[go: up one dir, main page]

WO2012175557A1 - Installation technique de compression de gaz au moyen de différences de température et de pression - Google Patents

Installation technique de compression de gaz au moyen de différences de température et de pression Download PDF

Info

Publication number
WO2012175557A1
WO2012175557A1 PCT/EP2012/061839 EP2012061839W WO2012175557A1 WO 2012175557 A1 WO2012175557 A1 WO 2012175557A1 EP 2012061839 W EP2012061839 W EP 2012061839W WO 2012175557 A1 WO2012175557 A1 WO 2012175557A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
pressure
heat exchanger
pressure heat
chamber
Prior art date
Application number
PCT/EP2012/061839
Other languages
German (de)
English (en)
Inventor
Erwin DANIEL
Original Assignee
Innova Gebäudetechnik Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Innova Gebäudetechnik Gmbh filed Critical Innova Gebäudetechnik Gmbh
Priority to EP12728574.0A priority Critical patent/EP2721361A1/fr
Publication of WO2012175557A1 publication Critical patent/WO2012175557A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/02Devices for producing mechanical power from solar energy using a single state working fluid
    • F03G6/04Devices for producing mechanical power from solar energy using a single state working fluid gaseous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/0206Heat exchangers immersed in a large body of liquid
    • F28D1/0213Heat exchangers immersed in a large body of liquid for heating or cooling a liquid in a tank
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/06Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with the heat-exchange conduits forming part of, or being attached to, the tank containing the body of fluid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Definitions

