and the like. A method of forming a stimulus-responsive layer and a cell non-adhesive layer in this order can be mentioned.
 本発明の治療用細胞フラグメント回収用基材の用途としては、移植等の治療用の細胞フラグメントの製造に用いられ、なかでも、サイズおよび形状が制御されることが要求される治療用の細胞フラグメントの製造に好適に用いることができる。 The therapeutic cell fragment recovery substrate of the present invention is used for the production of cell fragments for treatment such as transplantation, and in particular, the therapeutic cell fragments required to be controlled in size and shape. It can use suitably for manufacture of.
B.継代用細胞フラグメント回収用基材
 次に、本発明の継代用細胞フラグメント回収用基材について説明する。
 本発明の継代用細胞フラグメント回収用基材は、刺激により細胞接着性が変化する刺激応答性領域と、細胞非接着性を有する細胞非接着領域と、を有し、上記刺激応答性領域の周囲が、上記細胞非接着領域により囲まれていることを特徴とするものである。
B. Substrates for cell fragment collection for passage Next, the substrate for cell fragment collection for passage of the present invention will be described.
The substrate for cell fragment collection for passage of the present invention has a stimulus responsive region in which cell adhesion changes by stimulation, and a cell non-adhesive region having cell non-adhesive properties, and the periphery of the stimulus responsive region Is surrounded by the cell non-adhering region.
 このような継代用細胞フラグメント回収用基材を図を参照して説明する。本発明の継代用細胞フラグメント回収用基材としては、既に説明した図1および2に示すものと同様とすることができる。 Such a cell fragment collection substrate for passage will be described with reference to the drawings. The base material for cell fragment collection for passage of the present invention can be the same as that shown in FIGS.
 本発明によれば、上記細胞非接着領域により囲まれている刺激応答性領域を有することにより、上記刺激応答性領域への刺激の付与により、任意のサイズおよび形状に制御された継代用細胞フラグメントを容易に回収することができる。このため、継代操作を簡便なものとすることができる。また、トリプシン等のタンパク質分解酵素の使用を不要とすることができるため、上記細胞を安定的に増殖させることができる。
 また、サイズおよび形状が制御されているため、このような継代用細胞フラグメントを用いて継代した場合には、上記細胞の増殖を精度良くコントロールでき、安定的に培養することができる。
 このようなことから、例えば、自動培養装置においてこのような継代用細胞フラグメント回収用基材を用いた場合には、安定的に細胞を増殖、培養することができる。
According to the present invention, the cell fragment for subculture that has a stimulus-responsive region surrounded by the cell non-adhesion region, and is controlled to have an arbitrary size and shape by applying a stimulus to the stimulus-responsive region. Can be easily recovered. For this reason, passage operation can be made simple. Moreover, since the use of a proteolytic enzyme such as trypsin can be eliminated, the cells can be stably grown.
In addition, since the size and shape are controlled, when the cells are passaged using such passage cell fragments, the proliferation of the cells can be controlled with high accuracy and can be stably cultured.
For this reason, for example, when such a cell fragment collection substrate for passage is used in an automatic culture apparatus, cells can be stably proliferated and cultured.
 本発明の継代用細胞フラグメント回収用基材は上記刺激応答性領域および細胞非接着領域を少なくとも含むものである。
 なお、このような刺激応答性領域、細胞非接着領域、得られる継代用細胞フラグメント、その他の構成、製造方法等については、上記「A.治療用細胞フラグメント回収用基材」の項に記載の内容と同様とすることができるので、ここでの説明は省略する。
The substrate for cell fragment collection for passage of the present invention includes at least the stimulation-responsive region and the cell non-adhesion region.
The stimulation-responsive region, cell non-adhesion region, obtained cell fragment for passage, other constitution, production method and the like are described in the above section “A. Base material for cell fragment collection for treatment”. Since it can be the same as that of the contents, description thereof is omitted here.
 本発明の継代用細胞フラグメント回収用基材の用途としては、細胞の培養・増殖に用いられ、なかでも、簡便性および安定性が要求される細胞の培養・増殖や、自動培養装置等に好適に用いられる。 As a use of the cell fragment collection substrate for passage of the present invention, it is used for culturing and proliferating cells, and in particular, suitable for culturing and proliferating cells that require simplicity and stability, automatic culture apparatuses, etc. Used for.
C.治療用細胞フラグメントの製造方法
 次に、本発明の治療用細胞フラグメントの製造方法について説明する。
 本発明の治療用細胞フラグメントの製造方法は、上述の治療用細胞フラグメント回収用基材を準備し、上記刺激応答性領域が細胞接着性を発現している状態で、上記刺激応答性領域上に細胞を播種・培養し、上記刺激応答性領域に接着した少なくとも1以上の細胞からなる治療用細胞フラグメントを形成する細胞フラグメント形成工程と、上記刺激応答性領域に刺激を与え細胞非接着性を発現させる刺激付与工程と、上記刺激応答性領域から剥離した上記治療用細胞フラグメントを回収する回収工程と、を有することを特徴とするものである。
C. Next, a method for producing a therapeutic cell fragment of the present invention will be described.
The method for producing a therapeutic cell fragment of the present invention comprises preparing the above-mentioned therapeutic cell fragment collection substrate, and in the state where the stimulus-responsive region expresses cell adhesion, on the stimulus-responsive region. Cell fragment formation step of seeding and culturing cells to form a therapeutic cell fragment consisting of at least one cell adhered to the stimulus-responsive region, and stimulating the stimulus-responsive region to express cell non-adhesiveness And a recovery step of recovering the therapeutic cell fragment peeled from the stimulus-responsive region.
