WO2012155850A1 - 阳光瓦片 - Google Patents
阳光瓦片 Download PDFInfo
- Publication number
- WO2012155850A1 WO2012155850A1 PCT/CN2012/075610 CN2012075610W WO2012155850A1 WO 2012155850 A1 WO2012155850 A1 WO 2012155850A1 CN 2012075610 W CN2012075610 W CN 2012075610W WO 2012155850 A1 WO2012155850 A1 WO 2012155850A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- unit
- solar
- tile
- heat
- solar energy
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 claims abstract description 163
- 238000010248 power generation Methods 0.000 claims abstract description 85
- 238000010521 absorption reaction Methods 0.000 claims abstract description 21
- 239000010410 layer Substances 0.000 claims description 103
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 67
- 229910052710 silicon Inorganic materials 0.000 claims description 67
- 239000010703 silicon Substances 0.000 claims description 67
- 238000012546 transfer Methods 0.000 claims description 58
- 238000001816 cooling Methods 0.000 claims description 39
- 230000005855 radiation Effects 0.000 claims description 32
- 229910052751 metal Inorganic materials 0.000 claims description 31
- 239000002184 metal Substances 0.000 claims description 31
- 235000012431 wafers Nutrition 0.000 claims description 31
- 210000002858 crystal cell Anatomy 0.000 claims description 30
- 239000003507 refrigerant Substances 0.000 claims description 20
- 238000004891 communication Methods 0.000 claims description 17
- 239000003921 oil Substances 0.000 claims description 16
- 230000005693 optoelectronics Effects 0.000 claims description 15
- 239000000919 ceramic Substances 0.000 claims description 12
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 claims description 6
- 229920006351 engineering plastic Polymers 0.000 claims description 6
- 239000003063 flame retardant Substances 0.000 claims description 6
- 230000002209 hydrophobic effect Effects 0.000 claims description 6
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 5
- 230000002528 anti-freeze Effects 0.000 claims description 5
- 230000009970 fire resistant effect Effects 0.000 claims description 5
- 239000012530 fluid Substances 0.000 claims description 5
- 239000012790 adhesive layer Substances 0.000 claims description 4
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 239000000758 substrate Substances 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- 238000007650 screen-printing Methods 0.000 claims description 3
- 239000013078 crystal Substances 0.000 claims 1
- 230000003647 oxidation Effects 0.000 claims 1
- 238000007254 oxidation reaction Methods 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 14
- 230000008569 process Effects 0.000 abstract description 7
- 238000009413 insulation Methods 0.000 abstract description 5
- 210000004027 cell Anatomy 0.000 description 23
- 238000005516 engineering process Methods 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 239000000463 material Substances 0.000 description 7
- 230000005611 electricity Effects 0.000 description 6
- 230000003064 anti-oxidating effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005265 energy consumption Methods 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 238000004078 waterproofing Methods 0.000 description 2
- 230000003313 weakening effect Effects 0.000 description 2
- 108010053481 Antifreeze Proteins Proteins 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 238000009420 retrofitting Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- -1 wind Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S10/00—Solar heat collectors using working fluids
- F24S10/70—Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
- F24S10/72—Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits the tubular conduits being integrated in a block; the tubular conduits touching each other
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S20/00—Solar heat collectors specially adapted for particular uses or environments
- F24S20/60—Solar heat collectors integrated in fixed constructions, e.g. in buildings
- F24S20/69—Solar heat collectors integrated in fixed constructions, e.g. in buildings in the form of shingles or tiles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S40/00—Safety or protection arrangements of solar heat collectors; Preventing malfunction of solar heat collectors
- F24S40/50—Preventing overheating or overpressure
- F24S40/55—Arrangements for cooling, e.g. by using external heat dissipating means or internal cooling circuits
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S20/00—Supporting structures for PV modules
- H02S20/20—Supporting structures directly fixed to an immovable object
- H02S20/22—Supporting structures directly fixed to an immovable object specially adapted for buildings
- H02S20/23—Supporting structures directly fixed to an immovable object specially adapted for buildings specially adapted for roof structures
- H02S20/25—Roof tile elements
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S40/00—Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
- H02S40/40—Thermal components
- H02S40/44—Means to utilise heat energy, e.g. hybrid systems producing warm water and electricity at the same time
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S20/00—Solar heat collectors specially adapted for particular uses or environments
- F24S2020/10—Solar modules layout; Modular arrangements
- F24S2020/17—Arrangements of solar thermal modules combined with solar PV modules
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B10/00—Integration of renewable energy sources in buildings
- Y02B10/10—Photovoltaic [PV]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B10/00—Integration of renewable energy sources in buildings
- Y02B10/20—Solar thermal
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
- Y02E10/44—Heat exchange systems
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/60—Thermal-PV hybrids
Definitions
- This invention relates to the field of construction and, in particular, to an improvement to tiles, and more particularly to a tile having both photovoltaic power generation and photothermal treatment functions. Background technique
- Tiles are important roofing waterproofing materials. They are usually made of clay and are also made of cement and other materials. They are arched, flat or semi-cylindrical. In a modern society, people's pursuit of a comfortable building thermal environment is increasing, resulting in increasing energy consumption for building heating and air conditioning. In developed countries, building energy accounts for the total energy consumption of the country.
- B AP V This kind of photovoltaic power generation system installed on an intrinsic building.
- BAPV Building Attached Photovoltaic
- a solar panel is to be mounted on a tile
- the weight of the support member will be much larger than that of the solar panel, which places high demands on the load-bearing performance of the tile itself.
- the support member since the support member is to be mounted on the tile, it is also required that the tile itself has a connection point capable of fixing the support member. The above situation limits the development of BAPV technology.
- BIPV Building Integrated Photovoltaic
- BIPV Building Integrated Photovoltaic
- tiles using BIPV technology are integrated with solar photovoltaic cells.
- the tiles themselves support the support and thus do not require additional support components.
- This BIPV tile is basically installed and laid.
- the common tiles are the same, but they also have the functions of waterproofing and photovoltaic power generation.
- BIPV is the main form of modern photovoltaic buildings, and is widely used in all kinds of civil buildings, public buildings, industrial buildings and other buildings that can carry photovoltaic power generation systems. Since the combination of solar panels and buildings does not occupy additional floor space, it is the best installation method for photovoltaic power generation systems in cities.
- Existing tiles using BIPV technology tend to have a bottom plate and a main layer, the main layer being attached to the bottom plate, which includes solar cells or solar cells.
- This base plate is used to connect to the building.
- the floor is provided with a structure that is connected to the roof of the building, or the adhesive is directly bonded to the roof of the building using an adhesive. Because it is located on the roof of the building, the solar cells in the main layer can absorb sunlight better at a suitable light receiving angle, and convert the light energy into electrical energy after absorbing sunlight and pass through the main layer or the bottom plate.
- the electrical output components are incorporated into the home's grid system to provide households with household electricity, or to connect directly to the grid for transmission.
- a new type of solar tile which is composed of a bottom plate and two main layers, the first main layer includes a solar cell or a battery pack, and the second main layer is provided with a thin layer with a heat carrier. Storage.
- the first main layer is disposed above the bottom plate, and the second main layer is disposed below the bottom plate, such that the solar cells in the first main layer generate electricity by absorbing sunlight, and the second main layer passes through the thin storage device.
- the medium heat absorbing body absorbs the heat generated by the solar heat radiation, and supplies and preheats the hot water in the domestic water pipe through the heat exchange unit.
- the above method can take away the heat generated by the solar heat radiation in the sunlight tile frame, it cannot eliminate the heat generated on the solar cell sheet, including the heat generated by the solar heat radiation in the cell sheet and the heat generated during the photoelectric conversion process.
- the photoelectric conversion efficiency of the solar cell is only 13%-16%, about 80% of the solar radiation is directly converted in the photoelectric conversion process.
- the heat generated during this photoelectric conversion process also raises the surface temperature, which in turn affects its conversion efficiency.
- the existing solar tile since approximately 80% of the solar radiation is converted to heat on the cell and cannot be utilized, the existing solar tile has a very low utilization of solar energy. Summary of the invention
- the invention provides a sun tile comprising: a solar energy conversion unit disposed on the surface of the tile and oriented to receive light from the light receiving surface to convert solar energy into electrical energy using its own characteristics; a cooling unit supported by the tile body and disposed opposite to the light receiving unit of the solar energy conversion unit The backlight side of the surface is cooled simultaneously to the tile body and the solar energy conversion unit; the insulating heat conduction layer is disposed between the solar energy conversion unit and the cooling unit, and the insulating heat conduction layer insulates the solar energy conversion unit from the cooling unit and converts the solar energy conversion unit The heat is transferred to the cooling unit.
- the cooling unit of the solar tile of the present invention can simultaneously cool the tile body and the solar energy conversion unit, when the sunlight tile works, the temperature of the tile body of the sunlight tile and the temperature of the solar energy conversion unit are not excessively increased. Therefore, the solar energy conversion unit can be maintained at a better operating temperature, and photovoltaic power generation efficiency can be ensured.
- the insulating thermally conductive layer comprises a ceramic film layer that insulates the solar energy conversion unit from the cooling unit and a metal thermally conductive bonding layer that seamlessly bonds the ceramic film layer to the backlight surface of the solar energy conversion unit.
- the ceramic film layer insulates the solar energy conversion unit from the cooling unit to avoid power loss, and at the same time, the metal thermal conductive bonding layer allows the ceramic film layer to be seamlessly joined to the backlight surface of the solar energy conversion unit, thereby ensuring insulation and heat conduction.
- the layer effectively transfers the resulting during the photoelectric conversion process to the cooling unit.
- the solar energy conversion unit comprises at least one silicon crystal cell sheet, and the backlight surface of each of the silicon crystal cell sheets is applied to a metal thermally conductive bonding layer.
- the metal thermally conductive bonding layer has improved conductivity as compared to prior art grating bonding methods, and better conducts thermal energy of the cell.
- the tile body is formed from a fire resistant, flame retardant, unsaturated modified synthetic engineering plastic.
- the tile body is formed of a fire-resistant flame-retardant unsaturated modified synthetic engineering plastic material, it can withstand the characteristics of high temperature weather and flame retardancy, and has a characteristic of low specific gravity and high strength.
- the cooling unit includes at least one refrigerant passage extending parallel to the insulating heat conductive layer to absorb the heat conductive layer through the insulation
- the heat transferred by the solar energy conversion unit and the refrigerant passage extend into the wall of the tile body to absorb the heat generated by the tile body under sunlight.
- the medium of the refrigerant may be water, wind, oil, ice or gas.
- the refrigerant passage and the tile body and the solar energy conversion unit are in sufficient contact, so that it is easy to cool the both by the refrigerant.
- a solar power generation system which simultaneously absorbs radiant heat from a solar energy conversion unit and heat generated by photovoltaic power generation and heat generated by solar heat radiation on a tile body during operation.
- the sun tiles are also beneficial.
- the present invention provides a solar tile comprising: a tile body; a solar energy conversion unit disposed on the surface of the tile body and oriented to receive light from the light receiving surface to convert solar energy into
- the heat absorbing component is supported by the tile body and disposed on a side opposite to the backlight surface of the solar energy conversion unit opposite to the light receiving surface;
- the insulating heat conduction layer is disposed between the solar energy conversion unit and the heat absorbing component, and the insulating heat conduction layer makes the solar energy
- the conversion unit is insulated from the heat absorbing component, and simultaneously transfers heat generated by solar thermal radiation on the solar energy conversion unit and heat generated by photovoltaic power generation into the heat absorbing component; wherein, the heat absorbing component is simultaneously absorbed by the insulating heat conductive layer The heat transferred by the solar energy conversion unit and the heat generated by the solar heat radiation on the tile body.