  • the invention relates to a technical system, with the gas based on temperature and pressure differences in
  • Compressor is compressible, the gas is used to drive a turbine. Furthermore, the invention relates to a method for operating such a system.
  • the invention is based on the object to provide a technical system available that can be operated as energy efficient as possible while saving a pump.
  • High-pressure gas space of a first high-pressure heat exchanger via the pneumatic cylinder flows into a second high pressure heat exchanger, due to exchange of heat and cold in the High pressure heat exchangers by changing pressure rise and
  • the invention aims to ensure that the gas from the first
  • High-pressure heat exchanger is passed through the pneumatic cylinder in the second high-pressure heat exchanger, not described in Patent AT 410 966 B after pressure equalization by a pump - which consumes additional energy - must be returned, but by exchanging heat and cold at each individual high pressure heat exchanger by changing pressure increase and
  • Pressure drop of the gas is passed over the compressor.
  • High-pressure heat exchangers are connected via one line to both chambers, i. From the high-pressure heat exchangers, one line leads into the first chamber and one line into the second
  • a valve is arranged in the lines. Passing the gas between the two high pressure heat exchangers is controlled by opening and closing the valves until a
  • High-pressure heat exchanger in the other of the two chambers is performed. At the same time it can be provided that for the lifting movement of the piston gas is passed from one of the two chambers in another high-pressure heat exchanger and for the return stroke of the piston gas from the other of the two chambers is guided in this high-pressure heat exchanger.
  • Embodiment is shown.
  • the figure shows a schematic representation of the system.
  • the system consists of at least two high-pressure heat exchangers A, in the primary state of which the pressure is the same on the primary side.
  • a first heat exchanger A gas is heated, for example by solar energy, geothermal, industrial heat and the like, resulting in a pressure increase to 250 bar in this
  • Heat exchanger A leads.
  • gas is e.g. due to lower ambient temperature, cooling water,
  • the high-pressure heat exchangers A are equipped with register 3 and double jacket 2.
  • the registers 3 are fed by the energy storage, namely the hot water tank 5 and the water storage tank 6, with hot water and cold water via pipes (tertiary circulation).
  • the high-pressure gas chamber 1 (primary circuit) in the high-pressure heat exchanger A is by mutual opening and closing of valves 7, 8 via the register 3 either
  • High-pressure heat exchanger A is passed via a pneumatic cylinder 13 to the cooled high-pressure heat exchanger A. This connection is controlled by opening and closing valves 4 until the Pressure equalization takes place. Due to the gas pressure in the
  • valves 4 is switched by opening and closing of valves 4 to another heat exchanger pair, whereby the cycle begins again.
  • the movement of the piston 14 may be more detailed as follows
  • the pneumatic cylinder 13 has two through a piston 14th
  • a first high-pressure heat exchanger A gas is heated causing the gas pressure to rise
  • High-pressure heat exchanger A (e.g., in the lower left-hand corner) is simultaneously cooled by gas, whereby the gas pressure drops,
  • High-pressure heat exchanger A in the first chamber 19 leading line is opened, whereby gas at elevated pressure from the first
  • Pneumatic cylinder 13 flows and the piston 14 moves in one direction (in the figure to the right).
  • High-pressure heat exchanger A leading line open whereby lower pressure gas flows from the second chamber 20 in the second high-pressure heat exchanger A and moves the piston 14 in the same direction. After maximum stroke of the Kobens 14 in this
  • High pressure heat exchanger A leading line open whereby lower pressure gas flows from the first chamber 19 in the second high-pressure heat exchanger A and the piston 14 moves in the same direction.
  • Pressure equalization has occurred, is converted to a second pair of high pressure heat exchanger A and the piston 14 as described above moves in both directions.
  • High pressure heat exchangers A have caused a stroke and return stroke of the piston, the first pair of high-pressure heat exchangers A, the gas is heated in the second high-pressure heat exchanger A and the gas is cooled in the first high-pressure heat exchanger A.
  • valve 4 in the line leading from the second high-pressure heat exchanger A into the first chamber 19 is opened, whereby gas at elevated pressure flows from the second high-pressure heat exchanger A into the first chamber 19 of the pneumatic cylinder 13 and moves the piston 14 in one direction (in FIG. to the right) .
  • the valve 4 is in the second chamber 20 in the first
  • High pressure heat exchanger A leading line open whereby lower pressure gas flows from the second chamber 20 in the first high-pressure heat exchanger A and moves the piston 14 in the same direction. After maximum stroke of the Kobens 14 in this
  • High pressure heat exchanger A leading line open whereby lower pressure gas flows from the first chamber 19 in the first high-pressure heat exchanger A and the piston 14 moves in the same direction.
  • the plant contains at least two high-pressure heat exchangers A, in in the initial state, the pressure at the primary side is the same.
  • the gas pressure is increased by secondary and tertiary side supply of heat to 250 bar.
  • the gas pressure is reduced by secondary and tertiary side cooling.
  • the pressure difference in the two high-pressure heat exchanger causes a displacement of the piston 14 in the pneumatic cylinder, which compresses gas in a compressor 15.
  • Compression heat is transferred to a memory 9 and from there
  • the compressed gas from the compressor 15 is used to drive a turbine 17 and relaxed after leaving the turbine.
  • the strongly cooled by the relaxation gas is passed into the memory 11 and the secondary double shrouds 2 of the high-pressure vessel and vent valves 18 to the outside.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

L'invention concerne un procédé pour faire fonctionner une installation technique, selon lequel un gaz est comprimé sur la base de différences de température et de pression dans des échangeurs de chaleur haute pression (A) par l'intermédiaire d'un vérin pneumatique (13) et d'un compresseur (15), le gaz étant utilisé pour entraîner une turbine (17). Le gaz, acheminé de la chambre à gaz haute pression (1) d'un premier échangeur de chaleur haute pression (A) par l'intermédiaire du vérin pneumatique (13) dans un deuxième échangeur de chaleur haute pression (A), est guidé par l'intermédiaire du vérin pneumatique (13) sous l'effet d'un échange de chaleur et de froid dans les échangeurs de chaleur haute pression (A) au moyen d'une hausse et d'une baisse de pression du gaz. L'échange de chaleur et de froid dans chaque échangeur de chaleur individuel (A) rend l'utilisation d'une pompe à gaz superflue.
PCT/EP2012/061839 2011-06-20 2012-06-20 Installation technique de compression de gaz au moyen de différences de température et de pression WO2012175557A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12728574.0A EP2721361A1 (fr) 2011-06-20 2012-06-20 Installation technique de compression de gaz au moyen de différences de température et de pression