 このような本発明の治療用細胞フラグメントの製造方法について図を参照して説明する。図6は、本発明の治療用細胞フラグメントの製造方法の一例を示す工程図である。図6に例示するように、本発明の治療用細胞フラグメントの製造方法は、上記治療用細胞フラグメント回収用基材10を準備し、上記刺激応答性層1の露出した表面である刺激応答性領域が細胞接着性を発現している状態で、上記刺激応答性領域上に細胞を播種・培養し(図6(a))、上記刺激応答性領域に接着した少なくとも1以上の細胞からなる治療用細胞フラグメント21を形成し(図6(b))、上記刺激応答性領域に刺激を与え細胞非接着性を発現させ(図6(c))、上記刺激応答性領域から剥離した上記治療用細胞フラグメント21を回収するものである(図6(d))。
 なお、この例において、図6(a)および(b)が細胞フラグメント形成工程であり、図6(c)が刺激付与工程であり、図6(d)が回収工程である。
Such a method for producing a therapeutic cell fragment of the present invention will be described with reference to the drawings. FIG. 6 is a process diagram showing an example of a method for producing a therapeutic cell fragment of the present invention. As illustrated in FIG. 6, in the method for producing a therapeutic cell fragment of the present invention, the therapeutic cell fragment collection substrate 10 is prepared, and the stimulus responsive region which is the exposed surface of the stimulus responsive layer 1 is prepared. In a state in which cells are expressing cell adhesion, cells are seeded and cultured on the stimulus-responsive region (FIG. 6 (a)), and used for treatment comprising at least one cell adhered to the stimulus-responsive region The therapeutic cell which formed the cell fragment 21 (FIG. 6 (b)), stimulates the stimulus-responsive region to express cell non-adhesiveness (FIG. 6 (c)), and is detached from the stimulus-responsive region. The fragment 21 is recovered (FIG. 6 (d)).
In this example, FIGS. 6A and 6B are cell fragment forming steps, FIG. 6C is a stimulus applying step, and FIG. 6D is a collecting step.
 本発明によれば、上記治療用細胞フラグメント回収用基材を用いることにより、サイズおよび形状が制御された治療用細胞フラグメントを容易に得ることができる。したがって、治療等の効果を再現性良く発揮することができる。 According to the present invention, a therapeutic cell fragment having a controlled size and shape can be easily obtained by using the therapeutic cell fragment collection substrate. Accordingly, it is possible to exert effects such as treatment with good reproducibility.
 本発明の治療用細胞フラグメントの製造方法は、細胞フラグメント形成工程、刺激付与工程および回収工程を少なくとも有するものである。
 以下、本発明の治療用細胞フラグメントの製造方法の各工程について詳細に説明する。
The method for producing a therapeutic cell fragment of the present invention comprises at least a cell fragment formation step, a stimulus application step, and a recovery step.
Hereinafter, each step of the method for producing a therapeutic cell fragment of the present invention will be described in detail.
1.細胞フラグメント形成工程
 本発明における細胞フラグメント形成工程は、上述の治療用細胞フラグメント回収用基材を準備し、上記刺激応答性領域が細胞接着性を発現している状態で、上記刺激応答性領域上に細胞を播種・培養し、上記刺激応答性領域に接着した少なくとも1以上の細胞からなる治療用細胞フラグメントを形成する工程である。
1. Cell Fragment Formation Step The cell fragment formation step in the present invention comprises preparing the above-mentioned therapeutic cell fragment collection base material, and in the state where the stimulus responsive region expresses cell adhesiveness, on the stimulus responsive region. Cells are seeded and cultured to form a therapeutic cell fragment comprising at least one cell adhered to the stimulus-responsive region.
 本工程において、上記刺激応答性領域に細胞接着性を発現させる方法としては、上記刺激応答性領域を構成する刺激応答性材料の種類により異なるものであり、上述の細胞接着性を発現させることができる方法であれば特に限定されるものではない。
 具体的には、上記刺激応答性材料がPIPAAmである場合には、上記刺激応答性領域を32℃より高い温度条件とする方法が挙げられる。
In this step, the method for expressing cell adhesion in the stimulus responsive region is different depending on the type of the stimulus responsive material constituting the stimulus responsive region, and the above-mentioned cell adhesion can be expressed. It is not particularly limited as long as it can be performed.
Specifically, when the stimulus-responsive material is PIPAAm, there is a method of setting the stimulus-responsive region to a temperature condition higher than 32 ° C.
 本工程において上記細胞を播種する方法としては、上記刺激応答性領域上に均一に細胞を播種する方法であれば特に限定されるものではなく、一般的な播種方法を用いることができる。例えば、上記治療用細胞フラグメント回収用基材を培地中に浸漬させた状態で、上記細胞を播種する方法を挙げることができる。 The method for seeding the cells in this step is not particularly limited as long as the cells are uniformly seeded on the stimulus-responsive region, and a general seeding method can be used. For example, the method of seed | inoculating the said cell in the state which immersed the said base material for cell fragment collection | recovery for treatment in the culture medium can be mentioned.
 本工程において上記細胞を培養する方法としては、上記刺激応答性領域に接着した1以上の細胞からなる治療用細胞フラグメントを形成することができる方法であれば特に限定されるものではなく、一般的な培養方法を用いることができる。 The method for culturing the cells in this step is not particularly limited as long as it is a method capable of forming a therapeutic cell fragment composed of one or more cells adhered to the stimulus-responsive region. Any culture method can be used.
