WO2012157475A1 - Power supply system, method for setting identification information of power supply system, and battery unit - Google Patents
Power supply system, method for setting identification information of power supply system, and battery unit Download PDFInfo
- Publication number
- WO2012157475A1 WO2012157475A1 PCT/JP2012/061813 JP2012061813W WO2012157475A1 WO 2012157475 A1 WO2012157475 A1 WO 2012157475A1 JP 2012061813 W JP2012061813 W JP 2012061813W WO 2012157475 A1 WO2012157475 A1 WO 2012157475A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- unit
- identification information
- battery
- power supply
- master
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 30
- 239000013307 optical fiber Substances 0.000 claims abstract description 46
- 230000006854 communication Effects 0.000 claims abstract description 29
- 238000004891 communication Methods 0.000 claims abstract description 29
- 230000005540 biological transmission Effects 0.000 claims description 15
- 230000008569 process Effects 0.000 claims description 3
- 230000007704 transition Effects 0.000 claims 1
- 230000004044 response Effects 0.000 abstract description 8
- 230000006870 function Effects 0.000 description 9
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 8
- 230000005856 abnormality Effects 0.000 description 8
- 229910001416 lithium ion Inorganic materials 0.000 description 8
- 238000009413 insulation Methods 0.000 description 7
- 238000007599 discharging Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 2
- 230000007175 bidirectional communication Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 2
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052987 metal hydride Inorganic materials 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- -1 nickel metal hydride Chemical class 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229910006467 Li—Ni—Mn—Co Inorganic materials 0.000 description 1
- 229910018539 Ni—Mn—Co Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910000398 iron phosphate Inorganic materials 0.000 description 1
- WBJZTOZJJYAKHQ-UHFFFAOYSA-K iron(3+) phosphate Chemical compound [Fe+3].[O-]P([O-])([O-])=O WBJZTOZJJYAKHQ-UHFFFAOYSA-K 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/4207—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
- H01M10/482—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
- H01M10/441—Methods for charging or discharging for several batteries or cells simultaneously or sequentially
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/46—Accumulators structurally combined with charging apparatus
- H01M10/465—Accumulators structurally combined with charging apparatus with solar battery as charging system
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention provides a power supply system in which a plurality of unit-like battery units capable of supplying power by incorporating a plurality of battery cells connected in series or in parallel can be connected to each battery unit.
- the present invention relates to a method for setting identification information.
- a battery unit with many built-in battery cells that increases both the output voltage and output current can be configured in a unit shape and connected to multiple battery units in series to supply more power.
- a power supply system has been developed. In such a power supply system, the operation of each battery unit is monitored, and when an abnormality occurs in the voltage of some battery units, measures are taken such as detecting and disconnecting or stopping the output.
- identification ID information such as an address for identifying each battery unit.
- work such as providing a dip switch or writing the identification ID in the E 2 PROM in advance has been performed.
- Patent Document 1 proposes several methods for automatically assigning IDs to the respective battery units.
- a method is adopted in which IDs are sequentially assigned by connecting the master unit with a copper wire and performing communication between the master unit and the battery unit.
- IDs are sequentially assigned by connecting the master unit with a copper wire and performing communication between the master unit and the battery unit.
- Patent Document 1 Since optical communication basically eliminates the need for insulation, a high-breakdown-voltage element or insulation structure is not necessary, and safety can be improved.
- optical fibers are generally not capable of two-way communication. If two-way communication is performed using a single optical fiber, it is necessary to provide a light-emitting element and a light-receiving element at each connection, and transmission is time-divisional. As a result, it is necessary to manage the timing of the connection interface, which complicates the configuration of the connection interface.
- bi-directional communication is not possible, an ID cannot be assigned by a conventional method. For this reason, in order to enable full-duplex communication to perform ID assignment, it is necessary to connect two optical fibers 405 between the battery unit 401 and each master unit 402 as shown in FIG.
- connection terminals on the master unit side it is necessary to prepare connection terminals on the master unit side according to the number of battery unit connections.
- the connection terminals of the master unit become enlarged, wiring becomes complicated, and cost and space are increased. This is disadvantageous.
- the present invention has been made in view of such conventional problems.
- SUMMARY OF THE INVENTION The main object of the present invention is to provide a power supply system, a power supply system identification information setting method, and a battery unit capable of automatically assigning identification information while connecting battery units with an optical fiber capable of one-way communication. is there.
- a master unit 2 including a master transmission unit and a master reception unit for performing communication, and a plurality of battery units 1 connected in a daisy chain
- An optical fiber 5 that connects the battery units 1 to each other and the master unit 2 and can send data in one direction, and the plurality of battery units 1 and the master unit via the optical fiber 5.
- each battery unit 1 includes a unit receiver 14 that can receive data from the master transmitter, and a unit transmitter that can transmit data received by the unit receiver 14.
- a series switch 17 that connects between the unit receiver 14 and the unit transmitter 15, the unit receiver 14 and the unit A unit control unit 13 connected in parallel with the series switch 17 between the communication unit 15 and a parallel switch 18 connected between the unit control unit 13 and the unit reception unit 14;
- the master unit 2 transmits an identification information setting request to the battery unit 1 connected to the master transmitter via the optical fiber 5, so that the battery unit 1 receives the unit receiver 14.
- the series switch 17 is turned off, the parallel switch 18 is turned on, and the unit control unit 13 uses the identification information included in the identification information setting request as its own identification information.
- Identification information different from the set identification information for other battery units 1 connected to the unit transmitter 15 of the battery unit 1 It can be transmittable to configure the request to set the. Accordingly, identification information can be sequentially set for battery units connected downstream from the master unit using an optical fiber capable of transmitting data in one direction.
- each battery unit 1 further includes a unit power supply unit 16 for supplying power to the unit control unit 13, and the unit power supply unit 16 is connected to the unit reception unit 14.
- the unit control unit 13 has a standby mode, an identification information setting mode, and an operation mode as operation modes, and the unit reception unit 14 receives identification information from the master unit 2 side.
- the unit power supply unit 16 can be configured to shift the unit control unit 13 from the standby mode to the identification information setting mode. Accordingly, when the master unit issues an identification information setting request, the unit power supply unit can shift the unit control unit to the identification information setting mode on the battery unit side connected to the master unit.
- the battery unit 1 is in a standby mode until identification information is given, and shifts to an operation mode from the standby mode through the identification information setting mode and when the identification information is given.
- the unit control unit 13 is connected to the unit power supply unit 16 via the power supply line PW, and is connected to the parallel switch 18 via the communication line CO. be able to.
- the series switch 17 is ON / OFF controlled by the unit controller 13, and the parallel switch 18 is controlled ON / OFF by the unit power supply 16. Can do.
- each battery unit 1 the series switch 17 can be turned on.
- data sent from the master unit can be sent as it is to the battery unit on the downstream side, so that the battery unit instructed for identification information by the master unit receives the data and performs a predetermined operation. Can be performed.
- the unit controller 13 can turn on the series switch 17 when the identification information is set.
- the data sent from the master unit 2 can be sent as it is to the battery unit on the downstream side, so that the battery unit to which the identification information is instructed by the master unit receives the data and receives the predetermined data. The operation can be performed.
- the standby mode can be set to a power saving mode in which the power consumption of the battery unit 1 is suppressed.
- the identification information is set, in other words, in a state where the battery unit still cannot perform the original operation, it is possible to reduce power consumption and save energy.
- the battery unit 1 further includes at least one battery block 12 in which a plurality of battery cells 11 are connected in series and / or in parallel, and an output of the battery block 12 to the outside. And an output line PL for extraction.
- the connection between battery units can be separated into a high-voltage output line and a signal line, and insulation between them can be achieved.
- a master unit 2 including a master transmission unit and a master reception unit for performing communication, a plurality of battery units 1 connected in a daisy chain, and the plurality And an optical fiber 5 capable of sending data in one direction, and the plurality of battery units 1 and the master unit 2 are connected via the optical fiber 5.
- the step of transmitting an identification information setting request to the downstream battery unit 1 connected to the master transmitter via 1 receives the identification information setting request, shifts from the standby mode to the identification information setting mode, and sets the identification information included in the identification information setting request as its own identification information;
- the identification information is set for the battery unit 1, different identification information is set for the master unit 2 connected to the downstream side of the last-stage battery unit 1.
- identification information can be sequentially set for battery units connected downstream from the master unit using an optical fiber capable of transmitting data in one direction.
- identification information different from the set identification information can be identification information with a predetermined increment added.
- each battery unit 1 receives the data received by the unit receiver 14 and the unit receiver 14 that can receive data from the master transmitter.
- the series switch 17 is turned off and the parallel switch 18 is turned on.
- the unit control section 13 and can be set its own identity.
- the series switch 17 can be turned off in the standby mode.
- each battery unit 1 further includes a unit power supply unit 16 for supplying power to the unit control unit 13, and the unit power supply unit 16 includes: It is connected to the unit receiver 14, the unit controller 13 has a standby mode, an identification information setting mode, and an operation mode as operation modes, and the unit receiver 14 is connected to the master unit.
- the unit power supply unit 16 can be configured to shift the unit control unit 13 from the standby mode to the identification information setting mode.
- the unit power supply unit 16 can shift the unit control unit to the identification information setting mode on the battery unit side connected to the master unit.
- a power supply system can be constructed by connecting a plurality of batteries in a daisy chain, and is connected to the master unit 2 and can automatically set identification information.
- a unit receiver 14 capable of receiving data from the master transmitter of the unit 2; a unit transmitter 15 capable of transmitting data received by the unit receiver 14; and the unit receiver 14 and the unit transmitter 15
- a parallel switch 18 connected between the unit receiver 14 and the unit transmitter 15 with an optical fiber.
- the master unit 2 can identify identification information for the battery unit 1 connected to the master transmitter via the optical fiber 5.
- the battery unit 1 turns off the series switch 17 and turns on the parallel switch 18 in response to receiving the identification information setting request at the unit receiving unit 14 to control the unit.
- the unit 13 sets the identification information included in the identification information setting request as its own identification information, and is set for the other battery unit 1 connected to the unit transmission unit 15 of the battery unit 1.
- a request for setting identification information different from the identification information can be transmitted. Accordingly, identification information can be sequentially set for battery units connected downstream from the master unit using an optical fiber capable of transmitting data in one direction.
- FIG. 1 It is a schematic diagram which shows the connection form of the battery pack which concerns on Example 1 of this invention, and a master unit. It is a block diagram which shows the structure of the battery unit of FIG. It is a flowchart which shows the procedure which sets ID information with respect to each battery unit with the power supply system of FIG. It is a schematic diagram which shows the connection form of the conventional battery unit and master unit.
- each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing.
- the contents described in some examples and embodiments may be used in other examples and embodiments.
- FIG. 1 shows a power supply system 100 according to Embodiment 1 of the present invention.
- a master unit 2 and a plurality of battery units 1 (1A to 1E) are connected via an optical fiber 5 as communication lines.
- the master unit 2 and the battery units 1A to 1E are capable of multidrop connection.
- five battery units 1A to 1E are connected to the master unit 2 in a daisy chain by optical fibers 5, and the battery unit 1E at the final stage is connected to the master unit 2.
- only signal lines are shown, and output lines to which power supply outputs are connected are not shown.
- FIG. 2 shows a block diagram of each battery unit 1.
- Each battery unit 1 incorporates a plurality of battery cells 11, and the output line PL is connected to various loads as a system output to supply driving power as a power source.
- the battery cell 11 of the battery unit 1 can be charged by receiving power from an external commercial power source (for example, late-night power) or solar power generation, and functions as a power supply source by discharging the stored power. .
- the master unit 2 monitors the charge / discharge states of the plurality of battery units 1.
- the battery unit 1 includes a unit receiver 14 and a unit transmitter 15.
- the side connected to the master transmission unit of the master unit 2 is called the upstream side
- the side connected to the master reception unit is called the downstream side.
- Each unit is connected via an optical fiber 5.
- the master unit 2 and the battery unit 1A connect the master transmitter and the unit receiver 14 with an optical fiber 5
- the battery unit 1A and the battery unit 1n are battery units.
- the unit transmitter 15 of 1A and the unit receiver 14 of the battery unit 1n are connected by an optical fiber 5
- the battery unit 1n and the master unit 2 are the master receiver of the unit transmitter 15 of the battery unit 1n and the master unit 2. Are connected to each other by an optical fiber 5.
- the receiving unit and the transmitting unit of each unit are each provided with a terminal for connecting the optical fiber 5, and data is exchanged by optical communication inside each unit.
- optical communication is performed by connecting the optical fiber connection terminal with the optical fiber 5.
- the optical fiber connection terminal is in the form of a connector so that the connectors can be directly engaged with each other, a separate cable for connecting the units such as an optical fiber can be eliminated. (Optical fiber 5)
- the configuration of the optical fiber 5 can be simplified by using a type that can transmit data in one direction between units, that is, a type that can use only one-way communication. Information is transmitted from the most downstream battery unit 1 n to the master receiver of the master unit 2 using the optical fiber 5. (Master unit 2)
- the master unit 2 includes a master reception unit and a master transmission unit as interfaces connected to the battery unit 1. These master receiver and master transmitter are connected to the master controller.
- the master unit 2 is connected to the end of the multi-drop connection, and controls and manages each battery unit 1 by the master control unit.
- the master control unit monitors the output current or monitors the charging state and discharging state of each battery unit 1 to detect an abnormal state. Specifically, the master control unit monitors the current value of each battery unit 1, determines that the current exceeds a predetermined threshold current, determines an overcurrent, issues a warning, and prompts the user to replace the battery unit 1.
- the master unit 2 functions as a protection circuit.
- the master unit 2 has an identification information automatic setting function for automatically setting individual identification information for each battery unit 1 to be connected. Specifically, the master control unit transmits an identification information setting request from the master transmission unit to the battery unit 1 (details will be described later).
- a master control unit can be realized by a gate array such as a DSP, a microprocessor (MPU), a CPU, an LSI, an FPGA, or an ASIC.
- the master unit 2 can detect the parallel number of the battery blocks 12 incorporated in each connected battery unit 1. Further, the protection circuit can automatically change the setting of the threshold current for protecting the battery block 12 from overcurrent according to the detected parallel number of the battery blocks 12.
