[go: up one dir, main page]

WO2012172656A1 - 空気電池 - Google Patents

空気電池 Download PDF

Info

Publication number
WO2012172656A1
WO2012172656A1 PCT/JP2011/063702 JP2011063702W WO2012172656A1 WO 2012172656 A1 WO2012172656 A1 WO 2012172656A1 JP 2011063702 W JP2011063702 W JP 2011063702W WO 2012172656 A1 WO2012172656 A1 WO 2012172656A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
carbon material
air electrode
negative electrode
electrode layer
Prior art date
Application number
PCT/JP2011/063702
Other languages
English (en)
French (fr)
Inventor
史教 水野
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2011/063702 priority Critical patent/WO2012172656A1/ja
Priority to CN201180071583.1A priority patent/CN103597656A/zh
Priority to US14/125,704 priority patent/US20140193720A1/en
Publication of WO2012172656A1 publication Critical patent/WO2012172656A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/948Energy storage/generating using nanostructure, e.g. fuel cell, battery

Definitions

  • the present invention relates to an air battery including, in an air electrode layer, an acicular carbon material that has more reaction starting points for oxygen reduction reaction than a conventional carbon material.
  • An air battery is a chargeable / dischargeable battery using a single metal or a metal compound as a negative electrode active material and oxygen as a positive electrode active material. Since oxygen, which is a positive electrode active material, is obtained from air, it is not necessary to enclose the positive electrode active material in the battery. Therefore, in theory, an air battery has a larger capacity than a secondary battery using a solid positive electrode active material. realizable.
  • Patent Literature 1 discloses a metal-air secondary battery including an air electrode including an air electrode layer containing a conductive material, a negative electrode, and a nonaqueous electrolyte, A technique relating to a metal-air secondary battery, wherein the conductive material is acicular carbon having an average aspect ratio of 10 or more is disclosed.
  • the inventor further examined the metal-air secondary battery described in Patent Document 1 and found that the discharge capacity that can be taken out per discharge was extremely low.
  • the present invention has been accomplished in view of the above circumstances, and an object of the present invention is to provide an air battery including, in an air electrode layer, an acicular carbon material that has more reaction starting points for an oxygen reduction reaction than a conventional carbon material. .
  • the air battery of the present invention is an air battery including at least an air electrode, a negative electrode, and an electrolyte layer interposed between the air electrode and the negative electrode, wherein the air electrode includes at least an air electrode layer, and the air
  • the polar layer includes an acicular carbon material having an average aspect ratio of 10 or more and a D / G ratio of 0.1 or more.
  • an average interplanar spacing of the (002) plane of the acicular carbon material is 0.335 nm or more and less than 0.370 nm.
  • the BET specific surface area of the acicular carbon material may be 10 to 3000 m 2 / g.
  • the acicular carbon material may be a cup-stacked carbon nanotube.
  • the air electrode layer includes an acicular carbon material having a D / G ratio of 0.1 or more, that is, an acicular carbon material having more reaction starting points for the oxygen reduction reaction than the conventional carbon material.
  • FIG. 1 It is a perspective schematic diagram of a cup stack type carbon nanotube. It is a figure which shows an example of the laminated constitution of the air battery of this invention, Comprising: It is the figure which showed typically the cross section cut
  • the air battery of the present invention is an air battery including at least an air electrode, a negative electrode, and an electrolyte layer interposed between the air electrode and the negative electrode, wherein the air electrode includes at least an air electrode layer, and the air
  • the polar layer includes an acicular carbon material having an average aspect ratio of 10 or more and a D / G ratio of 0.1 or more.
  • an air battery using spherical carbon particles such as ketjen black for the air electrode layer has a high initial capacity, but has a significant deterioration in durability, and therefore cannot be used repeatedly.
  • an air battery using a needle-like carbon material such as VGCF for the air electrode layer has been endured for repeated use as a result of the study by the present inventor. It was found that the discharge capacity that can be taken out per discharge was extremely low.
  • the reaction is mainly an oxygen reduction reaction represented by the above formula (II) and / or (III).
  • a D / G ratio can be exemplified.
  • the D / G ratio refers to the ratio of the peak intensity at 1360 cm ⁇ 1 (D band) to the peak intensity at 1580 cm ⁇ 1 (G band) in the Raman spectrum of the acicular carbon material.
  • the D band is a peak corresponding to a defect site that easily becomes a reaction starting point in the acicular carbon material, for example, a carbon edge portion or a strained location.
  • the G band is a peak corresponding to a graphite portion that is unlikely to be a reaction starting point in the acicular carbon material, for example, a carbon network surface. Therefore, it is considered that the number of reaction starting points increases as the D / G ratio value increases.
  • the defect site corresponding to the D band is considered to be a place where oxygen molecules first receive electrons from the acicular carbon material. It is thought that oxygen radicals generated as a result of oxygen molecules receiving electrons and metal ions conducted through the electrolyte layer react to deposit metal oxides at defect sites corresponding to the D band and graphite sites corresponding to the G band. It is done.
  • an average interplanar distance d 002 of the (002) plane of the acicular carbon material which is obtained by an X-ray diffraction method or a powder X-ray diffraction method, can be exemplified.
  • the BET specific surface area obtained by the N 2 adsorption method can be exemplified.
  • the BET specific surface area is not necessarily an electrochemically effective surface area, it is considered that the discharge capacity increases as the BET specific surface area increases.
  • the BET specific surface area corresponds to the sum of the area of the defect portion corresponding to the D band and the area of the graphite portion corresponding to the G band.
  • the present inventor uses a needle-like carbon material having an average aspect ratio and a D / G ratio that are equal to or greater than a predetermined value for the air electrode layer, so that a needle having more reaction starting points for oxygen reduction reaction than a conventional carbon material. Since the carbon electrode material is included in the air electrode layer, electrons can be exchanged between the acicular carbon material and more oxygen molecules. As a result, the capacity of the air battery using the air electrode layer. In addition, the inventors have found that both the energy density and the energy density can be improved as compared with the conventional air battery, and have completed the present invention.
  • the average aspect ratio of the acicular carbon material used in the present invention is 10 or more. When the average aspect ratio of the acicular carbon material is less than 10, the average aspect ratio is too small. Therefore, when the acicular carbon material is pulverized and mixed at the time of creating the air electrode, the acicular carbon material is crushed. It can be considered that the carbon material has a structure similar to the spherical carbon material. When the crushed carbon material is used for the air electrode, as in the case where the spherical carbon material is used for the air electrode, both the electronic conductivity and mechanical strength of the carbon material are reduced, and the remarkable cycle deterioration of the air battery is caused. May cause.
  • the average aspect ratio of the acicular carbon material used in the present invention is preferably 20 to 100, and more preferably 30 to 70.
  • a method for measuring the average aspect ratio of the acicular carbon material for example, in a transmission electron microscope (hereinafter referred to as TEM) image, the major axis and minor axis are measured, the major axis and A method for calculating the aspect ratio from the minor axis is included.
  • TEM transmission electron microscope
  • the D / G ratio of the acicular carbon material used in the present invention is 0.1 or more.
  • the acicular carbon material is used as the air electrode of the air battery.
  • the discharge capacity of the air battery may be reduced.
  • the D / G ratio of the acicular carbon material used in the present invention is preferably 0.6 to 1.0, and more preferably 0.8 to 1.0.
  • the method for measuring the D / G ratio of the acicular carbon material includes, for example, a method of calculating from the peak intensities of the G band and the D band in the Raman spectrum of the acicular carbon material as described above. It is done.
  • Mean spacing of (002) plane of the needle-like carbon material used in the present invention i.e. d 002 is preferably less than or 0.335nm 0.370nm. There is theoretically no acicular carbon material with d 002 less than 0.335 nm. In addition, when d 002 of the acicular carbon material is 0.370 nm or more, since the crystallinity of the acicular carbon material is too low, electron exchange between the acicular carbon material and oxygen molecules is sufficiently performed. There is a risk of not.
  • the d 002 of the acicular carbon material used in the present invention is more preferably 0.335 to 0.360 nm, and further preferably 0.335 to 0.350 nm.
  • examples of the method for measuring d 002 of the acicular carbon material include a method of calculating from the half-value width of the diffraction peak of the (002) plane in the XRD spectrum of the acicular carbon material.
  • the BET specific surface area of the acicular carbon material used in the present invention is preferably as large as possible, but may be, for example, 10 to 3000 m 2 / g. If the BET specific surface area is too small, the reaction area involved in oxygen reduction is too small, so that when the acicular carbon material is used for the air electrode of an air battery, the discharge capacity of the air battery may be too small.