 本工程において形成される治療用細胞フラグメントとしては、上記「A.治療用細胞フラグメント回収用基材」の項に記載の内容と同様とすることができる。 The therapeutic cell fragment formed in this step can be the same as that described in the above section “A. Base material for recovery of therapeutic cell fragment”.
2.刺激付与工程
 本発明における刺激付与工程は、上記刺激応答性領域に刺激を与え細胞非接着性を発現させる工程である。
2. Stimulus imparting step The stimulus imparting step in the present invention is a step in which the stimulus responsive region is stimulated to express cell non-adhesiveness.
 本工程において上記刺激応答性領域に刺激を与え、細胞非接着性を発現させる方法としては、上記刺激応答性領域に細胞非接着性を発現させ、上記刺激応答性領域から上記治療用細胞フラグメントを剥離させることができる方法であれば良く、上記刺激応答性領域の種類により異なるものである。
 具体的には、上記刺激応答性材料がPIPAAmである場合には、上記治療用細胞フラグメントが付着した治療用細胞フラグメント回収用基材を、32℃以下の温度に設定されたインキュベーター内に静置する方法等を用いることができる。
In this step, the stimulation-responsive region is stimulated to express cell non-adhesiveness by expressing cell non-adhesiveness in the stimulus-responsive region, and the therapeutic cell fragment is removed from the stimulus-responsive region. Any method can be used as long as it can be peeled off, and it depends on the type of the stimulus-responsive region.
Specifically, when the stimulus-responsive material is PIPAAm, the therapeutic cell fragment collection substrate to which the therapeutic cell fragment is attached is left in an incubator set at a temperature of 32 ° C. or lower. Or the like can be used.
 また、本工程においては、上記刺激応答性領域に刺激を与えた後に、上記刺激応答性領域にピペッティング等の外部応力を加える処理を行うものであっても良い。上記治療用細胞フラグメントをより安定的に剥離させることができるからである。 In this step, after applying a stimulus to the stimulus responsive region, a process of applying external stress such as pipetting to the stimulus responsive region may be performed. This is because the therapeutic cell fragment can be more stably detached.
3.回収工程
 本発明における回収工程は、上記刺激応答性領域から剥離した上記治療用細胞フラグメントを回収する工程である。
3. Collection step The collection step in the present invention is a step of collecting the therapeutic cell fragment peeled from the stimulus-responsive region.
 本工程において、上記治療用細胞フラグメントを回収する方法としては、上記治療用細胞フラグメント回収用基材と、上記治療用細胞フラグメントと、をそれぞれ分離することができる方法であれば良く、例えば、上記治療用細胞フラグメントが接着可能な回収用基材に上記刺激応答性領域から剥離した治療用細胞フラグメントを接着させる方法や、上記治療用細胞フラグメントを培地と共に吸引する方法等を挙げることができる。
 本発明においては、なかでも、上記治療用細胞フラグメントを培地と共に吸引する方法であることが好ましい。培地に懸濁した懸濁液として回収できるため、移植等の治療への利用が容易だからである。
In this step, the method for recovering the therapeutic cell fragment may be any method that can separate the therapeutic cell fragment recovery base material and the therapeutic cell fragment. Examples thereof include a method of adhering the therapeutic cell fragment peeled from the stimulus-responsive region to a recovery base material to which the therapeutic cell fragment can adhere, a method of sucking the therapeutic cell fragment together with a medium, and the like.
In the present invention, the method of aspirating the therapeutic cell fragment together with the medium is preferable. This is because it can be recovered as a suspension suspended in a medium, and thus can be easily used for treatment such as transplantation.
4.その他
 本発明の治療用細胞フラグメントの製造方法は、細胞フラグメント形成工程、刺激付与工程および回収工程を少なくとも有する。
4). Others The method for producing a therapeutic cell fragment of the present invention includes at least a cell fragment formation step, a stimulus applying step, and a recovery step.
D.継代用細胞フラグメントの製造方法
 次に、継代用細胞フラグメントの製造方法について説明する。
 本発明の継代用細胞フラグメントの製造方法は、上述の継代用細胞フラグメント回収用基材を準備し、上記刺激応答性領域が細胞接着性を発現している状態で、上記刺激応答性領域上に細胞を播種・培養し、上記刺激応答性領域に接着した少なくとも1以上の細胞からなる継代用細胞フラグメントを形成する細胞フラグメント形成工程と、上記刺激応答性領域に刺激を与え細胞非接着性を発現させる刺激付与工程と、上記刺激応答性領域から剥離した上記継代用細胞フラグメントを回収する回収工程と、を有することを特徴とするものである。
D. Next, a method for producing a cell fragment for passage will be described.
In the method for producing a cell fragment for passage of the present invention, the substrate for cell fragment collection for passage is prepared, and the stimulus-responsive region is expressing cell adhesiveness on the stimulus-responsive region. Cell fragment formation step of seeding and culturing cells to form a cell fragment for passage consisting of at least one cell adhered to the stimulus-responsive region, and stimulating the stimulus-responsive region to express cell non-adhesiveness And a recovery step of recovering the passage cell fragment peeled from the stimulus-responsive region.
 このような本発明の継代用細胞フラグメントの製造方法としては、例えば、既に説明した図6と同様とすることができる。 For example, the method for producing a cell fragment for passage of the present invention can be the same as that described in FIG.
 本発明によれば、上記継代用細胞フラグメント回収用基材を用いることにより、サイズおよび形状が制御された継代用細胞フラグメントを容易に得ることができる。 According to the present invention, it is possible to easily obtain a cell fragment for passage having a controlled size and shape by using the substrate for cell fragment collection for passage.
 本発明の継代用細胞フラグメントの製造方法は、細胞フラグメント形成工程、刺激付与工程および回収工程を少なくとも有するものである。
 なお、本発明の継代用細胞フラグメントの製造方法に含まれる各工程については、上記「C.治療用細胞フラグメントの製造方法」の項に記載の内容と同様であるので、ここでの説明は省略する。