- the master unit 2 can also be provided with a communication interface for communicating with an external device and a user interface for a user to operate the power supply system as necessary.
- a communication interface for communicating with an external device and a user interface for a user to operate the power supply system as necessary.
- an input device such as a keyboard, a mouse, a touch panel, or a console can be connected to the power controller as an operation unit, so that the maximum amount of current can be defined and the use / nonuse of the connected battery unit can be set.
- the battery unit 1 functions as a slave side of master-slave communication with the master unit 2 as a master.
- Each battery unit 1 includes a unit reception unit 14, a unit transmission unit 15, a unit control unit 13, a unit power supply unit 16, one or more battery blocks 12, and an output line PL.
- the unit receiving unit 14 and the unit transmitting unit 15 serve as communication interfaces with other battery units 1 and the master unit 2. These unit receiver 14 and unit transmitter 15 are connected via a series switch 17. ON / OFF of the series switch 17 is controlled by the unit controller 13. A unit control unit 13 is connected between the unit reception unit 14 and the unit transmission unit 15 in parallel with the series switch 17. Further, a parallel switch 18 is connected between the unit controller 13 and the unit receiver 14. The parallel switch 18 is ON / OFF controlled by the unit power supply unit 16.
- the unit control unit 13 turns on the serial switch 17 so that the data received by the unit reception unit 14 passes through the unit transmission unit 15 as it is and the next stage. It is sent to the battery unit. In other words, since the data sent from the master unit 2 is sent to all the battery units, it is possible to receive the data at the corresponding battery unit and perform a predetermined process according to the identification information included in the data. . (Battery block 12)
- the battery block 12 includes a plurality of rechargeable secondary battery cells 11 connected in series.
- the battery blocks 12 are connected in parallel.
- the connection form of the battery cell 11 and the battery block 12 is not restricted to this connection example, For example, the battery block which connected the some battery cell in parallel can also be connected in series.
- the output of the battery block 12 is output from the output line PL.
- the output lines PL are connected in series or in parallel between the battery blocks 12 to obtain the output of the power supply system.
- each battery unit 1 has an output of 50 V and 33 Ah. If 14 of these battery units 1 are connected in series, an output of 700 V can be obtained in the entire power supply system.
- the signal line from the battery block 12 is also connected to the unit control unit 13, and the temperature and current value of the battery block 12 are managed by the unit control unit 13.
- the high voltage output line and the signal line are separated from each other, and the signal line is the optical fiber 5 so that the insulation between them can be easily achieved. (Unit control unit 13)
- the unit control unit 13 is a member that controls the battery unit 1, and performs data communication with other battery units 1 and the master unit 2, executes an identification information setting mode for acquiring identification information of the battery unit 1, etc. Perform various controls.
- the unit controller 13 can also be realized by a gate array such as a DSP, a microprocessor (MPU), a CPU, an LSI, an FPGA, or an ASIC.
- the unit controller 13 is connected to the unit power source 16 via a power supply line PW, and is connected to the parallel switch 18 via a communication line CO. (Unit power supply unit 16)
- the driving power for driving the unit control unit 13 is supplied from the unit power supply unit 16.
- the unit power supply unit 16 can use a voltage conversion circuit that converts the power supplied from the battery block 12 into an electrode that can drive the unit control unit 13. A switching regulator is preferable. As a result, the battery unit 1 is powered by the built-in battery block 12 and can be driven autonomously without using an external power source.
- the unit power supply unit 16 is connected to the unit reception unit 14.
- the unit controller 13 has a standby mode, an identification information setting mode, and an operation mode as operation modes.
- Standby mode is, for example, a power saving mode with low power consumption. Until the identification information is set, in other words, in a state where the battery unit 1 still cannot perform the original operation, it is possible to reduce power consumption and to save energy.
- the standby mode the series switch 17 and the parallel switch 18 of each battery unit 1 are turned off.
- the standby mode when the unit reception unit 14 receives the identification information setting request, the unit power supply unit 16 shifts the unit control unit 13 from the standby mode to the identification information setting mode. Specifically, in response to the identification information setting request, the unit power supply unit 16 connected to the unit receiving unit 14 is activated, the parallel switch 18 is switched on, and the power supplied to the unit control unit 13 is switched from the standby mode. Change to the power of the identification information setting mode. With this configuration, when the master unit 2 issues an identification information setting request, the battery unit 1 connected to the master unit 2 can automatically shift to the identification information setting mode.
- each unit control unit 13 sets its own identification information according to the identification information included in the identification information setting request, and sets the identification information different from this identification information, so that the next-stage battery An identification information setting request is also transmitted to unit 1. In this way, each battery unit 1 sequentially sets identification information.
- the master unit 2 when the master unit 2 receives the identification information setting request from the battery unit 1 connected to the final stage, the master unit 2 recognizes that the identification information is given to all the connected battery units 1.
- the series switch 17 of each battery unit 1 When the identification information setting is completed, the series switch 17 of each battery unit 1 is turned on to shift to the operation mode. In the operation mode, data sent from the master unit 2 to the battery unit 1 is sent from the unit receiver 14 of each battery unit 1 to the unit transmitter 15 via the series switch 17. Can receive data. Therefore, the master unit 2 can include the identification information of the destination in the data, so that the corresponding battery unit 1 can receive the data and perform a predetermined operation.
- the timing for turning on the series switch 17 is the timing at which the identification information is set in all the battery units, and the unit controller sequentially turns on the series switch 17 every time the identification information is set in each battery unit. You may comprise so that it may become.
- the battery unit 1 does not have a non-volatile memory such as an E2PROM that holds ID information once assigned. For this reason, the ID information of each battery unit 1 disappears when the power of the battery unit 1 is turned off. It has an automatic acquisition function. In addition, when the battery unit 1 is activated, the initial value is uniformly reset. Thereby, there is no need to set different ID information in advance when the battery unit 1 is manufactured or connected, and an advantage that the manufacturing process and installation work can be saved can be obtained.
- the standby mode is set until the identification information given from the master unit is recorded in the identification information memory.
- the operation mode is entered when the identification information is recorded in the identification information memory.
- the power supply system 100 has a function of automatically setting ID information as identification information for each battery unit 1.
- ID information for each battery unit 1.
- a plurality of battery units 1 and a master unit 2 are connected in advance by an optical fiber 5.
- Each battery unit 1 is shipped from the factory, that is, identification information is not given, and is set to an initial value (for example, 255).
- both the series switch 17 and the parallel switch 18 of each battery unit 1 are OFF (open), and are in a standby mode.
- step S1 the master unit 2 requests the battery unit 1 connected downstream to set identification information. Specifically, an identification information setting request is transmitted from the master transmission unit of the master unit 2 to the unit reception unit 14 of the battery unit 1 ⁇ / b> A via the optical fiber 5.
- step S2 the downstream battery unit receives the identification information setting request and shifts to the identification information setting mode. Specifically, when the unit reception unit 14 of the battery unit 1A receives the identification information setting request, the unit power supply unit 16 connected to the unit reception unit 14 is activated, and the parallel switch 18 is switched from OFF to ON. Further, the power supplied to the unit controller 13 is increased from the standby mode to the power in the identification information setting mode.
- the unit controller 13 sets its own identification information (step S3).
- identification information to be set for example, ID number 0
- the unit controller 13 adds a predetermined increment (for example, +1) to the ID number and updates the identification information setting request (step S4). For example, the ID number is rewritten to ID + 1.
- step S5 it is determined whether or not there is a battery unit connected to the downstream side (step S5), and if it exists, the identification information setting is similarly requested to the downstream battery unit (step S6).
- ID number ID n 1
- the battery unit 1n at the last stage sends an identification information setting request (ID number ID n + 1) in which an increment is added to its own identification information ID n .
- step S7 the master unit 2 receives this identification information setting request, recognizes that identification information has been assigned to all connected battery units, and ends the identification information setting mode.
- Each battery unit 1 can be identified by the ID information.
- a known communication method such as RS-485 can be used as the communication method.
- the master unit 2 can obtain battery information (battery voltage, temperature, abnormality information, etc.) of each battery unit 1.
- the battery unit 1 connected to the master unit 2 can automatically shift to the identification information setting mode.
- the operation mode can be automatically shifted to perform a predetermined operation.
- identification information can be automatically assigned to each battery unit 1 in a state where a plurality of battery units 1 are connected, and addresses can be easily set even in one-way communication using the optical fiber 5.
- a large capacity power supply system can be constructed by connecting a plurality of battery units 1. By adjusting the number of connections, the power supply capacity of the entire power supply system can be adjusted, and a power supply system corresponding to the required scale can be flexibly constructed.
- even if an abnormality occurs in any of the battery cells it is possible to reduce the cost required for battery replacement by detecting this on the master unit side and making it possible to replace only the battery unit containing the abnormal battery cell. Can also be obtained.
- Each battery unit 1 has a common hardware configuration.
- three battery blocks 12 in which 13 battery cells 11 are connected in series are connected in parallel.
- Each battery block 12 can be connected to a temperature sensor that detects the temperature of the battery cell 11 and a voltage sensor that detects the block voltage of the battery block 12.
- a thermistor or the like can be used as the temperature sensor.
- the output line PL of the battery unit 1 connected to the plurality of battery blocks 12 is provided with a current detection unit that detects the charge / discharge current of the battery unit 1 and is input to the unit control unit 13.
- the unit control unit 13 detects overcharge and overdischarge of the battery block 12 based on the temperature of the battery cell 11 and the battery cell 11 or the block voltage, and outputs an abnormality signal to the master unit 2 when an abnormality is detected.
- the master unit 2 identifies the battery unit 1 in which an abnormality has occurred, notifies the user of the occurrence of the abnormality, and prompts inspection or replacement. (Battery cell 11)
- the battery cell 11 may be of a type using a square or cylindrical battery can as well as a cylindrical or cylindrical battery cell extending in one direction.
- a secondary battery such as a lithium ion secondary battery, a nickel metal hydride battery, or a nickel cadmium battery can be suitably used.
- a lithium ion secondary battery is desirable. Since the lithium ion secondary battery has a high volume density, it is suitable for reducing the size and weight of the battery pack 20. Also, the lithium ion secondary battery has a wider chargeable / dischargeable temperature range than lead-acid batteries and nickel metal hydride batteries, and can be charged and discharged efficiently.
- an iron phosphate-based material for the positive electrode material of the battery cell 11.
- the positive electrode of the lithium ion secondary battery can be a three-component positive electrode.
- a mixture of Li—Ni—Mn—Co composite oxide and lithium cobalt oxide is used for the positive electrode instead of the conventional lithium cobalt oxide. Since this lithium ion secondary battery uses Ni—Mn—Co composed of three components in addition to lithium for the positive electrode, it is charged with high voltage and has high thermal stability, and the maximum charging voltage is 4.3V. You can increase the capacity.
- the voltage during charging is a voltage that is intentionally lower than the voltage determined to be fully charged in the battery cell 11 to be used.
- a voltage that is intentionally lower than the voltage determined to be fully charged in the battery cell 11 is used.
- a master unit is prepared separately. Instead, the battery unit connected upstream is added to the battery unit by adding the function of the master unit related to the processing of the identification information to the battery unit. You may comprise so that it may operate
- the power supply system, the power supply system identification information setting method, and the battery unit according to the present invention can be suitably used for household power supplies, plant power supplies, and the like that are used by charging with night power or a solar battery panel.
- SYMBOLS 100 Power supply system 1, 1A, 1B, 1C, 1D, 1E, 1n ... Battery unit 2 ... Master unit 5 ... Optical fiber 11 ... Battery cell 12 ... Battery block 13 ... Unit control part 14 ... Unit receiving part 15 ... Unit transmission Unit 16 ... Unit power supply unit 17 ... Series switch 18 ... Parallel switch 401 ... Battery unit 402 ... Master unit 405 ... Optical fiber PL ... Output line PW ... Power supply line CO ... Communication line
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Secondary Cells (AREA)
Abstract
[Problem] To make it possible to automatically assign identification information while connecting between battery units by an optical fiber capable of one-way communication.
[Solution] A power supply system is configured as follows. Each battery unit (1) comprises: a unit's receiving unit (14) capable of receiving data from a master transmitting unit; and a parallel switch (18) connected between a unit's control unit (13) and the unit's receiving unit (14). A master unit (2) transmits an identification information setting request to a battery unit (1) connected to the master transmitting unit through an optical fiber (5) and then, in response to the reception of the identification information setting request by the unit's receiving unit (14), said battery unit (1) turns off a series switch (17) and turns on the parallel switch (18). The unit's control unit (13) sets the identification information included in the identification information setting request as the identification information of said battery unit (1) and can transmit a request for setting identification information different from the set identification information to another battery unit (1) connected to a unit's transmitting unit (15) of said battery unit (1).
Description
本発明は、直列や並列に接続された複数の電池セルを内蔵し電力を供給可能としたユニット状の電池ユニットを、複数台接続可能とした電源システム、及びこの電源システムにおいて、各電池ユニットに識別情報を設定するための方法に関する。
The present invention provides a power supply system in which a plurality of unit-like battery units capable of supplying power by incorporating a plurality of battery cells connected in series or in parallel can be connected to each battery unit. The present invention relates to a method for setting identification information.
電池セルを多数内蔵して出力電圧と出力電流の両方を大きくしている電池ユニットを、ユニット状に構成して、複数台の電池ユニットを直列に接続することにより、より大きな電力を供給可能とした電源システムは開発されている。このような電源システムでは、各電池ユニットの動作を監視し、一部の電池ユニットの電圧などに異常が生じた場合、これを検出して切り離したり出力を停止するなどの対策がなされている。
A battery unit with many built-in battery cells that increases both the output voltage and output current can be configured in a unit shape and connected to multiple battery units in series to supply more power. A power supply system has been developed. In such a power supply system, the operation of each battery unit is monitored, and when an abnormality occurs in the voltage of some battery units, measures are taken such as detecting and disconnecting or stopping the output.
このような監視を行うには、各電池ユニットを識別するためのアドレスなどの識別ID情報を、個別に付与する必要がある。従来は、このような識別IDを個別に設定するため、ディップスイッチを設けたり、予め識別IDをE2PROMに書き込む等の作業が行われていた。
In order to perform such monitoring, it is necessary to individually provide identification ID information such as an address for identifying each battery unit. Conventionally, in order to individually set such identification ID, work such as providing a dip switch or writing the identification ID in the E 2 PROM in advance has been performed.
