WO2013002191A1 - Holding circuit, display drive circuit, display panel, and display device - Google Patents
Holding circuit, display drive circuit, display panel, and display device Download PDFInfo
- Publication number
- WO2013002191A1 WO2013002191A1 PCT/JP2012/066194 JP2012066194W WO2013002191A1 WO 2013002191 A1 WO2013002191 A1 WO 2013002191A1 JP 2012066194 W JP2012066194 W JP 2012066194W WO 2013002191 A1 WO2013002191 A1 WO 2013002191A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- inverter
- output
- circuit
- initialization
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 claims description 75
- 101100286980 Daucus carota INV2 gene Proteins 0.000 description 111
- 101100397045 Xenopus laevis invs-b gene Proteins 0.000 description 111
- 101150110971 CIN7 gene Proteins 0.000 description 87
- 101150110298 INV1 gene Proteins 0.000 description 87
- 101100397044 Xenopus laevis invs-a gene Proteins 0.000 description 87
- 238000010586 diagram Methods 0.000 description 41
- 239000004973 liquid crystal related substance Substances 0.000 description 35
- 239000000872 buffer Substances 0.000 description 25
- 229930183689 terminalin Natural products 0.000 description 13
- 230000004048 modification Effects 0.000 description 11
- 238000012986 modification Methods 0.000 description 11
- 101100179824 Caenorhabditis elegans ins-17 gene Proteins 0.000 description 8
- 101150089655 Ins2 gene Proteins 0.000 description 8
- 239000011159 matrix material Substances 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 101100508840 Daucus carota INV3 gene Proteins 0.000 description 4
- 230000014759 maintenance of location Effects 0.000 description 4
- 230000007257 malfunction Effects 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 101150052142 CML1 gene Proteins 0.000 description 1
- 101100186490 Homo sapiens NAT8 gene Proteins 0.000 description 1
- 102100032394 N-acetyltransferase 8 Human genes 0.000 description 1
- 101100496428 Rattus norvegicus Cml6 gene Proteins 0.000 description 1
- 101100166255 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) CEP3 gene Proteins 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
- G09G3/3611—Control of matrices with row and column drivers
- G09G3/3648—Control of matrices with row and column drivers using an active matrix
- G09G3/3655—Details of drivers for counter electrodes, e.g. common electrodes for pixel capacitors or supplementary storage capacitors
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
- G09G3/3611—Control of matrices with row and column drivers
- G09G3/3674—Details of drivers for scan electrodes
- G09G3/3677—Details of drivers for scan electrodes suitable for active matrices only
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K3/00—Circuits for generating electric pulses; Monostable, bistable or multistable circuits
- H03K3/02—Generators characterised by the type of circuit or by the means used for producing pulses
- H03K3/353—Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of field-effect transistors with internal or external positive feedback
- H03K3/356—Bistable circuits
- H03K3/356104—Bistable circuits using complementary field-effect transistors
- H03K3/356113—Bistable circuits using complementary field-effect transistors using additional transistors in the input circuit
- H03K3/356147—Bistable circuits using complementary field-effect transistors using additional transistors in the input circuit using pass gates
- H03K3/356156—Bistable circuits using complementary field-effect transistors using additional transistors in the input circuit using pass gates with synchronous operation
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2310/00—Command of the display device
- G09G2310/02—Addressing, scanning or driving the display screen or processing steps related thereto
- G09G2310/0264—Details of driving circuits
- G09G2310/0286—Details of a shift registers arranged for use in a driving circuit
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2310/00—Command of the display device
- G09G2310/02—Addressing, scanning or driving the display screen or processing steps related thereto
- G09G2310/0264—Details of driving circuits
- G09G2310/0291—Details of output amplifiers or buffers arranged for use in a driving circuit
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
- G09G3/3611—Control of matrices with row and column drivers
- G09G3/3614—Control of polarity reversal in general
Definitions
- the present invention relates to a holding circuit capable of holding an acquired data signal and outputting based on the data signal, and a display driving circuit, a display panel, and a display device including the holding circuit.
- a latch circuit (holding circuit) that captures and outputs a second signal while the first signal is active has been widely used.
- the latch circuit is used by forming a shift register or the like by connecting in multiple stages.
- a number of latch circuits are mounted on a display drive circuit that drives a liquid crystal panel.
- FIG. 37 is a circuit diagram showing a configuration of a latch circuit 900 with an initialization function described in Patent Document 1.
- the latch circuit 900 includes clocked inverters 901 and 902 and a NAND circuit 903.
- the latch circuit 900 can be initialized by the initialization signal INITB, takes in the video signal DAT according to the Q signal / QB signal, and outputs it as an output signal LOUT while holding it.
- 904 in FIG. 37 is a control circuit for performing initialization.
- the clocked inverters 901 and 902 have a general clocked inverter configuration.
- FIG. 38 is a diagram showing a configuration of a general clocked inverter 910, in which (a) shows a circuit configuration and (b) shows a logic circuit symbol.
- the clocked inverter 910 includes two P-channel transistors P1 and P2 and two N-channel transistors N1 and N2.
- the clocked inverter 910 when the control signal is at a high level, an inverted signal of the input signal IN is output as the output signal OUT.
- the Q signal is used as the control signal.
- the QB signal can be used as the control signal by supplying the Q signal to the transistor P1 and the QB signal to the transistor N2.
- the clocked inverter 901 uses the QB signal as a control signal
- the clocked inverter 902 uses the Q signal as a control signal.
- FIG. 39 is a timing chart when the latch circuit 900 shown in FIG. 37 operates.
- the initialization signal INITB is fixed at the high level (Vdd).
- the video signal DAT here, the video signal DAT Low level
- an inverted signal of the video signal DAT is output from the clocked inverter 901.
- a low level (Vss) output signal LOUT is output from the NAND circuit 903 that receives the high level output signal from the clocked inverter 901 and the high level initialization signal INITB.
- the output of the clocked inverter 902 is in a high impedance period while the QB signal is at a high level.
- the output of the clocked inverter 901 becomes high impedance, and the output is disconnected from the input.
- the clocked inverter 902 holds the output signal LOUT at the low level. This output signal LOUT continues to be output until the QB signal becomes high level next time.
- the clocked inverter 901 takes in the video signal DAT (here, high level) at this time, and outputs the inverted signal to the NAND circuit 903.
- DAT here, high level
- LOUT a high level (Vdd) output signal LOUT is output from the NAND circuit 903, and this output signal LOUT continues to be output even after the QB signal changes from the high level to the low level.
- the latch circuit 900 repeats the latch output operation at the normal time. Next, the operation at initialization will be described.
- the initialization signal INITB When initialization is desired, the initialization signal INITB is set to low level (Vss). When the initialization signal INITB becomes low level, the NAND circuit 903 generates a high level (Vdd) output signal LOUT regardless of the potential of the other input terminal. As a result, the potential of the output signal LOUT is forcibly fixed to a high level. Therefore, by providing the low-level initialization signal INITB, it is possible to eliminate the indefinite state when the power is turned on, stabilize the internal circuit, and avoid the malfunction of the subsequent circuit.
- the present invention has been made in view of the above-described conventional problems, and an object thereof is to provide a holding circuit, a display driving circuit, a display panel, and a display device that can be initialized without increasing the number of elements. There is.
- the holding circuit of the present invention provides A holding circuit that captures a holding target signal when the control signal becomes active, and outputs an output signal corresponding to the holding target signal while holding the holding target signal until the control signal becomes active next, Comprising at least one inverter for holding the hold target signal;
- the inverter includes a CMOS circuit in which gate terminals and drain terminals of a P-channel first transistor and an N-channel second transistor are connected to each other.
- An initialization signal having a high level or a low level at the time of initialization is input to the source terminal of the first transistor or the source terminal of the second transistor.
- the initialization target signal that is at the high level or the low level at the time of initialization is input to the source terminal of the first transistor or the second transistor of the inverter, whereby the retention target signal is retained. It is possible to fix the potential of the input terminal and the output terminal of the inverter related to the potential and the output potential of the output signal at a desired potential. Further, the potential of the initialization signal is set to a potential that does not generate a large through current in the circuit (for example, when the initialization signal is input to the source terminal of the first transistor, the initialization signal is set to the low level). When the signal is input to the source terminal, the signal can be stably fixed.
- the initialization signal should not be supplied by adding a new initialization control circuit or terminal wiring, but should use the inverter power supply wiring that was provided before the initialization function was added. Can do.
- the holding circuit can be initialized without increasing the number of elements.
- the display driving circuit of the present invention provides A display driving circuit for driving a display panel provided with a pixel electrode and a signal line forming a capacitor included in a pixel, A shift register including a plurality of stages provided corresponding to each of the plurality of scanning signal lines; And at least one holding circuit provided corresponding to each stage of the shift register, The holding circuit is the holding circuit described above, and the output signal of each stage of the shift register is used as the control signal, When an output signal of one stage of the shift register becomes active, a holding circuit corresponding to this stage takes in the holding target signal and holds it, and outputs an output signal corresponding to the holding target signal to this stage. The signal line is supplied to the corresponding signal line.
- the display driving circuit can be stabilized by the initialization, and the circuit scale can be reduced. Since it is possible to reduce the size, for example, it is possible to contribute to the narrowing of the frame of a display device equipped with a display drive circuit.
- a high-level or low-level initialization signal is input to any one of the source terminal of the first transistor and the source terminal of the second transistor. It has a configuration. Therefore, there is an effect that initialization can be performed without increasing the number of elements.
- FIG. 3 is a circuit diagram showing a configuration of a latch circuit according to the first embodiment. 3 is a timing chart during operation of the latch circuit of FIG. 1.
- FIG. 6 is a circuit diagram showing a modification of the latch circuit according to the first embodiment.
- FIG. 6 is a circuit diagram illustrating a configuration of a latch circuit according to a second embodiment.
- 5 is a timing chart at the time of initialization of the latch circuit of FIG. 4.
- 5 is a timing chart at the time of initialization of the latch circuit of FIG. 4.
- 5 is a timing chart at the time of initialization of the latch circuit of FIG. 4.
- 5 is a timing chart at the time of initialization of the latch circuit of FIG. 4.
- FIG. 9 is a circuit diagram showing a modification of the latch circuit according to the second embodiment.
- FIG. 6 is a circuit diagram illustrating a configuration of a latch circuit according to a third embodiment.
- 11 is a timing chart at the time of initialization of the latch circuit of FIG. 10.
- 11 is a timing chart at the time of initialization of the latch circuit of FIG. 10.
- 11 is a timing chart at the time of initialization of the latch circuit of FIG. 10.
- 11 is a timing chart at the time of initialization of the latch circuit of FIG. 10.
- FIG. 10 is a circuit diagram showing a modification of the latch circuit according to the third embodiment.
- FIG. 6 is a block diagram illustrating a schematic configuration of a liquid crystal display device according to a fourth embodiment.
- FIG. 17 is an equivalent circuit diagram illustrating an electrical configuration of a pixel of the liquid crystal display device of FIG. 16.
- FIG. 3 is a circuit diagram of a unit circuit included in a common electrode driving circuit according to Embodiment 1.
- FIG. FIG. 3 is a circuit diagram of a generation circuit that generates a polarity signal CMIZ input to the common electrode drive circuit according to the first embodiment.
- 3 is a timing chart during operation of the common electrode drive circuit according to the first embodiment.
- FIG. 6 is a diagram schematically illustrating a timing chart during operation of the common electrode driving circuit according to the first embodiment.
- 3 is a timing chart at the time of initialization of the common electrode drive circuit according to the first embodiment.
- 3 is a timing chart at the time of initialization of the common electrode drive circuit according to the first embodiment.
- 6 is a circuit diagram of a unit circuit included in a common electrode drive circuit according to Embodiment 2.
- FIG. 10 is a circuit diagram of a generation circuit that generates a polarity signal CMIZ input to a common electrode drive circuit according to the second embodiment.
- 6 is a circuit diagram of a unit circuit included in a common electrode driving circuit according to Example 3.
- FIG. 10 is a circuit diagram of a generation circuit that generates a polarity signal CMIZ input to a common electrode drive circuit according to a third embodiment.
- FIG. 10 is a circuit diagram of a unit circuit included in a common electrode driving circuit according to Example 4.
- FIG. 10 is a circuit diagram of a generation circuit that generates a polarity signal CMIZ input to a common electrode drive circuit according to a fourth embodiment.
- FIG. 10 is a block diagram illustrating a modification of the liquid crystal display device according to the fourth embodiment.
- FIG. 10 is a block diagram illustrating a schematic configuration of a liquid crystal display device according to a fifth embodiment.
- FIG. 3 is a circuit diagram of a unit circuit included in the storage capacitor line driving circuit according to the first embodiment. 4 is a timing chart during operation of the storage capacitor wiring drive circuit according to the first embodiment.
- FIG. 6 is a diagram schematically illustrating a timing chart during operation of the storage capacitor wiring driving circuit according to the first embodiment. 3 is a timing chart at the time of initialization of the storage capacitor wiring driving circuit according to the first embodiment. 3 is a timing chart at the time of initialization of the storage capacitor wiring driving circuit according to the first embodiment.
- FIG. 38 is a timing chart during operation of the conventional latch circuit of FIG. 37.
- FIG. 1 is a circuit diagram showing one configuration example of the latch circuit 15 of the present embodiment.
- the latch circuit 15 (holding circuit) includes clocked inverters 16 and 17 and an inverter 18 (first inverter).
- the latch circuit 15 is mounted on, for example, a display drive circuit that drives a liquid crystal panel.
- the polarity signal CMI holding target signal
- SROn control signal
- the clocked inverters 16 and 17 have the configuration of the clocked inverter 910 shown in FIG.
- the clocked inverter 16 uses the output signal SROn as a control signal
- the clocked inverter 17 uses the output signal SROBn as a control signal.
- the polarity signal CMI is supplied to the input terminal of the clocked inverter 16, and the output terminal of the clocked inverter 16 is connected to the input terminal of the inverter 18.
- the input terminal of the clocked inverter 17 is connected to the output terminal of the inverter 18, and the output terminal of the clocked inverter 17 is connected to the input terminal of the inverter 18.
- the inverter 18 is composed of a CMOS circuit including a P-channel transistor TP1 (first transistor) and an N-channel transistor TN1 (second transistor).
- An initialization signal INITB is supplied to the source terminal of the transistor TP1, the gate terminal of the transistor TP1 is connected to the input terminal of the inverter 18, and the drain terminal of the transistor TP1 is connected to the output terminal of the inverter 18.
- the source voltage Vss is applied to the source terminal of the transistor TN1, the gate terminal of the transistor TN1 is connected to the input terminal of the inverter 18, and the drain terminal of the transistor TN1 is connected to the output terminal of the inverter 18.
- An output signal OUTn is output from the output terminal of the inverter 18.
- the initialization signal INITB is a signal that is at a high level (Vdd) during normal operation and is at a low level (Vss) at initialization (when active).
- FIG. 2 is a timing chart when the latch circuit 15 operates.
- CMI is a polarity signal whose polarity is inverted every horizontal scanning period (1H).
- INITB indicates the potential of the initialization signal INITB.
- SROn indicates the potential of the n-th output signal SROn of the shift register, and SROBn indicates the potential of the inverted signal of the output signal SROn.
- OUTn indicates the potential of the output signal OUTn of the latch circuit 15, and OUTBn indicates the potential of the inverted signal of the output signal OUTn.
- FIG. 2 shows the first and subsequent frames from which the normal operation is started after the power is turned on.
- the polarity signal CMI here, high level (Vdd)
- the polarity signal INITB is fixed at Vdd (high level) in the normal time
- the transistor TP1 is turned on in the inverter 18 and the transistor TN1 is turned off, so that the output signal of the inverter 18 is Vdd (high level).
- a high level (Vdd) output signal OUTn is output. Note that the output of the clocked inverter 17 is in a high impedance period while the output signal SRon is at a high level.
- the clocked inverter 16 takes in the polarity signal CMI (here, the low level (Vss)) at this time, and the inverted signal is input to the inverter 18. Is output.
- the output signal OUTn of the low level (Vss) is output from the inverter 18, and this output signal OUTn continues to be output even after the output signal SROn changes from the high level to the low level.
- the latch circuit 15 repeats the latch output operation at the normal time.
- the initialization signal INITB is set to Vss (low level).
- the output signal of the inverter 18, that is, the potential of the output signal OUTn is forcibly fixed to Vss (low level).
- the potential of the output signal OUTBn becomes Vdd (high level) when the potential of the output signal OUTn becomes Vss.
- the output signal OUTBn is electrically disconnected from the polarity signal CMI. Therefore, the output signal OUTn can be stabilized at the Vss potential and the output signal OUTBn can be stabilized at the Vdd potential.
- the potential of the output signal OUTn that is the output signal of the inverter 18 is forcibly fixed to Vss (low level).
- the clocked inverter 16 functions as an inverter, and the clocked inverter 17 has a high impedance.
- the potential of the output signal OUTBn is fixed to the inverted potential of the polarity signal CMI. Therefore, both the output signal OUTn and the output signal OUTBn can be stabilized at the Vss potential and the inverted potential of the polarity signal CMI.
- the initialization signal INITB of low level (Vss) is given to the source terminal of the transistor TP1, thereby providing the internal signal. It becomes possible to fix the potential at a stable potential.
- the initialization signal INITB can be supplied by newly adding a control circuit and terminal wiring for initialization, but the inverter 18 provided in the latch circuit before the initialization function is added.
- the power supply VDD wiring is used.
- the latch circuit 15 can be initialized without increasing the number of elements.
- the initialization signal INITB is fixed at Vdd (high level), so the initialization signal INITB performs the same function as the power supply voltage Vdd. Is possible.
- the initialization signal INITB is supplied to the source terminal of the transistor TP1, but the initialization signal INIT can be supplied to the source terminal of the transistor TN1 and similarly initialized.
- FIG. 3 is a circuit diagram showing a configuration example of the latch circuit 19.
- the latch circuit 19 (holding circuit) differs from the latch circuit 15 of FIG. 1 in the signals and power supply voltages supplied to the source terminal of the transistor TP1 and the source terminal of the transistor TN1, respectively.
- the power supply voltage Vdd is supplied to the source terminal of the transistor TP1
- the initialization signal INIT is supplied to the source terminal of the transistor TN1.
- the initialization signal INIT is a signal that becomes low level (Vss) during normal operation and becomes high level (Vdd) during initialization.
- the initialization signal INIT is set to Vdd (high level).
- the output signal of the inverter 18, that is, the potential of the output signal OUTn is forcibly fixed to Vdd (high level).
- the clocked inverter 17 functions as an inverter, when the potential of the output signal OUTn becomes Vdd, the potential of the output signal OUTBn becomes Vss (low level). Since the clocked inverter 16 has high impedance, the output signal OUTBn is electrically disconnected from the polarity signal CMI. Therefore, the output signal OUTn can be stabilized at the Vdd potential and the output signal OUTBn can be stabilized at the Vss potential.
- the potential of the output signal OUTn that is the output signal of the inverter 18 is forcibly fixed to Vdd (high level).
- the clocked inverter 16 functions as an inverter, and the clocked inverter 17 has a high impedance.
- the potential of the output signal OUTBn is fixed to the inverted potential of the polarity signal CMI. Therefore, the output signal OUTn can be stabilized at the Vdd potential, and the output signal OUTBn can be stabilized at the inverted potential of the polarity signal CMI.
- the initialization signal INIT of high level (Vdd) is given to the source terminal of the transistor TN 1, thereby It becomes possible to fix the potential at a stable potential.
- the initialization signal INIT is not made to be able to be supplied by newly adding a control circuit and terminal wiring for initialization, but is an inverter 18 provided in the latch circuit before the initialization function is added.
- the power supply VSS wiring is used.
- the latch circuit 19 can be initialized without increasing the number of elements.
- the initialization signal INIT is fixed at Vss (low level), so that the initialization signal INIT performs the same function as the power supply voltage Vss. Therefore, the latch circuit 19 can perform the same operation as a normal latch circuit, and can operate in the same manner as the normal operation of the latch circuit 15 described above.
- Embodiment 2 of the present invention will be described below with reference to the drawings.
- the polarity signal CMI is taken in accordance with the output signal SROUT (k ⁇ 1) of the previous stage (k ⁇ 1 stage) of the shift register, and the output of the own stage (k stage) is held while holding it.
- a latch circuit that outputs the output signal OUTk will be described.
- FIG. 4 is a circuit diagram showing a configuration example of the latch circuit 31 of the present embodiment.
- the latch circuit 31 (holding circuit) includes an inverter INV1 (first inverter), an inverter INV2 (second inverter), an inverter INV3, an analog switch circuit ASW1, and an analog switch circuit ASW2.
- a connection point between the output terminal of the analog switch circuit ASW1 and the input terminal of the inverter INV2 is a node N1
- a connection point between the output terminal of the inverter INV1 and the input terminal of the analog switch circuit ASW2 is a node N2 (see FIG. 4). ).
- the input terminal of the inverter INV3 is connected to the input terminal INs of the latch circuit 31.
- the analog switch circuit ASW1 includes an N-channel transistor T1 and a P-channel transistor T2, and the transistor T1 has a gate terminal connected to the input terminal INs, a source terminal connected to the input terminal INc, and a transistor T2 including a gate.
- the terminal is connected to the output terminal of the inverter INV3, and the source terminal is connected to the input terminal INc.
- the output signal SROUT (k ⁇ 1) of the previous stage of the shift register is supplied to the input terminal INs, and the polarity signal CMI is supplied to the input terminal INc.
- the inverter INV2 includes a P-channel transistor T3 (first transistor) and an N-channel transistor T4 (second transistor).
- the inverter INV2 is connected to the input terminal (the gate terminal of the transistor T3 and the gate terminal of the transistor T4).
- the point (node N1)) is connected to the output terminal of the analog switch circuit ASW1 (drain terminals of the transistors T1 and T2).
- the power supply voltage Vdd is applied to the source terminal of the transistor T3, and the drain terminal of the transistor T3 is connected to the output terminal of the inverter INV2 (the connection point between the drain terminal of the transistor T3 and the drain terminal of the transistor T4).
- the source terminal is supplied with the power supply voltage Vss, and the drain terminal of the transistor T4 is connected to the output terminal of the inverter INV2.
- the output terminal of the inverter INV2 is connected to the output terminal OUT of the latch circuit 31 and the input terminal of the inverter INV1 (gate terminals of the transistors T5 and T6).
- the inverter INV1 includes a P-channel transistor T5 (first inverter) and an N-channel transistor T6 (second inverter).
- the input terminal of the inverter INV1 (the gate terminals of the transistors T5 and T6) is the output terminal of the inverter INV2. It is connected to the.
- the initialization signal INITB is given to the source terminal of the transistor T5, and the drain terminal of the transistor T5 is connected to the input terminal of the analog switch circuit ASW2 (the connection point between the source terminal of the transistor T7 and the source terminal of the transistor T8 (node N2 )),
- the power supply voltage Vss is applied to the source terminal of the transistor T6, and the drain terminal of the transistor T6 is connected to the input terminal of the analog switch circuit ASW2.
- the analog switch circuit ASW2 includes an N-channel transistor T7 and a P-channel transistor T8.
- the transistor T7 has a gate terminal connected to the output terminal of the inverter INV3, a source terminal connected to the output terminal of the inverter INV1, and a drain.
- the terminal is connected to the input terminal of the inverter INV2
- the transistor T8 has a gate terminal connected to the input terminal INs, a source terminal connected to the output terminal of the inverter INV1, and a drain terminal connected to the input terminal of the inverter INV2.
- the output signal SROUT (k ⁇ 1) of the previous stage (k ⁇ 1 stage) of the shift register is input to the input terminal INs, and the output signal SROUT (k ⁇ 1) is When activated, the polarity signal CMI is taken from the input terminal INc, and while holding it, the output signal OUTk is output from the output terminal OUT as the output of the own stage (kth stage).
- the output signal OUTk is output after switching between a high level (Vdd) and a low level (Vss).
- the initialization signal INITB is a signal that is at a high level (Vdd) during normal operation and is at a low level (Vss) at initialization (when active).
- the initialization signal INITB is fixed at Vdd (high level).
- the analog switch circuit ASW1 when the output signal SROUT (k-1) changes from low level (inactive) to high level (active), the analog switch circuit ASW1 is turned on (transistors T1 and T2 are turned on), and the analog switch circuit ASW2 is turned on. It is off (transistors T7 and T8 are off).
- the node N1 is electrically connected to the polarity signal CMI and has the same potential. Node N1 is electrically disconnected from node N2. Therefore, when the polarity signal CMI is Vdd (high level), the output of the inverter INV2 is Vss (low level), and the output signal OUTk of low level (Vss) is output. On the other hand, when the polarity signal CMI is Vss (low level), the output of the inverter INV2 is Vdd (high level), and the output signal OUTk of high level (Vdd) is output.
- the analog switch circuit ASW1 is turned off (the transistors T1 and T2 are turned off), and the analog switch circuit ASW2 is turned on ( The transistors T7 and T8 are turned on).
- the output terminal of the inverter INV2 and the input terminal of the inverter INV1 are electrically connected to each other, and the output terminal of the inverter INV1 and the input terminal of the inverter INV2 are electrically connected to each other.
- the potential held immediately before is held by the latch operation by the inverters INV1 and INV2. Therefore, the output signal OUTk continues to be output with the potential output immediately before.
- the output signal OUTk continues to be output until the output signal SROUT (k ⁇ 1) next becomes high level (active), and when the output signal SROUT (k ⁇ 1) becomes high level, the latch output operation is performed in the same manner. . In this way, the latch circuit 31 repeats the latch output operation at the normal time.
- FIG. 5 is a timing chart at the time of initialization of the latch circuit 31 when the output signal SROUT of all stages of the shift register is at the high level and the polarity signal CMI is at the high level.
- FIG. 6 is a timing chart at the time of initialization of the latch circuit 31 when the output signal SROUT of all stages of the shift register is at the high level and the polarity signal CMI is at the low level.
- FIG. 7 is a timing chart at the time of initialization of the latch circuit 31 when the output signal SROUT of all stages of the shift register is at the low level and the polarity signal CMI is at the high level.
- FIG. 5 is a timing chart at the time of initialization of the latch circuit 31 when the output signal SROUT of all stages of the shift register is at the low level and the polarity signal CMI is at the low level.
- CMI is a polarity signal whose polarity is inverted every horizontal scanning period (1H).
- INITB indicates the potential of the initialization signal INITB.
- SR (k-1) indicates the potential of the output signal SROUT (k-1) at the (k-1) stage of the shift register.
- Node1 and Node2 indicate potentials of the nodes N1 and N2, respectively.
- OUTk indicates the potential of the output signal OUTk of the latch circuit 31.
- the switch circuit ASW1 is always turned on, and the polarity signal CMI is always connected (short-circuited) to the node N1.
- the node N1 is connected to the input terminal of the inverter INV2, and the output terminal of the inverter INV2 is connected to the output terminal OUT.
- the output signal OUTk having the inverted potential of the node N1 is always output from the output terminal OUT.
- the initialization signal INITB is fixed at the Vss potential. Therefore, regardless of whether the output signal OUTk is the Vdd potential or the Vss potential, the potential of the node N2 that is the output terminal of the inverter INV1 becomes the Vss potential.
- the node N1 when the polarity signal CMI is Vdd (high level), the node N1 can be fixed at the Vdd potential, the output signal OUTk can be fixed at the Vss potential, and the node N2 can be fixed at the Vss potential (see FIG. 5).
- the polarity signal CMI is Vss (low level)
- the node N1 can be fixed at the Vss potential
- the output signal OUTk can be fixed at the Vdd potential
- the node N2 can be fixed at the Vss potential (see FIG. 6).
- the switch circuit ASW2 is always off, the node N1 and the node N2 are disconnected (electrically disconnected). Therefore, even if the polarity signal CMI is either high level or low level, initialization can be performed without causing a short circuit and generating an overcurrent.
- the node N2 that is the output terminal of the inverter INV1 is fixed at the Vss potential regardless of whether the output signal OUTk is the Vdd potential or the Vss potential.
- the switch circuit ASW2 is always turned on, so that the node N1 and the node N2 are always connected (short-circuited). Therefore, the node N1 becomes the Vss potential, and thereby the output signal OUTk becomes the Vdd potential.
- the switch circuit ASW1 since the switch circuit ASW1 is always turned off, the polarity signal CMI and the node N1 are disconnected. Therefore, the potentials of the node N1, the node N2, and the output signal OUTk are the same regardless of whether the polarity signal CMI is high level or low level (see FIGS. 7 and 8). Thus, initialization can be performed without causing a short circuit and generating an overcurrent.
- the initialization signal INITB at the low level (Vss) is supplied to the source terminal of the transistor T5 regardless of whether the output signal SROUT at all stages of the shift register is at the high level or the low level. It is possible to fix the internal potential at a stable potential.
- the initialization signal INITB can be supplied by adding a new initialization control circuit and terminal wiring, but is not provided in the inverter INV1 provided in the latch circuit before the initialization function is added.
- the power supply VDD wiring is used.
- the latch circuit 31 can be initialized without increasing the number of elements.
- the initialization signal INITB becomes Vdd (high level), and the initialization signal INITB performs the same function as the power supply voltage Vdd, so that the same operation as that of a normal latch circuit is possible.
- the initialization signal INITB is supplied to the source terminal of the transistor T5.
- the initialization signal INIT can be supplied to the source terminal of the transistor T6 and similarly initialized.
- FIG. 9 is a circuit diagram showing a configuration example of the latch circuit 32.
- the latch circuit 32 (holding circuit) differs from the latch circuit 31 of FIG. 4 in the signals and power supply voltages supplied to the source terminal of the transistor T5 and the source terminal of the transistor T6, respectively.
- the power supply voltage Vdd is supplied to the source terminal of the transistor T5
- the initialization signal INIT is supplied to the source terminal of the transistor T6.
- the initialization signal INIT is a signal that becomes low level (Vss) during normal operation and becomes high level (Vdd) during initialization.
- the initialization signal INIT is set to Vdd (high level).
- the switch circuit ASW1 is always fully turned on, and the polarity signal CMI is always connected (short-circuited) to the node N1.
- the node N1 is connected to the input terminal of the inverter INV2, and the output terminal of the inverter INV2 is connected to the output terminal OUT.
- the output signal OUTk having the inverted potential of the node N1 is always output from the output terminal OUT.
- the node N2 that is the output terminal of the inverter INV1 is fixed at the Vdd potential regardless of whether the output signal OUTk is the Vdd potential or the Vss potential.
- the node N1 when the polarity signal CMI is Vdd (high level), the node N1 can be fixed at the Vdd potential, the output signal OUTk can be fixed at the Vss potential, and the node N2 can be fixed at the Vdd potential.
- the polarity signal CMI is Vss (low level)
- the node N1 can be fixed at the Vss potential
- the output signal OUTk can be fixed at the Vdd potential
- the node N2 can be fixed at the Vdd potential.
- the switch circuit ASW2 is always turned off, the node N1 and the node N2 are disconnected (electrically disconnected). Therefore, even if the polarity signal CMI is either high level or low level, initialization can be performed without causing a short circuit and generating an overcurrent.
- the node N2 that is the output terminal of the inverter INV1 is fixed at the Vdd potential regardless of whether the output signal OUTk is the Vdd potential or the Vss potential.
- the switch circuit ASW2 is always fully turned on, so that the node N1 and the node N2 are always connected (short-circuited). Therefore, the node N1 becomes the Vdd potential, and thereby the output signal OUTk becomes the Vss potential.
- the switch circuit ASW1 since the switch circuit ASW1 is always turned off, the polarity signal CMI and the node N1 are disconnected. Therefore, the potentials of the node N1, the node N2, and the output signal OUTk are the same regardless of whether the polarity signal CMI is high level or low level. Thus, initialization can be performed without causing a short circuit and generating an overcurrent.
- the high level (Vdd) initialization signal INIT is supplied to the source terminal of the transistor T6 regardless of whether the output signal SROUT of all stages of the shift register is high level or low level. It is possible to fix the internal potential at a stable potential.
- the initialization signal INIT is not made to be able to be supplied by newly adding a control circuit and terminal wiring for initialization, but is an inverter INV1 provided in the latch circuit before adding the initialization function.
- the power supply VSS wiring is used.
- the latch circuit 32 can be initialized without increasing the number of elements.
- the initialization signal INIT is fixed at Vss (low level), so that the initialization signal INIT performs the same function as the power supply voltage Vss. Therefore, the latch circuit 32 can perform the same operation as a normal latch circuit, and can operate in the same manner as the normal operation of the latch circuit 31 described above.
- Embodiment 3 of the present invention will be described below with reference to the drawings.
- a latch circuit capable of reducing the circuit area as compared with the latch circuit 31 of the second embodiment will be described.
- members having the same functions as those shown in the above-described embodiments are denoted by the same reference numerals, and description thereof is omitted.
- the terms defined in the above embodiment are used in accordance with the definitions in this embodiment unless otherwise specified. This is common to the following embodiments.
- the analog switch circuit ASW3 is composed of an N-channel transistor T1, and the transistor T1 has a gate terminal connected to the input terminal INs and a source terminal connected to the input terminal INc.
- the output signal SROUT (k ⁇ 1) of the previous stage of the shift register is supplied to the input terminal INs, and the polarity signal CMI is supplied to the input terminal INc.
- the input terminal of the inverter INV2 (the connection point (node N1) between the gate terminal of the transistor T3 and the gate terminal of the transistor T4) is connected to the output terminal of the analog switch circuit ASW3 (drain terminal of the transistor T1).
- the output terminal of the inverter INV2 is connected to the output terminal OUT of the latch circuit 33 and the input terminal of the inverter INV1 (gate terminals of the transistors T5 and T6).
- a resistor R1 (second resistor) and a resistor R2 (first resistor) are added to the inverter INV1 of the latch circuit 31 (see FIG. 4) described above.
- a resistor R2 is connected in series to the source terminal of the transistor T5, and a resistor R1 is connected in series to the source terminal of the transistor T6.
- the initialization signal INITB is applied to the source terminal of the transistor T5 via the resistor R2, and the power supply voltage Vss is applied to the source terminal of the transistor T6 via the resistor R1.
- the output signal SROUT (k ⁇ 1) of the previous stage (k ⁇ 1 stage) of the shift register is input to the input terminal INs, and the output signal SROUT (k ⁇ 1) is When activated, the polarity signal CMI is taken from the input terminal INc, and while holding it, the output signal OUTk is output from the output terminal OUT as the output of the own stage (kth stage).
- the output signal OUTk is output after switching between a high level (Vdd) and a low level (Vss).
- the initialization signal INITB is a signal that is at a high level (Vdd) during normal operation and is at a low level (Vss) at initialization (when active).
- the initialization signal INITB is fixed at Vdd (high level).
- the analog switch circuit ASW3 when the output signal SROUT (k-1) changes from the low level (inactive) to the high level (active), the analog switch circuit ASW3 is turned on (the transistor T1 is turned on). Thereby, the node N1 is electrically connected to the polarity signal CMI.
- the node N1 has a Vdd-Vth potential (Vth: threshold). Since the potential of the node N1 is sufficient to turn on the transistor T4 of the inverter INV2, the output of the inverter INV2 becomes Vss (low level).
- the output of the inverter INV2 (Vss (low level)) is fed back to the input of the inverter INV1, and the potential of the node N1 rises further from the potential close to Vdd of the polarity signal CMI to Vdd by the output of the inverter INV1. Therefore, the output of the inverter INV2 becomes Vss (low level), and the output signal OUTk of low level (Vss) is output.
- the output (Vdd (high level)) of the inverter INV2 is fed back to the input of the inverter INV1, and the potential of the node N1 is further lowered from the potential close to Vss of the polarity signal CMI to Vss by the output of the inverter INV1. Therefore, the output of the inverter INV2 becomes Vdd (high level), and the output signal OUTk of high level (Vdd) is output.
- the analog switch circuit ASW3 is turned off (the transistor T1 is turned off), and the input of the polarity signal CMI is cut off.
- the node N1 holds the potential held immediately before by the latch operation by the inverters INV1 and INV2. Therefore, the output signal OUTk continues to be output with the potential output immediately before.
- the output signal OUTk continues to be output until the output signal SROUT (k ⁇ 1) next becomes high level (active), and when the output signal SROUT (k ⁇ 1) becomes high level, the latch output operation is performed in the same manner. . In this way, the latch circuit 33 repeats the latch output operation at the normal time.
- FIG. 11 is a timing chart at the time of initialization of the latch circuit 33 when the output signal SROUT of all stages of the shift register is at the high level and the polarity signal CMI is at the high level.
- FIG. 12 is a timing chart when the latch circuit 33 is initialized when the output signals SROUT of all stages of the shift register are at the high level and the polarity signal CMI is at the low level.
- FIG. 13 is a timing chart when the latch circuit 33 is initialized when the output signals SROUT of all stages of the shift register are at the low level and the polarity signal CMI is at the high level.
- FIG. 14 is a timing chart at the time of initialization of the latch circuit 33 when the output signal SROUT of all stages of the shift register is at the low level and the polarity signal CMI is at the low level.
- CMI is a polarity signal whose polarity is inverted every horizontal scanning period (1H).
- INITB indicates the potential of the initialization signal INITB.
- SR (k-1) indicates the potential of the output signal SROUT (k-1) at the (k-1) stage of the shift register.
- Node1 indicates the potential of the node N1.
- OUTk indicates the potential of the output signal OUTk of the latch circuit 33.
- the switch circuit ASW3 is always turned on, and the polarity signal CMI is always connected (short-circuited) to the node N1.
- the node N1 is connected to the input terminal of the inverter INV2, and the output terminal of the inverter INV2 is connected to the output terminal OUT.
- the output signal OUTk having the inverted potential of the node N1 is always output from the output terminal OUT.
- the node N1 when the polarity signal CMI is Vdd (high level), the node N1 has a Vdd-Vth potential (Vth: threshold) (see FIG. 11). Since the potential of the node N1 is sufficient to turn on the transistor T4 of the inverter INV2, a low level (Vss) output signal OUTk is output by the inverter INV2. The output signal OUTk turns on the transistor T5 of the inverter INV1, and the INITB terminal is connected to the node N1 through the resistor R2.
- the initialization signal INITB is fixed at Vss (low level), but since it is connected to the node N1 via the resistor R2, the node N1 is stable without overcurrent flowing in the vicinity of Vdd-Vth. Can be realized.
- the node N1 When the polarity signal CMI is Vss (low level), the node N1 has a Vss potential (see FIG. 12). As a result, the transistor T3 of the inverter INV2 is turned on, and a high level (Vdd) output signal OUTk is output. The output signal OUTk turns on the transistor T6 of the inverter INV1, and the power source VSS is connected to the node N1 through the resistor R1. Therefore, the node N1 can be stabilized at the Vss potential.
- the node N1 is fixed at the Vss potential output from the inverter INV1 regardless of whether the output signal OUTk is the Vdd potential or the Vss potential.
- the switch circuit ASW3 is always turned off, so that the polarity signal CMI and the node N1 are disconnected. Therefore, regardless of whether the polarity signal CMI is at a high level or a low level, the node N1 has a Vss potential and the output signal OUTk has a Vdd potential (see FIGS. 13 and 14). Thus, initialization can be performed without causing a short circuit and generating an overcurrent.
- the initialization signal INITB at the low level (Vss) is supplied to the source terminal of the transistor T5 regardless of whether the output signal SROUT at all stages of the shift register is at the high level or the low level. It is possible to fix the internal potential at a stable potential.
- the initialization signal INITB can be supplied by adding a new initialization control circuit and terminal wiring, but is not provided in the inverter INV1 provided in the latch circuit before the initialization function is added.
- the power supply VDD wiring is used.
- the latch circuit 33 can be initialized without increasing the number of elements.
- the initialization signal INITB is supplied to the source terminal of the transistor T5.
- the initialization signal INIT can be supplied to the source terminal of the transistor T6 and similarly initialized.
- FIG. 15 is a circuit diagram showing a configuration example of the latch circuit 34.
- the latch circuit 34 (holding circuit) differs from the latch circuit 33 of FIG. 10 in the signals and power supply voltages supplied to the source terminal of the transistor T5 and the source terminal of the transistor T6, respectively. Yes. Specifically, the power supply voltage Vdd is supplied to the source terminal of the transistor T5, and the initialization signal INIT is supplied to the source terminal of the transistor T6.
- the initialization signal INIT is a signal that becomes low level (Vss) during normal operation and becomes high level (Vdd) during initialization.
- the initialization signal INIT is set to Vdd (high level).
- the switch circuit ASW3 is always turned on, and the polarity signal CMI is always connected (short-circuited) to the node N1.
- the node N1 is connected to the input terminal of the inverter INV2, and the output terminal of the inverter INV2 is connected to the output terminal OUT.
- the output signal OUTk having the inverted potential of the node N1 is always output from the output terminal OUT.
- the node N1 when the polarity signal CMI is Vdd (high level), the node N1 has a potential of Vdd-Vth (Vth: threshold). Since the potential of the node N1 is sufficient to turn on the transistor T4 of the inverter INV2, a low level (Vss) output signal OUTk is output by the inverter INV2. The output signal OUTk turns on the transistor T5 of the inverter INV1, and the power supply VDD is connected to the node N1 through the resistor R2. Therefore, the node N1 can be stabilized near Vdd ⁇ Vth.
- Vth threshold
- the node N1 When the polarity signal CMI is Vss (low level), the node N1 is at the Vss potential. As a result, the transistor T3 of the inverter INV2 is turned on, and a high level (Vdd) output signal OUTk is output. The output signal OUTk turns on the transistor T6 of the inverter INV1, and the terminal (INIT terminal) to which the initialization signal INIT is input is connected to the node N1 through the resistor R1. At this time, the initialization signal INIT is fixed to Vdd (high level), but since it is connected to the node N1 via the resistor R1, the node N1 is stable without overcurrent flowing in the vicinity of Vdd-Vth. Can be realized.
- the node N1 is fixed at the Vdd potential output from the inverter INV1 regardless of whether the output signal OUTk is the Vdd potential or the Vss potential.
- the switch circuit ASW3 is always turned off, so that the polarity signal CMI and the node N1 are disconnected. Therefore, regardless of whether the polarity signal CMI is high level or low level, the node N1 has the Vdd potential and the output signal OUTk has the Vss potential. Thus, initialization can be performed without causing a short circuit and generating an overcurrent.
- the high level (Vdd) initialization signal INIT is supplied to the source terminal of the transistor T6 regardless of whether the output signal SROUT of all stages of the shift register is high level or low level. It is possible to fix the internal potential at a stable potential.
- the initialization signal INIT is not made to be able to be supplied by newly adding a control circuit and terminal wiring for initialization, but is an inverter INV1 provided in the latch circuit before adding the initialization function.
- the power supply VSS wiring is used.
- the latch circuit 34 can be initialized without increasing the number of elements.
- the latch circuit 34 can operate in the same manner as a normal latch circuit, and can operate in the same manner as the normal operation of the latch circuit 33 described above.
- the latch circuits of the first to third embodiments described above can be applied to a circuit including a latch circuit, for example, a level shifter or a shift register.
- the latch circuit according to this embodiment is particularly effective for a common electrode driving circuit and a capacitor wiring driving circuit having a large number of latch circuits, which are display driving circuits mounted on a liquid crystal display device. Therefore, embodiments of the latch circuit mounted on the common electrode driving circuit and the capacitor wiring driving circuit will be described in the following embodiments.
- Embodiment 4 according to the present invention will be described below.