The method for producing a cell fragment for passage of the present invention comprises at least a cell fragment forming step, a stimulus applying step, and a recovery step.
In addition, each step included in the method for producing a cell fragment for passage of the present invention is the same as the contents described in the above-mentioned section “C. Method for producing a cell fragment for treatment”, and thus description thereof is omitted here. To do.
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 Note that the present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.
 以下、本発明について実施例および比較例を用いて具体的に説明する。 Hereinafter, the present invention will be specifically described with reference to examples and comparative examples.
[実施例1]
(1)温度応答性フィルムの作製
 N-イソプロピルアクリルアミドを、最終濃度20重量%になるようにイソプロピルアルコール(IPA)に溶解させた。市販の易接着性ポリエチレンテレフタレートフィルム(三光産業社より入手、透明50-Fセパ1090)(以下において「易接着PET」と略することがある)を調達し、これを10cm角に切断した。ここに前記溶液を、易接着PETの易接着面に展開し、ミヤバーでコーティングした。電子線照射装置(岩崎電気社製)を用いて該サンプル上に電子線照射を行い、該溶液をグラフト重合した。このときの電子線照射線量は300kGyであった。
[Example 1]
(1) Production of temperature-responsive film N-isopropylacrylamide was dissolved in isopropyl alcohol (IPA) to a final concentration of 20% by weight. A commercially available easy-adhesive polyethylene terephthalate film (obtained from Sanko Sangyo Co., Ltd., transparent 50-F Sepa 1090) (hereinafter sometimes abbreviated as “easily-adhesive PET”) was procured and cut into 10 cm squares. The solution was spread on the easy-adhesion surface of easy-adhesion PET and coated with a Miya bar. The sample was irradiated with an electron beam using an electron beam irradiation apparatus (manufactured by Iwasaki Electric Co., Ltd.), and the solution was graft polymerized. The electron beam irradiation dose at this time was 300 kGy.
(2)細胞非接着層の形成
 メタクリロキシシラン(モメンティブパフォーマンスマテリアルズ社より入手、TSL8370)を用意し、これをイソプロピルアルコール(IPA)で0.1重量%になるように希釈した。
 前記で得られた温度応答性フィルムを、ガラスにテープで固定し、スピンナー(ミカサ製)を用いて、メタクリロキシシランをコーティングし、シラン処理を行った。
(2) Formation of Cell Non-Adhesion Layer Methacryloxysilane (obtained from Momentive Performance Materials, TSL8370) was prepared and diluted with isopropyl alcohol (IPA) to 0.1% by weight.
The temperature-responsive film obtained above was fixed to glass with a tape, coated with methacryloxysilane using a spinner (manufactured by Mikasa), and subjected to silane treatment.
 次いで、ポリエチレングリコールジアクリレート(分子量300、アルドリッチ社より入手)が最終濃度50重量%になるように、純水で希釈し、ここに、重合開始剤として、2-ヒドロキシ-4‘-(2-ヒドロオキシエトキシ)-2-メチルプロピオフェノン(アルドリッチ社より入手)を最終濃度1重量%になるように加えた。この溶液をスターラーで15分間攪拌した。
 これをシラン処理した温度応答性フィルム上に1mL展開し、下記表の条件でスピンコートを実施した。その後、フォトマスクを用いて、露光装置で150mJのエネルギーで処理した。フォトマスクデザインは、刺激応答性領域(温度応答性領域)が200μm角のパッチが間隔200μmで配列するように設計されたものを使用した。
 その後、シラン処理基材上に、細胞非接着層としてポリエリレングリコールジアクリレートが固定化されていることを目視で確認した。
Next, polyethylene glycol diacrylate (molecular weight 300, obtained from Aldrich) is diluted with pure water so that the final concentration is 50% by weight, and 2-hydroxy-4 ′-(2- Hydroxyethoxy) -2-methylpropiophenone (obtained from Aldrich) was added to a final concentration of 1% by weight. This solution was stirred with a stirrer for 15 minutes.
1 mL of this was developed on a silane-treated temperature-responsive film, and spin coating was performed under the conditions shown in the following table. Then, it processed with the energy of 150 mJ with the exposure apparatus using the photomask. As the photomask design, a stimulus responsive region (temperature responsive region) designed so that patches of 200 μm square were arranged at intervals of 200 μm was used.
Thereafter, it was visually confirmed that polyerylene glycol diacrylate was immobilized on the silane-treated substrate as a cell non-adhesive layer.
(3)細胞フラグメント回収用基材の作製
 このようにして得られた培養支持体ツールを、20mmφに切り出し、粘着層を露出させ、35mmφポリスチレンディッシュ(ベクトンディッキンソン社製)底面に貼り付け、細胞フラグメント回収用基材とした。
(3) Production of substrate for cell fragment recovery The culture support tool thus obtained was cut into 20 mmφ, the adhesive layer was exposed, and affixed to the bottom of a 35 mmφ polystyrene dish (Becton Dickinson). It was set as the base material for collection | recovery.
(4)細胞フラグメントの形成
 実施例で得られた細胞フラグメント回収用基材を70%エタノールにて滅菌した。滅菌時間は1時間とした。
 その後、ヒト由来間葉系幹細胞(hMSC)を4×10cells/cm播種し、7日間培養した。7日後に、位相差顕微鏡で観察したところ、200μm角の複数の細胞からなる細胞フラグメントが間隔200μmで得られることを確認した。また、接眼10倍、対物4倍の倍率で、200μm角の細胞フラグメントが1視野に16個含まれるように位相差像を取得し、それぞれのフラグメントに含まれる細胞数を計測したところ平均7.5個(標準偏差0.9)であった。
(4) Formation of cell fragments The cell fragment collection substrate obtained in the examples was sterilized with 70% ethanol. The sterilization time was 1 hour.