しかしながら、このようなIDを手動で設定する作業は極めて煩雑となる。そこで、自動的に各電池ユニットにIDを付与する方法も幾つか提案されている(例えば特許文献1)。このような従来の電池ユニット同士の接続では、マスタユニットと銅線で接続され、マスタニットと電池ユニット間で通信を行うことにより、IDを順次付与していく方式が採用されていた。このようにユニット間の接続に銅線を用いる場合は、双方向通信が可能であるため、比較的容易にIDの付与が行える。
However, the operation of manually setting such an ID becomes extremely complicated. Accordingly, several methods for automatically assigning IDs to the respective battery units have been proposed (for example, Patent Document 1). In such conventional connection between battery units, a method is adopted in which IDs are sequentially assigned by connecting the master unit with a copper wire and performing communication between the master unit and the battery unit. Thus, when using a copper wire for the connection between units, since bidirectional communication is possible, ID assignment can be performed relatively easily.
一方、直列接続される電池ユニットの接続数が増えると、出力電圧が大きくなるため、絶縁を考慮する必要がある。特に近年の高出力化、大容量化の要求に応じて、個々の電池ユニットの出力や電池ユニットの接続数は増大する傾向にある。このような高出力の電池ユニットを組み合わせる場合においては、電池ユニット間を導線で接続する場合は絶縁のための機構が必要になり、耐圧の高い素子を使用することが求められ、部品コストが上昇する。また、物理的に耐圧が不足する場合は、絶縁距離を設ける必要が生じて、装置が大型化するという問題が生じる。
On the other hand, when the number of battery units connected in series increases, the output voltage increases, so it is necessary to consider insulation. In particular, the output of individual battery units and the number of connected battery units tend to increase in response to the recent demand for higher output and larger capacity. When combining such high-power battery units, connecting the battery units with conductors requires a mechanism for insulation, requiring the use of elements with a high withstand voltage, and increasing component costs. To do. In addition, when the withstand voltage is physically insufficient, it is necessary to provide an insulation distance, which causes a problem that the apparatus becomes large.
そこで、このような銅線を用いた電気接続に替えて、光ファイバを用いた光通信での接続が提案されている(特許文献1)。光通信では基本的に絶縁が不要となることから、高耐圧の素子や絶縁構成が不要になり、安全性を高めることができる。
Therefore, instead of such an electrical connection using a copper wire, a connection by optical communication using an optical fiber has been proposed (Patent Document 1). Since optical communication basically eliminates the need for insulation, a high-breakdown-voltage element or insulation structure is not necessary, and safety can be improved.
しかしながら、光ファイバは一般に双方向通信ができず、仮に一本の光ファイバで双方向通信を行わせようとすれば発光素子と受光素子を各接続部に設ける必要が生じ、また送信を時分割で行うためのタイミングの管理などが必要となって、接続インターフェースの構成が複雑化するという問題があった。一方で双方向通信ができない場合は、従来の手法でIDを付与することができない。このためID付与を行うべく全二重通信を可能にするため、図4に示すように電池ユニット401と各マスタユニット402との間に2本の光ファイバ405を接続する必要が生じる。しかしながらこの構成では、電池ユニットの接続数に応じた接続端子をマスタユニット側に用意する必要が生じ、電池ユニットの個数が増えるとマスタユニットの接続端子が肥大化し、配線も煩雑となり、コストやスペースの点で不利となる。
However, optical fibers are generally not capable of two-way communication. If two-way communication is performed using a single optical fiber, it is necessary to provide a light-emitting element and a light-receiving element at each connection, and transmission is time-divisional. As a result, it is necessary to manage the timing of the connection interface, which complicates the configuration of the connection interface. On the other hand, when bi-directional communication is not possible, an ID cannot be assigned by a conventional method. For this reason, in order to enable full-duplex communication to perform ID assignment, it is necessary to connect two optical fibers 405 between the battery unit 401 and each master unit 402 as shown in FIG. However, in this configuration, it is necessary to prepare connection terminals on the master unit side according to the number of battery unit connections. When the number of battery units increases, the connection terminals of the master unit become enlarged, wiring becomes complicated, and cost and space are increased. This is disadvantageous.
本発明は、従来のこのような問題点に鑑みてなされたものである。本発明の主な目的は、電池ユニット間を片方向通信可能な光ファイバで接続しつつ、識別情報の自動付与が可能な電源システム及び電源システムの識別情報設定方法並びに電池ユニットを提供することにある。
The present invention has been made in view of such conventional problems. SUMMARY OF THE INVENTION The main object of the present invention is to provide a power supply system, a power supply system identification information setting method, and a battery unit capable of automatically assigning identification information while connecting battery units with an optical fiber capable of one-way communication. is there.
上記目的を達成するために、本発明の第1の電源システムによれば、通信を行うためのマスタ送信部とマスタ受信部を備えるマスタユニット2と、数珠繋ぎで接続される複数の電池ユニット1と、前記複数の電池ユニット1同士及びマスタユニット2間を接続すると共に、一方向にデータを送出可能な光ファイバ5と、を備え、前記光ファイバ5を介して前記複数の電池ユニット1及びマスタユニット2が接続されてなる電源システムであって、各電池ユニット1は、前記マスタ送信部からのデータを受信可能なユニット受信部14と、前記ユニット受信部14で受信したデータを送信可能なユニット送信部15と、前記ユニット受信部14とユニット送信部15との間を接続する直列スイッチ17と、前記ユニット受信部14とユニット送信部15との間で、前記直列スイッチ17と並列に接続されたユニット制御部13と、前記ユニット制御部13と前記ユニット受信部14との間に接続された並列スイッチ18と、を備えており、前記マスタユニット2が、前記光ファイバ5を介して前記マスタ送信部と接続された電池ユニット1に対し、識別情報設定要求を送信することで、前記電池ユニット1は、前記ユニット受信部14で識別情報設定要求を受信したことを受けて前記直列スイッチ17をOFFし、前記並列スイッチ18をONして前記ユニット制御部13が該識別情報設定要求に含まれる識別情報を自身の識別情報として設定すると共に、該電池ユニット1のユニット送信部15に接続された、他の電池ユニット1に対して、該設定された識別情報と異なる識別情報を設定する要求を送出可能に構成できる。これにより、一方向にデータを送出可能な光ファイバを用いて、マスタユニットから下流側に接続された電池ユニットに対して、識別情報を順次設定することができる。
In order to achieve the above object, according to the first power supply system of the present invention, a master unit 2 including a master transmission unit and a master reception unit for performing communication, and a plurality of battery units 1 connected in a daisy chain An optical fiber 5 that connects the battery units 1 to each other and the master unit 2 and can send data in one direction, and the plurality of battery units 1 and the master unit via the optical fiber 5. 2, each battery unit 1 includes a unit receiver 14 that can receive data from the master transmitter, and a unit transmitter that can transmit data received by the unit receiver 14. 15, a series switch 17 that connects between the unit receiver 14 and the unit transmitter 15, the unit receiver 14 and the unit A unit control unit 13 connected in parallel with the series switch 17 between the communication unit 15 and a parallel switch 18 connected between the unit control unit 13 and the unit reception unit 14; The master unit 2 transmits an identification information setting request to the battery unit 1 connected to the master transmitter via the optical fiber 5, so that the battery unit 1 receives the unit receiver 14. In response to the reception of the identification information setting request, the series switch 17 is turned off, the parallel switch 18 is turned on, and the unit control unit 13 uses the identification information included in the identification information setting request as its own identification information. Identification information different from the set identification information for other battery units 1 connected to the unit transmitter 15 of the battery unit 1 It can be transmittable to configure the request to set the. Accordingly, identification information can be sequentially set for battery units connected downstream from the master unit using an optical fiber capable of transmitting data in one direction.
また、第2の電源システムによれば、各電池ユニット1はさらに、前記ユニット制御部13に給電するためのユニット電源部16を備えており、前記ユニット電源部16は、前記ユニット受信部14に接続されており、前記ユニット制御部13が、動作モードとして、待機モードと、識別情報設定モードと、運用モードを有しており、前記ユニット受信部14が、前記マスタユニット2側からの識別情報設定要求を受信すると、前記ユニット電源部16が前記ユニット制御部13を待機モードから識別情報設定モードに移行させるよう構成できる。これによって、マスタユニットが識別情報設定要求を発すると、マスタユニットに接続された電池ユニット側で、ユニット電源部がユニット制御部を識別情報設定モードに移行させることができる。
Further, according to the second power supply system, each battery unit 1 further includes a unit power supply unit 16 for supplying power to the unit control unit 13, and the unit power supply unit 16 is connected to the unit reception unit 14. The unit control unit 13 has a standby mode, an identification information setting mode, and an operation mode as operation modes, and the unit reception unit 14 receives identification information from the master unit 2 side. When the setting request is received, the unit power supply unit 16 can be configured to shift the unit control unit 13 from the standby mode to the identification information setting mode. Accordingly, when the master unit issues an identification information setting request, the unit power supply unit can shift the unit control unit to the identification information setting mode on the battery unit side connected to the master unit.
さらに第3の電源システムによれば、前記電池ユニット1は、識別情報が付与されるまでは待機モードとなり、待機モードから識別情報設定モードを経て、該識別情報が付与されると運用モードに移行するよう構成できる。
Further, according to the third power supply system, the battery unit 1 is in a standby mode until identification information is given, and shifts to an operation mode from the standby mode through the identification information setting mode and when the identification information is given. Can be configured to
さらにまた、第4の電源システムによれば、前記ユニット制御部13は、前記ユニット電源部16と電源供給ラインPWを介して接続されており、前記並列スイッチ18と通信ラインCOを介して接続することができる。
Furthermore, according to the fourth power supply system, the unit control unit 13 is connected to the unit power supply unit 16 via the power supply line PW, and is connected to the parallel switch 18 via the communication line CO. be able to.
さらにまた、第5の電源システムによれば、前記直列スイッチ17は、前記ユニット制御部13によってON/OFFを制御され、前記並列スイッチ18は、前記ユニット電源部16によってON/OFFを制御することができる。
Furthermore, according to the fifth power supply system, the series switch 17 is ON / OFF controlled by the unit controller 13, and the parallel switch 18 is controlled ON / OFF by the unit power supply 16. Can do.
さらにまた、第6の電源システムによれば、前記マスタユニット2が、接続されたすべての電池ユニット1に対して識別情報が付与されて識別情報設定が終了したことを認識すると、各電池ユニット1の前記直列スイッチ17をONにすることができる。これによって、運用モードにおいてはマスタユニットから送出されるデータを、下流側の電池ユニットに対してそのまま送出できるので、マスタユニットで識別情報を指示された電池ユニットが該データを受信して所定の動作を行うことが可能となる。
Furthermore, according to the sixth power supply system, when the master unit 2 recognizes that the identification information is given to all the connected battery units 1 and the identification information setting is completed, each battery unit 1 The series switch 17 can be turned on. As a result, in the operation mode, data sent from the master unit can be sent as it is to the battery unit on the downstream side, so that the battery unit instructed for identification information by the master unit receives the data and performs a predetermined operation. Can be performed.
さらにまた、第7の電源システムによれば、前記ユニット制御部13は、識別情報が設定されると、前記直列スイッチ17をONにすることができる。これによって、運用モードにおいてはマスタユニット2から送出されるデータを、下流側の電池ユニットに対してそのまま送出できるので、マスタユニットで識別情報を指示された電池ユニットが該データを受信して所定の動作を行うことが可能となる。
Furthermore, according to the seventh power supply system, the unit controller 13 can turn on the series switch 17 when the identification information is set. As a result, in the operation mode, the data sent from the master unit 2 can be sent as it is to the battery unit on the downstream side, so that the battery unit to which the identification information is instructed by the master unit receives the data and receives the predetermined data. The operation can be performed.
さらにまた、第8の電源システムによれば、待機モードを、前記電池ユニット1の消費電力を抑えた省電力モードとできる。これにより、識別情報が設定されるまでは、いいかえると電池ユニットが未だ本来の動作を行えない状態においては、消費電力を少なくしてエネルギーの無駄を省くことができる。
Furthermore, according to the eighth power supply system, the standby mode can be set to a power saving mode in which the power consumption of the battery unit 1 is suppressed. Thus, until the identification information is set, in other words, in a state where the battery unit still cannot perform the original operation, it is possible to reduce power consumption and save energy.
さらにまた、第9の電源システムによれば、さらに前記電池ユニット1は、複数の電池セル11を直列及び/又は並列に接続した一以上の電池ブロック12と、前記電池ブロック12の出力を外部に取り出すための出力ラインPLとを備えることができる。これにより、電池ユニット間の接続を、高電圧出力用のラインと、信号用のラインとに分離して、両者間の絶縁を図ることができる。
Furthermore, according to the ninth power supply system, the battery unit 1 further includes at least one battery block 12 in which a plurality of battery cells 11 are connected in series and / or in parallel, and an output of the battery block 12 to the outside. And an output line PL for extraction. Thereby, the connection between battery units can be separated into a high-voltage output line and a signal line, and insulation between them can be achieved.