- a common electrode driving circuit including a latch circuit mounted on a liquid crystal display device will be described.
- FIG. 16 is a block diagram illustrating a schematic configuration of the liquid crystal display device 1 according to the fourth embodiment
- FIG. 17 is an equivalent circuit diagram illustrating an electrical configuration of the pixel P of the liquid crystal display device 1.
- the liquid crystal display device 1 includes a scanning signal line driving circuit 100 (gate driver), a common electrode driving circuit 200 (COM driver), a data signal line driving circuit 300 (source driver), and a display panel 400. Further, the liquid crystal display device 1 includes a control circuit (not shown) that controls each drive circuit. Each drive circuit may be formed monolithically on the pixel circuit and the active matrix substrate.
- the display panel 400 is configured by sandwiching liquid crystal between an active matrix substrate (not shown) and a counter substrate, and has a large number of pixels P (FIG. 17) arranged in a matrix.
- the display panel 400 includes a scanning signal line 41 (GLn) (gate line), a common line 42 (common electrode wiring) (CMLn), a data signal line 43 (SLi) (source line), a thin film transistor on an active matrix substrate. (Thin Film Transistor; hereinafter also referred to as “TFT”) 44 and a pixel electrode 45.
- I and n are integers of 2 or more.
- One scanning signal line 41 is formed in each row so as to be parallel to each other in the row direction (lateral direction), and the data signal line 43 is arranged in each column so as to be parallel to each other in the column direction (vertical direction).
- the TFT 44 and the pixel electrode 45 are formed corresponding to each intersection of the scanning signal line 41 and the data signal line 43, and the gate electrode g of the TFT 44 is connected to the scanning signal line 41.
- the electrode s is connected to the data signal line 43, and the drain electrode d is connected to the pixel electrode 45.
- the pixel electrode 45 forms a capacitance Clc (including a liquid crystal capacitance) between the common line 42.
- the gate of the TFT 44 is turned on by the gate signal (scanning signal) supplied to the scanning signal line 41, the source signal (data signal) from the data signal line 43 is written to the pixel electrode 45, and the pixel electrode 45 is written in the above-described manner. It is possible to realize gradation display according to the source signal by setting the potential according to the source signal and applying a voltage according to the source signal to the liquid crystal interposed between the common line 42. it can.
- the display panel 400 having the above configuration is driven by the scanning signal line driving circuit 100, the common electrode driving circuit 200, the data signal line driving circuit 300, and a control circuit for controlling them.
- the horizontal scanning period of each row is sequentially assigned, and each row is sequentially scanned.
- the scanning signal line driving circuit 100 sequentially outputs a gate signal for turning on the TFT 44 to the scanning signal line 41 of the row in synchronization with the horizontal scanning period of each row.
- the common electrode driving circuit 200 Based on the output signal (SROUT) of the shift register 10 constituting the scanning signal line driving circuit 100, the common electrode driving circuit 200 applies a high level signal (Vcomh) (first potential) or a low level to each common line 42. A signal (Vcoml) (second potential) is supplied.
- Vcomh high level signal
- Vcoml second potential
- the data signal line driving circuit 300 outputs a source signal to each data signal line 43.
- This source signal is a signal obtained by assigning a video signal supplied to the data signal line driving circuit 300 from the outside of the liquid crystal display device 1 through the control circuit to each column in the data signal line driving circuit 300 and performing boosting or the like. is there.
- the control circuit controls the scanning signal line driving circuit 100, the common electrode driving circuit 200, and the data signal line driving circuit 300 described above to output a gate signal, a source signal, and a common signal from each of these circuits.
- the liquid crystal display device 1 has a configuration in which a stable operation is performed while reducing the potential level of the output signal of the common electrode driving circuit 200 while reducing the circuit area.
- specific configurations of the scanning signal line driving circuit 100 and the common electrode driving circuit 200 will be described.
- the shift register 10 constituting the scanning signal line driving circuit 100 is configured by connecting m (m is an integer of 2 or more) unit circuits 11 in multiple stages.
- the unit circuit 11 has a clock terminal (CK terminal), a set terminal (S terminal), a reset terminal (R terminal), an initialization terminal (INITB terminal), and an output terminal OUT.
- CK terminal clock terminal
- S terminal set terminal
- R terminal reset terminal
- IITB terminal initialization terminal
- OUT an output terminal OUT.
- a signal input / output via each terminal is referred to by the same name as the terminal (for example, a signal input via the clock terminal CK is referred to as a clock signal CK).
- the shift register 10 is supplied with a start pulse (not shown) and two-phase clock signals CK1 and CK2 from the outside.
- the start pulse is given to the S terminal of the unit circuit 11 in the first stage.
- the clock signal CK1 is supplied to the CK terminal of the odd-numbered unit circuit 11, and the clock signal CK2 is supplied to the CK terminal of the even-numbered unit circuit 11.
- the output of the unit circuit 11 is output from the output terminal OUT to the corresponding scanning signal line GL as the output signal SROUT, and is given to the S terminal of the subsequent unit circuit 11 and the R terminal of the previous unit circuit 11.
- the output signal SROUT of the unit circuit 11 is input to the unit circuit 21 of the corresponding common electrode driving circuit 200.
- the common electrode driving circuit 200 is configured by connecting n (n is an integer of 2 or more) unit circuits 21 in multiple stages.
- the unit circuit 21 has input terminals INs and INc, an initialization terminal INITB, and an output terminal OUT.
- the output signal SROUT of the shift register 10 is input to the input terminal INs of the unit circuit 21, and the polarity signal CMIZ (holding target signal) is input to the input terminal INc of the unit circuit 21.
- An initialization signal INITB is input to the initialization terminal INITB of the unit circuit 21.
- the output of the unit circuit 21 is output to the common line (COM line) CML as the output signal CMOUT.
- the output signal SROUT of the unit circuit 11 in the (k ⁇ 1) -th stage of the shift register 10 is connected to the unit circuit 21 in the k-th stage (k is an integer of 1 to n) of the common electrode driving circuit 200. (K ⁇ 1) is input, and the unit circuit 21 in the k-th stage outputs the output signal CMOUTk to the common line CMLk.
- the common electrode driving circuit 200 sequentially outputs the output signals CMOUT1 to CMOUTn to the common lines CML1 to CMLn according to the shift operation of the shift register 10. Note that the start pulse of the shift register 10 is supplied to the unit circuit 21 in the first stage.
- FIG. 18 is a circuit diagram of the unit circuit 21 included in the common electrode driving circuit 200 according to the first embodiment.
- the unit circuit 21 includes a latch-through circuit 21a (holding circuit) and a buffer 21b.
- the latch through circuit 21a is configured by an inverter INV1 (first inverter), an inverter INV2 (second inverter), and an analog switch circuit SW1, and the buffer 21b is configured by two transistors.
- connection point between the output terminal of the inverter INV1 and the input terminal of the inverter INV2 is a node N1
- connection point between the input terminal of the inverter INV1 and the output terminal of the inverter INV2 is a node N2 (see FIG. 18).
- the analog switch circuit SW1 includes an N-channel transistor T1, an N-channel transistor T9, and a capacitor C1, a power supply voltage Vdd is applied to the gate terminal of the transistor T9, a source terminal is connected to the input terminal INs, and a drain terminal Is connected to the gate terminal of the transistor T1.
- the capacitor C1 is provided between the gate terminal and the drain terminal of the transistor T1. Note that a connection point between the capacitor C1 and the gate terminal of the transistor T1 is a node N3.
- the source terminal of the transistor T1 is connected to the input terminal INc.
- the output signal SROUT of the unit circuit 11 of the shift register 10 is supplied to the input terminal INs, and the polarity signal CMIZ is supplied to the input terminal INc.
- the inverter INV2 includes a P-channel transistor T3 and an N-channel transistor T4.
- An input terminal of the inverter INV2 (a connection point (node N1) between the gate terminal of the transistor T3 and the gate terminal of the transistor T4) is an analog switch.
- the output terminal of the circuit SW1 (the drain terminal of the transistor T1) is connected.
- the power supply voltage Vdd is applied to the source terminal of the transistor T3, and the drain terminal of the transistor T3 is connected to the output terminal of the inverter INV2 (the connection point (node N2) between the drain terminal of the transistor T3 and the drain terminal of the transistor T4).
- the power supply voltage Vss is applied to the source terminal of the transistor T4, and the drain terminal of the transistor T4 is connected to the output terminal (node N2) of the inverter INV2.
- the node N2 is connected to the output terminal out of the latch through circuit 21a and the input terminal of the inverter INV1 (gate terminals of the transistors T5 and T6).
- the inverter INV1 includes a P-channel transistor T5, an N-channel transistor T6, and resistors R1 and R2, and is provided with an initialization terminal (INITB terminal).
- An input terminal of the inverter INV1 (gate terminals of the transistors T5 and T6) is connected to an output terminal (node N2) of the inverter INV2.
- the initialization signal INITB is input to the source terminal of the transistor T5 via the resistor R2.
- the drain terminal of the transistor T5 is connected to the output terminal of the inverter INV1 (the connection point between the drain terminal of the transistor T5 and the drain terminal of the transistor T6).
- the power supply voltage Vss is applied to the source terminal of the transistor T6 via the resistor R1, and the drain terminal of the transistor T6 is connected to the output terminal of the inverter INV1.
- the output terminal of the inverter INV1 is connected to the input terminal (node N1) of the inverter INV2.
- the output terminal out of the latch through circuit 21a is connected to the input terminal in of the buffer 21b.
- the buffer 21b includes a P-channel transistor T7 and an N-channel transistor T8, the gate terminals of the transistors T7 and T8 are connected to the input terminal in, the power supply voltage Vcomh is applied to the source terminal of the transistor T7, and the transistor T7 Is connected to the output terminal OUT of the unit circuit 21, the source terminal of the transistor T8 is supplied with the power supply voltage Vcoml, and the drain terminal of the transistor T8 is connected to the output terminal OUT of the unit circuit 21.
- the output signal SROUT (k ⁇ 1) of the (k ⁇ 1) th unit circuit 11 of the shift register 10 is input to the input terminal INs of the kth unit circuit 21, and the kth unit.
- An output signal CMOUTk is output from the output terminal OUT of the circuit 21 to the common line CMLk of the k-th row.
- the common electrode driving circuit 200 including the unit circuit 21 having the above configuration performs an operation of sequentially outputting the output signals CMOUT1 to CMOUTn in which the high level (Vcomh) and the low level (Vcoml) are switched for each frame one by one.
- the internal signal of the common electrode driving circuit 200 including the clock signals CK1 and CK2 and the potential of the input / output signal are assumed to be Vdd when the level is high and Vss when the level is low.
- the polarity signal CMIZ is also set to Vdd when it is at a high level and Vss when it is at a low level.
- the potential level of the polarity signal CMIZ is not limited to this, and the “high level” only needs to be higher than the inversion potential of the inverter INV2, and the “low level” only needs to be lower than the inversion potential of the inverter INV2.
- the polarity signal CMIZ is generated by a generation circuit 210 composed of a NAND circuit and an inverter, and is provided outside the common electrode drive circuit 200.
- the polarity signal CMIZ is input to the unit circuit 21 at each stage.
- FIG. 20 is a timing chart during operation of the common electrode driving circuit 200
- FIG. 21 is a diagram schematically illustrating a timing chart during operation of the common electrode driving circuit 200.
- FIG. 20 shows input / output signals in the unit circuit 21 at the (k ⁇ 1) th stage, the unit circuit 21 at the kth stage, and the unit circuit 21 at the (k + 1) th stage.
- the initialization signal INITB is a signal that is at a high level (Vdd) during normal operation and is at a low level (Vss) at initialization (when active). That is, the initialization signal INITB performs the same function as the power supply VDD during normal operation.
- the polarity signal CMIZ is a signal that inverts every horizontal scanning period (1H) in the same manner as the polarity signal CMI during normal operation, but goes to a low level during initialization.
- SR (k ⁇ 2), SR (k ⁇ 1), and SRn are the unit circuit 11 in the (k ⁇ 2) th stage, the unit circuit 11 in the (k ⁇ 1) th stage, and the kth stage of the shift register 10, respectively.
- the potentials of the output signals SROUT (k ⁇ 2), SROUT (k ⁇ 1) and SROUTk of the unit circuit 11 are shown.
- N1 and N2 indicate the potentials of the nodes N1 and N2 shown in FIG. 18, respectively.
- CM (k ⁇ 1), CMk, and CM (k + 1) are the unit circuit 21 at the (k ⁇ 1) th stage, the unit circuit 21 at the kth stage, and the unit circuit at the (k + 1) th stage of the common electrode driving circuit 200, respectively.
- FIG. 20 shows arbitrary continuous frames F (t), F (t + 1), and F (t + 2).
- the output signal SROUT (k ⁇ 1) (high level) of the (k ⁇ 1) th unit circuit 11 of the shift register 10 is applied to the input terminal INs of the kth unit circuit 21. (Active)) is entered. As a result, the transistor T1 is turned on, and the polarity signal CMIZ (low level; Vss) is taken into the latch-through circuit 21a.
- the transistor T3 is turned on, and the output of the inverter INV2 (node N2; Vdd (high level)) is fed back to the input of the inverter INV1, whereby the transistor T5 is turned off and the transistor T6 is turned on. Become. As a result, the potential of the node N1 drops from a potential close to Vss of the polarity signal CMIZ to Vss (see FIG. 21).
- the transistor T3 of the inverter INV2 When the potential of the node N1 becomes close to Vss (low level) or Vss (low level), the transistor T3 of the inverter INV2 is turned on and the transistor T4 is turned off. When the transistor T3 is turned on, the potential of the node N2 becomes Vdd (high level), and Vdd (high level) is output from the latch-through circuit 21a. In the buffer 21b to which Vdd (high level) is input, the transistor T7 is turned off and the transistor T8 is turned on, whereby Vcoml is output from the buffer 21b and supplied to the k-th common line CMLk. Is done.
- the resistor R1 is provided between the power source VSS and the node N1, the potential of the node N1 is drawn to the polarity signal CMIZ side, and is a potential close to Vdd (high level) of the polarity signal CMIZ (inverter INV2 (Potential higher than the reversal potential of) (see FIG. 21).
- the output of the inverter INV2 (node N2; Vss (low level)) is fed back to the input of the inverter INV1, whereby the transistor T5 is turned on and the transistor T6 is turned off.
- the potential of the node N1 rises from a potential close to Vdd of the polarity signal CMIZ to Vdd (see FIG. 21).
- the transistor T4 of the inverter INV2 When the potential of the node N1 becomes close to Vdd (high level) or Vdd (high level), the transistor T4 of the inverter INV2 is turned on and the transistor T3 is turned off. When the transistor T4 is turned on, the potential of the node N2 becomes Vss (low level), and Vss (low level) is output from the latch through circuit 21a. In the buffer 21b to which Vss (low level) is input, the transistor T8 is turned off and the transistor T7 is turned on, whereby Vcomh is output from the buffer 21b and supplied to the k-th common line CMLk. Is done.
- the unit circuit 21 of the first embodiment since the circuit scale of the common electrode driving circuit 200 can be reduced, the frame of the liquid crystal display device can be further reduced. In addition, there is no problem of operation due to the reduction in circuit scale.
- the transistor T1 is turned on in the unit circuits 21 in all stages, and the nodes N1 and the polarity signal CMIZ in all stages are connected (short-circuited).
- the potential held at the node N1 is also indeterminate, so that the output of the inverter INV2 connected to the polarity signal CMIZ is also Vdd (high level) or Vss (low level) at each stage. ) Or indefinite state.
- the polarity signal CMIZ connected to the node N1 in all stages is supplied to the power supply VSS and the stage connected to the power supply VDD of the inverter INV1.
- the connected stages are connected at the same time, and a large current is generated when the power supply VDD and the power supply VSS are short-circuited via the polarity signal CMIZ, and the potential of the node N1 becomes an intermediate potential. It cannot be initialized.
- the node N1 is always Vss (low level). Level) and can be reliably initialized.
- the gate terminal of the transistor T5 is Vss (low level), and the transistor T5 is on.
- the initialization signal INITB is Vss (low level) at the time of initialization
- the potential of the node N1 becomes a low level (Vss + Vth) that has fallen the threshold value (Vth) through the transistor T5.
- the output of the inverter INV1 is input to the inverter INV2, the inverter INV2 outputs Vdd.
- the output (node N2) of the inverter INV2 is connected to the input of the inverter INV1, the output (Vdd) of the inverter INV2 is fed back to the inverter INV1, and the transistor T6 is turned on.
- the node N1 of Vss + Vth becomes Vss (low level), so that it can be reliably initialized.
- the transistor T5 When the node N1 is Vss (low level) in an indeterminate state before initialization, the transistor T5 is in an off state, so the signal of the initialization signal INITB is not input to the node N1, but is already desired. Since this is the potential (Vss), it is the same as the initialized state.
- the common electrode driving circuit 200 can be initialized stably. That is, in the unit circuit 21, the initialization signal INITB at the low level (Vss) is applied to the transistor regardless of whether the output signal SROUT of the unit circuit 11 of all the stages of the shift register 10 is high level or low level. By applying to the source terminal of T5, the internal potential can be fixed at a stable potential.
- the initialization signal INITB can be supplied by adding a new initialization control circuit and terminal wiring, but is not provided in the inverter INV1 provided in the unit circuit before the initialization function is added.
- the power supply VDD wiring is used.
- the unit circuit 21 can be initialized without increasing the number of elements.
- the initialization signal INITB becomes Vdd (high level), and the initialization signal INITB performs the same function as the power supply voltage Vdd. Therefore, the same operation as a normal unit circuit is possible.
- FIG. 24 is a circuit diagram of the unit circuit 22 included in the common electrode driving circuit 200 according to the second embodiment.
- the unit circuit 22 has a function for initializing the common electrode drive circuit 200 as in the unit circuit 21 of the first embodiment. Specifically, in the unit circuit 22 of the first embodiment (FIG. 18), the power supply VSS of the inverter INV1 is omitted, an initialization terminal (INIT terminal) is provided, and the unit circuit 22 is for initialization. The terminal (INITB terminal) is omitted, and the power supply VDD of the inverter INV1 is provided. The initialization signal INIT is input to the source terminal of the transistor T6 via the resistor R1.
- the initialization signal INIT becomes a low level (Vss) during normal operation and becomes a high level (Vdd) during initialization (active).
- the polarity signal CMIZ is a signal that inverts the polarity every horizontal scanning period (1H) in the normal operation as in the polarity signal CMI, but becomes high level at the time of initialization.
- the polarity signal CMIZ is input to the unit circuit 22 at each stage. Further, as shown in FIG. 25, the polarity signal CMIZ is generated by a generation circuit 220 including a NOR circuit and an inverter, and is provided outside the common electrode drive circuit 200.
- both the potential of the node N1 and the output of the inverter INV2 are indefinite, but at the time of initialization, both the polarity signal CMIZ and the initialization signal INIT are set to Vdd (high level). Therefore, the node N1 is always at Vdd (high level) and can be reliably initialized.
- the gate terminal of the transistor T6 is Vdd (high level), and the transistor T6 is on.
- the initialization signal INIT is Vdd (high level) at the time of initialization
- the potential of the node N1 becomes a high level (Vdd ⁇ Vth) that has fallen by the threshold (Vth) via the transistor T6.
- the output of the inverter INV1 is input to the inverter INV2, the inverter INV2 outputs Vss.
- the output (node N2) of the inverter INV2 is connected to the input of the inverter INV1, the output (Vss) of the inverter INV2 is fed back to the inverter INV1, and the transistor T5 is turned on.
- the node N1 of Vdd ⁇ Vth becomes Vdd (high level), so that initialization can be surely performed.
- the transistor T6 When the node N1 is Vdd (high level) in an indeterminate state before initialization, the transistor T6 is in an off state, so that the signal for the initialization signal INIT is not input to the node N1, but is already desired. Since this is the potential (Vdd), it is the same as the initialized state.
- the common electrode driving circuit 200 can be initialized stably. That is, in the unit circuit 22, the initialization signal INIT of the high level (Vdd) is applied to the transistor regardless of whether the output signal SROUT of the unit circuits 11 of all the stages of the shift register 10 is high level or low level. By applying the voltage to the source terminal of T6, the internal potential can be fixed at a stable potential. Further, the initialization signal INIT uses the wiring of the power source VSS of the original inverter INV1. Therefore, the unit circuit 22 can be initialized without increasing the number of elements.
- the initialization signal INIT becomes Vss (low level), and the initialization signal INIT performs the same function as the power supply VSS, so that the same operation as a normal unit circuit is possible.
- FIG. 26 is a circuit diagram of the unit circuit 23 included in the common electrode driving circuit 200 according to the third embodiment.
- the unit circuit 23 has a function for initializing the common electrode drive circuit 200 as in the unit circuit 21 of the first embodiment. Specifically, in the unit circuit 23, the power supply VDD of the inverter INV2 is omitted in the unit circuit 21 of the first embodiment, an initialization terminal (INITB terminal) is provided, and an initialization terminal (INITB terminal) is provided. ) Is omitted, and the power supply VDD of the inverter INV1 is provided. The initialization signal INITB is input to the source terminal of the transistor T3.
- the initialization signal INITB is a signal that is at a high level (Vdd) during normal operation and is at a low level (Vss) at initialization (when active).
- the polarity signal CMIZ is a signal that inverts the polarity every horizontal scanning period (1H) in the normal operation as in the polarity signal CMI, but becomes high level at the time of initialization.
- the polarity signal CMIZ is input to the unit circuit 23 in each stage.
- the polarity signal CMIZ is generated by a generation circuit 230 including a NOR circuit and an inverter and provided outside the common electrode drive circuit 200, as shown in FIG.
- both the potential of the node N1 and the output of the inverter INV2 are indefinite, but at the time of initialization, the polarity signal CMIZ is Vdd (high level) and the initialization signal INITB is Since it is controlled to be Vss (low level), the node N2 becomes Vss (low level), the output (Vss) of the inverter INV2 is fed back to the inverter INV1, and the transistor T5 is turned on. Thereby, since the node N1 becomes Vdd, it can be initialized reliably.
- the gate terminal of the transistor T3 is Vss (low level), and the transistor T3 is on.
- the initialization signal INITB is Vss (low level) at the time of initialization
- the potential of the node N2 becomes a low level (Vss + Vth) that is lower than the threshold (Vth) via the transistor T3.
- the output (node N2) of the inverter INV2 is connected to the input of the inverter INV1, the output (Vss + Vth) of the inverter INV2 is fed back to the inverter INV1, and the transistor T5 is turned on.
- the node N1 is set to Vdd (high level)
- the transistor T4 is turned on
- the node N2 of Vss + Vth is set to Vss (low level), so that initialization can be surely performed.
- the transistor T3 When the node N2 is Vss (low level) in an indefinite state before initialization, the transistor T3 is in an off state, so that the signal for the initialization signal INITB is not input to the node N2, but is already desired. Since this is the potential (Vss), it is the same as the initialized state.
- the common electrode driving circuit 200 can be initialized stably. That is, in the unit circuit 23, the initialization signal INITB at the low level (Vss) is applied to the transistor regardless of whether the output signal SROUT of the unit circuits 11 of all the stages of the shift register 10 is high level or low level. By applying the voltage to the source terminal of T3, the internal potential can be fixed at a stable potential.
- the initialization signal INITB uses the wiring of the power supply VDD of the original inverter INV2. Therefore, the unit circuit 23 can be initialized without increasing the number of elements.
- the initialization signal INITB becomes Vdd (high level), and the initialization signal INITB performs the same function as the power supply VDD, so that the same operation as a normal unit circuit is possible.
- FIG. 28 is a circuit diagram of the unit circuit 24 included in the common electrode driving circuit 200 according to the fourth embodiment.
- the unit circuit 24 has a function for initializing the common electrode driving circuit 200 as in the unit circuit 21 of the first embodiment. Specifically, in the unit circuit 24, the power supply VSS of the inverter INV2 is omitted in the unit circuit 21 of the first embodiment, an initialization terminal (INIT terminal) is provided, and an initialization terminal (INITB terminal) is provided. ) Is omitted, and the power supply VDD of the inverter INV1 is provided. The initialization signal INIT is input to the source terminal of the transistor T4.
- the initialization signal INIT becomes a low level (Vss) during normal operation and becomes a high level (Vdd) during initialization (active).
- the polarity signal CMIZ is a signal that inverts every horizontal scanning period (1H) in the same manner as the polarity signal CMI during normal operation, but goes to a low level during initialization.
- the polarity signal CMIZ is input to the unit circuit 24 at each stage.
- the polarity signal CMIZ is generated by a generation circuit 240 including a NOR circuit and an inverter and provided outside the common electrode drive circuit 200, as shown in FIG.
- both the potential of the node N1 and the output of the inverter INV2 are indefinite, but at the time of initialization, the polarity signal CMIZ is Vss (low level) and the initialization signal INIT is Since it is controlled to be Vdd (high level), the node N2 becomes Vdd (high level), the output (Vdd) of the inverter INV2 is fed back to the inverter INV1, and the transistor T6 is turned on. Thereby, since the node N1 becomes Vss, it can be initialized reliably.
- the gate terminal of the transistor T4 is Vdd (high level), and the transistor T4 is on.
- the initialization signal INIT is Vdd (high level) at the time of initialization
- the potential of the node N2 becomes a high level (Vdd ⁇ Vth) that has fallen by the threshold (Vth) via the transistor T4.
- the output (node N2) of the inverter INV2 is connected to the input of the inverter INV1, the output (Vdd ⁇ Vth) of the inverter INV2 is fed back to the inverter INV1, and the transistor T6 is turned on.
- the node N1 is set to Vss (low level)
- the transistor T3 is turned on
- the node N2 of Vdd ⁇ Vth is set to Vdd (high level), so that the initialization can be surely performed.
- the transistor T4 When the node N2 is Vdd (high level) in an indefinite state before initialization, the transistor T4 is in an off state, so that the signal of the initialization signal INIT is not input to the node N2, but is already desired. Since this is the potential (Vdd), it is the same as the initialized state.
- the common electrode driving circuit 200 can be initialized stably. That is, in the unit circuit 24, the initialization signal INIT of the high level (Vdd) is transferred to the transistor regardless of whether the output signal SROUT of the unit circuits 11 of all the stages of the shift register 10 is high level or low level. By applying to the source terminal of T4, the internal potential can be fixed at a stable potential.
- the initialization signal INIT uses the power supply VSS wiring of the original inverter INV2. Therefore, the unit circuit 24 can be initialized without increasing the number of elements.
- the initialization signal INIT becomes Vss (low level), and the initialization signal INIT performs the same function as the power supply VSS, so that the same operation as a normal unit circuit is possible.
- the latch-through circuit 21a of each unit circuit constituting the common electrode driving circuit 200 according to the fourth embodiment includes the latch circuits (latch circuits 15, 19, 31 to 34) described in the first to third embodiments. The same circuit configuration can be applied.
- the liquid crystal display device 1 may include a switching circuit UDSW that switches the scanning direction (shift direction) of the shift register 10.
- FIG. 30 is a block diagram showing a liquid crystal display device 2 which is a modification of the liquid crystal display device 1. As shown in FIG. 30, the liquid crystal display device 2 includes a switching circuit UDSW provided corresponding to each stage of the shift register 10 in addition to the configuration of the liquid crystal display device 1 of FIG.
- the switching signals UD and UDB which are signals whose polarities are reversed, are supplied to the switching circuit UDSW.
- the switching circuit UDSW switches the output signal SROUT (k ⁇ 1) of the unit circuit 11 at the (k ⁇ 1) -th stage.
- the output signal SROUT (k + 1) of the (k + 1) -th unit circuit 11 is The signal output is switched so as to be input to the k-th unit circuit 21 from the switching circuit UDSW.
- the scanning direction of the shift register 10 can be switched (a first direction from the first stage to the n-th stage and a second direction from the n-th stage to the first stage are mutually switched).
- the switching circuit UDSW can be applied to the above-described embodiments.
- Embodiment 5 The following describes Embodiment 5 of the present invention with reference to the drawings.
- CS driver storage capacitor wiring driving circuit
- FIG. 31 is a block diagram showing a schematic configuration of the liquid crystal display device 3 according to the fifth embodiment.
- the liquid crystal display device 3 includes a scanning signal line drive circuit 100, a storage capacitor line drive circuit 500 (CS driver), a data signal line drive circuit 300, and a display panel 400.
- Each drive circuit may be formed monolithically on the pixel circuit and the active matrix substrate.
- the display panel 400 is driven by the scanning signal line driving circuit 100, the storage capacitor line driving circuit 500, the data signal line driving circuit 300, and a control circuit for controlling them.
- the storage capacitor line drive circuit 500 Based on the output signal (SROUT) of the shift register 10 constituting the scanning signal line drive circuit 100, the storage capacitor line drive circuit 500 applies a high level signal (Vcsh) (modulation signal) to each storage capacitor line 46 (CS line). ) Or a low level signal (Vcsl) (modulation signal).
- Vcsh high level signal
- Vcsl low level signal
- the control circuit controls the scanning signal line drive circuit 100, the storage capacitor line drive circuit 500, and the data signal line drive circuit 300 to output a gate signal, a source signal, and a CS signal from each of these circuits.
- the liquid crystal display device 3 has a configuration in which the circuit area is reduced and a stable operation is performed by preventing a decrease in the potential level of the output signal of the storage capacitor wiring drive circuit 500.
- specific configurations of the scanning signal line driving circuit 100 and the storage capacitor wiring driving circuit 500 will be described.
- the shift register 10 constituting the scanning signal line driving circuit 100 is configured by connecting m (m is an integer of 2 or more) unit circuits 11 in multiple stages.
- the unit circuit 11 has a clock terminal (CK terminal), a set terminal (S terminal), a reset terminal (R terminal), an initialization terminal (INITB terminal), and an output terminal OUT.
- CK terminal clock terminal
- S terminal set terminal
- R terminal reset terminal
- IITB terminal initialization terminal
- OUT an output terminal OUT.
- a signal input / output via each terminal is referred to by the same name as the terminal (for example, a signal input via the clock terminal CK is referred to as a clock signal CK).
- the shift register 10 is supplied with a start pulse (not shown) and two-phase clock signals CK1 and CK2 from the outside.
- the start pulse is given to the S terminal of the unit circuit 11 in the first stage.
- the clock signal CK1 is supplied to the CK terminal of the odd-numbered unit circuit 11, and the clock signal CK2 is supplied to the CK terminal of the even-numbered unit circuit 11.
- the output of the unit circuit 11 is supplied from the output terminal OUT to the corresponding scanning signal line GL as the output signal SROUT, and is also supplied to the S terminal of the subsequent unit circuit 11 and the R terminal of the previous unit circuit 11. Further, the output signal SROUT of the unit circuit 11 is supplied to the unit circuit 51 of the corresponding storage capacitor line driving circuit 500.
- the (k ⁇ 1) -th unit circuit 11 is connected to the S terminal of the k-th unit circuit 11 of the shift register 10 (k is an integer of 1 to n).
- the output signal SROUT (k ⁇ 1) is input, and the k-th unit circuit 11 outputs the output signal SROUTk to the scanning signal line GLk.
- the shift register 10 sequentially outputs the output signals SROUT1 to SROUTn to the scanning signal lines GL1 to GLn by the shift operation.
- the storage capacitor wiring drive circuit 500 is configured by connecting n (n is an integer of 2 or more) unit circuits 51 in multiple stages.
- the unit circuit 51 has input terminals INs1, INs2, and INc, an initialization terminal (INITB terminal), and an output terminal OUT.
- the output signal SROUT of the shift register 10 is input to the input terminals INs1 and INs2 of the unit circuit 51, the polarity signal CMIZ is input to the input terminal INc, and the initialization terminal (INITB terminal) is used for initialization.
- a signal (INITB) is input.
- the output of the unit circuit 51 is supplied as an output signal CSOUT to a storage capacitor line (CS line) CSL.
- the k-th unit circuit 51 (k is an integer not smaller than 1 and not larger than n) of the storage capacitor line driving circuit 500 has the k-th stage of the shift register 10 connected to the input terminal INs1. Output SROUTk is input, and the (k + 1) -th output SROUT (k + 1) of the shift register 10 is input to the input terminal INs2.
- the k-th unit circuit 51 receives the output signal CSOUTk as a storage capacitor line CSLk. Output to.
- the storage capacitor line driving circuit 500 sequentially outputs the output signals CSOUT1 to CSOUTn to the storage capacitor lines CSL1 to CSLn according to the shift operation of the shift register 10.
- a well-known configuration can be applied to the shift register 10. Therefore, a detailed description of the shift register 10 is omitted, and a detailed configuration of the storage capacitor line driving circuit 500 will be described below.
- FIG. 32 is a circuit diagram of the unit circuit 51 included in the storage capacitor line driving circuit 500 according to the first embodiment.
- the unit circuit 51 includes a latch-through circuit 51a (holding circuit) and a buffer 51b.
- the latch-through circuit 51a is configured by an inverter INV1, an inverter INV2, and an analog switch circuit SW1a, and the buffer 51b is configured by two transistors.
- the inverter INV1 is provided with a resistor R1 and a resistor R2.
- connection point between the output terminal of the inverter INV1 and the input terminal of the inverter INV2 is a node N1
- connection point between the input terminal of the inverter INV1 and the output terminal of the inverter INV2 is a node N2 (see FIG. 32). ).
- the analog switch circuit SW1a includes an N-channel transistor T1, a channel transistor T2, N-channel transistors T91 and T92, and capacitors C1 and C2.
- the power supply voltage Vdd is applied to the gate terminal of the transistor T91, the source terminal is connected to the input terminal INs1, and the drain terminal is connected to the gate terminal of the transistor T1.
- the capacitor C1 is provided between the gate terminal and the drain terminal of the transistor T1. Note that a connection point between the capacitor C1 and the gate terminal of the transistor T1 is a node N3.
- the power supply voltage Vdd is applied to the gate terminal of the transistor T92, the source terminal is connected to the input terminal INs2, and the drain terminal is connected to the gate terminal of the transistor T2.
- the capacitor C2 is provided between the gate terminal and the drain terminal of the transistor T2. Note that a connection point between the capacitor C2 and the gate terminal of the transistor T2 is a node N4.
- the input terminal INs1 is supplied with the output SROUTk of the shift register 10 at its own stage (kth stage), and the input terminal INs2 is supplied with the output SROUT (k + 1) of the next stage ((k + 1) th stage) of the shift register 10. Supplied.
- the source terminals of the transistors T1 and T2 are connected to the input terminal INc, and the polarity signal CMIZ is supplied to the input terminal INc.
- the inverter INV2 includes a P-channel transistor T3 and an N-channel transistor T4.
- An input terminal of the inverter INV2 (a connection point (node N1) between the gate terminal of the transistor T3 and the gate terminal of the transistor T4) is an analog switch.
- the circuit SW1a is connected to the output terminal (the drain terminals of the transistors T1 and T2).
- the power supply voltage Vdd is applied to the source terminal of the transistor T3, and the drain terminal of the transistor T3 is connected to the output terminal of the inverter INV2 (the connection point (node N2) between the drain terminal of the transistor T3 and the drain terminal of the transistor T4).
- the power supply voltage Vss is applied to the source terminal of the transistor T4, and the drain terminal of the transistor T4 is connected to the output terminal (node N2) of the inverter INV2.
- the node N2 is connected to the output terminal out of the latch through circuit 51a and the input terminal of the inverter INV1 (gate terminals of the transistors T5 and T6).
- the inverter INV1 includes a P-channel transistor T5, an N-channel transistor T6, and resistors R1 and R2, and is provided with an initialization terminal (INITB terminal).
- An input terminal of the inverter INV1 (gate terminals of the transistors T5 and T6) is connected to an output terminal (node N2) of the inverter INV2.
- the initialization signal INITB is input to the source terminal of the transistor T5 via the resistor R2.
- the drain terminal of the transistor T5 is connected to the output terminal of the inverter INV1 (the connection point between the drain terminal of the transistor T5 and the drain terminal of the transistor T6).
- the power supply voltage Vss is applied to the source terminal of the transistor T6 via the resistor R1, and the drain terminal of the transistor T6 is connected to the output terminal of the inverter INV1.
- the output terminal of the inverter INV1 is connected to the input terminal (node N1) of the inverter INV2.
- the output terminal out of the latch through circuit 51a is connected to the input terminal in of the buffer 51b.
- the buffer 51b includes a P-channel transistor T7 and an N-channel transistor T8, the gate terminals of the transistors T7 and T8 are connected to the input terminal in, the power supply voltage Vcsh is applied to the source terminal of the transistor T7, and the transistor T7 Is connected to the output terminal OUT of the unit circuit 51, the source terminal of the transistor T8 is supplied with the power supply voltage Vcsl, and the drain terminal of the transistor T8 is connected to the output terminal OUT of the unit circuit 51.
- the output signal SROUT (k + 1) of the (k + 1) th unit circuit 11 of the shift register 10 is input to the input terminal INs2 of the kth unit circuit 51, and the input of the kth unit circuit 51 is input.
- the output signal SROUTk of the kth unit circuit 11 of the shift register 10 is input to the terminal INs1, and the output signal CSOUTk is output from the output terminal OUT of the kth unit circuit 51 to the kth storage capacitor line CSLk. Is output.
- the storage capacitor line driving circuit 500 including the unit circuit 51 having the above configuration performs an operation of sequentially outputting the output signals CSOUT1 to CSOUTn in which the high level (Vcsh) and the low level (Vcsl) are switched for each frame one by one.
- the potentials of the internal signals of the storage capacitor line driving circuit 500 including the clock signals CK1 and CK2 and the input / output signals are assumed to be Vdd when the level is high and Vss when the level is low unless otherwise specified.
- the initialization signal INITB is a signal that is at a high level (Vdd) during normal operation and is at a low level (Vss) during initialization.
- the polarity signal CMIZ is also set to Vdd when it is at a high level and Vss when it is at a low level.
- the potential level of the polarity signal CMIZ is not limited to this, and the “high level” only needs to be higher than the inversion potential of the inverter INV2, and the “low level” only needs to be lower than the inversion potential of the inverter INV2.
- FIG. 33 is a timing chart during operation of the storage capacitor line driving circuit 500
- FIG. 34 is a diagram schematically showing a timing chart during operation of the storage capacitor line driving circuit 500.
- the input / output signals in the (k ⁇ 1) -th unit circuit 51, the k-th unit circuit 51, the (k + 1) -th unit circuit 51, and the potential of the pixel P corresponding to each stage are shown. Show.
- CK1 is a clock signal supplied to the CK terminal of the odd-numbered unit circuit 51
- CK2 is a clock signal supplied to the CK terminal of the even-numbered unit circuit 51
- CMIZ is a signal (polarity signal) whose polarity is inverted every horizontal scanning period (1H) in the normal operation as in the case of CMI, but at the time of initialization.
- SR (k ⁇ 1), SRk, SR (k + 1), SR (k + 2) are the (k ⁇ 1) -th unit circuit 11, the k-th unit circuit 11, and the (k + 1) -th stage of the shift register 10, respectively.
- N1 and N2 indicate the potentials of the nodes N1 and N2 shown in FIG. 32, respectively.
- CS (k ⁇ 1), CSk, and CS (k + 1) are the unit circuit 51 in the (k ⁇ 1) stage, the unit circuit 51 in the k stage, and the unit in the (k + 1) stage, respectively, of the storage capacitor wiring driving circuit 500.
- the potentials of the output signals CSOUT (k ⁇ 1), CSOUTk, CSOUT (k + 1) of the circuit 51 are shown.
- S indicates a data signal, which has the same polarity for all pixels in the same row, and has a waveform in which the polarity is reversed every row (one horizontal scanning period) (1 line (1H) inversion drive). Note that a period from when the output signal SROUTk is output to when the next output signal SROUTk is output corresponds to one vertical scanning period (1 frame: 1 V).
- arbitrary continuous frames F (t), F (t + 1), and F (t + 2) are shown.
- the initialization signal INITB is at a high level (Vdd) during normal operation.
- Vcsh is output from the buffer 51b and supplied to the kth storage capacitor line CSLk.
- the transistor T3 is turned on, and the output of the inverter INV2 (node N2; Vdd (high level)) is fed back to the input of the inverter INV1, whereby the transistor T5 is turned off and the transistor T6 is turned on. Become. As a result, the potential of the node N1 drops from a potential close to Vss of the polarity signal CMIZ to Vss (see FIG. 34).
- the transistor T3 of the inverter INV2 When the potential of the node N1 becomes close to Vss (low level) or Vss (low level), the transistor T3 of the inverter INV2 is turned on and the transistor T4 is turned off. When the transistor T3 is turned on, the potential of the node N2 becomes Vdd (high level), and Vdd (high level) is output from the latch through circuit 51a.
- the transistor T7 is turned off and the transistor T8 is turned on, whereby Vcsl is output from the buffer 51b and is supplied to the kth storage capacitor line CSLk. Supplied.
- the output signal SROUT (k + 1) becomes high level (active)
- the potential of the node N1 is held at Vdd (high level)
- the potential of the storage capacitor wiring CSLk in the k-th row is Vcsh. is there. Therefore, the potential of the pixel Pk in the floating state is pushed down by changing the potential of the storage capacitor line CSLk in the k-th row from Vcsh to Vcsl (potential shift).
- Vcsl is output from the buffer 51b and supplied to the kth storage capacitor line CSLk.
- the output of the inverter INV2 (node N2; Vss (low level)) is fed back to the input of the inverter INV1, whereby the transistor T5 is turned on and the transistor T6 is turned off.
- the potential of the node N1 rises from a potential close to Vdd of the polarity signal CMIZ to Vdd (see FIG. 34).
- the transistor T4 of the inverter INV2 When the potential of the node N1 becomes close to Vdd (high level) or Vdd (high level), the transistor T4 of the inverter INV2 is turned on and the transistor T3 is turned off. When the transistor T4 is turned on, the potential of the node N2 becomes Vss (low level), and Vss (low level) is output from the latch through circuit 51a.
- the transistor T8 In the buffer 51b to which Vss (low level) is input, the transistor T8 is turned off and the transistor T7 is turned on, whereby Vcsh is output from the buffer 51b and is supplied to the kth storage capacitor line CSLk. Supplied.
- the output signal SROUT (k + 1) becomes high level (active) (frame F (t))
- the potential of the node N1 is held at Vss (low level).
- the potential of the wiring CSLk is Vcsl. Therefore, the potential of the pixel Pk in the floating state is pushed up (potential shift) when the potential of the storage capacitor wiring CSLk in the k-th row changes from Vcsl to Vcsh.
- the pixel P and the unit circuit 51 other than the k-th stage perform the same latch output operation as described above based on the output signal SROUT sequentially output from each unit circuit 11 of the shift register 10.
- the unit circuit 51 of the first embodiment since the circuit scale of the storage capacitor line driving circuit 500 can be reduced, the frame of the liquid crystal display device can be further reduced. In addition, there is no problem of operation due to the reduction in circuit scale.
- an appropriate CS signal can be generated by taking in the output signal SROUTk of its own stage (k stage), so that the potential is appropriately shifted in all pixels. It is possible to prevent the display quality of the first frame from deteriorating.
- 35 and 36 are timing charts at the time of operation including initialization of the storage capacitor wiring driving circuit 500.
- FIG. FIG. 35 and FIG. 36 show the first frame (frame F1) and the second frame (frame F2) following F1 in which the normal operation after power-on is started after the power is turned on.
- 35 shows a case where the output signal SROUT of all the unit circuits 11 of the shift register 10 is at a high level at the time of initialization
- FIG. 36 shows the unit circuits 11 of all the stages of the shift register 10 at the time of initialization.