  • the BET specific surface area of the acicular carbon material used in the present invention is preferably 10 to 1600 m 2 / g.
  • the method for measuring the BET specific surface area of the acicular carbon material includes, for example, a method in which the acicular carbon material is subjected to N 2 adsorption measurement under a temperature condition of 77 K and calculated by the BET method. .
  • FIG. 3 is a schematic perspective view of a conventional carbon nanotube.
  • FIG. 3 shows a single-walled carbon nanotube, and depiction of carbon atoms and carbon-carbon bonds is omitted.
  • the carbon nanotube 300 is a cylinder mainly composed of sp 2 carbon atoms, and its diameter is substantially equal throughout the cylinder.
  • the carbon nanotube 300 mainly includes a carbon edge portion 1 corresponding to the tip of a cylinder and a carbon network surface 2 corresponding to a belly portion of the cylinder.
  • the conventional carbon nanotube has a small area of the carbon edge portion 1 corresponding to the above-described D band and a large area of the carbon steel surface 2 corresponding to the above-described G band, the value of the D / G ratio is high.
  • the number of reaction starting points involved in oxygen reduction is considered to be small.
  • FIG. 1 is a schematic perspective view of a cup-stacked carbon nanotube.
  • FIG. 1 is not necessarily a schematic diagram reflecting parameters such as the aspect ratio of the acicular carbon material used in the present invention and the average interplanar spacing d 002 of the (002) plane.
  • the cup-stacked carbon nanotube 100 is a so-called aggregate of nanotubes in which two or more cup-shaped nanotubes are stacked.
  • the cup-type nanotube is a cylinder mainly composed of sp 2 carbon atoms, but as shown in FIG. 1, the diameter is different at both ends of the cylinder, and the diameter of the entire cylinder continuously increases or decreases.
  • the cup-stacked carbon nanotube 100 has a structure in which a plurality of cup-shaped nanotubes are stacked on each other, a part or almost all of the carbon network surface 2 of a certain cup-shaped nanotube is a carbon steel surface of another cup-shaped nanotube. Hidden inside 2. Therefore, the cup-stacked carbon nanotube 100 has a larger area of the carbon edge portion 1 corresponding to the above-mentioned D band than the conventional carbon nanotube, and an area of the carbon steel surface 2 corresponding to the above-mentioned G band.
  • cup-stacked carbon nanotubes for the air electrode layer, electrons can be exchanged between cup-stacked carbon nanotubes and more oxygen molecules, resulting in higher capacity and higher capacity than conventional air batteries. Energy density can be realized.
  • the acicular carbon material that satisfies all the conditions of the average aspect ratio, D / G ratio, d 002 , and BET specific surface area
  • a carbon material obtained by acid-treating carbon nanofibers can be given.
  • fills all the said conditions may contain the tube structure, and does not need to contain a tube structure.
  • the acicular carbon material used in the present invention an unfired product may be used, but a fired material may be used.
  • the firing temperature of the acicular carbon material is preferably 3000 ° C. or less, and more preferably 1500 ° C. or less.
  • FIG. 2 is a diagram showing an example of the layer configuration of the air battery of the present invention, and is a diagram schematically showing a cross section cut in the stacking direction.
  • the air battery of the present invention is not necessarily limited to this example.
  • the air battery 200 is sandwiched between the air electrode 16 including the air electrode layer 12 and the air electrode current collector 14, the negative electrode 17 including the negative electrode active material layer 13 and the negative electrode current collector 15, and the air electrode 16 and the negative electrode 17.
  • An electrolyte layer 11 is provided.
  • an air electrode, a negative electrode, an electrolyte layer, and a separator and a battery case that are preferably used for the air battery of the present invention, which constitute the air battery of the present invention, will be described in detail.
  • the air electrode of the air battery of the present invention includes an air electrode layer, and generally further includes an air electrode current collector and an air electrode lead connected to the air electrode current collector.
  • the air electrode layer in the air battery of the present invention contains at least the above-described acicular carbon material. Furthermore, you may contain a catalyst, a binder, etc. as needed.
  • the content of the acicular carbon material in the air electrode layer is preferably 10 to 99% by mass, and preferably 20 to 95% by mass when the mass of the entire air electrode layer is 100% by mass. More preferred. If the content of the acicular carbon material is too small, the reaction field may be reduced, and the battery capacity may be reduced. On the other hand, when the content ratio of the acicular carbon material is too large, the content ratio of the catalyst described later is relatively decreased, and there is a possibility that a sufficient catalyst function cannot be exhibited.
  • Examples of the catalyst used for the air electrode layer include an oxygen active catalyst.
  • oxygen active catalysts include, for example, platinum groups such as nickel, palladium and platinum; perovskite oxides containing transition metals such as cobalt, manganese or iron; inorganic compounds containing noble metal oxides such as ruthenium, iridium or palladium A metal coordination organic compound having a porphyrin skeleton or a phthalocyanine skeleton; manganese oxide and the like. From the viewpoint that the electrode reaction is performed more smoothly, a catalyst may be supported on the above-described acicular carbon material.
  • the air electrode layer may contain at least the acicular carbon material, but preferably further contains a binder for immobilizing the acicular carbon material.
  • the binder include rubber resins such as polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), and styrene-butadiene rubber (SBR rubber).
  • PVdF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • SBR rubber styrene-butadiene rubber
  • the content ratio of the binder in the air electrode layer is not particularly limited. For example, when the mass of the entire air electrode layer is 100% by mass, it is 30% by mass or less, particularly 1 to 10% by mass. Preferably there is.
  • a method for producing the air electrode layer for example, a method of mixing and rolling the air electrode layer raw material containing the acicular carbon material, a slurry by adding a solvent to the raw material, and an air electrode to be described later
  • coat to a collector are mentioned, It is not necessarily limited to these methods.
  • a method for applying the slurry to the air electrode current collector include known methods such as a spray method, a screen printing method, a doctor blade method, a gravure printing method, and a die coating method.
  • the thickness of the air electrode layer varies depending on the use of the air battery, but is preferably 2 to 500 ⁇ m, and more preferably 5 to 300 ⁇ m.
  • the air electrode current collector in the air battery of the present invention collects current in the air electrode layer.
  • the material for the air electrode current collector is not particularly limited as long as it has conductivity, and examples thereof include stainless steel, nickel, aluminum, iron, titanium, and carbon.
  • Examples of the shape of the air electrode current collector include a foil shape, a plate shape, and a mesh (grid) shape.
  • the air electrode current collector is preferably mesh-shaped from the viewpoint of excellent current collection efficiency. In this case, usually, a mesh-shaped air electrode current collector is disposed inside the air electrode layer.
  • the air battery of the present invention may include another air electrode current collector (for example, a foil-shaped current collector) that collects electric charges collected by the mesh-shaped air electrode current collector.
  • a battery case to be described later may also have the function of an air electrode current collector.
  • the thickness of the air electrode current collector is, for example, preferably in the range of 10 to 1000 ⁇ m, and more preferably in the range of 20 to 400 ⁇ m.
  • the negative electrode in the air battery of the present invention preferably includes a negative electrode layer containing a negative electrode active material, and generally further includes a negative electrode current collector and a negative electrode lead connected to the negative electrode current collector.
  • the negative electrode layer in the air battery of the present invention contains a negative electrode active material containing a metal material, an alloy material, and / or a carbon material.
  • metals and alloy materials that can be used for the negative electrode active material include alkali metals such as lithium, sodium, and potassium; group 2 elements such as magnesium and calcium; group 13 elements such as aluminum; zinc, Examples include transition metals such as iron; or alloy materials and compounds containing these metals.
  • the alloy containing lithium element include a lithium aluminum alloy, a lithium tin alloy, a lithium lead alloy, and a lithium silicon alloy.
  • a metal oxide containing a lithium element lithium titanium oxide etc. can be mentioned, for example.
  • metal nitride containing a lithium element examples include lithium cobalt nitride, lithium iron nitride, and lithium manganese nitride. Further, lithium coated with a solid electrolyte can also be used for the negative electrode layer.
  • the negative electrode layer may contain only a negative electrode active material, or may contain at least one of a conductive material and a binder in addition to the negative electrode active material.
  • a negative electrode layer containing only the negative electrode active material can be obtained.
  • a negative electrode layer having a negative electrode active material and a binder can be obtained.