Thereafter, human-derived mesenchymal stem cells (hMSC) were seeded at 4 × 10 5 cells / cm 2 and cultured for 7 days. Seven days later, when observed with a phase contrast microscope, it was confirmed that cell fragments composed of a plurality of cells of 200 μm square were obtained at intervals of 200 μm. In addition, when a phase contrast image was obtained at a magnification of 10 times the eyepiece and 4 times the objective so that 16 200 μm square cell fragments were contained in one visual field, and the number of cells contained in each fragment was measured, an average of 7. There were 5 (standard deviation 0.9).
(5)細胞フラグメントの回収
 その後、上記細胞フラグメント回収用基材を37度インキュベーターから25度の低温インキュベーターに移し、25分静置後、ピペッティングを10回程度実施することにより、上記刺激応答性領域(温度応答性領域)に刺激を与え、上記細胞フラグメントを回収した。得られた、細胞フラグメントについて、位相差顕微鏡を用いて測定した結果、フラグメントのサイズは30μmφであり、サイズおよび形状がほぼ同一の細胞フラグメントが回収できたことが確認できた。
(5) Cell Fragment Recovery Thereafter, the above-mentioned substrate for cell fragment recovery is transferred from a 37 ° incubator to a low temperature incubator at 25 ° C., left to stand for 25 minutes, and then pipetting is performed about 10 times, thereby causing the above-mentioned stimulus responsiveness. The area (temperature responsive area) was stimulated and the cell fragment was recovered. As a result of measuring the obtained cell fragment using a phase-contrast microscope, it was confirmed that the fragment size was 30 μmφ, and cell fragments having almost the same size and shape could be recovered.
[比較例1]
(1)温度応答性フィルムの作製
 N-イソプロピルアクリルアミドを、最終濃度20重量%になるようにイソプロピルアルコール(IPA)に溶解させた。市販の易接着性ポリエチレンテレフタレートフィルム(三光産業社より入手、透明50-Fセパ1090)(以下において「易接着PET」と略することがある)を調達し、これを10cm角に切断した。ここに前記溶液を、易接着PETの易接着面に展開し、ミヤバーでコーティングした。電子線照射装置(岩崎電気社製)を用いて該サンプル上に電子線照射を行い、該溶液をグラフト重合した。このときの電子線照射線量は300kGyであった。
[Comparative Example 1]
(1) Production of temperature-responsive film N-isopropylacrylamide was dissolved in isopropyl alcohol (IPA) to a final concentration of 20% by weight. A commercially available easy-adhesive polyethylene terephthalate film (obtained from Sanko Sangyo Co., Ltd., transparent 50-F Sepa 1090) (hereinafter sometimes abbreviated as “easily-adhesive PET”) was procured and cut into 10 cm squares. The solution was spread on the easy-adhesion surface of easy-adhesion PET and coated with a Miya bar. The sample was irradiated with an electron beam using an electron beam irradiation apparatus (manufactured by Iwasaki Electric Co., Ltd.), and the solution was graft polymerized. The electron beam irradiation dose at this time was 300 kGy.
(2)細胞フラグメント回収用基材の作製
 このようにして得られた培養支持体ツールを、20mmφに切り出し、粘着層を露出させ、35mmφポリスチレンディッシュ(ベクトンディッキンソン社製)底面に貼り付け、細胞フラグメント回収用基材とした。
(2) Production of Cell Fragment Recovery Base Material The culture support tool thus obtained was cut into 20 mmφ, the adhesive layer was exposed, and affixed to the bottom of a 35 mmφ polystyrene dish (Becton Dickinson). It was set as the base material for collection | recovery.
(3)細胞シートの形成
 実施例で得られた細胞フラグメント回収用基材を70%エタノールにて滅菌した。滅菌時間は1時間とした。
 その後、ヒト由来間葉系幹細胞(hMSC)を4×10cells/cm播種し、7日間培養した。7日後に、位相差顕微鏡で観察したところ、hMSCがシート状で得られることを確認した。
(3) Formation of cell sheet The substrate for cell fragment recovery obtained in the examples was sterilized with 70% ethanol. The sterilization time was 1 hour.
Thereafter, human-derived mesenchymal stem cells (hMSC) were seeded at 4 × 10 5 cells / cm 2 and cultured for 7 days. Seven days later, when observed with a phase-contrast microscope, it was confirmed that hMSC was obtained in sheet form.
(4)細胞フラグメントの回収
 クリーンベンチ内で、培養液を吸引しhMSCシートの上に滅菌された金網を押し当て、その後培養液を加え、室温で25分静置した後にピペッティングを10回実施することにより、上記刺激応答性領域(温度応答性領域)に刺激を与え、上記細胞フラグメントを回収した。得られた、細胞フラグメントについて、位相差顕微鏡を用いて測定した結果、フラグメントのサイズは15μmφ~150μmφであり、細胞フラグメントのサイズおよび形状は不揃いであった。
(4) Cell fragment recovery In a clean bench, the culture solution is aspirated and a sterilized wire mesh is pressed onto the hMSC sheet. After that, the culture solution is added and left at room temperature for 25 minutes, and then pipetting is performed 10 times. Thus, stimulation was applied to the stimulation-responsive region (temperature-responsive region), and the cell fragment was recovered. As a result of measuring the obtained cell fragment using a phase contrast microscope, the size of the fragment was 15 μm to 150 μmφ, and the size and shape of the cell fragment were uneven.
[比較例2]
(1)温度応答性フィルムの作製
 N-イソプロピルアクリルアミドを、最終濃度20重量%になるようにイソプロピルアルコール(IPA)に溶解させた。市販の易接着性ポリエチレンテレフタレートフィルム(三光産業社より入手、透明50-Fセパ1090)(以下において「易接着PET」と略することがある)を調達し、これを10cm角に切断した。ここに前記溶液を、易接着PETの易接着面に展開し、ミヤバーでコーティングした。電子線照射装置(岩崎電気社製)を用いて該サンプル上に電子線照射を行い、該溶液をグラフト重合した。このときの電子線照射線量は300kGyであった。
[Comparative Example 2]