- the output signal SROUT of FIG. The initialization operation immediately after the power is turned on will be described later.
- the unit circuit 51 can appropriately shift the potential of the pixel P to which the negative polarity data signal is written in the first frame, and can prevent the display quality of the first frame from being deteriorated.
- the transistors T1 and T2 are turned on in the unit circuits 51 in all stages, and the nodes N1 and polarity signals CMIZ in all stages are connected (short circuited).
- the potential held at the node N1 is also indefinite, so that the output of the inverter INV2 connected to the polarity signal CMIZ is also Vdd (high level) or Vss (low level) at each stage. Level) or indeterminate.
- the polarity signal CMIZ connected to the node N1 in all stages is supplied to the power supply VSS and the stage connected to the power supply VDD of the inverter INV1.
- the connected stages are connected simultaneously, and a large current is generated when the power supply VDD and the power supply VSS are short-circuited via the polarity signal CMIZ, and the potential of the node N1 becomes an intermediate potential. It cannot be initialized.
- the node N1 is always Vss (low level). Level) and can be reliably initialized.
- the gate terminal of the transistor T5 is Vss (low level), and the transistor T5 is on.
- the initialization signal INITB is Vss (low level) at the time of initialization
- the potential of the node N1 becomes a low level (Vss + Vth) that has fallen the threshold value (Vth) through the transistor T5.
- the output of the inverter INV1 is input to the inverter INV2, the inverter INV2 outputs Vdd.
- the output (node N2) of the inverter INV2 is connected to the input of the inverter INV1, the output (Vdd) of the inverter INV2 is fed back to the inverter INV1, and the transistor T6 is turned on.
- the node N1 of Vss + Vth becomes Vss (low level), so that it can be reliably initialized.
- the transistor T5 When the node N1 is Vss (low level) in an indeterminate state before initialization, the transistor T5 is in an off state, so the signal of the initialization signal INITB is not input to the node N1, but is already desired. Since this is the potential (Vss), it is the same as the initialized state.
- the storage capacitor wiring drive circuit 500 can be initialized stably. That is, in the unit circuit 51, the initialization signal INITB at the low level (Vss) is applied to the transistor regardless of whether the output signal SROUT of the unit circuits 11 of all the stages of the shift register 10 is high level or low level. By applying to the source terminal of T5, the internal potential can be fixed at a stable potential.
- the initialization signal INITB can be supplied by adding a new initialization control circuit and terminal wiring, but is not provided in the inverter INV1 provided in the unit circuit before the initialization function is added.
- the power supply VDD wiring is used.
- the unit circuit 51 can be initialized without increasing the number of elements.
- the circuit configuration of the unit circuit 51 constituting the storage capacitor line driving circuit 500 according to the fifth embodiment is the same as the common electrode driving circuit 200 shown in the fourth embodiment except for the power supplies VCSH and VCSL of the buffer 51b.
- the unit circuit 21 is the same. That is, the unit circuit constituting the storage capacitor line driving circuit 500 can have the same circuit configuration as each unit circuit (unit circuits 21 to 24) constituting the common electrode driving circuit 200 shown in the fourth embodiment. .
- the operation of each unit circuit of the storage capacitor line driving circuit 500 is the same as that of each unit circuit of the common electrode driving circuit 200.
- the output SROUT (k ⁇ 1) of the unit circuit of the preceding stage ((k ⁇ 1) stage) of the shift register 10 is added to its own stage (for example, k stage).
- the present invention is not limited to this, and the stage before (k-1) stage (for example, (k-2) stage or (k-3)
- the output (SROUT (k ⁇ 2) or SROUT (k ⁇ 3)) of the unit circuit of the stage may be input.
- the output SROUT (k + 1) of the unit circuit of the next stage ((k + 1) stage) of the shift register 10 is input to the own stage (for example, k stage) (
- the present invention is not limited to this, and the output (SROUT (k + 2)) of the unit circuit at the subsequent stage (for example, (k + 2) stage or (k + 3) stage) after the (k + 1) stage, Alternatively, SROUT (k + 3)) may be input.
- the initialization signal when the initialization signal is input to the source terminal of the first transistor, the initialization signal is fixed at a low level at the time of initialization, and at the time of initialization. Other than the above, it is desirable to be fixed at a high level.
- the initialization signal when the initialization signal is input to the source terminal of the second transistor, the initialization signal is fixed at a high level at the time of initialization, and at the time of initialization. It is desirable that the level is fixed at a low level except for.
- the holding circuit includes a first inverter as the inverter, and the holding target signal is input to the first inverter when the control signal becomes active, and the output signal is the first inverter.
- the output is based on the output of the inverter, and when the control signal is inactive, the input terminal and the output terminal of the first inverter are electrically connected to each other so as to have an inverted potential. You can also.
- the holding circuit includes a first inverter and a second inverter as the inverter, and the holding target signal is input to the second inverter when the control signal becomes active, and the output signal is And when the control signal is inactive, the input terminal of the first inverter and the output terminal of the second inverter are electrically connected to each other when the control signal is inactive.
- the output terminal of the first inverter and the input terminal of the second inverter are electrically connected to each other and the control signal is active, the output terminal of the first inverter and the input terminal of the second inverter are It can also be set as the structure interrupted
- the holding circuit includes a first inverter and a second inverter as the inverter, and the holding target signal is input to the second inverter when the control signal becomes active, and the output signal is And when the control signal is active, the input terminal of the first inverter and the output terminal of the second inverter are electrically connected to each other, and The output terminal of the first inverter and the input terminal of the second inverter may be electrically connected to each other.
- a first resistor is connected in series to a source terminal of the first transistor of the first inverter, and a source terminal of the second transistor of the first inverter is connected to the source terminal of the first transistor.
- the second resistor may be connected in series.
- the display driver circuit according to the embodiment of the present invention is used in a display device that supplies a signal of a first potential or a second potential to a common electrode wiring that forms a capacitor with a pixel electrode.
- the holding circuit of the own stage takes in the holding target signal and holds the holding target signal.
- the output signal that becomes the first potential or the second potential according to the above may be supplied to the common electrode wiring that forms a capacitor with the pixel electrode of the pixel in its own stage.
- the display driving circuit is used in a display device that supplies a modulation signal corresponding to the polarity of a signal potential written to a pixel electrode to a storage capacitor wiring that forms a capacitor with the pixel electrode.
- the holding circuit at the own stage captures and holds the hold target signal.
- an output signal corresponding to the holding target signal may be supplied as the modulation signal to the holding capacitor wiring that forms a capacitor with the pixel electrode of the pixel of the own stage.
- the display panel according to the embodiment of the present invention is characterized in that the display driving circuit and the pixel circuit described above are formed monolithically.
- a display device includes the display drive circuit described above.
- the present invention is suitable for a latch circuit and each drive circuit of a display device.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
Abstract
Provided is a latch circuit (15) that, while holding a signal (CMI) acquired when a signal (SROn) is active, outputs a signal (OUTn) that is in response to the signal (CMI). An inverter (18) is configured from a CMOS circuit comprising an N-channel transistor (TN1) and a P-channel transistor (TP1), and a low-level initialization signal (INITB) is input to the source terminal of the P-channel transistor (TP1). As a result, initialization is performed without increasing the number of elements.
Description
本発明は、取り込んだデータ信号を保持しつつ該データ信号に基づいた出力が可能な保持回路、並びに、これを備える表示駆動回路、表示パネル、および表示装置に関するものである。
The present invention relates to a holding circuit capable of holding an acquired data signal and outputting based on the data signal, and a display driving circuit, a display panel, and a display device including the holding circuit.
従来、第1信号がアクティブの期間に第2信号を取り込み、これを保持しつつ出力するラッチ回路(保持回路)が広く用いられている。ラッチ回路は、単独で用いられることの他、多段接続することによりシフトレジスタなどを構成して用いられている。例えば、液晶表示装置においては、液晶パネルを駆動する表示駆動回路に多数のラッチ回路が搭載されている。
Conventionally, a latch circuit (holding circuit) that captures and outputs a second signal while the first signal is active has been widely used. In addition to being used alone, the latch circuit is used by forming a shift register or the like by connecting in multiple stages. For example, in a liquid crystal display device, a number of latch circuits are mounted on a display drive circuit that drives a liquid crystal panel.
ここで、ラッチ回路では、電源投入時においてラッチ回路の内部ノードがどの基準電源に接続するか不定であれば、予期せぬ電位となって動作不具合を生じたり、違う電位のノードと短絡することによって過電流が流れる、といった問題があった。そこで、電源投入時に内部ノードが確実に安定した電位に接続するように、初期化することが可能なラッチ回路が提案されている(例えば、特許文献1~3参照)。
Here, in the latch circuit, if it is uncertain which reference power source the internal node of the latch circuit is connected to when the power is turned on, an unexpected potential may occur and a malfunction may occur, or a short circuit may occur with a node of a different potential. There was a problem that an overcurrent flowed. Therefore, a latch circuit has been proposed that can be initialized so that the internal node is reliably connected to a stable potential when the power is turned on (see, for example, Patent Documents 1 to 3).
図37は、特許文献1に記載された初期化機能付きのラッチ回路900の構成を示す回路図である。図37に示すように、ラッチ回路900は、クロックトインバータ901・902およびNAND回路903を備えている。ラッチ回路900は、初期化用信号INITBによって初期化が可能であるとともに、Q信号・QB信号に応じて映像信号DATを取り込み、これを保持しつつ出力信号LOUTとして出力する。図37中の904は、初期化を行うための制御回路である。
FIG. 37 is a circuit diagram showing a configuration of a latch circuit 900 with an initialization function described in Patent Document 1. As shown in FIG. 37, the latch circuit 900 includes clocked inverters 901 and 902 and a NAND circuit 903. The latch circuit 900 can be initialized by the initialization signal INITB, takes in the video signal DAT according to the Q signal / QB signal, and outputs it as an output signal LOUT while holding it. 904 in FIG. 37 is a control circuit for performing initialization.
クロックトインバータ901・902は、一般的なクロックトインバータの構成を備えている。図38は、一般的なクロックトインバータ910の構成を示す図であり、(a)は回路構成を示し、(b)は論理回路記号を示す。クロックトインバータ910は、2つのPチャネル型トランジスタP1・P2、および、2つのNチャネル型トランジスタN1・N2により構成されている。
The clocked inverters 901 and 902 have a general clocked inverter configuration. FIG. 38 is a diagram showing a configuration of a general clocked inverter 910, in which (a) shows a circuit configuration and (b) shows a logic circuit symbol. The clocked inverter 910 includes two P-channel transistors P1 and P2 and two N-channel transistors N1 and N2.
クロックトインバータ910では、制御信号がハイレベルのとき、入力信号INの反転信号が出力信号OUTとして出力される。なお、図38では、制御信号としてQ信号を用いているが、Q信号をトランジスタP1、QB信号をトランジスタN2に供給する構成とすることで、QB信号を制御信号として用いることができる。クロックトインバータ901はQB信号を制御信号とし、クロックトインバータ902はQ信号を制御信号としている。
In the clocked inverter 910, when the control signal is at a high level, an inverted signal of the input signal IN is output as the output signal OUT. In FIG. 38, the Q signal is used as the control signal. However, the QB signal can be used as the control signal by supplying the Q signal to the transistor P1 and the QB signal to the transistor N2. The clocked inverter 901 uses the QB signal as a control signal, and the clocked inverter 902 uses the Q signal as a control signal.
図39は、図37に示すラッチ回路900の動作時のタイミングチャートである。
FIG. 39 is a timing chart when the latch circuit 900 shown in FIG. 37 operates.
まず、通常時の動作について説明する。通常時、初期化用信号INITBはハイレベル(Vdd)で固定されている。第1フレームにおいてQ信号がハイレベル(アクティブ)からローレベル(非アクティブ)、すなわちQB信号がローレベル(非アクティブ)からハイレベル(アクティブ)になると、クロックトインバータ901によって映像信号DAT(ここではローレベル)が取り込まれ、映像信号DATの反転信号がクロックトインバータ901から出力される。これにより、クロックトインバータ901からのハイレベルの出力信号と、ハイレベルの初期化用信号INITBとを入力したNAND回路903から、ローレベル(Vss)の出力信号LOUTが出力される。なお、QB信号がハイレベルの期間、クロックトインバータ902の出力はハイインピーダンスとなっている。
First, the normal operation will be described. Normally, the initialization signal INITB is fixed at the high level (Vdd). When the Q signal changes from the high level (active) to the low level (inactive) in the first frame, that is, when the QB signal changes from the low level (inactive) to the high level (active), the video signal DAT (here, the video signal DAT) Low level) is captured, and an inverted signal of the video signal DAT is output from the clocked inverter 901. As a result, a low level (Vss) output signal LOUT is output from the NAND circuit 903 that receives the high level output signal from the clocked inverter 901 and the high level initialization signal INITB. Note that the output of the clocked inverter 902 is in a high impedance period while the QB signal is at a high level.
その後、QB信号がハイレベルからローレベルになると、クロックトインバータ901の出力はハイインピーダンスとなり、その出力は入力から切り離される。このとき、Q信号はハイレベルであるので、クロックトインバータ902によってローレベルの出力信号LOUTが保持される。この出力信号LOUTは、次にQB信号がハイレベルになるまで出力され続ける。
Thereafter, when the QB signal changes from the high level to the low level, the output of the clocked inverter 901 becomes high impedance, and the output is disconnected from the input. At this time, since the Q signal is at the high level, the clocked inverter 902 holds the output signal LOUT at the low level. This output signal LOUT continues to be output until the QB signal becomes high level next time.
続いて、QB信号がローレベルからハイレベルになると、クロックトインバータ901によって、このときの映像信号DAT(ここではハイレベル)が取り込まれ、その反転信号がNAND回路903に出力される。これにより、NAND回路903からハイレベル(Vdd)の出力信号LOUTが出力され、この出力信号LOUTは、QB信号がハイレベルからローレベルになった後も出力され続ける。
Subsequently, when the QB signal changes from the low level to the high level, the clocked inverter 901 takes in the video signal DAT (here, high level) at this time, and outputs the inverted signal to the NAND circuit 903. As a result, a high level (Vdd) output signal LOUT is output from the NAND circuit 903, and this output signal LOUT continues to be output even after the QB signal changes from the high level to the low level.
このようにして、ラッチ回路900は、通常時にはラッチ出力動作を繰り返す。次に、初期化時の動作について説明する。
In this way, the latch circuit 900 repeats the latch output operation at the normal time. Next, the operation at initialization will be described.
初期化したい場合には、初期化用信号INITBをローレベル(Vss)とする。初期化用信号INITBがローレベルになると、NAND回路903は、もう一方の入力端子の電位に拘らず、ハイレベル(Vdd)の出力信号LOUTを生成する。これにより、出力信号LOUTの電位が、強制的にハイレベルに固定されることになる。よって、ローレベルの初期化用信号INITBを与えることにより、電源投入時の不定状態を解消し、内部回路を安定化することが可能となり、後段回路の誤動作などを回避することが可能となる。
When initialization is desired, the initialization signal INITB is set to low level (Vss). When the initialization signal INITB becomes low level, the NAND circuit 903 generates a high level (Vdd) output signal LOUT regardless of the potential of the other input terminal. As a result, the potential of the output signal LOUT is forcibly fixed to a high level. Therefore, by providing the low-level initialization signal INITB, it is possible to eliminate the indefinite state when the power is turned on, stabilize the internal circuit, and avoid the malfunction of the subsequent circuit.
ところで、近年、液晶表示装置の狭額縁化を図るため、液晶パネルを駆動する表示駆動回路の縮小化が求められている。表示駆動回路の規模は、回路を構成するトランジスタの素子数に大きく影響するため、トランジスタ数を削減することが重要である。上述のように表示駆動回路には多数のラッチ回路が搭載されているため、ラッチ回路のトランジスタ数を削減することは、液晶表示装置の狭額縁化に大きく寄与する。
Incidentally, in recent years, in order to narrow the frame of a liquid crystal display device, there has been a demand for downsizing a display driving circuit for driving a liquid crystal panel. Since the scale of the display driving circuit greatly affects the number of transistors included in the circuit, it is important to reduce the number of transistors. As described above, since a large number of latch circuits are mounted on the display driving circuit, reducing the number of transistors in the latch circuit greatly contributes to narrowing the frame of the liquid crystal display device.
しかし、ラッチ回路に初期化機能を付加するためには、図37の制御回路904のように初期化用の制御回路を追加する必要がある。このため、通常のラッチ回路に対して制御回路と端子配線とを追加することになり、素子数や配線領域が増え、回路規模が大きくなってしまうという問題があった。初期化機能の付加は、額縁サイズの増大につながるため、液晶表示装置の狭額縁化に対して不向きであった。
However, in order to add an initialization function to the latch circuit, it is necessary to add a control circuit for initialization like the control circuit 904 in FIG. For this reason, a control circuit and terminal wiring are added to a normal latch circuit, and there is a problem that the number of elements and wiring area increase, and the circuit scale increases. Since the addition of the initialization function leads to an increase in the frame size, it is not suitable for narrowing the frame of the liquid crystal display device.
本発明は、上記従来の問題点に鑑みなされたものであって、その目的は、素子数を増やすことなく初期化することができる保持回路、表示駆動回路、表示パネル、および表示装置を提供することにある。
The present invention has been made in view of the above-described conventional problems, and an object thereof is to provide a holding circuit, a display driving circuit, a display panel, and a display device that can be initialized without increasing the number of elements. There is.
本発明の保持回路は、上記課題を解決するために、
制御信号がアクティブになると保持対象信号を取り込み、該制御信号が次にアクティブになるまで該保持対象信号を保持しつつ、該保持対象信号に応じた出力信号を出力する保持回路であって、
上記保持対象信号を保持するためのインバータを少なくとも1つ備え、
上記インバータは、Pチャネル型の第1トランジスタとNチャネル型の第2トランジスタのゲート端子同士及びドレイン端子同士が互いに接続されたCMOS回路により構成され、
上記第1トランジスタのソース端子または上記第2トランジスタのソース端子に、初期化時にハイレベルまたはローレベルである初期化用信号が入力されることを特徴としている。 In order to solve the above problems, the holding circuit of the present invention provides
A holding circuit that captures a holding target signal when the control signal becomes active, and outputs an output signal corresponding to the holding target signal while holding the holding target signal until the control signal becomes active next,
Comprising at least one inverter for holding the hold target signal;
The inverter includes a CMOS circuit in which gate terminals and drain terminals of a P-channel first transistor and an N-channel second transistor are connected to each other.
An initialization signal having a high level or a low level at the time of initialization is input to the source terminal of the first transistor or the source terminal of the second transistor.
制御信号がアクティブになると保持対象信号を取り込み、該制御信号が次にアクティブになるまで該保持対象信号を保持しつつ、該保持対象信号に応じた出力信号を出力する保持回路であって、
上記保持対象信号を保持するためのインバータを少なくとも1つ備え、
上記インバータは、Pチャネル型の第1トランジスタとNチャネル型の第2トランジスタのゲート端子同士及びドレイン端子同士が互いに接続されたCMOS回路により構成され、
上記第1トランジスタのソース端子または上記第2トランジスタのソース端子に、初期化時にハイレベルまたはローレベルである初期化用信号が入力されることを特徴としている。 In order to solve the above problems, the holding circuit of the present invention provides
A holding circuit that captures a holding target signal when the control signal becomes active, and outputs an output signal corresponding to the holding target signal while holding the holding target signal until the control signal becomes active next,
Comprising at least one inverter for holding the hold target signal;
The inverter includes a CMOS circuit in which gate terminals and drain terminals of a P-channel first transistor and an N-channel second transistor are connected to each other.
An initialization signal having a high level or a low level at the time of initialization is input to the source terminal of the first transistor or the source terminal of the second transistor.
上記の構成によれば、インバータの第1トランジスタのソース端子または第2トランジスタのソース端子に、初期化時にハイレベルまたはローレベルである初期化用信号が入力されることによって、保持対象信号の保持電位および出力信号の出力電位に関わるインバータの入力端子および出力端子の電位を、所望の電位で固定することが可能となる。また、初期化用信号の電位を、回路内に大きな貫通電流を発生させない電位(例えば、初期化用信号を第1トランジスタのソース端子に入力する場合はローレベル、初期化用信号を第2トランジスタのソース端子に入力する場合はハイレベル)とすることによって、安定して固定することが可能となる。
According to the above configuration, the initialization target signal that is at the high level or the low level at the time of initialization is input to the source terminal of the first transistor or the second transistor of the inverter, whereby the retention target signal is retained. It is possible to fix the potential of the input terminal and the output terminal of the inverter related to the potential and the output potential of the output signal at a desired potential. Further, the potential of the initialization signal is set to a potential that does not generate a large through current in the circuit (for example, when the initialization signal is input to the source terminal of the first transistor, the initialization signal is set to the low level). When the signal is input to the source terminal, the signal can be stably fixed.
さらに、初期化用信号は、新たに初期化用の制御回路や端子配線を追加して供給するのではなく、初期化機能を付加する前に設けられていたインバータの電源の配線を利用することができる。
In addition, the initialization signal should not be supplied by adding a new initialization control circuit or terminal wiring, but should use the inverter power supply wiring that was provided before the initialization function was added. Can do.
よって、保持回路では、素子数を増やすことなく初期化することができる。
Therefore, the holding circuit can be initialized without increasing the number of elements.
本発明の表示駆動回路は、上記課題を解決するために、
画素に含まれる画素電極と容量を形成する信号線が設けられた表示パネルを駆動する表示駆動回路であって、
複数の走査信号線の各々に対応して設けられた複数の段を含むシフトレジスタと、
上記シフトレジスタの各段に対応して設けられた少なくとも1つの保持回路とを備え、
上記保持回路は、上述の保持回路であり、上記シフトレジスタの各段の出力信号を上記制御信号とし、
上記シフトレジスタの1つの段の出力信号がアクティブになると、この段に対応する保持回路が、上記保持対象信号を取り込んでこれを保持しつつ、該保持対象信号に応じた出力信号をこの段に対応する上記信号線に供給することを特徴としている。 In order to solve the above problems, the display driving circuit of the present invention provides
A display driving circuit for driving a display panel provided with a pixel electrode and a signal line forming a capacitor included in a pixel,
A shift register including a plurality of stages provided corresponding to each of the plurality of scanning signal lines;
And at least one holding circuit provided corresponding to each stage of the shift register,
The holding circuit is the holding circuit described above, and the output signal of each stage of the shift register is used as the control signal,
When an output signal of one stage of the shift register becomes active, a holding circuit corresponding to this stage takes in the holding target signal and holds it, and outputs an output signal corresponding to the holding target signal to this stage. The signal line is supplied to the corresponding signal line.
画素に含まれる画素電極と容量を形成する信号線が設けられた表示パネルを駆動する表示駆動回路であって、
複数の走査信号線の各々に対応して設けられた複数の段を含むシフトレジスタと、
上記シフトレジスタの各段に対応して設けられた少なくとも1つの保持回路とを備え、
上記保持回路は、上述の保持回路であり、上記シフトレジスタの各段の出力信号を上記制御信号とし、
上記シフトレジスタの1つの段の出力信号がアクティブになると、この段に対応する保持回路が、上記保持対象信号を取り込んでこれを保持しつつ、該保持対象信号に応じた出力信号をこの段に対応する上記信号線に供給することを特徴としている。 In order to solve the above problems, the display driving circuit of the present invention provides
A display driving circuit for driving a display panel provided with a pixel electrode and a signal line forming a capacitor included in a pixel,
A shift register including a plurality of stages provided corresponding to each of the plurality of scanning signal lines;
And at least one holding circuit provided corresponding to each stage of the shift register,
The holding circuit is the holding circuit described above, and the output signal of each stage of the shift register is used as the control signal,
When an output signal of one stage of the shift register becomes active, a holding circuit corresponding to this stage takes in the holding target signal and holds it, and outputs an output signal corresponding to the holding target signal to this stage. The signal line is supplied to the corresponding signal line.
上記の構成によれば、素子数を増やすことなく初期化することができる保持回路を備えていることによって、初期化することで表示駆動回路を安定化することが可能となり、また、回路規模を縮小化することが可能となるので、例えば、表示駆動回路を搭載する表示装置の狭額縁化に寄与することができる。
According to the above configuration, since the holding circuit that can be initialized without increasing the number of elements is provided, the display driving circuit can be stabilized by the initialization, and the circuit scale can be reduced. Since it is possible to reduce the size, for example, it is possible to contribute to the narrowing of the frame of a display device equipped with a display drive circuit.
以上のように、本発明の保持回路は、上記第1トランジスタのソース端子及び上記第2トランジスタのソース端子のいずれか1つのソース端子に、ハイレベルまたはローレベルの初期化用信号が入力される構成を有している。それゆえ、素子数を増やすことなく初期化することができるという効果を奏する。
As described above, in the holding circuit of the present invention, a high-level or low-level initialization signal is input to any one of the source terminal of the first transistor and the source terminal of the second transistor. It has a configuration. Therefore, there is an effect that initialization can be performed without increasing the number of elements.
〔実施の形態1〕
本発明の実施形態1について図面に基づいて説明すれば、以下の通りである。 [Embodiment 1]
The following describesEmbodiment 1 of the present invention with reference to the drawings.
本発明の実施形態1について図面に基づいて説明すれば、以下の通りである。 [Embodiment 1]
The following describes
図1は、本実施の形態のラッチ回路15の一構成例を示す回路図である。図1に示すように、ラッチ回路15(保持回路)は、クロックトインバータ16・17およびインバータ18(第1インバータ)を備えている。ラッチ回路15は、例えば、液晶パネルを駆動する表示駆動回路に搭載されるものであり、ここでは、シフトレジスタの各段の出力信号SROn(制御信号)に応じて極性信号CMI(保持対象信号)を取り込み、これを保持しつつ出力信号OUTnを出力するものについて説明する。
FIG. 1 is a circuit diagram showing one configuration example of the latch circuit 15 of the present embodiment. As shown in FIG. 1, the latch circuit 15 (holding circuit) includes clocked inverters 16 and 17 and an inverter 18 (first inverter). The latch circuit 15 is mounted on, for example, a display drive circuit that drives a liquid crystal panel. Here, the polarity signal CMI (holding target signal) is determined according to the output signal SROn (control signal) of each stage of the shift register. And outputting the output signal OUTn while holding this will be described.
クロックトインバータ16・17は、図38に示したクロックトインバータ910の構成を備えている。クロックトインバータ16は、出力信号SROnを制御信号とし、クロックトインバータ17は、出力信号SROBnを制御信号としている。クロックトインバータ16の入力端子には極性信号CMIが供給され、クロックトインバータ16の出力端子はインバータ18の入力端子と接続されている。クロックトインバータ17の入力端子はインバータ18の出力端子に接続され、クロックトインバータ17の出力端子はインバータ18の入力端子に接続されている。
The clocked inverters 16 and 17 have the configuration of the clocked inverter 910 shown in FIG. The clocked inverter 16 uses the output signal SROn as a control signal, and the clocked inverter 17 uses the output signal SROBn as a control signal. The polarity signal CMI is supplied to the input terminal of the clocked inverter 16, and the output terminal of the clocked inverter 16 is connected to the input terminal of the inverter 18. The input terminal of the clocked inverter 17 is connected to the output terminal of the inverter 18, and the output terminal of the clocked inverter 17 is connected to the input terminal of the inverter 18.
インバータ18は、Pチャネル型のトランジスタTP1(第1トランジスタ)およびNチャネル型のトランジスタTN1(第2トランジスタ)からなるCMOS回路により構成されている。トランジスタTP1のソース端子には初期化用信号INITBが与えられ、トランジスタTP1のゲート端子はインバータ18の入力端子に接続され、トランジスタTP1のドレイン端子はインバータ18の出力端子に接続されている。トランジスタTN1のソース端子には電源電圧Vssが与えられ、トランジスタTN1のゲート端子はインバータ18の入力端子に接続され、トランジスタTN1のドレイン端子はインバータ18の出力端子に接続されている。インバータ18の出力端子から出力信号OUTnが出力される。初期化用信号INITBは、通常動作時にハイレベル(Vdd)になり、初期化時(アクティブ時)にローレベル(Vss)になる信号である。
The inverter 18 is composed of a CMOS circuit including a P-channel transistor TP1 (first transistor) and an N-channel transistor TN1 (second transistor). An initialization signal INITB is supplied to the source terminal of the transistor TP1, the gate terminal of the transistor TP1 is connected to the input terminal of the inverter 18, and the drain terminal of the transistor TP1 is connected to the output terminal of the inverter 18. The source voltage Vss is applied to the source terminal of the transistor TN1, the gate terminal of the transistor TN1 is connected to the input terminal of the inverter 18, and the drain terminal of the transistor TN1 is connected to the output terminal of the inverter 18. An output signal OUTn is output from the output terminal of the inverter 18. The initialization signal INITB is a signal that is at a high level (Vdd) during normal operation and is at a low level (Vss) at initialization (when active).
(動作について)
次に、ラッチ回路15の動作について説明する。図2は、ラッチ回路15の動作時のタイミングチャートである。 (About operation)
Next, the operation of thelatch circuit 15 will be described. FIG. 2 is a timing chart when the latch circuit 15 operates.
次に、ラッチ回路15の動作について説明する。図2は、ラッチ回路15の動作時のタイミングチャートである。 (About operation)
Next, the operation of the
CMIは、1水平走査期間(1H)ごとに極性が反転する極性信号である。INITBは初期化用信号INITBの電位を示す。SROnはシフトレジスタのn段目の出力信号SROnの電位を示し、SROBnは出力信号SROnの反転信号の電位を示す。OUTnはラッチ回路15の出力信号OUTnの電位を示し、OUTBnは出力信号OUTnの反転信号の電位を示す。なお、図2では、電源投入から、電源投入後に通常動作が開始される第1フレーム以降を示している。
CMI is a polarity signal whose polarity is inverted every horizontal scanning period (1H). INITB indicates the potential of the initialization signal INITB. SROn indicates the potential of the n-th output signal SROn of the shift register, and SROBn indicates the potential of the inverted signal of the output signal SROn. OUTn indicates the potential of the output signal OUTn of the latch circuit 15, and OUTBn indicates the potential of the inverted signal of the output signal OUTn. Note that FIG. 2 shows the first and subsequent frames from which the normal operation is started after the power is turned on.
まず、通常時の動作について説明する。第1フレームにおいて、シフトレジスタの出力信号SROnがローレベル(非アクティブ)からハイレベル(アクティブ)になると、クロックトインバータ16によって極性信号CMI(ここではハイレベル(Vdd))が取り込まれ、極性信号CMIの反転信号がクロックトインバータ16から出力される。そして、通常時においては初期化用信号INITBはVdd(ハイレベル)で固定されているので、インバータ18ではトランジスタTP1がオン状態となり、トランジスタTN1がオフ状態となることによって、インバータ18の出力信号はVdd(ハイレベル)となる。これにより、ハイレベル(Vdd)の出力信号OUTnが出力される。なお、出力信号SROnがハイレベルの期間、クロックトインバータ17の出力はハイインピーダンスとなっている。
First, the normal operation will be described. In the first frame, when the output signal SRon of the shift register changes from the low level (inactive) to the high level (active), the polarity signal CMI (here, high level (Vdd)) is taken in by the clocked inverter 16, and the polarity signal An inverted signal of CMI is output from the clocked inverter 16. Since the initialization signal INITB is fixed at Vdd (high level) in the normal time, the transistor TP1 is turned on in the inverter 18 and the transistor TN1 is turned off, so that the output signal of the inverter 18 is Vdd (high level). As a result, a high level (Vdd) output signal OUTn is output. Note that the output of the clocked inverter 17 is in a high impedance period while the output signal SRon is at a high level.
その後、シフトレジスタの出力信号SROnがハイレベルからローレベルになると、クロックトインバータ16の出力はハイインピーダンスとなり、その出力は入力から切り離される。このとき、出力信号SROBnはハイレベルであるので、クロックトインバータ17によってハイレベルの出力信号OUTnが保持される。この出力信号OUTnは、次に出力信号SROnがハイレベルになるまで出力され続ける。
Thereafter, when the output signal SROn of the shift register changes from the high level to the low level, the output of the clocked inverter 16 becomes high impedance, and the output is disconnected from the input. At this time, since the output signal SROBn is at the high level, the clocked inverter 17 holds the output signal OUTn at the high level. This output signal OUTn continues to be output until the next output signal SRon becomes high level.
続いて、シフトレジスタの出力信号SROnがローレベルからハイレベルになると、クロックトインバータ16によって、このときの極性信号CMI(ここではローレベル(Vss))が取り込まれ、その反転信号がインバータ18に出力される。これにより、インバータ18からローレベル(Vss)の出力信号OUTnが出力され、この出力信号OUTnは、出力信号SROnがハイレベルからローレベルになった後も出力され続ける。このようにして、ラッチ回路15は、通常時にはラッチ出力動作を繰り返す。
Subsequently, when the output signal SRon of the shift register changes from the low level to the high level, the clocked inverter 16 takes in the polarity signal CMI (here, the low level (Vss)) at this time, and the inverted signal is input to the inverter 18. Is output. As a result, the output signal OUTn of the low level (Vss) is output from the inverter 18, and this output signal OUTn continues to be output even after the output signal SROn changes from the high level to the low level. In this way, the latch circuit 15 repeats the latch output operation at the normal time.
(初期化動作について)
次に、初期化時の動作について説明する。初期化時には、初期化用信号INITBをVss(ローレベル)とする。 (About initialization operation)
Next, the operation at initialization will be described. At initialization, the initialization signal INITB is set to Vss (low level).
次に、初期化時の動作について説明する。初期化時には、初期化用信号INITBをVss(ローレベル)とする。 (About initialization operation)
Next, the operation at initialization will be described. At initialization, the initialization signal INITB is set to Vss (low level).
初期化時に、シフトレジスタの出力信号SROnがVss(ローレベル)の場合は、以下のように動作する(図2参照)。
At initialization, when the output signal SRon of the shift register is Vss (low level), the operation is as follows (see FIG. 2).
初期化用信号INITBがローレベルになると、インバータ18の出力信号、すなわち出力信号OUTnの電位が、強制的にVss(ローレベル)に固定されることとなる。このとき、クロックトインバータ17はインバータとして機能するので、出力信号OUTnの電位がVssとなることにより、出力信号OUTBnの電位がVdd(ハイレベル)となる。また、クロックトインバータ16はハイインピーダンスとなっているため、出力信号OUTBnは極性信号CMIから電気的に切り離される。よって、出力信号OUTnをVss電位、出力信号OUTBnをVdd電位で、共に安定化することができる。
When the initialization signal INITB becomes low level, the output signal of the inverter 18, that is, the potential of the output signal OUTn is forcibly fixed to Vss (low level). At this time, since the clocked inverter 17 functions as an inverter, the potential of the output signal OUTBn becomes Vdd (high level) when the potential of the output signal OUTn becomes Vss. Further, since the clocked inverter 16 has high impedance, the output signal OUTBn is electrically disconnected from the polarity signal CMI. Therefore, the output signal OUTn can be stabilized at the Vss potential and the output signal OUTBn can be stabilized at the Vdd potential.
一方、初期化時に、シフトレジスタの出力信号SROnがVdd(ハイレベル)の場合は、以下のように動作する(図示せず)。
On the other hand, when the output signal SROn of the shift register is Vdd (high level) at the time of initialization, the operation is as follows (not shown).
初期化用信号INITBがローレベルになると、インバータ18の出力信号である出力信号OUTnの電位が、強制的にVss(ローレベル)に固定されることとなる。このとき、クロックトインバータ16はインバータとして機能し、クロックトインバータ17はハイインピーダンスとなっている。これにより、出力信号OUTBnの電位は、極性信号CMIの反転電位に固定される。よって、出力信号OUTnをVss電位、出力信号OUTBnを極性信号CMIの反転電位で、共に安定化することができる。
When the initialization signal INITB becomes low level, the potential of the output signal OUTn that is the output signal of the inverter 18 is forcibly fixed to Vss (low level). At this time, the clocked inverter 16 functions as an inverter, and the clocked inverter 17 has a high impedance. Thereby, the potential of the output signal OUTBn is fixed to the inverted potential of the polarity signal CMI. Therefore, both the output signal OUTn and the output signal OUTBn can be stabilized at the Vss potential and the inverted potential of the polarity signal CMI.
このように、ラッチ回路15では、出力信号SROnがハイレベル・ローレベルのいずれの場合であっても、ローレベル(Vss)の初期化用信号INITBをトランジスタTP1のソース端子に与えることによって、内部電位を安定した電位で固定することが可能となる。
As described above, in the latch circuit 15, regardless of whether the output signal SROn is high level or low level, the initialization signal INITB of low level (Vss) is given to the source terminal of the transistor TP1, thereby providing the internal signal. It becomes possible to fix the potential at a stable potential.
また、初期化用信号INITBは、新たに初期化用の制御回路や端子配線を追加して供給できるようにしたのではなく、初期化機能を付加する前のラッチ回路に設けられていたインバータ18の電源VDDの配線を利用している。
In addition, the initialization signal INITB can be supplied by newly adding a control circuit and terminal wiring for initialization, but the inverter 18 provided in the latch circuit before the initialization function is added. The power supply VDD wiring is used.
よって、ラッチ回路15では、素子数を増やすことなく初期化することが可能となっている。
Therefore, the latch circuit 15 can be initialized without increasing the number of elements.
なお、通常動作時は、初期化用信号INITBがVdd(ハイレベル)で固定されているので、初期化用信号INITBが電源電圧Vddと同様の機能を果たすため、通常のラッチ回路と同一の動作が可能となる。
During normal operation, the initialization signal INITB is fixed at Vdd (high level), so the initialization signal INITB performs the same function as the power supply voltage Vdd. Is possible.
(変形例)
ラッチ回路15では、初期化用信号INITBをトランジスタTP1のソース端子に供給していたが、初期化用信号INITをトランジスタTN1のソース端子に供給して、同様に初期化することができる。 (Modification)
In thelatch circuit 15, the initialization signal INITB is supplied to the source terminal of the transistor TP1, but the initialization signal INIT can be supplied to the source terminal of the transistor TN1 and similarly initialized.
ラッチ回路15では、初期化用信号INITBをトランジスタTP1のソース端子に供給していたが、初期化用信号INITをトランジスタTN1のソース端子に供給して、同様に初期化することができる。 (Modification)
In the
図3は、ラッチ回路19の一構成例を示す回路図である。図3に示すように、ラッチ回路19(保持回路)では、図1のラッチ回路15と比較して、トランジスタTP1のソース端子およびトランジスタTN1のソース端子にそれぞれ供給される信号および電源電圧が異なっている。具体的には、トランジスタTP1のソース端子には電源電圧Vddが供給され、トランジスタTN1のソース端子に初期化用信号INITが供給されている。初期化用信号INITは、通常動作時にローレベル(Vss)になり、初期化時にハイレベル(Vdd)になる信号である。
FIG. 3 is a circuit diagram showing a configuration example of the latch circuit 19. As shown in FIG. 3, the latch circuit 19 (holding circuit) differs from the latch circuit 15 of FIG. 1 in the signals and power supply voltages supplied to the source terminal of the transistor TP1 and the source terminal of the transistor TN1, respectively. Yes. Specifically, the power supply voltage Vdd is supplied to the source terminal of the transistor TP1, and the initialization signal INIT is supplied to the source terminal of the transistor TN1. The initialization signal INIT is a signal that becomes low level (Vss) during normal operation and becomes high level (Vdd) during initialization.
(初期化動作について)
ここでは、初期化時の動作について説明する。初期化時には、初期化用信号INITをVdd(ハイレベル)とする。 (About initialization operation)
Here, the operation at the time of initialization will be described. At initialization, the initialization signal INIT is set to Vdd (high level).
ここでは、初期化時の動作について説明する。初期化時には、初期化用信号INITをVdd(ハイレベル)とする。 (About initialization operation)
Here, the operation at the time of initialization will be described. At initialization, the initialization signal INIT is set to Vdd (high level).
初期化時に、シフトレジスタの出力信号SROnがVss(ローレベル)の場合は、以下のように動作する。
At initialization, if the output signal SRon of the shift register is Vss (low level), the operation is as follows.
初期化用信号INITがハイレベルになると、インバータ18の出力信号、すなわち出力信号OUTnの電位が、強制的にVdd(ハイレベル)に固定されることとなる。このとき、クロックトインバータ17はインバータとして機能するので、出力信号OUTnの電位がVddとなることにより、出力信号OUTBnの電位がVss(ローレベル)となる。クロックトインバータ16はハイインピーダンスとなっているため、出力信号OUTBnは極性信号CMIから電気的に切り離される。よって、出力信号OUTnをVdd電位、出力信号OUTBnをVss電位で、共に安定化することができる。
When the initialization signal INIT becomes high level, the output signal of the inverter 18, that is, the potential of the output signal OUTn is forcibly fixed to Vdd (high level). At this time, since the clocked inverter 17 functions as an inverter, when the potential of the output signal OUTn becomes Vdd, the potential of the output signal OUTBn becomes Vss (low level). Since the clocked inverter 16 has high impedance, the output signal OUTBn is electrically disconnected from the polarity signal CMI. Therefore, the output signal OUTn can be stabilized at the Vdd potential and the output signal OUTBn can be stabilized at the Vss potential.
一方、初期化時に、シフトレジスタの出力信号SROnがVdd(ハイレベル)の場合は、以下のように動作する。
On the other hand, when the output signal SROn of the shift register is Vdd (high level) at the time of initialization, the operation is as follows.
初期化用信号INITがハイレベルになると、インバータ18の出力信号である出力信号OUTnの電位が、強制的にVdd(ハイレベル)に固定されることとなる。このとき、クロックトインバータ16はインバータとして機能し、クロックトインバータ17はハイインピーダンスとなっている。これにより、出力信号OUTBnの電位は、極性信号CMIの反転電位に固定される。よって、出力信号OUTnをVdd電位、出力信号OUTBnを極性信号CMIの反転電位で、共に安定化することができる。
When the initialization signal INIT becomes high level, the potential of the output signal OUTn that is the output signal of the inverter 18 is forcibly fixed to Vdd (high level). At this time, the clocked inverter 16 functions as an inverter, and the clocked inverter 17 has a high impedance. Thereby, the potential of the output signal OUTBn is fixed to the inverted potential of the polarity signal CMI. Therefore, the output signal OUTn can be stabilized at the Vdd potential, and the output signal OUTBn can be stabilized at the inverted potential of the polarity signal CMI.
このように、ラッチ回路19では、出力信号SROnがハイレベル・ローレベルのいずれの場合であっても、ハイレベル(Vdd)の初期化用信号INITをトランジスタTN1のソース端子に与えることによって、内部電位を安定した電位で固定することが可能となる。
As described above, in the latch circuit 19, regardless of whether the output signal SRon is high level or low level, the initialization signal INIT of high level (Vdd) is given to the source terminal of the transistor TN 1, thereby It becomes possible to fix the potential at a stable potential.
また、初期化用信号INITは、新たに初期化用の制御回路や端子配線を追加して供給できるようにしたのではなく、初期化機能を付加する前のラッチ回路に設けられていたインバータ18の電源VSSの配線を利用している。
In addition, the initialization signal INIT is not made to be able to be supplied by newly adding a control circuit and terminal wiring for initialization, but is an inverter 18 provided in the latch circuit before the initialization function is added. The power supply VSS wiring is used.