  • the binder is the same as that described in the section “Air electrode layer” described above, and thus the description thereof is omitted here.
  • the conductive material contained in the negative electrode layer is not particularly limited as long as it has conductivity. Examples thereof include carbon materials, perovskite-type conductive materials, porous conductive polymers, and porous metal bodies. be able to.
  • the carbon material may have a porous structure or may not have a porous structure. Specific examples of the carbon material having a porous structure include mesoporous carbon. On the other hand, specific examples of the carbon material having no porous structure include graphite, acetylene black, carbon nanotube, and carbon fiber.
  • the material of the negative electrode current collector in the air battery of the present invention is not particularly limited as long as it has conductivity, and examples thereof include copper, stainless steel, nickel, and carbon. Of these, SUS and Ni are preferably used for the negative electrode current collector.
  • Examples of the shape of the negative electrode current collector include a foil shape, a plate shape, and a mesh (grid) shape.
  • a battery case which will be described later, may have the function of a negative electrode current collector.
  • the electrolyte layer in the air battery of the present invention is held between the air electrode layer and the negative electrode layer, and has a function of exchanging metal ions between the air electrode layer and the negative electrode layer.
  • an electrolytic solution, a gel electrolyte, a solid electrolyte, or the like can be used for the electrolyte layer. These may be used alone or in combination of two or more.
  • an aqueous electrolytic solution and a non-aqueous electrolytic solution can be used.
  • the type of non-aqueous electrolyte is preferably selected as appropriate according to the type of conductive metal ion.
  • a non-aqueous electrolyte used for a lithium-air battery a solution containing a lithium salt and a non-aqueous solvent is usually used.
  • lithium salt examples include inorganic lithium salts such as LiPF 6 , LiBF 4 , LiClO 4, and LiAsF 6 ; LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 (Li—TFSI), LiN (SO 2 C 2 F 5 ) Organic lithium salts such as 2 and LiC (SO 2 CF 3 ) 3 can be mentioned.
  • non-aqueous solvent examples include ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), ethyl carbonate, butylene carbonate, ⁇ -butyrolactone, sulfolane.
  • the concentration of the lithium salt in the nonaqueous electrolytic solution is, for example, in the range of 0.5 to 3 mol / L.
  • non-aqueous electrolyte or non-aqueous solvent for example, N-methyl-N-propylpiperidinium bis (trifluoromethanesulfonyl) imide (PP13TFSI), N-methyl-N-propylpyrrolidinium bis ( Trifluoromethanesulfonyl) imide (P13TFSI), N-butyl-N-methylpyrrolidinium bis (trifluoromethanesulfonyl) imide (P14TFSI), N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium bis
  • Low volatile liquids such as ionic liquids such as (trifluoromethanesulfonyl) imide (DEMETFSI), N, N, N-trimethyl-N-propylammonium bis (trifluoromethanesulfonyl) imide (TMPATFSI) are used.
  • non-aqueous solvents in order to advance the oxygen reduction reaction represented by the formula (II) or (III), it is more preferable to use an electrolyte solution that is stable to oxygen radicals.
  • non-aqueous solvents include acetonitrile (AcN), 1,2-dimethoxyethane (DME), dimethyl sulfoxide (DMSO), N-methyl-N-propylpiperidinium bis (trifluoromethanesulfonyl) imide ( PP13TFSI), N-methyl-N-propylpyrrolidinium bis (trifluoromethanesulfonyl) imide (P13TFSI), N-butyl-N-methylpyrrolidinium bis (trifluoromethanesulfonyl) imide (P14TFSI), and the like.
  • AcN acetonitrile
  • DME 1,2-dimethoxyethane
  • DMSO dimethyl sulfoxide
  • PP13TFSI
  • the type of the aqueous electrolyte is appropriately selected according to the type of the conductive metal ion.
  • a solution containing a lithium salt and water is usually used as an aqueous electrolyte used for a lithium air battery.
  • the lithium salt include lithium salts such as LiOH, LiCl, LiNO 3 , and CH 3 CO 2 Li.
  • the gel electrolyte used in the present invention is usually gelled by adding a polymer to a non-aqueous electrolyte solution.
  • a non-aqueous gel electrolyte of a lithium-air battery is formed by adding a polymer such as polyethylene oxide (PEO), polyacrylonitrile (PAN), or polymethyl methacrylate (PMMA) to the non-aqueous electrolyte solution described above. Is obtained.
  • a LiTFSI LiN (CF 3 SO 2 ) 2
  • -PEO-based non-aqueous gel electrolyte is preferable.
  • a sulfide-based solid electrolyte As the solid electrolyte, a sulfide-based solid electrolyte, an oxide-based solid electrolyte, a polymer electrolyte, or the like can be used.
  • Specific examples of the sulfide-based solid electrolyte include Li 2 S—P 2 S 5 , Li 2 S—P 2 S 3 , Li 2 S—P 2 S 3 —P 2 S 5 , and Li 2 S—SiS.
  • the oxide-based solid electrolyte LiPON (lithium phosphate oxynitride), Li 1.3 Al 0.3 Ti 0.7 (PO 4 ) 3 , La 0.51 Li 0.34 TiO Examples include 0.74 , Li 3 PO 4 , Li 2 SiO 2 , Li 2 SiO 4 and the like.
  • the polymer electrolyte is preferably selected as appropriate according to the type of metal ion to be conducted.
  • a polymer electrolyte of a lithium air battery usually contains a lithium salt and a polymer.
  • the lithium salt the above-described inorganic lithium salt and / or organic lithium salt can be used.
  • the polymer is not particularly limited as long as it forms a complex with a lithium salt, and examples thereof include polyethylene oxide.
  • the air battery of the present invention may include a separator between the air electrode and the negative electrode.
  • the separator include porous membranes such as polyethylene and polypropylene; and nonwoven fabrics made of resin such as polypropylene and nonwoven fabrics such as glass fiber nonwoven fabric. These materials that can be used for the separator can also be used as a support material for the electrolytic solution by impregnating the above-described electrolytic solution.
  • the air battery of the present invention usually includes a battery case that houses an air electrode, a negative electrode, an electrolyte layer, and the like.
  • a battery case that houses an air electrode, a negative electrode, an electrolyte layer, and the like.
  • Specific examples of the shape of the battery case include a coin type, a flat plate type, a cylindrical type, and a laminate type.
  • the battery case may be an open-air battery case or a sealed battery case.
  • An open-air battery case is a battery case having a structure in which at least the air electrode layer can sufficiently come into contact with the atmosphere.
  • a gas (air) introduction pipe and an exhaust pipe are provided in the sealed battery case.
  • the gas to be introduced / exhausted preferably has a high oxygen concentration, more preferably dry air or pure oxygen.
  • An oxygen permeable film or a water repellent film may be provided in the battery case according to the structure of the battery case.
  • Table 1 shows average aspect ratio and average of (002) planes for the CS-CNT unfired product used in Production Example 1, the CS-CNT fired product used in Production Example 2, and the VGCF used in Production Example 3. It is the table
  • Example 1 The air electrode of Production Example 1 was used as the air electrode.
  • an electrolytic solution N-methyl-N-propylpiperidinium bis (trifluoromethanesulfonyl) imide (manufactured by Kanto Chemical Co., PP13TFSI), lithium bis (trifluoromethanesulfonyl) imide (manufactured by Kishida Chemical Co.) at 0.32 mol / kg
  • a solution was prepared so as to have a concentration and stirred and mixed overnight under an argon atmosphere.
  • the nonwoven fabric made from a polypropylene was prepared as a separator.
  • a SUS foil (manufactured by Niraco, SUS304) was prepared as a negative electrode current collector, and metal lithium (manufactured by Honjo Metal) was bonded to one side of the SUS foil to prepare a negative electrode.
  • a case having an oxygen uptake hole on the air electrode side was prepared.
  • the negative electrode current collector-metallic lithium-separator impregnated with electrolyte-CS-CNT air electrode layer containing unfired product-air electrode current collector are stacked in this order from the bottom of the battery case.
  • Each member was accommodated and the air battery of Example 1 was produced. All the above steps were performed in a glove box under a nitrogen atmosphere.
  • Example 2 In Example 1, the air battery of Example 2 was produced using the same member as Example 1 except that the air electrode of Production Example 2 was used instead of the air electrode of Production Example 1.
  • Example 1 an air battery of Comparative Example 1 was produced using the same members as in Example 1 except that the air electrode of Production Example 3 was used instead of the air electrode of Production Example 1.
  • Table 2 below is a table comparing the discharge capacities of the air batteries of Example 1, Example 2, and Comparative Example 1.
  • the air battery of Comparative Example 1 has an average aspect ratio of 50, a d 002 of 0.337 nm, a D / G ratio of 0.065, and a BET specific surface area of 12 m 2 / g. VGCF is included in the air electrode layer.
  • the discharge capacity of the air battery of Comparative Example 1 is 43 mAh / g. Therefore, even when the average aspect ratio is 10 or more, the discharge capacity of the air battery of Comparative Example 1 using the acicular carbon material having a D / G ratio of less than 0.1 is described in Examples 1 and 2 described later. It can be seen that it is less than 40% of the discharge capacity of the air battery.
  • the air cells of Example 1 and Example 2 had an average aspect ratio of 50, d 002 of 0.340 nm or 0.338 nm, and a D / G ratio of 0.833 or 0. 136 and CS-CNT having a BET specific surface area of 47 m 2 / g or 46 m 2 / g in the air electrode layer.
  • the discharge capacity of the air battery of Example 1 is 193 mAh / g
  • the discharge capacity of the air battery of Example 2 is 122 mAh / g. Therefore, the air cell of Example 1 and Example 2 which used the acicular carbon material whose average aspect ratio is 10 or more and D / G ratio is 0.1 or more used the conventional carbon material. It can be seen that the battery has a higher discharge capacity than the air battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inert Electrodes (AREA)
  • Hybrid Cells (AREA)