(1) Production of temperature-responsive film N-isopropylacrylamide was dissolved in isopropyl alcohol (IPA) to a final concentration of 20% by weight. A commercially available easy-adhesive polyethylene terephthalate film (obtained from Sanko Sangyo Co., Ltd., transparent 50-F Sepa 1090) (hereinafter sometimes abbreviated as “easily-adhesive PET”) was procured and cut into 10 cm squares. The solution was spread on the easy-adhesion surface of easy-adhesion PET and coated with a Miya bar. The sample was irradiated with an electron beam using an electron beam irradiation apparatus (manufactured by Iwasaki Electric Co., Ltd.), and the solution was graft polymerized. The electron beam irradiation dose at this time was 300 kGy.
(2)細胞非接着層の形成
 メタクリロキシシラン(モメンティブパフォーマンスマテリアルズ社より入手、TSL8370)を用意し、これをイソプロピルアルコール(IPA)で0.1重量%になるように希釈した。
 前記で得られた温度応答性フィルムを、ガラスにテープで固定し、スピンナー(ミカサ製)を用いて、メタクリロキシシランをコーティングし、シラン処理を行った。
 次いで、ポリエチレングリコールジアクリレート(分子量300、アルドリッチ社より入手)が最終濃度50重量%になるように、純水で希釈し、ここに、重合開始剤として、2-ヒドロキシ-4‘-(2-ヒドロオキシエトキシ)-2-メチルプロピオフェノン(アルドリッチ社より入手)を最終濃度1重量%になるように加えた。この溶液をスターラーで15分間攪拌した。
 これをシラン処理した温度応答性フィルム上に1mL展開し、下記表の条件でスピンコートを実施した。その後、フォトマスクを用いて、露光装置で150mJのエネルギーで処理した。フォトマスクデザインは、刺激応答性領域(温度応答性領域)が200μm角のパッチが間隔200μmで配列するように設計されたものを使用した。
 その後、シラン処理基材上に、細胞非接着層としてポリエリレングリコールジアクリレートが固定化されていることを目視で確認した。
(2) Formation of Cell Non-Adhesion Layer Methacryloxysilane (obtained from Momentive Performance Materials, TSL8370) was prepared and diluted with isopropyl alcohol (IPA) to 0.1% by weight.
The temperature-responsive film obtained above was fixed to glass with a tape, coated with methacryloxysilane using a spinner (manufactured by Mikasa), and subjected to silane treatment.
Next, polyethylene glycol diacrylate (molecular weight 300, obtained from Aldrich) is diluted with pure water so that the final concentration is 50% by weight, and 2-hydroxy-4 ′-(2- Hydroxyethoxy) -2-methylpropiophenone (obtained from Aldrich) was added to a final concentration of 1% by weight. This solution was stirred with a stirrer for 15 minutes.
1 mL of this was developed on a silane-treated temperature-responsive film, and spin coating was performed under the conditions shown in the following table. Then, it processed with the energy of 150 mJ with the exposure apparatus using the photomask. As the photomask design, a stimulus responsive region (temperature responsive region) designed so that patches of 200 μm square were arranged at intervals of 200 μm was used.
Thereafter, it was visually confirmed that polyerylene glycol diacrylate was immobilized on the silane-treated substrate as a cell non-adhesive layer.
(3)細胞フラグメント回収用基材の作製
 このようにして得られた培養支持体ツールを、20mmφに切り出し、粘着層を露出させ、35mmφポリスチレンディッシュ(ベクトンディッキンソン社製)底面に貼り付け、細胞フラグメント回収用基材とした。
(3) Production of substrate for cell fragment recovery The culture support tool thus obtained was cut into 20 mmφ, the adhesive layer was exposed, and affixed to the bottom of a 35 mmφ polystyrene dish (Becton Dickinson). It was set as the base material for collection | recovery.
(4)細胞シートの形成
 実施例で得られた細胞フラグメント回収用基材を70%エタノールにて滅菌した。滅菌時間は1時間とした。
 その後、ヒト由来間葉系幹細胞(hMSC)を4×10cells/cm播種し、7日間培養した。7日後に、位相差顕微鏡で観察したところ、200μm角の複数の細胞からなる細胞フラグメントが間隔200μmで得られることを確認した。また、接眼10倍、対物4倍の倍率で、200μm角の細胞フラグメントが1視野に16個含まれるように位相差像を取得し、それぞれのフラグメントに含まれる細胞数を計測したところ平均7.5個(標準偏差0.9)であった。
(4) Formation of cell sheet The cell fragment collection substrate obtained in the examples was sterilized with 70% ethanol. The sterilization time was 1 hour.
Thereafter, human-derived mesenchymal stem cells (hMSC) were seeded at 4 × 10 5 cells / cm 2 and cultured for 7 days. Seven days later, when observed with a phase contrast microscope, it was confirmed that cell fragments composed of a plurality of cells of 200 μm square were obtained at intervals of 200 μm. In addition, when a phase contrast image was obtained at a magnification of 10 times the eyepiece and 4 times the objective so that 16 200 μm square cell fragments were contained in one visual field, and the number of cells contained in each fragment was measured, an average of 7. There were 5 (standard deviation 0.9).
(5)細胞フラグメントの回収
 クリーンベンチ内で、培養液を吸引し、0.25%トリプシン-EDTA溶液を加え室温で5分処理した。その後位相差顕微鏡を用いて観察した結果、hMSCが細胞間接着が切断され、シングルセルとしてトリプシン溶液中に浮遊している様子が観察され、サイズおよび形状の揃った細胞フラグメントを得ることはできなかった。
(5) Recovery of cell fragments In a clean bench, the culture solution was aspirated, and a 0.25% trypsin-EDTA solution was added and treated at room temperature for 5 minutes. Subsequent observation using a phase-contrast microscope revealed that hMSC was broken in cell-cell adhesion and suspended in a trypsin solution as a single cell, and cell fragments of uniform size and shape could not be obtained. It was.
 1 … 刺激応答性層
 2 … 細胞非接着層
 3 … 基材
 10 … 細胞フラグメント回収用基材
 11 … 刺激応答性領域
 12 … 細胞非接着領域
 21 … 細胞フラグメント
DESCRIPTION OF SYMBOLS 1 ... Stimulus response layer 2 ... Cell non-adhesion layer 3 ... Base material 10 ... Cell fragment collection base material 11 ... Stimulus response region 12 ... Cell non-adhesion region 21 ... Cell fragment