- the heat absorbing component of the solar tile of the present invention can simultaneously absorb the heat generated by the solar heat radiation unit and the heat generated by the photovoltaic power generation unit, the solar energy conversion is performed on the one hand.
- the unit is capable of cooling, on the other hand, it not only absorbs the heat generated by solar thermal radiation, but also absorbs the heat generated by photovoltaic power generation.
- the heat absorbing assembly comprises an integrally formed slot plate having thermal conductivity, and a channel is provided in the channel plate, the heat absorbing medium in the channel being oil.
- the groove plate uses a heat conductive material and has a bypass groove structure and uses an oil medium, heat of the solar energy conversion unit and the tile body can be effectively absorbed.
- the channel has a wide section and a narrow section for slowing the flow rate of the heat absorbing medium, wherein the cross section of the narrow section is a cross section of the wide section 1/3.
- a solar power generation system capable of simultaneously generating radiant heat from a solar energy conversion unit and heat generated by photovoltaic power generation and heat generated by solar heat radiation on a tile body during operation. It is also advantageous to take away the photovoltaic photothermal solar tiles utilized.
- a photovoltaic photothermal solar tile comprising: a tile body; a solar energy conversion component supported by the tile body, the solar energy conversion component comprising: a photovoltaic power generation unit, a heat absorption unit, and a An insulating and thermally conductive layer between the photovoltaic power generation unit and the heat absorbing unit, the photovoltaic power generation unit is disposed on the surface of the tile body and oriented to receive light from the light receiving surface to convert the light energy into electrical energy by using the self-characteristic, and the heat absorbing unit is supported by the tile body and The side of the photovoltaic power generation unit opposite to the light-receiving surface of the light-receiving surface is used for simultaneously absorbing the heat generated by the solar thermal radiation and the heat generated during the photoelectric conversion process of the photovoltaic power generation unit, and the insulating heat-conducting layer is disposed on the photovoltaic power generation.
- the insulating and heat conducting layer insulates the photovoltaic power generation unit from the heat absorbing unit, and the heat generated by the photovoltaic power generation is simultaneously transferred to the heat absorbing unit, wherein the heat absorbing unit simultaneously absorbs the heat generated by the insulating heat conduction layer from the photovoltaic power generation unit.
- the heat transferred from the unit and the solar radiation on the tile body Heat generated; an electrical output unit electrically coupled to the photovoltaic power generation unit for receiving electrical energy from the photovoltaic power generation unit and outputting to the outside of the sunlight tile as a current; a heat transfer unit in fluid communication with the heat absorption unit for The heat absorbing unit provides a heat absorbing medium and outputs the medium that has absorbed heat in the heat absorbing unit to the outside of the sunlight tile.
- the solar energy conversion component is capable of converting solar energy into electrical energy, and using the electrical output unit to carry the electrical energy in the form of an electric current, and capable of radiating heat of the solar energy conversion unit and heat and photovoltaic generated by the photovoltaic power generation unit.
- the heat formed by the solar thermal radiation is taken away to complete the heat transfer, so that the solar radiation and heat radiation are utilized to the maximum.
- the photovoltaic power generation unit includes a plurality of silicon crystal cells, the light receiving surface of the silicon crystal cell is a negative electrode, the backlight surface is a positive electrode, and a conductive copper wire is disposed on a light receiving surface of each silicon crystal cell. The back surface of the other silicon wafer is extended to form a series connection between the silicon wafers.
- the solar energy conversion unit comprises a plurality of silicon wafers, and the backlight surface of each of the silicon wafers is applied to a metal thermally conductive bonding layer.
- the metal thermally conductive bonding layer has improved conductivity as compared to prior art grating bonding methods, and better conducts thermal energy of the cell.
- the light-receiving surface of the photovoltaic power generation unit has a light-transmissive hydrophobic film layer.
- the arrangement of such a film layer can ensure the utilization of sunlight and can avoid the photoelectric light-to-heat conversion of the photovoltaic light-emitting unit on the light-receiving surface.
- the heat absorbing unit comprises a channel, a channel outlet and a channel inlet
- the heat transfer unit comprising a medium inlet in communication with the channel outlet of the heat absorbing unit and a medium outlet in communication with the channel inlet of the heat absorbing unit, absorbing The heat-absorbing medium after the heat enters the medium inlet of the heat transfer unit through the channel outlet of the heat-absorbing unit and is then output to the outside of the sunlight tile for heat exchange again, and after the heat exchange of the medium is completed, the heat transfer unit is passed through the heat transfer unit.
- the medium outlet and the passage inlet of the heat absorption unit flow back to the heat absorption unit.
- the heat transfer between the solar energy conversion component and the tile body can be performed in real time through the medium from the heat absorbing unit to the heat transfer unit, thereby effectively improving heat transfer. Thermal energy utilization.
- the channel inlet of the heat absorbing unit is located at the lower end of the tile body, and the channel outlet of the heat absorbing unit is located at the upper end of the sun tile.
- a cold medium such as oil can spontaneously flow from the lower end of the sunlight tile to the upper end of the sunlight tile to form a negative pressure of the cold oil.
- a communication module is further disposed on the sun tile.
- the The communication module can be used to collect information of the silicon chip in real time and send the information out for external communication.
- the information may be the amount of electricity converted from the silicon wafer, such as the current generated, the surface temperature, and the like.
- the photoelectric conversion power generation amount of the silicon wafer is significantly reduced due to the weakening or disappearance of the light transmittance, and the silicon wafer is used according to the silicon wafer.
- the real-time power conversion information sent by the communication module can quickly locate the problem silicon wafer and process it accordingly.
- a solar power generation system capable of simultaneously generating radiant heat from a solar energy conversion unit of each sunlight tile and heat generated by photovoltaic power generation and heat radiation from a solar cell on a tile body. It is also advantageous that the heat formed is taken away by the photovoltaic photothermal solar tile group utilized.
- an opto-optic thermal solar tile group formed by a plurality of the above-mentioned photoelectric photothermal solar tiles, the electrical output of each solar tile and the electrical output of another solar tile
- the units are connected in series and then connected to the electric output trunk outside the sunlight tile.
- the heat transfer unit of each sunlight tile is connected in parallel with the heat transfer unit of another sunlight tile and then connected to the outside of the sunlight tile. Heat exchange trunk road.
- the photovoltaic photothermal solar tiles can be produced in groups or assembled into tiles by a plurality of tiles so that their power output and thermal energy output can be output collectively, improving production and assembly efficiency.
- the medium inlet of the heat transfer unit of each sunlight tile is connected to the inlet trunk outside the sunlight tile group, and the medium outlet of the heat transfer unit of each sunlight tile is connected to the outside of the sunlight tile group. The exit of the main road.
- each tile of the tile group has its medium inlet and medium outlet, and at the same time, a unified inlet trunk and an exit trunk that bring them together, it is convenient and Assembly of other tile groups (if assembly is required) increases production and assembly efficiency.
- the protrusions and/or grooves of one of the sun tiles can be engaged with the grooves and/or protrusions of the adjacent tiles, and the tiles and adjacent tiles are used. connected.
- the sun tiles due to the in-line engagement of the grooves and the projections, the sun tiles can be formed into a group of tiles one by one, and the joints are embedded in a relatively firm manner.
- a water-repellent adhesive layer is disposed on the surface of the groove and the projection of the engagement groove between the tiles.
- the arrangement of the waterproof adhesive layer further strengthens the connection between the tiles, and can reduce the stress at the joint of the tile, so that when the tile is subjected to a large external force such as strong wind and tornado, the tile The joints of the sheets are not damaged by the effects of wind pressure uplift.
- the present invention provides a photoelectric conversion module comprising: a solar energy conversion unit oriented to receive light from a light receiving surface to convert solar energy into electrical energy using its own characteristics; and a cooling unit disposed at the solar energy conversion unit Opposite the backlight surface side of the light receiving surface to cool the solar energy conversion unit; an insulating heat conduction layer disposed between the solar energy conversion unit and the cooling unit, the insulating heat conduction layer making the solar energy
- the conversion unit is insulated from the cooling unit and transfers heat of the solar energy conversion unit into the cooling unit.
- the cooling unit can better cool the solar energy conversion unit, so that the temperature of the solar energy conversion unit is not It will rise excessively, so that the solar energy conversion unit can be maintained at a better operating temperature, and photovoltaic power generation efficiency can be guaranteed.
- the photoelectric conversion component is embodied as a sunlight tile, including a tile body, the solar energy conversion unit is disposed on the surface of the tile body, and the cooling unit is supported by the tile body to simultaneously cool the tile body. .
- a photoelectric photothermal conversion module which can utilize solar energy to generate electricity while taking away radiant heat from a solar energy conversion unit and heat generated by photovoltaic power generation.
- an optoelectronic photothermal conversion assembly comprising: a solar energy conversion component,
- the method includes: a photovoltaic power generation unit, the photovoltaic power generation unit is oriented such that the light receiving surface receives sunlight to convert the light energy into electrical energy by using the self characteristic; and the heat absorption unit is disposed opposite to the photovoltaic power generation unit The side of the backlight surface of the light-receiving surface is for absorbing heat generated during photoelectric conversion of the photovoltaic power generation unit; and an insulating heat conductive layer disposed between the photovoltaic power generation unit and the heat absorption unit, The heat generated by the solar thermal radiation on the photovoltaic power generation unit and the heat generated by the photovoltaic power generation unit by the photovoltaic power generation are simultaneously transferred into the heat absorption unit; and an electrical output unit electrically connected to the photovoltaic power generation unit for The photovoltaic power generation unit receives electrical energy and outputs it as an electric current to the outside of the photoelectric photothermal
- the solar energy conversion component is capable of converting solar energy into electrical energy, and using the electrical output unit to carry the electrical energy in the form of an electric current, and at the same time, the heat generated by the solar thermal radiation on the photovoltaic power generation unit and the photovoltaic power generation unit are photovoltaic
- the heat generated by the power generation is taken away to complete the heat transfer, thereby maximizing the use of solar light radiation and heat radiation.
- the present invention also provides a photoelectric photothermal module group connected by the above photoelectric photoelectric heat conversion component, and an electric output trunk of the electric output unit of each of the photoelectric photothermal conversion components and another conversion component At the same time, the heat transfer unit of each of the photoelectric photothermal conversion modules is connected in parallel with the heat transfer unit of another of the photoelectric photothermal conversion modules, and then connected to a heat exchange trunk outside the photoelectric light heat assembly. .
- FIG. 1 is a cross-sectional view of a sun tile according to a first embodiment of the present invention
- FIG. 2 is a cross-sectional view of a sun tile according to a second embodiment of the present invention
- FIG. 3 is an oil groove in the sun tile shown in FIG. Schematic diagram of the board
- Figure 4 is a cross-sectional view of a solar tile according to a third embodiment of the present invention
- Figure 5 is a schematic perspective view of the sunlight tile shown in Figure 4 as viewed from above, showing the arrangement of the silicon wafer for clarity;
- Figure 6 is a schematic plan view of the sunlight tile shown in Figure 4.
- Figure 7 is a schematic view of the connection of silicon wafers on the solar tile shown in Figure 4, showing the silicon wafers in each series connected in series, while the serial and serial connections of the silicon wafer are also in series;
- Figure 8 is the present invention A schematic diagram of an embodiment of a sun tile group showing a four-piece tile group structure. detailed description
- the present invention firstly provides a photoelectric conversion module capable of converting solar energy into electrical energy, and preferably providing a cooling unit in the photoelectric conversion assembly for cooling the solar energy conversion unit or the photoelectric conversion unit to ensure photoelectric conversion effectiveness.