Abstract

 従来の炭素材料よりも酸素還元反応の反応起点が多い針状炭素材料を空気極層に含む空気電池を提供する。 少なくとも空気極、負極、並びに、当該空気極及び当該負極の間に介在する電解質層を備える空気電池であって、前記空気極が、少なくとも空気極層を備え、前記空気極層が、平均アスペクト比が10以上であり、且つ、D/G比が0.1以上である針状炭素材料を含むことを特徴とする、空気電池。

Description

空気電池
 本発明は、従来の炭素材料よりも酸素還元反応の反応起点が多い針状炭素材料を空気極層に含む空気電池に関する。
 空気電池は、金属単体又は金属化合物を負極活物質に、酸素を正極活物質に利用した、充放電可能な電池である。正極活物質である酸素は空気から得られるため、電池内に正極活物質を封入する必要がないことから、理論上、空気電池は、固体の正極活物質を用いる二次電池よりも大きな容量を実現できる。
 空気電池の一種であるリチウム空気電池においては、放電の際、負極では式(I)の反応が進行する。
 2Li→2Li+2e  (I)
 式(I)で生じる電子は、外部回路を経由し、外部の負荷で仕事をした後、空気極に到達する。そして、式(I)で生じたリチウムイオン(Li)は、負極と空気極に挟持された電解質内を、負極側から空気極側に電気浸透により移動する。
 また、放電の際、空気極では式(II)及び式(III)の反応が進行する。
 2Li+O+2e→Li  (II)
 2Li+1/2O+2e→LiO (III)
 生じた過酸化リチウム(Li)及び酸化リチウム(LiO)は、固体として空気極に蓄積される。
 充電時においては、負極において上記式(I)の逆反応、空気極において上記式(II)及び(III)の逆反応がそれぞれ進行し、負極において金属リチウムが再生するため、再放電が可能となる。
 従来、空気極中の導電性材料として、ケッチェンブラック等の球状炭素材料が用いられてきた。しかし、球状炭素材料を用いた場合、初期容量は高いものの、充放電を繰り返した後の容量が大きく低下するという課題があった。このような課題の解決を目的とする技術として、特許文献1には、導電性材料を含有する空気極層を備える空気極、負極、及び非水電解質を備える金属空気二次電池であって、前記導電性材料は、平均アスペクト比が10以上の針状炭素であることを特徴とする金属空気二次電池に関する技術が開示されている。
特開2010-287390号公報
 本発明者が特許文献1に記載された金属空気二次電池についてさらに検討したところ、1回の放電につき取り出せる放電容量が極めて低いことが分かった。
 本発明は、上記実状を鑑みて成し遂げられたものであり、従来の炭素材料よりも酸素還元反応の反応起点が多い針状炭素材料を空気極層に含む空気電池を提供することを目的とする。
 本発明の空気電池は、少なくとも空気極、負極、並びに、当該空気極及び当該負極の間に介在する電解質層を備える空気電池であって、前記空気極が、少なくとも空気極層を備え、前記空気極層が、平均アスペクト比が10以上であり、且つ、D/G比が0.1以上である針状炭素材料を含むことを特徴とする。
 本発明においては、前記針状炭素材料の(002)面の平均面間隔が、0.335nm以上0.370nm未満であることが好ましい。
 本発明においては、前記針状炭素材料のBET比表面積が、10~3000m/gであってもよい。
 本発明においては、前記針状炭素材料がカップスタック型カーボンナノチューブであってもよい。
 本発明によれば、D/G比が0.1以上の針状炭素材料、すなわち、従来の炭素材料よりも酸素還元反応の反応起点が多い針状炭素材料を空気極層に含むため、当該針状炭素材料と、より多くの酸素分子との間の電子の授受が可能となる結果、従来の空気電池よりも高容量化且つ高エネルギー密度化を実現することができる。
カップスタック型カーボンナノチューブの斜視模式図である。 本発明の空気電池の層構成の一例を示す図であって、積層方向に切断した断面を模式的に示した図である。 従来のカーボンナノチューブの斜視模式図である。
 本発明の空気電池は、少なくとも空気極、負極、並びに、当該空気極及び当該負極の間に介在する電解質層を備える空気電池であって、前記空気極が、少なくとも空気極層を備え、前記空気極層が、平均アスペクト比が10以上であり、且つ、D/G比が0.1以上である針状炭素材料を含むことを特徴とする。
 上述したように、ケッチェンブラック等の球状炭素粒子を空気極層に用いた空気電池は、初期容量は高いものの耐久劣化が著しいため、繰り返し使用することは不可能であった。一方、上記特許文献1に記載されているような、VGCF等の針状炭素材料を空気極層に用いた空気電池は、本発明者が検討した結果、繰り返しの使用に耐えるものであったが、1回の放電につき取り出せる放電容量が極めて低いことが分かった。
 VGCF等の針状炭素材料を用いた場合に、1回あたりの放電容量が大幅に低い理由として、針状炭素材料中の反応起点の数、間隔、及び反応場所の面積が、球状炭素粒子等の従来の炭素材料よりも格段に小さいということが考えられる。ここでいう反応とは、主に上記式(II)及び/又は(III)に示す酸素還元反応である。
 反応起点の数の指標としては、D/G比が例示できる。D/G比とは、針状炭素材料のラマンスペクトルにおける、1580cm-1(Gバンド)のピーク強度に対する1360cm-1(Dバンド)のピーク強度の比を指す。Dバンドは、針状炭素材料において反応起点になりやすい欠陥部位、例えば、カーボンエッジ部や歪のある箇所等に対応するピークである。一方、Gバンドは、針状炭素材料において反応起点になりにくい黒鉛部位、例えば、炭素網面等に対応するピークである。したがって、D/G比の値が大きいほど、反応起点の数が多くなると考えられる。
 なお、Dバンドに対応する欠陥部位は、酸素分子が針状炭素材料から最初に電子を受け取る場所であると考えられる。酸素分子が電子を受け取った結果生成する酸素ラジカル、及び電解質層を伝導した金属イオン等が反応し、Dバンドに対応する欠陥部位、及びGバンドに対応する黒鉛部位に金属酸化物が析出すると考えられる。
 反応起点の間隔の指標として、X線回折法又は粉末X線回折法により求められる、針状炭素材料の(002)面の平均面間隔d002が例示できる。一般的に、d002の値が小さいほど、反応起点であるカーボンエッジ部同士の間隔が小さくなると考えられる。
 反応場所の面積の指標として、N吸着法により求められる、BET比表面積が例示できる。BET比表面積は、必ずしも電気化学的に有効な表面積とは限らないが、BET比表面積が大きいほど放電容量が高くなると考えられる。なお、BET比表面積は、上記Dバンドに対応する欠陥部位の面積、及び上記Gバンドに対応する黒鉛部位の面積の和に相当する。
 本発明者は、平均アスペクト比及びD/G比がいずれも所定の値以上である針状炭素材料を空気極層に用いることにより、従来の炭素材料よりも酸素還元反応の反応起点が多い針状炭素材料を空気極層に含むこととなるため、当該針状炭素材料と、より多くの酸素分子との間の電子の授受が可能となる結果、当該空気極層を用いた空気電池の容量及びエネルギー密度を、いずれも従来の空気電池より向上できることを見出し、本発明を完成させた。
 本発明に用いられる針状炭素材料の平均アスペクト比は10以上である。針状炭素材料の平均アスペクト比が10未満である場合には、平均アスペクト比が小さすぎるため、空気極の作成時に当該針状炭素材料について粉砕混合等をした際、当該針状炭素材料が破砕され、球状炭素材料に似た構造の炭素材料となることが考えられる。当該破砕後の炭素材料を空気極に用いると、球状炭素材料を空気極に用いた場合と同様に、炭素材料の電子伝導性及び機械的強度がいずれも低下し、空気電池の顕著なサイクル劣化を引き起こすおそれがある。
 本発明に用いられる針状炭素材料の平均アスペクト比は、20~100であることが好ましく、30~70であることがより好ましい。
 本発明において、針状炭素材料の平均アスペクト比を測定する方法としては、例えば、透過型電子顕微鏡(Transmission Electron Microscope;以下、TEMと称する)画像において、長径及び短径を測定し、当該長径及び短径からアスペクト比を算出する方法等が挙げられる。
 本発明に用いられる針状炭素材料のD/G比は0.1以上である。針状炭素材料のD/G比が0.1未満である場合には、上述したように、酸素還元に関わる反応起点の数が少なすぎるため、当該針状炭素材料を空気電池の空気極に使用した場合に、空気電池の放電容量が小さくなるおそれがある。
 本発明に用いられる針状炭素材料のD/G比は、0.6~1.0であることが好ましく、0.8~1.0であることがより好ましい。
 本発明において、針状炭素材料のD/G比を測定する方法としては、例えば、上述したように、針状炭素材料のラマンスペクトル中のGバンド及びDバンドのピーク強度から算出する方法が挙げられる。
 本発明に用いられる針状炭素材料の(002)面の平均面間隔、すなわちd002は、0.335nm以上0.370nm未満であることが好ましい。d002が0.335nm未満である針状炭素材料は理論上存在しない。また、針状炭素材料のd002が0.370nm以上である場合には、針状炭素材料の結晶性が低すぎるため、針状炭素材料と酸素分子との間の電子授受が十分に行われないおそれがある。
 本発明に用いられる針状炭素材料のd002は、0.335~0.360nmであることがより好ましく、0.335~0.350nmであることがさらに好ましい。
 本発明において、針状炭素材料のd002を測定する方法としては、例えば、針状炭素材料のXRDスペクトル中の(002)面の回折ピークの半値幅から算出する方法が挙げられる。
 本発明に用いられる針状炭素材料のBET比表面積は、大きければ大きいほどよいが、例えば、10~3000m/gであってもよい。BET比表面積が小さすぎると、酸素還元に関わる反応面積が小さすぎるため、当該針状炭素材料を空気電池の空気極に使用した場合に、空気電池の放電容量が小さくなりすぎるおそれがある。
 本発明に用いられる針状炭素材料のBET比表面積は、10~1600m/gであることが好ましい。
 本発明において、針状炭素材料のBET比表面積を測定する方法としては、例えば、当該針状炭素材料について、77Kの温度条件下でN吸着測定を行い、BET法により算出する方法が挙げられる。
 上記平均アスペクト比、D/G比、d002、及びBET比表面積の条件を全て満たす針状炭素材料の典型例としては、カップスタック型カーボンナノチューブが例示できる。
 図3は、従来のカーボンナノチューブの斜視模式図である。なお、説明の簡便のため、図3には単層カーボンナノチューブを示し、且つ、炭素原子及び炭素-炭素結合の描写は省略する。
 カーボンナノチューブ300は、主にsp炭素原子からなる円筒であり、その径は円筒全体にわたり略等しい。カーボンナノチューブ300は、主に、円筒の先端に相当するカーボンエッジ部1、及び、円筒の腹の部分に相当する炭素網面2からなる。このように、従来のカーボンナノチューブは、上述したDバンドに対応するカーボンエッジ部1の面積が小さく、上述したGバンドに対応する炭素鋼面2の面積が大きいため、D/G比の値が小さく、酸素還元に関与する反応起点の数が少ないと考えられる。
 図1は、カップスタック型カーボンナノチューブの斜視模式図である。なお、説明の簡便のため、炭素原子及び炭素-炭素結合の描写は省略する。また、図1は、必ずしも、本発明に使用される針状炭素材料のアスペクト比や(002)面の平均面間隔d002等のパラメータを反映させた模式図であるとは限らない。
 カップスタック型カーボンナノチューブ100は、カップ型ナノチューブが2以上積み重なった、いわゆるナノチューブの集合体である。ここで、カップ型ナノチューブとは、主にsp炭素原子からなる円筒であるが、図1に示すように、円筒の両端で径が異なり、且つ、円筒全体の径が連続的に増加又は減少するナノチューブのことを指す。図1から分かるように、カップスタック型カーボンナノチューブ100は、反応起点であるカーボンエッジ部1が規則的に並んで、集合体の表面に現れている。また、カップスタック型カーボンナノチューブ100は、複数のカップ型ナノチューブが互いに積み重なった構造をとるため、あるカップ型ナノチューブの炭素網面2の一部又は略全部が、他のカップ型ナノチューブの炭素鋼面2の内側に隠れる。したがって、カップスタック型カーボンナノチューブ100は、従来のカーボンナノチューブと比較して、上述したDバンドに対応するカーボンエッジ部1の面積がより大きく、上述したGバンドに対応する炭素鋼面2の面積がより小さいため、D/G比の値がより大きく、酸素還元に関与する反応起点の数がより多いと考えられる。したがって、カップスタック型カーボンナノチューブを空気極層に用いることにより、カップスタック型カーボンナノチューブと、より多くの酸素分子との電子の授受が可能となる結果、従来の空気電池よりも高容量化、高エネルギー密度化が実現できる。
 上記平均アスペクト比、D/G比、d002、及びBET比表面積の条件を全て満たす針状炭素材料の他の例としては、カーボンナノファイバーを酸処理した炭素材料等が挙げられる。なお、上記条件を全て満たす針状炭素材料は、チューブ構造を含んでいてもよく、また、チューブ構造を含まなくてもよい。
 本発明に用いられる針状炭素材料は、未焼成品を用いてもよいが、焼成したものを使用してもよい。針状炭素材料の焼成温度は、3000℃以下であることが好ましく、1500℃以下であることがより好ましい。
 図2は、本発明の空気電池の層構成の一例を示す図であって、積層方向に切断した断面を模式的に示した図である。なお、本発明の空気電池は、必ずしもこの例のみに限定されるものではない。
 空気電池200は、空気極層12及び空気極集電体14を備える空気極16と、負極活物質層13及び負極集電体15を備える負極17と、空気極16及び負極17に挟持される電解質層11を備える。
 以下、本発明の空気電池を構成する、空気極、負極、及び電解質層、並びに本発明の空気電池に好適に使用されるセパレータ及び電池ケースについて、詳細に説明する。
 (空気極)
 本発明の空気電池の空気極は空気極層を備え、通常、空気極集電体、及び当該空気極集電体に接続された空気極リードをさらに備える。
 (空気極層)
 本発明の空気電池中の空気極層は、少なくとも上述した針状炭素材料を含有する。さらに、必要に応じて、触媒、結着剤等を含有していても良い。
 上記空気極層中の針状炭素材料の含有割合としては、空気極層全体の質量を100質量%としたとき、10~99質量%であることが好ましく、20~95質量%であることがより好ましい。針状炭素材料の含有割合が少なすぎると、反応場が減少し、電池容量の低下が生じるおそれがある。一方、針状炭素材料の含有割合が多すぎると、後述する触媒の含有割合が相対的に減り、充分な触媒機能を発揮できないおそれがある。
 上記空気極層に用いられる触媒としては、例えば、酸素活性触媒が挙げられる。酸素活性触媒の例としては、例えば、ニッケル、パラジウム及び白金等の白金族;コバルト、マンガン又は鉄等の遷移金属を含むペロブスカイト型酸化物;ルテニウム、イリジウム又はパラジウム等の貴金属酸化物を含む無機化合物;ポルフィリン骨格又はフタロシアニン骨格を有する金属配位有機化合物;酸化マンガン等が挙げられる。
 電極反応がよりスムーズに行われるという観点から、上述した針状炭素材料に触媒が担持されていてもよい。
 上記空気極層は、少なくとも針状炭素材料を含有してれば良いが、さらに、針状炭素材料を固定化する結着剤を含有することが好ましい。結着剤としては、例えばポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)や、スチレン・ブタジエンゴム(SBRゴム)等のゴム系樹脂等を挙げることができる。空気極層における結着剤の含有割合としては、特に限定されるものではないが、例えば、空気極層全体の質量を100質量%としたとき、30質量%以下、中でも1~10質量%であることが好ましい。
 空気極層の作製方法としては、例えば、上記針状炭素材料を含む空気極層の原料等を、混合して圧延する方法や、当該原料に溶媒を加えてスラリーを調製し、後述する空気極集電体に塗布する方法等が挙げられるが、必ずしもこれらの方法に限定されない。スラリーの空気極集電体への塗布方法としては、例えば、スプレー法、スクリーン印刷法、ドクターブレード法、グラビア印刷法、ダイコート法等の公知の方法が挙げられる。
 上記空気極層の厚さは、空気電池の用途等により異なるものであるが、例えば2~500μm、中でも5~300μmであることが好ましい。
 (空気極集電体)
 本発明の空気電池中の空気極集電体は、空気極層の集電を行うものである。空気極集電体の材料としては、導電性を有するものであれば特に限定されるものではないが、例えばステンレス、ニッケル、アルミニウム、鉄、チタン、カーボン等を挙げることができる。空気極集電体の形状としては、例えば箔状、板状およびメッシュ(グリッド)状等を挙げることができる。中でも、本発明においては、集電効率に優れるという観点から、空気極集電体の形状がメッシュ状であることが好ましい。この場合、通常、空気極層の内部にメッシュ状の空気極集電体が配置される。さらに、本発明の空気電池は、メッシュ状の空気極集電体により集電された電荷を集電する別の空気極集電体(例えば箔状の集電体)を備えていても良い。また、本発明においては、後述する電池ケースが空気極集電体の機能を兼ね備えていても良い。
 空気極集電体の厚さは、例えば10~1000μmの範囲内、中でも20~400μmの範囲内であることが好ましい。
 (負極)
 本発明の空気電池中の負極は、好ましくは負極活物質を含有する負極層を備え、通常、負極集電体、及び当該負極集電体に接続された負極リードをさらに備える。
 (負極層)
 本発明の空気電池中の負極層は、金属材料、合金材料、及び/又は炭素材料を含む負極活物質を含有する。負極活物質に用いることができる金属及び合金材料としては、具体的には、リチウム、ナトリウム、カリウム等のアルカリ金属;マグネシウム、カルシウム等の第2族元素;アルミニウム等の第13族元素;亜鉛、鉄等の遷移金属;又は、これらの金属を含有する合金材料や化合物を例示することができる。
 リチウム元素を含有する合金としては、例えばリチウムアルミニウム合金、リチウムスズ合金、リチウム鉛合金、リチウムケイ素合金等を挙げることができる。また、リチウム元素を含有する金属酸化物としては、例えばリチウムチタン酸化物等を挙げることができる。また、リチウム元素を含有する金属窒化物としては、例えばリチウムコバルト窒化物、リチウム鉄窒化物、リチウムマンガン窒化物等を挙げることができる。また、負極層には、固体電解質をコートしたリチウムを用いることもできる。
 また、上記負極層は、負極活物質のみを含有するものであっても良く、負極活物質の他に、導電性材料及び結着剤の少なくとも一方を含有するものであっても良い。例えば、負極活物質が箔状である場合は、負極活物質のみを含有する負極層とすることができる。一方、負極活物質が粉末状である場合は、負極活物質及び結着剤を有する負極層とすることができる。なお、結着剤については、上述した「空気極層」の項に記載した内容と同様であるので、ここでの説明は省略する。
 負極層が含有する導電性材料としては、導電性を有するものであれば特に限定されるものではないが、例えば炭素材料、ペロブスカイト型導電性材料、多孔質導電性ポリマー及び金属多孔体等を挙げることができる。炭素材料は、多孔質構造を有するものであっても良く、多孔質構造を有しないものであっても良い。多孔質構造を有する炭素材料としては、具体的にはメソポーラスカーボン等を挙げることができる。一方、多孔質構造を有しない炭素材料としては、具体的にはグラファイト、アセチレンブラック、カーボンナノチューブ及びカーボンファイバー等を挙げることができる。
 (負極集電体)
 本発明の空気電池中の負極集電体の材料としては、導電性を有するものであれば特に限定されるものではないが、例えば銅、ステンレス、ニッケル、カーボン等を挙げることができる。負極集電体は、これらの内、SUS及びNiを用いることが好ましい。上記負極集電体の形状としては、例えば箔状、板状およびメッシュ(グリッド)状等を挙げることができる。本発明においては、後述する電池ケースが負極集電体の機能を兼ね備えていても良い。
 (電解質層)
 本発明の空気電池中の電解質層は、空気極層及び負極層の間に保持され、空気極層及び負極層との間で金属イオンを交換する働きを有する。
 電解質層には、電解液、ゲル電解質、及び固体電解質等を用いることができる。これらは、1種類のみを単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
 電解液としては、水系電解液及び非水系電解液を用いることができる。
 非水系電解液の種類は、伝導する金属イオンの種類に応じて、適宜選択することが好ましい。例えば、リチウム空気電池に用いる非水系電解液としては、通常、リチウム塩及び非水溶媒を含有したものを用いる。上記リチウム塩としては、例えばLiPF、LiBF、LiClO及びLiAsF等の無機リチウム塩;LiCFSO、LiN(SOCF(Li-TFSI)、LiN(SO及びLiC(SOCF等の有機リチウム塩等を挙げることができる。上記非水溶媒としては、例えばエチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、エチルカーボネート、ブチレンカーボネート、γ-ブチロラクトン、スルホラン、アセトニトリル(AcN)、ジメトキシメタン、1,2-ジメトキシエタン(DME)、1,3-ジメトキシプロパン、ジエチルエーテル、テトラエチレングリコールジメチルエーテル(TEGDME)、テトラヒドロフラン、2-メチルテトラヒドロフラン、ジメチルスルホキシド(DMSO)及びこれらの混合物等を挙げることができる。非水系電解液におけるリチウム塩の濃度は、例えば0.5~3mol/Lの範囲内である。
 本発明においては、非水系電解液又は非水溶媒として、例えば、N-メチル-N-プロピルピペリジニウム ビス(トリフルオロメタンスルホニル)イミド(PP13TFSI)、N-メチル-N-プロピルピロリジニウム ビス(トリフルオロメタンスルホニル)イミド(P13TFSI)、N-ブチル-N-メチルピロリジニウム ビス(トリフルオロメタンスルホニル)イミド(P14TFSI)、N,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウム ビス(トリフルオロメタンスルホニル)イミド(DEMETFSI)、N,N,N-トリメチル-N-プロピルアンモニウム ビス(トリフルオロメタンスルホニル)イミド(TMPATFSI)に代表されるような、イオン性液体等の低揮発性液体を用いても良い。
 上記非水溶媒のうち、上記式(II)又は(III)で表される酸素還元反応を進行させるために、酸素ラジカルに安定な電解液溶媒を用いることがより好ましい。このような非水溶媒の例としては、アセトニトリル(AcN)、1,2-ジメトキシエタン(DME)、ジメチルスルホキシド(DMSO)、N-メチル-N-プロピルピペリジニウム ビス(トリフルオロメタンスルホニル)イミド(PP13TFSI)、N-メチル-N-プロピルピロリジニウム ビス(トリフルオロメタンスルホニル)イミド(P13TFSI)、N-ブチル-N-メチルピロリジニウム ビス(トリフルオロメタンスルホニル)イミド(P14TFSI)等が挙げられる。
 水系電解液の種類は、伝導する金属イオンの種類に応じて、適宜選択することが好ましい。例えば、リチウム空気電池に用いる水系電解液としては、通常、リチウム塩及び水を含有したものを用いる。上記リチウム塩としては、例えばLiOH、LiCl、LiNO、CHCOLi等のリチウム塩等を挙げることができる。
 本発明に用いられるゲル電解質は、通常、非水系電解液にポリマーを添加してゲル化したものである。例えば、リチウム空気電池の非水ゲル電解質は、上述した非水系電解液に、ポリエチレンオキシド(PEO)、ポリアクリルニトリル(PAN)又はポリメチルメタクリレート(PMMA)等のポリマーを添加し、ゲル化することにより得られる。本発明においては、LiTFSI(LiN(CFSO)-PEO系の非水ゲル電解質が好ましい。
 固体電解質としては、硫化物系固体電解質、酸化物系固体電解質、及びポリマー電解質等を用いることができる。
 硫化物系固体電解質としては、具体的には、LiS-P、LiS-P、LiS-P-P、LiS-SiS、LiS-SiS、LiS-B、LiS-GeS、LiI-LiS-P、LiI-LiS-SiS-P、LiS-SiS-LiSiO、LiS-SiS-LiPO、LiPS-LiGeS、Li3.40.6Si0.4、Li3.250.25Ge0.76、Li4-xGe1-x等を例示することができる。
 酸化物系固体電解質としては、具体的には、LiPON(リン酸リチウムオキシナイトライド)、Li1.3Al0.3Ti0.7(PO、La0.51Li0.34TiO0.74、LiPO、LiSiO、LiSiO等を例示することができる。
 ポリマー電解質は、伝導する金属イオンの種類に応じて、適宜選択することが好ましい。例えば、リチウム空気電池のポリマー電解質は、通常、リチウム塩及びポリマーを含有する。リチウム塩としては、上述した無機リチウム塩、及び/又は有機リチウム塩を使用できる。ポリマーとしては、リチウム塩と錯体を形成するものであれば特に限定されるものではなく、例えば、ポリエチレンオキシド等が挙げられる。
 (セパレータ)
 本発明の空気電池は、空気極及び負極の間に、セパレータを備えていてもよい。上記セパレータとしては、例えばポリエチレン、ポリプロピレン等の多孔膜;及びポリプロピレン等の樹脂製の不織布、ガラス繊維不織布等の不織布等を挙げることができる。
 セパレータに使用できるこれらの材料は、上述した電解液を含浸させることにより、電解液の支持材として使用することもできる。
 (電池ケース)
 本発明の空気電池は、通常、空気極、負極、電解質層等を収納する電池ケースを備える。電池ケースの形状としては、具体的にはコイン型、平板型、円筒型、ラミネート型等を挙げることができる。電池ケースは、大気開放型の電池ケースであっても良く、密閉型の電池ケースであっても良い。大気開放型の電池ケースは、少なくとも空気極層が十分に大気と接触可能な構造を有する電池ケースである。一方、電池ケースが密閉型電池ケースである場合は、密閉型電池ケースに、気体(空気)の導入管及び排気管が設けられることが好ましい。この場合、導入・排気する気体は、酸素濃度が高いことが好ましく、乾燥空気や純酸素であることがより好ましい。また、放電時には酸素濃度を高くし、充電時には酸素濃度を低くすることが好ましい。
 電池ケース内には、電池ケースの構造に応じて、酸素透過膜や、撥水膜を設けてもよい。
 以下に、実施例及び比較例を挙げて、本発明を更に具体的に説明するが、本発明は、これらの実施例のみに限定されるものではない。
 1.空気極の作製
 [製造例1]
 まず、カップスタック型カーボンナノチューブ(GSIクレオス製;以下、CS-CNTと称する。)未焼成品、及びPTFEバインダー(ダイキン製)を、CS-CNT:PTFE=90質量%:10質量%の割合で混合した。次に、当該混合物をロールプレスにより圧延し、乾燥させ、適宜切断し、空気極層を作製した。続いて、空気極集電体として、SUSメッシュ(ニラコ製、SUS304製100メッシュ)を、当該空気極層の一面側に貼付け、製造例1の空気極を得た。
 [製造例2]
 まず、CS-CNT(GSIクレオス製)を、2800℃の温度条件下で焼成した。次に、当該焼成後のCS-CNT、及びPTFEバインダー(ダイキン製)を、CS-CNT:PTFE=90質量%:10質量%の割合で混合した。あとは、製造例1と同様に、圧延、乾燥等を行って空気極層を作製した。続いて、空気極集電体として、SUSメッシュ(ニラコ製、SUS304製100メッシュ)を、当該空気極層の一面側に貼付け、製造例2の空気極を得た。
 [製造例3]
 まず、気相成長炭素繊維(昭和電工製;以下、VGCFと称する。)、及びPTFEバインダー(ダイキン製)を、VGCF:PTFE=90質量%:10質量%の割合で混合した。次に、当該混合物をロールプレスにより圧延し、乾燥させ、適宜切断し、空気極層を作製した。続いて、空気極集電体として、SUSメッシュ(ニラコ製、SUS304製100メッシュ)を、当該空気極層の一面側に貼付け、製造例3の空気極を得た。
 2.炭素材料の評価
 製造例1に使用したCS-CNT未焼成品、製造例2に使用したCS-CNT焼成品、及び製造例3に使用したVGCFについて、平均アスペクト比、(002)面の平均面間隔d002、D/G比、及びBET比表面積を測定した。
 2-1.平均アスペクト比の測定
 上記各炭素材料について、TEM画像において、ある1つの炭素材料粒子について、長径及び短径を測定した。当該長径を当該短径で除した値を、その炭素材料粒子のアスペクト比とした。このようなTEM観察によるアスペクト比の算出を、同じ種類の300個程度の炭素材料粒子について行い、これらの炭素材料粒子のアスペクト比の平均を、その炭素材料の平均アスペクト比とした。
 TEM観察条件の詳細は以下の通りである。
 透過型電子顕微鏡:FEI社製、Tecnai
 加速電圧:300kV
 2-2.(002)面の平均面間隔d002の測定
 上記各炭素材料について、粉末X線回折法により、XRDパターンを測定し、(002)面のピークの半値幅位置から、(002)面の平均面間隔d002を算出した。粉末X線回折測定の詳細な測定条件及び解析法は以下の通りである。
 線源:CuKα
 管電圧:40kV
 管電流:40mA
 解析法:FT法
 2-3.D/G比の測定
 上記各炭素材料について、レーザーラマン分光光度計により、488nmのレーザー光源を用いてラマン測定を行った。得られた各炭素材料のラマンスペクトルについて、ベースラインを差し引いた1360cm-1(Dバンド)及び1580cm-1(Gバンド)のピーク強度を算出し、Gバンドのピーク強度に対するDバンドのピーク強度を算出した。
 各炭素材料に対して任意の場所にて3点ずつ測定を行い、各ピーク強度比を算出し、3点の各ピーク強度比の平均を、その炭素材料のD/G比とした。
 2-4.BET比表面積の測定
 上記各炭素材料について、77Kの温度条件下でN吸着測定を行い、BET法によりBET比表面積を算出した。
 下記表1は、製造例1に使用したCS-CNT未焼成品、製造例2に使用したCS-CNT焼成品、及び製造例3に使用したVGCFについて、平均アスペクト比、(002)面の平均面間隔d002、D/G比、及びBET比表面積を比較した表である。
Figure JPOXMLDOC01-appb-T000001
 3.空気電池の作製
 [実施例1]
 空気極として、製造例1の空気極を使用した。
 電解液として、N-メチル-N-プロピルピペリジニウム ビス(トリフルオロメタンスルホニル)イミド(関東化学製、PP13TFSI)に、リチウムビス(トリフルオロメタンスルホニル)イミド(キシダ化学製)を0.32mol/kgの濃度となるように溶解させ、アルゴン雰囲気下で一晩攪拌混合したものを用意した。また、セパレータとしてポリプロピレン製不織布を用意した。
 負極集電体としてSUS箔(ニラコ製、SUS304)を用意し、当該SUS箔の一面側に金属リチウム(本城金属製)を貼り合わせて、負極を作製した。
 電池ケースとして、空気極側に酸素取り込み孔を有するケースを用意した。
 電池ケースの底から、負極集電体-金属リチウム-電解液を含浸させたセパレータ-CS-CNT未焼成品を含む空気極層-空気極集電体の順に積層するように、電池ケース内に各部材を収納し、実施例1の空気電池を作製した。
 以上の工程は、全て窒素雰囲気下のグローブボックス内で行った。
 [実施例2]
 実施例1において、製造例1の空気極の替わりに、製造例2の空気極を使用したこと以外は、実施例1と同様の部材を用いて、実施例2の空気電池を作製した。
 [比較例1]
 実施例1において、製造例1の空気極の替わりに、製造例3の空気極を使用したこと以外は、実施例1と同様の部材を用いて、比較例1の空気電池を作製した。
 4.空気電池の放電容量の測定
 実施例1、実施例2、及び比較例1の空気電池について、放電容量を測定した。
 まず、各空気電池を、60℃の温度条件下に3時間放置した。その後、充放電試験装置(ナガノ製、BTS2004H)を用いて、各空気電池の空気極層に純酸素(大陽日酸、99.9%)を供給しながら、60℃の温度条件、且つ、電流密度0.02mA/cmの条件下で、定電流放電測定を行った。得られた放電容量を、各空気極質量で除した値を、その空気電池の放電容量とした。
 下記表2は、実施例1、実施例2、及び比較例1の空気電池について、放電容量を比較した表である。
Figure JPOXMLDOC01-appb-T000002
 5.評価のまとめ
 表1に示すように、比較例1の空気電池は、平均アスペクト比が50、d002が0.337nm、D/G比が0.065、及びBET比表面積が12m/gのVGCFを空気極層に含む。表2に示すように、比較例1の空気電池の放電容量は43mAh/gである。したがって、平均アスペクト比が10以上であっても、D/G比が0.1未満の針状炭素材料を使用した比較例1の空気電池の放電容量は、後述する実施例1及び実施例2の空気電池の放電容量の4割未満であることが分かる。
 一方、表1に示すように、実施例1及び実施例2の空気電池は、平均アスペクト比がいずれも50、d002が0.340nm又は0.338nm、D/G比が0.833又は0.136、及びBET比表面積が47m/g又は46m/gのCS-CNTを空気極層に含む空気電池である。表2に示すように、実施例1の空気電池の放電容量は193mAh/gであり、実施例2の空気電池の放電容量は122mAh/gである。したがって、平均アスペクト比が10以上であり、且つ、D/G比が0.1以上である針状炭素材料を使用した実施例1及び実施例2の空気電池は、従来の炭素材料を使用した空気電池と比較して、高い放電容量を有することが分かる。
1 カーボンエッジ部
2 炭素網面
11 電解質層
12 空気極層
13 負極活物質層
14 空気極集電体
15 負極集電体
16 空気極
17 負極
100 カップスタック型カーボンナノチューブ
200 空気電池
300 従来のカーボンナノチューブ

Claims (4)

  1.  少なくとも空気極、負極、並びに、当該空気極及び当該負極の間に介在する電解質層を備える空気電池であって、
     前記空気極が、少なくとも空気極層を備え、
     前記空気極層が、平均アスペクト比が10以上であり、且つ、D/G比が0.1以上である針状炭素材料を含むことを特徴とする、空気電池。
  2.  前記針状炭素材料の(002)面の平均面間隔が、0.335nm以上0.370nm未満である、請求の範囲第1項に記載の空気電池。
  3.  前記針状炭素材料のBET比表面積が、10~3000m/gである、請求の範囲第1項又は第2項に記載の空気電池。
  4.  前記針状炭素材料がカップスタック型カーボンナノチューブである、請求の範囲第1項乃至第3項のいずれか一項に記載の空気電池。
PCT/JP2011/063702 2011-06-15 2011-06-15 空気電池 WO2012172656A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2011/063702 WO2012172656A1 (ja) 2011-06-15 2011-06-15 空気電池
CN201180071583.1A CN103597656A (zh) 2011-06-15 2011-06-15 空气电池
US14/125,704 US20140193720A1 (en) 2011-06-15 2011-06-15 Air battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/063702 WO2012172656A1 (ja) 2011-06-15 2011-06-15 空気電池

Publications (1)

Publication Number Publication Date
WO2012172656A1 true WO2012172656A1 (ja) 2012-12-20

Family

ID=47356683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063702 WO2012172656A1 (ja) 2011-06-15 2011-06-15 空気電池

Country Status (3)

Country Link
US (1) US20140193720A1 (ja)
CN (1) CN103597656A (ja)
WO (1) WO2012172656A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014038692A1 (ja) * 2012-09-10 2014-03-13 国立大学法人 大分大学 空気電池の空気極用炭素材料、及び当該炭素材料を含む空気電池
US20150162620A1 (en) * 2013-12-06 2015-06-11 Industrial Technology Research Institute Air battery and air electrode thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102688057B1 (ko) * 2016-09-27 2024-07-25 삼성전자주식회사 금속공기전지용 양극 및 이를 포함하는 금속공기전지

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001288625A (ja) * 2000-02-04 2001-10-19 Ulvac Japan Ltd グラファイトナノファイバー、電子放出源及びその作製方法、該電子放出源を有する表示素子、並びにリチウムイオン二次電池
JP2002015782A (ja) * 2000-06-30 2002-01-18 Toshiba Corp 非水電解質電池
JP2002348741A (ja) * 2001-03-21 2002-12-04 Morinobu Endo 気相成長法による炭素繊維およびこれを用いた複合材
JP2003051310A (ja) * 2001-05-30 2003-02-21 Gsi Creos Corp リチウム二次電池の電極材およびこれを用いたリチウム二次電池
JP2005125187A (ja) * 2003-10-22 2005-05-19 Fuji Xerox Co Ltd ガス分解器、燃料電池用電極およびその製造方法
JP2009199915A (ja) * 2008-02-22 2009-09-03 Asahi Glass Co Ltd 固体高分子形燃料電池用膜電極接合体およびその製造方法
WO2010084614A1 (ja) * 2009-01-26 2010-07-29 トヨタ自動車株式会社 空気電池
JP2010287390A (ja) * 2009-06-10 2010-12-24 Toyota Motor Corp 金属空気二次電池
WO2011074122A1 (ja) * 2009-12-18 2011-06-23 トヨタ自動車株式会社 空気電池用空気極、及び、当該空気極を備えた空気電池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6194099B1 (en) * 1997-12-19 2001-02-27 Moltech Corporation Electrochemical cells with carbon nanofibers and electroactive sulfur compounds
WO2004035882A2 (en) * 2002-10-17 2004-04-29 Nexen Nano Tech Co., Ltd Ultra-fine fibrous carbon and preparation method thereof
JP3720044B1 (ja) * 2005-03-22 2005-11-24 株式会社物産ナノテク研究所 複合材料
KR101342825B1 (ko) * 2009-04-28 2013-12-17 쇼와 덴코 가부시키가이샤 촉매 및 그 제조 방법 및 그 용도
AU2010241865B2 (en) * 2009-04-30 2014-07-10 University Of Florida Research Foundation Inc. Single wall carbon nanotube based air cathodes

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001288625A (ja) * 2000-02-04 2001-10-19 Ulvac Japan Ltd グラファイトナノファイバー、電子放出源及びその作製方法、該電子放出源を有する表示素子、並びにリチウムイオン二次電池
JP2002015782A (ja) * 2000-06-30 2002-01-18 Toshiba Corp 非水電解質電池
JP2002348741A (ja) * 2001-03-21 2002-12-04 Morinobu Endo 気相成長法による炭素繊維およびこれを用いた複合材
JP2003051310A (ja) * 2001-05-30 2003-02-21 Gsi Creos Corp リチウム二次電池の電極材およびこれを用いたリチウム二次電池
JP2005125187A (ja) * 2003-10-22 2005-05-19 Fuji Xerox Co Ltd ガス分解器、燃料電池用電極およびその製造方法
JP2009199915A (ja) * 2008-02-22 2009-09-03 Asahi Glass Co Ltd 固体高分子形燃料電池用膜電極接合体およびその製造方法
WO2010084614A1 (ja) * 2009-01-26 2010-07-29 トヨタ自動車株式会社 空気電池
JP2010287390A (ja) * 2009-06-10 2010-12-24 Toyota Motor Corp 金属空気二次電池
WO2011074122A1 (ja) * 2009-12-18 2011-06-23 トヨタ自動車株式会社 空気電池用空気極、及び、当該空気極を備えた空気電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014038692A1 (ja) * 2012-09-10 2014-03-13 国立大学法人 大分大学 空気電池の空気極用炭素材料、及び当該炭素材料を含む空気電池
US20150162620A1 (en) * 2013-12-06 2015-06-11 Industrial Technology Research Institute Air battery and air electrode thereof

Also Published As

Publication number Publication date
US20140193720A1 (en) 2014-07-10
CN103597656A (zh) 2014-02-19

Similar Documents

Publication Publication Date Title
KR101738280B1 (ko) 비수 전해질 이차 전지
US11387445B2 (en) Positive electrode for lithium-ion rechargeable battery, lithium-ion rechargeable battery, and method for producing positive electrode for lithium-ion rechargeable battery
US9048511B2 (en) Air electrode for metal-air battery and metal-air battery provided with same
JP6955622B2 (ja) リチウムイオン二次電池
US8518583B2 (en) Air cathode and metal-air battery
JP5392356B2 (ja) 空気電池用空気極、及び、当該空気極を備えた空気電池
WO2012023018A1 (en) Air electrode for metal-air battery, and metal-air battery including the air electrode
US20180123123A1 (en) Lithium ion secondary battery
EP4269361A1 (en) Binder that is composite of single-walled carbon nanotubes and ptfe, and composition for electrode production and secondary battery using same
JP2015018621A (ja) ナトリウム電池用正極活物質およびその製造方法
JP5859936B2 (ja) 空気電池の空気極用炭素材料、及び当該炭素材料を含む空気電池
US12206091B2 (en) Lithium molybdate anode material
WO2012172656A1 (ja) 空気電池
JP6011177B2 (ja) 非水リチウム二次電池
JP2014093227A (ja) 空気電池用空気極、及び当該空気極を備える空気電池
WO2014051458A1 (en) Air cathode including reduced graphite oxide
JP5758731B2 (ja) 非水電解質二次電池
JP3577744B2 (ja) リチウム二次電池正極材料およびニッケル酸リチウムの製造方法
JP2013191284A (ja) 空気電池
JPWO2012172656A1 (ja) 空気電池
JP2013110106A (ja) 空気電池
JP5755604B2 (ja) 金属空気電池用空気極用炭素材料、金属空気電池用空気極及び金属空気電池
JP6459798B2 (ja) 炭素含有シリコン材料及びその製造方法並びに炭素含有シリコン材料を具備する二次電池
JP2014035857A (ja) 空気電池用空気極、及び当該空気極を備える空気電池
JP2014053269A (ja) 空気電池の空気極用炭素材料、当該炭素材料を含む空気電池、及び空気電池の空気極用炭素材料の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11867702

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013520365

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14125704

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11867702

Country of ref document: EP

Kind code of ref document: A1