さらにまた、第10の電源システムの識別情報設定方法によれば、通信を行うためのマスタ送信部とマスタ受信部を備えるマスタユニット2と、数珠繋ぎで接続される複数の電池ユニット1と、前記複数の電池ユニット1同士及びマスタユニット2間を接続すると共に、一方向にデータを送出可能な光ファイバ5と、を備え、前記光ファイバ5を介して前記複数の電池ユニット1及びマスタユニット2が接続されてなる電源システムにおいて、各電池ユニット1に対して固有の識別情報を設定する方法であって、各電池ユニット1がそれぞれ待機モードにある状態で、前記マスタユニット2が、前記光ファイバ5を介して前記マスタ送信部と接続された下流側の電池ユニット1に対し、識別情報設定要求を送信する工程と、前記電池ユニット1が該識別情報設定要求を受けて、待機モードから識別情報設定モードに移行し、該識別情報設定要求に含まれる識別情報を自身の識別情報として設定する工程と、前記電池ユニット1が、前記設定された識別情報と異なる識別情報に設定した上で、該電池ユニット1のユニット送信部15に接続された下流側の他の電池ユニット1に対して、識別情報設定要求を送出する工程と、識別情報の設定に際して異なる識別情報に再設定した該識別情報設定要求を、下流側の電池ユニット1に対して送出する工程を繰り返しながら、各電池ユニット1に対して順次識別情報を設定し、すべての電池ユニット1に対して識別情報が設定されると、最終段の電池ユニット1の下流側に接続されたマスタユニット2に対して、異なる識別情報に設定した該識別情報設定要求を送出する工程と、前記マスタユニット2が該識別情報設定要求を受けることで、各電池ユニット1に対する識別情報の設定が終了したと判定して、識別情報設定を終了する工程とを含むことができる。これにより、一方向にデータを送出可能な光ファイバを用いて、マスタユニットから下流側に接続された電池ユニットに対して、識別情報を順次設定することができる。
Furthermore, according to the identification information setting method of the tenth power supply system, a master unit 2 including a master transmission unit and a master reception unit for performing communication, a plurality of battery units 1 connected in a daisy chain, and the plurality And an optical fiber 5 capable of sending data in one direction, and the plurality of battery units 1 and the master unit 2 are connected via the optical fiber 5. In the power supply system configured as described above, a method for setting unique identification information for each battery unit 1, wherein each master unit 2 has the optical fiber 5 in a state where each battery unit 1 is in a standby mode. Via the step of transmitting an identification information setting request to the downstream battery unit 1 connected to the master transmitter via 1 receives the identification information setting request, shifts from the standby mode to the identification information setting mode, and sets the identification information included in the identification information setting request as its own identification information; A step of sending an identification information setting request to another downstream battery unit 1 connected to the unit transmitter 15 of the battery unit 1 after setting the identification information different from the set identification information; While repeating the process of sending the identification information setting request reset to different identification information when setting the identification information to the battery unit 1 on the downstream side, the identification information is sequentially set for each battery unit 1. When the identification information is set for the battery unit 1, different identification information is set for the master unit 2 connected to the downstream side of the last-stage battery unit 1. A step of sending an identification information setting request; and a step of determining that the setting of identification information for each battery unit 1 has been completed when the master unit 2 receives the identification information setting request, and ending the identification information setting. Can be included. Accordingly, identification information can be sequentially set for battery units connected downstream from the master unit using an optical fiber capable of transmitting data in one direction.
さらにまた、第11の電源システムの識別情報設定方法によれば、前記設定された識別情報と異なる識別情報を、所定の増分を付加した識別情報とできる。
Furthermore, according to the eleventh power supply system identification information setting method, identification information different from the set identification information can be identification information with a predetermined increment added.
さらにまた、第12の電源システムの識別情報設定方法によれば、各電池ユニット1は、前記マスタ送信部からのデータを受信可能なユニット受信部14と、前記ユニット受信部14で受信したデータを送信可能なユニット送信部15と、前記ユニット受信部14とユニット送信部15との間を接続する直列スイッチ17と、前記ユニット受信部14とユニット送信部15との間で、前記直列スイッチ17と並列に接続されたユニット制御部13と、前記ユニット制御部13と前記ユニット受信部14との間に接続された並列スイッチ18とを備えており、各電池ユニット1が識別情報を設定する工程が、前記ユニット受信部14で識別情報設定要求を受信したことを受けて、前記直列スイッチ17をOFFし、前記並列スイッチ18をONして前記ユニット制御部13が自身の識別情報を設定することができる。
Furthermore, according to the identification information setting method of the twelfth power supply system, each battery unit 1 receives the data received by the unit receiver 14 and the unit receiver 14 that can receive data from the master transmitter. A unit transmitter 15 that can transmit, a series switch 17 that connects the unit receiver 14 and the unit transmitter 15, and the series switch 17 between the unit receiver 14 and the unit transmitter 15, A unit control unit 13 connected in parallel; and a parallel switch 18 connected between the unit control unit 13 and the unit receiving unit 14; and a step in which each battery unit 1 sets identification information. In response to receiving the identification information setting request by the unit receiver 14, the series switch 17 is turned off and the parallel switch 18 is turned on. The unit control section 13 and can be set its own identity.
さらにまた、第13の電源システムの識別情報設定方法によれば、前記直列スイッチ17は、待機モードにおいてOFF状態とできる。
Furthermore, according to the identification information setting method of the thirteenth power supply system, the series switch 17 can be turned off in the standby mode.
さらにまた、第14の電源システムの識別情報設定方法によれば、各電池ユニット1はさらに、前記ユニット制御部13に給電するためのユニット電源部16を備えており、前記ユニット電源部16は、前記ユニット受信部14に接続されており、前記ユニット制御部13が、動作モードとして、待機モードと、識別情報設定モードと、運用モードを有しており、前記ユニット受信部14が、前記マスタユニット2からの識別情報設定要求を受信すると、前記ユニット電源部16が前記ユニット制御部13を待機モードから識別情報設定モードに移行させるよう構成できる。これによって、マスタユニットが識別情報設定要求を発すると、マスタユニットに接続された電池ユニット側で、ユニット電源部16がユニット制御部を識別情報設定モードに移行させることができる。
Furthermore, according to the identification information setting method of the fourteenth power supply system, each battery unit 1 further includes a unit power supply unit 16 for supplying power to the unit control unit 13, and the unit power supply unit 16 includes: It is connected to the unit receiver 14, the unit controller 13 has a standby mode, an identification information setting mode, and an operation mode as operation modes, and the unit receiver 14 is connected to the master unit. When the identification information setting request from 2 is received, the unit power supply unit 16 can be configured to shift the unit control unit 13 from the standby mode to the identification information setting mode. Thereby, when the master unit issues an identification information setting request, the unit power supply unit 16 can shift the unit control unit to the identification information setting mode on the battery unit side connected to the master unit.
さらにまた、第15の電池ユニットによれば、複数台を数珠繋ぎに接続して電源システムを構築可能であると共に、マスタユニット2に接続されて識別情報を自動設定可能な電池ユニットであって、マスタユニット2のマスタ送信部からのデータを受信可能なユニット受信部14と、前記ユニット受信部14で受信したデータを送信可能なユニット送信部15と、前記ユニット受信部14とユニット送信部15との間を接続する直列スイッチ17と、前記ユニット受信部14とユニット送信部15との間で、前記直列スイッチ17と並列に接続されたユニット制御部13と、前記ユニット制御部13と前記ユニット受信部14との間に接続された並列スイッチ18と、を備え、前記ユニット受信部14及びユニット送信部15に光ファイバ5を接続して、マスタユニット2及び他の電池ユニット1と接続可能に構成してなり、マスタユニット2が、光ファイバ5を介して前記マスタ送信部と接続された電池ユニット1に対し、識別情報設定要求を送信することで、前記電池ユニット1は、前記ユニット受信部14で識別情報設定要求を受信したことを受けて前記直列スイッチ17をOFFし、前記並列スイッチ18をONして前記ユニット制御部13が該識別情報設定要求に含まれる識別情報を自身の識別情報として設定すると共に、該電池ユニット1のユニット送信部15に接続された、他の電池ユニット1に対して、該設定された識別情報と異なる識別情報を設定する要求を送出可能に構成できる。これにより、一方向にデータを送出可能な光ファイバを用いて、マスタユニットから下流側に接続された電池ユニットに対して、識別情報を順次設定することができる。
Furthermore, according to the fifteenth battery unit, a power supply system can be constructed by connecting a plurality of batteries in a daisy chain, and is connected to the master unit 2 and can automatically set identification information. A unit receiver 14 capable of receiving data from the master transmitter of the unit 2; a unit transmitter 15 capable of transmitting data received by the unit receiver 14; and the unit receiver 14 and the unit transmitter 15 A series switch 17 for connecting the unit, a unit controller 13 connected in parallel with the series switch 17 between the unit receiver 14 and the unit transmitter 15, and the unit controller 13 and the unit receiver And a parallel switch 18 connected between the unit receiver 14 and the unit transmitter 15 with an optical fiber. Is connected to the master unit 2 and the other battery unit 1 so that the master unit 2 can identify identification information for the battery unit 1 connected to the master transmitter via the optical fiber 5. By transmitting the setting request, the battery unit 1 turns off the series switch 17 and turns on the parallel switch 18 in response to receiving the identification information setting request at the unit receiving unit 14 to control the unit. The unit 13 sets the identification information included in the identification information setting request as its own identification information, and is set for the other battery unit 1 connected to the unit transmission unit 15 of the battery unit 1. A request for setting identification information different from the identification information can be transmitted. Accordingly, identification information can be sequentially set for battery units connected downstream from the master unit using an optical fiber capable of transmitting data in one direction.
以下、本発明の実施の形態を図面に基づいて説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するための電源システム及び電源システムの識別情報設定方法並びに電池ユニットを例示するものであって、本発明は電源システム及び電源システムの識別情報設定方法並びに電池ユニットを以下のものに特定しない。特に本明細書は、特許請求の範囲を理解し易いように、実施の形態に示される部材に対応する番号を、「特許請求の範囲の欄」、及び「課題を解決するための手段の欄」に示される部材に付記しているが、特許請求の範囲に示される部材を、実施の形態の部材に特定するものでは決してない。特に実施の形態に記載されている構成部材の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。また、一部の実施例、実施形態において説明された内容は、他の実施例、実施形態等に利用可能なものもある。
(実施例1) Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the following embodiments exemplify a power supply system, a power supply system identification information setting method, and a battery unit for embodying the technical idea of the present invention, and the present invention is a power supply system and a power supply system. The identification information setting method and the battery unit are not specified as follows. In particular, in this specification, in order to facilitate understanding of the scope of claims, the numbers corresponding to the members shown in the embodiments are referred to as “claims” and “means for solving the problems”. However, the members shown in the claims are not limited to the members in the embodiments. In particular, the dimensions, materials, shapes, relative arrangements, and the like of the constituent members described in the embodiments are not intended to limit the scope of the present invention only to the description unless otherwise specified. It's just an example. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation. Furthermore, in the following description, the same name and symbol indicate the same or the same members, and detailed description thereof will be omitted as appropriate. Furthermore, each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing. In addition, the contents described in some examples and embodiments may be used in other examples and embodiments.
Example 1
(実施例1) Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the following embodiments exemplify a power supply system, a power supply system identification information setting method, and a battery unit for embodying the technical idea of the present invention, and the present invention is a power supply system and a power supply system. The identification information setting method and the battery unit are not specified as follows. In particular, in this specification, in order to facilitate understanding of the scope of claims, the numbers corresponding to the members shown in the embodiments are referred to as “claims” and “means for solving the problems”. However, the members shown in the claims are not limited to the members in the embodiments. In particular, the dimensions, materials, shapes, relative arrangements, and the like of the constituent members described in the embodiments are not intended to limit the scope of the present invention only to the description unless otherwise specified. It's just an example. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation. Furthermore, in the following description, the same name and symbol indicate the same or the same members, and detailed description thereof will be omitted as appropriate. Furthermore, each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing. In addition, the contents described in some examples and embodiments may be used in other examples and embodiments.
Example 1
本発明の実施例1に係る電源システム100を図1に示す。この電源システム100は、マスタユニット2と、複数台の電池ユニット1(1A~1E)とを通信線として光ファイバ5で接続している。マスタユニット2と電池ユニット1A~1Eとは、マルチドロップ接続可能としている。図1の例では、5台の電池ユニット1A~1Eをマスタユニット2に光ファイバ5で数珠繋ぎに接続すると共に、最終段の電池ユニット1Eをマスタユニット2に接続している。なおこの図では信号線のみを図示しており、電源出力を接続した出力ラインは図示していない。
FIG. 1 shows a power supply system 100 according to Embodiment 1 of the present invention. In this power supply system 100, a master unit 2 and a plurality of battery units 1 (1A to 1E) are connected via an optical fiber 5 as communication lines. The master unit 2 and the battery units 1A to 1E are capable of multidrop connection. In the example of FIG. 1, five battery units 1A to 1E are connected to the master unit 2 in a daisy chain by optical fibers 5, and the battery unit 1E at the final stage is connected to the master unit 2. In this figure, only signal lines are shown, and output lines to which power supply outputs are connected are not shown.
図2に、各電池ユニット1のブロック図を示している。各電池ユニット1は、複数の電池セル11を内蔵しており、その出力ラインPLを系統出力として、各種の負荷に接続して、電源として駆動電力を供給する。電池ユニット1の電池セル11は、外部の商用電源(例えば深夜電力)や、太陽光発電などの電力を受けて充電可能であり、また蓄電された電力を放電して、電力供給源として機能する。マスタユニット2は、複数台の電池ユニット1の充放電状態を監視する。
FIG. 2 shows a block diagram of each battery unit 1. Each battery unit 1 incorporates a plurality of battery cells 11, and the output line PL is connected to various loads as a system output to supply driving power as a power source. The battery cell 11 of the battery unit 1 can be charged by receiving power from an external commercial power source (for example, late-night power) or solar power generation, and functions as a power supply source by discharging the stored power. . The master unit 2 monitors the charge / discharge states of the plurality of battery units 1.