- the present invention also provides an optoelectronic photothermal conversion module capable of solar energy It is converted into electric energy, and at the same time, while the heat on the solar energy conversion unit or the photoelectric conversion unit is absorbed to cool them, the heat can be taken away for exchange.
- the present invention provides a solar tile capable of converting solar energy into electrical energy, and the solar tile generates heat, which includes heat generated during photoelectric conversion, and a solar energy conversion unit or a photoelectric conversion unit and a tile body. The heat formed by the solar thermal radiation.
- a cooling unit is provided within the sunlight tile for cooling the solar energy conversion unit or the photoelectric conversion unit and the tile body to ensure photoelectric conversion efficiency;
- in the sunlight Providing a heat absorbing component in the tile for absorbing heat of the solar energy conversion unit or the photoelectric conversion unit and the tile body to cool them;
- in the third aspect of the invention not only the heat absorbing unit but also the heat transfer unit is provided, thereby The solar energy conversion unit or the photoelectric conversion unit and the heat on the tile body are absorbed to cool them, and the heat can be taken away for exchange.
- the above photoelectric conversion module can be used for any photoelectric conversion device, and the above photoelectric photoelectric conversion assembly can be applied to any solar device such as a solar tile, a solar curtain wall, a solar water heater or a photovoltaic power generation device in a photovoltaic power generation field.
- a first embodiment of a solar tile of the present invention is shown.
- the solar tile 100 includes: a solar energy conversion unit 101, a cooling unit 102, an insulating and thermally conductive layer 104, and a tile body 103.
- the tile body 103 can be integrally formed and molded from a fire resistant, flame retardant, unsaturated modified synthetic engineering plastic.
- the solar energy conversion unit 101 is disposed on the surface of the tile, which may be a single silicon crystal cell or an array composed of a plurality of silicon cell sheets 101 1 and on the light receiving surface of the solar energy conversion unit 101. It may have a light transmissive hydrophobic film layer (not shown).
- the insulating thermally conductive layer 104 includes a ceramic film layer 1041 and a metal thermally conductive bonding layer 1042, which may be formed of a conductive silver paste.
- the backlight surface of each silicon wafer 101 1 is applied to a metal printed thermal bonding layer 1042 of the screen printing, so that the metal thermal bonding layer 1042 can be connected to the solar energy conversion unit 101 without gaps. Hehe.
- the area of each of the metal thermally conductive bonding layers 1042 is not greater than the area of the backlight surface of the silicon crystalline cell sheet 101 1 to which it is applied.
- the cooling unit 102 is supported by the tile body 103 and disposed on the side of the backlight surface of the solar energy conversion unit 101.
- the cooling unit 102 includes at least one refrigerant passage 1021 that extends parallel to the insulating thermally conductive layer 104. These refrigerant passages 1021 are in contact with the bottom portion 1012 of the solar energy conversion unit, and are also in contact with the surrounding wall 1031 and the bottom portion 1032 of the tile body 103.
- cold water flows in the refrigerant passage 1021 such that when the sunlight tile 100 is in operation, the refrigerant passage 1021 cools the tile body 103 through cold water flowing therein, on the other hand,
- the heat of the solar energy conversion unit is first transferred to the refrigerant passage 1021 by the insulating heat conduction layer, and the refrigerant passage 1021 cools the transferred heat by the cold water.
- the refrigerant passages may be arranged in a serpentine shape.
- the refrigerant passage 1021 may also be connected to an air cooling system (not shown), so that the cold air blown from the air cooling system can quickly circulate in the refrigerant passage 1021 and blow off.
- the heat on the tile body 103 and the solar energy conversion unit 101 may also be connected to an air cooling system (not shown), so that the cold air blown from the air cooling system can quickly circulate in the refrigerant passage 1021 and blow off.
- a solid medium capable of releasing cold air such as dry water
- the solid medium may be placed in the refrigerant passage 1021, and the solid medium is placed in the refrigerant passage 1021 and the insulation heat conduction 104 and the wall of the tile body, respectively.
- the temperature of the tile body 103 and the solar energy conversion unit are simultaneously lowered.
- the sunlight tile 200 includes a solar energy conversion unit 201, a heat absorption component 202, an insulating and thermally conductive layer 204, and a tile body 203.
- the solar tile structure in the second embodiment is substantially the same as that of the first embodiment except that the heat absorbing member 202 replaces the cooling unit 102 in the first embodiment.
- the heat absorbing component 202 is supported by the tile body 203 and disposed on the backlight surface of the solar energy conversion unit 201. As shown in Fig. 2, the heat absorbing component 202 can be an integrally formed slot plate 2021 which can be an aluminum substrate and thus has good thermal conductivity.
- the slot plate 2021 may also be concave overall.
- the transverse groove of the shape, the thickness of the groove is much smaller than the length thereof, and oil or water flows in the groove. Since the slot plate 2021 is in sufficient contact with the insulating and thermally conductive layer 204 and the tile body 203, it can simultaneously absorb the heat transferred by the insulating and thermally conductive layer and the heat radiation of the tile body by solar thermal radiation. Heat.
- a meandering channel 2022 may be provided in the slotted plate 2021, which may be serpentine.
- Anti-oxidation and anti-freeze heat transfer oil flows in the channel 2022.
- the cross-sectional area of the narrow section of the channel 2022 is 1/3 of the cross-sectional area of the wide section.
- the solar tile 300 includes a tile body 301, a solar energy conversion module 302, an electrical output unit 303, and a heat transfer unit 304.
- the solar energy conversion module 302 is supported by a tile body 301, which includes a photovoltaic power generation unit 3021, an insulating and thermally conductive layer 3022, and a heat absorption unit 3023.
- a photovoltaic power generation unit 3021 is disposed on a surface of the tile body 301, and a light receiving surface thereof may have a light transmissive hydrophobic film layer (not shown).
- the photovoltaic power generation unit 3021 includes a plurality of silicon crystal cell sheets 3021a.
- the light receiving surface of the silicon crystal cell 3021a is a negative electrode, and the backlight surface is a positive electrode.
- a plurality of silicon wafers 3021a are connected in series. For example, as shown in FIG.
- a plurality of silicon wafers in each column are first connected in series, and then the first row and the first column of the silicon wafer are
- the silicon crystal cell of the first row and the second column is electrically connected
- the silicon crystal cell of the first row and the third column is electrically connected to the silicon crystal cell of the first row and the fourth column
- the silicon crystal cell of the sixth row and the first column is electrically connected.
- the negative electrode of the sheet is connected to the positive electrode of the electric output unit 303
- the positive electrode of the silicon crystal cell sheet of the sixth row and the fourth column is connected to the negative electrode of the electric output unit 303
- the silicon crystal cell of the sixth row and the second column is connected to the sixth row and the third row.
- the columns of silicon cells are electrically connected together by a diode.
- the series connection between the silicon crystal cells 3021a is realized by a conductive copper wire provided on the light receiving surface thereof, which extends from the light receiving surface of the silicon crystal cell to the backlight surface of the other silicon crystal cell.
- the insulating thermally conductive layer 3022 includes a ceramic film layer 3022a and a metal thermally conductive bonding layer 3022b formed of a conductive silver paste. Each silicon crystal cell 3021a The backlight surface is applied to a screen printed metal thermally conductive bonding layer 3022b such that the metal thermally conductive bonding layer 3022b is seamlessly joined to the photovoltaic power generation unit 3021. Moreover, the area of each of the metal thermally conductive bonding layers 3022b is not greater than the area of the backlight surface of the silicon crystal cell sheet 3021a to which it is applied.
- a heat transfer unit 304 is connected to the heat absorbing unit 3023 for supplying a heat absorbing medium to the heat absorbing unit 3023, and outputting the medium having absorbed heat in the heat absorbing unit 3023 to Sunlight tile exterior.
- the heat absorption unit 3023 includes a passage, a passage outlet 3023b, and a passage inlet 3023c.
- the medium inlet 3041 of the heat transfer unit 304 is in communication with the passage inlet 3023c, and the medium outlet 3042 of the heat transfer unit 304 is in communication with the passage outlet 3023b.
- the heat absorbing medium flows into the passage 3023b through the passage inlet 3023c, flows out from the passage outlet 3023b after being absorbed, and is output to the outside of the sunlight tiling via the heat transfer unit 304.
- the channel inlet 3023c and the medium inlet 3041 may be located at a lower end of the sunlight tile, the channel outlet 3023b Both the media outlet 3042 and the media outlet 3042 can be located at the upper end of the sun tile.
- the heat absorbing medium after the heat is absorbed is output to the external heat exchange passage via the heat transfer unit 304 for heat exchange again to complete the heat transfer.
- these media are again subjected to heat exchange, they flow into the heat absorbing unit 3023 through the medium inlet 3041 of the heat transfer unit 304 and the channel inlet 3023c of the heat absorbing unit 3023.
- the heat absorbing unit 3023 may adopt a slot plate in the second embodiment, the slot plate 3023d is an aluminum substrate, and the grooved plate 3023d is provided with a bypass channel 3023a as a passage of the heat absorbing unit 3023.
- the channel 3022a is arranged in a serpentine shape.
- the cross-sectional area of the narrow section of the channel 3023a is 1/3 of the cross-sectional area of the wide section.
- An anti-oxidation antifreeze heat transfer oil flows through the channel 3023a.
- the sunlight tile 300 of the present invention is further provided with a communication module, and the communication module can collect information of the corresponding silicon wafer in real time and transmit the information.
- the letter may be a surface temperature of a silicon wafer, a converted electric quantity, or the like.
- the conversion power of the silicon wafer is significantly reduced due to the weakening of the light transmittance.
- the real-time electricity conversion information issued by the communication module of the silicon wafer can be quickly located. To this problem silicon wafers are processed accordingly.
- the solar tile 300 of the present invention can be used alone and mounted on a roof, or a plurality of tiles 300 can be joined together for use and installation. For example, four or eight tiles 300 may be joined together to form a tile group 400, which are then remounted on the roof.
- the set of sunny tiles includes a plurality of solar tiles 300, the electrical output of each of the solar tiles 300 and the electrical output of the other of the solar tiles 300
- the units 303 are connected in series and then connected to an electric output trunk outside the sunlight tile, while the heat transfer unit 304 of each of the sunlight tiles is coupled to the heat transfer unit 304 of another of the sunlight tiles. Connected in parallel to the heat exchange trunk outside the solar tile.
- the medium inlet 3041 of the heat transfer unit 304 of each of the sunlight tiles 300 is connected to an entrance trunk outside the sunlight tile group, and each of the sunlight tiles is The media outlet of the heat transfer unit 304 is connected to an exit main road outside the solar tile group.
- screw holes may be provided around the sun tile and the sun tiles 300 may be joined together by bolts.
- the sun tiles 300 may be stacked together in a conventional tile manner and adhesively reinforced to enhance the joint strength between each tile 300.
- the sun tile 3 is provided with a protrusion 3013 on the lower side and the right side of the tile body 301, and the upper side and the left side are disposed.
- the protrusion 3013 on the lower side of the sunlight tile can be engaged with the upper side groove 3014 of the lower tile, and the right side protrusion 3013 can be engaged with the left side groove 3014 of the right side tile, and so on, Tiles can be joined to each other by adjacent tiles.