Claims (8)

  1.  刺激により細胞接着性が変化する刺激応答性領域と、
     細胞非接着性を有する細胞非接着領域と、
     を有し、
     前記刺激応答性領域が、前記細胞非接着領域により囲まれていることを特徴とする治療用細胞フラグメント回収用基材。
    A stimulus-responsive region in which cell adhesion changes by stimulation;
    A cell non-adhesion region having cell non-adhesion;
    Have
    The therapeutic cell fragment collection substrate, wherein the stimulus-responsive region is surrounded by the cell non-adhesion region.
  2.  前記刺激応答性材料が、温度変化により細胞剥離性を発現する温度応答性材料であることを特徴とする請求の範囲第1項に記載の治療用細胞フラグメント回収用基材。 2. The therapeutic cell fragment collection substrate according to claim 1, wherein the stimulus-responsive material is a temperature-responsive material that exhibits cell detachability by temperature change.
  3.  前記温度応答性材料が、ポリ-N-イソプロピルアクリルアミド(PIPAAm)であることを特徴とする請求の範囲第2項に記載の治療用細胞フラグメント回収用基材。 3. The therapeutic cell fragment collection substrate according to claim 2, wherein the temperature-responsive material is poly-N-isopropylacrylamide (PIPAAm).
  4.  刺激により細胞接着性が変化する刺激応答性領域と、
     細胞非接着性を有する細胞非接着領域と、
     を有し、
     前記刺激応答性領域が、前記細胞非接着領域により囲まれていることを特徴とする継代用細胞フラグメント回収用基材。
    A stimulus-responsive region in which cell adhesion changes by stimulation;
    A cell non-adhesion region having cell non-adhesion;
    Have
    The substrate for cell fragment collection for passage, wherein the stimulus-responsive region is surrounded by the cell non-adhesion region.
  5.  前記刺激応答性材料が、温度変化により細胞剥離性を発現する温度応答性材料であることを特徴とする請求の範囲第4項に記載の継代用細胞フラグメント回収用基材。 5. The cell fragment collection substrate for passage according to claim 4, wherein the stimulus-responsive material is a temperature-responsive material that exhibits cell detachability by temperature change.
  6.  前記温度応答性材料が、ポリ-N-イソプロピルアクリルアミド(PIPAAm)であることを特徴とする請求の範囲第5項に記載の継代用細胞フラグメント回収用基材。 The base material for recovering cell fragments for passage according to claim 5, wherein the temperature-responsive material is poly-N-isopropylacrylamide (PIPAAm).
  7.  請求の範囲第1項から第3項までのいずれかに記載の治療用細胞フラグメント回収用基材を準備し、
     前記刺激応答性領域が細胞接着性を発現している状態で、前記刺激応答性領域上に細胞を播種・培養し、前記刺激応答性領域に接着した少なくとも1以上の細胞からなる治療用細胞フラグメントを形成する細胞フラグメント形成工程と、
     前記刺激応答性領域に刺激を与え細胞非接着性を発現させる刺激付与工程と、
     前記刺激応答性領域から剥離した前記治療用細胞フラグメントを回収する回収工程と、
     を有することを特徴とする治療用細胞フラグメントの製造方法。
    Preparing a substrate for cell fragment collection for treatment according to any one of claims 1 to 3,
    A therapeutic cell fragment comprising at least one or more cells that are seeded and cultured on the stimulus responsive region in a state where the stimulus responsive region expresses cell adhesion, and adheres to the stimulus responsive region. A cell fragment forming step to form
    Providing a stimulus to the stimulus-responsive region to develop cell non-adhesiveness; and
    A recovery step of recovering the therapeutic cell fragment detached from the stimulus-responsive region;
    A method for producing a therapeutic cell fragment, comprising:
  8.  請求の範囲第4項から第6項までのいずれかに記載の継代用細胞フラグメント回収用基材を準備し、
     前記刺激応答性領域が細胞接着性を発現している状態で、前記刺激応答性領域上に細胞を播種・培養し、前記刺激応答性領域に接着した少なくとも1以上の細胞からなる継代用細胞フラグメントを形成する細胞フラグメント形成工程と、
     前記刺激応答性領域に刺激を与え細胞非接着性を発現させる刺激付与工程と、
     前記刺激応答性領域から剥離した前記継代用細胞フラグメントを回収する回収工程と、
     を有することを特徴とする継代用細胞フラグメントの製造方法。
    Preparing a cell fragment collection substrate for passage according to any one of claims 4 to 6,
    A cell fragment for subculture consisting of at least one or more cells adhering to the stimulus-responsive region after seeding and culturing cells on the stimulus-responsive region in a state where the stimulus-responsive region expresses cell adhesion A cell fragment forming step to form
    Providing a stimulus to the stimulus-responsive region to develop cell non-adhesiveness; and
    A recovery step of recovering the passage cell fragment detached from the stimulus-responsive region;
    A method for producing a cell fragment for passage, comprising:
PCT/JP2012/067119 2011-07-04 2012-07-04 Matrix for recovering cell fragments for therapeutic use and method for producing cell fragments for therapeutic use using same, and matrix for recovering cell fragments for subculture and method for producing cell fragments for subculture using same WO2013005780A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-148437 2011-07-04
JP2011148437A JP2013013368A (en) 2011-07-04 2011-07-04 Matrix for recovering cell fragments for therapeutic use, method for producing cell fragment for therapeutic use using the same, matrix for recovering cell fragment for subculture, and method for producing cell fragment for subculture using the same