電池ユニット1は、ユニット受信部14とユニット送信部15を備える。なお、本明細書ではマルチドロップ接続において、マスタユニット2のマスタ送信部に接続される側を上流側、マスタ受信部に接続される側を下流側と呼ぶ。各ユニットは、光ファイバ5を介して接続される。具体的には、図2に示すようにマスタユニット2と電池ユニット1Aとは、マスタ送信部とユニット受信部14とを光ファイバ5で接続し、電池ユニット1Aと電池ユニット1nとは、電池ユニット1Aのユニット送信部15と電池ユニット1nのユニット受信部14とを光ファイバ5で接続し、さらに電池ユニット1nとマスタユニット2とは、電池ユニット1nのユニット送信部15とマスタユニット2のマスタ受信部とを光ファイバ5で、それぞれ接続している。この例では各ユニットの受信部、送信部にそれぞれ、光ファイバ5接続用の端子を設けており、各ユニット内部で光通信によりデータのやりとりが行われる。ここでは光ファイバ接続用端子に光ファイバ5で接続して光通信を行っている。ただ、光ファイバ接続用端子をコネクタ状とし、コネクタ同士を直接係合できる形態とすれば、光ファイバのようなユニット間を接続する別部材のケーブルを不要とすることもできる。
(光ファイバ5) Thebattery unit 1 includes a unit receiver 14 and a unit transmitter 15. In this specification, in the multi-drop connection, the side connected to the master transmission unit of the master unit 2 is called the upstream side, and the side connected to the master reception unit is called the downstream side. Each unit is connected via an optical fiber 5. Specifically, as shown in FIG. 2, the master unit 2 and the battery unit 1A connect the master transmitter and the unit receiver 14 with an optical fiber 5, and the battery unit 1A and the battery unit 1n are battery units. The unit transmitter 15 of 1A and the unit receiver 14 of the battery unit 1n are connected by an optical fiber 5, and the battery unit 1n and the master unit 2 are the master receiver of the unit transmitter 15 of the battery unit 1n and the master unit 2. Are connected to each other by an optical fiber 5. In this example, the receiving unit and the transmitting unit of each unit are each provided with a terminal for connecting the optical fiber 5, and data is exchanged by optical communication inside each unit. Here, optical communication is performed by connecting the optical fiber connection terminal with the optical fiber 5. However, if the optical fiber connection terminal is in the form of a connector so that the connectors can be directly engaged with each other, a separate cable for connecting the units such as an optical fiber can be eliminated.
(Optical fiber 5)
(光ファイバ5) The
(Optical fiber 5)
光ファイバ5は、ユニット間で一方向にデータを送出可能なタイプ、すなわち片方向通信のみが使用可能なタイプを使用することで、構成を簡素化できる。光ファイバ5を用いて、最下流の電池ユニット1nから、マスタユニット2のマスタ受信部に対して、情報が送信される。
(マスタユニット2) The configuration of theoptical fiber 5 can be simplified by using a type that can transmit data in one direction between units, that is, a type that can use only one-way communication. Information is transmitted from the most downstream battery unit 1 n to the master receiver of the master unit 2 using the optical fiber 5.
(Master unit 2)
(マスタユニット2) The configuration of the
(Master unit 2)
マスタユニット2は、電池ユニット1と接続するインターフェースとしてマスタ受信部とマスタ送信部とを備える。これらマスタ受信部とマスタ送信部は、マスタ制御部に接続される。このマスタユニット2は、マルチドロップ接続の終端に接続されて、マスタ制御部で各電池ユニット1を制御、管理する。マスタ制御部では、出力電流をモニタしたり、各電池ユニット1の充電状態、放電状態を監視して、異常状態を検出する。具体的にはマスタ制御部が、各電池ユニット1の電流値をモニタして、所定の閾値電流を超えると過電流と判定して、警告を発したり、電池ユニット1の交換を促す。このようにマスタユニット2は、保護回路として機能する。
The master unit 2 includes a master reception unit and a master transmission unit as interfaces connected to the battery unit 1. These master receiver and master transmitter are connected to the master controller. The master unit 2 is connected to the end of the multi-drop connection, and controls and manages each battery unit 1 by the master control unit. The master control unit monitors the output current or monitors the charging state and discharging state of each battery unit 1 to detect an abnormal state. Specifically, the master control unit monitors the current value of each battery unit 1, determines that the current exceeds a predetermined threshold current, determines an overcurrent, issues a warning, and prompts the user to replace the battery unit 1. Thus, the master unit 2 functions as a protection circuit.
さらにマスタユニット2は、接続される各電池ユニット1に対して個別の識別情報を自動的に設定する識別情報自動設定機能を備える。具体的には、マスタ制御部が、マスタ送信部から識別情報設定要求を電池ユニット1に向けて送信する(詳細は後述)。このようなマスタ制御部は、DSPやマイクロプロセッサ(MPU)やCPU、LSI、FPGAやASIC等のゲートアレイで実現できる。
Furthermore, the master unit 2 has an identification information automatic setting function for automatically setting individual identification information for each battery unit 1 to be connected. Specifically, the master control unit transmits an identification information setting request from the master transmission unit to the battery unit 1 (details will be described later). Such a master control unit can be realized by a gate array such as a DSP, a microprocessor (MPU), a CPU, an LSI, an FPGA, or an ASIC.
さらにまたマスタユニット2は、接続されている各電池ユニット1に内蔵される電池ブロック12の並列数を検出可能としている。また保護回路は、この検出された電池ブロック12の並列数に応じて、電池ブロック12を過電流から保護するための、閾値電流の設定を自動で変更することもできる。
Furthermore, the master unit 2 can detect the parallel number of the battery blocks 12 incorporated in each connected battery unit 1. Further, the protection circuit can automatically change the setting of the threshold current for protecting the battery block 12 from overcurrent according to the detected parallel number of the battery blocks 12.
またマスタユニット2は、必要に応じて外部機器と通信するための通信インターフェースや、電源システムに対してユーザが操作を行うためのユーザインターフェースを設けることもできる。例えば電源コントローラに操作部としてキーボードやマウス、タッチパネルやコンソール等の入力デバイスを接続し、最大電流量を規定したり、接続された電池ユニットの使用可否を設定できる。また、電池ユニットに異常が発生した際にユーザに告知するための表示パネルや表示灯を設けてもよい。
(電池ユニット1) Themaster unit 2 can also be provided with a communication interface for communicating with an external device and a user interface for a user to operate the power supply system as necessary. For example, an input device such as a keyboard, a mouse, a touch panel, or a console can be connected to the power controller as an operation unit, so that the maximum amount of current can be defined and the use / nonuse of the connected battery unit can be set. Moreover, you may provide the display panel and indicator lamp for notifying a user when abnormality arises in a battery unit.
(Battery unit 1)
(電池ユニット1) The
(Battery unit 1)
電池ユニット1は、マスタユニット2をマスタとするマスタ-スレーブ通信の、スレーブ側として機能する。各電池ユニット1は、ユニット受信部14と、ユニット送信部15と、ユニット制御部13と、ユニット電源部16と、一以上の電池ブロック12と、出力ラインPLとを備えている。
The battery unit 1 functions as a slave side of master-slave communication with the master unit 2 as a master. Each battery unit 1 includes a unit reception unit 14, a unit transmission unit 15, a unit control unit 13, a unit power supply unit 16, one or more battery blocks 12, and an output line PL.
ユニット受信部14とユニット送信部15は、他の電池ユニット1やマスタユニット2との通信インターフェースとなる。これらユニット受信部14とユニット送信部15とは、直列スイッチ17を介して接続される。直列スイッチ17のON/OFFはユニット制御部13によって制御される。また直列スイッチ17と並列に、ユニット受信部14とユニット送信部15との間にユニット制御部13が接続される。さらにユニット制御部13とユニット受信部14との間には、並列スイッチ18が接続される。並列スイッチ18はユニット電源部16によってON/OFFを制御される。
The unit receiving unit 14 and the unit transmitting unit 15 serve as communication interfaces with other battery units 1 and the master unit 2. These unit receiver 14 and unit transmitter 15 are connected via a series switch 17. ON / OFF of the series switch 17 is controlled by the unit controller 13. A unit control unit 13 is connected between the unit reception unit 14 and the unit transmission unit 15 in parallel with the series switch 17. Further, a parallel switch 18 is connected between the unit controller 13 and the unit receiver 14. The parallel switch 18 is ON / OFF controlled by the unit power supply unit 16.
このように、ユニット制御部13を、ユニット受信部14とユニット送信部15との間で、直列スイッチ17と並列に接続することで、直列スイッチ17をOFFすると、ユニット受信部14で受けたデータはユニット制御部13で受信される。いいかえると、ユニット受信部14で受けたデータがそのまま直列スイッチ17及びユニット送信部15を介して次段の電池ユニットに送信されることがない。このため、後述する識別情報設定モードにおいて、各電池ユニットで個別の識別情報を順次設定する際に有利となる。その一方で、識別情報が設定された状態で運用モードにおいては、ユニット制御部13が直列スイッチ17をONすることにより、ユニット受信部14で受けたデータがそのままユニット送信部15を経て次段の電池ユニットに送出される。いいかえると、マスタユニット2から送出されるデータはすべての電池ユニットに送出されるため、データに含まれる識別情報に従って、該当する電池ユニットでデータを受信して所定の処理を行うことが可能となる。
(電池ブロック12) As described above, when theunit switch 13 is connected in parallel with the series switch 17 between the unit receiver 14 and the unit transmitter 15, the data received by the unit receiver 14 when the series switch 17 is turned OFF. Is received by the unit controller 13. In other words, the data received by the unit receiver 14 is not transmitted as it is to the next battery unit via the series switch 17 and the unit transmitter 15. For this reason, it is advantageous when sequentially setting individual identification information in each battery unit in the identification information setting mode described later. On the other hand, in the operation mode with the identification information set, the unit control unit 13 turns on the serial switch 17 so that the data received by the unit reception unit 14 passes through the unit transmission unit 15 as it is and the next stage. It is sent to the battery unit. In other words, since the data sent from the master unit 2 is sent to all the battery units, it is possible to receive the data at the corresponding battery unit and perform a predetermined process according to the identification information included in the data. .
(Battery block 12)
(電池ブロック12) As described above, when the
(Battery block 12)
電池ブロック12は、充電可能な二次電池セル11を複数、直列に接続したものである。また電池ブロック12同士は、並列に接続されている。なお、電池セル11や電池ブロック12の接続形態はこの接続例に限られるものでなく、例えば複数の電池セルを並列に接続した電池ブロックを直列に接続することもできる。一方で電池ブロック12の出力は、出力ラインPLから出力される。電池ブロック12間で出力ラインPL同士を直列又は並列に接続して、電源システムの出力を得る。この例では、各電池ユニット1は50V、33Ahの出力を得ており、この電池ユニット1を14個を直列接続すれば、電源システム全体で700Vの出力が得られる。また一方で、電池ブロック12からの信号線がユニット制御部13にも接続されており、電池ブロック12の温度や電流値等をユニット制御部13で管理する。特に、高電圧出力用のラインと、信号用のラインとを分離すると共に、信号用のラインを光ファイバ5とすることで、両者間の絶縁を容易に図ることができる。
(ユニット制御部13) Thebattery block 12 includes a plurality of rechargeable secondary battery cells 11 connected in series. The battery blocks 12 are connected in parallel. In addition, the connection form of the battery cell 11 and the battery block 12 is not restricted to this connection example, For example, the battery block which connected the some battery cell in parallel can also be connected in series. On the other hand, the output of the battery block 12 is output from the output line PL. The output lines PL are connected in series or in parallel between the battery blocks 12 to obtain the output of the power supply system. In this example, each battery unit 1 has an output of 50 V and 33 Ah. If 14 of these battery units 1 are connected in series, an output of 700 V can be obtained in the entire power supply system. On the other hand, the signal line from the battery block 12 is also connected to the unit control unit 13, and the temperature and current value of the battery block 12 are managed by the unit control unit 13. In particular, the high voltage output line and the signal line are separated from each other, and the signal line is the optical fiber 5 so that the insulation between them can be easily achieved.
(Unit control unit 13)
(ユニット制御部13) The
(Unit control unit 13)
ユニット制御部13は、電池ユニット1を制御する部材であって、他の電池ユニット1やマスタユニット2とデータ通信したり、電池ユニット1の識別情報を取得する識別情報設定モードを実行する等、各種の制御を行う。ユニット制御部13も、DSPやマイクロプロセッサ(MPU)やCPU、LSI、FPGAやASIC等のゲートアレイで実現できる。このユニット制御部13は、ユニット電源部16と電源供給ラインPWを介して接続されており、また並列スイッチ18と通信ラインCOを介して接続されている。
(ユニット電源部16) Theunit control unit 13 is a member that controls the battery unit 1, and performs data communication with other battery units 1 and the master unit 2, executes an identification information setting mode for acquiring identification information of the battery unit 1, etc. Perform various controls. The unit controller 13 can also be realized by a gate array such as a DSP, a microprocessor (MPU), a CPU, an LSI, an FPGA, or an ASIC. The unit controller 13 is connected to the unit power source 16 via a power supply line PW, and is connected to the parallel switch 18 via a communication line CO.
(Unit power supply unit 16)
(ユニット電源部16) The
(Unit power supply unit 16)
このユニット制御部13を駆動するための駆動電力は、ユニット電源部16から供給される。ユニット電源部16は、電池ブロック12から供給される電力を、ユニット制御部13を駆動できる電極に変換する電圧変換回路が利用できる。好適にはスイッチングレギュレータとする。これによって電池ユニット1は、内蔵される電池ブロック12で給電され、外部電源を用いることなく自律的に駆動できる。またユニット電源部16は、ユニット受信部14に接続されている。ここでユニット制御部13は、動作モードとして、待機モードと、識別情報設定モードと、運用モードを有している。
The driving power for driving the unit control unit 13 is supplied from the unit power supply unit 16. The unit power supply unit 16 can use a voltage conversion circuit that converts the power supplied from the battery block 12 into an electrode that can drive the unit control unit 13. A switching regulator is preferable. As a result, the battery unit 1 is powered by the built-in battery block 12 and can be driven autonomously without using an external power source. The unit power supply unit 16 is connected to the unit reception unit 14. Here, the unit controller 13 has a standby mode, an identification information setting mode, and an operation mode as operation modes.