よって、ラッチ回路19では、素子数を増やすことなく初期化することが可能となっている。
Therefore, the latch circuit 19 can be initialized without increasing the number of elements.
なお、通常動作時は、初期化用信号INITがVss(ローレベル)で固定されるので、初期化用信号INITが電源電圧Vssと同様の機能を果たす。よって、ラッチ回路19は、通常のラッチ回路と同一の動作が可能となっており、上述したラッチ回路15の通常時の動作と同様に動作することが可能となっている。
In the normal operation, the initialization signal INIT is fixed at Vss (low level), so that the initialization signal INIT performs the same function as the power supply voltage Vss. Therefore, the latch circuit 19 can perform the same operation as a normal latch circuit, and can operate in the same manner as the normal operation of the latch circuit 15 described above.
〔実施の形態2〕
本発明の実施形態2について図面に基づいて説明すれば、以下の通りである。本実施の形態では、シフトレジスタの前段(k-1段目)の出力信号SROUT(k-1)に応じて極性信号CMIを取り込み、これを保持しつつ、自段(k段目)の出力として、出力信号OUTkを出力するラッチ回路について説明する。 [Embodiment 2]
Embodiment 2 of the present invention will be described below with reference to the drawings. In the present embodiment, the polarity signal CMI is taken in accordance with the output signal SROUT (k−1) of the previous stage (k−1 stage) of the shift register, and the output of the own stage (k stage) is held while holding it. A latch circuit that outputs the output signal OUTk will be described.
本発明の実施形態2について図面に基づいて説明すれば、以下の通りである。本実施の形態では、シフトレジスタの前段(k-1段目)の出力信号SROUT(k-1)に応じて極性信号CMIを取り込み、これを保持しつつ、自段(k段目)の出力として、出力信号OUTkを出力するラッチ回路について説明する。 [Embodiment 2]
図4は、本実施の形態のラッチ回路31の一構成例を示す回路図である。図4に示すように、ラッチ回路31(保持回路)は、インバータINV1(第1インバータ)、インバータINV2(第2インバータ)、インバータINV3、アナログスイッチ回路ASW1、およびアナログスイッチ回路ASW2により構成される。なお、アナログスイッチ回路ASW1の出力端子とインバータINV2の入力端子との接続点をノードN1とし、インバータINV1の出力端子とアナログスイッチ回路ASW2の入力端子との接続点をノードN2とする(図4参照)。
FIG. 4 is a circuit diagram showing a configuration example of the latch circuit 31 of the present embodiment. As shown in FIG. 4, the latch circuit 31 (holding circuit) includes an inverter INV1 (first inverter), an inverter INV2 (second inverter), an inverter INV3, an analog switch circuit ASW1, and an analog switch circuit ASW2. Note that a connection point between the output terminal of the analog switch circuit ASW1 and the input terminal of the inverter INV2 is a node N1, and a connection point between the output terminal of the inverter INV1 and the input terminal of the analog switch circuit ASW2 is a node N2 (see FIG. 4). ).
インバータINV3の入力端子はラッチ回路31の入力端子INsに接続されている。アナログスイッチ回路ASW1は、Nチャネル型トランジスタT1とPチャネル型トランジスタT2で構成され、トランジスタT1は、ゲート端子が入力端子INsに接続され、ソース端子が入力端子INcに接続され、トランジスタT2は、ゲート端子がインバータINV3の出力端子に接続され、ソース端子が入力端子INcに接続されている。入力端子INsにはシフトレジスタの前段の出力信号SROUT(k-1)が供給され、入力端子INcには極性信号CMIが供給される。
The input terminal of the inverter INV3 is connected to the input terminal INs of the latch circuit 31. The analog switch circuit ASW1 includes an N-channel transistor T1 and a P-channel transistor T2, and the transistor T1 has a gate terminal connected to the input terminal INs, a source terminal connected to the input terminal INc, and a transistor T2 including a gate. The terminal is connected to the output terminal of the inverter INV3, and the source terminal is connected to the input terminal INc. The output signal SROUT (k−1) of the previous stage of the shift register is supplied to the input terminal INs, and the polarity signal CMI is supplied to the input terminal INc.
インバータINV2は、Pチャネル型トランジスタT3(第1トランジスタ)とNチャネル型トランジスタT4(第2トランジスタ)で構成され、インバータINV2の入力端子(トランジスタT3のゲート端子と、トランジスタT4のゲート端子との接続点(ノードN1))は、アナログスイッチ回路ASW1の出力端子(トランジスタT1、T2のドレイン端子)に接続されている。トランジスタT3のソース端子には電源電圧Vddが与えられ、トランジスタT3のドレイン端子はインバータINV2の出力端子(トランジスタT3のドレイン端子と、トランジスタT4のドレイン端子との接続点)に接続され、トランジスタT4のソース端子には電源電圧Vssが与えられ、トランジスタT4のドレイン端子はインバータINV2の出力端子に接続されている。インバータINV2の出力端子は、ラッチ回路31の出力端子OUT、及びインバータINV1の入力端子(トランジスタT5、T6のゲート端子)に接続されている。
The inverter INV2 includes a P-channel transistor T3 (first transistor) and an N-channel transistor T4 (second transistor). The inverter INV2 is connected to the input terminal (the gate terminal of the transistor T3 and the gate terminal of the transistor T4). The point (node N1)) is connected to the output terminal of the analog switch circuit ASW1 (drain terminals of the transistors T1 and T2). The power supply voltage Vdd is applied to the source terminal of the transistor T3, and the drain terminal of the transistor T3 is connected to the output terminal of the inverter INV2 (the connection point between the drain terminal of the transistor T3 and the drain terminal of the transistor T4). The source terminal is supplied with the power supply voltage Vss, and the drain terminal of the transistor T4 is connected to the output terminal of the inverter INV2. The output terminal of the inverter INV2 is connected to the output terminal OUT of the latch circuit 31 and the input terminal of the inverter INV1 (gate terminals of the transistors T5 and T6).
インバータINV1は、Pチャネル型トランジスタT5(第1インバータ)とNチャネル型トランジスタT6(第2インバータ)で構成され、インバータINV1の入力端子(トランジスタT5、T6のゲート端子)は、インバータINV2の出力端子に接続されている。トランジスタT5のソース端子には初期化用信号INITBが与えられ、トランジスタT5のドレイン端子は、アナログスイッチ回路ASW2の入力端子(トランジスタT7のソース端子と、トランジスタT8のソース端子との接続点(ノードN2))に接続され、トランジスタT6のソース端子には電源電圧Vssが与えられ、トランジスタT6のドレイン端子はアナログスイッチ回路ASW2の入力端子に接続されている。
The inverter INV1 includes a P-channel transistor T5 (first inverter) and an N-channel transistor T6 (second inverter). The input terminal of the inverter INV1 (the gate terminals of the transistors T5 and T6) is the output terminal of the inverter INV2. It is connected to the. The initialization signal INITB is given to the source terminal of the transistor T5, and the drain terminal of the transistor T5 is connected to the input terminal of the analog switch circuit ASW2 (the connection point between the source terminal of the transistor T7 and the source terminal of the transistor T8 (node N2 )), The power supply voltage Vss is applied to the source terminal of the transistor T6, and the drain terminal of the transistor T6 is connected to the input terminal of the analog switch circuit ASW2.
アナログスイッチ回路ASW2は、Nチャネル型トランジスタT7とPチャネル型トランジスタT8で構成され、トランジスタT7は、ゲート端子がインバータINV3の出力端子に接続され、ソース端子がインバータINV1の出力端子に接続され、ドレイン端子がインバータINV2の入力端子に接続され、トランジスタT8は、ゲート端子が入力端子INsに接続され、ソース端子がインバータINV1の出力端子に接続され、ドレイン端子がインバータINV2の入力端子に接続されている。
The analog switch circuit ASW2 includes an N-channel transistor T7 and a P-channel transistor T8. The transistor T7 has a gate terminal connected to the output terminal of the inverter INV3, a source terminal connected to the output terminal of the inverter INV1, and a drain. The terminal is connected to the input terminal of the inverter INV2, the transistor T8 has a gate terminal connected to the input terminal INs, a source terminal connected to the output terminal of the inverter INV1, and a drain terminal connected to the input terminal of the inverter INV2. .
上記の構成によれば、ラッチ回路31は、入力端子INsにシフトレジスタの前段(k-1段目)の出力信号SROUT(k-1)が入力され、該出力信号SROUT(k-1)がアクティブになると極性信号CMIを入力端子INcから取り込み、これを保持しつつ、自段(k段目)の出力として、出力端子OUTから出力信号OUTkを出力する。出力信号OUTkは、ハイレベル(Vdd)及びローレベル(Vss)が切り替わって出力される。初期化用信号INITBは、通常動作時にハイレベル(Vdd)になり、初期化時(アクティブ時)にローレベル(Vss)になる信号である。
According to the above configuration, in the latch circuit 31, the output signal SROUT (k−1) of the previous stage (k−1 stage) of the shift register is input to the input terminal INs, and the output signal SROUT (k−1) is When activated, the polarity signal CMI is taken from the input terminal INc, and while holding it, the output signal OUTk is output from the output terminal OUT as the output of the own stage (kth stage). The output signal OUTk is output after switching between a high level (Vdd) and a low level (Vss). The initialization signal INITB is a signal that is at a high level (Vdd) during normal operation and is at a low level (Vss) at initialization (when active).
(動作について)
次に、ラッチ回路31の動作について説明する。 (About operation)
Next, the operation of thelatch circuit 31 will be described.
次に、ラッチ回路31の動作について説明する。 (About operation)
Next, the operation of the
まず、通常時の動作について簡単に説明する。通常時、初期化用信号INITBはVdd(ハイレベル)で固定されている。
First, we will briefly explain the normal operation. Normally, the initialization signal INITB is fixed at Vdd (high level).
ラッチ回路31では、出力信号SROUT(k-1)がローレベル(非アクティブ)からハイレベル(アクティブ)になると、アナログスイッチ回路ASW1がオン(トランジスタT1,T2がオン)となり、アナログスイッチ回路ASW2がオフ(トランジスタT7,T8がオフ)となる。これにより、ノードN1が極性信号CMIと電気的に接続され、同電位となる。また、ノードN1はノードN2と電気的に遮断される。よって、極性信号CMIがVdd(ハイレベル)の場合はインバータINV2の出力はVss(ローレベル)となり、ローレベル(Vss)の出力信号OUTkが出力される。一方、極性信号CMIがVss(ローレベル)の場合はインバータINV2の出力はVdd(ハイレベル)となり、ハイレベル(Vdd)の出力信号OUTkが出力される。
In the latch circuit 31, when the output signal SROUT (k-1) changes from low level (inactive) to high level (active), the analog switch circuit ASW1 is turned on (transistors T1 and T2 are turned on), and the analog switch circuit ASW2 is turned on. It is off (transistors T7 and T8 are off). As a result, the node N1 is electrically connected to the polarity signal CMI and has the same potential. Node N1 is electrically disconnected from node N2. Therefore, when the polarity signal CMI is Vdd (high level), the output of the inverter INV2 is Vss (low level), and the output signal OUTk of low level (Vss) is output. On the other hand, when the polarity signal CMI is Vss (low level), the output of the inverter INV2 is Vdd (high level), and the output signal OUTk of high level (Vdd) is output.
続いて、出力信号SROUT(k-1)がハイレベル(アクティブ)からローレベル(非アクティブ)になると、アナログスイッチ回路ASW1がオフ(トランジスタT1,T2がオフ)となり、アナログスイッチ回路ASW2がオン(トランジスタT7,T8がオン)となる。これにより、インバータINV2の出力端子とインバータINV1の入力端子とが電気的に互いに接続されるとともに、インバータINV1の出力端子とインバータINV2の入力端子とが電気的に互いに接続されるので、ノードN1は、インバータINV1、INV2によるラッチ動作により直前に保持した電位を保持する。よって、出力信号OUTkは、直前に出力した電位のまま出力され続ける。この出力信号OUTkは、出力信号SROUT(k-1)が次にハイレベル(アクティブ)になるまで出力され続け、出力信号SROUT(k-1)がハイレベルになると、同様にラッチ出力動作を行う。このようにして、ラッチ回路31は、通常時にはラッチ出力動作を繰り返す。
Subsequently, when the output signal SROUT (k−1) changes from the high level (active) to the low level (inactive), the analog switch circuit ASW1 is turned off (the transistors T1 and T2 are turned off), and the analog switch circuit ASW2 is turned on ( The transistors T7 and T8 are turned on). Thereby, the output terminal of the inverter INV2 and the input terminal of the inverter INV1 are electrically connected to each other, and the output terminal of the inverter INV1 and the input terminal of the inverter INV2 are electrically connected to each other. The potential held immediately before is held by the latch operation by the inverters INV1 and INV2. Therefore, the output signal OUTk continues to be output with the potential output immediately before. The output signal OUTk continues to be output until the output signal SROUT (k−1) next becomes high level (active), and when the output signal SROUT (k−1) becomes high level, the latch output operation is performed in the same manner. . In this way, the latch circuit 31 repeats the latch output operation at the normal time.
(初期化動作について)
次に、初期化時の動作について説明する。初期化時には、初期化用信号INITBをVss(ローレベル)とする。図5は、シフトレジスタの全段の出力信号SROUTがハイレベルであって、極性信号CMIがハイレベルの場合の、ラッチ回路31の初期化時のタイミングチャートである。図6は、シフトレジスタの全段の出力信号SROUTがハイレベルであって、極性信号CMIがローレベルの場合の、ラッチ回路31の初期化時のタイミングチャートである。図7は、シフトレジスタの全段の出力信号SROUTがローレベルであって、極性信号CMIがハイレベルの場合の、ラッチ回路31の初期化時のタイミングチャートである。図5は、シフトレジスタの全段の出力信号SROUTがローレベルであって、極性信号CMIがローレベルの場合の、ラッチ回路31の初期化時のタイミングチャートである。 (About initialization operation)
Next, the operation at initialization will be described. At initialization, the initialization signal INITB is set to Vss (low level). FIG. 5 is a timing chart at the time of initialization of thelatch circuit 31 when the output signal SROUT of all stages of the shift register is at the high level and the polarity signal CMI is at the high level. FIG. 6 is a timing chart at the time of initialization of the latch circuit 31 when the output signal SROUT of all stages of the shift register is at the high level and the polarity signal CMI is at the low level. FIG. 7 is a timing chart at the time of initialization of the latch circuit 31 when the output signal SROUT of all stages of the shift register is at the low level and the polarity signal CMI is at the high level. FIG. 5 is a timing chart at the time of initialization of the latch circuit 31 when the output signal SROUT of all stages of the shift register is at the low level and the polarity signal CMI is at the low level.
次に、初期化時の動作について説明する。初期化時には、初期化用信号INITBをVss(ローレベル)とする。図5は、シフトレジスタの全段の出力信号SROUTがハイレベルであって、極性信号CMIがハイレベルの場合の、ラッチ回路31の初期化時のタイミングチャートである。図6は、シフトレジスタの全段の出力信号SROUTがハイレベルであって、極性信号CMIがローレベルの場合の、ラッチ回路31の初期化時のタイミングチャートである。図7は、シフトレジスタの全段の出力信号SROUTがローレベルであって、極性信号CMIがハイレベルの場合の、ラッチ回路31の初期化時のタイミングチャートである。図5は、シフトレジスタの全段の出力信号SROUTがローレベルであって、極性信号CMIがローレベルの場合の、ラッチ回路31の初期化時のタイミングチャートである。 (About initialization operation)
Next, the operation at initialization will be described. At initialization, the initialization signal INITB is set to Vss (low level). FIG. 5 is a timing chart at the time of initialization of the
図5~図8において、CMIは、1水平走査期間(1H)ごとに極性が反転する極性信号である。INITBは初期化用信号INITBの電位を示す。SR(k-1)はシフトレジスタの(k-1)段目の出力信号SROUT(k-1)の電位を示す。Node1,Node2はノードN1,N2それぞれの電位を示す。OUTkはラッチ回路31の出力信号OUTkの電位を示す。
5 to 8, CMI is a polarity signal whose polarity is inverted every horizontal scanning period (1H). INITB indicates the potential of the initialization signal INITB. SR (k-1) indicates the potential of the output signal SROUT (k-1) at the (k-1) stage of the shift register. Node1 and Node2 indicate potentials of the nodes N1 and N2, respectively. OUTk indicates the potential of the output signal OUTk of the latch circuit 31.
初期化時に、シフトレジスタの全段の出力信号SROUTがハイレベル(全オン)の場合は、以下のように動作する。
When the output signal SROUT of all stages of the shift register is at high level (all on) at initialization, the operation is as follows.
まず、出力信号SROUT(k-1)がハイレベルになると、スイッチ回路ASW1が常時オンとなり、極性信号CMIがノードN1に常時接続(短絡)することになる。また、ノードN1はインバータINV2の入力端子に接続され、インバータINV2の出力端子は出力端子OUTに接続されている。これにより、出力端子OUTからは、常に、ノードN1の反転電位の出力信号OUTkが出力される。
First, when the output signal SROUT (k-1) becomes high level, the switch circuit ASW1 is always turned on, and the polarity signal CMI is always connected (short-circuited) to the node N1. The node N1 is connected to the input terminal of the inverter INV2, and the output terminal of the inverter INV2 is connected to the output terminal OUT. As a result, the output signal OUTk having the inverted potential of the node N1 is always output from the output terminal OUT.
また、初期化用信号INITBはVss電位に固定されている。よって、出力信号OUTkがVdd電位であってもVss電位であっても、インバータINV1の出力端子であるノードN2の電位がVss電位となる。
The initialization signal INITB is fixed at the Vss potential. Therefore, regardless of whether the output signal OUTk is the Vdd potential or the Vss potential, the potential of the node N2 that is the output terminal of the inverter INV1 becomes the Vss potential.
ゆえに、極性信号CMIがVdd(ハイレベル)の場合は、ノードN1はVdd電位、出力信号OUTkはVss電位,ノードN2はVss電位で固定することができる(図5参照)。また、極性信号CMIがVss(ローレベル)の場合は、ノードN1はVss電位、出力信号OUTkはVdd電位,ノードN2はVss電位で固定することができる(図6参照)。なお、このときスイッチ回路ASW2は常時オフとなっているため、ノードN1とノードN2とは切り離されている(電気的に遮断されている)。よって、極性信号CMIがハイレベル・ローレベルのいずれの場合であっても短絡して過電流を発生させることなく、初期化することが可能となる。
Therefore, when the polarity signal CMI is Vdd (high level), the node N1 can be fixed at the Vdd potential, the output signal OUTk can be fixed at the Vss potential, and the node N2 can be fixed at the Vss potential (see FIG. 5). When the polarity signal CMI is Vss (low level), the node N1 can be fixed at the Vss potential, the output signal OUTk can be fixed at the Vdd potential, and the node N2 can be fixed at the Vss potential (see FIG. 6). At this time, since the switch circuit ASW2 is always off, the node N1 and the node N2 are disconnected (electrically disconnected). Therefore, even if the polarity signal CMI is either high level or low level, initialization can be performed without causing a short circuit and generating an overcurrent.
一方、初期化時に、シフトレジスタの全段の出力信号SROUTがローレベル(全オフ)の場合は、以下のように動作する。
On the other hand, when the output signal SROUT of all stages of the shift register is low level (all off) at the time of initialization, the operation is as follows.
初期化用信号INITBはVss電位に固定されているため、出力信号OUTkがVdd電位であってもVss電位であっても、インバータINV1の出力端子であるノードN2は、Vss電位で固定される。
Since the initialization signal INITB is fixed at the Vss potential, the node N2 that is the output terminal of the inverter INV1 is fixed at the Vss potential regardless of whether the output signal OUTk is the Vdd potential or the Vss potential.
ここで、出力信号SROUT(k-1)がローレベルになると、スイッチ回路ASW2は常時オンとなるため、ノードN1とノードN2とは常時接続(短絡)することになる。よって、ノードN1はVss電位となり、これによって出力信号OUTkはVdd電位となる。またこのとき、スイッチ回路ASW1は常時全オフとなっているため、極性信号CMIとノードN1とは切り離されている。よって、極性信号CMIがハイレベル・ローレベルのいずれの場合であっても、ノードN1、ノードN2、出力信号OUTkの電位はそれぞれ同じとなる(図7,8参照)。こうして、短絡して過電流を発生させることなく、初期化することが可能となる。
Here, when the output signal SROUT (k−1) becomes a low level, the switch circuit ASW2 is always turned on, so that the node N1 and the node N2 are always connected (short-circuited). Therefore, the node N1 becomes the Vss potential, and thereby the output signal OUTk becomes the Vdd potential. At this time, since the switch circuit ASW1 is always turned off, the polarity signal CMI and the node N1 are disconnected. Therefore, the potentials of the node N1, the node N2, and the output signal OUTk are the same regardless of whether the polarity signal CMI is high level or low level (see FIGS. 7 and 8). Thus, initialization can be performed without causing a short circuit and generating an overcurrent.
このように、ラッチ回路31では、シフトレジスタの全段の出力信号SROUTがハイレベル・ローレベルのいずれの場合であっても、ローレベル(Vss)の初期化用信号INITBをトランジスタT5のソース端子に与えることによって、内部電位を安定した電位で固定することが可能となる。
In this way, in the latch circuit 31, the initialization signal INITB at the low level (Vss) is supplied to the source terminal of the transistor T5 regardless of whether the output signal SROUT at all stages of the shift register is at the high level or the low level. It is possible to fix the internal potential at a stable potential.
また、初期化用信号INITBは、新たに初期化用の制御回路や端子配線を追加して供給できるようにしたのではなく、初期化機能を付加する前のラッチ回路に設けられていたインバータINV1の電源VDDの配線を利用している。
In addition, the initialization signal INITB can be supplied by adding a new initialization control circuit and terminal wiring, but is not provided in the inverter INV1 provided in the latch circuit before the initialization function is added. The power supply VDD wiring is used.
よって、ラッチ回路31では、素子数を増やすことなく初期化することが可能となっている。
Therefore, the latch circuit 31 can be initialized without increasing the number of elements.
なお、通常動作時は、初期化用信号INITBがVdd(ハイレベル)となり、初期化用信号INITBが電源電圧Vddと同様の機能を果たすため、通常のラッチ回路と同一の動作が可能となる。
In the normal operation, the initialization signal INITB becomes Vdd (high level), and the initialization signal INITB performs the same function as the power supply voltage Vdd, so that the same operation as that of a normal latch circuit is possible.
(変形例)
ラッチ回路31では、初期化用信号INITBをトランジスタT5のソース端子に供給していたが、初期化用信号INITをトランジスタT6のソース端子に供給して、同様に初期化することができる。 (Modification)
In thelatch circuit 31, the initialization signal INITB is supplied to the source terminal of the transistor T5. However, the initialization signal INIT can be supplied to the source terminal of the transistor T6 and similarly initialized.
ラッチ回路31では、初期化用信号INITBをトランジスタT5のソース端子に供給していたが、初期化用信号INITをトランジスタT6のソース端子に供給して、同様に初期化することができる。 (Modification)
In the
図9は、ラッチ回路32の一構成例を示す回路図である。図9に示すように、ラッチ回路32(保持回路)では、図4のラッチ回路31と比較して、トランジスタT5のソース端子およびトランジスタT6のソース端子にそれぞれ供給される信号および電源電圧が異なっている。具体的には、トランジスタT5のソース端子には電源電圧Vddが供給され、トランジスタT6のソース端子に初期化用信号INITが供給されている。初期化用信号INITは、通常動作時にローレベル(Vss)になり、初期化時にハイレベル(Vdd)になる信号である。
FIG. 9 is a circuit diagram showing a configuration example of the latch circuit 32. As shown in FIG. 9, the latch circuit 32 (holding circuit) differs from the latch circuit 31 of FIG. 4 in the signals and power supply voltages supplied to the source terminal of the transistor T5 and the source terminal of the transistor T6, respectively. Yes. Specifically, the power supply voltage Vdd is supplied to the source terminal of the transistor T5, and the initialization signal INIT is supplied to the source terminal of the transistor T6. The initialization signal INIT is a signal that becomes low level (Vss) during normal operation and becomes high level (Vdd) during initialization.
(初期化動作について)
ここでは、初期化時の動作について説明する。初期化時には、初期化用信号INITをVdd(ハイレベル)とする。 (About initialization operation)
Here, the operation at the time of initialization will be described. At initialization, the initialization signal INIT is set to Vdd (high level).
ここでは、初期化時の動作について説明する。初期化時には、初期化用信号INITをVdd(ハイレベル)とする。 (About initialization operation)
Here, the operation at the time of initialization will be described. At initialization, the initialization signal INIT is set to Vdd (high level).
初期化時に、シフトレジスタの全段の出力信号SROUTがハイレベルの場合(全オン)は、以下のように動作する。
When the output signal SROUT of all stages of the shift register is at high level (all on) at initialization, the operation is as follows.
まず、出力信号SROUT(k-1)がハイレベルになると、スイッチ回路ASW1が常時全オンとなり、極性信号CMIがノードN1に常時接続(短絡)することになる。また、ノードN1はインバータINV2の入力端子に接続され、インバータINV2の出力端子は出力端子OUTに接続されている。これにより、出力端子OUTからは、常に、ノードN1の反転電位の出力信号OUTkが出力される。
First, when the output signal SROUT (k−1) becomes a high level, the switch circuit ASW1 is always fully turned on, and the polarity signal CMI is always connected (short-circuited) to the node N1. The node N1 is connected to the input terminal of the inverter INV2, and the output terminal of the inverter INV2 is connected to the output terminal OUT. As a result, the output signal OUTk having the inverted potential of the node N1 is always output from the output terminal OUT.
また、初期化用信号INITはVdd電位に固定されているため、出力信号OUTkがVdd電位であってもVss電位であっても、インバータINV1の出力端子であるノードN2は、Vdd電位で固定される。
Further, since the initialization signal INIT is fixed at the Vdd potential, the node N2 that is the output terminal of the inverter INV1 is fixed at the Vdd potential regardless of whether the output signal OUTk is the Vdd potential or the Vss potential. The
ゆえに、極性信号CMIがVdd(ハイレベル)の場合は、ノードN1はVdd電位、出力信号OUTkはVss電位,ノードN2はVdd電位で固定することができる。また、極性信号CMIがVss(ローレベル)の場合は、ノードN1はVss電位、出力信号OUTkはVdd電位,ノードN2はVdd電位で固定することができる。なお、このときスイッチ回路ASW2は常時全オフとなっているため、ノードN1とノードN2とは切り離されている(電気的に遮断されている)。よって、極性信号CMIがハイレベル・ローレベルのいずれの場合であっても短絡して過電流を発生させることなく、初期化することが可能となる。
Therefore, when the polarity signal CMI is Vdd (high level), the node N1 can be fixed at the Vdd potential, the output signal OUTk can be fixed at the Vss potential, and the node N2 can be fixed at the Vdd potential. When the polarity signal CMI is Vss (low level), the node N1 can be fixed at the Vss potential, the output signal OUTk can be fixed at the Vdd potential, and the node N2 can be fixed at the Vdd potential. At this time, since the switch circuit ASW2 is always turned off, the node N1 and the node N2 are disconnected (electrically disconnected). Therefore, even if the polarity signal CMI is either high level or low level, initialization can be performed without causing a short circuit and generating an overcurrent.
一方、初期化時に、シフトレジスタの全段の出力信号SROUTがローレベルの場合(全オフ)は、以下のように動作する。
On the other hand, when the output signal SROUT of all stages of the shift register is at low level (all off) at the time of initialization, the operation is as follows.
初期化用信号INITはVdd電位に固定されているため、出力信号OUTkがVdd電位であってもVss電位であっても、インバータINV1の出力端子であるノードN2は、Vdd電位で固定される。
Since the initialization signal INIT is fixed at the Vdd potential, the node N2 that is the output terminal of the inverter INV1 is fixed at the Vdd potential regardless of whether the output signal OUTk is the Vdd potential or the Vss potential.
ここで、出力信号SROUT(k-1)がローレベルになると、スイッチ回路ASW2は常時全オンとなるため、ノードN1とノードN2とは常時接続(短絡)することになる。よって、ノードN1はVdd電位となり、これによって出力信号OUTkはVss電位となる。またこのとき、スイッチ回路ASW1は常時全オフとなっているため、極性信号CMIとノードN1とは切り離されている。よって、極性信号CMIがハイレベル・ローレベルのいずれの場合であっても、ノードN1、ノードN2、出力信号OUTkの電位はそれぞれ同じとなる。こうして、短絡して過電流を発生させることなく、初期化することが可能となる。
Here, when the output signal SROUT (k−1) becomes a low level, the switch circuit ASW2 is always fully turned on, so that the node N1 and the node N2 are always connected (short-circuited). Therefore, the node N1 becomes the Vdd potential, and thereby the output signal OUTk becomes the Vss potential. At this time, since the switch circuit ASW1 is always turned off, the polarity signal CMI and the node N1 are disconnected. Therefore, the potentials of the node N1, the node N2, and the output signal OUTk are the same regardless of whether the polarity signal CMI is high level or low level. Thus, initialization can be performed without causing a short circuit and generating an overcurrent.
このように、ラッチ回路32では、シフトレジスタの全段の出力信号SROUTがハイレベル・ローレベルのいずれの場合であっても、ハイレベル(Vdd)の初期化用信号INITをトランジスタT6のソース端子に与えることによって、内部電位を安定した電位で固定することが可能となる。
As described above, in the latch circuit 32, the high level (Vdd) initialization signal INIT is supplied to the source terminal of the transistor T6 regardless of whether the output signal SROUT of all stages of the shift register is high level or low level. It is possible to fix the internal potential at a stable potential.
また、初期化用信号INITは、新たに初期化用の制御回路や端子配線を追加して供給できるようにしたのではなく、初期化機能を付加する前のラッチ回路に設けられていたインバータINV1の電源VSSの配線を利用している。
In addition, the initialization signal INIT is not made to be able to be supplied by newly adding a control circuit and terminal wiring for initialization, but is an inverter INV1 provided in the latch circuit before adding the initialization function. The power supply VSS wiring is used.
よって、ラッチ回路32では、素子数を増やすことなく初期化することが可能となっている。
Therefore, the latch circuit 32 can be initialized without increasing the number of elements.
なお、通常動作時は、初期化用信号INITがVss(ローレベル)で固定されるので、初期化用信号INITが電源電圧Vssと同様の機能を果たす。よって、ラッチ回路32は、通常のラッチ回路と同一の動作が可能となっており、上述したラッチ回路31の通常時の動作と同様に動作することが可能となっている。
In the normal operation, the initialization signal INIT is fixed at Vss (low level), so that the initialization signal INIT performs the same function as the power supply voltage Vss. Therefore, the latch circuit 32 can perform the same operation as a normal latch circuit, and can operate in the same manner as the normal operation of the latch circuit 31 described above.
〔実施の形態3〕
本発明の実施形態3について図面に基づいて説明すれば、以下の通りである。本実施の形態では、前記実施の形態2のラッチ回路31よりも回路面積を減少することができるラッチ回路について説明する。なお、説明の便宜上、前述の実施の形態において示した部材と同一の機能を有する部材には、同一の符号を付し、その説明を省略する。また、前述の実施の形態において定義した用語については、特に断らない限り本実施例においてもその定義に則って用いるものとする。このことは、以下の各実施形態に共通する。 [Embodiment 3]
Embodiment 3 of the present invention will be described below with reference to the drawings. In the present embodiment, a latch circuit capable of reducing the circuit area as compared with the latch circuit 31 of the second embodiment will be described. For convenience of explanation, members having the same functions as those shown in the above-described embodiments are denoted by the same reference numerals, and description thereof is omitted. In addition, the terms defined in the above embodiment are used in accordance with the definitions in this embodiment unless otherwise specified. This is common to the following embodiments.
本発明の実施形態3について図面に基づいて説明すれば、以下の通りである。本実施の形態では、前記実施の形態2のラッチ回路31よりも回路面積を減少することができるラッチ回路について説明する。なお、説明の便宜上、前述の実施の形態において示した部材と同一の機能を有する部材には、同一の符号を付し、その説明を省略する。また、前述の実施の形態において定義した用語については、特に断らない限り本実施例においてもその定義に則って用いるものとする。このことは、以下の各実施形態に共通する。 [Embodiment 3]
図10は、本実施の形態のラッチ回路33の一構成例を示す回路図である。図10に示すように、ラッチ回路33(保持回路)は、インバータINV1・INV2、アナログスイッチ回路ASW3により構成される。なお、アナログスイッチ回路ASW3の出力端子とインバータINV2の入力端子との接続点をノードN1とする(図10参照)。
FIG. 10 is a circuit diagram showing a configuration example of the latch circuit 33 of the present embodiment. As shown in FIG. 10, the latch circuit 33 (holding circuit) includes inverters INV1 and INV2 and an analog switch circuit ASW3. Note that a connection point between the output terminal of the analog switch circuit ASW3 and the input terminal of the inverter INV2 is a node N1 (see FIG. 10).
アナログスイッチ回路ASW3は、Nチャネル型トランジスタT1で構成され、トランジスタT1は、ゲート端子が入力端子INsに接続され、ソース端子が入力端子INcに接続されている。入力端子INsにはシフトレジスタの前段の出力信号SROUT(k-1)が供給され、入力端子INcには極性信号CMIが供給される。
The analog switch circuit ASW3 is composed of an N-channel transistor T1, and the transistor T1 has a gate terminal connected to the input terminal INs and a source terminal connected to the input terminal INc. The output signal SROUT (k−1) of the previous stage of the shift register is supplied to the input terminal INs, and the polarity signal CMI is supplied to the input terminal INc.
インバータINV2の入力端子(トランジスタT3のゲート端子と、トランジスタT4のゲート端子との接続点(ノードN1))は、アナログスイッチ回路ASW3の出力端子(トランジスタT1のドレイン端子)に接続されている。インバータINV2の出力端子は、ラッチ回路33の出力端子OUT、及びインバータINV1の入力端子(トランジスタT5、T6のゲート端子)に接続されている。
The input terminal of the inverter INV2 (the connection point (node N1) between the gate terminal of the transistor T3 and the gate terminal of the transistor T4) is connected to the output terminal of the analog switch circuit ASW3 (drain terminal of the transistor T1). The output terminal of the inverter INV2 is connected to the output terminal OUT of the latch circuit 33 and the input terminal of the inverter INV1 (gate terminals of the transistors T5 and T6).
ラッチ回路33のインバータINV1では、上述したラッチ回路31(図4参照)のインバータINV1に、抵抗R1(第2抵抗)および抵抗R2(第1抵抗)が追加されている。具体的には、トランジスタT5のソース端子に抵抗R2が直列に接続され、トランジスタT6のソース端子に抵抗R1が直列接続されている。これにより、トランジスタT5のソース端子には、抵抗R2を介して初期化用信号INITBが与えられ、トランジスタT6のソース端子には、抵抗R1を介して電源電圧Vssが与えられている。
In the inverter INV1 of the latch circuit 33, a resistor R1 (second resistor) and a resistor R2 (first resistor) are added to the inverter INV1 of the latch circuit 31 (see FIG. 4) described above. Specifically, a resistor R2 is connected in series to the source terminal of the transistor T5, and a resistor R1 is connected in series to the source terminal of the transistor T6. As a result, the initialization signal INITB is applied to the source terminal of the transistor T5 via the resistor R2, and the power supply voltage Vss is applied to the source terminal of the transistor T6 via the resistor R1.
上記の構成によれば、ラッチ回路33は、入力端子INsにシフトレジスタの前段(k-1段目)の出力信号SROUT(k-1)が入力され、該出力信号SROUT(k-1)がアクティブになると極性信号CMIを入力端子INcから取り込み、これを保持しつつ、自段(k段目)の出力として、出力端子OUTから出力信号OUTkを出力する。出力信号OUTkは、ハイレベル(Vdd)及びローレベル(Vss)が切り替わって出力される。初期化用信号INITBは、通常動作時にハイレベル(Vdd)になり、初期化時(アクティブ時)にローレベル(Vss)になる信号である。
According to the above configuration, in the latch circuit 33, the output signal SROUT (k−1) of the previous stage (k−1 stage) of the shift register is input to the input terminal INs, and the output signal SROUT (k−1) is When activated, the polarity signal CMI is taken from the input terminal INc, and while holding it, the output signal OUTk is output from the output terminal OUT as the output of the own stage (kth stage). The output signal OUTk is output after switching between a high level (Vdd) and a low level (Vss). The initialization signal INITB is a signal that is at a high level (Vdd) during normal operation and is at a low level (Vss) at initialization (when active).
(動作について)
次に、ラッチ回路33の動作について説明する。 (About operation)
Next, the operation of thelatch circuit 33 will be described.
次に、ラッチ回路33の動作について説明する。 (About operation)
Next, the operation of the
まず、通常時の動作について簡単に説明する。通常時、初期化用信号INITBはVdd(ハイレベル)で固定されている。
First, we will briefly explain the normal operation. Normally, the initialization signal INITB is fixed at Vdd (high level).
ラッチ回路33では、出力信号SROUT(k-1)がローレベル(非アクティブ)からハイレベル(アクティブ)になると、アナログスイッチ回路ASW3がオン(トランジスタT1がオン)となる。これにより、ノードN1が極性信号CMIと電気的に接続される。
In the latch circuit 33, when the output signal SROUT (k-1) changes from the low level (inactive) to the high level (active), the analog switch circuit ASW3 is turned on (the transistor T1 is turned on). Thereby, the node N1 is electrically connected to the polarity signal CMI.
このとき、極性信号CMIがVdd(ハイレベル)の場合は、ノードN1はVdd-Vth電位(Vth:閾値)となる。このノードN1の電位は、インバータINV2のトランジスタT4をオンするのに十分であるため、インバータINV2の出力はVss(ローレベル)となる。
At this time, when the polarity signal CMI is Vdd (high level), the node N1 has a Vdd-Vth potential (Vth: threshold). Since the potential of the node N1 is sufficient to turn on the transistor T4 of the inverter INV2, the output of the inverter INV2 becomes Vss (low level).
ここで、出力信号SROUT(k-1)がハイレベル(アクティブ)になる直前において、ノードN1の電位がVss(ローレベル)に保持されており、トランジスタT6がオン状態になっていると、出力信号SROUT(k-1)がローレベル(非アクティブ)からハイレベル(アクティブ)になることで、ノードN1を介して極性信号CMIのVdd(ハイレベル)と電源VSS(ローレベル)とが短絡することになる。この点、電源VSSとノードN1との間に抵抗R1が設けられているため、ノードN1の電位は、極性信号CMI側へ引き込まれ、極性信号CMIのVdd(ハイレベル)に近い電位まで上昇する。
Here, immediately before the output signal SROUT (k−1) becomes high level (active), if the potential of the node N1 is held at Vss (low level) and the transistor T6 is turned on, When the signal SROUT (k−1) changes from the low level (inactive) to the high level (active), the Vdd (high level) of the polarity signal CMI and the power supply VSS (low level) are short-circuited via the node N1. It will be. In this respect, since the resistor R1 is provided between the power source VSS and the node N1, the potential of the node N1 is drawn to the polarity signal CMI side and rises to a potential close to Vdd (high level) of the polarity signal CMI. .
その後、インバータINV2の出力(Vss(ローレベル))がインバータINV1の入力にフィードバックされ、インバータINV1の出力によって、ノードN1の電位は、極性信号CMIのVddに近い電位からさらにVddまで上昇する。よって、インバータINV2の出力はVss(ローレベル)となり、ローレベル(Vss)の出力信号OUTkが出力される。
Thereafter, the output of the inverter INV2 (Vss (low level)) is fed back to the input of the inverter INV1, and the potential of the node N1 rises further from the potential close to Vdd of the polarity signal CMI to Vdd by the output of the inverter INV1. Therefore, the output of the inverter INV2 becomes Vss (low level), and the output signal OUTk of low level (Vss) is output.
一方、極性信号CMIがVss(ローレベル)の場合は、ノードN1はVss電位となるため、インバータINV2の出力はVdd(ハイレベル)となる。
On the other hand, when the polarity signal CMI is Vss (low level), the node N1 is at the Vss potential, so that the output of the inverter INV2 is Vdd (high level).
ここで、出力信号SROUT(k-1)がハイレベル(アクティブ)になる直前において、ノードN1の電位がVdd(ハイレベル)に保持されており、トランジスタT5がオン状態になっていると、出力信号SROUT(k-1)がローレベル(非アクティブ)からハイレベル(アクティブ)になることで、ノードN1を介して極性信号CMIのVss(ローレベル)と初期化用信号INITBが入力される端子(INITB端子)(ハイレベル)とが短絡することになる。この点、INITB端子(ハイレベル)とノードN1との間に抵抗R2が設けられているため、ノードN1の電位は、極性信号CMI側へ引き込まれ、極性信号CMIのVss(ローレベル)に近い電位まで低下する。
Here, immediately before the output signal SROUT (k−1) becomes high level (active), if the potential of the node N1 is held at Vdd (high level) and the transistor T5 is turned on, When the signal SROUT (k−1) is changed from the low level (inactive) to the high level (active), the Vss (low level) of the polarity signal CMI and the initialization signal INITB are input via the node N1. (INITB terminal) (high level) is short-circuited. In this respect, since the resistor R2 is provided between the INITB terminal (high level) and the node N1, the potential of the node N1 is drawn to the polarity signal CMI side and is close to Vss (low level) of the polarity signal CMI. Decreasing to potential.
その後、インバータINV2の出力(Vdd(ハイレベル))がインバータINV1の入力にフィードバックされ、インバータINV1の出力によって、ノードN1の電位は、極性信号CMIのVssに近い電位からさらにVssまで低下する。よって、インバータINV2の出力はVdd(ハイレベル)となり、ハイレベル(Vdd)の出力信号OUTkが出力される。
Thereafter, the output (Vdd (high level)) of the inverter INV2 is fed back to the input of the inverter INV1, and the potential of the node N1 is further lowered from the potential close to Vss of the polarity signal CMI to Vss by the output of the inverter INV1. Therefore, the output of the inverter INV2 becomes Vdd (high level), and the output signal OUTk of high level (Vdd) is output.
続いて、出力信号SROUT(k-1)がハイレベル(アクティブ)からローレベル(非アクティブ)になると、アナログスイッチ回路ASW3がオフ(トランジスタT1がオフ)になり、極性信号CMIの入力が遮断され、ノードN1は、インバータINV1、INV2によるラッチ動作により直前に保持した電位を保持する。よって、出力信号OUTkは、直前に出力した電位のまま出力され続ける。この出力信号OUTkは、出力信号SROUT(k-1)が次にハイレベル(アクティブ)になるまで出力され続け、出力信号SROUT(k-1)がハイレベルになると、同様にラッチ出力動作を行う。このようにして、ラッチ回路33は、通常時にはラッチ出力動作を繰り返す。
Subsequently, when the output signal SROUT (k−1) changes from the high level (active) to the low level (inactive), the analog switch circuit ASW3 is turned off (the transistor T1 is turned off), and the input of the polarity signal CMI is cut off. The node N1 holds the potential held immediately before by the latch operation by the inverters INV1 and INV2. Therefore, the output signal OUTk continues to be output with the potential output immediately before. The output signal OUTk continues to be output until the output signal SROUT (k−1) next becomes high level (active), and when the output signal SROUT (k−1) becomes high level, the latch output operation is performed in the same manner. . In this way, the latch circuit 33 repeats the latch output operation at the normal time.