Publications (1)

Publication Number Publication Date
WO2013005780A1 true WO2013005780A1 (en) 2013-01-10

Family

ID=47437127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067119 WO2013005780A1 (en) 2011-07-04 2012-07-04 Matrix for recovering cell fragments for therapeutic use and method for producing cell fragments for therapeutic use using same, and matrix for recovering cell fragments for subculture and method for producing cell fragments for subculture using same

Country Status (2)

Country Link
JP (1) JP2013013368A (en)
WO (1) WO2013005780A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017131241A1 (en) * 2016-01-29 2017-08-03 国立研究開発法人国立循環器病研究センター Cell cluster, cell structure, and three-dimensional tissue body
EP3315596A4 (en) * 2015-06-26 2019-02-13 National Cerebral and Cardiovascular Center CONTAINER OF CELL CULTURE
US11149252B2 (en) 2016-01-29 2021-10-19 National Cerebral And Cardiovascular Center Cell mass, cell structure, and three-dimensional tissue body

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016194054A (en) * 2015-03-31 2016-11-17 東ソー株式会社 Block copolymer
JP2016192957A (en) * 2015-03-31 2016-11-17 東ソー株式会社 Cell culture substrate, method for producing the same, and cell culture method using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003033177A (en) * 2001-07-24 2003-02-04 Mitsuo Okano Substrate for high density cell array, production method, and method for using the same
WO2010044417A1 (en) * 2008-10-14 2010-04-22 株式会社セルシード Temperature-responsive cell culture substrate and method for producing same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003033177A (en) * 2001-07-24 2003-02-04 Mitsuo Okano Substrate for high density cell array, production method, and method for using the same
WO2010044417A1 (en) * 2008-10-14 2010-04-22 株式会社セルシード Temperature-responsive cell culture substrate and method for producing same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DAINIPPON PRINTING CO., LTD.: "Kenkyu Kaihatsu Center, ''Pattern Baiyo Tool CytoGraph''", EXPERIMENTAL MEDICINE, vol. 28, no. 1, 2010, pages 54 - 55 *
MOTOHIRO HIROSE ET AL.: "Ondo Otosei Kobunshi Pattern Koteika Baiyozara o Mochiita Saibo Sheet Kogaku", JAPANESE SOCIETY FOR BIOMATERIALS SYMPOSIUM 2000, 2000, pages PAGE 166, P842 *
TAKUYA OKAZAKI: "Pattern Baiyo Tool 'Cytograph' no Seizo Gijutsu Kakuritsu to Oyo Tenkai", HEISEI 22 NENDO THE JAPANESE SOCIETY OF PRINTING SCIENCE AND TECHNOLOGY DAI 123 KAI SHUNKI KENKYU HAPPYOKAI KOEN YOKOSHU, 2010, pages 122 - 125, A-19 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3315596A4 (en) * 2015-06-26 2019-02-13 National Cerebral and Cardiovascular Center CONTAINER OF CELL CULTURE
WO2017131241A1 (en) * 2016-01-29 2017-08-03 国立研究開発法人国立循環器病研究センター Cell cluster, cell structure, and three-dimensional tissue body
US11149252B2 (en) 2016-01-29 2021-10-19 National Cerebral And Cardiovascular Center Cell mass, cell structure, and three-dimensional tissue body
US11697797B2 (en) 2016-01-29 2023-07-11 National Cerebral And Cardiovascular Center Manufacturing method of a cell structure

Also Published As

Publication number Publication date
JP2013013368A (en) 2013-01-24

Similar Documents

Publication Publication Date Title
JP4567936B2 (en) Support material for cell culture, cell co-culture method and co-culture cell sheet obtained therefrom
JP5407345B2 (en) Production method of living tissue
WO2015005349A1 (en) Cell culture support, cell culture device, cell culture kit, and cell sheet
US9206391B2 (en) Method for preparing biological tissue
WO2013005780A1 (en) Matrix for recovering cell fragments for therapeutic use and method for producing cell fragments for therapeutic use using same, and matrix for recovering cell fragments for subculture and method for producing cell fragments for subculture using same
JP5905194B2 (en) Filamentous floating cell patterning substrate
JP5407344B2 (en) Production method of living tissue
EP2781594A1 (en) Cell culture substrate, and method for manufacturing same
JP2015211688A (en) Method for inducing differentiation of embryonic stem cell or artificial pluripotent stem cell
JP5396803B2 (en) Cell culture substrate and cell culture method
JP5723543B2 (en) Micropatterned vascular endothelial cell transfer substrate
JP5819056B2 (en) Cell culture substrate
JP5760410B2 (en) Cell test container and cell test method using the same
JP5648454B2 (en) Cell test container and cell test method using the same
JP6248617B2 (en) Cell sheet manufacturing method
JP5713086B2 (en) Production method of living tissue
US9080140B2 (en) Selective conformation of cell culturing support layer
JP7702737B2 (en) Cell culture equipment for cell sheet production, recovery support, and cell sheet production kit
JP5648453B2 (en) Cell test substrate with auxiliary electrode
JP6326915B2 (en) Cell culture substrate
JP2019024350A (en) Cell culture container, cell sheet production method, and cell culture container production method
JP6226619B2 (en) Cell culture instrument
JP2015073460A (en) Cell culture substrate
JP2016013088A (en) Substrate for cell culture, and cell culture vessel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12807999

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12807999

Country of ref document: EP

Kind code of ref document: A1