待機モードは、例えば消費電力の少ない省電力モードである。識別情報が設定されるまでは、いいかえると電池ユニット1が未だ本来の動作を行えない状態においては、消費電力を少なくしてエネルギーの無駄を省くことができる。待機モードにおいては、各電池ユニット1の直列スイッチ17及び並列スイッチ18がそれぞれOFF状態とされている。そして待機モード時において、ユニット受信部14が識別情報設定要求を受信すると、ユニット電源部16がユニット制御部13を待機モードから識別情報設定モードに移行させる。具体的には、識別情報設定要求を受けて、ユニット受信部14と接続されたユニット電源部16が起動され、並列スイッチ18をONに切り替えると共に、ユニット制御部13への供給電力を待機モードから識別情報設定モードの電力に変更する。このような構成によって、マスタユニット2が識別情報設定要求を発すると、マスタユニット2に接続された電池ユニット1側で、識別情報設定モードに自動的に移行させることができる。
Standby mode is, for example, a power saving mode with low power consumption. Until the identification information is set, in other words, in a state where the battery unit 1 still cannot perform the original operation, it is possible to reduce power consumption and to save energy. In the standby mode, the series switch 17 and the parallel switch 18 of each battery unit 1 are turned off. In the standby mode, when the unit reception unit 14 receives the identification information setting request, the unit power supply unit 16 shifts the unit control unit 13 from the standby mode to the identification information setting mode. Specifically, in response to the identification information setting request, the unit power supply unit 16 connected to the unit receiving unit 14 is activated, the parallel switch 18 is switched on, and the power supplied to the unit control unit 13 is switched from the standby mode. Change to the power of the identification information setting mode. With this configuration, when the master unit 2 issues an identification information setting request, the battery unit 1 connected to the master unit 2 can automatically shift to the identification information setting mode.
識別情報設定モードにおいては、各ユニット制御部13は、識別情報設定要求に含まれる識別情報に従って、自身の識別情報を設定すると共に、この識別情報と異なる識別情報に設定して、次段の電池ユニット1に対しても識別情報設定要求を送信する。このようにして、各電池ユニット1は順次識別情報を設定していく。
In the identification information setting mode, each unit control unit 13 sets its own identification information according to the identification information included in the identification information setting request, and sets the identification information different from this identification information, so that the next-stage battery An identification information setting request is also transmitted to unit 1. In this way, each battery unit 1 sequentially sets identification information.
またマスタユニット2は、最終段に接続された電池ユニット1から識別情報設定要求を受けると、接続されたすべての電池ユニット1に対して識別情報が付与されたものと認識する。そして識別情報設定が終了すると、各電池ユニット1の直列スイッチ17をONにして運用モードに移行する。運用モードにおいては、マスタユニット2から電池ユニット1側に送出されるデータは、各電池ユニット1のユニット受信部14から直列スイッチ17を経てユニット送信部15に送出されるため、各電池ユニット1でデータを受信できる。このためマスタユニット2はデータに送り先の識別情報を含めておくことで、該当する電池ユニット1でデータを受け取って、所定の動作を行わせることが可能となる。
Further, when the master unit 2 receives the identification information setting request from the battery unit 1 connected to the final stage, the master unit 2 recognizes that the identification information is given to all the connected battery units 1. When the identification information setting is completed, the series switch 17 of each battery unit 1 is turned on to shift to the operation mode. In the operation mode, data sent from the master unit 2 to the battery unit 1 is sent from the unit receiver 14 of each battery unit 1 to the unit transmitter 15 via the series switch 17. Can receive data. Therefore, the master unit 2 can include the identification information of the destination in the data, so that the corresponding battery unit 1 can receive the data and perform a predetermined operation.
なお、直列スイッチ17をONするタイミングは、すべての電池ユニットで識別情報が設定されたタイミングとする他、各電池ユニットにおいて識別情報が設定される度に順次、ユニット制御部が直列スイッチ17をONにするよう構成してもよい。
The timing for turning on the series switch 17 is the timing at which the identification information is set in all the battery units, and the unit controller sequentially turns on the series switch 17 every time the identification information is set in each battery unit. You may comprise so that it may become.
またこの電池ユニット1は、一旦付与されたID情報を保持するE2PROMのような不揮発性メモリを有していない。このため各電池ユニット1のID情報は、電池ユニット1の電源を落とすと消失するが、電源投入時すなわち電池ユニット1の起動時に、再び自動的にID情報が各電池ユニット1に付与されるID自動取得機能を備えている。また、電池ユニット1の起動時には、一律に初期値が再設定されるように構成されている。これにより、電池ユニット1の製造時や接続時に、予め異なるID情報を設定する必要が無く、製造工程や設置作業を省力化できる利点が得られる。なおID情報の初期値は、ID情報として取り得る最大の値、例えばID=255を設定しておき、一方でID自動取得機能により自動で取得されるID情報を0又は1を初期値として昇順に付与することで、自動取得されるID情報の値と初期値との抵触を回避できる。
The battery unit 1 does not have a non-volatile memory such as an E2PROM that holds ID information once assigned. For this reason, the ID information of each battery unit 1 disappears when the power of the battery unit 1 is turned off. It has an automatic acquisition function. In addition, when the battery unit 1 is activated, the initial value is uniformly reset. Thereby, there is no need to set different ID information in advance when the battery unit 1 is manufactured or connected, and an advantage that the manufacturing process and installation work can be saved can be obtained. The initial value of ID information is set to the maximum value that can be taken as ID information, for example, ID = 255, while ID information automatically acquired by the ID automatic acquisition function is set in ascending order with 0 or 1 as the initial value. By assigning to the ID, it is possible to avoid the conflict between the automatically acquired ID information value and the initial value.
ただ、電池ユニットに設定された識別情報を保持するための識別情報メモリを備えてもよい。この場合は、マスタユニットから付与された識別情報が識別情報メモリに記録されるまでは待機モードとなり、識別情報設定モードを経て、該識別情報が識別情報メモリに記録されると運用モードに移行するよう構成できる。
(ID情報設定方法) However, you may provide the identification information memory for hold | maintaining the identification information set to the battery unit. In this case, the standby mode is set until the identification information given from the master unit is recorded in the identification information memory. After the identification information setting mode, the operation mode is entered when the identification information is recorded in the identification information memory. It can be configured as follows.
(ID information setting method)
(ID情報設定方法) However, you may provide the identification information memory for hold | maintaining the identification information set to the battery unit. In this case, the standby mode is set until the identification information given from the master unit is recorded in the identification information memory. After the identification information setting mode, the operation mode is entered when the identification information is recorded in the identification information memory. It can be configured as follows.
(ID information setting method)
この電源システム100は、各電池ユニット1に対して識別情報としてID情報を自動設定する機能を備える。以下、この手順を図3のフローチャートに基づいて説明する。ここでは、予め複数台の電池ユニット1とマスタユニット2とを光ファイバ5で接続している。各電池ユニット1は工場出荷状態、すなわち識別情報は付与されておらず、初期値(例えば255)等とされている。また、各電池ユニット1の直列スイッチ17及び並列スイッチ18は共にOFF(オープン)となっており、待機モードとなっている。
The power supply system 100 has a function of automatically setting ID information as identification information for each battery unit 1. Hereinafter, this procedure will be described based on the flowchart of FIG. Here, a plurality of battery units 1 and a master unit 2 are connected in advance by an optical fiber 5. Each battery unit 1 is shipped from the factory, that is, identification information is not given, and is set to an initial value (for example, 255). Moreover, both the series switch 17 and the parallel switch 18 of each battery unit 1 are OFF (open), and are in a standby mode.
この状態で、まずステップS1において、マスタユニット2が下流側に接続された電池ユニット1に対し識別情報設定を要求する。具体的には、マスタユニット2のマスタ送信部から電池ユニット1Aのユニット受信部14に、光ファイバ5を介して識別情報設定要求が送信される。
In this state, first, in step S1, the master unit 2 requests the battery unit 1 connected downstream to set identification information. Specifically, an identification information setting request is transmitted from the master transmission unit of the master unit 2 to the unit reception unit 14 of the battery unit 1 </ b> A via the optical fiber 5.
次にステップS2において、下流側の電池ユニットが識別情報設定要求を受けて識別情報設定モードに移行する。具体的には、電池ユニット1Aのユニット受信部14が識別情報設定要求を受信すると、ユニット受信部14と接続されたユニット電源部16が起動され、並列スイッチ18をOFFからONに切り替える。また、ユニット制御部13への供給電力を待機モードから識別情報設定モードの電力に上げる。
Next, in step S2, the downstream battery unit receives the identification information setting request and shifts to the identification information setting mode. Specifically, when the unit reception unit 14 of the battery unit 1A receives the identification information setting request, the unit power supply unit 16 connected to the unit reception unit 14 is activated, and the parallel switch 18 is switched from OFF to ON. Further, the power supplied to the unit controller 13 is increased from the standby mode to the power in the identification information setting mode.
これを受けて、ユニット制御部13は自身の識別情報を設定する(ステップS3)。好ましくは、識別情報設定要求に、設定すべき識別情報(例えばID番号0)を含める。さらにユニット制御部13は、ID番号に所定の増分(例えば+1)を付加して、識別情報設定要求を更新する(ステップS4)。例えば、ID番号をID+1に書き換える。
In response to this, the unit controller 13 sets its own identification information (step S3). Preferably, identification information to be set (for example, ID number 0) is included in the identification information setting request. Further, the unit controller 13 adds a predetermined increment (for example, +1) to the ID number and updates the identification information setting request (step S4). For example, the ID number is rewritten to ID + 1.
次に、下流側に接続された電池ユニットが存在する場合かどうかを判定し(ステップS5)、存在する場合は下流側の電池ユニットに対し、同様に識別情報設定を要求し(ステップS6)、上述したステップS2~S4のステップを繰り返す。例えば図2の例では、電池ユニット1nに、ID+1(例えばID番号0+1=1)の識別情報を設定し、さらに増分を識別情報に加算して(例えばID番号1+1=2)、次段の電池ユニットに送出する。このようにしてすべての電池ユニットに固有の識別情報が付与されると、最終段の電池ユニット1nは自身の識別情報IDnに増分を付加した識別情報設定要求(ID番号IDn+1)を、ユニット送信部15からマスタユニット2のマスタ受信部に返す(ステップS7)。マスタユニット2は、この識別情報設定要求を受けて、接続されたすべての電池ユニットに対して識別情報が付与されたことを認識し、識別情報設定モードを終了する。
Next, it is determined whether or not there is a battery unit connected to the downstream side (step S5), and if it exists, the identification information setting is similarly requested to the downstream battery unit (step S6). The above steps S2 to S4 are repeated. For example, in the example of FIG. 2, the identification information of ID + 1 (for example, ID number 0 + 1 = 1) is set in the battery unit 1n, and the increment is added to the identification information (for example, ID number 1 + 1 = 2), so that Send to unit. When unique identification information is given to all the battery units in this way, the battery unit 1n at the last stage sends an identification information setting request (ID number ID n + 1) in which an increment is added to its own identification information ID n . Return from the unit transmitter 15 to the master receiver of the master unit 2 (step S7). The master unit 2 receives this identification information setting request, recognizes that identification information has been assigned to all connected battery units, and ends the identification information setting mode.
また一方でマスタユニット2は、識別情報設定要求に含まれる識別情報から増分を減算して(ID番号(IDn+1)-1=IDn)、電池ユニットの接続台数を把握することができる。そしてマスタユニット2は、識別情報設定モードの終了すると、運用モードに移行する。これを受けて、マスタユニット2は各電池ユニット1に対し、マスタ-スレーブ通信を開始する。各電池ユニット1は、ID情報によって識別できる。通信方式は、RS-485等の既知の通信方式を利用できる。マスタユニット2は、各電池ユニット1の電池情報(電池電圧、温度、異常情報等)を入手することができる。
On the other hand, the master unit 2 can grasp the number of connected battery units by subtracting the increment from the identification information included in the identification information setting request (ID number (ID n +1) −1 = ID n ). Then, when the identification information setting mode ends, the master unit 2 shifts to the operation mode. In response to this, the master unit 2 starts master-slave communication with each battery unit 1. Each battery unit 1 can be identified by the ID information. A known communication method such as RS-485 can be used as the communication method. The master unit 2 can obtain battery information (battery voltage, temperature, abnormality information, etc.) of each battery unit 1.
このような構成によって、マスタユニット2が識別情報設定要求を発すると、マスタユニット2に接続された電池ユニット1側で、識別情報設定モードに自動的に移行させることができる。また、識別情報設定モードで各電池ユニット1の識別情報が設定された後は、運用モードに自動的に移行させて、所定の動作を行わせることができる。これによって、複数台の電池ユニット1が接続された状態で、自動で各電池ユニット1に対して識別情報を割り振ることが可能となり、光ファイバ5による片方向通信においても簡単にアドレス設定を行うことができる。また、複数台の電池ユニット1を接続して、大容量の電源システムを構築できる。接続数を調整することで、電源システム全体の電源容量を調整でき、要求される規模に応じた電源システムを柔軟に構築できる。また、いずれかの電池セルに異常が発生しても、マスタユニット側でこれを検出し、異常な電池セルを含む電池ユニットのみを交換可能とすることで、電池交換に要する費用を削減できる利点も得られる。
With such a configuration, when the master unit 2 issues an identification information setting request, the battery unit 1 connected to the master unit 2 can automatically shift to the identification information setting mode. Moreover, after the identification information of each battery unit 1 is set in the identification information setting mode, the operation mode can be automatically shifted to perform a predetermined operation. As a result, identification information can be automatically assigned to each battery unit 1 in a state where a plurality of battery units 1 are connected, and addresses can be easily set even in one-way communication using the optical fiber 5. Can do. Moreover, a large capacity power supply system can be constructed by connecting a plurality of battery units 1. By adjusting the number of connections, the power supply capacity of the entire power supply system can be adjusted, and a power supply system corresponding to the required scale can be flexibly constructed. In addition, even if an abnormality occurs in any of the battery cells, it is possible to reduce the cost required for battery replacement by detecting this on the master unit side and making it possible to replace only the battery unit containing the abnormal battery cell. Can also be obtained.