- a waterproof adhesive layer is disposed on the surface of the engaging groove in which the groove 3014 and the protrusion 3013 are fitted to each other.
- the tiles of the present invention may be of any shape, such as rectangular, square or arched.
- the invention can be used with any roof structure.
- the tiles of the present invention can be erected directly on the roof girders to form the roof of the house or, as with the BAPV technique, the tiles are mounted on the roof tiles.
- the present invention refers only to tiles in the embodiments, those skilled in the art should be able to understand various building materials, such as curtain walls, which can be applied to the BIPV field, according to the disclosure of the present invention.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Photovoltaic Devices (AREA)
Description
阳光瓦片 技术领域
本发明涉及建筑领域, 特别地, 涉及一种对瓦片的改进, 更特 别地, 涉及一种同时具有光伏发电和光热处理功能的瓦片。 背景技术
瓦片是重要的屋面防水材料, 一般用泥土烧成,也有用水泥等材 料制成的, 形状有拱形的、 平的或半个圆筒形的等。 在现代化社会 中, 人们对舒适的建筑热环境的追求越来越高, 导致建筑采暖和空 调的能耗日益增长。 在发达国家, 建筑用能已占全国总能耗的
30%-40%, 对经济发展形成了一定的制约作用。 因此人们希望将太 阳能技术应用于建筑物中, 以降低建筑用能。 瓦片通常被铺设在建 筑物的顶部, 具有良好的采光性能, 所以从上世纪 70年代开始, 人 们就尝试将太阳能电池板安装在瓦片表面, 以使瓦片在具有防水功 能的同时也具有光伏发电能力。
这种安装在固有建筑物上的光伏发电系统称简称为 B AP V
( Building Attached Photovoltaic ) , 其通常用于对现有建筑物的二次 改造, 也是光伏建筑领域较早的实施方式。 然而, BAPV技术在实 施的时候往往需要单独用于支撑太阳能电池板的支撑装置, 这既增 加了成本又给安装带来了麻烦。 例如, 如果要将太阳能电池板安装 在瓦片上时, 需要在瓦片上先安装用于支撑太阳能电池板的支撑部 件, 再将太阳能电池板铺设在该支撑部件上。 通常情况下, 该支撑 部件的重量会远大于太阳能电池板, 这就对瓦片本身的承重性能提 出了很高的要求。 另外, 由于要在瓦片上安装支撑部件, 所以还需 要瓦片本身具有能够固定所述支撑部件的连接点。 上述情况限制了 BAPV技术的发展。
针对上述 BAPV技术的缺点, 人们提出将光伏发电系统作为建 筑物外部维护结构的一部分,且与建筑物同时设计、 施工和安装, 这 就是太阳能光伏建筑一体化( BIPV, Building Integrated Photovoltaic)
技术。 BIPV使得建筑物本身具有构件和材料功能外同时具有光电换 转的功能。 举例来说, 不同于 BAPV技术, 运用 BIPV技术的瓦片 其本身就集成有太阳能光伏电池, 瓦片本身起到支撑的作用因而无 需额外的支撑部件,这种 BIPV瓦片的安装铺设方式基本与普通瓦片 相同, 只是其同时兼具防水性能和光伏发电的功能。 BIPV是现代光 伏建筑的主要形式, 广泛用于各种民用建筑、 公共建筑、 工业建筑 等一切可以承载光伏发电系统的建筑物。 由于太阳能电池板与建筑 的结合不占用额外的地面空间, 是光伏发电系统在城市中广泛应用 的最佳安装方式。
在现在的 BIPV应用中, 人们已经看到了其具有下列优越性:
1 ) 可原地发电、 原地使用, 减少电流传输过程的费用和能耗;
2 ) 避免了光伏组件阵列占用额外的空间, 省去了单独为光电设 备提供的支撑结构;
3 ) 使用新型建筑维护材料, 节约了昂贵的外装饰材料, 减少建 筑物的整体造价, 并使建筑外观更有美学价值;
4 ) 因日照强度与高压电网用电高峰期基本同步, 舒緩了电网在 电力高峰时的压力, 緩解电网峰谷供需矛盾, 具有极大的社会效益;
5 ) 避免了燃料发电所带来的空气污染;
现有的运用 BIPV技术的瓦片往往具有一个底板和一个主层, 主 层依附在底板上, 其包括太阳能电池片或太阳能电池组件。 该底板 用于与建筑物连接。 通常地, 在现有太阳能瓦片中, 底板上设置有 与建筑物屋顶连接的结构, 或者使用粘合剂直接将太阳能瓦片粘接 固化到建筑物屋顶上。 由于位于建筑物的屋顶, 所以主层中的太阳 能电池能在合适的受光角度下较好地吸收太阳光, 并且在吸收太阳 光后将光能转换为电能并通过设置在主层或底板中的电输出部件并 入到家庭的电网系统中, 以为家庭提供生活用电, 或着直接连上电 网传输送电。
目前市场上的太阳能电池多为多晶硅电池和单晶硅电池,这种硅 电池在温度 25摄氏度的情况下光电转换效率为 13%-16%,这些无法
外, 为了能够更好地吸收太阳光, 太阳能瓦片的太阳能电池片在工 作中是直接暴露在太阳光下, 阳光的热辐射也会造成整个太阳能瓦 片温度很高, 由于热传导的作用, 太阳能瓦片自身的高温也会影响 到其太阳能电池片。 然而, 过高的温度会对多晶硅电池或单晶硅电 池的工作效率带来副作用。 经试验证明, 当电池的工作温度超过其 最佳工作温度后, 每升高 1摄氏度, 开路电压约下降 2.0mV-2.2mV, 而峰值功率损失率约为 0.35%〜0.45%, 另外太阳能电池短路电流会 随温度的升高而升高。 由此可见, 太阳能电池过高的温度会影响到 其转换效率, 同时加快其衰减速度, 减少其使用寿命。
针对上述缺点,有人设计出了一种新型太阳能瓦片, 其由底板和 两块主层构成, 第一主层包括太阳能电池或电池组, 第二主层则设 置有带有载热体的薄贮存器。 其中, 第一主层设置在所述底板的上 方, 第二主层设置在底板的下方, 这样第一主层中的太阳能电池通 过吸收阳光来产生电能, 第二主层则通过其薄贮存器中的载热体吸 收阳光瓦片框架由于直接吸收太阳热辐射所产生的热量, 通过热交 换部件供应并预热住宅自来水管中的热水。
上述方式虽然能够带走阳光瓦框架中由于太阳热辐射所产生的 热量, 但却无法消除太阳能电池片上所产生的热量, 包括太阳能热 辐射在电池片的热量和光电转换过程中产生的热量。 实际上, 除了 太阳光直接照射电池片产生的辐射热外, 由于太阳能电池片的光电 转换效率仅有 13%-16%, 所以有大约 80%的太阳光的光辐射在光电 转换过程中直接转化为热量, 这种光电转换过程中产生的热也会使 其表面温度升高, 进而影响到其转换效率。 另外, 由于大约 80%的 太阳光光辐射转换为电池片上的热量而无法被利用, 所以现有阳光 瓦片对太阳能的利用率非常低。 发明内容
因此, 提供一种可利用太阳能发电, 同时在工作时可一并对阳 光瓦片和太阳能转换单元进行冷却的阳光瓦片是有利的。
根据本发明的一个方面, 本发明提供一种阳光瓦片, 其包括:
瓦体; 太阳能转换单元, 其设置在瓦片表面并定向为其受光面可接 受阳光从而利用自身特性将太阳能转换为电能; 冷却单元, 其由瓦 体支撑并设置在太阳能转换单元的相反于受光面的背光面一侧以同 时对瓦体和太阳能转换单元进行降温; 绝缘导热层, 其设置在太阳 能转换单元和冷却单元之间, 绝缘导热层使太阳能转换单元相对冷 却单元绝缘并将太阳能转换单元的热量转移到冷却单元中。
由于本发明的阳光瓦片的冷却单元能够同时对瓦体和太阳能转 换单元进行降温, 所以当阳光瓦片工作时, 使得阳光瓦片的瓦体的 温度和太阳能转换单元的温度都不会过度上升, 从而使太阳能转换 单元能维持在一个较佳的工作温度中, 光伏发电效率能够得到保证。
在本发明一个优选实施方式中, 绝缘导热层包括使太阳能转换 单元相对冷却单元绝缘的陶瓷膜层和将陶瓷膜层与太阳能转换单元 的背光面无缝隙接合的金属导热结合层。
在该实施方式中, 陶瓷膜层使太阳能转换单元相对冷却单元绝 缘以避免电能损失, 同时, 由于金属导热结合层使得陶瓷膜层与太 阳能转换单元的背光面无缝隙地接合, 所以能够确保绝缘导热层有 效地将光电转换过程中产生的转移到冷却单元。
在本发明的另一优选实施方式中, 太阳能转换单元包括至少一 个硅晶电池片, 每个硅晶电池片的背光面敷贴在一金属导热结合层 上。
在该实施方式中, 金属导热结合层相比于现有技术的光栅焊接 方式提高了导电系数, 能更好地将电池片的热能传导出去。
在本发明的再一个优选实施方式中, 瓦体由耐火阻燃的不饱和 改性合成工程塑料形成。
在该实施方式中, 由于瓦体利用耐火阻燃的不饱和改性合成工 程塑料材料形成, 所以能够耐受高温天气和阻燃的特性, 同时具有 比重小强度高的特性。
在本发明的又一个优选实施方式中, 冷却单元包括至少一条冷 媒通道, 冷媒通道平行于绝缘导热层延伸以吸收经由绝缘导热层从
太阳能转换单元转移来的热量并且冷媒通道延伸进入瓦体的围壁以 吸收瓦体在阳光照射下所产生的热量。 冷媒的介质可以是水、 风、 油、 冰或气体。
在该实施方式中, 冷媒通道和瓦体以及太阳能转换单元充分接 触, 从而容易利用冷媒对二者进行降温。
在本发明的另一个方面, 提供一种可利用太阳能发电, 同时在 工作时一并吸收来自太阳能转换单元的辐射热和光伏发电所产生的 热量以及瓦体上由太阳光热辐射所形成的热量的阳光瓦片也是有利 的。
根据本发明的另一个方面, 本发明提供一种阳光瓦片, 其包括: 瓦体; 太阳能转换单元, 其设置在瓦体表面并定向为其受光面可接 受阳光从而利用自身特性将太阳能转换为电能; 吸热组件, 其由瓦 体支撑并设置在太阳能转换单元的相反于受光面的背光面一侧; 绝 缘导热层, 其设置在太阳能转换单元和吸热组件之间, 绝缘导热层 使太阳能转换单元相对吸热组件绝缘, 并将太阳能转换单元上由太 阳光热辐射形成的热量和由光伏发电所产生的热量同时转移到吸热 组件中; 其中, 吸热组件同时吸收由绝缘导热层从太阳能转换单元 转移出的热量以及瓦体上由太阳光热辐射所形成的热量。
由于本发明的阳光瓦片的吸热组件能够同时吸收瓦体和太阳能 转换单元由太阳光热辐射所形成的热量以及太阳能转换单元由光伏 发电所产生的热量, 这样一方面对瓦体和太阳能转换单元能够进行 降温, 另一方面, 其不仅能吸收太阳能热辐射所产生的热量, 还能 吸收光伏发电所产生的热量。
在一种优选实施方式中, 吸热组件包括一体成型的具有导热性 能的槽板, 在槽板内设置有迂回的槽道, 槽道内的热吸收介质为油。