(初期化動作について)
次に、初期化時の動作について説明する。初期化時には、初期化用信号INITBをVss(ローレベル)とする。図11は、シフトレジスタの全段の出力信号SROUTがハイレベルであって、極性信号CMIがハイレベルの場合の、ラッチ回路33の初期化時のタイミングチャートである。図12は、シフトレジスタの全段の出力信号SROUTがハイレベルであって、極性信号CMIがローレベルの場合の、ラッチ回路33の初期化時のタイミングチャートである。図13は、シフトレジスタの全段の出力信号SROUTがローレベルであって、極性信号CMIがハイレベルの場合の、ラッチ回路33の初期化時のタイミングチャートである。図14は、シフトレジスタの全段の出力信号SROUTがローレベルであって、極性信号CMIがローレベルの場合の、ラッチ回路33の初期化時のタイミングチャートである。 (About initialization operation)
Next, the operation at initialization will be described. At initialization, the initialization signal INITB is set to Vss (low level). FIG. 11 is a timing chart at the time of initialization of thelatch circuit 33 when the output signal SROUT of all stages of the shift register is at the high level and the polarity signal CMI is at the high level. FIG. 12 is a timing chart when the latch circuit 33 is initialized when the output signals SROUT of all stages of the shift register are at the high level and the polarity signal CMI is at the low level. FIG. 13 is a timing chart when the latch circuit 33 is initialized when the output signals SROUT of all stages of the shift register are at the low level and the polarity signal CMI is at the high level. FIG. 14 is a timing chart at the time of initialization of the latch circuit 33 when the output signal SROUT of all stages of the shift register is at the low level and the polarity signal CMI is at the low level.
次に、初期化時の動作について説明する。初期化時には、初期化用信号INITBをVss(ローレベル)とする。図11は、シフトレジスタの全段の出力信号SROUTがハイレベルであって、極性信号CMIがハイレベルの場合の、ラッチ回路33の初期化時のタイミングチャートである。図12は、シフトレジスタの全段の出力信号SROUTがハイレベルであって、極性信号CMIがローレベルの場合の、ラッチ回路33の初期化時のタイミングチャートである。図13は、シフトレジスタの全段の出力信号SROUTがローレベルであって、極性信号CMIがハイレベルの場合の、ラッチ回路33の初期化時のタイミングチャートである。図14は、シフトレジスタの全段の出力信号SROUTがローレベルであって、極性信号CMIがローレベルの場合の、ラッチ回路33の初期化時のタイミングチャートである。 (About initialization operation)
Next, the operation at initialization will be described. At initialization, the initialization signal INITB is set to Vss (low level). FIG. 11 is a timing chart at the time of initialization of the
図11~図14において、CMIは、1水平走査期間(1H)ごとに極性が反転する極性信号である。INITBは初期化用信号INITBの電位を示す。SR(k-1)はシフトレジスタの(k-1)段目の出力信号SROUT(k-1)の電位を示す。Node1はノードN1の電位を示す。OUTkはラッチ回路33の出力信号OUTkの電位を示す。
11 to 14, CMI is a polarity signal whose polarity is inverted every horizontal scanning period (1H). INITB indicates the potential of the initialization signal INITB. SR (k-1) indicates the potential of the output signal SROUT (k-1) at the (k-1) stage of the shift register. Node1 indicates the potential of the node N1. OUTk indicates the potential of the output signal OUTk of the latch circuit 33.
初期化時に、シフトレジスタの全段の出力信号SROUTがハイレベル(全オン)の場合は、以下のように動作する。
When the output signal SROUT of all stages of the shift register is at high level (all on) at initialization, the operation is as follows.
まず、出力信号SROUT(k-1)がハイレベルになると、スイッチ回路ASW3が常時オンとなり、極性信号CMIがノードN1に常時接続(短絡)することになる。また、ノードN1はインバータINV2の入力端子に接続され、インバータINV2の出力端子は出力端子OUTに接続されている。これにより、出力端子OUTからは、常に、ノードN1の反転電位の出力信号OUTkが出力される。
First, when the output signal SROUT (k-1) becomes high level, the switch circuit ASW3 is always turned on, and the polarity signal CMI is always connected (short-circuited) to the node N1. The node N1 is connected to the input terminal of the inverter INV2, and the output terminal of the inverter INV2 is connected to the output terminal OUT. As a result, the output signal OUTk having the inverted potential of the node N1 is always output from the output terminal OUT.
ここで、極性信号CMIがVdd(ハイレベル)の場合は、ノードN1はVdd-Vth電位(Vth:閾値)となる(図11参照)。このノードN1の電位は、インバータINV2のトランジスタT4をオンするのに十分であるため、インバータINV2によりローレベル(Vss)の出力信号OUTkが出力される。なお、この出力信号OUTkによって、インバータINV1のトランジスタT5がオンとなり、INITB端子が抵抗R2を介してノードN1と接続される。このとき、初期化用信号INITBはVss(ローレベル)に固定されているが、抵抗R2を介してノードN1と接続されるため、ノードN1は、Vdd-Vth付近で過電流が流れることなく安定化することが可能となる。
Here, when the polarity signal CMI is Vdd (high level), the node N1 has a Vdd-Vth potential (Vth: threshold) (see FIG. 11). Since the potential of the node N1 is sufficient to turn on the transistor T4 of the inverter INV2, a low level (Vss) output signal OUTk is output by the inverter INV2. The output signal OUTk turns on the transistor T5 of the inverter INV1, and the INITB terminal is connected to the node N1 through the resistor R2. At this time, the initialization signal INITB is fixed at Vss (low level), but since it is connected to the node N1 via the resistor R2, the node N1 is stable without overcurrent flowing in the vicinity of Vdd-Vth. Can be realized.
極性信号CMIがVss(ローレベル)の場合は、ノードN1はVss電位となる(図12参照)。これにより、インバータINV2のトランジスタT3がオンとなり、ハイレベル(Vdd)の出力信号OUTkが出力される。なお、この出力信号OUTkによって、インバータINV1のトランジスタT6がオンとなり、電源VSSが抵抗R1を介してノードN1と接続される。よって、ノードN1はVss電位で安定化することが可能となる。
When the polarity signal CMI is Vss (low level), the node N1 has a Vss potential (see FIG. 12). As a result, the transistor T3 of the inverter INV2 is turned on, and a high level (Vdd) output signal OUTk is output. The output signal OUTk turns on the transistor T6 of the inverter INV1, and the power source VSS is connected to the node N1 through the resistor R1. Therefore, the node N1 can be stabilized at the Vss potential.
一方、初期化時に、シフトレジスタの全段の出力信号SROUTがローレベル(全オフ)の場合は、以下のように動作する。
On the other hand, when the output signal SROUT of all stages of the shift register is low level (all off) at the time of initialization, the operation is as follows.
初期化用信号INITBはVss電位に固定されているため、出力信号OUTkがVdd電位であってもVss電位であっても、ノードN1は、インバータINV1から出力されるVss電位で固定される。
Since the initialization signal INITB is fixed at the Vss potential, the node N1 is fixed at the Vss potential output from the inverter INV1 regardless of whether the output signal OUTk is the Vdd potential or the Vss potential.
ここで、出力信号SROUT(k-1)がローレベルになると、スイッチ回路ASW3は常時オフとなるため、極性信号CMIとノードN1とは切り離されている。よって、極性信号CMIがハイレベル・ローレベルのいずれの場合であっても、ノードN1はVss電位、出力信号OUTkはVdd電位となる(図13,14参照)。こうして、短絡して過電流を発生させることなく、初期化することが可能となる。
Here, when the output signal SROUT (k−1) becomes a low level, the switch circuit ASW3 is always turned off, so that the polarity signal CMI and the node N1 are disconnected. Therefore, regardless of whether the polarity signal CMI is at a high level or a low level, the node N1 has a Vss potential and the output signal OUTk has a Vdd potential (see FIGS. 13 and 14). Thus, initialization can be performed without causing a short circuit and generating an overcurrent.
このように、ラッチ回路33では、シフトレジスタの全段の出力信号SROUTがハイレベル・ローレベルのいずれの場合であっても、ローレベル(Vss)の初期化用信号INITBをトランジスタT5のソース端子に与えることによって、内部電位を安定した電位で固定することが可能となる。
As described above, in the latch circuit 33, the initialization signal INITB at the low level (Vss) is supplied to the source terminal of the transistor T5 regardless of whether the output signal SROUT at all stages of the shift register is at the high level or the low level. It is possible to fix the internal potential at a stable potential.
また、初期化用信号INITBは、新たに初期化用の制御回路や端子配線を追加して供給できるようにしたのではなく、初期化機能を付加する前のラッチ回路に設けられていたインバータINV1の電源VDDの配線を利用している。
In addition, the initialization signal INITB can be supplied by adding a new initialization control circuit and terminal wiring, but is not provided in the inverter INV1 provided in the latch circuit before the initialization function is added. The power supply VDD wiring is used.
よって、ラッチ回路33では、素子数を増やすことなく初期化することが可能となっている。
Therefore, the latch circuit 33 can be initialized without increasing the number of elements.
なお、通常動作時は、初期化用信号INITBがVdd(ハイレベル)となり、初期化用信号INITBが電源電圧Vddと同様の機能を果たすため、通常のラッチ回路と同一の動作が可能となる。
In the normal operation, the initialization signal INITB becomes Vdd (high level), and the initialization signal INITB performs the same function as the power supply voltage Vdd, so that the same operation as that of a normal latch circuit is possible.
(変形例)
ラッチ回路33では、初期化用信号INITBをトランジスタT5のソース端子に供給していたが、初期化用信号INITをトランジスタT6のソース端子に供給して、同様に初期化することができる。 (Modification)
In thelatch circuit 33, the initialization signal INITB is supplied to the source terminal of the transistor T5. However, the initialization signal INIT can be supplied to the source terminal of the transistor T6 and similarly initialized.
ラッチ回路33では、初期化用信号INITBをトランジスタT5のソース端子に供給していたが、初期化用信号INITをトランジスタT6のソース端子に供給して、同様に初期化することができる。 (Modification)
In the
図15は、ラッチ回路34の一構成例を示す回路図である。図15に示すように、ラッチ回路34(保持回路)では、図10のラッチ回路33と比較して、トランジスタT5のソース端子およびトランジスタT6のソース端子にそれぞれ供給される信号および電源電圧が異なっている。具体的には、トランジスタT5のソース端子には電源電圧Vddが供給され、トランジスタT6のソース端子に初期化用信号INITが供給されている。初期化用信号INITは、通常動作時にローレベル(Vss)になり、初期化時にハイレベル(Vdd)になる信号である。
FIG. 15 is a circuit diagram showing a configuration example of the latch circuit 34. As shown in FIG. 15, the latch circuit 34 (holding circuit) differs from the latch circuit 33 of FIG. 10 in the signals and power supply voltages supplied to the source terminal of the transistor T5 and the source terminal of the transistor T6, respectively. Yes. Specifically, the power supply voltage Vdd is supplied to the source terminal of the transistor T5, and the initialization signal INIT is supplied to the source terminal of the transistor T6. The initialization signal INIT is a signal that becomes low level (Vss) during normal operation and becomes high level (Vdd) during initialization.
(初期化動作について)
ここでは、初期化時の動作について説明する。初期化時には、初期化用信号INITをVdd(ハイレベル)とする。 (About initialization operation)
Here, the operation at the time of initialization will be described. At initialization, the initialization signal INIT is set to Vdd (high level).
ここでは、初期化時の動作について説明する。初期化時には、初期化用信号INITをVdd(ハイレベル)とする。 (About initialization operation)
Here, the operation at the time of initialization will be described. At initialization, the initialization signal INIT is set to Vdd (high level).
初期化時に、シフトレジスタの全段の出力信号SROUTがハイレベルの場合(全オン)は、以下のように動作する。
When the output signal SROUT of all stages of the shift register is at high level (all on) at initialization, the operation is as follows.
まず、出力信号SROUT(k-1)がハイレベルになると、スイッチ回路ASW3が常時オンとなり、極性信号CMIがノードN1に常時接続(短絡)することになる。また、ノードN1はインバータINV2の入力端子に接続され、インバータINV2の出力端子は出力端子OUTに接続されている。これにより、出力端子OUTからは、常に、ノードN1の反転電位の出力信号OUTkが出力される。
First, when the output signal SROUT (k-1) becomes high level, the switch circuit ASW3 is always turned on, and the polarity signal CMI is always connected (short-circuited) to the node N1. The node N1 is connected to the input terminal of the inverter INV2, and the output terminal of the inverter INV2 is connected to the output terminal OUT. As a result, the output signal OUTk having the inverted potential of the node N1 is always output from the output terminal OUT.
ここで、極性信号CMIがVdd(ハイレベル)の場合は、ノードN1はVdd-Vth電位(Vth:閾値)となる。このノードN1の電位は、インバータINV2のトランジスタT4をオンするのに十分であるため、インバータINV2によりローレベル(Vss)の出力信号OUTkが出力される。なお、この出力信号OUTkによって、インバータINV1のトランジスタT5がオンとなり、電源VDDが抵抗R2を介してノードN1と接続される。よって、ノードN1はVdd-Vth付近で安定化することが可能となる。
Here, when the polarity signal CMI is Vdd (high level), the node N1 has a potential of Vdd-Vth (Vth: threshold). Since the potential of the node N1 is sufficient to turn on the transistor T4 of the inverter INV2, a low level (Vss) output signal OUTk is output by the inverter INV2. The output signal OUTk turns on the transistor T5 of the inverter INV1, and the power supply VDD is connected to the node N1 through the resistor R2. Therefore, the node N1 can be stabilized near Vdd−Vth.
極性信号CMIがVss(ローレベル)の場合は、ノードN1はVss電位となる。これにより、インバータINV2のトランジスタT3がオンとなり、ハイレベル(Vdd)の出力信号OUTkが出力される。なお、この出力信号OUTkによって、インバータINV1のトランジスタT6がオンとなり、初期化用信号INITが入力される端子(INIT端子)が抵抗R1を介してノードN1と接続される。このとき、初期化用信号INITはVdd(ハイレベル)に固定されているが、抵抗R1を介してノードN1と接続されるため、ノードN1は、Vdd-Vth付近で過電流が流れることなく安定化することが可能となる。
When the polarity signal CMI is Vss (low level), the node N1 is at the Vss potential. As a result, the transistor T3 of the inverter INV2 is turned on, and a high level (Vdd) output signal OUTk is output. The output signal OUTk turns on the transistor T6 of the inverter INV1, and the terminal (INIT terminal) to which the initialization signal INIT is input is connected to the node N1 through the resistor R1. At this time, the initialization signal INIT is fixed to Vdd (high level), but since it is connected to the node N1 via the resistor R1, the node N1 is stable without overcurrent flowing in the vicinity of Vdd-Vth. Can be realized.
一方、初期化時に、シフトレジスタの全段の出力信号SROUTがローレベル(全オフ)の場合は、以下のように動作する。
On the other hand, when the output signal SROUT of all stages of the shift register is low level (all off) at the time of initialization, the operation is as follows.
初期化用信号INITはVdd電位に固定されているため、出力信号OUTkがVdd電位であってもVss電位であっても、ノードN1は、インバータINV1から出力されるVdd電位で固定される。
Since the initialization signal INIT is fixed at the Vdd potential, the node N1 is fixed at the Vdd potential output from the inverter INV1 regardless of whether the output signal OUTk is the Vdd potential or the Vss potential.
ここで、出力信号SROUT(k-1)がローレベルになると、スイッチ回路ASW3は常時オフとなるため、極性信号CMIとノードN1とは切り離されている。よって、極性信号CMIがハイレベル・ローレベルのいずれの場合であっても、ノードN1はVdd電位、出力信号OUTkはVss電位となる。こうして、短絡して過電流を発生させることなく、初期化することが可能となる。
Here, when the output signal SROUT (k−1) becomes a low level, the switch circuit ASW3 is always turned off, so that the polarity signal CMI and the node N1 are disconnected. Therefore, regardless of whether the polarity signal CMI is high level or low level, the node N1 has the Vdd potential and the output signal OUTk has the Vss potential. Thus, initialization can be performed without causing a short circuit and generating an overcurrent.
このように、ラッチ回路34では、シフトレジスタの全段の出力信号SROUTがハイレベル・ローレベルのいずれの場合であっても、ハイレベル(Vdd)の初期化用信号INITをトランジスタT6のソース端子に与えることによって、内部電位を安定した電位で固定することが可能となる。
In this way, in the latch circuit 34, the high level (Vdd) initialization signal INIT is supplied to the source terminal of the transistor T6 regardless of whether the output signal SROUT of all stages of the shift register is high level or low level. It is possible to fix the internal potential at a stable potential.
また、初期化用信号INITは、新たに初期化用の制御回路や端子配線を追加して供給できるようにしたのではなく、初期化機能を付加する前のラッチ回路に設けられていたインバータINV1の電源VSSの配線を利用している。
In addition, the initialization signal INIT is not made to be able to be supplied by newly adding a control circuit and terminal wiring for initialization, but is an inverter INV1 provided in the latch circuit before adding the initialization function. The power supply VSS wiring is used.
よって、ラッチ回路34では、素子数を増やすことなく初期化することが可能となっている。
Therefore, the latch circuit 34 can be initialized without increasing the number of elements.
なお、通常動作時は、初期化用信号INITがVss(ローレベル)で固定されるので、初期化用信号INITが電源電圧Vssと同様の機能を果たす。よって、ラッチ回路34は、通常のラッチ回路と同一の動作が可能となっており、上述したラッチ回路33の通常時の動作と同様に動作することが可能となっている。
In the normal operation, the initialization signal INIT is fixed at Vss (low level), so that the initialization signal INIT performs the same function as the power supply voltage Vss. Therefore, the latch circuit 34 can operate in the same manner as a normal latch circuit, and can operate in the same manner as the normal operation of the latch circuit 33 described above.
以上、上述した実施の形態1~3のラッチ回路は、ラッチ回路を備える回路、例えばレベルシフタやシフトレジスタに適用することが可能である。そして、本実施形態のラッチ回路によれば、特に、液晶表示装置に搭載される表示駆動回路である、ラッチ回路を多数備える共通電極駆動回路や容量配線駆動回路に効果が大きい。そこで、共通電極駆動回路や容量配線駆動回路に搭載されるラッチ回路の実施形態を、以降の実施形態で説明する。
As described above, the latch circuits of the first to third embodiments described above can be applied to a circuit including a latch circuit, for example, a level shifter or a shift register. The latch circuit according to this embodiment is particularly effective for a common electrode driving circuit and a capacitor wiring driving circuit having a large number of latch circuits, which are display driving circuits mounted on a liquid crystal display device. Therefore, embodiments of the latch circuit mounted on the common electrode driving circuit and the capacitor wiring driving circuit will be described in the following embodiments.
〔実施の形態4〕
本発明に係る実施の形態4について、以下に説明する。本実施の形態では、液晶表示装置に搭載された、ラッチ回路を含んで構成される共通電極駆動回路について説明する。 [Embodiment 4]
Embodiment 4 according to the present invention will be described below. In this embodiment, a common electrode driving circuit including a latch circuit mounted on a liquid crystal display device will be described.
本発明に係る実施の形態4について、以下に説明する。本実施の形態では、液晶表示装置に搭載された、ラッチ回路を含んで構成される共通電極駆動回路について説明する。 [Embodiment 4]
Embodiment 4 according to the present invention will be described below. In this embodiment, a common electrode driving circuit including a latch circuit mounted on a liquid crystal display device will be described.
図16は、実施の形態4に係る液晶表示装置1の概略構成を示すブロック図であり、図17は、液晶表示装置1の画素Pの電気的構成を示す等価回路図である。
FIG. 16 is a block diagram illustrating a schematic configuration of the liquid crystal display device 1 according to the fourth embodiment, and FIG. 17 is an equivalent circuit diagram illustrating an electrical configuration of the pixel P of the liquid crystal display device 1.
まず、図16及び図17を用いて液晶表示装置1の概略構成について説明する。液晶表示装置1は、走査信号線駆動回路100(ゲートドライバ)、共通電極駆動回路200(COMドライバ)、データ信号線駆動回路300(ソースドライバ)、及び表示パネル400を備えている。また、液晶表示装置1には、各駆動回路を制御する制御回路(図示せず)が含まれる。なお、各駆動回路は、画素回路とアクティブマトリクス基板上にモノリシックに形成されていてもよい。
First, a schematic configuration of the liquid crystal display device 1 will be described with reference to FIGS. 16 and 17. The liquid crystal display device 1 includes a scanning signal line driving circuit 100 (gate driver), a common electrode driving circuit 200 (COM driver), a data signal line driving circuit 300 (source driver), and a display panel 400. Further, the liquid crystal display device 1 includes a control circuit (not shown) that controls each drive circuit. Each drive circuit may be formed monolithically on the pixel circuit and the active matrix substrate.
表示パネル400は、図示しないアクティブマトリクス基板と対向基板との間に液晶を挟持して構成されており、行列状に配列された多数の画素P(図17)を有している。
The display panel 400 is configured by sandwiching liquid crystal between an active matrix substrate (not shown) and a counter substrate, and has a large number of pixels P (FIG. 17) arranged in a matrix.
そして、表示パネル400は、アクティブマトリクス基板上に、走査信号線41(GLn)(ゲートライン)、コモンライン42(共通電極配線)(CMLn)、データ信号線43(SLi)(ソースライン)、薄膜トランジスタ(Thin Film Transistor;以下「TFT」とも言う)44、及び画素電極45を備えている。なお、i、nは2以上の整数である。
The display panel 400 includes a scanning signal line 41 (GLn) (gate line), a common line 42 (common electrode wiring) (CMLn), a data signal line 43 (SLi) (source line), a thin film transistor on an active matrix substrate. (Thin Film Transistor; hereinafter also referred to as “TFT”) 44 and a pixel electrode 45. I and n are integers of 2 or more.
走査信号線41は行方向(横方向)に互いに平行となるように各行に1本ずつ形成されており、データ信号線43は、列方向(縦方向)に互いに平行となるように各列に1本ずつ形成されている。図17に示すように、TFT44及び画素電極45は、走査信号線41とデータ信号線43との各交点に対応してそれぞれ形成されており、TFT44のゲート電極gが走査信号線41に、ソース電極sがデータ信号線43に、ドレイン電極dが画素電極45にそれぞれ接続されている。また、画素電極45は、コモンライン42との間に容量Clc(液晶容量を含む)を形成している。
One scanning signal line 41 is formed in each row so as to be parallel to each other in the row direction (lateral direction), and the data signal line 43 is arranged in each column so as to be parallel to each other in the column direction (vertical direction). One by one. As shown in FIG. 17, the TFT 44 and the pixel electrode 45 are formed corresponding to each intersection of the scanning signal line 41 and the data signal line 43, and the gate electrode g of the TFT 44 is connected to the scanning signal line 41. The electrode s is connected to the data signal line 43, and the drain electrode d is connected to the pixel electrode 45. Further, the pixel electrode 45 forms a capacitance Clc (including a liquid crystal capacitance) between the common line 42.
これにより、走査信号線41に供給されるゲート信号(走査信号)によってTFT44のゲートをオン状態にし、データ信号線43からのソース信号(データ信号)を画素電極45に書き込んで画素電極45を上記ソース信号に応じた電位に設定し、コモンライン42との間に介在する液晶に対して上記ソース信号に応じた電圧を印加することによって、上記ソース信号に応じた階調表示を実現することができる。
As a result, the gate of the TFT 44 is turned on by the gate signal (scanning signal) supplied to the scanning signal line 41, the source signal (data signal) from the data signal line 43 is written to the pixel electrode 45, and the pixel electrode 45 is written in the above-described manner. It is possible to realize gradation display according to the source signal by setting the potential according to the source signal and applying a voltage according to the source signal to the liquid crystal interposed between the common line 42. it can.
上記構成の表示パネル400は、走査信号線駆動回路100、共通電極駆動回路200、データ信号線駆動回路300、及びこれらを制御する制御回路によって駆動される。
The display panel 400 having the above configuration is driven by the scanning signal line driving circuit 100, the common electrode driving circuit 200, the data signal line driving circuit 300, and a control circuit for controlling them.
本実施の形態では、周期的に繰り返される垂直走査期間におけるアクティブ期間(有効走査期間)において、各行の水平走査期間を順次割り当て、各行を順次走査していく。
In this embodiment, in the active period (effective scanning period) in the vertical scanning period that is periodically repeated, the horizontal scanning period of each row is sequentially assigned, and each row is sequentially scanned.
そのため、走査信号線駆動回路100は、TFT44をオンするためのゲート信号を各行の水平走査期間に同期して当該行の走査信号線41に対して順次出力する。
Therefore, the scanning signal line driving circuit 100 sequentially outputs a gate signal for turning on the TFT 44 to the scanning signal line 41 of the row in synchronization with the horizontal scanning period of each row.
共通電極駆動回路200は、走査信号線駆動回路100を構成するシフトレジスタ10の出力信号(SROUT)に基づいて、各コモンライン42にハイレベルの信号(Vcomh)(第1電位)またはローレベルの信号(Vcoml)(第2電位)を供給する。
Based on the output signal (SROUT) of the shift register 10 constituting the scanning signal line driving circuit 100, the common electrode driving circuit 200 applies a high level signal (Vcomh) (first potential) or a low level to each common line 42. A signal (Vcoml) (second potential) is supplied.
データ信号線駆動回路300は、各データ信号線43に対してソース信号を出力する。このソース信号は、液晶表示装置1の外部から制御回路を介してデータ信号線駆動回路300に供給された映像信号を、データ信号線駆動回路300において各列に割り当て、昇圧等を施した信号である。
The data signal line driving circuit 300 outputs a source signal to each data signal line 43. This source signal is a signal obtained by assigning a video signal supplied to the data signal line driving circuit 300 from the outside of the liquid crystal display device 1 through the control circuit to each column in the data signal line driving circuit 300 and performing boosting or the like. is there.
制御回路は、上述した走査信号線駆動回路100、共通電極駆動回路200、及びデータ信号線駆動回路300を制御することにより、これら各回路から、ゲート信号、ソース信号、及びコモン信号を出力させる。
The control circuit controls the scanning signal line driving circuit 100, the common electrode driving circuit 200, and the data signal line driving circuit 300 described above to output a gate signal, a source signal, and a common signal from each of these circuits.
本実施の形態に係る液晶表示装置1では、回路面積を縮小化しつつ、共通電極駆動回路200の出力信号の電位レベルの低下を防いで安定した動作を行う構成を有している。以下では、走査信号線駆動回路100及び共通電極駆動回路200の具体的な構成について説明する。
The liquid crystal display device 1 according to the present embodiment has a configuration in which a stable operation is performed while reducing the potential level of the output signal of the common electrode driving circuit 200 while reducing the circuit area. Hereinafter, specific configurations of the scanning signal line driving circuit 100 and the common electrode driving circuit 200 will be described.
走査信号線駆動回路100を構成するシフトレジスタ10は、m個(mは2以上の整数)の単位回路11を多段接続して構成されている。単位回路11は、クロック用端子(CK端子)、セット用端子(S端子)、リセット用端子(R端子)、初期化用端子(INITB端子)、及び出力端子OUTを有している。以下、各端子経由で入出力される信号を当該端子と同じ名称で呼ぶ(例えば、クロック用端子CK経由で入力される信号をクロック信号CKという)。
The shift register 10 constituting the scanning signal line driving circuit 100 is configured by connecting m (m is an integer of 2 or more) unit circuits 11 in multiple stages. The unit circuit 11 has a clock terminal (CK terminal), a set terminal (S terminal), a reset terminal (R terminal), an initialization terminal (INITB terminal), and an output terminal OUT. Hereinafter, a signal input / output via each terminal is referred to by the same name as the terminal (for example, a signal input via the clock terminal CK is referred to as a clock signal CK).
シフトレジスタ10には、外部からスタートパルス(図示せず)と2相のクロック信号CK1、CK2が供給される。スタートパルスは、1段目の単位回路11のS端子に与えられる。クロック信号CK1は、奇数段目の単位回路11のCK端子に与えられ、クロック信号CK2は、偶数段目の単位回路11のCK端子に与えられる。単位回路11の出力は、出力端子OUTから、出力信号SROUTとして対応する走査信号線GLに出力されるとともに、後段の単位回路11のS端子及び前段の単位回路11のR端子に与えられる。また、単位回路11の出力信号SROUTは、対応する共通電極駆動回路200の単位回路21に入力される。
The shift register 10 is supplied with a start pulse (not shown) and two-phase clock signals CK1 and CK2 from the outside. The start pulse is given to the S terminal of the unit circuit 11 in the first stage. The clock signal CK1 is supplied to the CK terminal of the odd-numbered unit circuit 11, and the clock signal CK2 is supplied to the CK terminal of the even-numbered unit circuit 11. The output of the unit circuit 11 is output from the output terminal OUT to the corresponding scanning signal line GL as the output signal SROUT, and is given to the S terminal of the subsequent unit circuit 11 and the R terminal of the previous unit circuit 11. The output signal SROUT of the unit circuit 11 is input to the unit circuit 21 of the corresponding common electrode driving circuit 200.
共通電極駆動回路200は、n個(nは2以上の整数)の単位回路21を多段接続して構成されている。単位回路21は、入力端子INs・INc、初期化用端子INITB、及び出力端子OUTを有している。単位回路21の入力端子INsには、シフトレジスタ10の出力信号SROUTが入力され、単位回路21の入力端子INcには、極性信号CMIZ(保持対象信号)が入力される。単位回路21の初期化用端子INITBには、初期化用信号INITBが入力される。単位回路21の出力は、出力信号CMOUTとしてコモンライン(COMライン)CMLに出力される。
The common electrode driving circuit 200 is configured by connecting n (n is an integer of 2 or more) unit circuits 21 in multiple stages. The unit circuit 21 has input terminals INs and INc, an initialization terminal INITB, and an output terminal OUT. The output signal SROUT of the shift register 10 is input to the input terminal INs of the unit circuit 21, and the polarity signal CMIZ (holding target signal) is input to the input terminal INc of the unit circuit 21. An initialization signal INITB is input to the initialization terminal INITB of the unit circuit 21. The output of the unit circuit 21 is output to the common line (COM line) CML as the output signal CMOUT.
具体的には、共通電極駆動回路200のk段目(kは1以上n以下の整数)の単位回路21には、シフトレジスタ10の(k-1)段目の単位回路11の出力信号SROUT(k-1)が入力され、当該k段目の単位回路21は、出力信号CMOUTkをコモンラインCMLkに出力する。このように、共通電極駆動回路200は、シフトレジスタ10のシフト動作に従って、出力信号CMOUT1~CMOUTnを、コモンラインCML1~CMLnに順に出力する。なお、1段目の単位回路21には、シフトレジスタ10のスタートパルスが供給される。
Specifically, the output signal SROUT of the unit circuit 11 in the (k−1) -th stage of the shift register 10 is connected to the unit circuit 21 in the k-th stage (k is an integer of 1 to n) of the common electrode driving circuit 200. (K−1) is input, and the unit circuit 21 in the k-th stage outputs the output signal CMOUTk to the common line CMLk. As described above, the common electrode driving circuit 200 sequentially outputs the output signals CMOUT1 to CMOUTn to the common lines CML1 to CMLn according to the shift operation of the shift register 10. Note that the start pulse of the shift register 10 is supplied to the unit circuit 21 in the first stage.
シフトレジスタ10は周知の構成を適用することができる。よって、シフトレジスタ10の詳細な説明は省略し、以下では、共通電極駆動回路200の詳細な構成について説明する。
A well-known configuration can be applied to the shift register 10. Therefore, a detailed description of the shift register 10 is omitted, and a detailed configuration of the common electrode driving circuit 200 will be described below.
(実施例1)
図18は、実施例1に係る共通電極駆動回路200に含まれる単位回路21の回路図である。図18に示すように、単位回路21は、ラッチスルー回路21a(保持回路)およびバッファ21bを含んで構成される。ラッチスルー回路21aは、インバータINV1(第1インバータ)、インバータINV2(第2インバータ)、およびアナログスイッチ回路SW1により構成され、バッファ21bは、2つのトランジスタにより構成される。また、インバータINV2において、インバータINV1の出力端子とインバータINV2の入力端子との接続点をノードN1とし、インバータINV1の入力端子とインバータINV2の出力端子との接続点をノードN2とする(図18参照)。 Example 1
FIG. 18 is a circuit diagram of theunit circuit 21 included in the common electrode driving circuit 200 according to the first embodiment. As shown in FIG. 18, the unit circuit 21 includes a latch-through circuit 21a (holding circuit) and a buffer 21b. The latch through circuit 21a is configured by an inverter INV1 (first inverter), an inverter INV2 (second inverter), and an analog switch circuit SW1, and the buffer 21b is configured by two transistors. In addition, in the inverter INV2, the connection point between the output terminal of the inverter INV1 and the input terminal of the inverter INV2 is a node N1, and the connection point between the input terminal of the inverter INV1 and the output terminal of the inverter INV2 is a node N2 (see FIG. 18). ).
図18は、実施例1に係る共通電極駆動回路200に含まれる単位回路21の回路図である。図18に示すように、単位回路21は、ラッチスルー回路21a(保持回路)およびバッファ21bを含んで構成される。ラッチスルー回路21aは、インバータINV1(第1インバータ)、インバータINV2(第2インバータ)、およびアナログスイッチ回路SW1により構成され、バッファ21bは、2つのトランジスタにより構成される。また、インバータINV2において、インバータINV1の出力端子とインバータINV2の入力端子との接続点をノードN1とし、インバータINV1の入力端子とインバータINV2の出力端子との接続点をノードN2とする(図18参照)。 Example 1
FIG. 18 is a circuit diagram of the
アナログスイッチ回路SW1は、Nチャネル型トランジスタT1とNチャネル型トランジスタT9と容量C1とで構成され、トランジスタT9のゲート端子に電源電圧Vddが与えられ、ソース端子が入力端子INsに接続され、ドレイン端子がトランジスタT1のゲート端子に接続されている。また、容量C1は、トランジスタT1のゲート端子及びドレイン端子の間に設けられている。なお、容量C1とトランジスタT1のゲート端子との接続点をノードN3とする。トランジスタT1のソース端子は入力端子INcに接続されている。入力端子INsにはシフトレジスタ10の単位回路11の出力信号SROUTが供給され、入力端子INcには極性信号CMIZが供給される。
The analog switch circuit SW1 includes an N-channel transistor T1, an N-channel transistor T9, and a capacitor C1, a power supply voltage Vdd is applied to the gate terminal of the transistor T9, a source terminal is connected to the input terminal INs, and a drain terminal Is connected to the gate terminal of the transistor T1. The capacitor C1 is provided between the gate terminal and the drain terminal of the transistor T1. Note that a connection point between the capacitor C1 and the gate terminal of the transistor T1 is a node N3. The source terminal of the transistor T1 is connected to the input terminal INc. The output signal SROUT of the unit circuit 11 of the shift register 10 is supplied to the input terminal INs, and the polarity signal CMIZ is supplied to the input terminal INc.
インバータINV2は、Pチャネル型トランジスタT3とNチャネル型トランジスタT4で構成され、インバータINV2の入力端子(トランジスタT3のゲート端子と、トランジスタT4のゲート端子との接続点(ノードN1))は、アナログスイッチ回路SW1の出力端子(トランジスタT1のドレイン端子)に接続されている。トランジスタT3のソース端子には電源電圧Vddが与えられ、トランジスタT3のドレイン端子はインバータINV2の出力端子(トランジスタT3のドレイン端子と、トランジスタT4のドレイン端子との接続点(ノードN2))に接続され、トランジスタT4のソース端子には電源電圧Vssが与えられ、トランジスタT4のドレイン端子はインバータINV2の出力端子(ノードN2)に接続されている。ノードN2は、ラッチスルー回路21aの出力端子out、及びインバータINV1の入力端子(トランジスタT5、T6のゲート端子)に接続されている。
The inverter INV2 includes a P-channel transistor T3 and an N-channel transistor T4. An input terminal of the inverter INV2 (a connection point (node N1) between the gate terminal of the transistor T3 and the gate terminal of the transistor T4) is an analog switch. The output terminal of the circuit SW1 (the drain terminal of the transistor T1) is connected. The power supply voltage Vdd is applied to the source terminal of the transistor T3, and the drain terminal of the transistor T3 is connected to the output terminal of the inverter INV2 (the connection point (node N2) between the drain terminal of the transistor T3 and the drain terminal of the transistor T4). The power supply voltage Vss is applied to the source terminal of the transistor T4, and the drain terminal of the transistor T4 is connected to the output terminal (node N2) of the inverter INV2. The node N2 is connected to the output terminal out of the latch through circuit 21a and the input terminal of the inverter INV1 (gate terminals of the transistors T5 and T6).
インバータINV1は、Pチャネル型トランジスタT5とNチャネル型トランジスタT6と抵抗R1、R2とで構成されるとともに、初期化用端子(INITB端子)が設けられている。インバータINV1の入力端子(トランジスタT5、T6のゲート端子)は、インバータINV2の出力端子(ノードN2)に接続されている。トランジスタT5のソース端子には抵抗R2を介して初期化用信号INITBが入力され、トランジスタT5のドレイン端子は、インバータINV1の出力端子(トランジスタT5のドレイン端子と、トランジスタT6のドレイン端子との接続点)に接続され、トランジスタT6のソース端子には抵抗R1を介して電源電圧Vssが与えられ、トランジスタT6のドレイン端子はインバータINV1の出力端子に接続されている。インバータINV1の出力端子は、インバータINV2の入力端子(ノードN1)に接続されている。ラッチスルー回路21aの出力端子outは、バッファ21bの入力端子inに接続されている。
The inverter INV1 includes a P-channel transistor T5, an N-channel transistor T6, and resistors R1 and R2, and is provided with an initialization terminal (INITB terminal). An input terminal of the inverter INV1 (gate terminals of the transistors T5 and T6) is connected to an output terminal (node N2) of the inverter INV2. The initialization signal INITB is input to the source terminal of the transistor T5 via the resistor R2. The drain terminal of the transistor T5 is connected to the output terminal of the inverter INV1 (the connection point between the drain terminal of the transistor T5 and the drain terminal of the transistor T6). The power supply voltage Vss is applied to the source terminal of the transistor T6 via the resistor R1, and the drain terminal of the transistor T6 is connected to the output terminal of the inverter INV1. The output terminal of the inverter INV1 is connected to the input terminal (node N1) of the inverter INV2. The output terminal out of the latch through circuit 21a is connected to the input terminal in of the buffer 21b.
バッファ21bは、Pチャネル型トランジスタT7とNチャネル型トランジスタT8で構成され、トランジスタT7、T8のゲート端子は入力端子inに接続され、トランジスタT7のソース端子には電源電圧Vcomhが与えられ、トランジスタT7のドレイン端子は単位回路21の出力端子OUTに接続され、トランジスタT8のソース端子には電源電圧Vcomlが与えられ、トランジスタT8のドレイン端子は単位回路21の出力端子OUTに接続されている。
The buffer 21b includes a P-channel transistor T7 and an N-channel transistor T8, the gate terminals of the transistors T7 and T8 are connected to the input terminal in, the power supply voltage Vcomh is applied to the source terminal of the transistor T7, and the transistor T7 Is connected to the output terminal OUT of the unit circuit 21, the source terminal of the transistor T8 is supplied with the power supply voltage Vcoml, and the drain terminal of the transistor T8 is connected to the output terminal OUT of the unit circuit 21.
これにより、k段目の単位回路21の入力端子INsには、シフトレジスタ10の(k-1)段目の単位回路11の出力信号SROUT(k-1)が入力され、k段目の単位回路21の出力端子OUTから、k行目のコモンラインCMLkに出力信号CMOUTkが出力される。
As a result, the output signal SROUT (k−1) of the (k−1) th unit circuit 11 of the shift register 10 is input to the input terminal INs of the kth unit circuit 21, and the kth unit. An output signal CMOUTk is output from the output terminal OUT of the circuit 21 to the common line CMLk of the k-th row.
上記構成の単位回路21を含む共通電極駆動回路200は、1フレームごとにハイレベル(Vcomh)及びローレベル(Vcoml)が切り替わる出力信号CMOUT1~CMOUTnを1つずつ順に出力する動作を行う。以下、クロック信号CK1、CK2を含め、共通電極駆動回路200の内部の信号と入出力信号の電位は、特に断わらない限り、ハイレベルのときにはVdd、ローレベルのときにはVssであるとする。また、極性信号CMIZについても、以下では、ハイレベルのときはVdd、ローレベルのときはVssとする。ただし、極性信号CMIZの電位レベルはこれに限定されず、「ハイレベル」はインバータINV2の反転電位よりも高ければよく、「ローレベル」はインバータINV2の反転電位よりも低ければよい。
The common electrode driving circuit 200 including the unit circuit 21 having the above configuration performs an operation of sequentially outputting the output signals CMOUT1 to CMOUTn in which the high level (Vcomh) and the low level (Vcoml) are switched for each frame one by one. Hereinafter, unless otherwise specified, the internal signal of the common electrode driving circuit 200 including the clock signals CK1 and CK2 and the potential of the input / output signal are assumed to be Vdd when the level is high and Vss when the level is low. In the following, the polarity signal CMIZ is also set to Vdd when it is at a high level and Vss when it is at a low level. However, the potential level of the polarity signal CMIZ is not limited to this, and the “high level” only needs to be higher than the inversion potential of the inverter INV2, and the “low level” only needs to be lower than the inversion potential of the inverter INV2.
極性信号CMIZは、図19に示すように、NAND回路とインバータで構成された生成回路210により生成され、共通電極駆動回路200の外部に設けられている。極性信号CMIZは、各段の単位回路21に入力される。
As shown in FIG. 19, the polarity signal CMIZ is generated by a generation circuit 210 composed of a NAND circuit and an inverter, and is provided outside the common electrode drive circuit 200. The polarity signal CMIZ is input to the unit circuit 21 at each stage.
(動作について)
共通電極駆動回路200の動作について図20及び図21を用いて説明する。図20は、共通電極駆動回路200の動作時のタイミングチャートであり、図21は、共通電極駆動回路200の動作時のタイミングチャートを模式的に示した図である。図20では、(k-1)段目の単位回路21、k段目の単位回路21、(k+1)段目の単位回路21における入出力信号を示している。 (About operation)
The operation of the commonelectrode driving circuit 200 will be described with reference to FIGS. FIG. 20 is a timing chart during operation of the common electrode driving circuit 200, and FIG. 21 is a diagram schematically illustrating a timing chart during operation of the common electrode driving circuit 200. FIG. 20 shows input / output signals in the unit circuit 21 at the (k−1) th stage, the unit circuit 21 at the kth stage, and the unit circuit 21 at the (k + 1) th stage.
共通電極駆動回路200の動作について図20及び図21を用いて説明する。図20は、共通電極駆動回路200の動作時のタイミングチャートであり、図21は、共通電極駆動回路200の動作時のタイミングチャートを模式的に示した図である。図20では、(k-1)段目の単位回路21、k段目の単位回路21、(k+1)段目の単位回路21における入出力信号を示している。 (About operation)
The operation of the common
CK1は、奇数段目の単位回路11のCK端子に与えられるクロック信号であり、CK2は、偶数段目の単位回路11のCK端子に与えられるクロック信号である。初期化用信号INITBは、通常動作時にハイレベル(Vdd)になり、初期化時(アクティブ時)にローレベル(Vss)になる信号である。すなわち、初期化用信号INITBは通常動作時では、電源VDDと同様の機能を果たす。極性信号CMIZは、通常動作時は、極性信号CMIと同じように1水平走査期間(1H)ごとに極性が反転するが、初期化時にはローレベルになる信号である。
CK1 is a clock signal supplied to the CK terminal of the odd-numbered unit circuit 11, and CK2 is a clock signal supplied to the CK terminal of the even-numbered unit circuit 11. The initialization signal INITB is a signal that is at a high level (Vdd) during normal operation and is at a low level (Vss) at initialization (when active). That is, the initialization signal INITB performs the same function as the power supply VDD during normal operation. The polarity signal CMIZ is a signal that inverts every horizontal scanning period (1H) in the same manner as the polarity signal CMI during normal operation, but goes to a low level during initialization.