各電池ユニット1は、共通のハードウェア構成としている。図2に示す電池ユニット1は、13個の電池セル11を直列に接続した電池ブロック12を、3本並列に接続している。また各電池ブロック12には、電池セル11の温度を検出する温度センサや電池ブロック12のブロック電圧を検出する電圧センサを接続できる。温度センサにはサーミスタ等が利用できる。さらに複数の電池ブロック12と接続される電池ユニット1の出力ラインPLには、電池ユニット1の充放電電流を検出する電流検出部が設けられ、ユニット制御部13に入力される。ユニット制御部13は電池セル11の温度や電池セル11又はブロック電圧に基づいて電池ブロック12の過充電、過放電を検出し、異常を検出すると、マスタユニット2に対して異常信号を出力する。マスタユニット2は、異常が発生した電池ユニット1を特定して、ユーザに対して異常の発生を告知すると共に、点検や交換を促す。
(電池セル11) Eachbattery unit 1 has a common hardware configuration. In the battery unit 1 shown in FIG. 2, three battery blocks 12 in which 13 battery cells 11 are connected in series are connected in parallel. Each battery block 12 can be connected to a temperature sensor that detects the temperature of the battery cell 11 and a voltage sensor that detects the block voltage of the battery block 12. A thermistor or the like can be used as the temperature sensor. Furthermore, the output line PL of the battery unit 1 connected to the plurality of battery blocks 12 is provided with a current detection unit that detects the charge / discharge current of the battery unit 1 and is input to the unit control unit 13. The unit control unit 13 detects overcharge and overdischarge of the battery block 12 based on the temperature of the battery cell 11 and the battery cell 11 or the block voltage, and outputs an abnormality signal to the master unit 2 when an abnormality is detected. The master unit 2 identifies the battery unit 1 in which an abnormality has occurred, notifies the user of the occurrence of the abnormality, and prompts inspection or replacement.
(Battery cell 11)
(電池セル11) Each
(Battery cell 11)
電池セル11は、一方向に延在された円柱状又は円筒状の電池セルの他、角形の外装缶を利用したタイプが利用できる。この電池セル11は、リチウムイオン二次電池やニッケル水素電池、ニッケルカドミウム電池等の二次電池が好適に使用できる。特にリチウムイオン二次電池とすることが望ましい。リチウムイオン二次電池は容積密度が高いために、電池パック20の小型化、軽量化に適している。またリチウムイオン二次電池は充放電可能な温度領域が鉛蓄電池やニッケル水素電池に比べて広く、効率よく充放電が可能になる。
The battery cell 11 may be of a type using a square or cylindrical battery can as well as a cylindrical or cylindrical battery cell extending in one direction. As the battery cell 11, a secondary battery such as a lithium ion secondary battery, a nickel metal hydride battery, or a nickel cadmium battery can be suitably used. In particular, a lithium ion secondary battery is desirable. Since the lithium ion secondary battery has a high volume density, it is suitable for reducing the size and weight of the battery pack 20. Also, the lithium ion secondary battery has a wider chargeable / dischargeable temperature range than lead-acid batteries and nickel metal hydride batteries, and can be charged and discharged efficiently.
また電池セル11の正極材料にはリン酸鉄系材料を用いることが好ましい。これにより、安全性を高めることができ、充放電の温度依存性を抑制することができ、特に低温時にも比較的高い充放電効率を維持できるので、冬場でも効率よく充放電が可能になる。
Moreover, it is preferable to use an iron phosphate-based material for the positive electrode material of the battery cell 11. Thereby, safety can be improved, temperature dependence of charging / discharging can be suppressed, and since relatively high charging / discharging efficiency can be maintained even at low temperatures, charging / discharging can be efficiently performed even in winter.
さらにリチウムイオン二次電池の正極は、3成分正極とすることができる。このリチウムイオン二次電池は、正極に、従来のコバルト酸リチウムに代わって、Li-Ni-Mn-Co複合酸化物とコバルト酸リチウム混合を利用する。このリチウムイオン二次電池は、正極にリチウムに加えて、3成分からなるNi-Mn-Coを使用することから、高電圧で充電して熱安定性が高く、充電最大電圧を4.3Vと高くして容量を大きくできる。
Furthermore, the positive electrode of the lithium ion secondary battery can be a three-component positive electrode. In this lithium ion secondary battery, a mixture of Li—Ni—Mn—Co composite oxide and lithium cobalt oxide is used for the positive electrode instead of the conventional lithium cobalt oxide. Since this lithium ion secondary battery uses Ni—Mn—Co composed of three components in addition to lithium for the positive electrode, it is charged with high voltage and has high thermal stability, and the maximum charging voltage is 4.3V. You can increase the capacity.
ただし、充電時の電圧は、使用する電池セル11において、満充電と判断される電圧よりも意図的に低い電圧に設定することが好ましい
。例えば、リチウムイオン二次電池を使用する場合、一般的な条件下では4.2V付近で満充電と判断されるが、4Vで満充電と判定するよう設定する。これにより、電池セルの長寿命化が図れる。 However, it is preferable to set the voltage during charging to a voltage that is intentionally lower than the voltage determined to be fully charged in thebattery cell 11 to be used. For example, when a lithium ion secondary battery is used, it is determined to be fully charged at around 4.2 V under general conditions, but is set to be determined as fully charged at 4 V. Thereby, the lifetime of a battery cell can be extended.
。例えば、リチウムイオン二次電池を使用する場合、一般的な条件下では4.2V付近で満充電と判断されるが、4Vで満充電と判定するよう設定する。これにより、電池セルの長寿命化が図れる。 However, it is preferable to set the voltage during charging to a voltage that is intentionally lower than the voltage determined to be fully charged in the
なお、上記の例ではマスタユニットを別途用意しているが、これに代えて、電池ユニットに上述の識別情報の処理に関するマスタユニットの機能を追加することで、上流側に接続した電池ユニットをマスタユニットとして動作させるように構成してもよい。
In the above example, a master unit is prepared separately. Instead, the battery unit connected upstream is added to the battery unit by adding the function of the master unit related to the processing of the identification information to the battery unit. You may comprise so that it may operate | move as a unit.
本発明に係る電源システム及び電源システムの識別情報設定方法並びに電池ユニットは、夜間電力や太陽電池パネルで充電して使用する家庭用、プラント用の電源装置等に好適に利用できる。
The power supply system, the power supply system identification information setting method, and the battery unit according to the present invention can be suitably used for household power supplies, plant power supplies, and the like that are used by charging with night power or a solar battery panel.
100…電源システム
1、1A、1B、1C、1D、1E、1n…電池ユニット
2…マスタユニット
5…光ファイバ
11…電池セル
12…電池ブロック
13…ユニット制御部
14…ユニット受信部
15…ユニット送信部
16…ユニット電源部
17…直列スイッチ
18…並列スイッチ
401…電池ユニット
402…マスタユニット
405…光ファイバ
PL…出力ライン
PW…電源供給ライン
CO…通信ライン DESCRIPTION OFSYMBOLS 100 ... Power supply system 1, 1A, 1B, 1C, 1D, 1E, 1n ... Battery unit 2 ... Master unit 5 ... Optical fiber 11 ... Battery cell 12 ... Battery block 13 ... Unit control part 14 ... Unit receiving part 15 ... Unit transmission Unit 16 ... Unit power supply unit 17 ... Series switch 18 ... Parallel switch 401 ... Battery unit 402 ... Master unit 405 ... Optical fiber PL ... Output line PW ... Power supply line CO ... Communication line
1、1A、1B、1C、1D、1E、1n…電池ユニット
2…マスタユニット
5…光ファイバ
11…電池セル
12…電池ブロック
13…ユニット制御部
14…ユニット受信部
15…ユニット送信部
16…ユニット電源部
17…直列スイッチ
18…並列スイッチ
401…電池ユニット
402…マスタユニット
405…光ファイバ
PL…出力ライン
PW…電源供給ライン
CO…通信ライン DESCRIPTION OF
Claims (15)
- 通信を行うためのマスタ送信部とマスタ受信部を備えるマスタユニット(2)と、
数珠繋ぎで接続される複数の電池ユニット(1)と、
前記複数の電池ユニット(1)同士及びマスタユニット(2)間を接続すると共に、一方向にデータを送出可能な光ファイバ(5)と、
を備え、
前記光ファイバ(5)を介して前記複数の電池ユニット(1)及びマスタユニット(2)が接続されてなる電源システムであって、
各電池ユニット(1)は、
前記マスタ送信部からのデータを受信可能なユニット受信部(14)と、
前記ユニット受信部(14)で受信したデータを送信可能なユニット送信部(15)と、
前記ユニット受信部(14)とユニット送信部(15)との間を接続する直列スイッチ(17)と、
前記ユニット受信部(14)とユニット送信部(15)との間で、前記直列スイッチ(17)と並列に接続されたユニット制御部(13)と、
前記ユニット制御部(13)と前記ユニット受信部(14)との間に接続された並列スイッチ(18)と、
を備えており、
前記マスタユニット(2)が、前記光ファイバ(5)を介して前記マスタ送信部と接続された電池ユニット(1)に対し、識別情報設定要求を送信することで、前記電池ユニット(1)は、前記ユニット受信部(14)で識別情報設定要求を受信したことを受けて前記直列スイッチ(17)をOFFし、前記並列スイッチ(18)をONして前記ユニット制御部(13)が該識別情報設定要求に含まれる識別情報を自身の識別情報として設定すると共に、該電池ユニット(1)のユニット送信部(15)に接続された、他の電池ユニット(1)に対して、該設定された識別情報と異なる識別情報を設定する要求を送出可能に構成してなることを特徴とする電源システム。 A master unit (2) including a master transmitter and a master receiver for performing communication,
A plurality of battery units (1) connected in a daisy chain;
The plurality of battery units (1) and the master unit (2) are connected together, and an optical fiber (5) capable of sending data in one direction,
With
A power supply system in which the plurality of battery units (1) and the master unit (2) are connected via the optical fiber (5),
Each battery unit (1)
A unit receiver (14) capable of receiving data from the master transmitter; and
A unit transmitter (15) capable of transmitting data received by the unit receiver (14);
A series switch (17) for connecting between the unit receiver (14) and the unit transmitter (15),
Between the unit receiver (14) and the unit transmitter (15), a unit controller (13) connected in parallel with the series switch (17),
A parallel switch (18) connected between the unit controller (13) and the unit receiver (14);
With
The master unit (2) transmits an identification information setting request to the battery unit (1) connected to the master transmitter via the optical fiber (5), so that the battery unit (1) Upon receipt of the identification information setting request by the unit receiver (14), the series switch (17) is turned off, the parallel switch (18) is turned on, and the unit controller (13) The identification information included in the information setting request is set as its own identification information, and is set for the other battery unit (1) connected to the unit transmission unit (15) of the battery unit (1). A power supply system configured to be able to send a request for setting identification information different from the identification information. - 請求項1に記載の電源システムであって、
各電池ユニット(1)はさらに、前記ユニット制御部(13)に給電するためのユニット電源部(16)を備えており、
前記ユニット電源部(16)は、前記ユニット受信部(14)に接続されており、
前記ユニット制御部(13)が、動作モードとして、待機モードと、識別情報設定モードと、運用モードを有しており、
前記ユニット受信部(14)が、前記マスタユニット(2)側からの識別情報設定要求を受信すると、前記ユニット電源部(16)が前記ユニット制御部(13)を待機モードから識別情報設定モードに移行させるよう構成してなることを特徴とする電源システム。 The power supply system according to claim 1,
Each battery unit (1) further includes a unit power supply unit (16) for supplying power to the unit control unit (13),
The unit power supply unit (16) is connected to the unit reception unit (14),
The unit controller (13) has a standby mode, an identification information setting mode, and an operation mode as operation modes,
When the unit receiving unit (14) receives the identification information setting request from the master unit (2) side, the unit power supply unit (16) changes the unit control unit (13) from the standby mode to the identification information setting mode. A power supply system configured to be migrated. - 請求項2に記載の電源システムであって、
前記電池ユニット(1)は、識別情報が付与されるまでは待機モードとなり、
待機モードから識別情報設定モードを経て、該識別情報が付与されると運用モードに移行するよう構成してなることを特徴とする電源システム。 The power supply system according to claim 2,
The battery unit (1) is in a standby mode until identification information is given,
A power supply system configured to shift to an operation mode when the identification information is given from a standby mode through an identification information setting mode. - 請求項1から3のいずれか一に記載の電源システムであって、
前記ユニット制御部(13)は、
前記ユニット電源部(16)と電源供給ライン(PW)を介して接続されており、
前記並列スイッチ(18)と通信ライン(CO)を介して接続されてなることを特徴とする電源システム。 The power supply system according to any one of claims 1 to 3,
The unit controller (13)
It is connected via the unit power supply unit (16) and the power supply line (PW),
A power supply system connected to the parallel switch (18) via a communication line (CO). - 請求項1から4のいずれか一に記載の電源システムであって、
前記直列スイッチ(17)は、前記ユニット制御部(13)によってON/OFFを制御され、
前記並列スイッチ(18)は、前記ユニット電源部(16)によってON/OFFを制御されることを特徴とする電源システム。 The power supply system according to any one of claims 1 to 4,
The series switch (17) is ON / OFF controlled by the unit controller (13),
The parallel switch (18) is controlled to be turned ON / OFF by the unit power supply unit (16). - 請求項1から5のいずれか一に記載の電源システムであって、
前記マスタユニット(2)が、接続されたすべての電池ユニット(1)に対して識別情報が付与されて識別情報設定が終了したことを認識すると、各電池ユニット(1)の前記直列スイッチ(17)をONにしてなることを特徴とする電源システム。 The power supply system according to any one of claims 1 to 5,
When the master unit (2) recognizes that identification information is assigned to all connected battery units (1) and the identification information setting is completed, the series switch (17) of each battery unit (1) ) Is turned on. - 請求項1から5のいずれか一に記載の電源システムであって、
前記ユニット制御部(13)は、識別情報が設定されると、前記直列スイッチ(17)をONにしてなることを特徴とする電源システム。 The power supply system according to any one of claims 1 to 5,
The power supply system according to claim 1, wherein the unit controller (13) turns on the series switch (17) when identification information is set. - 請求項1から7のいずれか一に記載の電源システムであって、
待機モードが、前記電池ユニット(1)の消費電力を抑えた省電力モードであることを特徴とする電源システム。 The power supply system according to any one of claims 1 to 7,
The power supply system, wherein the standby mode is a power saving mode in which power consumption of the battery unit (1) is suppressed. - 請求項1から8のいずれか一に記載の電源システムであって、さらに、
前記電池ユニット(1)は、
複数の電池セル(11)を直列及び/又は並列に接続した一以上の電池ブロック(12)と、
前記電池ブロック(12)の出力を外部に取り出すための出力ライン(PL)と、
を備えてなることを特徴とする電源システム。 The power supply system according to any one of claims 1 to 8, further comprising:
The battery unit (1)
One or more battery blocks (12) in which a plurality of battery cells (11) are connected in series and / or in parallel;
An output line (PL) for taking out the output of the battery block (12) to the outside;
A power supply system comprising: - 通信を行うためのマスタ送信部とマスタ受信部を備えるマスタユニット(2)と、
数珠繋ぎで接続される複数の電池ユニット(1)と、
前記複数の電池ユニット(1)同士及びマスタユニット(2)間を接続すると共に、一方向にデータを送出可能な光ファイバ(5)と、
を備え、
前記光ファイバ(5)を介して前記複数の電池ユニット(1)及びマスタユニット(2)が接続されてなる電源システムにおいて、各電池ユニット(1)に対して固有の識別情報を設定する方法であって、
各電池ユニット(1)がそれぞれ待機モードにある状態で、前記マスタユニット(2)が、前記光ファイバ(5)を介して前記マスタ送信部と接続された下流側の電池ユニット(1)に対し、識別情報設定要求を送信する工程と、
前記電池ユニット(1)が該識別情報設定要求を受けて、待機モードから識別情報設定モードに移行し、該識別情報設定要求に含まれる識別情報を自身の識別情報として設定する工程と、