在该实施方式中, 由于槽板使用导热材料、 并有迂回槽道结构 且使用油介质, 能有效吸收太阳能转换单元和瓦体的热量。
在另一优选实施方式中, 槽道具有宽截面部和用于放慢热吸收 介质的流速的窄截面部, 其中窄截面部的截面积是宽截面部截面积
的 1/3。
由于这种结构设置, 槽道内的热吸收介质流到窄截面部时会放 慢流速, 从而更好地从太阳能转换单元和瓦体吸收热量。
在本发明的再一个方面, 提供一种可利用太阳能发电, 同时在 工作时将来自太阳能转换单元的辐射热和光伏发电所产生的热量以 及瓦体上由太阳光热辐射所形成的热量一并带走利用的光电光热阳 光瓦片也是有利的。
根据本发明的该再一个方面, 提供一种光电光热阳光瓦片, 其 包括: 瓦体; 太阳能转换组件, 其由瓦体支撑, 太阳能转换组件包 括: 光伏发电单元、 热吸收单元以及设置在光伏发电单元和热吸收 单元之间的绝缘导热层, 光伏发电单元设置在瓦体表面并定向为其 受光面可接受阳光从而利用自身特性将光能转换为电能, 热吸收单 元由瓦体支撑并设置在光伏发电单元的相反于受光面的背光面一侧 用于同时吸收瓦体由太阳光热辐射所形成的热量和光伏发电单元光 电转换过程中所产生的热量, 绝缘导热层设置在光伏发电单元和热 吸收单元之间, 绝缘导热层使光伏发电单元相对热吸收单元绝缘, 由光伏发电所产生的热量同时转移到热吸收单元中, 其中, 热吸收 单元同时吸收由绝缘导热层从光伏发电单元转移出的热量以及瓦体 上由太阳光热辐射所形成的热量; 电输出单元, 其与光伏发电单元 电连接用于从光伏发电单元接收电能并以电流形式输出到阳光瓦片 外部; 热转移单元, 其与热吸收单元流体连通, 用于向热吸收单元 提供热吸收介质, 并将热吸收单元中已经吸收了热量的介质输出到 阳光瓦片外部。
在该再一个方面中, 太阳能转换组件能够将太阳能转换为电能, 并利用电输出单元将电能以电流的形式带走, 同时能够将太阳能转 换单元的光辐射热和光伏发电所产生的热以及瓦体上由太阳光热辐 射所形成的热一并带走完成热转移, 从而将太阳能的光辐射和热辐 射进行了最大利用。
在一个优选实施方式中, 光伏发电单元包括多个硅晶电池片, 硅晶电池片的受光面为负极, 背光面为正极, 在每一硅晶电池片的 受光面上设有导电铜丝并延伸连接另一硅晶电池片的背光面, 从而 使硅晶电池片之间形成串联。
在该实施方式中, 通过这种串联的方式, 能够最大效率地产生 电能, 从而提高光电转换率。
在另一优选实施方式中, 太阳能转换单元包括多个硅晶电池片, 每个硅晶电池片的背光面敷贴在一金属导热结合层上。
在该实施方式中, 金属导热结合层相比于现有技术的光栅焊接 方式提高了导电系数, 能更好地将电池片的热能传导出去。
在又一优选实施方式中, 光伏发电单元的受光面具有透光疏水 膜层。 这样一种膜层的设置即可保证太阳光的利用又能避免光伏发 电单元受光面上有水停留影响光电光热转换。
在再一个优选实施方式中, 热吸收单元包括通道、 通道出口和 通道入口, 热转移单元包括与热吸收单元的通道出口连通的介质入 口和与热吸收单元的通道入口连通的介质出口, 吸收了热量后的热 吸收介质经热吸收单元的通道出口进入热转移单元的介质入口进而 输出到阳光瓦片外部进行再次热交换, 并且当这些介质再次热交换 完成热转移后, 其再通过热转移单元的介质出口以及热吸收单元的 通道入口流回热吸收单元。
在该实施方式中, 由于热吸收单元和热转移单元流体连通, 因 而可实时将太阳能转换组件和瓦体上的热量通过介质从热吸收单元 输出到热转移单元来完成热转移, 有效地提高了热能利用率。
在又一个优选实施方式中, 热吸收单元的通道入口位于瓦体的 下端, 热吸收单元的通道出口位于阳光瓦的上端。
在该实施方式中, 利用通道入口在下而通道出口在上, 可以使 冷的介质例如油从阳光瓦的下端自主流动到阳光瓦的上端, 形成冷 油的负压。
在再一个优选实施方式中, 阳光瓦片上还设置有通讯模块。 该
通讯模块的设置可以用来实时采集硅晶片的信息并将该信息发送出 去进行外部通讯。 信息可以是硅晶片的转换电量例如所产生的电流、 表面温度等。 例如, 当阳光瓦片上的某个硅晶片或瓦片局部被污染 物覆盖时, 由于其透光性减弱或消失, 所以该硅晶片的光电转换发 电量会明显下降, 此时人们根据该硅晶片的通讯模块所发出的实时 电量转换信息就可以很快地定位到该问题硅晶片并进行相应地处 理。
在本发明的又一个方面, 提供一种可利用太阳能发电, 同时在 工作时将来自每一阳光瓦片的太阳能转换单元的辐射热和光伏发电 所产生的热量以及瓦体上由太阳光热辐射所形成的热量一并带走利 用的光电光热阳光瓦片组也是有利的。
根据本发明的这个方面, 提供一种由多个上述光电光热阳光瓦 片连接而成的光电光热阳光瓦片组, 每一个阳光瓦片的电输出单元 与另一阳光瓦片的电输出单元相串联后再连接到阳光瓦片外部的电 输出干路进行, 同时, 每一阳光瓦片的热转移单元与另一阳光瓦片 的热转移单元相并联后再连接到阳光瓦片外部的热交换干路。
在该方面中, 光电光热阳光瓦片可以成组生产或由多个瓦片组 装成瓦片组, 从而它们的电能输出和热能输出可以集中输出, 提高 了生产和组装效率。
在一个优选实施方式中, 每一阳光瓦片的热转移单元的介质入 口相连到阳光瓦片组外的入口干道, 而每一阳光瓦片的热转移单元 的介质出口相连到阳光瓦片组外的出口干道。
在该实施方式中, 由于瓦片组的每个瓦片的热转移单元都有其 介质入口和介质出口, 同时又设有将它们集中在一起的统一的入口 干道和出口干道,从而方便了和其他瓦片组的组装(如果需要組装), 提高了生产和组装效率。
在另一个优选实施方式中, 其中一个阳光瓦片的凸起和 /或凹槽 能够与相邻瓦片的凹槽和 /或凸起互为相嵌接合, 以此瓦片与相邻瓦 片连接在一起。
在该实施方式中, 由于这种凹槽和凸起的互为相嵌的接合方式, 使得阳光瓦片可以一片挨着一片的组成成瓦片组, 而且彼此相嵌的 接合方式比较牢固。
在又一个优选实施方式中, 在瓦片之间的凹槽和凸起的互为相 嵌的企合槽表面上设置有防水粘固胶层。
在该实施方式中, 防水粘固胶层的设置更加固了瓦片之间的连 接, 且能消减瓦片连接处的应力, 从而在瓦片受到较大外力例如强 风和龙卷风的作用时, 瓦片连接处不会因风压抬升应力作用而受损。
根据本发明的另一个目的, 提供一种可利用太阳能发电, 同时 在工作时可对太阳能转换单元进行冷却的光电转换组件是有利的。
为此, 本发明提供一种光电转换组件, 其包括: 太阳能转换单 元, 其定向为其受光面可接受阳光从而利用自身特性将太阳能转换 为电能; 冷却单元, 其设置在所述太阳能转换单元的相反于所述受 光面的背光面一侧以对所述太阳能转换单元进行降温; 绝缘导热层, 其设置在所述太阳能转换单元和所述冷却单元之间, 所述绝缘导热 层使所述太阳能转换单元相对所述冷却单元绝缘并将所述太阳能转 换单元的热量转移到所述冷却单元中。
由于本发明的光电转换组件的绝缘导热层能很好地转移所述太 阳能转换单元上的热量, 所以使得冷却单元能更好地对所述太阳能 转换单元进行降温, 使得太阳能转换单元的温度都不会过度上升, 从而使太阳能转换单元能维持在一个较佳的工作温度中, 光伏发电 效率能够得到保证。
优选地, 上述光电转换组件具体实施为阳光瓦片, 包括瓦体, 所述太阳能转换单元设置在所述瓦体表面, 所述冷却单元由所述瓦 体支撑以同时对所述瓦体进行降温。
根据本发明的再一个目的, 提供一种可利用太阳能发电, 同时 在工作时将来自太阳能转换单元的辐射热和光伏发电所产生的热量 一并带走利用的光电光热转换组件是有利的。
为此, 提供一种光电光热转换组件, 其包括: 太阳能转换组件,
其包括: 光伏发电单元, 所述光伏发电单元定向为其受光面可接受 阳光从而利用自身特性将光能转换为电能; 热吸收单元, 所述热吸 收单元设置在所述光伏发电单元的相反于所述受光面的背光面一侧 用于吸收所述光伏发电单元光电转换过程中所产生的热量; 绝缘导 热层, 其设置在所述光伏发电单元和所述热吸收单元之间, 所述绝 光伏发电单元上由太阳光热辐射所产生的热量和光伏发电单元由光 伏发电所产生的热量同时转移到所述热吸收单元中; 电输出单元, 其与所述光伏发电单元电连接用于从所述光伏发电单元接收电能并 以电流形式输出到所述光电光热转换组件外部; 热转移单元, 其与 所述热吸收单元流体连通, 用于向所述热吸收单元提供热吸收介质, 并将所述热吸收单元中已经吸收了热量的介质输出到光电光热转换 组件夕卜部。
在这个方面中, 太阳能转换组件能够将太阳能转换为电能, 并 利用电输出单元将电能以电流的形式带走, 同时能够光伏发电单元 上由太阳光热辐射所产生的热量和光伏发电单元由光伏发电所产生 的热量一并带走完成热转移, 从而将太阳能的光辐射和热辐射进行 了最大利用。 包括瓦体; 所述太阳能转换组件由所述瓦体支撑; 所述太阳能转换 组件的光伏发电单元设置在所述瓦体表面, 所述热吸收单元由所述 瓦体支撑以同时吸收所述瓦体由太阳光热辐射所形成的热量。
本发明还提供一种由上述光电光热转换组件连接而成的光电光 热模块组, 每一所述光电光热转换组件的所述电输出单元与另一所 转换组件外部的电输出干路, 同时, 每一所述光电光热转换组件的 所述热转移单元与另一所述光电光热转换组件的所述热转移单元相 并联后再连接到光电光热组件外部的热交换干路。
通过参考下面所描述的实施方式, 本发明的这些方面和其他方
面将会得到清晰地阐述。 附图说明
本发明的结构和操作方式以及进一步的目的和优点将通过下面 结合附图的描述得到清晰地理解, 其中, 相同的参考标记标识相同 的元件:
图 1是根据本发明的第一实施方式的阳光瓦片的剖视图; 图 2是根据本发明的第二实施方式的阳光瓦片的剖视图; 图 3是图 2中所示阳光瓦片中的油槽板的示意图
图 4是根据本发明的第三实施方式的阳光瓦片的剖视图; 图 5是图 4 中所示阳光瓦片从上方看下去的示意性立体图, 为 了清楚起见未显示硅晶片的布置;
图 6是图 4中所示阳光瓦片的示意性俯视图;
图 7是图 4 中所示阳光瓦片上的硅晶片连接示意图, 其示出每 个串行中的硅晶片相串联, 同时硅晶片串行与串行之间也为串联; 图 8 是本发明阳光瓦片组的实施方式的示意图, 其示出四片一 组的瓦片组结构。 具体实施方式
根据要求, 这里将披露本发明的具体实施例; 然而, 应当理解 的是, 这里所披露的实施例仅仅是本发明的典型例子而已, 其可体 现为各种形式。 因此, 这里披露的具体细节不被认为是限制性的, 而仅仅是作为权利要求的基础以及作为用于教导本领域技术人员以 用这里所披露的各种特征并结合这里可能没有明确披露的特征。
大体上讲, 本发明首先提供一种光电转换组件, 其能够将太阳 能转换为电能, 在该光电转换组件内优选提供冷却单元, 用来对太 阳能转换单元或光电转换单元进行降温, 从而保证光电转换效率。
其次, 本发明还提供一种光电光热转换组件, 其能够将太阳能
转换为电能, 同时在将太阳能转换单元或光电转换单元上的热量吸 收以使它们降温的同时, 还能够将热量带走去交换利用。
再次, 本发明提供一种阳光瓦片, 其能够将太阳能转换为电能, 同时该阳光瓦片会产生热量, 该热量包括光电转换过程中产生的热 量以及太阳能转换单元或光电转换单元上和瓦体上由太阳光热辐射 所形成的热量。 因而, 根据本发明的一个方面, 在阳光瓦片内提供 冷却单元, 用来对太阳能转换单元或光电转换单元以及瓦体进行降 温, 从而保证光电转换效率; 根据本发明的第二方面, 在阳光瓦片 内提供吸热组件, 用来吸收太阳能转换单元或光电转换单元以及瓦 体上的热量从而使它们降温; 根据本发明的第三方面, 不仅提供热 吸收单元还提供热转移单元, 从而在将太阳能转换单元或光电转换 单元以及瓦体上的热量吸收以使它们降温的同时, 还能够将热量带 走去交换利用。