SR(k-2)、SR(k-1)、SRnは、それぞれ、シフトレジスタ10の(k-2)段目の単位回路11、(k-1)段目の単位回路11、k段目の単位回路11の出力信号SROUT(k-2)、SROUT(k-1)、SROUTkの電位を示している。N1、N2はそれぞれ、図18に示すノードN1、ノードN2の電位を示している。CM(k-1)、CMk、CM(k+1)はそれぞれ、共通電極駆動回路200の(k-1)段目の単位回路21、k段目の単位回路21、(k+1)段目の単位回路21の出力信号CMOUT(k-1)、CMOUTk、CMOUT(k+1)を示している。なお、出力信号SROUT(k-2)が出力されてから次の出力信号SROUT(k-2)が出力されるまでの期間が1垂直走査期間(1フレーム:1V)に相当する。また、図20では、任意の連続するフレームF(t)、F(t+1)、F(t+2)について示している。
SR (k−2), SR (k−1), and SRn are the unit circuit 11 in the (k−2) th stage, the unit circuit 11 in the (k−1) th stage, and the kth stage of the shift register 10, respectively. The potentials of the output signals SROUT (k−2), SROUT (k−1) and SROUTk of the unit circuit 11 are shown. N1 and N2 indicate the potentials of the nodes N1 and N2 shown in FIG. 18, respectively. CM (k−1), CMk, and CM (k + 1) are the unit circuit 21 at the (k−1) th stage, the unit circuit 21 at the kth stage, and the unit circuit at the (k + 1) th stage of the common electrode driving circuit 200, respectively. 21 output signals CMOUT (k−1), CMOUTk, CMOUT (k + 1). Note that a period from when the output signal SROUT (k-2) is output to when the next output signal SROUT (k-2) is output corresponds to one vertical scanning period (1 frame: 1 V). Also, FIG. 20 shows arbitrary continuous frames F (t), F (t + 1), and F (t + 2).
まず、通常時の動作として、k段目の単位回路21におけるフレームF(t)、F(t+1)の動作について説明する。
First, as normal operations, the operations of the frames F (t) and F (t + 1) in the k-th unit circuit 21 will be described.
初めに、フレームF(t)において、k段目の単位回路21の入力端子INsに、シフトレジスタ10の(k-1)段目の単位回路11の出力信号SROUT(k-1)(ハイレベル(アクティブ))が入力される。これにより、トランジスタT1がオン状態になり、極性信号CMIZ(ローレベル;Vss)がラッチスルー回路21aに取り込まれる。
First, in frame F (t), the output signal SROUT (k−1) (high level) of the (k−1) th unit circuit 11 of the shift register 10 is applied to the input terminal INs of the kth unit circuit 21. (Active)) is entered. As a result, the transistor T1 is turned on, and the polarity signal CMIZ (low level; Vss) is taken into the latch-through circuit 21a.
ここで、出力信号SROUT(k-1)がハイレベル(アクティブ)になる直前ではノードN1の電位がVdd(ハイレベル)に保持されており、トランジスタT5がオン状態になっているため、出力信号SROUT(k-1)がハイレベル(アクティブ)になると、極性信号CMIZのVss(ローレベル)と、INITB端子(ハイレベル)とが短絡することになる。この点、INITB端子(ハイレベル)とノードN1との間に抵抗R2が設けられているため、ノードN1の電位は、極性信号CMIZ側へ引き込まれ、極性信号CMIZのVss(ローレベル)に近い電位(インバータINV2の反転電位よりも低い電位)まで低下する(図21参照)。
Here, immediately before the output signal SROUT (k−1) becomes high level (active), the potential of the node N1 is held at Vdd (high level), and the transistor T5 is turned on. When SROUT (k−1) becomes high level (active), Vss (low level) of the polarity signal CMIZ and the INITB terminal (high level) are short-circuited. In this respect, since the resistor R2 is provided between the INITB terminal (high level) and the node N1, the potential of the node N1 is drawn to the polarity signal CMIZ side and is close to Vss (low level) of the polarity signal CMIZ. It drops to the potential (potential lower than the inversion potential of the inverter INV2) (see FIG. 21).
その後、トランジスタT3がオン状態になり、インバータINV2の出力(ノードN2;Vdd(ハイレベル))がインバータINV1の入力にフィードバックされることにより、トランジスタT5がオフ状態になり、トランジスタT6がオン状態になる。これにより、ノードN1の電位は、極性信号CMIZのVssに近い電位からさらにVssまで低下する(図21参照)。
Thereafter, the transistor T3 is turned on, and the output of the inverter INV2 (node N2; Vdd (high level)) is fed back to the input of the inverter INV1, whereby the transistor T5 is turned off and the transistor T6 is turned on. Become. As a result, the potential of the node N1 drops from a potential close to Vss of the polarity signal CMIZ to Vss (see FIG. 21).
ノードN1の電位が、Vss(ローレベル)近くまたはVss(ローレベル)になることによりインバータINV2のトランジスタT3がオン状態になり、トランジスタT4がオフ状態になる。トランジスタT3がオン状態になることにより、ノードN2の電位がVdd(ハイレベル)になり、ラッチスルー回路21aからVdd(ハイレベル)が出力される。そして、Vdd(ハイレベル)が入力されたバッファ21bでは、トランジスタT7がオフ状態になり、トランジスタT8がオン状態になることにより、バッファ21bからVcomlが出力され、k行目のコモンラインCMLkに供給される。
When the potential of the node N1 becomes close to Vss (low level) or Vss (low level), the transistor T3 of the inverter INV2 is turned on and the transistor T4 is turned off. When the transistor T3 is turned on, the potential of the node N2 becomes Vdd (high level), and Vdd (high level) is output from the latch-through circuit 21a. In the buffer 21b to which Vdd (high level) is input, the transistor T7 is turned off and the transistor T8 is turned on, whereby Vcoml is output from the buffer 21b and supplied to the k-th common line CMLk. Is done.
続いて、シフトレジスタ10の出力信号SROUT(k-1)がハイレベル(アクティブ)からローレベル(非アクティブ)になると、トランジスタT1がオフ状態になり、極性信号CMIZの入力が遮断され、ノードN1は、インバータINV1、INV2によるラッチ動作により直前に保持した電位(Vss(ローレベル))を保持し、フレームF(t+1)において出力信号SROUT(k-1)がハイレベル(アクティブ)になるまで、バッファ21bからVcomlが出力され、k行目のコモンラインCMLkに供給され続ける。
Subsequently, when the output signal SROUT (k−1) of the shift register 10 changes from the high level (active) to the low level (inactive), the transistor T1 is turned off, the input of the polarity signal CMIZ is cut off, and the node N1 Holds the potential (Vss (low level)) held immediately before by the latch operation by the inverters INV1 and INV2, and until the output signal SROUT (k-1) becomes high level (active) in the frame F (t + 1). Vcoml is output from the buffer 21b and continues to be supplied to the k-th common line CMLk.
次にフレームF(t+1)において、シフトレジスタ10の(k-1)段目の単位回路11の出力信号SROUT(k-1)がハイレベル(アクティブ)になると、ノードN3の電位がVdd-Vthにチャージされた後、トランジスタT9はオフ状態になる。ノードN1では、出力信号SROUT(k-1)(ハイレベル)によりトランジスタT1がオン状態になり、極性信号CMIZのVdd(ハイレベル)が入力されることで、Vss(ローレベル)からVdd(ハイレベル)に上がり始める。すると、ノードN1の電位変動により、容量C1を介してノードN3の電位がVdd-Vth+αに突き上げられる。これにより、極性信号CMIZ(Vdd)が閾値(Vth)落ちせずに入力され、ノードN1の電位がVddになる(ブートストラップ動作)。
Next, in frame F (t + 1), when the output signal SROUT (k−1) of the unit circuit 11 at the (k−1) stage of the shift register 10 becomes high level (active), the potential of the node N3 becomes Vdd−Vth. Transistor T9 is turned off. At the node N1, the transistor T1 is turned on by the output signal SROUT (k−1) (high level), and the Vdd (high level) of the polarity signal CMIZ is input, so that Vss (low level) to Vdd (high level). Level). Then, the potential of the node N3 is pushed up to Vdd−Vth + α through the capacitor C1 due to the potential fluctuation of the node N1. As a result, the polarity signal CMIZ (Vdd) is input without dropping the threshold value (Vth), and the potential of the node N1 becomes Vdd (bootstrap operation).
ここで、出力信号SROUT(k-1)がハイレベル(アクティブ)になる直前(フレームF(t))ではノードN1の電位がVss(ローレベル)に保持されており、トランジスタT6がオン状態となっているため、出力信号SROUT(k-1)がハイレベル(アクティブ)になると、極性信号CMIZのVdd(ハイレベル)と、電源VSS(ローレベル)とが短絡することになる。この点、電源VSSとノードN1との間に抵抗R1が設けられているため、ノードN1の電位は、極性信号CMIZ側へ引き込まれ、極性信号CMIZのVdd(ハイレベル)に近い電位(インバータINV2の反転電位よりも高い電位)まで上昇する(図21参照)。
Here, immediately before the output signal SROUT (k−1) becomes high level (active) (frame F (t)), the potential of the node N1 is held at Vss (low level), and the transistor T6 is turned on. Therefore, when the output signal SROUT (k−1) becomes high level (active), the polarity signal CMIZ Vdd (high level) and the power source VSS (low level) are short-circuited. In this respect, since the resistor R1 is provided between the power source VSS and the node N1, the potential of the node N1 is drawn to the polarity signal CMIZ side, and is a potential close to Vdd (high level) of the polarity signal CMIZ (inverter INV2 (Potential higher than the reversal potential of) (see FIG. 21).
その後、インバータINV2の出力(ノードN2;Vss(ローレベル))がインバータINV1の入力にフィードバックされることにより、トランジスタT5がオン状態になり、トランジスタT6がオフ状態になる。これにより、ノードN1の電位は、極性信号CMIZのVddに近い電位からさらにVddまで上昇する(図21参照)。
Thereafter, the output of the inverter INV2 (node N2; Vss (low level)) is fed back to the input of the inverter INV1, whereby the transistor T5 is turned on and the transistor T6 is turned off. As a result, the potential of the node N1 rises from a potential close to Vdd of the polarity signal CMIZ to Vdd (see FIG. 21).
ノードN1の電位が、Vdd(ハイレベル)近くまたはVdd(ハイレベル)になることによりインバータINV2のトランジスタT4がオン状態になり、トランジスタT3がオフ状態になる。トランジスタT4がオン状態になることにより、ノードN2の電位がVss(ローレベル)になり、ラッチスルー回路21aからVss(ローレベル)が出力される。そして、Vss(ローレベル)が入力されたバッファ21bでは、トランジスタT8がオフ状態になり、トランジスタT7がオン状態になることにより、バッファ21bからVcomhが出力され、k行目のコモンラインCMLkに供給される。
When the potential of the node N1 becomes close to Vdd (high level) or Vdd (high level), the transistor T4 of the inverter INV2 is turned on and the transistor T3 is turned off. When the transistor T4 is turned on, the potential of the node N2 becomes Vss (low level), and Vss (low level) is output from the latch through circuit 21a. In the buffer 21b to which Vss (low level) is input, the transistor T8 is turned off and the transistor T7 is turned on, whereby Vcomh is output from the buffer 21b and supplied to the k-th common line CMLk. Is done.
続いて、シフトレジスタ10の出力信号SROUT(k-1)がハイレベル(アクティブ)からローレベル(非アクティブ)になると、トランジスタT1がオフ状態になり、極性信号CMIZの入力が遮断され、ノードN1は、インバータINV1、INV2によるラッチ動作により直前に保持した電位(Vdd(ハイレベル))を保持し、フレームF(t+2)において出力信号SROUT(k-1)がハイレベル(アクティブ)になるまで、バッファ21bからVcomhが出力され、k行目のコモンラインCMLkに供給され続ける。フレームF(t+2)以降は、上記フレームF(t)、F(t+1)の動作を繰り返す。
Subsequently, when the output signal SROUT (k−1) of the shift register 10 changes from the high level (active) to the low level (inactive), the transistor T1 is turned off, the input of the polarity signal CMIZ is cut off, and the node N1 Holds the potential (Vdd (high level)) held immediately before by the latch operation by the inverters INV1 and INV2, and until the output signal SROUT (k-1) becomes high level (active) in the frame F (t + 2). Vcomh is output from the buffer 21b and is continuously supplied to the k-th common line CMLk. After the frame F (t + 2), the operations of the frames F (t) and F (t + 1) are repeated.
このようにして、k段目以外の単位回路21においても、シフトレジスタ10の各単位回路11から順次出力される出力信号SROUTに基づいて、上述と同様のラッチ出力動作を行う。
In this way, in the unit circuits 21 other than the k-th stage, the same latch output operation as described above is performed based on the output signals SROUT sequentially output from the unit circuits 11 of the shift register 10.
本実施例1の単位回路21によれば、共通電極駆動回路200の回路規模を縮小化することができるため、液晶表示装置の更なる狭額縁化を実現することができる。また、回路規模の縮小化に伴う動作不具合が生じることもない。
According to the unit circuit 21 of the first embodiment, since the circuit scale of the common electrode driving circuit 200 can be reduced, the frame of the liquid crystal display device can be further reduced. In addition, there is no problem of operation due to the reduction in circuit scale.
(初期化動作について)
次に、初期化時の動作について説明する。初期化時に、シフトレジスタ10の全段の単位回路11の出力信号SROUTがハイレベルの場合は、以下のように動作する(図22参照)。 (About initialization operation)
Next, the operation at initialization will be described. When the output signal SROUT of theunit circuits 11 in all stages of the shift register 10 is at the high level at the time of initialization, the operation is as follows (see FIG. 22).
次に、初期化時の動作について説明する。初期化時に、シフトレジスタ10の全段の単位回路11の出力信号SROUTがハイレベルの場合は、以下のように動作する(図22参照)。 (About initialization operation)
Next, the operation at initialization will be described. When the output signal SROUT of the
まず、出力信号SROUTがハイレベルになると、全段の単位回路21でトランジスタT1がオン状態になり、全段のノードN1と極性信号CMIZが接続(短絡)される。初期化直前の不定の状態では、ノードN1に保持されている電位も不定のため、極性信号CMIZに接続されるインバータINV2の出力も各段でVdd(ハイレベル)であるか、Vss(ローレベル)であるか不定の状態である。
First, when the output signal SROUT becomes high level, the transistor T1 is turned on in the unit circuits 21 in all stages, and the nodes N1 and the polarity signal CMIZ in all stages are connected (short-circuited). In an indefinite state immediately before initialization, the potential held at the node N1 is also indeterminate, so that the output of the inverter INV2 connected to the polarity signal CMIZ is also Vdd (high level) or Vss (low level) at each stage. ) Or indefinite state.
ここで、仮にノードN1に接続される初期化用信号INITBがVddとすると、全段のノードN1に接続されている極性信号CMIZは、インバータINV1の電源VDDに接続されている段と電源VSSに接続されている段とが同時に接続されることになり、電源VDDと電源VSSが極性信号CMIZを介して短絡することにより大電流が発生し、ノードN1の電位が中間電位となるため、正常に初期化することができない。
Here, if the initialization signal INITB connected to the node N1 is Vdd, the polarity signal CMIZ connected to the node N1 in all stages is supplied to the power supply VSS and the stage connected to the power supply VDD of the inverter INV1. The connected stages are connected at the same time, and a large current is generated when the power supply VDD and the power supply VSS are short-circuited via the polarity signal CMIZ, and the potential of the node N1 becomes an intermediate potential. It cannot be initialized.
この点、本単位回路21の構成では、初期化時には、極性信号CMIZ及び初期化用信号INITBが、ともにVss(ローレベル)になるように制御されているため、ノードN1は、必ずVss(ローレベル)になり、確実に初期化することができる。
In this regard, in the configuration of the unit circuit 21, since the polarity signal CMIZ and the initialization signal INITB are both controlled to be Vss (low level) at the time of initialization, the node N1 is always Vss (low level). Level) and can be reliably initialized.
一方、初期化時に、シフトレジスタ10の全段の単位回路11の出力信号SROUTがローレベルの場合は、以下のように動作する(図23参照)。
On the other hand, when the output signal SROUT of the unit circuits 11 in all stages of the shift register 10 is at the low level at the time of initialization, the operation is as follows (see FIG. 23).
初期化前の不定の状態で、ノードN1がVdd(ハイレベル)の場合は、トランジスタT5のゲート端子はVss(ローレベル)になっており、トランジスタT5はオン状態になっている。ここで、初期化時に初期化用信号INITBはVss(ローレベル)のため、ノードN1の電位は、トランジスタT5を介して、閾値(Vth)落ちしたローレベル(Vss+Vth)になる。インバータINV1の出力が、インバータINV2に入力されることにより、インバータINV2はVddを出力する。インバータINV2の出力(ノードN2)は、インバータINV1の入力に接続されているため、インバータINV2の出力(Vdd)がインバータINV1にフィードバックされ、トランジスタT6がオン状態になる。これにより、Vss+VthのノードN1が、Vss(ローレベル)になるため、確実に初期化することができる。
When the node N1 is Vdd (high level) in an undefined state before initialization, the gate terminal of the transistor T5 is Vss (low level), and the transistor T5 is on. Here, since the initialization signal INITB is Vss (low level) at the time of initialization, the potential of the node N1 becomes a low level (Vss + Vth) that has fallen the threshold value (Vth) through the transistor T5. When the output of the inverter INV1 is input to the inverter INV2, the inverter INV2 outputs Vdd. Since the output (node N2) of the inverter INV2 is connected to the input of the inverter INV1, the output (Vdd) of the inverter INV2 is fed back to the inverter INV1, and the transistor T6 is turned on. As a result, the node N1 of Vss + Vth becomes Vss (low level), so that it can be reliably initialized.
初期化前の不定の状態で、ノードN1がVss(ローレベル)の場合は、トランジスタT5がオフ状態となっているため、初期化用信号INITBの信号はノードN1には入力されないが、既に所望の電位(Vss)になっているため初期化された状態と同じである。
When the node N1 is Vss (low level) in an indeterminate state before initialization, the transistor T5 is in an off state, so the signal of the initialization signal INITB is not input to the node N1, but is already desired. Since this is the potential (Vss), it is the same as the initialized state.
このように、単位回路21によれば、共通電極駆動回路200を安定して初期化することができる。つまりは、単位回路21では、シフトレジスタ10の全段の単位回路11の出力信号SROUTがハイレベル・ローレベルのいずれの場合であっても、ローレベル(Vss)の初期化用信号INITBをトランジスタT5のソース端子に与えることによって、内部電位を安定した電位で固定することが可能となる。
Thus, according to the unit circuit 21, the common electrode driving circuit 200 can be initialized stably. That is, in the unit circuit 21, the initialization signal INITB at the low level (Vss) is applied to the transistor regardless of whether the output signal SROUT of the unit circuit 11 of all the stages of the shift register 10 is high level or low level. By applying to the source terminal of T5, the internal potential can be fixed at a stable potential.
また、初期化用信号INITBは、新たに初期化用の制御回路や端子配線を追加して供給できるようにしたのではなく、初期化機能を付加する前の単位回路に設けられていたインバータINV1の電源VDDの配線を利用している。
In addition, the initialization signal INITB can be supplied by adding a new initialization control circuit and terminal wiring, but is not provided in the inverter INV1 provided in the unit circuit before the initialization function is added. The power supply VDD wiring is used.
よって、単位回路21では、素子数を増やすことなく初期化することが可能となっている。
Therefore, the unit circuit 21 can be initialized without increasing the number of elements.
なお、通常動作時は、初期化用信号INITBがVdd(ハイレベル)となり、初期化用信号INITBが電源電圧Vddと同様の機能を果たすため、通常の単位回路と同一の動作が可能となる。
In the normal operation, the initialization signal INITB becomes Vdd (high level), and the initialization signal INITB performs the same function as the power supply voltage Vdd. Therefore, the same operation as a normal unit circuit is possible.
次に、共通電極駆動回路200(COMドライバ)の他の形態について説明する。なお、以下の説明では、主に、実施例1に係る共通電極駆動回路200(単位回路21)との相違点について説明するものとし、実施例1で説明した各構成要素と同一の機能を有する構成要素には同一の番号を付し、その説明を省略する。
Next, another embodiment of the common electrode driving circuit 200 (COM driver) will be described. In the following description, differences from the common electrode driving circuit 200 (unit circuit 21) according to the first embodiment will be mainly described, and the same functions as the components described in the first embodiment are provided. The same reference numerals are given to the constituent elements, and the description thereof is omitted.
(実施例2)
図24は、実施例2に係る共通電極駆動回路200に含まれる単位回路22の回路図である。 (Example 2)
FIG. 24 is a circuit diagram of theunit circuit 22 included in the common electrode driving circuit 200 according to the second embodiment.
図24は、実施例2に係る共通電極駆動回路200に含まれる単位回路22の回路図である。 (Example 2)
FIG. 24 is a circuit diagram of the
単位回路22は、実施例1の単位回路21と同様、共通電極駆動回路200を初期化するための機能を備えている。具体的には、単位回路22は、実施例1の単位回路21(図18)において、インバータINV1の電源VSSが省略され、初期化用端子(INIT端子)が設けられているとともに、初期化用端子(INITB端子)が省略され、インバータINV1の電源VDDが設けられている。初期化用信号INITは、抵抗R1を介してトランジスタT6のソース端子に入力される。
The unit circuit 22 has a function for initializing the common electrode drive circuit 200 as in the unit circuit 21 of the first embodiment. Specifically, in the unit circuit 22 of the first embodiment (FIG. 18), the power supply VSS of the inverter INV1 is omitted, an initialization terminal (INIT terminal) is provided, and the unit circuit 22 is for initialization. The terminal (INITB terminal) is omitted, and the power supply VDD of the inverter INV1 is provided. The initialization signal INIT is input to the source terminal of the transistor T6 via the resistor R1.
初期化用信号INITは、通常動作時にローレベル(Vss)になり、初期化時(アクティブ時)にハイレベル(Vdd)になる信号である。極性信号CMIZは、通常動作時は、極性信号CMIと同じように1水平走査期間(1H)ごとに極性が反転するが、初期化時にはハイレベルになる信号である。極性信号CMIZは、各段の単位回路22に入力される。また、極性信号CMIZは、図25に示すように、NOR回路とインバータで構成された生成回路220により生成され、共通電極駆動回路200の外部に設けられている。
The initialization signal INIT becomes a low level (Vss) during normal operation and becomes a high level (Vdd) during initialization (active). The polarity signal CMIZ is a signal that inverts the polarity every horizontal scanning period (1H) in the normal operation as in the polarity signal CMI, but becomes high level at the time of initialization. The polarity signal CMIZ is input to the unit circuit 22 at each stage. Further, as shown in FIG. 25, the polarity signal CMIZ is generated by a generation circuit 220 including a NOR circuit and an inverter, and is provided outside the common electrode drive circuit 200.
(動作について)
初期化時に、シフトレジスタ10の全段の単位回路11の出力信号SROUTがハイレベルの場合は、以下のように動作する。 (About operation)
When the output signal SROUT of theunit circuits 11 in all stages of the shift register 10 is at high level at the time of initialization, the operation is as follows.
初期化時に、シフトレジスタ10の全段の単位回路11の出力信号SROUTがハイレベルの場合は、以下のように動作する。 (About operation)
When the output signal SROUT of the
初期化直前の不定の状態では、ノードN1の電位、インバータINV2の出力ともに不定の状態であるが、初期化時には、極性信号CMIZ及び初期化用信号INITが、ともにVdd(ハイレベル)になるように制御されているため、ノードN1は、必ずVdd(ハイレベル)になり、確実に初期化することができる。
In an indefinite state immediately before initialization, both the potential of the node N1 and the output of the inverter INV2 are indefinite, but at the time of initialization, both the polarity signal CMIZ and the initialization signal INIT are set to Vdd (high level). Therefore, the node N1 is always at Vdd (high level) and can be reliably initialized.
一方、初期化時に、シフトレジスタ10の全段の単位回路11の出力信号SROUTがローレベルの場合は、以下のように動作する。
On the other hand, when the output signal SROUT of the unit circuits 11 in all stages of the shift register 10 is at the low level at the time of initialization, the operation is as follows.
初期化前の不定の状態で、ノードN1がVss(ローレベル)の場合は、トランジスタT6のゲート端子はVdd(ハイレベル)になっており、トランジスタT6はオン状態になっている。ここで、初期化時に初期化用信号INITはVdd(ハイレベル)のため、ノードN1の電位は、トランジスタT6を介して、閾値(Vth)落ちしたハイレベル(Vdd-Vth)になる。インバータINV1の出力が、インバータINV2に入力されることにより、インバータINV2はVssを出力する。インバータINV2の出力(ノードN2)は、インバータINV1の入力に接続されているため、インバータINV2の出力(Vss)がインバータINV1にフィードバックされ、トランジスタT5がオン状態になる。これにより、Vdd-VthのノードN1が、Vdd(ハイレベル)になるため、確実に初期化することができる。
When the node N1 is Vss (low level) in an undefined state before initialization, the gate terminal of the transistor T6 is Vdd (high level), and the transistor T6 is on. Here, since the initialization signal INIT is Vdd (high level) at the time of initialization, the potential of the node N1 becomes a high level (Vdd−Vth) that has fallen by the threshold (Vth) via the transistor T6. When the output of the inverter INV1 is input to the inverter INV2, the inverter INV2 outputs Vss. Since the output (node N2) of the inverter INV2 is connected to the input of the inverter INV1, the output (Vss) of the inverter INV2 is fed back to the inverter INV1, and the transistor T5 is turned on. As a result, the node N1 of Vdd−Vth becomes Vdd (high level), so that initialization can be surely performed.
初期化前の不定の状態で、ノードN1がVdd(ハイレベル)の場合は、トランジスタT6がオフ状態となっているため、初期化用信号INITの信号はノードN1には入力されないが、既に所望の電位(Vdd)になっているため初期化された状態と同じである。
When the node N1 is Vdd (high level) in an indeterminate state before initialization, the transistor T6 is in an off state, so that the signal for the initialization signal INIT is not input to the node N1, but is already desired. Since this is the potential (Vdd), it is the same as the initialized state.
このように、単位回路22によれば、共通電極駆動回路200を安定して初期化することができる。つまりは、単位回路22では、シフトレジスタ10の全段の単位回路11の出力信号SROUTがハイレベル・ローレベルのいずれの場合であっても、ハイレベル(Vdd)の初期化用信号INITをトランジスタT6のソース端子に与えることによって、内部電位を安定した電位で固定することが可能となる。また、初期化用信号INITは、元のインバータINV1の電源VSSの配線を利用している。よって、単位回路22では、素子数を増やすことなく初期化することが可能となっている。
Thus, according to the unit circuit 22, the common electrode driving circuit 200 can be initialized stably. That is, in the unit circuit 22, the initialization signal INIT of the high level (Vdd) is applied to the transistor regardless of whether the output signal SROUT of the unit circuits 11 of all the stages of the shift register 10 is high level or low level. By applying the voltage to the source terminal of T6, the internal potential can be fixed at a stable potential. Further, the initialization signal INIT uses the wiring of the power source VSS of the original inverter INV1. Therefore, the unit circuit 22 can be initialized without increasing the number of elements.
なお、通常動作時は、初期化用信号INITがVss(ローレベル)となり、初期化用信号INITが電源VSSと同様の機能を果たすため、通常の単位回路と同一の動作が可能となる。
In the normal operation, the initialization signal INIT becomes Vss (low level), and the initialization signal INIT performs the same function as the power supply VSS, so that the same operation as a normal unit circuit is possible.
(実施例3)
図26は、実施例3に係る共通電極駆動回路200に含まれる単位回路23の回路図である。 (Example 3)
FIG. 26 is a circuit diagram of theunit circuit 23 included in the common electrode driving circuit 200 according to the third embodiment.
図26は、実施例3に係る共通電極駆動回路200に含まれる単位回路23の回路図である。 (Example 3)
FIG. 26 is a circuit diagram of the
単位回路23は、実施例1の単位回路21と同様、共通電極駆動回路200を初期化するための機能を備えている。具体的には、単位回路23は、実施例1の単位回路21において、インバータINV2の電源VDDが省略され、初期化用端子(INITB端子)が設けられているとともに、初期化用端子(INITB端子)が省略され、インバータINV1の電源VDDが設けられている。初期化用信号INITBは、トランジスタT3のソース端子に入力される。
The unit circuit 23 has a function for initializing the common electrode drive circuit 200 as in the unit circuit 21 of the first embodiment. Specifically, in the unit circuit 23, the power supply VDD of the inverter INV2 is omitted in the unit circuit 21 of the first embodiment, an initialization terminal (INITB terminal) is provided, and an initialization terminal (INITB terminal) is provided. ) Is omitted, and the power supply VDD of the inverter INV1 is provided. The initialization signal INITB is input to the source terminal of the transistor T3.
初期化用信号INITBは、通常動作時にハイレベル(Vdd)になり、初期化時(アクティブ時)にローレベル(Vss)になる信号である。極性信号CMIZは、通常動作時は、極性信号CMIと同じように1水平走査期間(1H)ごとに極性が反転するが、初期化時にはハイレベルになる信号である。極性信号CMIZは、各段の単位回路23に入力される。また、極性信号CMIZは、図27に示すように、NOR回路とインバータで構成された生成回路230により生成され、共通電極駆動回路200の外部に設けられている。
The initialization signal INITB is a signal that is at a high level (Vdd) during normal operation and is at a low level (Vss) at initialization (when active). The polarity signal CMIZ is a signal that inverts the polarity every horizontal scanning period (1H) in the normal operation as in the polarity signal CMI, but becomes high level at the time of initialization. The polarity signal CMIZ is input to the unit circuit 23 in each stage. In addition, the polarity signal CMIZ is generated by a generation circuit 230 including a NOR circuit and an inverter and provided outside the common electrode drive circuit 200, as shown in FIG.
(動作について)
初期化時に、シフトレジスタ10の全段の単位回路11の出力信号SROUTがハイレベルの場合は、以下のように動作する。 (About operation)
When the output signal SROUT of theunit circuits 11 in all stages of the shift register 10 is at high level at the time of initialization, the operation is as follows.
初期化時に、シフトレジスタ10の全段の単位回路11の出力信号SROUTがハイレベルの場合は、以下のように動作する。 (About operation)
When the output signal SROUT of the
初期化直前の不定の状態では、ノードN1の電位、インバータINV2の出力(ノードn2)ともに不定の状態であるが、初期化時には、極性信号CMIZがVdd(ハイレベル)、初期化用信号INITBがVss(ローレベル)になるように制御されているため、ノードN2はVss(ローレベル)になり、インバータINV2の出力(Vss)がインバータINV1にフィードバックされ、トランジスタT5がオン状態になる。これにより、ノードN1はVddになるため、確実に初期化することができる。
In an indeterminate state immediately before initialization, both the potential of the node N1 and the output of the inverter INV2 (node n2) are indefinite, but at the time of initialization, the polarity signal CMIZ is Vdd (high level) and the initialization signal INITB is Since it is controlled to be Vss (low level), the node N2 becomes Vss (low level), the output (Vss) of the inverter INV2 is fed back to the inverter INV1, and the transistor T5 is turned on. Thereby, since the node N1 becomes Vdd, it can be initialized reliably.
一方、初期化時に、シフトレジスタ10の全段の単位回路11の出力信号SROUTがローレベルの場合は、以下のように動作する。
On the other hand, when the output signal SROUT of the unit circuits 11 in all stages of the shift register 10 is at the low level at the time of initialization, the operation is as follows.
初期化前の不定の状態で、ノードN2がVdd(ハイレベル)の場合は、トランジスタT3のゲート端子はVss(ローレベル)になっており、トランジスタT3はオン状態になっている。ここで、初期化時に初期化用信号INITBはVss(ローレベル)のため、ノードN2の電位は、トランジスタT3を介して、閾値(Vth)落ちしたローレベル(Vss+Vth)になる。インバータINV2の出力(ノードN2)は、インバータINV1の入力に接続されているため、インバータINV2の出力(Vss+Vth)がインバータINV1にフィードバックされ、トランジスタT5がオン状態になる。これにより、ノードN1がVdd(ハイレベル)になり、トランジスタT4がオン状態になり、Vss+VthのノードN2がVss(ローレベル)になるため、確実に初期化することができる。
When the node N2 is Vdd (high level) in an undefined state before initialization, the gate terminal of the transistor T3 is Vss (low level), and the transistor T3 is on. Here, since the initialization signal INITB is Vss (low level) at the time of initialization, the potential of the node N2 becomes a low level (Vss + Vth) that is lower than the threshold (Vth) via the transistor T3. Since the output (node N2) of the inverter INV2 is connected to the input of the inverter INV1, the output (Vss + Vth) of the inverter INV2 is fed back to the inverter INV1, and the transistor T5 is turned on. As a result, the node N1 is set to Vdd (high level), the transistor T4 is turned on, and the node N2 of Vss + Vth is set to Vss (low level), so that initialization can be surely performed.
初期化前の不定の状態で、ノードN2がVss(ローレベル)の場合は、トランジスタT3がオフ状態となっているため、初期化用信号INITBの信号はノードN2には入力されないが、既に所望の電位(Vss)になっているため初期化された状態と同じである。
When the node N2 is Vss (low level) in an indefinite state before initialization, the transistor T3 is in an off state, so that the signal for the initialization signal INITB is not input to the node N2, but is already desired. Since this is the potential (Vss), it is the same as the initialized state.
このように、単位回路23によれば、共通電極駆動回路200を安定して初期化することができる。つまりは、単位回路23では、シフトレジスタ10の全段の単位回路11の出力信号SROUTがハイレベル・ローレベルのいずれの場合であっても、ローレベル(Vss)の初期化用信号INITBをトランジスタT3のソース端子に与えることによって、内部電位を安定した電位で固定することが可能となる。また、初期化用信号INITBは、元のインバータINV2の電源VDDの配線を利用している。よって、単位回路23では、素子数を増やすことなく初期化することが可能となっている。
Thus, according to the unit circuit 23, the common electrode driving circuit 200 can be initialized stably. That is, in the unit circuit 23, the initialization signal INITB at the low level (Vss) is applied to the transistor regardless of whether the output signal SROUT of the unit circuits 11 of all the stages of the shift register 10 is high level or low level. By applying the voltage to the source terminal of T3, the internal potential can be fixed at a stable potential. The initialization signal INITB uses the wiring of the power supply VDD of the original inverter INV2. Therefore, the unit circuit 23 can be initialized without increasing the number of elements.
なお、通常動作時は、初期化用信号INITBがVdd(ハイレベル)となり、初期化用信号INITBが電源VDDと同様の機能を果たすため、通常の単位回路と同一の動作が可能となる。
In the normal operation, the initialization signal INITB becomes Vdd (high level), and the initialization signal INITB performs the same function as the power supply VDD, so that the same operation as a normal unit circuit is possible.
(実施例4)
図28は、実施例4に係る共通電極駆動回路200に含まれる単位回路24の回路図である。 (Example 4)
FIG. 28 is a circuit diagram of theunit circuit 24 included in the common electrode driving circuit 200 according to the fourth embodiment.
図28は、実施例4に係る共通電極駆動回路200に含まれる単位回路24の回路図である。 (Example 4)
FIG. 28 is a circuit diagram of the
単位回路24は、実施例1の単位回路21と同様、共通電極駆動回路200を初期化するための機能を備えている。具体的には、単位回路24は、実施例1の単位回路21において、インバータINV2の電源VSSが省略され、初期化用端子(INIT端子)が設けられているとともに、初期化用端子(INITB端子)が省略され、インバータINV1の電源VDDが設けられている。初期化用信号INITは、トランジスタT4のソース端子に入力される。
The unit circuit 24 has a function for initializing the common electrode driving circuit 200 as in the unit circuit 21 of the first embodiment. Specifically, in the unit circuit 24, the power supply VSS of the inverter INV2 is omitted in the unit circuit 21 of the first embodiment, an initialization terminal (INIT terminal) is provided, and an initialization terminal (INITB terminal) is provided. ) Is omitted, and the power supply VDD of the inverter INV1 is provided. The initialization signal INIT is input to the source terminal of the transistor T4.
初期化用信号INITは、通常動作時にローレベル(Vss)になり、初期化時(アクティブ時)にハイレベル(Vdd)になる信号である。極性信号CMIZは、通常動作時は、極性信号CMIと同じように1水平走査期間(1H)ごとに極性が反転するが、初期化時にはローレベルになる信号である。極性信号CMIZは、各段の単位回路24に入力される。また、極性信号CMIZは、図29に示すように、NOR回路とインバータで構成された生成回路240により生成され、共通電極駆動回路200の外部に設けられている。
The initialization signal INIT becomes a low level (Vss) during normal operation and becomes a high level (Vdd) during initialization (active). The polarity signal CMIZ is a signal that inverts every horizontal scanning period (1H) in the same manner as the polarity signal CMI during normal operation, but goes to a low level during initialization. The polarity signal CMIZ is input to the unit circuit 24 at each stage. In addition, the polarity signal CMIZ is generated by a generation circuit 240 including a NOR circuit and an inverter and provided outside the common electrode drive circuit 200, as shown in FIG.
(動作について)
初期化時に、シフトレジスタ10の全段の単位回路11の出力信号SROUTがハイレベルの場合は、以下のように動作する。 (About operation)
When the output signal SROUT of theunit circuits 11 in all stages of the shift register 10 is at high level at the time of initialization, the operation is as follows.
初期化時に、シフトレジスタ10の全段の単位回路11の出力信号SROUTがハイレベルの場合は、以下のように動作する。 (About operation)
When the output signal SROUT of the
初期化直前の不定の状態では、ノードN1の電位、インバータINV2の出力(ノードn2)ともに不定の状態であるが、初期化時には、極性信号CMIZがVss(ローレベル)、初期化用信号INITがVdd(ハイレベル)になるように制御されているため、ノードN2はVdd(ハイレベル)になり、インバータINV2の出力(Vdd)がインバータINV1にフィードバックされ、トランジスタT6がオン状態になる。これにより、ノードN1はVssになるため、確実に初期化することができる。
In an indefinite state immediately before initialization, both the potential of the node N1 and the output of the inverter INV2 (node n2) are indefinite, but at the time of initialization, the polarity signal CMIZ is Vss (low level) and the initialization signal INIT is Since it is controlled to be Vdd (high level), the node N2 becomes Vdd (high level), the output (Vdd) of the inverter INV2 is fed back to the inverter INV1, and the transistor T6 is turned on. Thereby, since the node N1 becomes Vss, it can be initialized reliably.
一方、初期化時に、シフトレジスタ10の全段の単位回路11の出力信号SROUTがローレベルの場合は、以下のように動作する。
On the other hand, when the output signal SROUT of the unit circuits 11 in all stages of the shift register 10 is at the low level at the time of initialization, the operation is as follows.
初期化前の不定の状態で、ノードN2がVss(ローレベル)の場合は、トランジスタT4のゲート端子はVdd(ハイレベル)になっており、トランジスタT4はオン状態になっている。ここで、初期化時に初期化用信号INITはVdd(ハイレベル)のため、ノードN2の電位は、トランジスタT4を介して、閾値(Vth)落ちしたハイレベル(Vdd-Vth)になる。インバータINV2の出力(ノードN2)は、インバータINV1の入力に接続されているため、インバータINV2の出力(Vdd-Vth)がインバータINV1にフィードバックされ、トランジスタT6がオン状態になる。これにより、ノードN1がVss(ローレベル)になり、トランジスタT3がオン状態になり、Vdd-VthのノードN2がVdd(ハイレベル)になるため、確実に初期化することができる。
When the node N2 is Vss (low level) in an indefinite state before initialization, the gate terminal of the transistor T4 is Vdd (high level), and the transistor T4 is on. Here, since the initialization signal INIT is Vdd (high level) at the time of initialization, the potential of the node N2 becomes a high level (Vdd−Vth) that has fallen by the threshold (Vth) via the transistor T4. Since the output (node N2) of the inverter INV2 is connected to the input of the inverter INV1, the output (Vdd−Vth) of the inverter INV2 is fed back to the inverter INV1, and the transistor T6 is turned on. As a result, the node N1 is set to Vss (low level), the transistor T3 is turned on, and the node N2 of Vdd−Vth is set to Vdd (high level), so that the initialization can be surely performed.
初期化前の不定の状態で、ノードN2がVdd(ハイレベル)の場合は、トランジスタT4がオフ状態となっているため、初期化用信号INITの信号はノードN2には入力されないが、既に所望の電位(Vdd)になっているため初期化された状態と同じである。
When the node N2 is Vdd (high level) in an indefinite state before initialization, the transistor T4 is in an off state, so that the signal of the initialization signal INIT is not input to the node N2, but is already desired. Since this is the potential (Vdd), it is the same as the initialized state.
このように、単位回路24によれば、共通電極駆動回路200を安定して初期化することができる。つまりは、単位回路24では、シフトレジスタ10の全段の単位回路11の出力信号SROUTがハイレベル・ローレベルのいずれの場合であっても、ハイレベル(Vdd)の初期化用信号INITをトランジスタT4のソース端子に与えることによって、内部電位を安定した電位で固定することが可能となる。また、初期化用信号INITは、元のインバータINV2の電源VSSの配線を利用している。よって、単位回路24では、素子数を増やすことなく初期化することが可能となっている。
Thus, according to the unit circuit 24, the common electrode driving circuit 200 can be initialized stably. That is, in the unit circuit 24, the initialization signal INIT of the high level (Vdd) is transferred to the transistor regardless of whether the output signal SROUT of the unit circuits 11 of all the stages of the shift register 10 is high level or low level. By applying to the source terminal of T4, the internal potential can be fixed at a stable potential. The initialization signal INIT uses the power supply VSS wiring of the original inverter INV2. Therefore, the unit circuit 24 can be initialized without increasing the number of elements.
なお、通常動作時は、初期化用信号INITがVss(ローレベル)となり、初期化用信号INITが電源VSSと同様の機能を果たすため、通常の単位回路と同一の動作が可能となる。
In the normal operation, the initialization signal INIT becomes Vss (low level), and the initialization signal INIT performs the same function as the power supply VSS, so that the same operation as a normal unit circuit is possible.
(変形例)
本実施の形態4に係る共通電極駆動回路200を構成する各単位回路のラッチスルー回路21aには、前記実施の形態1~3に示した各ラッチ回路(ラッチ回路15,19,31~34)と同じ回路構成を適用することができる。 (Modification)
The latch-throughcircuit 21a of each unit circuit constituting the common electrode driving circuit 200 according to the fourth embodiment includes the latch circuits (latch circuits 15, 19, 31 to 34) described in the first to third embodiments. The same circuit configuration can be applied.