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA898/2011 2011-06-20
ATA898/2011A AT511637B1 (de) 2011-06-20 2011-06-20 Technische anlage zur gasverdichtung mittels temperatur- und druckunterschieden

Publications (1)

Publication Number Publication Date
WO2012175557A1 true WO2012175557A1 (fr) 2012-12-27

Family

ID=46321014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/061839 WO2012175557A1 (fr) 2011-06-20 2012-06-20 Installation technique de compression de gaz au moyen de différences de température et de pression

Country Status (3)

Country Link
EP (1) EP2721361A1 (fr)
AT (1) AT511637B1 (fr)
WO (1) WO2012175557A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104061029A (zh) * 2014-05-16 2014-09-24 张中和 一种太阳能集热流体温差空气增压发电设备
WO2017010865A1 (fr) 2015-07-13 2017-01-19 Waluko B.V. Moteur thermique et procédé de conversion de chaleur en travail
CN112922814A (zh) * 2021-03-11 2021-06-08 清华大学 一种压缩空气储能系统及方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT519851B1 (de) * 2017-03-14 2020-08-15 Daniel Erwin Hochdruck Energie Erzeuger

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2829501A (en) * 1953-08-21 1958-04-08 D W Burkett Thermal power plant utilizing compressed gas as working medium in a closed circuit including a booster compressor
US3115014A (en) * 1962-07-30 1963-12-24 Little Inc A Method and apparatus for employing fluids in a closed cycle
US5259363A (en) 1991-12-23 1993-11-09 Lolar Logistics, Inc. Solar roofing system
US5548957A (en) * 1995-04-10 1996-08-27 Salemie; Bernard Recovery of power from low level heat sources
US5953917A (en) * 1994-10-04 1999-09-21 Thermal Energy Accumlator Products Pty Ltd Thermo-volumetric motor
AT410966B (de) 2001-03-16 2003-09-25 Bammer Peter Vorrichtung zum verdichten eines gases mittels sonnenenergie und/oder umgebungswärme
US20050198960A1 (en) * 2004-03-12 2005-09-15 Marnoch Ian A. Thermal conversion device and process
EP1759116A1 (fr) * 2004-06-08 2007-03-07 International Innovations Limited Machine thermique
US20100218500A1 (en) * 2007-10-19 2010-09-02 Saipem S.A. Installation and Methods for Storing and Methods for Storing and Restoring Electrical Energy Using a Piston-Type Gas Compression and Expansion Unit
US20100251711A1 (en) * 2007-10-03 2010-10-07 Isentropic Limited Energy Storage
US20100301614A1 (en) * 2007-05-11 2010-12-02 Saipem S.A Installation and Method for Storing and Returning Electrical Energy