上述光电转换组件可以用于任何光电转换装置, 而上述光电光 热转换组件可以用于任何太阳能装置, 例如太阳能瓦片、 太阳能幕 墙、 太阳能热水器或者光伏发电场中的光伏发电装置。 在下述实施 图 1示出了本发明的阳光瓦片的第一实施方式,该阳光瓦片 100 包括: 太阳能转换单元 101、 冷却单元 102、 绝缘导热层 104以及瓦 体 103。
瓦体 103 可为一体成型, 并且其可由耐火阻燃的不饱和改性合 成工程塑料模制而成。
如图 1 所示, 太阳能转换单元 101设置在瓦片表面, 其可以是 单个硅晶电池片或是由多个硅晶电池片 101 1组成的阵列, 并且在所 述太阳能转换单元 101的受光面可以具有透光疏水膜层(未示出) 。
绝缘导热层 104包括陶瓷膜层 1041和金属导热结合层 1042,所 述金属导热结合层 1042 可由导电银浆形成。 每个硅晶电池片 101 1 的背光面敷贴在丝网印刷的一金属导热结合层 1042上, 从而所述金 属导热结合层 1042 能与所述太阳能转换单元 101 之间无缝隙地接
合。 并且, 每个金属导热结合层 1042的面积不大于其上敷贴的硅晶 电池片 101 1背光面的面积。
冷却单元 102 由所述瓦体 103 支撑并设置在太能转换单元 101 的背光面一侧。 该冷却单元 102包括至少一条冷媒通道 1021 , 该冷 媒通道 1021平行于绝缘导热层 104延伸。 这些冷媒通道 1021—方 面与所述太阳能转换单元的底部 1012接触, 另一方面也与所述瓦体 103的围壁 1031和底部 1032接触。
在一种实施方式中, 冷媒通道 1021 中流有冷水, 这样当所述阳 光瓦片 100工作时, 冷媒通道 1021—方面通过其内流通的冷水对所 述瓦片瓦体 103 降温, 另一方面, 所述太阳能转换单元的热量首先 被绝缘导热层转移到了所述冷媒通道 1021 中, 而冷媒通道 1021 则 通过冷水将转入的热量降温。 在此种实施方式中, 所述冷媒通道可 以蛇形布置。
在本发明的另一个实施方式中, 所述冷媒通道 1021也可以与一 个风冷系统 (未示出) 连接, 这样从风冷系统中吹出的冷风可以快 速地在冷媒通道 1021 中流通, 吹散瓦体 103和太阳能转换单元 101 上的热量。
在本发明的另一个实施方式中, 可以在所述冷媒通道 1021 中放 置能够释放冷气的固体介质, 例如干水, 这些固体介质中分别放置 在冷媒通道 1021与绝缘导热曾 104以及瓦体围壁 1031和底部 1032 的接触位置处, 以同时对瓦体 103和太阳能转换单元降温。
如图 2所示, 在本发明的第二实施例中, 所述阳光瓦片 200 包 括太阳能转换单元 201、吸热组件 202、绝缘导热层 204以及瓦体 203。
第二实施例中的阳光瓦片结构大致与第一实施例相同, 只是吸 热组件 202取代了第一实施例中的冷却单元 102。 该吸热组件 202 由瓦体 203支撑并设置在太阳能转换单元 201 的背光面。 如图 2所 示, 吸热组件 202可以是一体成型的槽板 2021 , 该槽板 2021可为铝 基板, 因此具有良好的导热性能。
在本发明的一个实施方式中, 所述槽板 2021也可以是整体呈凹
形的横向通槽, 该通槽的厚度远小于其长度, 在通槽中流有油或水。 由于所述槽板 2021 与所述绝缘导热层 204 以及瓦体 203都充分接 触, 所以其能够同时吸收由所述绝缘导热层转移出的热量以及所述 瓦体上由太阳光热辐射所形成的热量。
在本发明的另一实施方式中, 如图 2或图 3所示, 在槽板 2021 中可设置有迂回的槽道 2022 ,该槽道 2022可为蛇形布置。槽道 2022 内流有防氧化防冻导热油。 为了使槽道 2022内的防氧化防冻导热油 能够充分吸收热量, 槽道 2022的窄截面部的截面积是宽截面部截面 积的 1/3。
如图 4-6 所示, 在本发明的第三实施例中, 所述阳光瓦片 300 包括瓦体 301 , 太阳能转换组件 302、 电输出单元 303和热转移单元 304。
如图 4所示, 所述太阳能转换组件 302由瓦体 301 支撑, 其包 括光伏发电单元 3021、 绝缘导热层 3022和热吸收单元 3023。
如图 5和 7所示, 光伏发电单元 3021设置在所述瓦体 301的表 面, 其受光面可具有透光疏水膜层 (未示出) , 光伏发电单元 3021 包括多个硅晶电池片 3021a, 该硅晶电池片 3021a受光面为负极, 背 光面为正极。 多个硅晶电池片 3021a之间串联在一起。 例如, 如图 7 所示, 在一个 4列 6行的硅晶片电池片阵列中, 每一列中的多个硅 晶电池片先串联在一起, 接着第 1行第 1 列的硅晶电池片与第 1行 第 2列的硅晶电池片电连接, 第 1行第 3列的硅晶电池片与第 1行 第 4列的硅晶电池片电连接, 第 6行第 1列的硅晶电池片负极与电 输出单元 303的正极连接, 第 6行第 4列的硅晶电池片的正极与电 输出单元 303的负极连接,第 6行第 2列的硅晶电池片与第 6行第 3 列的硅晶电池片通过一个二极管被电连接在一起。硅晶电池片 3021a 间的串联连接通过其受光面上设有的导电铜丝来实现, 该导电铜丝 从硅晶电池片受光面上延伸至另一硅晶电池片的背光面。
绝缘导热层 3022包括陶瓷膜层 3022a和金属导热结合层 3022b, 所述金属导热结合层 3022b由导电银浆形成。每个硅晶电池片 3021a
的背光面敷贴在丝网印刷的一金属导热结合层 3022b上, 从而所述 金属导热结合层 3022b 与所述光伏发电单元 3021 之间无缝隙地接 合。 并且, 每个金属导热结合层 3022b 的面积不大于其上敷贴的硅 晶电池片 3021a背光面的面积。
如图 3所示, 热转移单元 304与所述热吸收单元 3023连接, 其 用于向所述热吸收单元 3023 提供热吸收介质, 并将该热吸收单元 3023 中已经吸收了热量的介质输出到阳光瓦片外部。 热吸收单元 3023 包括通道、 通道出口 3023b和通道入口 3023c。 所述热转移单 元 304的介质入口 3041与所述通道入口 3023c连通, 所述热转移单 元 304的介质出口 3042与所述通道出口 3023b连通。 所述热吸收介 质通过所述通道入口 3023c流入所述通道 3023b,待吸收完热量后从 所述通道出口 3023b流出并经所述热转移单元 304输出到阳光瓦的 外部。 另外, 为了能使所述热交换介质在所述通道中能形成自循环, 如图 6所示, 所述通道入口 3023c以及介质入口 3041可位于所述阳 光瓦片的下端, 所述通道出口 3023b和介质出口 3042都可位于所述 阳光瓦片的上端。
在本发明的一个实施例中, 所述吸收了热量后的热吸收介质经 所述热转移单元 304输出到外部的热交换通道进行再次热交换以完 成热转移。 当这些介质再次热交换完成后, 其再通过所述热转移单 元 304的介质入口 3041以及所述热吸收单元 3023的通道入口 3023c 流入所述热吸收单元 3023。
所述热吸收单元 3023 可以采用第二实施例中的槽板, 该槽板 3023d为铝基板,在所述槽板 3023d上设置有迂回的槽道 3023a作为 热吸收单元 3023的通道, 该迂回的槽道 3022a呈蛇形布置。 所述槽 道 3023a 的窄截面部的截面积是其宽截面部截面积的 1/3。 在槽道 3023a中流有防氧化防冻导热油。
此外, 本发明阳光瓦片 300 上还设置有通讯模块, 该通讯模块 可以实时采集其所对应的硅晶片的信息并将该信息发送。 所述信, 可以是硅晶片的表面温度、 转换电量等。 例如, 当阳光瓦片上的某
个硅晶片被污染物覆盖时, 由于其透光性减弱, 所以该硅晶片的转 换电量会明显下降, 此时人们根据该硅晶片的通讯模块所发出的实 时电量转换信息就可以很快地定位到该问题硅晶片并进行相应地处 理。
本发明的阳光瓦片 300 即可以单独使用并安装在屋顶, 也可以 是将多片瓦片 300连接在一起成组使用和安装。 例如, 可以将 4片 或 8片瓦片 300连接在一起组成一个瓦片组 400,然后将这些瓦片组 再安装在屋顶上。
在本发明阳光瓦片组 400 的实施例中, 所述阳光瓦片组包括多 个阳光瓦片 300 ,每一个阳光瓦片 300的电输出单元 303与另一所述 阳光瓦片 300的电输出单元 303相串联后再连接到阳光瓦片外部的 电输出干路, 同时, 每一所述阳光瓦片的所述热转移单元 304 与另 一所述阳光瓦片的所述热转移单元 304相并联后再连接到阳光瓦片 外部的热交换干路。
如图 6所示, 每一所述阳光瓦片 300的所述热转移单元 304的 所述介质入口 3041相连到所述阳光瓦片组外的入口干道, 而每一所 述阳光瓦片的所述热转移单元 304 的介质出口相连到所述阳光瓦片 组外的出口干道。
在本发明的实施例中, 可以在阳光瓦片的四周可设有螺孔, 并 通过螺栓将这些阳光瓦片 300连接在一起。 或者, 可以以传统瓦片 的方式, 将这些阳光瓦片 300堆叠在一起, 并通过粘合剂以增强每 片瓦片 300间的连接强度。
在本发明的另一个实施例中, 如图 5或图 6所示, 在所述阳光 瓦片 3在所述瓦体 301的下侧和右侧设置有凸起 3013 , 上侧和左侧 设置有凹槽 3014。所述阳光瓦片下侧的凸起 3013能与下方瓦片的上 侧凹槽 3014接合,其右侧凸起 3013能与其右侧瓦片的左侧凹槽 3014 接合, 以此类推, 所述瓦片能与其四周相邻瓦片都互为相嵌接合。 另外, 在所述凹槽 3014和凸起 3013互为相嵌的企合槽表面上设置 有防水粘固胶层。
本发明的瓦片可以是任何形状, 例如长方形、 正方形或拱形。 的是任何屋顶结构都可以使用本发明。 例如, 可以将本发明的瓦片 直接架设在房屋顶梁上, 使其成为房屋的屋顶, 或者如同 BAPV技 术, 将瓦片安装在屋顶瓦片之上。 另外, 本发明虽然在实施方式中只 提到瓦片, 但是本领域技术人员根据本发明的揭示应该可以了解到 其可以应用到 BIPV领域中的各种建筑材料, 例如幕墙。
本发明的技术内容及技术特点已揭示如上, 然而可以理解, 在 本发明的创作思想下, 本领域的技术人员可以对上述结构作各种变 化和改进, 包括这里单独披露或要求保护的技术特征的组合, 明显 地包括这些特征的其它组合, 太阳能转换单元或光伏发电单元的可 替换的其他类型。 同样, 材料和结构也存在许多可能的变形。 这些 变形和 /或组合均落入本发明所涉及的技术领域内, 并落入本发明权 利要求的保护范围。 需要注意的是, 按照惯例, 权利要求中使用单 个元件意在包括一个或多个这样的元件。
Claims
1. 一种阳光瓦片, 其特征在于, 包括:
瓦体;
太阳能转换单元, 其设置在所述瓦片表面并定向为其受光面可接受阳光 从而利用自身特性将太阳能转换为电能;
冷却单元, 其由所述瓦体支撑并设置在所述太阳能转换单元的相反于所 述受光面的背光面一侧以同时对所述瓦体和太阳能转换单元进行降温; 绝缘导热层, 其设置在所述太阳能转换单元和所述冷却单元之间, 所述 绝缘导热层使所述太阳能转换单元相对所述冷却单元绝缘并将所述太阳能 转换单元的热量转移到所述冷却单元中。