本実施の形態4に係る共通電極駆動回路200を構成する各単位回路のラッチスルー回路21aには、前記実施の形態1~3に示した各ラッチ回路(ラッチ回路15,19,31~34)と同じ回路構成を適用することができる。 (Modification)
The latch-through
(走査方向の切り替え)
液晶表示装置1は、シフトレジスタ10の走査方向(シフト方向)を切り替える切替回路UDSWを備えていても良い。図30は、液晶表示装置1の変形例である液晶表示装置2を示すブロック図である。図30に示すように、液晶表示装置2は、図16の液晶表示装置1の構成に加えて、シフトレジスタ10の各段に対応して設けられた切替回路UDSWを備えている。 (Switching scanning direction)
The liquidcrystal display device 1 may include a switching circuit UDSW that switches the scanning direction (shift direction) of the shift register 10. FIG. 30 is a block diagram showing a liquid crystal display device 2 which is a modification of the liquid crystal display device 1. As shown in FIG. 30, the liquid crystal display device 2 includes a switching circuit UDSW provided corresponding to each stage of the shift register 10 in addition to the configuration of the liquid crystal display device 1 of FIG.
液晶表示装置1は、シフトレジスタ10の走査方向(シフト方向)を切り替える切替回路UDSWを備えていても良い。図30は、液晶表示装置1の変形例である液晶表示装置2を示すブロック図である。図30に示すように、液晶表示装置2は、図16の液晶表示装置1の構成に加えて、シフトレジスタ10の各段に対応して設けられた切替回路UDSWを備えている。 (Switching scanning direction)
The liquid
切替回路UDSWには、互いに極性が逆転した信号である切替信号UD、UDBが供給される。そして、切替回路UDSWは、例えば、切替信号UDがハイレベル(切替信号UDBがローレベル)のときは、(k-1)段目の単位回路11の出力信号SROUT(k-1)が、切替回路UDSWからk段目の単位回路21に入力され、切替信号UDBがハイレベル(切替信号UDがローレベル)のときは、(k+1)段目の単位回路11の出力信号SROUT(k+1)が、切替回路UDSWからk段目の単位回路21に入力されるように、信号出力の切替を行う。
The switching signals UD and UDB, which are signals whose polarities are reversed, are supplied to the switching circuit UDSW. For example, when the switching signal UD is at a high level (the switching signal UDB is at a low level), the switching circuit UDSW switches the output signal SROUT (k−1) of the unit circuit 11 at the (k−1) -th stage. When the circuit UDSW is input to the k-th unit circuit 21 and the switching signal UDB is at a high level (the switching signal UD is at a low level), the output signal SROUT (k + 1) of the (k + 1) -th unit circuit 11 is The signal output is switched so as to be input to the k-th unit circuit 21 from the switching circuit UDSW.
これにより、シフトレジスタ10の走査方向を切り替える(1段目からn段目へ向かう第1方向、及び、n段目から1段目へ向かう第2方向とを相互に切り替える)ことができる。なお、切替回路UDSWは、上述した各実施例に適用することができる。
Thereby, the scanning direction of the shift register 10 can be switched (a first direction from the first stage to the n-th stage and a second direction from the n-th stage to the first stage are mutually switched). Note that the switching circuit UDSW can be applied to the above-described embodiments.
〔実施の形態5〕
本発明の実施の形態5について図面に基づいて説明すると以下の通りである。本実施の形態では、液晶表示装置に搭載された、ラッチ回路を含んで構成される保持容量配線駆動回路(CSドライバ)について説明する。 [Embodiment 5]
The following describesEmbodiment 5 of the present invention with reference to the drawings. In this embodiment, a storage capacitor wiring driving circuit (CS driver) including a latch circuit mounted on a liquid crystal display device will be described.
本発明の実施の形態5について図面に基づいて説明すると以下の通りである。本実施の形態では、液晶表示装置に搭載された、ラッチ回路を含んで構成される保持容量配線駆動回路(CSドライバ)について説明する。 [Embodiment 5]
The following describes
図31は、実施の形態5に係る液晶表示装置3の概略構成を示すブロック図である。液晶表示装置3は、走査信号線駆動回路100、保持容量配線駆動回路500(CSドライバ)、データ信号線駆動回路300、及び表示パネル400を備えている。なお、各駆動回路は、画素回路とアクティブマトリクス基板上にモノリシックに形成されていてもよい。
FIG. 31 is a block diagram showing a schematic configuration of the liquid crystal display device 3 according to the fifth embodiment. The liquid crystal display device 3 includes a scanning signal line drive circuit 100, a storage capacitor line drive circuit 500 (CS driver), a data signal line drive circuit 300, and a display panel 400. Each drive circuit may be formed monolithically on the pixel circuit and the active matrix substrate.
表示パネル400は、走査信号線駆動回路100、保持容量配線駆動回路500、データ信号線駆動回路300、及びこれらを制御する制御回路によって駆動される。
The display panel 400 is driven by the scanning signal line driving circuit 100, the storage capacitor line driving circuit 500, the data signal line driving circuit 300, and a control circuit for controlling them.
保持容量配線駆動回路500は、走査信号線駆動回路100を構成するシフトレジスタ10の出力信号(SROUT)に基づいて、各保持容量配線46(CSライン)にハイレベルの信号(Vcsh)(変調信号)またはローレベルの信号(Vcsl)(変調信号)を供給する。
Based on the output signal (SROUT) of the shift register 10 constituting the scanning signal line drive circuit 100, the storage capacitor line drive circuit 500 applies a high level signal (Vcsh) (modulation signal) to each storage capacitor line 46 (CS line). ) Or a low level signal (Vcsl) (modulation signal).
制御回路は、走査信号線駆動回路100、保持容量配線駆動回路500、及びデータ信号線駆動回路300を制御することにより、これら各回路から、ゲート信号、ソース信号、及びCS信号を出力させる。
The control circuit controls the scanning signal line drive circuit 100, the storage capacitor line drive circuit 500, and the data signal line drive circuit 300 to output a gate signal, a source signal, and a CS signal from each of these circuits.
本実施の形態に係る液晶表示装置3では、回路面積を縮小化しつつ、保持容量配線駆動回路500の出力信号の電位レベルの低下を防いで安定した動作を行う構成を有している。以下では、走査信号線駆動回路100及び保持容量配線駆動回路500の具体的な構成について説明する。
The liquid crystal display device 3 according to the present embodiment has a configuration in which the circuit area is reduced and a stable operation is performed by preventing a decrease in the potential level of the output signal of the storage capacitor wiring drive circuit 500. Hereinafter, specific configurations of the scanning signal line driving circuit 100 and the storage capacitor wiring driving circuit 500 will be described.
走査信号線駆動回路100を構成するシフトレジスタ10は、m個(mは2以上の整数)の単位回路11を多段接続して構成されている。単位回路11は、クロック用端子(CK端子)、セット用端子(S端子)、リセット用端子(R端子)、初期化用端子(INITB端子)、及び出力端子OUTを有している。以下、各端子経由で入出力される信号を当該端子と同じ名称で呼ぶ(例えば、クロック用端子CK経由で入力される信号をクロック信号CKという)。
The shift register 10 constituting the scanning signal line driving circuit 100 is configured by connecting m (m is an integer of 2 or more) unit circuits 11 in multiple stages. The unit circuit 11 has a clock terminal (CK terminal), a set terminal (S terminal), a reset terminal (R terminal), an initialization terminal (INITB terminal), and an output terminal OUT. Hereinafter, a signal input / output via each terminal is referred to by the same name as the terminal (for example, a signal input via the clock terminal CK is referred to as a clock signal CK).
シフトレジスタ10には、外部からスタートパルス(図示せず)と2相のクロック信号CK1、CK2が供給される。スタートパルスは、1段目の単位回路11のS端子に与えられる。クロック信号CK1は、奇数段目の単位回路11のCK端子に与えられ、クロック信号CK2は、偶数段目の単位回路11のCK端子に与えられる。単位回路11の出力は、出力端子OUTから、出力信号SROUTとして対応する走査信号線GLに供給されるとともに、後段の単位回路11のS端子及び前段の単位回路11のR端子に与えられる。また、単位回路11の出力信号SROUTは、対応する保持容量配線駆動回路500の単位回路51に供給される。
The shift register 10 is supplied with a start pulse (not shown) and two-phase clock signals CK1 and CK2 from the outside. The start pulse is given to the S terminal of the unit circuit 11 in the first stage. The clock signal CK1 is supplied to the CK terminal of the odd-numbered unit circuit 11, and the clock signal CK2 is supplied to the CK terminal of the even-numbered unit circuit 11. The output of the unit circuit 11 is supplied from the output terminal OUT to the corresponding scanning signal line GL as the output signal SROUT, and is also supplied to the S terminal of the subsequent unit circuit 11 and the R terminal of the previous unit circuit 11. Further, the output signal SROUT of the unit circuit 11 is supplied to the unit circuit 51 of the corresponding storage capacitor line driving circuit 500.
具体的には、図31に示すように、シフトレジスタ10のk段目(kは1以上n以下の整数)の単位回路11のS端子に、(k-1)段目の単位回路11の出力信号SROUT(k-1)が入力され、当該k段目の単位回路11は、出力信号SROUTkを走査信号線GLkに出力する。このように、シフトレジスタ10は、シフト動作によって、出力信号SROUT1~SROUTnを、走査信号線GL1~GLnに順に出力する。
Specifically, as shown in FIG. 31, the (k−1) -th unit circuit 11 is connected to the S terminal of the k-th unit circuit 11 of the shift register 10 (k is an integer of 1 to n). The output signal SROUT (k−1) is input, and the k-th unit circuit 11 outputs the output signal SROUTk to the scanning signal line GLk. As described above, the shift register 10 sequentially outputs the output signals SROUT1 to SROUTn to the scanning signal lines GL1 to GLn by the shift operation.
保持容量配線駆動回路500は、n個(nは2以上の整数)の単位回路51を多段接続して構成されている。単位回路51は、入力端子INs1・INs2・INc、初期化用端子(INITB端子)、及び出力端子OUTを有している。単位回路51の入力端子INs1、INs2には、シフトレジスタ10の出力信号SROUTが入力され、入力端子INcには、極性信号CMIZが入力され、初期化用端子(INITB端子)には、初期化用信号(INITB)が入力される。単位回路51の出力は、出力信号CSOUTとして保持容量配線(CSライン)CSLに供給される。
The storage capacitor wiring drive circuit 500 is configured by connecting n (n is an integer of 2 or more) unit circuits 51 in multiple stages. The unit circuit 51 has input terminals INs1, INs2, and INc, an initialization terminal (INITB terminal), and an output terminal OUT. The output signal SROUT of the shift register 10 is input to the input terminals INs1 and INs2 of the unit circuit 51, the polarity signal CMIZ is input to the input terminal INc, and the initialization terminal (INITB terminal) is used for initialization. A signal (INITB) is input. The output of the unit circuit 51 is supplied as an output signal CSOUT to a storage capacitor line (CS line) CSL.
具体的には、図31に示すように、保持容量配線駆動回路500のk段目(kは1以上n以下の整数)の単位回路51には、入力端子INs1にシフトレジスタ10のk段目の出力SROUTkが入力されるとともに、入力端子INs2にシフトレジスタ10の(k+1)段目の出力SROUT(k+1)が入力され、当該k段目の単位回路51は、出力信号CSOUTkを保持容量配線CSLkに出力する。このように、保持容量配線駆動回路500は、シフトレジスタ10のシフト動作に従って、出力信号CSOUT1~CSOUTnを、保持容量配線CSL1~CSLnに順に出力する。
Specifically, as shown in FIG. 31, the k-th unit circuit 51 (k is an integer not smaller than 1 and not larger than n) of the storage capacitor line driving circuit 500 has the k-th stage of the shift register 10 connected to the input terminal INs1. Output SROUTk is input, and the (k + 1) -th output SROUT (k + 1) of the shift register 10 is input to the input terminal INs2. The k-th unit circuit 51 receives the output signal CSOUTk as a storage capacitor line CSLk. Output to. In this manner, the storage capacitor line driving circuit 500 sequentially outputs the output signals CSOUT1 to CSOUTn to the storage capacitor lines CSL1 to CSLn according to the shift operation of the shift register 10.
シフトレジスタ10は周知の構成を適用することができる。よって、シフトレジスタ10の詳細な説明は省略し、以下では、保持容量配線駆動回路500の詳細な構成について説明する。
A well-known configuration can be applied to the shift register 10. Therefore, a detailed description of the shift register 10 is omitted, and a detailed configuration of the storage capacitor line driving circuit 500 will be described below.
(実施例1)
図32は、実施例1に係る保持容量配線駆動回路500に含まれる単位回路51の回路図である。単位回路51は、ラッチスルー回路51a(保持回路)およびバッファ51bを含んで構成される。ラッチスルー回路51aは、インバータINV1、インバータINV2、およびアナログスイッチ回路SW1aにより構成され、バッファ51bは、2つのトランジスタにより構成される。インバータINV1には、抵抗R1および抵抗R2が設けられている。また、インバータINV2において、インバータINV1の出力端子とインバータINV2の入力端子との接続点をノードN1とし、インバータINV1の入力端子とインバータINV2の出力端子との接続点をノードN2とする(図32参照)。 Example 1
FIG. 32 is a circuit diagram of theunit circuit 51 included in the storage capacitor line driving circuit 500 according to the first embodiment. The unit circuit 51 includes a latch-through circuit 51a (holding circuit) and a buffer 51b. The latch-through circuit 51a is configured by an inverter INV1, an inverter INV2, and an analog switch circuit SW1a, and the buffer 51b is configured by two transistors. The inverter INV1 is provided with a resistor R1 and a resistor R2. In addition, in the inverter INV2, the connection point between the output terminal of the inverter INV1 and the input terminal of the inverter INV2 is a node N1, and the connection point between the input terminal of the inverter INV1 and the output terminal of the inverter INV2 is a node N2 (see FIG. 32). ).
図32は、実施例1に係る保持容量配線駆動回路500に含まれる単位回路51の回路図である。単位回路51は、ラッチスルー回路51a(保持回路)およびバッファ51bを含んで構成される。ラッチスルー回路51aは、インバータINV1、インバータINV2、およびアナログスイッチ回路SW1aにより構成され、バッファ51bは、2つのトランジスタにより構成される。インバータINV1には、抵抗R1および抵抗R2が設けられている。また、インバータINV2において、インバータINV1の出力端子とインバータINV2の入力端子との接続点をノードN1とし、インバータINV1の入力端子とインバータINV2の出力端子との接続点をノードN2とする(図32参照)。 Example 1
FIG. 32 is a circuit diagram of the
アナログスイッチ回路SW1aは、Nチャネル型トランジスタT1と、チャネル型トランジスタT2と、Nチャネル型トランジスタT91・T92と、容量C1・C2とで構成されている。トランジスタT91のゲート端子に電源電圧Vddが与えられ、ソース端子が入力端子INs1に接続され、ドレイン端子がトランジスタT1のゲート端子に接続されている。また、容量C1は、トランジスタT1のゲート端子及びドレイン端子の間に設けられている。なお、容量C1とトランジスタT1のゲート端子との接続点をノードN3とする。トランジスタT92のゲート端子に電源電圧Vddが与えられ、ソース端子が入力端子INs2に接続され、ドレイン端子がトランジスタT2のゲート端子に接続されている。また、容量C2は、トランジスタT2のゲート端子及びドレイン端子の間に設けられている。なお、容量C2とトランジスタT2のゲート端子との接続点をノードN4とする。入力端子INs1には、シフトレジスタ10の自段(k段目)の出力SROUTkが供給され、入力端子INs2には、シフトレジスタ10の次段((k+1)段目)の出力SROUT(k+1)が供給される。トランジスタT1、T2のソース端子は入力端子INcに接続され、入力端子INcには極性信号CMIZが供給される。
The analog switch circuit SW1a includes an N-channel transistor T1, a channel transistor T2, N-channel transistors T91 and T92, and capacitors C1 and C2. The power supply voltage Vdd is applied to the gate terminal of the transistor T91, the source terminal is connected to the input terminal INs1, and the drain terminal is connected to the gate terminal of the transistor T1. The capacitor C1 is provided between the gate terminal and the drain terminal of the transistor T1. Note that a connection point between the capacitor C1 and the gate terminal of the transistor T1 is a node N3. The power supply voltage Vdd is applied to the gate terminal of the transistor T92, the source terminal is connected to the input terminal INs2, and the drain terminal is connected to the gate terminal of the transistor T2. The capacitor C2 is provided between the gate terminal and the drain terminal of the transistor T2. Note that a connection point between the capacitor C2 and the gate terminal of the transistor T2 is a node N4. The input terminal INs1 is supplied with the output SROUTk of the shift register 10 at its own stage (kth stage), and the input terminal INs2 is supplied with the output SROUT (k + 1) of the next stage ((k + 1) th stage) of the shift register 10. Supplied. The source terminals of the transistors T1 and T2 are connected to the input terminal INc, and the polarity signal CMIZ is supplied to the input terminal INc.
インバータINV2は、Pチャネル型トランジスタT3とNチャネル型トランジスタT4で構成され、インバータINV2の入力端子(トランジスタT3のゲート端子と、トランジスタT4のゲート端子との接続点(ノードN1))は、アナログスイッチ回路SW1aの出力端子(トランジスタT1、T2のドレイン端子)に接続されている。トランジスタT3のソース端子には電源電圧Vddが与えられ、トランジスタT3のドレイン端子はインバータINV2の出力端子(トランジスタT3のドレイン端子と、トランジスタT4のドレイン端子との接続点(ノードN2))に接続され、トランジスタT4のソース端子には電源電圧Vssが与えられ、トランジスタT4のドレイン端子はインバータINV2の出力端子(ノードN2)に接続されている。ノードN2は、ラッチスルー回路51aの出力端子out、及びインバータINV1の入力端子(トランジスタT5、T6のゲート端子)に接続されている。
The inverter INV2 includes a P-channel transistor T3 and an N-channel transistor T4. An input terminal of the inverter INV2 (a connection point (node N1) between the gate terminal of the transistor T3 and the gate terminal of the transistor T4) is an analog switch. The circuit SW1a is connected to the output terminal (the drain terminals of the transistors T1 and T2). The power supply voltage Vdd is applied to the source terminal of the transistor T3, and the drain terminal of the transistor T3 is connected to the output terminal of the inverter INV2 (the connection point (node N2) between the drain terminal of the transistor T3 and the drain terminal of the transistor T4). The power supply voltage Vss is applied to the source terminal of the transistor T4, and the drain terminal of the transistor T4 is connected to the output terminal (node N2) of the inverter INV2. The node N2 is connected to the output terminal out of the latch through circuit 51a and the input terminal of the inverter INV1 (gate terminals of the transistors T5 and T6).
インバータINV1は、Pチャネル型トランジスタT5とNチャネル型トランジスタT6と抵抗R1・R2とで構成されるとともに、初期化用端子(INITB端子)が設けられている。インバータINV1の入力端子(トランジスタT5、T6のゲート端子)は、インバータINV2の出力端子(ノードN2)に接続されている。トランジスタT5のソース端子には抵抗R2を介して初期化用信号INITBが入力され、トランジスタT5のドレイン端子は、インバータINV1の出力端子(トランジスタT5のドレイン端子と、トランジスタT6のドレイン端子との接続点)に接続され、トランジスタT6のソース端子には抵抗R1を介して電源電圧Vssが与えられ、トランジスタT6のドレイン端子はインバータINV1の出力端子に接続されている。インバータINV1の出力端子は、インバータINV2の入力端子(ノードN1)に接続されている。ラッチスルー回路51aの出力端子outは、バッファ51bの入力端子inに接続されている。
The inverter INV1 includes a P-channel transistor T5, an N-channel transistor T6, and resistors R1 and R2, and is provided with an initialization terminal (INITB terminal). An input terminal of the inverter INV1 (gate terminals of the transistors T5 and T6) is connected to an output terminal (node N2) of the inverter INV2. The initialization signal INITB is input to the source terminal of the transistor T5 via the resistor R2. The drain terminal of the transistor T5 is connected to the output terminal of the inverter INV1 (the connection point between the drain terminal of the transistor T5 and the drain terminal of the transistor T6). The power supply voltage Vss is applied to the source terminal of the transistor T6 via the resistor R1, and the drain terminal of the transistor T6 is connected to the output terminal of the inverter INV1. The output terminal of the inverter INV1 is connected to the input terminal (node N1) of the inverter INV2. The output terminal out of the latch through circuit 51a is connected to the input terminal in of the buffer 51b.
バッファ51bは、Pチャネル型トランジスタT7とNチャネル型トランジスタT8で構成され、トランジスタT7、T8のゲート端子は入力端子inに接続され、トランジスタT7のソース端子には電源電圧Vcshが与えられ、トランジスタT7のドレイン端子は単位回路51の出力端子OUTに接続され、トランジスタT8のソース端子には電源電圧Vcslが与えられ、トランジスタT8のドレイン端子は単位回路51の出力端子OUTに接続されている。
The buffer 51b includes a P-channel transistor T7 and an N-channel transistor T8, the gate terminals of the transistors T7 and T8 are connected to the input terminal in, the power supply voltage Vcsh is applied to the source terminal of the transistor T7, and the transistor T7 Is connected to the output terminal OUT of the unit circuit 51, the source terminal of the transistor T8 is supplied with the power supply voltage Vcsl, and the drain terminal of the transistor T8 is connected to the output terminal OUT of the unit circuit 51.
これにより、k段目の単位回路51の入力端子INs2には、シフトレジスタ10の(k+1)段目の単位回路11の出力信号SROUT(k+1)が入力され、k段目の単位回路51の入力端子INs1には、シフトレジスタ10のk段目の単位回路11の出力信号SROUTkが入力され、k段目の単位回路51の出力端子OUTから、k行目の保持容量配線CSLkに出力信号CSOUTkが出力される。
As a result, the output signal SROUT (k + 1) of the (k + 1) th unit circuit 11 of the shift register 10 is input to the input terminal INs2 of the kth unit circuit 51, and the input of the kth unit circuit 51 is input. The output signal SROUTk of the kth unit circuit 11 of the shift register 10 is input to the terminal INs1, and the output signal CSOUTk is output from the output terminal OUT of the kth unit circuit 51 to the kth storage capacitor line CSLk. Is output.
上記構成の単位回路51を含む保持容量配線駆動回路500は、1フレームごとにハイレベル(Vcsh)及びローレベル(Vcsl)が切り替わる出力信号CSOUT1~CSOUTnを1つずつ順に出力する動作を行う。以下、クロック信号CK1、CK2を含め、保持容量配線駆動回路500の内部の信号と入出力信号の電位は、特に断わらない限り、ハイレベルのときにはVdd、ローレベルのときにはVssであるとする。また、初期化用信号INITBは、通常動作時にハイレベル(Vdd)になり、初期化時にローレベル(Vss)になる信号である。また、極性信号CMIZについても、以下では、ハイレベルのときはVdd、ローレベルのときはVssとする。ただし、極性信号CMIZの電位レベルはこれに限定されず、「ハイレベル」はインバータINV2の反転電位よりも高ければよく、「ローレベル」はインバータINV2の反転電位よりも低ければよい。
The storage capacitor line driving circuit 500 including the unit circuit 51 having the above configuration performs an operation of sequentially outputting the output signals CSOUT1 to CSOUTn in which the high level (Vcsh) and the low level (Vcsl) are switched for each frame one by one. Hereinafter, the potentials of the internal signals of the storage capacitor line driving circuit 500 including the clock signals CK1 and CK2 and the input / output signals are assumed to be Vdd when the level is high and Vss when the level is low unless otherwise specified. The initialization signal INITB is a signal that is at a high level (Vdd) during normal operation and is at a low level (Vss) during initialization. In the following, the polarity signal CMIZ is also set to Vdd when it is at a high level and Vss when it is at a low level. However, the potential level of the polarity signal CMIZ is not limited to this, and the “high level” only needs to be higher than the inversion potential of the inverter INV2, and the “low level” only needs to be lower than the inversion potential of the inverter INV2.
(動作について)
次に、保持容量配線駆動回路500の動作について図33及び図34を用いて説明する。図33は、保持容量配線駆動回路500の動作時のタイミングチャートであり、図34は、保持容量配線駆動回路500の動作時のタイミングチャートを模式的に示した図である。図33では、(k-1)段目の単位回路51、k段目の単位回路51、(k+1)段目の単位回路51における入出力信号、及び、各段に対応する画素Pの電位を示している。 (About operation)
Next, the operation of the storage capacitorline driving circuit 500 will be described with reference to FIGS. FIG. 33 is a timing chart during operation of the storage capacitor line driving circuit 500, and FIG. 34 is a diagram schematically showing a timing chart during operation of the storage capacitor line driving circuit 500. In FIG. 33, the input / output signals in the (k−1) -th unit circuit 51, the k-th unit circuit 51, the (k + 1) -th unit circuit 51, and the potential of the pixel P corresponding to each stage are shown. Show.
次に、保持容量配線駆動回路500の動作について図33及び図34を用いて説明する。図33は、保持容量配線駆動回路500の動作時のタイミングチャートであり、図34は、保持容量配線駆動回路500の動作時のタイミングチャートを模式的に示した図である。図33では、(k-1)段目の単位回路51、k段目の単位回路51、(k+1)段目の単位回路51における入出力信号、及び、各段に対応する画素Pの電位を示している。 (About operation)
Next, the operation of the storage capacitor
CK1は、奇数段目の単位回路51のCK端子に与えられるクロック信号であり、CK2は、偶数段目の単位回路51のCK端子に与えられるクロック信号である。CMIZは、通常動作時は、CMIと同じように1水平走査期間(1H)ごとに極性が反転するが、初期化時にはローレベルになる信号(極性信号)である。SR(k-1)、SRk、SR(k+1)、SR(k+2)は、それぞれ、シフトレジスタ10の(k-1)段目の単位回路11、k段目の単位回路11、(k+1)段目の単位回路11、(k+2)段目の単位回路11の出力信号SROUT(k-1)、SROUTk、SROUT(k+1)、SROUT(k+2)の電位を示している。N1、N2はそれぞれ、図32に示すノードN1、ノードN2の電位を示している。CS(k-1)、CSk、CS(k+1)はそれぞれ、保持容量配線駆動回路500の(k-1)段目の単位回路51、k段目の単位回路51、(k+1)段目の単位回路51の出力信号CSOUT(k-1)、CSOUTk、CSOUT(k+1)の電位を示している。Sは、データ信号を示し、同一行の全ての画素について極性が同一であり、かつ、1行(1水平走査期間)ごとに極性が逆転した波形となる(1ライン(1H)反転駆動)。なお、出力信号SROUTkが出力されてから次の出力信号SROUTkが出力されるまでの期間が1垂直走査期間(1フレーム:1V)に相当する。また、図33では、任意の連続するフレームF(t)、F(t+1)、F(t+2)について示している。なお、図33には示していないが、通常動作時において初期化用信号INITBはハイレベル(Vdd)である。
CK1 is a clock signal supplied to the CK terminal of the odd-numbered unit circuit 51, and CK2 is a clock signal supplied to the CK terminal of the even-numbered unit circuit 51. CMIZ is a signal (polarity signal) whose polarity is inverted every horizontal scanning period (1H) in the normal operation as in the case of CMI, but at the time of initialization. SR (k−1), SRk, SR (k + 1), SR (k + 2) are the (k−1) -th unit circuit 11, the k-th unit circuit 11, and the (k + 1) -th stage of the shift register 10, respectively. The potentials of the output signals SROUT (k−1), SROUTk, SROUT (k + 1), SROUT (k + 2) of the unit circuit 11 of the eye and the unit circuit 11 of the (k + 2) stage are shown. N1 and N2 indicate the potentials of the nodes N1 and N2 shown in FIG. 32, respectively. CS (k−1), CSk, and CS (k + 1) are the unit circuit 51 in the (k−1) stage, the unit circuit 51 in the k stage, and the unit in the (k + 1) stage, respectively, of the storage capacitor wiring driving circuit 500. The potentials of the output signals CSOUT (k−1), CSOUTk, CSOUT (k + 1) of the circuit 51 are shown. S indicates a data signal, which has the same polarity for all pixels in the same row, and has a waveform in which the polarity is reversed every row (one horizontal scanning period) (1 line (1H) inversion drive). Note that a period from when the output signal SROUTk is output to when the next output signal SROUTk is output corresponds to one vertical scanning period (1 frame: 1 V). In FIG. 33, arbitrary continuous frames F (t), F (t + 1), and F (t + 2) are shown. Although not shown in FIG. 33, the initialization signal INITB is at a high level (Vdd) during normal operation.
ここでは、k段目の画素Pk(走査信号線GLkに接続された画素群の1画素)及び単位回路51におけるフレームF(t)、F(t+1)の動作について説明する。
Here, the operations of the frames F (t) and F (t + 1) in the k-th pixel Pk (one pixel of the pixel group connected to the scanning signal line GLk) and the unit circuit 51 will be described.
初めに、フレームF(t)において、シフトレジスタ10のk段目の単位回路11の出力信号SROUTkがハイレベル(アクティブ)になると、走査信号線GLkがアクティブになり、画素Pkにデータ信号S(マイナス極性)が書き込まれる。
First, in frame F (t), when the output signal SROUTk of the k-th unit circuit 11 of the shift register 10 becomes high level (active), the scanning signal line GLk becomes active, and the data signal S ( Negative polarity) is written.
ここで、フレームF(t)が第2フレーム以降のフレームであるとすると、出力信号SROUTkがハイレベル(アクティブ)になる直前ではノードN1の電位がVdd(ハイレベル)に保持されているため、出力信号SROUTkがハイレベル(アクティブ)になっても、ノードN1の電位はVdd(ハイレベル)を保持し続けることとなる。よって、バッファ51bからVcshが出力され、k行目の保持容量配線CSLkに供給される。
Here, if the frame F (t) is a frame after the second frame, the potential of the node N1 is held at Vdd (high level) immediately before the output signal SROUTk becomes high level (active). Even if the output signal SROUTk becomes high level (active), the potential of the node N1 continues to hold Vdd (high level). Therefore, Vcsh is output from the buffer 51b and supplied to the kth storage capacitor line CSLk.
その後、シフトレジスタ10の出力信号SROUTkがハイレベル(アクティブ)からローレベル(非アクティブ)になると、トランジスタT1がオフ状態になり、極性信号CMIZの入力が遮断され、ノードN1は、インバータINV1、INV2によるラッチ動作により直前に保持した電位(Vdd(ハイレベル))を保持する。
Thereafter, when the output signal SROUTk of the shift register 10 changes from the high level (active) to the low level (inactive), the transistor T1 is turned off, the input of the polarity signal CMIZ is cut off, and the node N1 is connected to the inverters INV1, INV2. The potential (Vdd (high level)) held immediately before is held by the latch operation.
続いて、シフトレジスタ10の(k+1)段目の単位回路11の出力信号SROUT(k+1)がハイレベル(アクティブ)になると、k段目の単位回路51の入力端子INs2に出力信号SROUT(k+1)(ハイレベル)が入力され、極性信号CMIZ(ローレベル;Vss)がラッチスルー回路51aに取り込まれる。
Subsequently, when the output signal SROUT (k + 1) of the (k + 1) -th unit circuit 11 of the shift register 10 becomes high level (active), the output signal SROUT (k + 1) is input to the input terminal INs2 of the k-th unit circuit 51. (High level) is input, and the polarity signal CMIZ (low level; Vss) is taken into the latch-through circuit 51a.
ここで、出力信号SROUT(k+1)がハイレベル(アクティブ)になる直前ではノードN1の電位がVdd(ハイレベル)に保持されており、トランジスタT5がオン状態になっているため、出力信号SROUT(k+1)がハイレベル(アクティブ)になると、極性信号CMIZのVss(ローレベル)と、INITB端子(ハイレベル)とが短絡することになる。この点、INITB端子とノードN1との間に抵抗R2が設けられているため、ノードN1の電位は、極性信号CMIZ側へ引き込まれ、極性信号CMIZのVss(ローレベル)に近い電位(インバータINV2の反転電位よりも低い電位)まで低下する(図34参照)。
Here, immediately before the output signal SROUT (k + 1) becomes high level (active), the potential of the node N1 is held at Vdd (high level), and the transistor T5 is in an on state, so that the output signal SROUT ( When k + 1) becomes high level (active), Vss (low level) of the polarity signal CMIZ and the INITB terminal (high level) are short-circuited. In this respect, since the resistor R2 is provided between the INITB terminal and the node N1, the potential of the node N1 is drawn to the polarity signal CMIZ side, and the potential (inverter INV2) is close to Vss (low level) of the polarity signal CMIZ. (The potential is lower than the inversion potential) (see FIG. 34).
その後、トランジスタT3がオン状態になり、インバータINV2の出力(ノードN2;Vdd(ハイレベル))がインバータINV1の入力にフィードバックされることにより、トランジスタT5がオフ状態になり、トランジスタT6がオン状態になる。これにより、ノードN1の電位は、極性信号CMIZのVssに近い電位からさらにVssまで低下する(図34参照)。
Thereafter, the transistor T3 is turned on, and the output of the inverter INV2 (node N2; Vdd (high level)) is fed back to the input of the inverter INV1, whereby the transistor T5 is turned off and the transistor T6 is turned on. Become. As a result, the potential of the node N1 drops from a potential close to Vss of the polarity signal CMIZ to Vss (see FIG. 34).
ノードN1の電位が、Vss(ローレベル)近くまたはVss(ローレベル)になることによりインバータINV2のトランジスタT3がオン状態になり、トランジスタT4がオフ状態になる。トランジスタT3がオン状態になることにより、ノードN2の電位がVdd(ハイレベル)になり、ラッチスルー回路51aからVdd(ハイレベル)が出力される。
When the potential of the node N1 becomes close to Vss (low level) or Vss (low level), the transistor T3 of the inverter INV2 is turned on and the transistor T4 is turned off. When the transistor T3 is turned on, the potential of the node N2 becomes Vdd (high level), and Vdd (high level) is output from the latch through circuit 51a.
そして、Vdd(ハイレベル)が入力されたバッファ51bでは、トランジスタT7がオフ状態になり、トランジスタT8がオン状態になることにより、バッファ51bからVcslが出力され、k行目の保持容量配線CSLkに供給される。ここで、出力信号SROUT(k+1)がハイレベル(アクティブ)になる直前では、ノードN1の電位がVdd(ハイレベル)に保持されているため、k行目の保持容量配線CSLkの電位はVcshである。よって、k行目の保持容量配線CSLkの電位が、VcshからVcslに変化することにより、フローティング状態にある画素Pkの電位が突き下げられる(電位シフト)。
In the buffer 51b to which Vdd (high level) is input, the transistor T7 is turned off and the transistor T8 is turned on, whereby Vcsl is output from the buffer 51b and is supplied to the kth storage capacitor line CSLk. Supplied. Here, immediately before the output signal SROUT (k + 1) becomes high level (active), since the potential of the node N1 is held at Vdd (high level), the potential of the storage capacitor wiring CSLk in the k-th row is Vcsh. is there. Therefore, the potential of the pixel Pk in the floating state is pushed down by changing the potential of the storage capacitor line CSLk in the k-th row from Vcsh to Vcsl (potential shift).
続いて、シフトレジスタ10の出力信号SROUT(k+1)がハイレベル(アクティブ)からローレベル(非アクティブ)になると、アナログスイッチ回路SW1aがオフ状態になり、極性信号CMIZの入力が遮断され、ノードN1は、インバータINV1、INV2によるラッチ動作により直前に保持した電位(Vss(ローレベル))を保持する。これにより、次のフレームF(t+1)において出力信号SROUT(k+1)がハイレベル(アクティブ)になるまで、バッファ51bからVcslが出力されて、k行目の保持容量配線CSLkに供給され続け、画素Pkの電位は、突き下げ(シフト)後の電位が保持される。
Subsequently, when the output signal SROUT (k + 1) of the shift register 10 changes from the high level (active) to the low level (inactive), the analog switch circuit SW1a is turned off, the input of the polarity signal CMIZ is cut off, and the node N1 Holds the potential (Vss (low level)) held immediately before by the latch operation by the inverters INV1 and INV2. Thus, until the output signal SROUT (k + 1) becomes high level (active) in the next frame F (t + 1), Vcsl is output from the buffer 51b and is continuously supplied to the kth storage capacitor line CSLk. The potential of Pk is maintained as the potential after being pushed down (shifted).
次にフレームF(t+1)において、シフトレジスタ10のk段目の単位回路11の出力信号SROUTkがハイレベル(アクティブ)になると、走査信号線GLkがアクティブになり、画素Pkにデータ信号S(プラス極性)が書き込まれる。
Next, in frame F (t + 1), when the output signal SROUTk of the k-th unit circuit 11 of the shift register 10 becomes high level (active), the scanning signal line GLk becomes active, and the data signal S (plus) is applied to the pixel Pk. Polarity) is written.
ここで、出力信号SROUTkがハイレベル(アクティブ)になる直前ではノードN1の電位がVss(ローレベル)に保持されているため、出力信号SROUT(k+1)がハイレベル(アクティブ)になっても、ノードN1の電位はVss(ローレベル)を保持し続けることとなる。よって、バッファ51bからVcslが出力され、k行目の保持容量配線CSLkに供給される。
Here, immediately before the output signal SROUTk becomes high level (active), the potential of the node N1 is held at Vss (low level). Therefore, even if the output signal SROUT (k + 1) becomes high level (active), The potential of the node N1 continues to hold Vss (low level). Accordingly, Vcsl is output from the buffer 51b and supplied to the kth storage capacitor line CSLk.
その後、シフトレジスタ10の出力信号SROUTkがハイレベル(アクティブ)からローレベル(非アクティブ)になると、トランジスタT1がオフ状態になり、極性信号CMIZの入力が遮断され、ノードN1は、インバータINV1、INV2によるラッチ動作により直前に保持した電位(Vss(ローレベル))を保持する。
Thereafter, when the output signal SROUTk of the shift register 10 changes from the high level (active) to the low level (inactive), the transistor T1 is turned off, the input of the polarity signal CMIZ is cut off, and the node N1 is connected to the inverters INV1, INV2. The potential (Vss (low level)) held immediately before is held by the latch operation.
続いて、シフトレジスタ10の(k+1)段目の単位回路11の出力信号SROUT(k+1)がハイレベル(アクティブ)になると、ノードN4の電位がVdd-Vthにチャージされた後、トランジスタT92はオフ状態になる。ノードN1では、出力信号SROUT(k+1)(ハイレベル)によりトランジスタT2がオン状態になり、極性信号CMIZのVdd(ハイレベル)が入力されることで、Vss(ローレベル)からVdd(ハイレベル)に上がり始める。すると、ノードN1の電位変動により、容量C2を介してノードN4の電位がVdd-Vth+αに突き上げられる。これにより、極性信号CMIZ(Vdd)が閾値(Vth)落ちせずに入力され、ノードN1の電位がVddになる(ブートストラップ動作)。
Subsequently, when the output signal SROUT (k + 1) of the unit circuit 11 in the (k + 1) stage of the shift register 10 becomes high level (active), the potential of the node N4 is charged to Vdd−Vth, and then the transistor T92 is turned off. It becomes a state. At the node N1, the transistor T2 is turned on by the output signal SROUT (k + 1) (high level), and the Vdd (high level) of the polarity signal CMIZ is input, so that Vss (low level) to Vdd (high level). Begin to rise. Then, the potential of the node N4 is pushed up to Vdd−Vth + α through the capacitor C2 due to the potential fluctuation of the node N1. As a result, the polarity signal CMIZ (Vdd) is input without dropping the threshold value (Vth), and the potential of the node N1 becomes Vdd (bootstrap operation).
ここで、出力信号SROUT(k+1)がハイレベル(アクティブ)になる直前(フレームF(t))ではノードN1の電位がVss(ローレベル)に保持されており、トランジスタT6がオン状態になっているため、出力信号SROUT(k+1)がハイレベル(アクティブ)になると、極性信号CMIZのVdd(ハイレベル)と、電源VSS(ローレベル)とが短絡することになる。この点、電源VSSとノードN1との間に抵抗R1が設けられているため、ノードN1の電位は、極性信号CMIZ側へ引き込まれ、極性信号CMIZのVdd(ハイレベル)に近い電位(インバータINV2の反転電位よりも低い電位)まで上昇する(図34参照)。
Here, immediately before the output signal SROUT (k + 1) becomes high level (active) (frame F (t)), the potential of the node N1 is held at Vss (low level), and the transistor T6 is turned on. Therefore, when the output signal SROUT (k + 1) becomes high level (active), the polarity signal CMIZ Vdd (high level) and the power source VSS (low level) are short-circuited. In this respect, since the resistor R1 is provided between the power supply VSS and the node N1, the potential of the node N1 is drawn to the polarity signal CMIZ side, and the potential (inverter INV2) is close to Vdd (high level) of the polarity signal CMIZ. (Potential lower than the inversion potential) (see FIG. 34).
その後、インバータINV2の出力(ノードN2;Vss(ローレベル))がインバータINV1の入力にフィードバックされることにより、トランジスタT5がオン状態になり、トランジスタT6がオフ状態になる。これにより、ノードN1の電位は、極性信号CMIZのVddに近い電位からさらにVddまで上昇する(図34参照)。
Thereafter, the output of the inverter INV2 (node N2; Vss (low level)) is fed back to the input of the inverter INV1, whereby the transistor T5 is turned on and the transistor T6 is turned off. As a result, the potential of the node N1 rises from a potential close to Vdd of the polarity signal CMIZ to Vdd (see FIG. 34).
ノードN1の電位が、Vdd(ハイレベル)近くまたはVdd(ハイレベル)になることによりインバータINV2のトランジスタT4がオン状態になり、トランジスタT3がオフ状態になる。トランジスタT4がオン状態になることにより、ノードN2の電位がVss(ローレベル)になり、ラッチスルー回路51aからVss(ローレベル)が出力される。
When the potential of the node N1 becomes close to Vdd (high level) or Vdd (high level), the transistor T4 of the inverter INV2 is turned on and the transistor T3 is turned off. When the transistor T4 is turned on, the potential of the node N2 becomes Vss (low level), and Vss (low level) is output from the latch through circuit 51a.
そして、Vss(ローレベル)が入力されたバッファ51bでは、トランジスタT8がオフ状態になり、トランジスタT7がオン状態になることにより、バッファ51bからVcshが出力され、k行目の保持容量配線CSLkに供給される。ここで、出力信号SROUT(k+1)がハイレベル(アクティブ)になる直前(フレームF(t))では、ノードN1の電位がVss(ローレベル)に保持されているため、k行目の保持容量配線CSLkの電位はVcslである。よって、k行目の保持容量配線CSLkの電位が、VcslからVcshに変化することにより、フローティング状態にある画素Pkの電位が突き上げられる(電位シフト)。
In the buffer 51b to which Vss (low level) is input, the transistor T8 is turned off and the transistor T7 is turned on, whereby Vcsh is output from the buffer 51b and is supplied to the kth storage capacitor line CSLk. Supplied. Here, immediately before the output signal SROUT (k + 1) becomes high level (active) (frame F (t)), the potential of the node N1 is held at Vss (low level). The potential of the wiring CSLk is Vcsl. Therefore, the potential of the pixel Pk in the floating state is pushed up (potential shift) when the potential of the storage capacitor wiring CSLk in the k-th row changes from Vcsl to Vcsh.
続いて、シフトレジスタ10の出力信号SROUT(k+1)がハイレベル(アクティブ)からローレベル(非アクティブ)になると、アナログスイッチ回路SW1aがオフ状態になり、極性信号CMIZの入力が遮断され、ノードN1は、インバータINV1、INV2によるラッチ動作により直前に保持した電位(Vdd(ハイレベル))を保持する。これにより、次のフレームF(t+2)において出力信号SROUT(k+1)がハイレベル(アクティブ)になるまで、バッファ51bからVcshが出力されて、k行目の保持容量配線CSLkに供給され続け、画素Pkの電位は、突き上げ(シフト)後の電位が保持される。フレームF(t+2)以降は、上記フレームF(t)、F(t+1)の動作を繰り返す。
Subsequently, when the output signal SROUT (k + 1) of the shift register 10 changes from the high level (active) to the low level (inactive), the analog switch circuit SW1a is turned off, the input of the polarity signal CMIZ is cut off, and the node N1 Holds the potential (Vdd (high level)) held immediately before by the latch operation by the inverters INV1 and INV2. As a result, Vcsh is output from the buffer 51b and is continuously supplied to the kth storage capacitor line CSLk until the output signal SROUT (k + 1) becomes high level (active) in the next frame F (t + 2). The potential after Pk is held as the potential of Pk. After the frame F (t + 2), the operations of the frames F (t) and F (t + 1) are repeated.
このようにして、k段目以外の画素P及び単位回路51においても、シフトレジスタ10の各単位回路11から順次出力される出力信号SROUTに基づいて、上述と同様のラッチ出力動作を行う。
In this way, the pixel P and the unit circuit 51 other than the k-th stage perform the same latch output operation as described above based on the output signal SROUT sequentially output from each unit circuit 11 of the shift register 10.
本実施例1の単位回路51によれば、保持容量配線駆動回路500の回路規模を縮小化することができるため、液晶表示装置の更なる狭額縁化を実現することができる。また、回路規模の縮小化に伴う動作不具合が生じることもない。
According to the unit circuit 51 of the first embodiment, since the circuit scale of the storage capacitor line driving circuit 500 can be reduced, the frame of the liquid crystal display device can be further reduced. In addition, there is no problem of operation due to the reduction in circuit scale.
(第1フレームについて)
ところで、電源投入時の初期状態では、全ての保持容量配線CSLの電位(CS信号)がローレベルに設定されているため、第1フレームでは、偶数行(あるいは奇数行)において、CS信号の電位シフトが適正に行われず、表示画像に横筋が発生するという問題が知られている。つまりは、第1フレームにおいてローレベルのCS信号を生成する行の単位回路では、CS信号の電位が変動しないため、マイナス極性のデータ信号が書き込まれた画素Pの電位をシフトさせることができない。これに対して、その前後の行の画素Pでは、CS信号がローレベルからハイレベルにシフトするため、適正に画素電位が突き上がる。これにより、横筋が発生する。 (About the first frame)
By the way, in the initial state when the power is turned on, the potentials (CS signals) of all the storage capacitor wirings CSL are set to the low level. Therefore, in the first frame, the potentials of the CS signals in the even rows (or odd rows). There is a known problem that the shift is not properly performed and a horizontal stripe occurs in the display image. In other words, in the unit circuit of the row that generates the low-level CS signal in the first frame, the potential of the CS signal does not fluctuate, so that the potential of the pixel P in which the negative polarity data signal is written cannot be shifted. On the other hand, in the pixels P in the previous and subsequent rows, the CS signal shifts from the low level to the high level, so that the pixel potential rises appropriately. As a result, lateral stripes are generated.
ところで、電源投入時の初期状態では、全ての保持容量配線CSLの電位(CS信号)がローレベルに設定されているため、第1フレームでは、偶数行(あるいは奇数行)において、CS信号の電位シフトが適正に行われず、表示画像に横筋が発生するという問題が知られている。つまりは、第1フレームにおいてローレベルのCS信号を生成する行の単位回路では、CS信号の電位が変動しないため、マイナス極性のデータ信号が書き込まれた画素Pの電位をシフトさせることができない。これに対して、その前後の行の画素Pでは、CS信号がローレベルからハイレベルにシフトするため、適正に画素電位が突き上がる。これにより、横筋が発生する。 (About the first frame)
By the way, in the initial state when the power is turned on, the potentials (CS signals) of all the storage capacitor wirings CSL are set to the low level. Therefore, in the first frame, the potentials of the CS signals in the even rows (or odd rows). There is a known problem that the shift is not properly performed and a horizontal stripe occurs in the display image. In other words, in the unit circuit of the row that generates the low-level CS signal in the first frame, the potential of the CS signal does not fluctuate, so that the potential of the pixel P in which the negative polarity data signal is written cannot be shifted. On the other hand, in the pixels P in the previous and subsequent rows, the CS signal shifts from the low level to the high level, so that the pixel potential rises appropriately. As a result, lateral stripes are generated.
この点、上記構成を有する単位回路51によれば、自段(k段)の出力信号SROUTkを取り込むことで適正なCS信号を生成することができるため、全ての画素において適正に電位をシフトさせることができ、第1フレームの表示品位の低下を防ぐことができる。
In this respect, according to the unit circuit 51 having the above-described configuration, an appropriate CS signal can be generated by taking in the output signal SROUTk of its own stage (k stage), so that the potential is appropriately shifted in all pixels. It is possible to prevent the display quality of the first frame from deteriorating.
一例として、第1フレームにおいてk段目の画素Pkにマイナス極性のデータ信号を書き込む場合の、k段目の単位回路51の第1フレームの動作について説明する。図35及び図36は、保持容量配線駆動回路500の初期化を含めた動作時のタイミングチャートである。図35及び図36では、電源投入から、電源投入後の通常動作が開始される第1フレーム(フレームF1)及びF1に続く第2フレーム(フレームF2)を示している。なお、図35は、初期化時に、シフトレジスタ10の全段の単位回路11の出力信号SROUTがハイレベルの場合を示し、図36は、初期化時に、シフトレジスタ10の全段の単位回路11の出力信号SROUTがローレベルの場合を示す。電源投入直後の初期化動作は後述する。
As an example, the operation of the first frame of the k-th unit circuit 51 when a negative polarity data signal is written to the k-th pixel Pk in the first frame will be described. 35 and 36 are timing charts at the time of operation including initialization of the storage capacitor wiring driving circuit 500. FIG. FIG. 35 and FIG. 36 show the first frame (frame F1) and the second frame (frame F2) following F1 in which the normal operation after power-on is started after the power is turned on. 35 shows a case where the output signal SROUT of all the unit circuits 11 of the shift register 10 is at a high level at the time of initialization, and FIG. 36 shows the unit circuits 11 of all the stages of the shift register 10 at the time of initialization. The output signal SROUT of FIG. The initialization operation immediately after the power is turned on will be described later.
フレームF1において、シフトレジスタ10のk段目の単位回路11の出力信号SROUTkがハイレベル(アクティブ)になると、走査信号線GLkがアクティブになり、画素Pkにデータ信号S(マイナス極性)が書き込まれる。同時に、k段目の単位回路51の入力端子INs1に出力信号SROUTk(ハイレベル)が入力され、上述のブートストラップ動作により、極性信号CMIZ(ハイレベル;Vdd)がラッチスルー回路51aに取り込まれる。以降の単位回路51の動作は図33と同様であり、これにより、単位回路51からVcshが出力され、k行目の保持容量配線CSLkに供給される。
In the frame F1, when the output signal SROUTk of the k-th unit circuit 11 of the shift register 10 becomes high level (active), the scanning signal line GLk becomes active, and the data signal S (negative polarity) is written to the pixel Pk. . At the same time, the output signal SROUTk (high level) is input to the input terminal INs1 of the k-th unit circuit 51, and the polarity signal CMIZ (high level; Vdd) is taken into the latch-through circuit 51a by the bootstrap operation described above. Subsequent operations of the unit circuit 51 are the same as those in FIG. 33, whereby Vcsh is output from the unit circuit 51 and supplied to the storage capacitor line CSLk in the k-th row.
続いて、シフトレジスタ10の(k+1)段目の単位回路11の出力信号SROUT(k+1)がハイレベル(アクティブ)になると、k段目の単位回路51の入力端子INs2に出力信号SROUT(k+1)(ハイレベル)が入力され、極性信号CMIZ(ローレベル;Vss)がラッチスルー回路51aに取り込まれる。これにより、単位回路51からVcslが出力され、k行目の保持容量配線CSLkに供給される。ここで、k行目の保持容量配線CSLkの電位が、VcshからVcslに変化することにより、フローティング状態にある画素Pkの電位が突き下げられる(電位シフト)。
Subsequently, when the output signal SROUT (k + 1) of the (k + 1) -th unit circuit 11 of the shift register 10 becomes high level (active), the output signal SROUT (k + 1) is input to the input terminal INs2 of the k-th unit circuit 51. (High level) is input, and the polarity signal CMIZ (low level; Vss) is taken into the latch-through circuit 51a. As a result, Vcsl is output from the unit circuit 51 and supplied to the storage capacitor line CSLk in the k-th row. Here, the potential of the pixel Pk in the floating state is pushed down by changing the potential of the storage capacitor line CSLk in the k-th row from Vcsh to Vcsl (potential shift).
このようにして、単位回路51では、第1フレームにおいてマイナス極性のデータ信号を書き込む画素Pの電位を適正にシフトさせることが可能となり、第1フレームの表示品位の低下を防ぐことができる。
In this manner, the unit circuit 51 can appropriately shift the potential of the pixel P to which the negative polarity data signal is written in the first frame, and can prevent the display quality of the first frame from being deteriorated.
(初期化動作について)
次に、電源投入直後の初期化動作について説明する。初期化時に、シフトレジスタ10の全段の単位回路11の出力信号SROUTがハイレベルの場合は、以下のように動作する(図35参照)。 (About initialization operation)
Next, the initialization operation immediately after the power is turned on will be described. When the output signal SROUT of theunit circuits 11 in all stages of the shift register 10 is at the high level at the time of initialization, the operation is as follows (see FIG. 35).
次に、電源投入直後の初期化動作について説明する。初期化時に、シフトレジスタ10の全段の単位回路11の出力信号SROUTがハイレベルの場合は、以下のように動作する(図35参照)。 (About initialization operation)
Next, the initialization operation immediately after the power is turned on will be described. When the output signal SROUT of the
まず、出力信号SROUTがハイレベルになると、全段の単位回路51でトランジスタT1、T2がオン状態になり、全段のノードN1と極性信号CMIZが接続(短絡)される。初期化直前の不定の状態では、ノードN1に保持されている電位も不定のため、極性信号CMIZに接続されるインバータINV2の出力も、各段でVdd(ハイレベル)であるか、Vss(ローレベル)であるか不定の状態である。
First, when the output signal SROUT becomes high level, the transistors T1 and T2 are turned on in the unit circuits 51 in all stages, and the nodes N1 and polarity signals CMIZ in all stages are connected (short circuited). In an indefinite state immediately before initialization, the potential held at the node N1 is also indefinite, so that the output of the inverter INV2 connected to the polarity signal CMIZ is also Vdd (high level) or Vss (low level) at each stage. Level) or indeterminate.
ここで、仮にノードN1に接続される初期化用信号INITBがVddとすると、全段のノードN1に接続されている極性信号CMIZは、インバータINV1の電源VDDに接続されている段と電源VSSに接続されている段とが同時に接続されることになり、電源VDDと電源VSSが極性信号CMIZを介して短絡することで大電流が発生し、ノードN1の電位が中間電位となるため、正常に初期化することができない。
Here, if the initialization signal INITB connected to the node N1 is Vdd, the polarity signal CMIZ connected to the node N1 in all stages is supplied to the power supply VSS and the stage connected to the power supply VDD of the inverter INV1. The connected stages are connected simultaneously, and a large current is generated when the power supply VDD and the power supply VSS are short-circuited via the polarity signal CMIZ, and the potential of the node N1 becomes an intermediate potential. It cannot be initialized.
この点、本単位回路51の構成では、初期化時には、極性信号CMIZ及び初期化用信号INITBが、ともにVss(ローレベル)になるように制御されているため、ノードN1は、必ずVss(ローレベル)になり、確実に初期化することができる。
In this regard, in the configuration of the unit circuit 51, since the polarity signal CMIZ and the initialization signal INITB are both controlled to be Vss (low level) at the time of initialization, the node N1 is always Vss (low level). Level) and can be reliably initialized.
一方、初期化時に、シフトレジスタ10の全段の単位回路11の出力信号SROUTがローレベルの場合は、以下のように動作する(図36参照)。
On the other hand, when the output signal SROUT of the unit circuits 11 in all stages of the shift register 10 is at the low level at the time of initialization, the operation is as follows (see FIG. 36).
初期化前の不定の状態で、ノードN1がVdd(ハイレベル)の場合は、トランジスタT5のゲート端子はVss(ローレベル)になっており、トランジスタT5はオン状態になっている。ここで、初期化時に初期化用信号INITBはVss(ローレベル)のため、ノードN1の電位は、トランジスタT5を介して、閾値(Vth)落ちしたローレベル(Vss+Vth)になる。インバータINV1の出力が、インバータINV2に入力されることにより、インバータINV2はVddを出力する。インバータINV2の出力(ノードN2)は、インバータINV1の入力に接続されているため、インバータINV2の出力(Vdd)がインバータINV1にフィードバックされ、トランジスタT6がオン状態になる。これにより、Vss+VthのノードN1が、Vss(ローレベル)になるため、確実に初期化することができる。
When the node N1 is Vdd (high level) in an undefined state before initialization, the gate terminal of the transistor T5 is Vss (low level), and the transistor T5 is on. Here, since the initialization signal INITB is Vss (low level) at the time of initialization, the potential of the node N1 becomes a low level (Vss + Vth) that has fallen the threshold value (Vth) through the transistor T5. When the output of the inverter INV1 is input to the inverter INV2, the inverter INV2 outputs Vdd. Since the output (node N2) of the inverter INV2 is connected to the input of the inverter INV1, the output (Vdd) of the inverter INV2 is fed back to the inverter INV1, and the transistor T6 is turned on. As a result, the node N1 of Vss + Vth becomes Vss (low level), so that it can be reliably initialized.
初期化前の不定の状態で、ノードN1がVss(ローレベル)の場合は、トランジスタT5がオフ状態となっているため、初期化用信号INITBの信号はノードN1には入力されないが、既に所望の電位(Vss)になっているため初期化された状態と同じである。
When the node N1 is Vss (low level) in an indeterminate state before initialization, the transistor T5 is in an off state, so the signal of the initialization signal INITB is not input to the node N1, but is already desired. Since this is the potential (Vss), it is the same as the initialized state.
このように、単位回路51によれば、保持容量配線駆動回路500を安定して初期化することができる。つまりは、単位回路51では、シフトレジスタ10の全段の単位回路11の出力信号SROUTがハイレベル・ローレベルのいずれの場合であっても、ローレベル(Vss)の初期化用信号INITBをトランジスタT5のソース端子に与えることによって、内部電位を安定した電位で固定することが可能となる。
Thus, according to the unit circuit 51, the storage capacitor wiring drive circuit 500 can be initialized stably. That is, in the unit circuit 51, the initialization signal INITB at the low level (Vss) is applied to the transistor regardless of whether the output signal SROUT of the unit circuits 11 of all the stages of the shift register 10 is high level or low level. By applying to the source terminal of T5, the internal potential can be fixed at a stable potential.
また、初期化用信号INITBは、新たに初期化用の制御回路や端子配線を追加して供給できるようにしたのではなく、初期化機能を付加する前の単位回路に設けられていたインバータINV1の電源VDDの配線を利用している。
In addition, the initialization signal INITB can be supplied by adding a new initialization control circuit and terminal wiring, but is not provided in the inverter INV1 provided in the unit circuit before the initialization function is added. The power supply VDD wiring is used.
よって、単位回路51では、素子数を増やすことなく初期化することが可能となっている。
Therefore, the unit circuit 51 can be initialized without increasing the number of elements.
(変形例)
本実施の形態5に係る保持容量配線駆動回路500を構成する単位回路51の回路構成は、バッファ51bの電源VCSH、VCSLを除いて、前記実施の形態4に示した共通電極駆動回路200を構成する単位回路21と同一である。すなわち、保持容量配線駆動回路500を構成する単位回路は、前記実施の形態4に示した共通電極駆動回路200を構成する各単位回路(単位回路21~24)と同じ回路構成とすることができる。保持容量配線駆動回路500の各単位回路の動作は、共通電極駆動回路200の各単位回路と同一である。 (Modification)
The circuit configuration of theunit circuit 51 constituting the storage capacitor line driving circuit 500 according to the fifth embodiment is the same as the common electrode driving circuit 200 shown in the fourth embodiment except for the power supplies VCSH and VCSL of the buffer 51b. The unit circuit 21 is the same. That is, the unit circuit constituting the storage capacitor line driving circuit 500 can have the same circuit configuration as each unit circuit (unit circuits 21 to 24) constituting the common electrode driving circuit 200 shown in the fourth embodiment. . The operation of each unit circuit of the storage capacitor line driving circuit 500 is the same as that of each unit circuit of the common electrode driving circuit 200.
本実施の形態5に係る保持容量配線駆動回路500を構成する単位回路51の回路構成は、バッファ51bの電源VCSH、VCSLを除いて、前記実施の形態4に示した共通電極駆動回路200を構成する単位回路21と同一である。すなわち、保持容量配線駆動回路500を構成する単位回路は、前記実施の形態4に示した共通電極駆動回路200を構成する各単位回路(単位回路21~24)と同じ回路構成とすることができる。保持容量配線駆動回路500の各単位回路の動作は、共通電極駆動回路200の各単位回路と同一である。 (Modification)
The circuit configuration of the
ここで、共通電極駆動回路200の各単位回路21~24では、自段(例えばk段)に、シフトレジスタ10の前段((k-1)段)の単位回路の出力SROUT(k-1)が入力される構成(例えば図18参照)であるが、本発明はこれに限定されず、(k-1)段よりも前段(例えば、(k-2)段、あるいは、(k-3)段)の単位回路の出力(SROUT(k-2)、あるいは、SROUT(k-3))が入力される構成とすることもできる。一方、保持容量配線駆動回路500の各単位回路では、自段(例えばk段)に、シフトレジスタ10の次段((k+1)段)の単位回路の出力SROUT(k+1)が入力される構成(図32参照)であるが、本発明はこれに限定されず、(k+1)段よりも後段(例えば、(k+2)段、あるいは、(k+3)段)の単位回路の出力(SROUT(k+2)、あるいは、SROUT(k+3))が入力される構成とすることもできる。
Here, in each of the unit circuits 21 to 24 of the common electrode driving circuit 200, the output SROUT (k−1) of the unit circuit of the preceding stage ((k−1) stage) of the shift register 10 is added to its own stage (for example, k stage). However, the present invention is not limited to this, and the stage before (k-1) stage (for example, (k-2) stage or (k-3) The output (SROUT (k−2) or SROUT (k−3)) of the unit circuit of the stage may be input. On the other hand, in each unit circuit of the storage capacitor line driving circuit 500, the output SROUT (k + 1) of the unit circuit of the next stage ((k + 1) stage) of the shift register 10 is input to the own stage (for example, k stage) ( However, the present invention is not limited to this, and the output (SROUT (k + 2)) of the unit circuit at the subsequent stage (for example, (k + 2) stage or (k + 3) stage) after the (k + 1) stage, Alternatively, SROUT (k + 3)) may be input.
本発明の実施の形態に係る保持回路では、上記初期化用信号が上記第1トランジスタのソース端子に入力される場合、上記初期化用信号は、初期化時にローレベルに固定され、初期化時以外はハイレベルに固定されていることが望ましい。
In the holding circuit according to the embodiment of the present invention, when the initialization signal is input to the source terminal of the first transistor, the initialization signal is fixed at a low level at the time of initialization, and at the time of initialization. Other than the above, it is desirable to be fixed at a high level.
本発明の実施の形態に係る保持回路では、上記初期化用信号が上記第2トランジスタのソース端子に入力される場合、上記初期化用信号は、初期化時にハイレベルに固定され、初期化時以外はローレベルに固定されていることが望ましい。
In the holding circuit according to the embodiment of the present invention, when the initialization signal is input to the source terminal of the second transistor, the initialization signal is fixed at a high level at the time of initialization, and at the time of initialization. It is desirable that the level is fixed at a low level except for.
本発明の実施の形態に係る保持回路では、上記インバータとして第1インバータを備え、上記保持対象信号は、上記制御信号がアクティブになると上記第1インバータに入力され、上記出力信号は、上記第1インバータの出力に基づいて出力され、上記制御信号が非アクティブのときに、上記第1インバータの入力端子と出力端子とが、反転電位となるように互いに電気的に接続されている構成とすることもできる。
The holding circuit according to the embodiment of the present invention includes a first inverter as the inverter, and the holding target signal is input to the first inverter when the control signal becomes active, and the output signal is the first inverter. The output is based on the output of the inverter, and when the control signal is inactive, the input terminal and the output terminal of the first inverter are electrically connected to each other so as to have an inverted potential. You can also.
本発明の実施の形態に係る保持回路では、上記インバータとして第1インバータおよび第2インバータを備え、上記保持対象信号は、上記制御信号がアクティブになると上記第2インバータに入力され、上記出力信号は、上記第2インバータの出力に基づいて出力され、上記制御信号が非アクティブのときに、上記第1インバータの入力端子と上記第2インバータの出力端子とが互いに電気的に接続されているとともに、上記第1インバータの出力端子と上記第2インバータの入力端子とが互いに電気的に接続され、上記制御信号がアクティブのときに、上記第1インバータの出力端子と上記第2インバータの入力端子とが電気的に遮断されている構成とすることもできる。
The holding circuit according to the embodiment of the present invention includes a first inverter and a second inverter as the inverter, and the holding target signal is input to the second inverter when the control signal becomes active, and the output signal is And when the control signal is inactive, the input terminal of the first inverter and the output terminal of the second inverter are electrically connected to each other when the control signal is inactive. When the output terminal of the first inverter and the input terminal of the second inverter are electrically connected to each other and the control signal is active, the output terminal of the first inverter and the input terminal of the second inverter are It can also be set as the structure interrupted | blocked electrically.
本発明の実施の形態に係る保持回路では、上記インバータとして第1インバータおよび第2インバータを備え、上記保持対象信号は、上記制御信号がアクティブになると上記第2インバータに入力され、上記出力信号は、上記第2インバータの出力に基づいて出力され、上記制御信号がアクティブのときに、上記第1インバータの入力端子と上記第2インバータの出力端子とが互いに電気的に接続されているとともに、上記第1インバータの出力端子と上記第2インバータの入力端子とが互いに電気的に接続されている構成とすることもできる。
The holding circuit according to the embodiment of the present invention includes a first inverter and a second inverter as the inverter, and the holding target signal is input to the second inverter when the control signal becomes active, and the output signal is And when the control signal is active, the input terminal of the first inverter and the output terminal of the second inverter are electrically connected to each other, and The output terminal of the first inverter and the input terminal of the second inverter may be electrically connected to each other.
本発明の実施の形態に係る保持回路では、上記第1インバータの上記第1トランジスタのソース端子には、第1抵抗が直列に接続され、上記第1インバータの上記第2トランジスタのソース端子には、第2抵抗が直列に接続されている構成とすることもできる。
In the holding circuit according to the embodiment of the present invention, a first resistor is connected in series to a source terminal of the first transistor of the first inverter, and a source terminal of the second transistor of the first inverter is connected to the source terminal of the first transistor. The second resistor may be connected in series.
本発明の実施の形態に係る表示駆動回路では、画素電極と容量を形成する共通電極配線に、第1電位または第2電位の信号を供給する表示装置に用いられ、自段の保持回路には、上記シフトレジスタの前段の出力信号が入力され、上記シフトレジスタの前段の出力信号がアクティブになると、自段の保持回路が、上記保持対象信号を取り込んでこれを保持しつつ、該保持対象信号に応じた上記第1電位または第2電位となる出力信号を、自段の画素の画素電極と容量を形成する上記共通電極配線に供給する構成とすることもできる。
The display driver circuit according to the embodiment of the present invention is used in a display device that supplies a signal of a first potential or a second potential to a common electrode wiring that forms a capacitor with a pixel electrode. When the output signal of the previous stage of the shift register is input and the output signal of the previous stage of the shift register becomes active, the holding circuit of the own stage takes in the holding target signal and holds the holding target signal. The output signal that becomes the first potential or the second potential according to the above may be supplied to the common electrode wiring that forms a capacitor with the pixel electrode of the pixel in its own stage.
本発明の実施の形態に係る表示駆動回路では、画素電極と容量を形成する保持容量配線に、該画素電極に書き込まれた信号電位の極性に応じた変調信号を供給する表示装置に用いられ、自段の保持回路には、上記シフトレジスタの後段の出力信号が入力され、上記シフトレジスタの後段の出力信号がアクティブになると、自段の保持回路が、上記保持対象信号を取り込んでこれを保持しつつ、該保持対象信号に応じた出力信号を、自段の画素の画素電極と容量を形成する上記保持容量配線に、上記変調信号として供給する構成とすることもできる。
The display driving circuit according to the embodiment of the present invention is used in a display device that supplies a modulation signal corresponding to the polarity of a signal potential written to a pixel electrode to a storage capacitor wiring that forms a capacitor with the pixel electrode. When the output signal at the subsequent stage of the shift register is input to the holding circuit at the own stage, and the output signal at the subsequent stage of the shift register becomes active, the holding circuit at the own stage captures and holds the hold target signal. However, an output signal corresponding to the holding target signal may be supplied as the modulation signal to the holding capacitor wiring that forms a capacitor with the pixel electrode of the pixel of the own stage.
本発明の実施の形態に係る表示パネルは、上述の表示駆動回路と、画素回路とが、モノリシックに形成されていることを特徴としている。
The display panel according to the embodiment of the present invention is characterized in that the display driving circuit and the pixel circuit described above are formed monolithically.
本発明の実施の形態に係る表示装置は、上述の表示駆動回路を備えていることを特徴としている。
A display device according to an embodiment of the present invention includes the display drive circuit described above.
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.
本発明は、ラッチ回路や、表示装置の各駆動回路に好適である。
The present invention is suitable for a latch circuit and each drive circuit of a display device.
1~3 液晶表示装置(表示装置)
10 シフトレジスタ
11 シフトレジスタの単位回路
15,19 ラッチ回路(保持回路)
18 インバータ(第1インバータ)
21~24 共通電極駆動回路の単位回路
21a ラッチスルー回路(保持回路)
21b バッファ
31~34 ラッチ回路(保持回路)
41 走査信号線(ゲートライン)
42 共通電極配線(コモンライン)
43 データ信号線(ソースライン)
44 TFT
45 画素電極
46 保持容量配線(CSライン)
51 保持容量配線駆動回路の単位回路
51a ラッチスルー回路(保持回路)
51b バッファ
100 走査信号線駆動回路(ゲートドライバ)
200 共通電極駆動回路(COMドライバ)
300 データ信号線駆動回路(ソースドライバ)
400 表示パネル
500 保持容量配線駆動回路(CSドライバ)
TP1 トランジスタ(第1トランジスタ)
TN1 トランジスタ(第2トランジスタ)
T3 トランジスタ(第1トランジスタ)
T4 トランジスタ(第2トランジスタ)
T5 トランジスタ(第1トランジスタ)
T6 トランジスタ(第2トランジスタ)
INV1 インバータ(第1インバータ)
INV2 インバータ(第2インバータ)
R1 抵抗(第2抵抗)
R2 抵抗(第1抵抗) 1-3 Liquid crystal display device (display device)
DESCRIPTION OFSYMBOLS 10 Shift register 11 Shift register unit circuits 15 and 19 Latch circuit (holding circuit)
18 Inverter (first inverter)
21 to 24Unit circuit 21a of common electrode driving circuit Latch-through circuit (holding circuit)
21b Buffers 31 to 34 Latch circuit (holding circuit)
41 Scanning signal line (gate line)
42 Common electrode wiring (common line)
43 Data signal line (source line)
44 TFT
45Pixel electrode 46 Storage capacitor wiring (CS line)
51Unit Circuit 51a of Retention Capacity Wiring Drive Circuit Latch Through Circuit (Retention Circuit)
51b Buffer 100 Scanning signal line drive circuit (gate driver)
200 Common electrode drive circuit (COM driver)
300 Data signal line drive circuit (source driver)
400Display panel 500 Retention capacity wiring drive circuit (CS driver)
TP1 transistor (first transistor)
TN1 transistor (second transistor)
T3 transistor (first transistor)
T4 transistor (second transistor)
T5 transistor (first transistor)
T6 transistor (second transistor)
INV1 inverter (first inverter)
INV2 inverter (second inverter)
R1 resistance (second resistance)
R2 resistance (first resistance)
10 シフトレジスタ
11 シフトレジスタの単位回路
15,19 ラッチ回路(保持回路)
18 インバータ(第1インバータ)
21~24 共通電極駆動回路の単位回路
21a ラッチスルー回路(保持回路)
21b バッファ
31~34 ラッチ回路(保持回路)
41 走査信号線(ゲートライン)
42 共通電極配線(コモンライン)
43 データ信号線(ソースライン)
44 TFT
45 画素電極
46 保持容量配線(CSライン)
51 保持容量配線駆動回路の単位回路
51a ラッチスルー回路(保持回路)
51b バッファ
100 走査信号線駆動回路(ゲートドライバ)
200 共通電極駆動回路(COMドライバ)
300 データ信号線駆動回路(ソースドライバ)
400 表示パネル
500 保持容量配線駆動回路(CSドライバ)
TP1 トランジスタ(第1トランジスタ)
TN1 トランジスタ(第2トランジスタ)
T3 トランジスタ(第1トランジスタ)
T4 トランジスタ(第2トランジスタ)
T5 トランジスタ(第1トランジスタ)
T6 トランジスタ(第2トランジスタ)
INV1 インバータ(第1インバータ)
INV2 インバータ(第2インバータ)
R1 抵抗(第2抵抗)
R2 抵抗(第1抵抗) 1-3 Liquid crystal display device (display device)
DESCRIPTION OF
18 Inverter (first inverter)
21 to 24
41 Scanning signal line (gate line)
42 Common electrode wiring (common line)
43 Data signal line (source line)
44 TFT
45
51
200 Common electrode drive circuit (COM driver)
300 Data signal line drive circuit (source driver)
400
TP1 transistor (first transistor)
TN1 transistor (second transistor)
T3 transistor (first transistor)
T4 transistor (second transistor)
T5 transistor (first transistor)
T6 transistor (second transistor)
INV1 inverter (first inverter)
INV2 inverter (second inverter)
R1 resistance (second resistance)
R2 resistance (first resistance)
Claims (12)
- 制御信号がアクティブになると保持対象信号を取り込み、該制御信号が次にアクティブになるまで該保持対象信号を保持しつつ、該保持対象信号に応じた出力信号を出力する保持回路であって、
上記保持対象信号を保持するためのインバータを少なくとも1つ備え、
上記インバータは、Pチャネル型の第1トランジスタとNチャネル型の第2トランジスタのゲート端子同士及びドレイン端子同士が互いに接続されたCMOS回路により構成され、
上記第1トランジスタのソース端子または上記第2トランジスタのソース端子に、初期化時にハイレベルまたはローレベルである初期化用信号が入力されることを特徴とする保持回路。 A holding circuit that captures a holding target signal when the control signal becomes active, and outputs an output signal corresponding to the holding target signal while holding the holding target signal until the control signal becomes active next,
Comprising at least one inverter for holding the hold target signal;
The inverter includes a CMOS circuit in which gate terminals and drain terminals of a P-channel first transistor and an N-channel second transistor are connected to each other.
A holding circuit, wherein an initialization signal having a high level or a low level is input to a source terminal of the first transistor or a source terminal of the second transistor at the time of initialization. - 上記初期化用信号が上記第1トランジスタのソース端子に入力される場合、上記初期化用信号は、初期化時にローレベルに固定され、初期化時以外はハイレベルに固定されていることを特徴とする請求項1に記載の保持回路。 When the initialization signal is input to the source terminal of the first transistor, the initialization signal is fixed at a low level during initialization, and is fixed at a high level except during initialization. The holding circuit according to claim 1.
- 上記初期化用信号が上記第2トランジスタのソース端子に入力される場合、上記初期化用信号は、初期化時にハイレベルに固定され、初期化時以外はローレベルに固定されていることを特徴とする請求項1に記載の保持回路。 When the initialization signal is input to the source terminal of the second transistor, the initialization signal is fixed at a high level during initialization, and is fixed at a low level except during initialization. The holding circuit according to claim 1.
- 上記インバータとして第1インバータを備え、
上記保持対象信号は、上記制御信号がアクティブになると上記第1インバータに入力され、
上記出力信号は、上記第1インバータの出力に基づいて出力され、
上記制御信号が非アクティブのときに、上記第1インバータの入力端子と出力端子とが、反転電位となるように互いに電気的に接続されていることを特徴とする請求項1~3のいずれか1項に記載の保持回路。 A first inverter as the inverter;
The holding target signal is input to the first inverter when the control signal becomes active,
The output signal is output based on the output of the first inverter,
The input terminal and the output terminal of the first inverter are electrically connected to each other so as to have an inverted potential when the control signal is inactive. The holding circuit according to Item 1. - 上記インバータとして第1インバータおよび第2インバータを備え、
上記保持対象信号は、上記制御信号がアクティブになると上記第2インバータに入力され、
上記出力信号は、上記第2インバータの出力に基づいて出力され、
上記制御信号が非アクティブのときに、上記第1インバータの入力端子と上記第2インバータの出力端子とが互いに電気的に接続されているとともに、上記第1インバータの出力端子と上記第2インバータの入力端子とが互いに電気的に接続され、
上記制御信号がアクティブのときに、上記第1インバータの出力端子と上記第2インバータの入力端子とが電気的に遮断されていることを特徴とする請求項1~3のいずれか1項に記載の保持回路。 The inverter includes a first inverter and a second inverter,
The holding target signal is input to the second inverter when the control signal becomes active,
The output signal is output based on the output of the second inverter,
When the control signal is inactive, the input terminal of the first inverter and the output terminal of the second inverter are electrically connected to each other, and the output terminal of the first inverter and the second inverter The input terminals are electrically connected to each other,
4. The output terminal of the first inverter and the input terminal of the second inverter are electrically cut off when the control signal is active. Holding circuit. - 上記インバータとして第1インバータおよび第2インバータを備え、
上記保持対象信号は、上記制御信号がアクティブになると上記第2インバータに入力され、
上記出力信号は、上記第2インバータの出力に基づいて出力され、
上記制御信号がアクティブのときに、上記第1インバータの入力端子と上記第2インバータの出力端子とが互いに電気的に接続されているとともに、上記第1インバータの出力端子と上記第2インバータの入力端子とが互いに電気的に接続されていることを特徴とする請求項1~3のいずれか1項に記載の保持回路。 The inverter includes a first inverter and a second inverter,
The holding target signal is input to the second inverter when the control signal becomes active,
The output signal is output based on the output of the second inverter,
When the control signal is active, the input terminal of the first inverter and the output terminal of the second inverter are electrically connected to each other, and the output terminal of the first inverter and the input of the second inverter The holding circuit according to any one of claims 1 to 3, wherein the terminals are electrically connected to each other. - 上記第1インバータの上記第1トランジスタのソース端子には、第1抵抗が直列に接続され、
上記第1インバータの上記第2トランジスタのソース端子には、第2抵抗が直列に接続されていることを特徴とする請求項6に記載の保持回路。 A first resistor is connected in series to the source terminal of the first transistor of the first inverter,
The holding circuit according to claim 6, wherein a second resistor is connected in series to a source terminal of the second transistor of the first inverter. - 画素に含まれる画素電極と容量を形成する信号線が設けられた表示パネルを駆動する表示駆動回路であって、
複数の走査信号線の各々に対応して設けられた複数の段を含むシフトレジスタと、
上記シフトレジスタの各段に対応して設けられた少なくとも1つの保持回路とを備え、
上記保持回路は、請求項1~7のいずれか1項に記載の保持回路であり、上記シフトレジスタの各段の出力信号を上記制御信号とし、
上記シフトレジスタの1つの段の出力信号がアクティブになると、この段に対応する保持回路が、上記保持対象信号を取り込んでこれを保持しつつ、該保持対象信号に応じた出力信号をこの段に対応する上記信号線に供給することを特徴とする表示駆動回路。 A display driving circuit for driving a display panel provided with a pixel electrode and a signal line forming a capacitor included in a pixel,
A shift register including a plurality of stages provided corresponding to each of the plurality of scanning signal lines;
And at least one holding circuit provided corresponding to each stage of the shift register,
The holding circuit according to any one of claims 1 to 7, wherein an output signal of each stage of the shift register is used as the control signal,
When an output signal of one stage of the shift register becomes active, a holding circuit corresponding to this stage takes in the holding target signal and holds it, and outputs an output signal corresponding to the holding target signal to this stage. A display driving circuit, characterized by being supplied to the corresponding signal line. - 画素電極と容量を形成する共通電極配線に、第1電位または第2電位の信号を供給する表示装置に用いられ、
自段の保持回路には、上記シフトレジスタの前段の出力信号が入力され、
上記シフトレジスタの前段の出力信号がアクティブになると、自段の保持回路が、上記保持対象信号を取り込んでこれを保持しつつ、該保持対象信号に応じた上記第1電位または第2電位となる出力信号を、自段の画素の画素電極と容量を形成する上記共通電極配線に供給することを特徴とする請求項8に記載の表示駆動回路。 Used for a display device that supplies a signal of a first potential or a second potential to a common electrode wiring that forms a capacitor with a pixel electrode;
The output signal of the previous stage of the shift register is input to the holding circuit of the own stage,
When the output signal of the previous stage of the shift register becomes active, the holding circuit of its own stage takes in the holding target signal and holds it, and becomes the first potential or the second potential according to the holding target signal. 9. The display drive circuit according to claim 8, wherein an output signal is supplied to the common electrode wiring that forms a capacitor with a pixel electrode of a pixel in its own stage. - 画素電極と容量を形成する保持容量配線に、該画素電極に書き込まれた信号電位の極性に応じた変調信号を供給する表示装置に用いられ、
自段の保持回路には、上記シフトレジスタの後段の出力信号が入力され、
上記シフトレジスタの後段の出力信号がアクティブになると、自段の保持回路が、上記保持対象信号を取り込んでこれを保持しつつ、該保持対象信号に応じた出力信号を、自段の画素の画素電極と容量を形成する上記保持容量配線に、上記変調信号として供給することを特徴とする請求項8に記載の表示駆動回路。 Used in a display device that supplies a modulation signal corresponding to the polarity of a signal potential written to a pixel electrode to a storage capacitor wiring that forms a capacitor with the pixel electrode,
The output signal of the latter stage of the shift register is input to the holding circuit of the own stage,
When the output signal of the subsequent stage of the shift register becomes active, the holding circuit of the own stage takes in the holding target signal and holds it, and outputs the output signal according to the holding target signal to the pixel of the own stage pixel. 9. The display driving circuit according to claim 8, wherein the modulation signal is supplied to the storage capacitor wiring that forms a capacitance with an electrode. - 請求項8~10のいずれか1項に記載の表示駆動回路と、画素回路とが、モノリシックに形成されていることを特徴とする表示パネル。 A display panel, wherein the display driving circuit according to any one of claims 8 to 10 and the pixel circuit are formed monolithically.
- 請求項8~10のいずれか1項に記載の表示駆動回路を備えていることを特徴とする表示装置。 A display device comprising the display drive circuit according to any one of claims 8 to 10.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011146532 | 2011-06-30 | ||
JP2011-146532 | 2011-06-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013002191A1 true WO2013002191A1 (en) | 2013-01-03 |
Family
ID=47424083
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/066194 WO2013002191A1 (en) | 2011-06-30 | 2012-06-25 | Holding circuit, display drive circuit, display panel, and display device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2013002191A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105390117A (en) * | 2015-12-28 | 2016-03-09 | 武汉华星光电技术有限公司 | Gate driving circuit and array substrate using same |
US11291624B2 (en) | 2018-07-30 | 2022-04-05 | Conopco, Inc. | Compositions comprising active botanical ingredients |
JP2022099473A (en) * | 2020-12-23 | 2022-07-05 | 武漢天馬微電子有限公司 | Display device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000259132A (en) * | 1999-03-11 | 2000-09-22 | Sharp Corp | Shift register circuit and image display device |
JP2004128767A (en) * | 2002-10-01 | 2004-04-22 | Fujitsu Ltd | Flip-flop circuit and frequency divider |
WO2010146756A1 (en) * | 2009-06-17 | 2010-12-23 | シャープ株式会社 | Flip-flop, shift register, display drive circuit, display apparatus, and display panel |
-
2012
- 2012-06-25 WO PCT/JP2012/066194 patent/WO2013002191A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000259132A (en) * | 1999-03-11 | 2000-09-22 | Sharp Corp | Shift register circuit and image display device |
JP2004128767A (en) * | 2002-10-01 | 2004-04-22 | Fujitsu Ltd | Flip-flop circuit and frequency divider |
WO2010146756A1 (en) * | 2009-06-17 | 2010-12-23 | シャープ株式会社 | Flip-flop, shift register, display drive circuit, display apparatus, and display panel |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105390117A (en) * | 2015-12-28 | 2016-03-09 | 武汉华星光电技术有限公司 | Gate driving circuit and array substrate using same |
CN105390117B (en) * | 2015-12-28 | 2017-12-22 | 武汉华星光电技术有限公司 | Gate driving circuit and the array base palte using the drive circuit |
US11291624B2 (en) | 2018-07-30 | 2022-04-05 | Conopco, Inc. | Compositions comprising active botanical ingredients |
JP2022099473A (en) * | 2020-12-23 | 2022-07-05 | 武漢天馬微電子有限公司 | Display device |
JP7697783B2 (en) | 2020-12-23 | 2025-06-24 | 武漢天馬微電子有限公司 | display device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10810920B2 (en) | Shift register and display device using the same | |
KR100847091B1 (en) | Shift register circuit and image display apparatus equipped with the same | |
CN100590689C (en) | strobe driver | |
JP4912186B2 (en) | Shift register circuit and image display apparatus including the same | |
US9047842B2 (en) | Shift register, display-driving circuit, displaying panel, and displaying device | |
JP5078533B2 (en) | Gate line drive circuit | |
US8952955B2 (en) | Display driving circuit, display device and display driving method | |
US9336740B2 (en) | Shift register, display drive circuit, display panel, and display device | |
KR100553324B1 (en) | Shift register and display device using the same | |
WO2009084267A1 (en) | Shift register and display device | |
CN112992092B (en) | Drive circuit and control method thereof | |
US9124260B2 (en) | Flip-flop, shift register, display panel, and display device | |
WO2012029799A1 (en) | Shift register, and display device | |
US10748465B2 (en) | Gate drive circuit, display device and method for driving gate drive circuit | |
CN107533866B (en) | Shift register | |
JP2009015286A (en) | Image display device and drive circuit | |
JP2012215899A (en) | Gate line drive circuit | |
WO2013002192A1 (en) | Display drive circuit, display panel, and display device | |
JP5442732B2 (en) | Display drive circuit, display device, and display drive method | |
JP2008140522A (en) | Shift register circuit and image display device furnished therewith, and voltage signal generating circuit | |
JP2009181612A (en) | Shift register circuit and liquid crystal display unit | |
WO2013002229A1 (en) | Shift register, scanning signal line drive circuit, display panel, and display device | |
JP5207865B2 (en) | Shift register | |
WO2013002191A1 (en) | Holding circuit, display drive circuit, display panel, and display device | |
JP2007242129A (en) | Shift register circuit and image display device having the circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12805212 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12805212 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |