[go: up one dir, main page]

WO2012176822A1 - 光配向処理法用の液晶配向剤、及びそれを用いた液晶配向膜 - Google Patents

光配向処理法用の液晶配向剤、及びそれを用いた液晶配向膜 Download PDF

Info

Publication number
WO2012176822A1
WO2012176822A1 PCT/JP2012/065783 JP2012065783W WO2012176822A1 WO 2012176822 A1 WO2012176822 A1 WO 2012176822A1 JP 2012065783 W JP2012065783 W JP 2012065783W WO 2012176822 A1 WO2012176822 A1 WO 2012176822A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
component
aligning agent
crystal aligning
Prior art date
Application number
PCT/JP2012/065783
Other languages
English (en)
French (fr)
Inventor
直樹 作本
勇歩 野口
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to CN201280030215.7A priority Critical patent/CN103620488B/zh
Priority to JP2013521610A priority patent/JP5979142B2/ja
Priority to KR1020137033403A priority patent/KR101848962B1/ko
Publication of WO2012176822A1 publication Critical patent/WO2012176822A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1078Partially aromatic polyimides wholly aromatic in the diamino moiety
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3442Heterocyclic compounds having nitrogen in the ring having two nitrogen atoms in the ring
    • C08K5/3445Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133397Constructional arrangements; Manufacturing methods for suppressing after-image or image-sticking
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide

Definitions

  • the present invention relates to a liquid crystal alignment agent for producing a liquid crystal alignment film and a liquid crystal alignment film obtained from the liquid crystal alignment agent. More specifically, in place of rubbing treatment, a liquid crystal alignment agent suitable for a photo-alignment treatment method, that is, a photo-alignment treatment method that imparts liquid crystal alignment ability by irradiation with polarized ultraviolet rays, and a liquid crystal obtained from the liquid crystal alignment agent
  • a liquid crystal alignment agent suitable for a photo-alignment treatment method that is, a photo-alignment treatment method that imparts liquid crystal alignment ability by irradiation with polarized ultraviolet rays
  • the present invention relates to an alignment film.
  • Liquid crystal display elements used for liquid crystal televisions, liquid crystal displays, and the like are usually provided with a liquid crystal alignment film for controlling the alignment state of the liquid crystals.
  • the liquid crystal alignment film is made of a polyamic acid formed on an electrode substrate and / or a surface of a film made of polyimide obtained by imidizing this with cotton, nylon, It is produced by carrying out a so-called rubbing process that rubs in one direction with a cloth such as polyester.
  • the method of rubbing the film surface in the alignment process of the liquid crystal alignment film is an industrially useful method that is simple and excellent in productivity.
  • the demand for higher performance, higher definition, and larger size of liquid crystal display elements is increasing, and the surface of the alignment film caused by rubbing treatment, dust generation, the influence of mechanical force and static electricity, Various problems such as non-uniformity in the orientation processing surface have been revealed.
  • Non-Patent Document 1 As a method for replacing the rubbing treatment, a photo-alignment method that imparts liquid crystal alignment ability by irradiating polarized radiation is known.
  • liquid crystal alignment treatment by the photo-alignment method those utilizing a photoisomerization reaction, those utilizing a photocrosslinking reaction, those utilizing a photodecomposition reaction, and the like have been proposed (see Non-Patent Document 1).
  • Patent Document 1 proposes that a polyimide film having an alicyclic structure such as a cyclobutane ring in the main chain is used for the photo-alignment method.
  • the photo-alignment method as described above has an advantage that it can be produced by a simple manufacturing process industrially as a rubbing-less alignment treatment method, and also has a liquid crystal of an IPS driving method or a fringe field switching (hereinafter referred to as FFS) driving method.
  • FFS fringe field switching
  • the liquid crystal alignment film used in the liquid crystal display element of the IPS driving method or the FFS driving method is generated in the liquid crystal display element of the IPS driving method or the FFS driving method in addition to the basic characteristics such as excellent liquid crystal alignment properties and electrical characteristics. It is necessary to suppress the afterimage by AC driving. However, the liquid crystal alignment film obtained by the photo-alignment method has insufficient alignment regulating power of liquid crystal and its stability, and it has been difficult to satisfy the above characteristics.
  • the present invention relates to a liquid crystal aligning agent suitable for a photo-alignment treatment method capable of suppressing an afterimage due to alternating current drive generated in a liquid crystal display element of an IPS driving method or an FFS driving method, and a liquid crystal alignment obtained from the liquid crystal aligning agent.
  • the purpose is to provide an agent.
  • a diamine having a tetracarboxylic dianhydride having a specific structure having a cyclobutane skeleton and a highly linear diamine typified by p-phenylenediamine It has been found that the above object can be achieved by a liquid crystal aligning agent containing a polyamic acid obtained from a polycondensation reaction with a compound and an imidazole derivative having an alkyl group having 3 to 10 carbon atoms or an alkenyl group.
  • the present invention has the following gist. 1.
  • the liquid crystal aligning agent characterized by containing the following (A) component, (B) component, and an organic solvent.
  • (A) component The tetracarboxylic dianhydride containing 60 mol% or more of all tetracarboxylic dianhydrides represented by the following formula (1), and the following formula (2)
  • R 1 , R 2 , R 3 , and R 4 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or a carbon atom. These are alkynyl groups of 2 to 6 or phenyl groups, which may be the same or different.)
  • a 1 is a single bond, an ester bond, an amide bond, a thioester bond, or a divalent organic group having 2 to 10 carbon atoms.
  • Component (B) at least one imidazole derivative selected from the group consisting of the following formulas (B-1) to (B-4).
  • R 5 , R 6 , R 7 and R 8 are each independently an alkyl group having 3 to 10 carbon atoms or an alkenyl group.
  • the liquid crystal aligning agent according to 1 above wherein the content of the component (A) is 1 to 10% by mass. 3.
  • the tetracarboxylic dianhydride represented by the above formula (1) for obtaining the component (A) is 1,2,3,4-cyclobutanetetracarboxylic dianhydride and 1,3-dimethyl-1,2 4.
  • the liquid crystal aligning agent according to any one of 3 above which is at least one tetracarboxylic dianhydride selected from the group consisting of 3,3,4-cyclobutanetetracarboxylic dianhydride. 5.
  • the imidazole derivative as the component (B) is at least one selected from the group consisting of 1-propylimidazole, 1-allylimidazole, 1-butylimidazole, 2-propylimidazole, and 2-butylimidazole.
  • the liquid crystal alignment film of the present invention reduces afterimages caused by AC driving in liquid crystal display elements of the IPS driving method or the FFS driving method, and an IPS driving method or FFS driving type liquid crystal display element having excellent afterimage characteristics can be obtained.
  • liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention solves the problems of the present invention is not necessarily clear, but is considered as follows.
  • the polyimide film irradiated with polarized radiation exhibits anisotropy in a direction perpendicular to the polarization direction, and imparts liquid crystal alignment ability.
  • the reaction of the following formula (i) proceeds most efficiently when an imide ring is formed. Therefore, when the imidation ratio of the film obtained by firing is low, the reaction of the following formula (i) proceeds only slightly and the film becomes small in anisotropy. On the other hand, when the imidation ratio of the film obtained by firing is high, the reaction of the following formula (i) sufficiently proceeds to obtain a film having large anisotropy.
  • the larger the anisotropy of the liquid crystal alignment film the higher the liquid crystal alignment property, and the afterimage due to AC driving can be suppressed.
  • the imidazole derivative used for the liquid crystal aligning agent of this invention can accelerate
  • the additive has a high effect of promoting imidization by heating of the polyamic acid
  • the additive if the additive remains in the film, it inhibits the alignment of the liquid crystal and degrades the performance of the liquid crystal alignment film. End up.
  • the imidazole derivative used in the liquid crystal aligning agent of the present invention not only has a high effect of promoting imidization by heating of the polyamic acid, but also has a structure that easily evaporates or sublimates during firing. , It does not remain in the film and the liquid crystal orientation is not deteriorated.
  • the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention has a high liquid crystal alignment property, and it is possible to suppress an afterimage caused by alternating current drive generated in an IPS drive type or FFS drive type liquid crystal display element. It is considered possible.
  • (A) component contained in the liquid crystal aligning agent of this invention is tetracarboxylic dianhydride which contains the tetracarboxylic dianhydride represented by following formula (1) 60 mol% or more of all the tetracarboxylic dianhydrides. And a polyamic obtained by a polycondensation reaction with a diamine compound containing at least one mol of diamine compounds selected from the group consisting of diamine compounds represented by the following formulas (2) and (3) in an amount of 60 mol% or more of the total diamine compounds It is an acid.
  • R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, carbon An alkynyl group having a number of 3 to 6 or a phenyl group.
  • R 1 , R 2 , R 3 , and R 4 are preferably a hydrogen atom, a halogen atom, a methyl group, or an ethyl group, and more preferably a hydrogen atom or a methyl group.
  • tetracarboxylic dianhydride having a cyclobutane ring represented by the above formula (1) include the following formulas (1-1) to (1-5). From the viewpoint of liquid crystal alignment, (1-1) or (1-2) is more preferable, and (1-2) is more preferable.
  • a 1 is a single bond, an ester bond, an amide bond, a thioester bond, or a divalent organic group having 2 to 10 carbon atoms.
  • the ester bond is represented by —C (O) O— or —OC (O) —.
  • amide bond a structure represented by —C (O) NH— or —C (O) NR—, —NHC (O) —, —NRC (O) — can be shown.
  • R is an alkyl group having 1 to 10 carbon atoms, an alkenyl group, an alkynyl group, an aryl group, or a combination thereof.
  • alkyl group examples include a methyl group, an ethyl group, a propyl group, a butyl group, a t-butyl group, a hexyl group, an octyl group, a cyclopentyl group, a cyclohexyl group, and a bicyclohexyl group.
  • alkenyl group examples include those obtained by replacing one or more CH—CH structures present in the above alkyl group with C ⁇ C structures, and more specifically, vinyl groups, allyl groups, 1-propenyl groups.
  • Alkynyl groups include those in which one or more CH 2 —CH 2 structures present in the alkyl group are replaced with C ⁇ C structures, and more specifically, ethynyl groups, 1-propynyl groups, 2 -Propynyl group and the like.
  • Examples of the aryl group include a phenyl group.
  • As the thioester bond a structure represented by —C (O) S— or —SC (O) — can be shown.
  • a 1 is an organic group having 2 to 10 carbon atoms, it can be represented by the structure of the following formula (4).
  • a 4 , A 5 and A 6 are each independently a single bond, —O—, —S—, —NR 11 —, ester bond, amide bond, thioester bond, urea bond, carbonate bond Or a carbamate bond.
  • R 11 is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkenyl group, an alkynyl group, or an aryl group, or a combination thereof, and examples thereof are the same as the above-described alkyl group, alkenyl group, alkynyl group, and aryl group. Can be mentioned.
  • the ester bond, amide bond, and thioester bond in A 4 , A 5 , and A 6 can have the same structure as the ester bond, amide bond, and thioester bond described above.
  • urea bond a structure represented by —NH—C (O) NH— or —NR—C (O) NR— can be shown.
  • R is an alkyl group having 1 to 10 carbon atoms, an alkenyl group, an alkynyl group, or an aryl group, or a combination thereof, and examples thereof are the same as the above-described alkyl group, alkenyl group, alkynyl group, and aryl group.
  • carbonate bond a structure represented by —O—C (O) —O— can be shown.
  • the carbamate bond is —NH—C (O) —O—, —O—C (O) —NH—, —NR—C (O) —O—, or —O—C (O) —NR—.
  • R is an alkyl group having 1 to 10 carbon atoms, an alkenyl group, an alkynyl group, or an aryl group, or a combination thereof, and examples thereof are the same as the above-described alkyl group, alkenyl group, alkynyl group, and aryl group. .
  • R 9 and R 10 in the formula (4) each independently have a structure selected from a single bond, an alkylene group having 1 to 10 carbon atoms, an alkenylene group, an alkynylene group, an arylene group, or a combination thereof. is there. If one of R 9 and R 10 is a single bond, R 9 or R 10 represents an alkylene group having 2 to 10 carbon atoms, an alkenylene group, an alkynylene group or an arylene group, or a structure selected from the group comprising a combination thereof is there.
  • alkylene group examples include a structure in which one hydrogen atom is removed from the alkyl group. More specifically, a methylene group, 1,1-ethylene group, 1,2-ethylene group, 1,2-propylene group, 1,3-propylene group, 1,4-butylene group, 1,2-butylene group 1,2-pentylene group, 1,2-hexylene group, 2,3-butylene group, 2,4-pentylene group, 1,2-cyclopropylene group, 1,2-cyclobutylene group, 1,3- Examples thereof include a cyclobutylene group, 1,2-cyclopentylene group, 1,2-cyclohexylene group and the like.
  • alkenylene group examples include a structure in which one hydrogen atom is removed from the alkenyl group. More specifically, 1,1-ethenylene group, 1,2-ethenylene group, 1,2-ethenylenemethylene group, 1-methyl-1,2-ethenylene group, 1,2-ethenylene-1,1- Ethylene group, 1,2-ethenylene-1,2-ethylene group, 1,2-ethenylene-1,2-propylene group, 1,2-ethenylene-1,3-propylene group, 1,2-ethenylene-1, Examples include 4-butylene group and 1,2-ethenylene-1,2-butylene group.
  • alkynylene group examples include a structure in which one hydrogen atom is removed from the alkynyl group. More specifically, an ethynylene group, an ethynylene methylene group, an ethynylene-1,1-ethylene group, an ethynylene-1,2-ethylene group, an ethynylene-1,2-propylene group, an ethynylene-1,3-propylene group, Examples include ethynylene-1,4-butylene group, ethynylene-1,2-butylene group and the like.
  • arylene group examples include a structure in which one hydrogen atom is removed from the aryl group. More specific examples include 1,2-phenylene group, 1,3-phenylene group, 1,4-phenylene group and the like.
  • the structure of A 1 is a single bond or the following formula (A1-1)
  • the structure of (A1-25) is more preferable.
  • the diamine compound for obtaining the polyamic acid of the present invention is represented by p represented by the above formula (2).
  • -Phenylenediamine is particularly preferred.
  • the content of the diamine compound represented by the above formulas (2) and (3) is preferably 60 mol% to 100 mol% in the total diamine. Since the higher the ratio of the diamine represented by the above formulas (2) and (3), the better the liquid crystal alignment film having liquid crystal alignment properties, 80 mol% to 100 mol% is more preferable, and 90 mol% to 100 mol% is more preferable.
  • the tetracarboxylic dianhydride for obtaining the polyamic acid which is the component (A) of the present invention is a tetracarboxylic acid represented by the following formula (6) in addition to the tetracarboxylic dianhydride represented by the formula (1).
  • An acid dianhydride can be contained.
  • X is a tetravalent organic group, and its structure is not particularly limited. Specific examples include structures of the following formulas (X-5) to (X-46). From the viewpoint of compound availability, the structure of X is X-5, X-6, X-8, X-16, X-17, X-19, X-21, X-25, X-26, X -27, X-28, X-32, X-46.
  • a tetracarboxylic dianhydride having an aliphatic and aliphatic ring structure In order to improve the transparency of the obtained liquid crystal alignment film, it is preferable to use a tetracarboxylic dianhydride having an aliphatic and aliphatic ring structure, and the structure of X is X-8, X-16, X- 19, X-25, or X-46 is more preferred. In addition, it is preferable to use a tetracarboxylic dianhydride having an aromatic ring structure from the viewpoint of obtaining a liquid crystal alignment film in which a residual charge accumulated by a DC voltage can be quickly relaxed. X-27, X-28, X-32, X-35, or X-37 is more preferable.
  • the tetracarboxylic dianhydride represented by the above formula (6) is preferably 0 to 40 mol%, more preferably 0 to 20 mol% with respect to the total tetracarboxylic dianhydride.
  • the diamine compound for obtaining the polyamic acid of the component (A) of the present invention contains a diamine compound represented by the following formula (7) in addition to the diamine compounds represented by the formulas (2) and (3).
  • Y is a divalent organic group, and its structure is not particularly limited. Specific examples of Y include structures of the following formulas (Y-1) to (Y-68).
  • the diamine compounds other than the formulas (2) and (3) include Y-8, Y-20, Y-21, Y- 22, Y-27, Y-28, Y-66, Y-67, or Y-68 are more preferable, and Y-66 is particularly preferable. If the amount of the diamine compound represented by the above formula (7) is too large, the liquid crystal alignment property of the liquid crystal alignment film is lowered, so 0 to 40 mol% is preferable based on the total tetracarboxylic dianhydride. More preferred is ⁇ 20 mol%.
  • the component (B) of the present invention is at least one imidazole derivative selected from the group consisting of the following formulas (B-1) to (B-4).
  • R 5 to R 8 are each independently an alkyl group having 3 to 10 carbon atoms or an alkenyl group having 3 to 10 carbon atoms.
  • alkyl group having 3 to 10 carbon atoms examples include propyl group, butyl group, t-butyl group, hexyl group, octyl group, nonyl group and decyl group.
  • alkenyl group examples include those in which one or more CH—CH structures present in the above alkyl group are replaced with a C ⁇ C structure, and more specifically, an allyl group, a 1-propenyl group, an isopropenyl group. Group, 2-butenyl group, 1,3-butadienyl group, 2-pentenyl group, 2-hexenyl group and the like.
  • the liquid crystal alignment may be hindered and the liquid crystal alignment of the resulting liquid crystal alignment film may be lowered. Therefore, a carbon number of 3 to 6 is more preferable, and a propyl group, a butyl group, or an allyl group is particularly preferable.
  • Specific structures of the above imidazole derivatives include 1-propylimidazole, 1-allylimidazole, 1-butylimidazole, 2-propylimidazole, or 2-butylimidazole.
  • 1-propylimidazole, 1-allylimidazole Or 1-butylimidazole is more preferable, and 1-butylimidazole is particularly preferable.
  • the content of the component (B) is preferably 0.1 to 50 parts by mass, more preferably 0.1 to 20 parts by mass, and 0.1 to 10 parts by mass with respect to 100 parts by mass of the component (A). Is particularly preferred.
  • the polyamic acid used for the liquid crystal aligning agent of this invention can be obtained by reaction of tetracarboxylic dianhydride and diamine. Specifically, tetracarboxylic dianhydride and diamine are reacted in the presence of an organic solvent at ⁇ 20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C. for 30 minutes to 24 hours, preferably 1 to 12 hours. Can be synthesized.
  • the organic solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, or ⁇ -butyrolactone in view of the solubility of the monomer and polymer. These may be used alone or in combination of two or more. It may be used.
  • the concentration of the polymer is preferably 1 to 30% by mass and more preferably 5 to 20% by mass from the viewpoint that the polymer is hardly precipitated and a high molecular weight body is easily obtained.
  • the polyamic acid obtained as described above can be precipitated and recovered by pouring into a poor solvent while thoroughly stirring the reaction solution. Moreover, the powder of polyamic acid refine
  • a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
  • the liquid crystal aligning agent of this invention has the form of the solution in which (A) component and (B) component were melt
  • the molecular weight of the polyamic acid as the component (A) is preferably 2,000 to 500,000, more preferably 5,000 to 300,000, and still more preferably 10,000 to 100,000 in terms of weight average molecular weight. It is.
  • the number average molecular weight is preferably 1,000 to 250,000, more preferably 2,500 to 150,000, and still more preferably 5,000 to 50,000.
  • the content of the polyamic acid as the component (A) in the liquid crystal aligning agent of the present invention can be appropriately changed depending on the thickness of the coating film to be formed, but a uniform and defect-free coating film is formed. 1% by mass or more is preferable from the viewpoint of making it preferable, 3% by mass or more is more preferable, and 10% by mass or less is preferable and 8% by mass or less is more preferable from the viewpoint of storage stability of the solution.
  • the organic solvent contained in the liquid crystal aligning agent of the present invention is not particularly limited as long as the (A) component and the (B) component are uniformly dissolved.
  • Specific examples thereof include N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methylcaprolactam, Examples include 2-pyrrolidone, N-vinyl-2-pyrrolidone, dimethyl sulfoxide, dimethyl sulfone, ⁇ -butyrolactone, 1,3-dimethyl-imidazolidinone, 3-methoxy-N, N-dimethylpropanamide and the like.
  • the liquid crystal aligning agent of the present invention may contain a solvent for improving the uniformity of the coating film when the liquid crystal aligning agent is applied to the substrate in addition to the organic solvent for dissolving the polymer component.
  • a solvent for improving the uniformity of the coating film when the liquid crystal aligning agent is applied to the substrate in addition to the organic solvent for dissolving the polymer component.
  • a solvent having a surface tension lower than that of the organic solvent is generally used.
  • ethyl cellosolve examples thereof include ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, ethyl carbitol acetate, ethylene glycol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1-butoxy-2 -Propanol, 1-phenoxy-2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol-1-monoethyl ether-2-acetate, butyl cellosolve acetate, di Propylene glycol, 2- (2-ethoxypropoxy) propanol, lactate methyl ester, lactate ethyl ester, lactate n-propyl ester, lactate n-butyl ester, lactic acid Isoamyl ester, and the like. Two types of
  • the polymer other than the polymer as the component (A) the electrical properties such as the dielectric constant and conductivity of the liquid crystal aligning film Dielectric or conductive material for changing characteristics, silane coupling agent for improving adhesion between liquid crystal alignment film and substrate, crosslinkability for increasing hardness and density of liquid crystal alignment film
  • an imidization accelerator for the purpose of efficiently proceeding imidization of the polyamic acid may be added.
  • the liquid crystal alignment film of the present invention is a coating film obtained by applying the liquid crystal aligning agent obtained as described above to a substrate, drying and baking, and the radiation obtained by polarizing the coating film surface almost linearly. Obtained by irradiation.
  • the substrate to which the liquid crystal aligning agent of the present invention is applied is not particularly limited as long as it is a highly transparent substrate, and a glass substrate, a silicon nitride substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate, or the like can be used. From the viewpoint of simplification of the process, it is preferable to use a substrate on which an ITO electrode or the like is formed.
  • an opaque material such as a silicon wafer can be used as long as it is only on one side of the substrate.
  • a material that reflects light such as aluminum can be used for the electrode.
  • the method for applying the liquid crystal aligning agent of the present invention include a spin coating method, a printing method, and an ink jet method.
  • any temperature and time can be selected.
  • the contained organic solvent is sufficiently removed and dried at 50 ° C. to 120 ° C. for 1 to 10 minutes in order to imidize the polyamic acid as component (A), and then at 150 ° C. to 300 ° C. for 5 minutes. Baking for 120 minutes.
  • the thickness of the coating film after baking is not particularly limited, but if it is too thin, the reliability of the liquid crystal display element may be lowered, and therefore it is 5 to 300 nm, preferably 10 to 200 nm.
  • the liquid crystal aligning agent of the present invention is particularly useful when used in a photo-alignment treatment method.
  • a photo-alignment treatment method there is a method in which the surface of the coating film is irradiated with radiation polarized in a certain direction, and in some cases, a heat treatment is further performed at a temperature of 150 to 250 ° C. to impart liquid crystal alignment ability.
  • the wavelength of radiation ultraviolet rays or visible rays having a wavelength of 100 nm to 800 nm can be used. Among these, ultraviolet rays having a wavelength of 100 nm to 400 nm are preferable, and those having a wavelength of 200 nm to 400 nm are particularly preferable.
  • radiation may be irradiated while heating the coated substrate at 50 to 250 ° C.
  • Dose of the radiation is preferably in the range of 1 ⁇ 10,000mJ / cm 2, and particularly preferably in the range of 100 ⁇ 5,000mJ / cm 2.
  • the liquid crystal alignment film produced as described above can stably align liquid crystal molecules in a certain direction.
  • DA-1 (Formula (DA-1) below)
  • NMP N-methyl-2-pyrrolidone
  • BCS Butyl cellosolve
  • the molecular weight of the polyamic acid ester is measured by a GPC (normal temperature gel permeation chromatography) apparatus, and is a number average molecular weight (hereinafter also referred to as Mn) and a weight average molecular weight (hereinafter also referred to as Mw) as polyethylene glycol and polyethylene oxide equivalent values. ) was calculated.
  • Mn number average molecular weight
  • Mw weight average molecular weight
  • GPC device manufactured by Shodex (GPC-101) Column: manufactured by Shodex (series of KD803 and KD805) Column temperature: 50 ° C Eluent: N, N-dimethylformamide (as additives, lithium bromide-hydrate (LiBr ⁇ H 2 O) 30 mmol / L, phosphoric acid / anhydrous crystals (o-phosphoric acid) 30 mmol / L, tetrahydrofuran) (THF) is 10 ml / L) Flow rate: 1.0 ml / min Standard sample for preparing calibration curve: TSK standard polyethylene oxide (weight average molecular weight (Mw) of about 900,000, 150,000, 100,000, 30,000) manufactured by Tosoh Corporation, and polymer laboratory Polyethylene glycol manufactured by the company (peak top molecular weight (Mp) of about 12,000, 4,000, 1,000). In order to avoid the overlapping of peaks, the measurement was performed by mixing four types of 900,000, 100,000, 12,000
  • FFS fringe field switching
  • a coating film having a thickness of 100 nm.
  • the coated film surface was irradiated with ultraviolet light having a wavelength of 254 nm through a polarizing plate to obtain a substrate with a liquid crystal alignment film.
  • a coating film was similarly formed on a glass substrate having a columnar spacer having a height of 4 ⁇ m on which no electrode was formed as a counter substrate, and an orientation treatment was performed.
  • the two substrates are combined as a set, a sealant is printed on the substrate, and the other substrate is bonded so that the liquid crystal alignment film faces and the alignment direction is 0 °, and then the sealant is added.
  • An empty cell was produced by curing.
  • Liquid crystal MLC-2041 manufactured by Merck & Co., Inc.
  • VT characteristic voltage-transmittance characteristic
  • the mixture was stirred at room temperature for 24 hours to obtain a polyamic acid (PAA-2) solution.
  • PAA-2 polyamic acid
  • the viscosity of this polyamic acid solution at a temperature of 25 ° C. was 178 mPa ⁇ s.
  • Example 1 In a 20 ml sample tube containing a stir bar, 5.01 g of the polyamic acid solution (PAA-1) obtained in Synthesis Example 1 was taken, 3.00 g of NMP, 2.01 g of BCS, and 0 of 1-butylimidazole. 0.04 g was added and stirred with a magnetic stirrer for 30 minutes to obtain a liquid crystal aligning agent (A-1). (Example 2) In a 20-ml sample tube containing a stir bar, 5.02 g of the polyamic acid solution (PAA-1) obtained in Synthesis Example 1 was taken, 3.01 g of NMP, 2.04 g of BCS, and 0 of 1-allylimidazole.
  • Example 3 In a 20 ml sample tube containing a stir bar, 4.02 g of the polyamic acid solution (PAA-4) obtained in Synthesis Example 4 was taken, 4.00 g of NMP, 2.01 g of BCS, and 0 of 1-butylimidazole. 0.04 g was added and stirred with a magnetic stirrer for 30 minutes to obtain a liquid crystal aligning agent (A-3).
  • Example 4 In a 20 ml sample tube containing a stir bar, 5.02 g of the polyamic acid solution (PAA-1) obtained in Synthesis Example 1 was taken, 3.01 g of NMP, 2.00 g of BCS, and 0 of 2-butylimidazole. 0.04 g was added and stirred with a magnetic stirrer for 30 minutes to obtain a liquid crystal aligning agent (A-4).
  • PAA-1 polyamic acid solution obtained in Synthesis Example 1
  • Example 5 After the liquid crystal aligning agent (A-1) obtained in Example 1 was filtered through a 1.0 ⁇ m filter, an ITO electrode having a film thickness of 50 nm as a first layer was insulated on a glass substrate as a second layer. Glass on which an FFS driving electrode having a comb-like ITO electrode (electrode width: 3 ⁇ m, electrode interval: 6 ⁇ m, electrode height: 50 nm) is formed as a third layer, silicon nitride having a thickness of 500 nm as a film The substrate was applied by spin coating. After drying on an 80 ° C. hot plate for 5 minutes, baking was performed in a hot air circulation oven at 230 ° C.
  • a coating film having a thickness of 100 nm.
  • the surface of the coating film was irradiated with 1500 mJ / cm 2 of ultraviolet light having a wavelength of 254 nm through a polarizing plate to obtain a substrate with a liquid crystal alignment film. Further, a coating film was similarly formed on a glass substrate having a columnar spacer having a height of 4 ⁇ m on which no electrode was formed as a counter substrate, and an orientation treatment was performed.
  • the two substrates are combined as a set, a sealant is printed on the substrate, and the other substrate is bonded so that the liquid crystal alignment film faces and the alignment direction is 0 °, and then the sealant is added.
  • An empty cell was produced by curing.
  • Liquid crystal MLC-2041 manufactured by Merck & Co., Inc.
  • ⁇ V 50 was 2 mV.
  • Example 6 An FFS drive liquid crystal cell was produced in the same manner as in Example 5 except that the liquid crystal aligning agent (A-2) obtained in Example 2 was used. As a result of evaluating the AC drive burn-in characteristics of this FFS drive liquid crystal cell, ⁇ V 50 was 2 mV.
  • Example 7 An FFS drive liquid crystal cell was produced in the same manner as in Example 5 except that the liquid crystal aligning agent (A-3) obtained in Example 3 was used. As a result of evaluating the AC drive burn-in characteristics of this FFS drive liquid crystal cell, ⁇ V 50 was 0 mV.
  • Example 8 An FFS drive liquid crystal cell was produced in the same manner as in Example 5 except that the liquid crystal aligning agent (A-4) obtained in Example 4 was used. As a result of evaluating the AC drive burn-in characteristics of this FFS drive liquid crystal cell, ⁇ V 50 was 2 mV.
  • Comparative Example 5 An FFS drive liquid crystal cell was produced in the same manner as in Example 5 except that the liquid crystal aligning agent (B-1) obtained in Comparative Example 1 was used. As a result of evaluating the AC drive burn-in characteristics of this FFS drive liquid crystal cell, ⁇ V 50 was 4 mV.
  • Example 9 Into a 20 ml sample tube containing a stir bar, 5.00 g of the polyamic acid solution (PAA-2) obtained in Synthesis Example 2 was taken, 3.02 g of NMP, 2.04 g of BCS, and 0 of 1-butylimidazole. 0.04 g was added and stirred with a magnetic stirrer for 30 minutes to obtain a liquid crystal aligning agent (A-5). (Example 10) In a 20 ml sample tube containing a stir bar, 5.02 g of the polyamic acid solution (PAA-3) obtained in Synthesis Example 3 was taken, 3.00 g of NMP, 2.03 g of BCS, and 0 of 1-butylimidazole.
  • Example 11 In a 20 ml sample tube containing a stir bar, 4.00 g of the polyamic acid solution (PAA-5) obtained in Synthesis Example 5 was taken, 2.01 g of NMP, 2.00 g of BCS, and 0 of 1-butylimidazole. 0.04 g was added and stirred with a magnetic stirrer for 30 minutes to obtain a liquid crystal aligning agent (A-7).
  • Example 12 An FFS drive liquid crystal cell was produced in the same manner as in Example 5 except that the liquid crystal aligning agent (A-5) obtained in Example 9 was used. As a result of evaluating the AC drive burn-in characteristics of this FFS drive liquid crystal cell, ⁇ V 50 was 2 mV.
  • Example 13 An FFS drive liquid crystal cell was produced in the same manner as in Example 5 except that the liquid crystal aligning agent (A-6) obtained in Example 10 was used. As a result of evaluating the AC drive burn-in characteristics of this FFS drive liquid crystal cell, ⁇ V 50 was 2 mV.
  • Example 14 An FFS driving liquid crystal cell was produced in the same manner as in Example 5 except that the liquid crystal aligning agent (A-7) obtained in Example 11 was used and ultraviolet rays with a wavelength of 254 nm were irradiated at 500 mJ / cm 2 . As a result of evaluating the AC drive burn-in characteristics of this FFS drive liquid crystal cell, ⁇ V 50 was 1 mV.
  • the liquid crystal alignment film obtained from the liquid crystal alignment agent of the present invention is particularly useful as a liquid crystal alignment film for an IPS drive type or FFS drive type liquid crystal display device or a liquid crystal television.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 IPS駆動方式やFFS駆動方式の液晶表示素子において発生する交流駆動による残像を抑制することができる、光配向処理法用に適した液晶配向剤、及び該液晶配向剤から得られる液晶配向膜を提供する。 シクロブタン骨格を有する特定構造のテトラカルボン酸二無水物とp-フェニレンジアミンに代表される直線性の高いジアミン化合物を有するジアミン化合物との重縮合反応から得られるポリアミック酸((A)成分)と、炭素数3~10のアルキル基、又はアルケニル基を有するイミダゾール誘導体((B)成分)と、有機溶剤とを含有する光配向処理法用の液晶配向剤。

Description

光配向処理法用の液晶配向剤、及びそれを用いた液晶配向膜
 本発明は、液晶配向膜を作製するための液晶配向剤、この液晶配向剤から得られる液晶配向膜に関する。さらに詳しくは、ラビング処理に代わり、光配向処理法、すなわち、偏光された紫外線の照射によって液晶配向能を付与する光配向処理法用に適した液晶配向剤、及びかかる液晶配向剤から得られる液晶配向膜に関する。
 液晶テレビ、液晶ディスプレイなどに用いられる液晶表示素子は、通常、液晶の配列状態を制御するための液晶配向膜が素子内に設けられている。
 現在、工業的に最も普及している方法によれば、この液晶配向膜は、電極基板上に形成されたポリアミック酸及び/又はこれをイミド化したポリイミドからなる膜の表面を、綿、ナイロン、ポリエステル等の布で一方向に擦る、いわゆるラビング処理を行うことで作製されている。
 液晶配向膜の配向過程において膜面をラビング処理する方法は、簡便で生産性に優れた工業的に有用な方法である。しかし、液晶表示素子の高性能化、高精細化、大型化への要求は益々高まり、ラビング処理によって発生する配向膜の表面の傷、発塵、機械的な力や静電気による影響、さらには、配向処理面内の不均一性など種々の問題が明らかとなってきている。
 ラビング処理に代わる方法としては、偏光された放射線を照射することにより、液晶配向能を付与する光配向法が知られている。光配向法による液晶配向処理は、光異性化反応を利用したもの、光架橋反応を利用したもの、光分解反応を利用したものなどが提案されている(非特許文献1参照)。
 ポリイミドを光配向用液晶配向膜に用いた場合、他に比べて高い耐熱性を有することからその有用性が期待されている。特許文献1では、主鎖にシクロブタン環などの脂環構造を有するポリイミド膜を光配向法に用いることが提案されている。
 上記のような光配向法は、ラビングレス配向処理方法として、工業的にも簡便な製造プロセスで生産できる利点があるだけでなく、IPS駆動方式やフリンジフィールドスイッチング(以下、FFS)駆動方式の液晶表示素子において、上記の光配向法で得られる液晶配向膜を用いることで、ラビング処理法で得られる液晶配向膜に比べて、液晶表示素子のコントラストや視野角特性の向上が期待できるなど液晶表示素子の性能を向上させることが可能であるため、有望な液晶配向処理方法として注目されている。
 IPS駆動方式やFFS駆動方式の液晶表示素子に用いられる液晶配向膜としては、優れた液晶配向性や電気特性などの基本特性に加えて、IPS駆動方式やFFS駆動方式の液晶表示素子において発生する交流駆動による残像の抑制が必要とされる。しかしながら、光配向法で得られる液晶配向膜は、液晶の配向規制力、及びその安定性が不十分であり、上記特性を満足することは困難であった。
日本特開平9-297313号公報
「液晶光配向膜」木戸脇、市村 機能材料 1997年11月号 Vol.17 No.11 13-22ページ
 本発明は、IPS駆動方式やFFS駆動方式の液晶表示素子において発生する交流駆動による残像を抑制することができる光配向処理法用に適した液晶配向剤、及び該液晶配向剤から得られる液晶配向剤を提供することを目的とする。
 本発明者は、上記の目的を達成するため、鋭意研究を進めたところ、シクロブタン骨格を有する特定構造のテトラカルボン酸二無水物とp-フェニレンジアミンに代表される直線性の高いジアミンを有するジアミン化合物との重縮合反応から得られるポリアミック酸と、炭素数3~10のアルキル基、又はアルケニル基を有するイミダゾール誘導体とを含有せしめた液晶配向剤により上記の目的を達成し得ることを見出した。
 かくして、本発明は、下記を要旨とするものである。
1.下記の(A)成分、(B)成分及び有機溶媒を含有することを特徴とする液晶配向剤。
(A)成分:下記式(1)で表されるテトラカルボン酸二無水物を全テトラカルボン酸二無水物の60モル%以上含むテトラカルボン酸二無水物と、下記式(2)で表されるジアミン化合物及び(3)で表されるジアミン化合物からなる群から選ばれる少なくとも1種類のジアミン化合物を全ジアミン化合物の60モル%以上含むジアミン化合物との重縮合反応から得られるポリアミック酸。
Figure JPOXMLDOC01-appb-C000005
(式(1)において、R、R、R、及びRはそれぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、又はフェニル基であり、同一でも異なってもよい。)
Figure JPOXMLDOC01-appb-C000006
(式(3)において、Aは単結合、エステル結合、アミド結合、チオエステル結合、又は炭素数2~10の2価の有機基である。)
(B)成分:下記式(B-1)~(B-4)からなる群から選ばれる少なくとも1種類のイミダゾール誘導体。
Figure JPOXMLDOC01-appb-C000007
(式(B-1)~(B-4)において、R、R、R、及びRは、それぞれ独立して炭素数3~10のアルキル基、又はアルケニル基である。)
2.(A)成分の含有量が1~10質量%である上記1に記載の液晶配向剤。
3.(B)成分の含有量が、(A)成分100質量部に対して、0.1~50質量部である上記1又は2に記載の液晶配向剤。
4.(A)成分を得るための上記式(1)で表されるテトラカルボン酸二無水物が、1,2,3,4-シクロブタンテトラカルボン酸二無水物及び1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物からなる群から選ばれる少なくとも1種類のテトラカルボン酸二無水物である上記3のいずれかに記載の液晶配向剤。
5.(A)成分を得るためのジアミン化合物が、式(2)で表されるジアミン化合物を全ジアミン化合物の60モル%以上含むジアミン化合物である上記1~4のいずれかに記載の液晶配向剤。
6.(B)成分のイミダゾール誘導体が、1-プロピルイミダゾール、1-アリルイミダゾール、1-ブチルイミダゾール、2-プロピルイミダゾール、及び2-ブチルイミダゾールからなる群から選ばれる少なくとも1種類である上記1~5に記載の液晶配向剤。
7.(B)成分のイミダゾール誘導体が、1-アリルイミダゾール、1-プロピルイミダゾール、及び1-ブチルイミダゾールからなる群から選ばれる少なくとも1種類である上記1~5に記載の液晶配向剤。
8.(A)成分を得るためのジアミン化合物が、さらに下記式(DA-1)で表されるジアミン化合物を含む上記1~7に記載の液晶配向剤。
Figure JPOXMLDOC01-appb-C000008
9.上記1~8のいずれかに記載の液晶配向剤を塗布、焼成して得られる液晶配向膜。
10.上記1~8のいずれかに記載の液晶配向剤を塗布、焼成し、さらに偏光された放射線を照射して得られる液晶配向膜。
 本発明の液晶配向膜は、IPS駆動方式やFFS駆動方式の液晶表示素子において発生する交流駆動による残像を低減し、残像特性に優れたIPS駆動方式やFFS駆動方式の液晶表示素子が得られる。
 本発明の液晶配向剤から得られる液晶配向膜が、何故に本発明の課題が解決されるかについては、必ずしも明らかではないが、ほぼ次のように考えられる。
 主鎖にシクロブタン環を有するポリイミドは、偏光された放射線を照射することにより、分子鎖の長軸方向が偏光方向と平行な分子鎖のみに下記式(i)の開環反応が進行し、低分子量化する。一方、分子鎖の長軸方向が偏光方向と垂直な分子鎖においては、下記式(i)の反応は進行せず、高分子量のままで膜中に残存する。これにより、偏光された放射線を照射されたポリイミド膜は、偏光方向に対して垂直な方向に異方性が発現し、液晶配向能が付与される。下記式(i)の反応は、イミド環を形成している場合に最も効率よく進行する。従って、焼成により得られた膜のイミド化率が低い場合には、下記式(i)の反応が僅かしか進行せず、異方性が小さい膜となってしまう。一方、焼成により得られた膜のイミド化率が高い場合には、下記式(i)の反応が充分に進行し、異方性が大きい膜が得られる。IPS駆動方式やFFS駆動方式の液晶表示素子においては、液晶配向膜の異方性が大きいほど、液晶配向性が高く、交流駆動による残像を抑制することができる。
Figure JPOXMLDOC01-appb-C000009
 本発明の液晶配向剤に用いられるイミダゾール誘導体は、ポリアミック酸と共存させることにより、ポリアミック酸の加熱によるイミド化反応を促進することができる。よって、本発明の液晶配向剤を塗布、焼成して得られるポリイミド膜は、イミド化率が高く、偏光された放射線を照射することで、異方性の大きい膜が得られ、液晶配向性の高い液晶配向膜となる。
 しかしながら、ポリアミック酸の加熱によるイミド化を促進する効果が高い添加剤であっても、その添加剤が膜中に残存した場合には、液晶の配向を阻害し、液晶配向膜の性能を低下させてしまう。これに対して、本発明の液晶配向剤に用いられるイミダゾール誘導体は、ポリアミック酸の加熱によるイミド化を促進する効果が高いだけでなく、焼成時に蒸発、又は昇華しやすい構造を有するため、焼成後、膜中に残存せず、液晶配向性を低下させることがない。
 以上のことから、本発明の液晶配向剤から得られる液晶配向膜は、高い液晶配向性を有し、IPS駆動方式やFFS駆動方式の液晶表示素子において発生する交流駆動による残像を抑制することができると考えられる。
<(A)成分>
 本発明の液晶配向剤に含有する(A)成分は、下記式(1)で表されるテトラカルボン酸二無水物を全テトラカルボン酸二無水物の60モル%以上含むテトラカルボン酸二無水物と、下記式(2)及び(3)で表されるジアミン化合物からなる群から選ばれる少なくとも1種類のジアミン化合物を全ジアミン化合物の60モル%以上含むジアミン化合物との重縮合反応から得られるポリアミック酸である。
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011

 式(1)において、R、R、R、及びRは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数3~6のアルキニル基、又はフェニル基である。
 液晶配向性の観点から、R、R、R,及びRは、水素原子、ハロゲン原子、メチル基、又はエチル基が好ましく、水素原子、又はメチル基がより好ましい。
 上記式(1)で表されるシクロブタン環を有するテトラカルボン酸二無水物の具体例としては、下記式(1-1)~(1-5)が挙げられる。液晶配向性の観点から(1-1)又は(1-2)がより好ましく、(1-2)がさらに好ましい。
Figure JPOXMLDOC01-appb-C000012