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2829501A (en) * 1953-08-21 1958-04-08 D W Burkett Thermal power plant utilizing compressed gas as working medium in a closed circuit including a booster compressor
US3115014A (en) * 1962-07-30 1963-12-24 Little Inc A Method and apparatus for employing fluids in a closed cycle
US5259363A (en) 1991-12-23 1993-11-09 Lolar Logistics, Inc. Solar roofing system
US5953917A (en) * 1994-10-04 1999-09-21 Thermal Energy Accumlator Products Pty Ltd Thermo-volumetric motor
US5548957A (en) * 1995-04-10 1996-08-27 Salemie; Bernard Recovery of power from low level heat sources
AT410966B (de) 2001-03-16 2003-09-25 Bammer Peter Vorrichtung zum verdichten eines gases mittels sonnenenergie und/oder umgebungswärme
US20050198960A1 (en) * 2004-03-12 2005-09-15 Marnoch Ian A. Thermal conversion device and process
EP1759116A1 (fr) * 2004-06-08 2007-03-07 International Innovations Limited Machine thermique
US20100301614A1 (en) * 2007-05-11 2010-12-02 Saipem S.A Installation and Method for Storing and Returning Electrical Energy
US20100251711A1 (en) * 2007-10-03 2010-10-07 Isentropic Limited Energy Storage
US20100218500A1 (en) * 2007-10-19 2010-09-02 Saipem S.A. Installation and Methods for Storing and Methods for Storing and Restoring Electrical Energy Using a Piston-Type Gas Compression and Expansion Unit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104061029A (zh) * 2014-05-16 2014-09-24 张中和 一种太阳能集热流体温差空气增压发电设备
WO2017010865A1 (fr) 2015-07-13 2017-01-19 Waluko B.V. Moteur thermique et procédé de conversion de chaleur en travail
CN112922814A (zh) * 2021-03-11 2021-06-08 清华大学 一种压缩空气储能系统及方法

Also Published As

Publication number Publication date
AT511637A1 (de) 2013-01-15
AT511637B1 (de) 2013-08-15
EP2721361A1 (fr) 2014-04-23

Similar Documents

Publication Publication Date Title
DE602004007792T2 (de) Verfahren und vorrichtung zur druckluftbetätigung eines werkzeugs
AT511077B1 (de) Hochdruck-gas-antriebseinheit
WO2012175557A1 (fr) Installation technique de compression de gaz au moyen de différences de température et de pression
DE102015222983A1 (de) Energiespeichersystem
DE2923621C2 (de) Anlage zur Ausnutzung der Sonnenwärme mit einem Sonnenwärmekollektor und einer Kraftmaschine
EP2668374B1 (fr) Moteur thermique
AT414268B (de) Wärmekraftmaschine
DE102016003428A1 (de) Wärmepumpenanlage
DE102013004252A1 (de) Klimaanlage, die Wärme zusätzlich zur Kompression verwendet und dadurch Antriebsenergie für den Kompressor einspart
DE202011102503U1 (de) Wärmepumpenanlage
DE202009018245U1 (de) Klimatisierungsvorrichtung und thermisch betriebenes Wärmepumpenmodul mit Druckübertrager
DE102016007949B4 (de) Wärmepumpenanlage
DE102011082523B4 (de) Vorrichtung zur Umwandlung von Energie
AT507700B1 (de) Vorrichtung zur gewinnung von elektrischem strom
AT519851B1 (de) Hochdruck Energie Erzeuger
AT514222A1 (de) Antriebseinheit
DD230614A3 (de) Verfahren zur inbetriebnahme eines mehrstufigen kolbenverdichters ohne waermeuebertrager nach dem letzten verdichtungsabschnitt
DE3686075T2 (de) Einheit fuer plattentyp-vorrichtungen zur durchfuehrung von thermodynamischen prozessen, beruhend auf waermeaustausch zwischen fliessenden fluessigkeiten.
DE102007017357A1 (de) Wärmekraftanlage, insbesondere zur Nutzung von Wärmequellen niedriger Temperatur
DE3341452C2 (de) Luftgekühlter Kaltwassersatz für Klimaanlagen
DE102024200056A1 (de) Versorgungssystem für einen Energiewandler
EP4560223A1 (fr) Dispositif et procédé de récupération d'énergie dans une installation de coulée continue
DE202009009479U1 (de) Klimagerät
EP4571114A2 (fr) Système de compresseur avec refroidissement et procédé de fonctionnement d'un système de compresseur
EP4417905A1 (fr) Dispositif pour chauffer la porte d'un meuble frigorifique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12728574

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012728574

Country of ref document: EP