2. 如权利要求 1所述的阳光瓦片, 其特征在于, 所述绝缘导热层包括使所述 太阳能转换单元相对所述冷却单元绝缘的陶瓷膜层和将所述陶瓷膜层与所 述太阳能转换单元的背光面无缝隙接合的金属导热结合层。
3. 如权利要求 1或 2所述的阳光瓦片,其特征在于, 所述太阳能转换单元包 括至少一个硅晶电池片。
4. 如权利要求 3所述的阳光瓦片, 其特征在于,每个所述硅晶电池片的背光 面敷贴在一所述金属导热结合层上。
5. 如权利要求 3或 4所述的阳光瓦片, 其特征在于, 每个所述硅晶电池片 的背光面敷贴在丝网印刷的金属导热结合层上。
6. 如权利要求 5所述的阳光瓦片,其特征在于,每个所述金属导热结合层的 面积不大于其上敷贴的所述硅晶电池片背光面的面积。
7. 如权利要求 2-6中任一项所述的阳光瓦片, 其特征在于, 所述金属导热结 合层由导电银浆形成。
8. 如权利要求 1-7中任一项所述的阳光瓦片, 其特征在于, 所述瓦体由耐火 阻燃的不饱和改性合成工程塑料形成。
9. 如权利要求 1-8中任一项所述的阳光瓦片, 其特征在于, 所述瓦体为一体 成型。
10. 如权利要求 1-9中任一项所述的阳光瓦片, 其特征在于, 所述冷却单元 包括至少一条冷媒通道, 所述冷媒通道平行于所述绝缘导热层延伸以吸收经 由所述绝缘导热层从所述太阳能转换单元转移来的热量并且所述冷媒通道 延伸进入所述瓦体的围壁以吸收所述瓦体在阳光照射下所产生的热量。
11. 如权利要求 10所述的阳光瓦片,其特征在于, 所述冷却单元包括蛇形冷 媒通道。
12. 如权利要求 1-11任一项所述的阳光瓦片, 其特征在于, 所述太阳能转 换单元的所述受光面具有透光疏水膜层。
13. —种阳光瓦片, 其特征在于, 包括:
瓦体;
太阳能转换单元, 其设置在所述瓦体表面并定向为其受光面可接受阳光 从而利用自身特性将太阳能转换为电能;
吸热组件,其由所述瓦体支撑并设置在所述太阳能转换单元的相反于所 述受光面的背光面一侧;
绝缘导热层, 其设置在所述太阳能转换单元和吸热组件之间, 所述绝缘 导热层使所述太阳能转换单元相对所述吸热组件绝缘, 并将所述太阳能转换 单元上由太阳光热辐射形成的热量和由光伏发电所产生的热量同时转移到 所述吸热组件中;
其中,所述吸热组件同时吸收由所述绝缘导热层从所述太阳能转换单元 转移出的热量以及所述瓦体上由太阳光热辐射所形成的热量。
14. 如权利要求 13所述的阳光瓦片, 其特征是, 所述太阳能转换单元的所述 受光面具有透光疏水膜层。
15. 如权利要求 13或 14所述的阳光瓦片, 其特征在于, 所述绝缘导热层包 括使所述太阳能转换单元相对所述吸热组件绝缘的陶瓷膜层和将所述陶瓷 膜层与所述太阳能转换单元的背光面无缝隙接合的金属导热结合层。
16. 如权利要求 13-15任一项所述的阳光瓦片, 其特征在于, 所述太阳能转 换单元包括至少一个硅晶电池片, 每个所述硅晶电池片的背光面敷贴在一所 述金属导热结合层上。
17. 如权利要求 16所述的阳光瓦片, 其特征在于, 每个所述硅晶电池片的 背光面敷贴在丝网印刷的所述金属导热结合层上。
18. 如权利要求 16或 17所述的阳光瓦片, 其特征在于, 每个所述金属导热 结合层的面积不大于其上所敷贴的所述硅晶电池片背光面的面积。
19. 如权利要求 15-18中任一项所述的阳光瓦片, 其特征在于, 所述金属导 热结合层由导电银浆构成。
20. 如权利要求 15-19中任一项所述的阳光瓦片, 其特征在于, 所述吸热组 件包括一体成型的槽板, 所述槽板内有热吸收介质。
21. 如权利要求 20所述的阳光瓦片, 其特征在于, 所述槽板是具有导热性能 的金属槽板。
22. 如权利要求 20-21中任一项所述的阳光瓦片, 其特征在于, 所述槽板为 铝基板。
23. 如权利要求 20-22中任一项所述的阳光瓦片, 其特征在于, 在所述槽板 内设置有迂回的槽道, 所述热吸收介质位于所述槽道内。
24. 如权利要求 23中所述的阳光瓦片, 其特征在于, 所述槽道为蛇形布置。
25. 如权利要求 23或 24所述的阳光瓦片, 其特征在于, 所述槽道具有宽截 面部和用于放慢所述热吸收介质的流速的窄截面部。
26. 如权利要求 25所述的阳光瓦片, 其特征在于, 所述窄截面部的截面积是 所述宽截面部截面积的 1/3。
27. 如权利要求 20-26中任一项所述的阳光瓦片, 其特征在于, 所述热吸收 介质为油。
28. 如权利要求 27所述的阳光瓦片, 其特征在于, 所述油为防氧化防冻导热 油。
29. 如权利要求 13-28中任一项所述的阳光瓦片, 其特征在于, 所述瓦体由 耐火阻燃的不饱和改性合成工程塑料模制形成。
30. 一种光电光热阳光瓦片, 其包括:
瓦体;
太阳能转换组件, 其由所述瓦体支撑, 所述太阳能转换组件包括:
光伏发电单元, 所述光伏发电单元设置在所述瓦体表面并定向为其 受光面可接受阳光从而利用自身特性将光能转换为电能;
热吸收单元, 所述热吸收单元由所述瓦体支撑并设置在所述光伏发 电单元的相反于所述受光面的背光面一侧用于同时吸收所述瓦体由太阳 光热辐射所形成的热量和所述光伏发电单元光电转换过程中所产生的热 量;
绝缘导热层, 其设置在所述光伏发电单元和所述热吸收单元之间, 所述绝缘导热层使所述光伏发电单元相对所述热吸收单元绝缘, 并将所 述光伏发电单元上由太阳光热辐射所产生的热量和光伏发电单元由光伏 发电所产生的热量同时转移到所述热吸收单元中;
其中, 所述热吸收单元同时吸收由所述绝缘导热层从所述光伏发电 单元转移出的热量以及所述瓦体上由太阳光热辐射所形成的热量; 电输出单元, 其与所述光伏发电单元电连接用于从所述光伏发电单元接 收电能并以电流形式输出到所述阳光瓦片外部;
热转移单元, 其与所述热吸收单元流体连通, 用于向所述热吸收单元提 供热吸收介质, 并将所述热吸收单元中已经吸收了热量的介质输出到阳光瓦 片外部。
31. 如权利要求 30所述的光电光热阳光瓦片, 其特征在于, 所述绝缘导热层 包括使所述光伏发电单元相对所述热吸收单元绝缘的陶瓷膜层和将所述陶 瓷膜层与所述光伏发电单元的背光面无缝隙接合的金属导热结合层。
32. 如权利要求 30或 31所述的光电光热阳光瓦片, 其特征在于, 所述光伏 发电单元包括至少一个硅晶电池片, 所述硅晶电池片的所述受光面为负极, 所述背光面为正极。
33.如权利要求 32所述的光电光热阳光瓦片, 其特征在于, 所述太阳能转换 单元包括多个硅晶电池片, 所述多个硅晶电池片之间串联。
34.如权利要求 32或 33所述的光电光热阳光瓦片, 其特征在于,在每一所述 硅晶电池片的所述受光面上设有导电铜丝并延伸连接另一硅晶电池片的所 述背光面, 从而使硅晶电池片之间形成串联。
35. 如权利要求 32-34中任一项所述的光电光热阳光瓦片, 其特征在于, 每 个所述硅晶电池片的所述背光面敷贴在一所述金属导热结合层上。
36.如权利要求 34或 35所述的光电光热阳光瓦片, 其特征在于,每个所述硅 晶电池片的背光面敷贴在丝网印刷的一所述金属导热结合层上。
37. 如权利要求 36所述的光电光热阳光瓦片, 其特征在于,每个所述金属导 热结合层的面积不大于其上敷贴的所述硅晶电池片背光面的面积。
38. 如权利要求 31-37中任一项所述的光电光热阳光瓦片, 其特征在于, 所 述金属导热结合层由导电银浆形成。
39. 如权利要求 30-38任一项所述的光电光热阳光瓦片, 其特征是, 所述光 伏发电单元的所述受光面具有透光疏水膜层。
40. 如权利要求 30-39任一所述的光电光热阳光瓦片, 其特征在于, 所述热 吸收单元包括通道、 通道出口和通道入口, 所述热转移单元包括与所述热吸 收单元的所述通道出口连通的介质入口和与所述热吸收单元的所述通道入 口连通的介质出口。
41. 如权利要求 40所述的光电光热阳光瓦片, 其特征在于, 所述吸收了热量 后的热吸收介质经所述热吸收单元的所述通道出口进入所述热转移单元的 所述介盾入口进而输出到阳光瓦片外部进行再次热交换, 并且当这些介质再 次热交换完成热转移后, 其再通过所述热转移单元的所述介质出口以及所述 热吸收单元的所述通道入口流回所述热吸收单元。
42. 如权利要求 40或 41所述的光电光热阳光瓦片, 其特征在于, 所述热吸 收单元是一整体成型的槽板, 在所述槽板内设置有迂回的槽道以便于热交换 介质流经过程中从所述光伏发电单元和所述瓦体上吸收热能。
43. 如权利要求 42中所述的光电光热阳光瓦片, 其特征在于, 所述槽板是具 有导热性能的金属板。
44. 如权利要求 43所述的光电光热阳光瓦片,其特征在于, 所述槽板是铝基 板。
45. 如权利要求 42-44中任一项所述的光电光热阳光瓦片, 其特征在于, 所 述迂回的槽道为蛇形布置。
46. 如权利要求 42-45中任一项所述的光电光热阳光瓦片, 其特征在于, 所 述槽道具有宽截面部和用于放慢所述热吸收介盾的流速的窄截面部。
47.如权利要求 46所述的光电光热阳光瓦片, 其特征在于, 所述窄截面部的 截面积是所述宽截面部的截面积的 1/3。
48. 如权利要求 30-47中任一所述的光电光热阳光瓦片, 其中所述热吸收介 质是油。
49. 如权利要求 48所述的光电光热阳光瓦片,其中所述油是防氧化防冻导热 油。
50. 如权利要求 40-49中任一项所述的光电光热阳光瓦片, 其中所述热吸收 单元的所述通道入口位于所述瓦体的下端, 所述热吸收单元的所述通道出口 位于所述阳光瓦的上端。
51. 如权利要求 30-50中任一项所述的光电光热阳光瓦片, 其中所述瓦体由 耐火阻燃的不饱和的改性合成工程塑料模制而成。
52. 如权利要求 30-51中任一项所述的光电光热阳光瓦片,还包括通讯模块。
53. 一种由如权利要求 30-52中任一项所述的光电光热阳光瓦片连接而成的 光电光热阳光瓦片組, 每一所述阳光瓦片的所述电输出单元与另一所述阳光 瓦片的所述电输出单元相串联后再连接到阳光瓦片外部的电输出干路, 同 时, 每一所述阳光瓦片的所述热转移单元与另一所述阳光瓦片的所述热转移 单元相并联后再连接到阳光瓦片外部的热交换干路。
54. 如权利要求 53所述的光电光热阳光瓦片组,其中每一所述阳光瓦片的所 述热转移单元的所述介质入口相连到所述阳光瓦片组外的入口干道, 而每一 所述阳光瓦片的所述热转移单元的所述介质出口相连到所述阳光瓦片组外 的出口干道。
55. 如权利要求 53或 54所述的光电光热阳光瓦片组, 其特征是, 所述一个 阳光瓦片的凸起和 /或 IHJ槽能够与相邻所述瓦片的凹槽和 /或凸起互为相嵌接 合, 以此所述瓦片与相邻瓦片连接在一起。
56. 如权利要求 55所述的阳光瓦片组, 其特征是,在所述凹槽和凸起的互为 相嵌的企合槽表面上设置有防水粘固胶层。
57. 一种光电转换组件, 其特征在于, 包括:
太阳能转换单元, 其定向为其受光面可接受阳光从而利用自身特性将太 阳能转换为电能;
冷却单元, 其设置在所述太阳能转换单元的相反于所述受光面的背光面 一侧以对所述太阳能转换单元进行降温;
绝缘导热层, 其设置在所述太阳能转换单元和所述冷却单元之间, 所述 绝缘导热层使所述太阳能转换单元相对所述冷却单元绝缘并将所述太阳能 转换单元的热量转移到所述冷却单元中。
58. 一种光电光热转换组件, 其包括:
太阳能转换组件, 其包括:
光伏发电单元, 所述光伏发电单元定向为其受光面可接受阳光从而 利用自身特性将光能转换为电能;
热吸收单元, 所述热吸收单元设置在所述光伏发电单元的相反于所 述受光面的背光面一侧用于吸收所述光伏发电单元光电转换过程中所产 生的热量;
绝缘导热层, 其设置在所述光伏发电单元和所述热吸收单元之间, 所述绝缘导热层使所述光伏发电单元相对所述热吸收单元绝缘, 并将所 述光伏发电单元上由太阳光热辐射所产生的热量和光伏发电单元由光伏 发电所产生的热量同时转移到所述热吸收单元中; 收电能并以电流形式输出到所述光电光热转换组件外部;
热转移单元, 其与所述热吸收单元流体连通, 用于向所述热吸收单元提 供热吸收介质, 并将所述热吸收单元中已经吸收了热量的介质输出到光电光 热转换组件外部。
59. 一种由如权利要求 58 所述的光电光热转换组件连接而成的光电光 热模块组, 每一所述光电光热转换组件的所述电输出单元与另一所述光电光 热转换组件的所述电输出单元相串联后再连接到光电光热转换组件外部的 电输出干路, 同时, 每一所述光电光热转换组件的所述热转移单元与另一所 述光电光热转换组件的所述热转移单元相并联后再连接到光电光热组件外 部的热交换干路。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/113,559 US20140083483A1 (en) | 2011-05-17 | 2012-05-16 | Solar tile |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110127524.3A CN102787700B (zh) | 2011-05-17 | 2011-05-17 | 阳光瓦片 |
CN201110127907.0 | 2011-05-17 | ||
CN201110127907.0A CN102790102B (zh) | 2011-05-17 | 2011-05-17 | 光电转换组件 |
CN201110127524.3 | 2011-05-17 | ||
CN201110128122.5 | 2011-05-17 | ||
CN2011101281225A CN102790115A (zh) | 2011-05-17 | 2011-05-17 | 光电光热转换组件及由其构成的光电光热模块组 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012155850A1 true WO2012155850A1 (zh) | 2012-11-22 |
Family
ID=47176313
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/075610 WO2012155850A1 (zh) | 2011-05-17 | 2012-05-16 | 阳光瓦片 |
Country Status (2)
Country | Link |
---|---|
US (1) | US20140083483A1 (zh) |
WO (1) | WO2012155850A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014170137A1 (de) | 2013-04-18 | 2014-10-23 | Bs2 Ag | Fassaden- oder dachelement |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102017001948A1 (de) * | 2017-02-28 | 2018-08-30 | Hans-Jürgen Luckow | Vorrichtung zur Energietransformation |
CN107612470A (zh) * | 2017-09-06 | 2018-01-19 | 洛阳市质量技术监督检验测试中心 | 一种用于温室大棚的太阳能光伏瓦片及其制备方法 |
CN113852347B (zh) * | 2021-10-18 | 2024-09-17 | 国网辽宁省电力有限公司铁岭供电公司 | 基于蜂窝网络的稳定发电的太阳能光热发电系统 |
CN115513321B (zh) * | 2022-10-14 | 2025-04-08 | 中建材浚鑫科技有限公司 | 一种双面双玻组件的一体化bipv光伏发电装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101828268A (zh) * | 2006-12-11 | 2010-09-08 | 阳光模块公司 | 具有热交换的太阳能屋顶瓦片和模件 |
CN201649473U (zh) * | 2010-01-12 | 2010-11-24 | 樊华 | 太阳能幕墙的水循环散热装置 |
CN201749862U (zh) * | 2010-07-28 | 2011-02-16 | 中国京冶工程技术有限公司 | 太阳能电池组件 |
CN201754568U (zh) * | 2010-07-22 | 2011-03-02 | 杭州欧帆能源科技有限公司 | 一种一体式太阳能集热发电装置 |
CN101997051A (zh) * | 2009-08-18 | 2011-03-30 | 余华阳 | 太阳能光伏集热器及其应用产品 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100326492A1 (en) * | 2009-06-30 | 2010-12-30 | Solarmation, Inc. | Photovoltaic Cell Support Structure Assembly |
-
2012
- 2012-05-16 US US14/113,559 patent/US20140083483A1/en not_active Abandoned
- 2012-05-16 WO PCT/CN2012/075610 patent/WO2012155850A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101828268A (zh) * | 2006-12-11 | 2010-09-08 | 阳光模块公司 | 具有热交换的太阳能屋顶瓦片和模件 |
CN101997051A (zh) * | 2009-08-18 | 2011-03-30 | 余华阳 | 太阳能光伏集热器及其应用产品 |
CN201649473U (zh) * | 2010-01-12 | 2010-11-24 | 樊华 | 太阳能幕墙的水循环散热装置 |
CN201754568U (zh) * | 2010-07-22 | 2011-03-02 | 杭州欧帆能源科技有限公司 | 一种一体式太阳能集热发电装置 |
CN201749862U (zh) * | 2010-07-28 | 2011-02-16 | 中国京冶工程技术有限公司 | 太阳能电池组件 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014170137A1 (de) | 2013-04-18 | 2014-10-23 | Bs2 Ag | Fassaden- oder dachelement |
Also Published As
Publication number | Publication date |
---|---|
US20140083483A1 (en) | 2014-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
GB2448920A (en) | Solar energy collector for obtaining electrical and thermal energy | |
AU2007239127B2 (en) | An energy conversion system | |
WO2011014120A2 (en) | Multiple functional roof and wall system | |
US20160268967A1 (en) | Modular unit for attachment to solar panel | |
US20120167950A1 (en) | Thermally mounting electronics to a photovoltaic panel | |
CN107044733B (zh) | 一种太阳能光电光热建筑一体化系统 | |
KR20100007240A (ko) | 공기집열식 태양광발전장치 | |
CN101557178A (zh) | 静态聚光光伏屋顶热电联产系统 | |
CN102201478A (zh) | 光伏光热一体化系统(stpv) | |
WO2012155850A1 (zh) | 阳光瓦片 | |
BG4256U1 (bg) | Устройство за управление на отпадната топлина на слънчеви фотоволтаични панели | |
CN118284986A (zh) | 光伏-热模块和太阳能系统 | |
US9909781B2 (en) | Solar cell roof tiles | |
CN111750550A (zh) | 光伏光热水箱模块-特朗伯墙结合系统及工作方法 | |
JP4148325B1 (ja) | 太陽光コジェネレイション装置 | |
KR101179686B1 (ko) | 공동주택용으로 태양광과 태양열을 동시적용하는 태양에너지장치 | |
KR20110099233A (ko) | 태양에너지용 루핑 패널 | |
KR20200064705A (ko) | 태양광열 발전용 패널 | |
KR101211947B1 (ko) | 태양전지와 열전소자를 이용한 온수 가열 기능을 갖는 발전 시스템 | |
CN212253200U (zh) | 光伏光热水箱模块-特朗伯墙结合系统 | |
WO2009114905A1 (en) | Tile unit | |
CN102787700B (zh) | 阳光瓦片 | |
Teja et al. | Experimental Investigation on Hybrid Photovoltaic and Thermal Solar Collector System | |
CN220421703U (zh) | 一种可提高转换效率太阳能瓦 | |
CN204498063U (zh) | 一种太阳能发电装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12785331 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14113559 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12785331 Country of ref document: EP Kind code of ref document: A1 |