式(3)で表されるジアミン化合物において、Aは単結合、エステル結合、アミド結合、チオエステル結合、又は炭素数2~10の2価の有機基である。
 Aにおいて、エステル結合としては、-C(O)O-、又は-OC(O)-で表される。アミド結合としては、-C(O)NH-、又は、-C(O)NR-、-NHC(O)-、-NRC(O)-で表される構造を示すことができる。Rは炭素数1~10のアルキル基、アルケニル基、アルキニル基、アリール基、若しくはこれらの組み合わせである。
 上記アルキル基の具体例としては、メチル基、エチル基、プロピル基、ブチル基、t-ブチル基、ヘキシル基、オクチル基、シクロペンチル基、シクロヘキシル基、ビシクロヘキシル基などが挙げられる。アルケニル基としては、上記のアルキル基に存在する1つ以上のCH-CH構造を、C=C構造に置き換えたものが挙げられ、より具体的には、ビニル基、アリル基、1-プロペニル基、イソプロペニル基、2-ブテニル基、1,3-ブタジエニル基、2-ペンテニル基、2-ヘキセニル基、シクロプロペニル基、シクロペンテニル基、シクロヘキセニル基などが挙げられる。アルキニル基としては、前記のアルキル基に存在する1つ以上のCH-CH構造をC≡C構造に置き換えたものが挙げられ、より具体的には、エチニル基、1-プロピニル基、2-プロピニル基などが挙げられる。アリール基としては、例えばフェニル基が挙げられる。
 チオエステル結合としては-C(O)S-、又は-SC(O)-で表される構造を示すことができる。
 Aが炭素数2~10の有機基である場合、下記式(4)の構造で表すことができる。
Figure JPOXMLDOC01-appb-C000013
 式(4)における、A4、A、Aはそれぞれ独立して、単結合、-O-、-S-、-NR11-、エステル結合、アミド結合、チオエステル結合、ウレア結合、カーボネート結合、又はカルバメート結合である。R11は水素原子、炭素数1~10のアルキル基、アルケニル基、アルキニル基、又はアリール基、若しくはこれらの組み合わせであり、前記のアルキル基、アルケニル基、アルキニル基、アリール基と同様の例を挙げることができる。
 A、A、Aにおける、エステル結合、アミド結合、及び、チオエステル結合については、前記のエステル結合、アミド結合、及び、チオエステル結合と同様の構造を示すことができる。
 ウレア結合としては、-NH-C(O)NH-、又は-NR-C(O)NR-で表される構造を示すことができる。Rは炭素数1~10のアルキル基、アルケニル基、アルキニル基、又はアリール基、若しくはこれらの組み合わせであり、前記のアルキル基、アルケニル基、アルキニル基、アリール基と同様の例を挙げることができる。
 カーボネート結合としては、-O-C(O)-O-で表される構造を示すことができる。
 カルバメート結合としては、-NH-C(O)-O-、-O-C(O)-NH-、-NR-C(O)-O-、又は-O-C(O)-NR-で表される構造を示すことができる。Rは炭素数1~10のアルキル基、アルケニル基、アルキニル基、又はアリール基、若しくはこれらの組み合わせであり、前記のアルキル基、アルケニル基、アルキニル基、アリール基と同様の例を挙げることができる。
 式(4)中のR及びR10は、それぞれ独立して単結合、炭素数1~10のアルキレン基、アルケニレン基、アルキニレン基、又はアリーレン基、若しくはこれらを組み合わせた基から選ばれる構造である。RとR10の何れかが単結合の場合、R又はR10は炭素数2~10のアルキレン基、アルケニレン基、アルキニレン基、又はアリーレン基、若しくはこれらを組み合わせた基から選ばれる構造である。
 上記アルキレン基としては、前記アルキル基から水素原子を1つ除いた構造が挙げられる。より具体的には、メチレン基、1,1-エチレン基、1,2-エチレン基、1,2-プロピレン基、1,3-プロピレン基、1,4-ブチレン基、1,2-ブチレン基、1,2-ペンチレン基、1,2-へキシレン基、2,3-ブチレン基、2,4-ペンチレン基、1,2-シクロプロピレン基、1,2-シクロブチレン基、1,3-シクロブチレン基、1,2-シクロペンチレン基、1,2-シクロへキシレン基などが挙げられる。
 アルケニレン基としては、前記アルケニル基から水素原子を1つ除いた構造が挙げられる。より具体的には、1,1-エテニレン基、1,2-エテニレン基、1,2-エテニレンメチレン基、1-メチル-1,2-エテニレン基、1,2-エテニレン-1,1-エチレン基、1,2-エテニレン-1,2-エチレン基、1,2-エテニレン-1,2-プロピレン基、1,2-エテニレン-1,3-プロピレン基、1,2-エテニレン-1,4-ブチレン基、1,2-エテニレン-1,2-ブチレン基などが挙げられる。
 アルキニレン基としては、前記アルキニル基から水素原子を1つ除いた構造が挙げられる。より具体的には、エチニレン基、エチニレンメチレン基、エチニレン-1,1-エチレン基、エチニレン-1,2-エチレン基、エチニレン-1,2-プロピレン基、エチニレン-1,3-プロピレン基、エチニレン-1,4-ブチレン基、エチニレン-1,2-ブチレン基などが挙げられる。
 アリーレン基としては、前記アリール基から水素原子を1つ除いた構造が挙げられる。より具体的には、1,2-フェニレン基、1,3-フェニレン基、1,4-フェニレン基などが挙げられる。
 直線性が高い構造や剛直な構造を有するジアミンを用いた場合、良好な液晶配向性を有する液晶配向膜が得られるため、Aの構造としては、単結合、又は下記式(A1-1)~(A1-25)の構造がより好ましい。
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
 ジアミン化合物の構造が剛直な構造であるほど、液晶配向性に優れた液晶配向膜が得られるため、本発明のポリアミック酸を得るためのジアミン化合物としては、上記式(2)で表されるp-フェニレンジアミンが特に好ましい。
 上記式(2)、(3)で表されるジアミン化合物の含有量は、全ジアミン中、60モル%~100モル%が好ましい。上記式(2)、(3)で表されるジアミンの比率が高いほど、良好な液晶配向性を有する液晶配向膜が得られるため、80モル%~100モル%がより好ましく、90モル%~100モル%がさらに好ましい。
 本発明の(A)成分であるポリアミック酸を得るためのテトラカルボン酸二無水物は、式(1)で表されるテトラカルボン酸二無水物以外に下記式(6)で表されるテトラカルボン酸二無水物を含有することができる。
Figure JPOXMLDOC01-appb-C000020
 上記式(6)において、Xは4価の有機基であり、その構造は特に限定されない。具体的例を挙げるならば、下記記式(X-5)~(X-46)の構造が挙げられる。化合物の入手性の観点から、Xの構造は、X-5、X-6、X-8、X-16、X-17、X-19、X-21、X-25、X-26,X-27、X-28、X-32、X-46が挙げられる。得られる液晶配向膜の透明性が向上するため、脂肪族及び脂肪族環構造を有するテトラカルボン酸二無水物を用いることが好ましく、Xの構造としては、X-8、X-16、X-19、X-25、又はX-46がより好ましい。また、直流電圧により蓄積した残留電荷の緩和が早い液晶配向膜を得られるという観点から芳香族環構造を有するテトラカルボン酸二無水物を用いることが好ましく、Xの構造としては、X-26,X-27、X-28、X-32、X-35、又はX-37がより好ましい。
 上記式(6)で表されるテトラカルボン酸二無水物の使用量が多すぎると、光配向法によって得られる液晶配向膜の液晶配向性を低下させることがある。よって、上記式(6)で表されるテトラカルボン酸二無水物は、全テトラカルボン酸二無水物に対して0~40mol%が好ましく、0~20mol%がさらに好ましい。
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
 本発明の(A)成分のポリアミック酸をえるためのジアミン化合物は、式(2)及び(3)で表されるジアミン化合物以外に下記式(7)で表されるジアミン化合物を含有していでもよい。式中Yは2価の有機基であり、その構造は特に限定されない。Yの具体例を挙げるならば、下記記式(Y-1)~(Y-68)の構造が挙げられる。
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
 なかでも、(A)成分の有機溶剤に対する溶解性の向上が期待できるため、式(2)及び式(3)以外のジアミン化合物としては、Y-8、Y-20、Y-21、Y-22、Y-27、Y-28、Y-66、Y-67、又はY-68がより好ましく、Y-66が特に好ましい。
 上記式(7)で表されるジアミン化合物の使用量が多すぎると、液晶配向膜の液晶配向性を低下させるため、全テトラカルボン酸二無水物に対して0~40モル%が好ましく、0~20モル%がさらに好ましい。
<(B)成分>
 本発明の(B)成分は、下記式(B-1)~(B-4)からなる群から選ばれる少なくとも1種類のイミダゾール誘導体である。
Figure JPOXMLDOC01-appb-C000033
 式中、R~Rは、それぞれ独立して炭素数3~10のアルキル基、又は炭素数3~10のアルケニル基である。
 炭素数3~10のアルキル基としては、プロピル基、ブチル基、t-ブチル基、ヘキシル基、オクチル基、ノニル基、デシル基などが挙げられる。アルケニル基としては、上記のアルキル基に存在する1つ以上のCH-CH構造を、C=C構造に置き換えたものが挙げられ、より具体的には、アリル基、1-プロペニル基、イソプロペニル基、2-ブテニル基、1,3-ブタジエニル基、2-ペンテニル基、2-ヘキセニル基などが挙げられる。
 上記のイミダゾール誘導体のアルキル基、又はアルケニル基の鎖長が長い場合、液晶配向性を阻害し、得られる液晶配向膜の液晶配向性を低下させる可能性がある。そのため、炭素数3~6がより好ましく、プロピル基、ブチル基、又はアリル基が特に好ましい。
 上記のイミダゾール誘導体の具体的な構造としては、1-プロピルイミダゾール、1-アリルイミダゾール、1-ブチルイミダゾール、2-プロピルイミダゾール、又は2-ブチルイミダゾールが挙げられ、1-プロピルイミダゾール、1-アリルイミダゾール、又は1-ブチルイミダゾールがより好ましく、1-ブチルイミダゾールが特に好ましい。
(B)成分の含有量は、多すぎると、得られる液晶配向膜の液晶配向性を阻害することがあり、少なすぎると本発明の効果が充分に得られないことがある。そのため、(B)成分の含有量は、(A)成分100質量部に対して、0.1~50質量部が好ましく、0.1~20質量部がより好ましく、0.1~10質量部が特に好ましい。
<ポリアミック酸の製造方法>
 本発明の液晶配向剤に用いられるポリアミック酸は、テトラカルボン酸二無水物とジアミンとの反応によって得ることができる。
 具体的には、テトラカルボン酸二無水物とジアミンとを有機溶媒の存在下で-20℃~150℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1~12時間反応させることによって合成できる。
 上記の反応に用いる有機溶媒は、モノマーおよびポリマーの溶解性からN,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、又はγ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。ポリマーの濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという点から、1~30質量%が好ましく、5~20質量%がより好ましい。
 上記のようにして得られたポリアミック酸は、反応溶液をよく撹拌させながら貧溶媒に注入することにより析出させて回収することができる。また、析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥することで精製されたポリアミック酸の粉末を得ることができる。貧溶媒は、特に限定されないが、水、メタノール、エタノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられる。
<液晶配向剤>
 本発明の液晶配向剤は、(A)成分と(B)成分が有機溶媒中に溶解された溶液の形態を有する。(A)成分であるポリアミック酸の分子量は、重量平均分子量で2,000~500,000が好ましく、より好ましくは5,000~300,000であり、さらに好ましくは、10,000~100,000である。また、数平均分子量は、好ましくは、1,000~250,000であり、より好ましくは、2,500~150,000であり、さらに好ましくは、5,000~50,000である。
 本発明の液晶配向剤中の(A)成分であるポリアミック酸の含有量は、形成させようとする塗膜の厚みの設定によって適宜変更することができるが、均一で欠陥のない塗膜を形成させるという点から1質量%以上が好ましく、3質量%以上がより好ましく、溶液の保存安定性の点からは10質量%以下が好ましく、8質量%以下がより好ましい。
 本発明の液晶配向剤に含有される有機溶媒は、(A)成分と(B)成分が均一に溶解するものであれば特に限定されない。その具体例を挙げるならば、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-ビニル-2-ピロリドン、ジメチルスルホキシド、ジメチルスルホン、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、3-メトキシ-N,N-ジメチルプロパンアミド等を挙げることができる。これらは1種又は2種以上を混合して用いてもよい。また、単独ではポリマー成分を均一に溶解できない溶媒であっても、ポリマーが析出しない範囲であれば、上記の有機溶媒に混合してもよい。
 本発明の液晶配向剤は、ポリマー成分を溶解させるための有機溶媒の他に、液晶配向剤を基板へ塗布する際の塗膜均一性を向上させるための溶媒を含有してもよい。かかる溶媒は、一般的に上記有機溶媒よりも低表面張力の溶媒が用いられる。その具体例を挙げるならば、エチルセロソルブ、ブチルセロソルブ、エチルカルビトール、ブチルカルビトール、エチルカルビトールアセテート、エチレングリコール、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ブチルセロソルブアセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステル等が挙げられる。これらの溶媒は2種類上を併用してもよい。
 本発明の液晶配向剤には、上記の他、本発明の効果が損なわれない範囲であれば、(A)成分である重合体以外のポリマー、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的の誘電体若しくは導電物質、液晶配向膜と基板との密着性を向上させる目的のシランカップリング剤、液晶配向膜にした際の膜の硬度や緻密度を高める目的の架橋性化合物、さらには塗膜を焼成する際にポリアミック酸のイミド化を効率よく進行させる目的のイミド化促進剤等を添加しても良い。
<液晶配向膜>
 本発明の液晶配向膜は、上記のようにして得られた液晶配向剤を基板に塗布し、乾燥、焼成して得られた塗膜であり、この塗膜面をほぼ直線に偏光した放射線を照射することで得られる。
 本発明の液晶配向剤を塗布する基板としては透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板、アクリル基板やポリカーボネート基板等のプラスチック基板等を用いることができ、液晶駆動のためのITO電極等が形成された基板を用いることがプロセスの簡素化の点から好ましい。また、反射型の液晶表示素子では片側の基板のみにならばシリコンウエハー等の不透明な物でも使用でき、この場合の電極はアルミニウム等の光を反射する材料も使用できる。本発明の液晶配向剤の塗布方法としては、スピンコート法、印刷法、インクジェット法などが挙げられる。
 本発明の液晶配向剤を塗布した後の乾燥、焼成工程は、任意の温度と時間を選択することができる。通常は、含有される有機溶媒を十分に除去し、(A)成分であるポリアミック酸をイミド化するために50℃~120℃で1分~10分乾燥させ、その後150℃~300℃で5分~120分焼成される。焼成後の塗膜の厚みは、特に限定されないが、薄すぎると液晶表示素子の信頼性が低下する場合があるので、5~300nm、好ましくは10~200nmである。
 本発明の液晶配向剤は光配向処理法で使用する場合に特に有用である。
 光配向処理法の具体例としては、前記塗膜表面に、一定方向に偏光した放射線を照射し、場合によってはさらに150~250℃の温度で加熱処理を行い、液晶配向能を付与する方法が挙げられる。放射線の波長としては、100nm~800nmの波長を有する紫外線又は可視光線を用いることができる。このうち、100nm~400nmの波長を有する紫外線が好ましく、200nm~400nmの波長を有するものが特に好ましい。また、液晶配向性を改善するために、塗膜基板を50~250℃で加熱しつつ、放射線を照射してもよい。前記放射線の照射量は、1~10,000mJ/cmの範囲にあることが好ましく、100~5,000mJ/cmの範囲にあることが特に好ましい。
 以上の様にして作製した液晶配向膜は、液晶分子を一定の方向に安定して配向させることができる。
 以下に実施例を挙げ、本発明を更に詳しく説明するが、本発明はこれらに限定されるものではない。
 以下に、本実施例及び比較例で使用した化合物の略号、及び各特性の測定方法は、以下のとおりである。
DA-1:(下記式(DA-1))
Figure JPOXMLDOC01-appb-C000034
NMP:N-メチル-2-ピロリドン
BCS:ブチルセロソルブ
[粘度]
 合成例において、ポリアミック酸エステル及びポリアミック酸溶液の粘度は、E型粘度計TVE-22H(東機産業社製)を用い、サンプル量1.1mL、コーンロータTE-1(1°34’、R24)、温度25℃で測定した。
[分子量]
 また、ポリアミック酸エステルの分子量はGPC(常温ゲル浸透クロマトグラフィー)装置によって測定し、ポリエチレングリコール、ポリエチレンオキシド換算値として数平均分子量(以下、Mnとも言う。)と重量平均分子量(以下、Mwとも言う。)を算出した。
GPC装置:Shodex社製(GPC-101)
カラム:Shodex社製(KD803、KD805の直列)
カラム温度:50℃
溶離液:N,N-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・HO)が30mmol/L、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
流速:1.0ml/分
 検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(重量平均分子量(Mw) 約900,000、150,000、100,000、30,000)、及び、ポリマーラボラトリー社製 ポリエチレングリコール(ピークトップ分子量(Mp)約12,000、4,000、1,000)。測定は、ピークが重なるのを避けるため、900,000、100,000、12,000、1,000の4種類を混合したサンプル、及び150,000、30,000、4,000の3種類を混合したサンプルの2サンプルを別々に測定。
[FFS駆動液晶セルの交流駆動焼き付き]
 ガラス基板上に、第1層目に電極として形状の膜厚50nmのITO電極を、第2層目に絶縁膜として形状の膜厚500nmの窒化珪素を、第3層目に電極として櫛歯形状のITO電極(電極幅:3μm、電極間隔:6μm、電極高さ:50nm)を有するフリンジフィールドスィッチング(Fringe Field Switching:以下、FFSという)駆動用電極が形成されているガラス基板に、スピンコート塗布にて液晶配向剤を塗布した。80℃のホットプレート上で5分間乾燥させた後、250℃の熱風循環式オーブンで60分間焼成を行い、膜厚100nmの塗膜を形成させた。この塗膜面に偏光板を介して、波長254nmの紫外線を照射し、液晶配向膜付き基板を得た。また、対向基板として電極が形成されていない高さ4μmの柱状スペーサーを有するガラス基板にも、同様に塗膜を形成させ、配向処理を施した。
 上記、2枚の基板を一組とし、基板上にシール剤を印刷し、もう1枚の基板を、液晶配向膜面が向き合い配向方向が0°になるようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-2041(メルク株式会社製)を注入し、注入口を封止して、FFS駆動液晶セルを得た。
 このFFS駆動液晶セルの58℃の温度下でのV-T特性(電圧-透過率特性)を測定した後、±4V/120Hzの矩形波を4時間印加した。4時間後、電圧を切り、58℃の温度下で60分間放置した後、再度V-T特性を測定し、矩形波印加前後の透過率50%となる電圧の差(ΔV50)を算出した。
(合成例1)
 撹拌装置付き及び窒素導入管付きの3000mL四つ口フラスコに、NMPを1378g加えて、1,2,3,4-シクロブタンテトラカルボン酸二無水物を98.05g(0.502mol)添加した。このテトラカルボン酸二無水物のスラリー液を撹拌しながら、p-フェニレンジアミンを52.18g(0.483mol)添加し、更に固形分濃度が8質量%になるようにNMPを加え、室温で24時間撹拌してポリアミック酸(PAA-1)の溶液を得た。このポリアミック酸溶液の温度25℃における粘度は182mPa・sであった。また、このポリアミック酸の分子量はMn=18712、Mw=41702であった。
(合成例2)
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、p-フェニレンジアミンを11.68g(0.108mol)及び4,4-ジアミノジフェニルエーテルを2.41g(0.0120mol)取り、NMPを340g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら1,2,3,4-シクロブタンテトラカルボン酸二無水物を22.82g(0.116mol)添加し、更に固形分濃度が8質量%になるようにNMPを加え、室温で24時間撹拌してポリアミック酸(PAA-2)の溶液を得た。このポリアミック酸溶液の温度25℃における粘度は178mPa・sであった。また、このポリアミック酸の分子量はMn=14209、Mw=37227であった。
(合成例3)
 撹拌装置付き及び窒素導入管付きの500mL四つ口フラスコに、p-フェニレンジアミンを11.67g(0.108mol)及び4,4-ジアミノジフェニルエーテルを2.40g(0.0119mol)取り、NMPを341g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら1,2,3,4-シクロブタンテトラカルボン酸二無水物を21.17g(0.108mol)添加し、NMPを38g加えて、室温で2時間撹拌した。次に、ピロメリット酸二無水物を1.83g(8.39mmol)加えて、更に固形分濃度が8質量%になるようにNMPを加え、室温で24時間撹拌してポリアミック酸(PAA-3)の溶液を得た。このポリアミック酸溶液の温度25℃における粘度は168mPa・sであった。また、このポリアミック酸の分子量はMn=15454、Mw=41309であった。
(合成例4)
 撹拌装置付き及び窒素導入管付きの1000mL四つ口フラスコに、p-フェニレンジアミンを19.46g(0.180mmol)及びDA-1を4.47g(0.0188mol)取り、NMPを502g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら1,2,3,4-シクロブタンテトラカルボン酸二無水物を38.05g(0.194mol)添加し、更に固形分濃度が10質量%になるようにNMPを加え、室温で24時間撹拌してポリアミック酸(PAA-4)の溶液を得た。このポリアミック酸溶液の温度25℃における粘度は462mPa・sであった。また、このポリアミック酸の分子量はMn=16976、Mw=43749であった。
(合成例5)
 撹拌装置付き及び窒素導入管付きの1000mL四つ口フラスコに、p-フェニレンジアミンを45.96g(0.425mmol)及びDA-1を17.80g(0.075mol)取り、NMPを1390g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物を107.83g(0.481mol)添加し、更に固形分濃度が10質量%になるようにNMPを加え、室温で24時間撹拌してポリアミック酸(PAA-5)の溶液を得た。このポリアミック酸溶液の温度25℃における粘度は215mPa・sであった。また、このポリアミック酸の分子量はMn=12629、Mw=29521であった。
(実施例1)
 撹拌子を入れた20mlサンプル管に、合成例1で得られたポリアミック酸溶液(PAA-1)を5.01g取り、NMPを3.00g、BCSを2.01g、及び1-ブチルイミダゾールを0.04g加えて、マグネチックスターラーで30分間撹拌し液晶配向剤(A-1)を得た。
(実施例2)
 撹拌子を入れた20mlサンプル管に、合成例1で得られたポリアミック酸溶液(PAA-1)を5.02g取り、NMPを3.01g、BCSを2.04g、及び1-アリルイミダゾールを0.04g加えて、マグネチックスターラーで30分間撹拌し液晶配向剤(A-2)を得た。
(実施例3)
 撹拌子を入れた20mlサンプル管に、合成例4で得られたポリアミック酸溶液(PAA-4)を4.02g取り、NMPを4.00g、BCSを2.01g、及び1-ブチルイミダゾールを0.04g加えて、マグネチックスターラーで30分間撹拌し液晶配向剤(A-3)を得た。
(実施例4)
 撹拌子を入れた20mlサンプル管に、合成例1で得られたポリアミック酸溶液(PAA-1)を5.02g取り、NMPを3.01g、BCSを2.00g、及び2-ブチルイミダゾールを0.04g加えて、マグネチックスターラーで30分間撹拌し液晶配向剤(A-4)を得た。
(比較例1)
 撹拌子を入れた20mlサンプル管に、合成例1で得られたポリアミック酸溶液(PAA-1)を5.01g取り、NMPを3.00g、BCSを2.01g、及び1-エチルイミダゾールを0.04g加えて、マグネチックスターラーで30分間撹拌し液晶配向剤(B-1)を得た。
(比較例2)
 撹拌子を入れた20mlサンプル管に、合成例1で得られたポリアミック酸溶液(PAA-1)を5.00g取り、NMPを3.03g、BCSを2.02g、及び1-ベンゾイルイミダゾールを0.04g加えて、マグネチックスターラーで30分間撹拌し液晶配向剤(B-2)を得た。
(比較例3)
 撹拌子を入れた20mlサンプル管に、合成例1で得られたポリアミック酸溶液(PAA-1)を5.01g取り、NMPを3.05g、BCSを2.00g、及び1-(2-ヒドロキシエチル)イミダゾールを0.04g加えて、マグネチックスターラーで30分間撹拌し液晶配向剤(B-3)を得た。
(比較例4)
 撹拌子を入れた20mlサンプル管に、合成例1で得られたポリアミック酸溶液(PAA-1)を5.02g取り、NMPを3.00g、及びBCSを2.00g加えて、マグネチックスターラーで30分間撹拌し液晶配向剤(B-4)を得た。
(実施例5)
 実施例1で得られた液晶配向剤(A-1)を1.0μmのフィルターで濾過した後、ガラス基板上に、第1層目として膜厚50nmのITO電極を、第2層目として絶縁膜として膜厚500nmの窒化ケイ素を、第3層目として櫛歯形状のITO電極(電極幅:3μm、電極間隔:6μm、電極高さ:50nm)を有するFFS駆動用電極が形成されているガラス基板に、スピンコート塗布にて塗布した。80℃のホットプレート上で5分間乾燥させた後、230℃の熱風循環式オーブンで30分間焼成を行い、膜厚100nmの塗膜を形成させた。この塗膜面に偏光板を介して波長254nmの紫外線を1500mJ/cm照射し、液晶配向膜付き基板を得た。また、対向基板として電極が形成されていない高さ4μmの柱状スペーサーを有するガラス基板にも、同様に塗膜を形成させ、配向処理を施した。
 上記、2枚の基板を一組とし、基板上にシール剤を印刷し、もう1枚の基板を、液晶配向膜面が向き合い配向方向が0°になるようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-2041(メルク株式会社製)を注入し、注入口を封止して、FFS駆動液晶セルを得た。
 このFFS駆動液晶セルについて、交流駆動焼き付き特性を評価した結果、ΔV50は2mVであった。
(実施例6)
 実施例2で得られた液晶配向剤(A-2)を用いた以外は、実施例5と同様の方法でFFS駆動液晶セルを作製した。このFFS駆動液晶セルについて、交流駆動焼き付き特性を評価した結果、ΔV50は2mVであった。
(実施例7)
 実施例3で得られた液晶配向剤(A-3)を用いた以外は、実施例5と同様の方法でFFS駆動液晶セルを作製した。このFFS駆動液晶セルについて、交流駆動焼き付き特性を評価した結果、ΔV50は0mVであった。
(実施例8)
 実施例4で得られた液晶配向剤(A-4)を用いた以外は、実施例5と同様の方法でFFS駆動液晶セルを作製した。このFFS駆動液晶セルについて、交流駆動焼き付き特性を評価した結果、ΔV50は 2mVであった。
(比較例5)
 比較例1で得られた液晶配向剤(B-1)を用いた以外は、実施例5と同様の方法でFFS駆動液晶セルを作製した。このFFS駆動液晶セルについて、交流駆動焼き付き特性を評価した結果、ΔV50は4mVであった。
(比較例6)
 比較例2で得られた液晶配向剤(B-2)を用いた以外は、実施例5と同様の方法でFFS駆動液晶セルを作製した。このFFS駆動液晶セルについて、交流駆動焼き付き特性を評価した結果、ΔV50は4mVであった。
(比較例7)
 比較例3で得られた液晶配向剤(B-3)を用いた以外は、実施例5と同様の方法でFFS駆動液晶セルを作製した。このFFS駆動液晶セルについて、交流駆動焼き付き特性を評価した結果、ΔV50は4mVであった。
(比較例8)
 比較例4で得られた液晶配向剤(B-4)を用いた以外は、実施例5と同様の方法でFFS駆動液晶セルを作製した。このFFS駆動液晶セルについて、交流駆動焼き付き特性を評価した結果、ΔV50は5mVであった。
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
(実施例9)
 撹拌子を入れた20mlサンプル管に、合成例2で得られたポリアミック酸溶液(PAA-2)を5.00g取り、NMPを3.02g、BCSを2.04g、及び1-ブチルイミダゾールを0.04g加えて、マグネチックスターラーで30分間撹拌し液晶配向剤(A-5)を得た。
(実施例10)
 撹拌子を入れた20mlサンプル管に、合成例3で得られたポリアミック酸溶液(PAA-3)を5.02g取り、NMPを3.00g、BCSを2.03g、及び1-ブチルイミダゾールを0.04g加えて、マグネチックスターラーで30分間撹拌し液晶配向剤(A-6)を得た。
(実施例11)
 撹拌子を入れた20mlサンプル管に、合成例5で得られたポリアミック酸溶液(PAA-5)を4.00g取り、NMPを2.01g、BCSを2.00g、及び1-ブチルイミダゾールを0.04g加えて、マグネチックスターラーで30分間撹拌し液晶配向剤(A-7)を得た。
(実施例12)
 実施例9で得られた液晶配向剤(A-5)を用いた以外は、実施例5と同様の方法でFFS駆動液晶セルを作製した。このFFS駆動液晶セルについて、交流駆動焼き付き特性を評価した結果、ΔV50は2mVであった。
(実施例13)
 実施例10で得られた液晶配向剤(A-6)を用いた以外は、実施例5と同様の方法でFFS駆動液晶セルを作製した。このFFS駆動液晶セルについて、交流駆動焼き付き特性を評価した結果、ΔV50は2mVであった。
(実施例14)
 実施例11で得られた液晶配向剤(A-7)を用い、波長254nmの紫外線を500mJ/cm照射し以外は、実施例5と同様の方法でFFS駆動液晶セルを作製した。このFFS駆動液晶セルについて、交流駆動焼き付き特性を評価した結果、ΔV50は1mVであった。
 本発明の液晶配向剤から得られる液晶配向膜は、IPS駆動方式やFFS駆動方式の液晶表示素子や液晶テレビの液晶配向膜として特に有用である。
 なお、2011年6月21日に出願された日本特許出願2011-137770号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (10)

  1.  下記の(A)成分、(B)成分及び有機溶媒を含有することを特徴とする液晶配向剤。
    (A)成分:下記式(1)で表されるテトラカルボン酸二無水物を全テトラカルボン酸二無水物の60モル%以上含むテトラカルボン酸二無水物と、下記式(2)で表されるジアミン化合物及び(3)で表されるジアミン化合物からなる群から選ばれる少なくとも1種類のジアミン化合物を全ジアミン化合物の60モル%以上含むジアミン化合物との重縮合反応から得られるポリアミック酸。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)において、R、R、R、及びRは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、又はフェニル基である。)
    Figure JPOXMLDOC01-appb-C000002
    (式(3)において、Aは単結合、エステル結合、アミド結合、チオエステル結合、又は炭素数2~10の2価の有機基である。)
    (B)成分:下記式(B-1)~(B-4)からなる群から選ばれる少なくとも1種類のイミダゾール誘導体。
    Figure JPOXMLDOC01-appb-C000003
     (式(B-1)~(B-4)において、R、R、R、及びRは、それぞれ独立して炭素数3~10のアルキル基、又はアルケニル基である。)
  2.  (A)成分の含有量が1~10質量%である請求項1に記載の液晶配向剤。
  3.  (B)成分の含有量が、(A)成分100質量部に対して、0.1~50質量部である請求項1又は2に記載の液晶配向剤。
  4.  (A)成分を得るためのテトラカルボン酸二無水物が、1,2,3,4-シクロブタンテトラカルボン酸二無水物及び1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物からなる群から選ばれる少なくとも1種類のテトラカルボン酸二無水物である請求項1~3のいずれかに記載の液晶配向剤。
  5.  (A)成分を得るためのジアミン化合物が、式(2)で表されるジアミン化合物を全ジアミン化合物の60モル%以上含むジアミン化合物である請求項1~4のいずれかに記載の液晶配向剤。
  6.  (B)成分のイミダゾール誘導体が、1-プロピルイミダゾール、1-アリルイミダゾール、1-ブチルイミダゾール、2-プロピルイミダゾール、及び2-ブチルイミダゾールからなる群から選ばれる少なくとも1種類である請求項1~5に記載の液晶配向剤。
  7.  (B)成分のイミダゾール誘導体が、1-アリルイミダゾール、1-プロピルイミダゾール、及び1-ブチルイミダゾールからなる群から選ばれる少なくとも1種類である請求項1~5に記載の液晶配向剤。
  8.  (A)成分を得るためのジアミン化合物が、さらに下記式(DA-1)で表されるジアミン化合物を含む請求項1~7に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000004
  9.  請求項1~8のいずれかに記載の液晶配向剤を塗布、焼成して得られる液晶配向膜。
  10.  請求項1~8のいずれかに記載の液晶配向剤を塗布、焼成し、さらに偏光された放射線を照射して得られる液晶配向膜。
PCT/JP2012/065783 2011-06-21 2012-06-20 光配向処理法用の液晶配向剤、及びそれを用いた液晶配向膜 WO2012176822A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280030215.7A CN103620488B (zh) 2011-06-21 2012-06-20 光取向处理法用液晶取向剂及使用该液晶取向剂的液晶取向膜
JP2013521610A JP5979142B2 (ja) 2011-06-21 2012-06-20 光配向処理法用の液晶配向剤、及びそれを用いた液晶配向膜
KR1020137033403A KR101848962B1 (ko) 2011-06-21 2012-06-20 광배향 처리법용의 액정 배향제, 및 그것을 사용한 액정 배향막

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011137770 2011-06-21
JP2011-137770 2011-06-21

Publications (1)

Publication Number Publication Date
WO2012176822A1 true WO2012176822A1 (ja) 2012-12-27

Family

ID=47422653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065783 WO2012176822A1 (ja) 2011-06-21 2012-06-20 光配向処理法用の液晶配向剤、及びそれを用いた液晶配向膜

Country Status (5)

Country Link
JP (1) JP5979142B2 (ja)
KR (1) KR101848962B1 (ja)
CN (1) CN103620488B (ja)
TW (1) TWI548677B (ja)
WO (1) WO2012176822A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015108171A1 (ja) * 2014-01-17 2015-07-23 日産化学工業株式会社 高純度の1,3-ジアルキルシクロブタン-1,2,3,4-テトラカルボン酸-1,2:3,4-二無水物の製造方法
EP2993199A1 (en) * 2014-09-04 2016-03-09 Samsung Display Co., Ltd. Photoalignment agent and liquid crystal display device
KR20160078873A (ko) * 2014-12-25 2016-07-05 제이에스알 가부시끼가이샤 액정 배향제, 액정 소자의 제조 방법, 액정 배향막, 액정 소자 및 화합물
KR101842447B1 (ko) * 2017-04-06 2018-05-14 주식회사 피엔에스테크놀로지 저온경화형 폴리이미드 전구체 조성물
CN108139632A (zh) * 2015-09-30 2018-06-08 日产化学工业株式会社 液晶表示元件
US10054820B2 (en) 2014-10-21 2018-08-21 Samsung Display Co., Ltd. Photoalignment agent, photoalignment film, liquid crystal display device, and method of manufacturing the same
KR20190085085A (ko) 2017-02-28 2019-07-17 제이에스알 가부시끼가이샤 액정 배향제, 액정 배향막 및 그의 제조 방법, 액정 소자, 그리고 중합체
KR20190103397A (ko) 2017-04-04 2019-09-04 제이에스알 가부시끼가이샤 액정 배향제, 액정 배향막 및 그의 제조 방법, 액정 소자, 중합체, 그리고 화합물
US10947345B2 (en) 2016-07-19 2021-03-16 Japan Display Inc. Varnish for photo alignment film and liquid crystal display device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105316005A (zh) * 2014-07-28 2016-02-10 Jsr株式会社 液晶取向剂、液晶取向膜及其制造方法、液晶显示元件、聚合物及化合物
KR102498939B1 (ko) * 2017-05-31 2023-02-10 닛산 가가쿠 가부시키가이샤 액정을 사용한 이상 변조 소자용 기능성 수지 조성물
CN116814278A (zh) * 2023-07-03 2023-09-29 合肥中聚和成电子材料有限公司 液晶取向剂、制备的液晶取向膜和含该取向膜的显示元件

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61267030A (ja) * 1985-05-22 1986-11-26 Toray Ind Inc 液晶表示素子
JPH09297400A (ja) * 1996-03-04 1997-11-18 Toshiba Corp ネガ型感光性ポリマー樹脂組成物、これを用いたパターン形成方法、および電子部品
JPH09316200A (ja) * 1996-05-31 1997-12-09 Japan Synthetic Rubber Co Ltd 液晶配向剤

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006276789A (ja) * 2005-03-30 2006-10-12 Fuji Photo Film Co Ltd 液晶配向制御用突起、その製造方法、感光性樹脂組成物、液晶表示素子、及び液晶表示装置。
JP5370631B2 (ja) * 2007-02-05 2013-12-18 Jsr株式会社 液晶配向剤、液晶配向膜および液晶表示素子
JP5273357B2 (ja) * 2007-07-06 2013-08-28 Jsr株式会社 液晶配向剤および液晶表示素子
JP2010001428A (ja) * 2008-06-23 2010-01-07 Kaneka Corp 新規なポリイミド前駆体組成物溶液及びその利用
JP5370884B2 (ja) * 2008-08-29 2013-12-18 Jnc株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
JP5459052B2 (ja) * 2009-06-25 2014-04-02 Jnc株式会社 液晶配向剤、液晶配向膜および液晶表示素子
KR101317259B1 (ko) * 2009-07-06 2013-10-14 쇼와 덴코 가부시키가이샤 배선판의 보호막용 열경화성 조성물
JP5609483B2 (ja) * 2009-11-18 2014-10-22 Jnc株式会社 液晶配向剤、液晶配向膜および液晶表示素子

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61267030A (ja) * 1985-05-22 1986-11-26 Toray Ind Inc 液晶表示素子
JPH09297400A (ja) * 1996-03-04 1997-11-18 Toshiba Corp ネガ型感光性ポリマー樹脂組成物、これを用いたパターン形成方法、および電子部品
JPH09316200A (ja) * 1996-05-31 1997-12-09 Japan Synthetic Rubber Co Ltd 液晶配向剤

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015108171A1 (ja) * 2014-01-17 2015-07-23 日産化学工業株式会社 高純度の1,3-ジアルキルシクロブタン-1,2,3,4-テトラカルボン酸-1,2:3,4-二無水物の製造方法
KR102324576B1 (ko) 2014-01-17 2021-11-09 닛산 가가쿠 가부시키가이샤 고순도의 1,3-디알킬시클로부탄-1,2,3,4-테트라카르복실산-1,2:3,4-2무수물의 제조 방법
CN105916863B (zh) * 2014-01-17 2019-03-01 日产化学工业株式会社 1,3-二烷基环丁烷-1,2,3,4-四羧酸-1,2:3,4-二酐的制造方法
TWI650323B (zh) * 2014-01-17 2019-02-11 日商日產化學工業股份有限公司 高純度之1,3-二烷基環丁烷-1,2,3,4-四羧酸-1,2:3,4-二酐之製造方法
CN105916863A (zh) * 2014-01-17 2016-08-31 日产化学工业株式会社 高纯度的1,3-二烷基环丁烷-1,2,3,4-四羧酸-1,2:3,4-二酐的制造方法
KR20160108331A (ko) * 2014-01-17 2016-09-19 닛산 가가쿠 고교 가부시키 가이샤 고순도의 1,3-디알킬시클로부탄-1,2,3,4-테트라카르복실산-1,2:3,4-2무수물의 제조 방법
JPWO2015108171A1 (ja) * 2014-01-17 2017-03-23 日産化学工業株式会社 高純度の1,3−ジアルキルシクロブタン−1,2,3,4−テトラカルボン酸−1,2:3,4−二無水物の製造方法
US10061160B2 (en) 2014-09-04 2018-08-28 Samsung Display Co., Ltd. Photoalignment agent, photoalignment layer, liquid crystal display device, and method of manufacturing the same
EP2993199A1 (en) * 2014-09-04 2016-03-09 Samsung Display Co., Ltd. Photoalignment agent and liquid crystal display device
US10054820B2 (en) 2014-10-21 2018-08-21 Samsung Display Co., Ltd. Photoalignment agent, photoalignment film, liquid crystal display device, and method of manufacturing the same
JP2016122178A (ja) * 2014-12-25 2016-07-07 Jsr株式会社 液晶配向剤、液晶素子の製造方法、液晶配向膜、液晶素子及び化合物
KR20160078873A (ko) * 2014-12-25 2016-07-05 제이에스알 가부시끼가이샤 액정 배향제, 액정 소자의 제조 방법, 액정 배향막, 액정 소자 및 화합물
KR102398327B1 (ko) 2014-12-25 2022-05-13 제이에스알 가부시끼가이샤 액정 배향제, 액정 소자의 제조 방법, 액정 배향막, 액정 소자 및 화합물
CN108139632A (zh) * 2015-09-30 2018-06-08 日产化学工业株式会社 液晶表示元件
CN108139632B (zh) * 2015-09-30 2023-12-05 日产化学工业株式会社 液晶表示元件
US10947345B2 (en) 2016-07-19 2021-03-16 Japan Display Inc. Varnish for photo alignment film and liquid crystal display device
US11384204B2 (en) 2016-07-19 2022-07-12 Japan Display Inc. Varnish for photo alignment film and liquid crystal display device
KR20190085085A (ko) 2017-02-28 2019-07-17 제이에스알 가부시끼가이샤 액정 배향제, 액정 배향막 및 그의 제조 방법, 액정 소자, 그리고 중합체
US11061282B2 (en) 2017-02-28 2021-07-13 Jsr Corporation Liquid crystal aligning agent, liquid crystal alignment film, method for producing same, liquid crystal element and polymer
KR20190103397A (ko) 2017-04-04 2019-09-04 제이에스알 가부시끼가이샤 액정 배향제, 액정 배향막 및 그의 제조 방법, 액정 소자, 중합체, 그리고 화합물
KR101842447B1 (ko) * 2017-04-06 2018-05-14 주식회사 피엔에스테크놀로지 저온경화형 폴리이미드 전구체 조성물

Also Published As

Publication number Publication date
KR20140035407A (ko) 2014-03-21
JPWO2012176822A1 (ja) 2015-02-23
JP5979142B2 (ja) 2016-08-24
CN103620488B (zh) 2016-02-24
KR101848962B1 (ko) 2018-04-13
TWI548677B (zh) 2016-09-11
CN103620488A (zh) 2014-03-05
TW201319122A (zh) 2013-05-16

Similar Documents

Publication Publication Date Title
JP5979142B2 (ja) 光配向処理法用の液晶配向剤、及びそれを用いた液晶配向膜
JP5900344B2 (ja) 光配向処理法に適した液晶配向剤、及びそれを用いた液晶配向膜
JP6558245B2 (ja) 横電界駆動方式用の液晶配向剤、液晶配向膜、及びそれを用いた液晶表示素子
TWI661003B (zh) 含有聚醯胺酸酯-聚醯胺酸共聚物之液晶配向劑,及使用其之液晶配向膜
JP6056752B2 (ja) 液晶配向剤及びそれを用いた液晶配向膜
TWI637027B (zh) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2013157586A1 (ja) 光配向法用の液晶配向剤、液晶配向膜、及び液晶表示素子
CN109971494B (zh) 液晶取向剂、液晶取向膜以及液晶显示元件
KR20170021856A (ko) 액정 배향제, 액정 배향막 및 액정 표시 소자
JPWO2012057337A1 (ja) 液晶配向剤、及び液晶配向膜
WO2013081067A1 (ja) 液晶配向膜、液晶配向膜の製造方法、及び液晶表示素子
JPWO2014157143A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
KR102104154B1 (ko) 액정 배향막의 제조 방법, 액정 배향막, 및 액정 표시 소자
WO2013018904A1 (ja) 光配向処理法用の液晶配向剤、及びそれを用いた液晶配向膜
JP6596931B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
WO2013111836A1 (ja) ポリイミドワニスの調製方法、及び液晶配向剤
JP5630625B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP6460342B2 (ja) 液晶配向剤及びそれを用いた液晶表示素子
WO2014084362A1 (ja) 液晶配向膜の製造方法、液晶配向膜、及び液晶表示素子
WO2015080186A1 (ja) 液晶配向剤及びそれを用いた液晶表示素子
WO2014092170A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JPWO2017094898A1 (ja) 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
JPWO2016010084A1 (ja) 光配向用の液晶配向剤、液晶配向膜、及び液晶表示素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280030215.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12801906

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013521610

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137033403

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12801906

Country of ref document: EP

Kind code of ref document: A1