前記電池ユニット(1)が、前記設定された識別情報と異なる識別情報に設定した上で、該電池ユニット(1)のユニット送信部(15)に接続された下流側の他の電池ユニット(1)に対して、識別情報設定要求を送出する工程と、
識別情報の設定に際して異なる識別情報に再設定した該識別情報設定要求を、下流側の電池ユニット(1)に対して送出する工程を繰り返しながら、各電池ユニット(1)に対して順次識別情報を設定し、すべての電池ユニット(1)に対して識別情報が設定されると、最終段の電池ユニット(1)の下流側に接続されたマスタユニット(2)に対して、異なる識別情報に設定した該識別情報設定要求を送出する工程と、
前記マスタユニット(2)が該識別情報設定要求を受けることで、各電池ユニット(1)に対する識別情報の設定が終了したと判定して、識別情報設定を終了する工程と、
を含むことを特徴とする電源システムの識別情報設定方法。 A master unit (2) including a master transmitter and a master receiver for performing communication,
A plurality of battery units (1) connected in a daisy chain;
The plurality of battery units (1) and the master unit (2) are connected together, and an optical fiber (5) capable of sending data in one direction,
With
In a power supply system in which the plurality of battery units (1) and the master unit (2) are connected via the optical fiber (5), a method of setting unique identification information for each battery unit (1). There,
With each battery unit (1) in standby mode, the master unit (2) is connected to the downstream battery unit (1) connected to the master transmitter via the optical fiber (5). Sending the identification information setting request;
The battery unit (1) receives the identification information setting request, transitions from the standby mode to the identification information setting mode, and sets the identification information included in the identification information setting request as its identification information;
After the battery unit (1) is set to identification information different from the set identification information, the other downstream battery unit (1) connected to the unit transmission unit (15) of the battery unit (1) ) For sending an identification information setting request,
While repeating the process of sending the identification information setting request reset to different identification information when setting the identification information to the battery unit (1) on the downstream side, the identification information is sequentially assigned to each battery unit (1). Once the identification information is set for all battery units (1), different identification information is set for the master unit (2) connected downstream of the last battery unit (1). Sending the identification information setting request,
The master unit (2) receives the identification information setting request, determines that the setting of the identification information for each battery unit (1) is completed, and ends the identification information setting,
A method for setting identification information of a power supply system, comprising: - 請求項10に記載の電源システムの識別情報設定方法であって、
前記設定された識別情報と異なる識別情報が、所定の増分を付加した識別情報であることを特徴とする電源システムの識別情報設定方法。 It is the identification information setting method of the power supply system of Claim 10, Comprising:
An identification information setting method for a power supply system, wherein the identification information different from the set identification information is identification information to which a predetermined increment is added. - 請求項10又は11に記載の電源システムの識別情報設定方法であって、
各電池ユニット(1)は、
前記マスタ送信部からのデータを受信可能なユニット受信部(14)と、
前記ユニット受信部(14)で受信したデータを送信可能なユニット送信部(15)と、
前記ユニット受信部(14)とユニット送信部(15)との間を接続する直列スイッチ(17)と、
前記ユニット受信部(14)とユニット送信部(15)との間で、前記直列スイッチ(17)と並列に接続されたユニット制御部(13)と、
前記ユニット制御部(13)と前記ユニット受信部(14)との間に接続された並列スイッチ(18)と、
を備えており、
各電池ユニット(1)が識別情報を設定する工程が、前記ユニット受信部(14)で識別情報設定要求を受信したことを受けて、前記直列スイッチ(17)をOFFし、前記並列スイッチ(18)をONして前記ユニット制御部(13)が自身の識別情報を設定することを特徴とする電源システムの識別情報設定方法。 It is the identification information setting method of the power supply system according to claim 10 or 11,
Each battery unit (1)
A unit receiver (14) capable of receiving data from the master transmitter; and
A unit transmitter (15) capable of transmitting data received by the unit receiver (14);
A series switch (17) for connecting between the unit receiver (14) and the unit transmitter (15),
Between the unit receiver (14) and the unit transmitter (15), a unit controller (13) connected in parallel with the series switch (17),
A parallel switch (18) connected between the unit controller (13) and the unit receiver (14);
With
Each battery unit (1) sets the identification information. Upon receiving the identification information setting request in the unit receiver (14), the series switch (17) is turned off, and the parallel switch (18 ) And the unit control section (13) sets its own identification information. - 請求項12に記載の電源システムの識別情報設定方法であって、
前記直列スイッチ(17)は、待機モードにおいてOFF状態にされてなることを特徴とする電源システムの識別情報設定方法。 It is the identification information setting method of the power supply system of Claim 12, Comprising:
The method for setting identification information of a power supply system, wherein the series switch (17) is turned off in a standby mode. - 請求項11から13のいずれか一に記載の電源システムの識別情報設定方法であって、
各電池ユニット(1)はさらに、前記ユニット制御部(13)に給電するためのユニット電源
部(16)を備えており、
前記ユニット電源部(16)は、前記ユニット受信部(14)に接続されており、
前記ユニット制御部(13)が、動作モードとして、待機モードと、識別情報設定モードと
、運用モードを有しており、
前記ユニット受信部(14)が、前記マスタユニット(2)からの識別情報設定要求を受信すると、前記ユニット電源部(16)が前記ユニット制御部(13)を待機モードから識別情報設定モードに移行させるよう構成してなることを特徴とする電源システム。 It is the identification information setting method of the power supply system as described in any one of Claim 11 to 13,
Each battery unit (1) further includes a unit power supply unit (16) for supplying power to the unit control unit (13),
The unit power supply unit (16) is connected to the unit reception unit (14),
The unit controller (13) has a standby mode, an identification information setting mode, and an operation mode as operation modes,
When the unit reception unit (14) receives the identification information setting request from the master unit (2), the unit power supply unit (16) shifts the unit control unit (13) from the standby mode to the identification information setting mode. A power supply system configured to be made to be - 複数台を数珠繋ぎに接続して電源システムを構築可能であると共に、マスタユニット(2)に接続されて識別情報を自動設定可能な電池ユニットであって、
マスタユニット(2)のマスタ送信部からのデータを受信可能なユニット受信部(14)と、
前記ユニット受信部(14)で受信したデータを送信可能なユニット送信部(15)と、
前記ユニット受信部(14)とユニット送信部(15)との間を接続する直列スイッチ(17)と、
前記ユニット受信部(14)とユニット送信部(15)との間で、前記直列スイッチ(17)と並列に接続されたユニット制御部(13)と、
前記ユニット制御部(13)と前記ユニット受信部(14)との間に接続された並列スイッチ(18)と、
を備え、
前記ユニット受信部(14)及びユニット送信部(15)に光ファイバ(5)を接続して、マスタユニット(2)及び他の電池ユニット(1)と接続可能に構成してなり、
マスタユニット(2)が、光ファイバ(5)を介して前記マスタ送信部と接続された電池ユニット(1)に対し、識別情報設定要求を送信することで、前記電池ユニット(1)は、前記ユニット受信部(14)で識別情報設定要求を受信したことを受けて前記直列スイッチ(17)をOFFし、前記並列スイッチ(18)をONして前記ユニット制御部(13)が該識別情報設定要求に含まれる識別情報を自身の識別情報として設定すると共に、該電池ユニット(1)のユニット送信部(15)に接続された、他の電池ユニット(1)に対して、該設定された識別情報と異なる識別情報を設定する要求を送出可能に構成してなることを特徴とする電池ユニット。 A battery unit that can connect a plurality of units in a daisy chain and construct a power supply system, and is connected to a master unit (2) to automatically set identification information,
A unit receiver (14) capable of receiving data from the master transmitter of the master unit (2);
A unit transmitter (15) capable of transmitting data received by the unit receiver (14);
A series switch (17) for connecting between the unit receiver (14) and the unit transmitter (15),
Between the unit receiver (14) and the unit transmitter (15), a unit controller (13) connected in parallel with the series switch (17),
A parallel switch (18) connected between the unit controller (13) and the unit receiver (14);
With
An optical fiber (5) is connected to the unit receiver (14) and the unit transmitter (15), and is configured to be connectable with the master unit (2) and another battery unit (1).
The master unit (2) transmits an identification information setting request to the battery unit (1) connected to the master transmitter via the optical fiber (5), so that the battery unit (1) Upon receiving the identification information setting request at the unit receiver (14), the series switch (17) is turned off, the parallel switch (18) is turned on, and the unit controller (13) sets the identification information. The identification information included in the request is set as its own identification information, and the set identification is set for the other battery unit (1) connected to the unit transmission unit (15) of the battery unit (1). A battery unit configured to be able to send a request to set identification information different from information.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011111898A JP2014143771A (en) | 2011-05-18 | 2011-05-18 | Power supply system, identification information setting method for power supply system, and battery unit |
JP2011-111898 | 2011-05-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012157475A1 true WO2012157475A1 (en) | 2012-11-22 |
Family
ID=47176806
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/061813 WO2012157475A1 (en) | 2011-05-18 | 2012-05-09 | Power supply system, method for setting identification information of power supply system, and battery unit |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2014143771A (en) |
WO (1) | WO2012157475A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015184934A (en) * | 2014-03-25 | 2015-10-22 | 株式会社豊田自動織機 | battery monitoring device |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6383954B2 (en) * | 2015-01-16 | 2018-09-05 | パナソニックIpマネジメント株式会社 | Battery control system |
KR101649813B1 (en) * | 2015-02-11 | 2016-08-19 | 엘에스산전 주식회사 | Charging controlling device |
JP6960897B2 (en) * | 2018-10-31 | 2021-11-05 | 株式会社豊田中央研究所 | Power supply |
JP6898904B2 (en) | 2018-10-31 | 2021-07-07 | 株式会社豊田中央研究所 | Power supply |
JP6960898B2 (en) | 2018-10-31 | 2021-11-05 | 株式会社豊田中央研究所 | Power supply |
KR102433850B1 (en) | 2018-12-20 | 2022-08-17 | 주식회사 엘지에너지솔루션 | System and method for recognition of BMS |
JP7193372B2 (en) * | 2019-02-19 | 2022-12-20 | 株式会社ジェイテクト | Power supply and method of providing power supply |
JP7444351B2 (en) | 2019-09-26 | 2024-03-06 | エルジー エナジー ソリューション リミテッド | battery pack |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004039010A1 (en) * | 2002-10-25 | 2004-05-06 | Citizen Watch Co., Ltd. | Electronic device system |
JP2009089486A (en) * | 2007-09-28 | 2009-04-23 | Hitachi Ltd | Multi-series battery control system |
JP2011078201A (en) * | 2009-09-30 | 2011-04-14 | Toshiba Corp | Battery pack system |
-
2011
- 2011-05-18 JP JP2011111898A patent/JP2014143771A/en not_active Withdrawn
-
2012
- 2012-05-09 WO PCT/JP2012/061813 patent/WO2012157475A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004039010A1 (en) * | 2002-10-25 | 2004-05-06 | Citizen Watch Co., Ltd. | Electronic device system |
JP2009089486A (en) * | 2007-09-28 | 2009-04-23 | Hitachi Ltd | Multi-series battery control system |
JP2011078201A (en) * | 2009-09-30 | 2011-04-14 | Toshiba Corp | Battery pack system |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015184934A (en) * | 2014-03-25 | 2015-10-22 | 株式会社豊田自動織機 | battery monitoring device |
Also Published As
Publication number | Publication date |
---|---|
JP2014143771A (en) | 2014-08-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012157475A1 (en) | Power supply system, method for setting identification information of power supply system, and battery unit | |
US9088052B2 (en) | Battery multi-series system and communication method thereof | |
EP2928041B1 (en) | Battery management system for transmitting secondary protection signal and diagnostic signal using a small number of insulation elements | |
KR101170489B1 (en) | Intelligent Energy Storage System and Method Using the Same | |
US20090066291A1 (en) | Distributed energy storage control system | |
US20110304298A1 (en) | Battery charging using multiple chargers | |
EP2610993A1 (en) | Power supply device | |
WO2012120745A1 (en) | Power supply system and identification information setting method for power supply system | |
US20130193925A1 (en) | Communication system and storage battery system | |
US20140001866A1 (en) | Communication system and rechargeable battery system | |
JP2013051820A (en) | Control system for battery pack and power supply system having the same | |
KR102284859B1 (en) | Grid participant charging system for easy management of multiple chargers | |
JP2014124039A (en) | Power supply system and method for setting identification information in power supply system | |
KR101439233B1 (en) | Battery management system with subsidiary battery | |
KR101479554B1 (en) | Battery System Having Dispersive Protection Circuit | |
KR20150048005A (en) | Battery management system sending 2nd protection and dignosis signal using fewer isolation devices | |
US20240332645A1 (en) | Methods of master battery unit and module battery unit management, and battery system | |
KR20150048008A (en) | Battery management system sending 2nd protection and dignosis signal using fewer isolation devices | |
KR20150048006A (en) | Battery management system sending 2nd protection and dignosis signal using fewer isolation devices | |
CN118056188A (en) | Large battery management system with gateway PCBA | |
KR20150048007A (en) | Battery management system sending 2nd protection and dignosis signal using fewer isolation devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12785701 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12785701 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |