[go: up one dir, main page]

WO2012155767A1 - 一种组群保护方法及系统 - Google Patents

一种组群保护方法及系统 Download PDF

Info

Publication number
WO2012155767A1
WO2012155767A1 PCT/CN2012/074559 CN2012074559W WO2012155767A1 WO 2012155767 A1 WO2012155767 A1 WO 2012155767A1 CN 2012074559 W CN2012074559 W CN 2012074559W WO 2012155767 A1 WO2012155767 A1 WO 2012155767A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
protection
node
service layer
service
Prior art date
Application number
PCT/CN2012/074559
Other languages
English (en)
French (fr)
Inventor
富森
付占亮
张媛媛
董均
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012155767A1 publication Critical patent/WO2012155767A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/22Alternate routing

Definitions

  • the present invention relates to group protection technology, and in particular to a group protection method and system. Background technique
  • Group protection and individual protection are defined in the standard G.808.1 developed by the International Telecommunication Union Telecommunication Standardization Sector (ITU-T).
  • ITU-T International Telecommunication Union Telecommunication Standardization Sector
  • One application scenario is as follows: A large number of protected signals pass through the same service layer link, and another application scenario is: Traffic signals for reverse multiplexing or virtual concatenation services are performed.
  • the advantages of group protection are: It can simplify the complex individual protection mechanism composed of multiple signal protections into a single, simple group protection mechanism to meet the industry standard of service protection switching less than 50ms.
  • the present invention provides a method for group protection, the method comprising:
  • the protection group in the group affected by the service layer is determined, and each protection group in the group on the own side performs a protection switching operation.
  • the determining the protection group in the group affected by the service layer is: collecting all the links that the service layer can affect, and correlating all the affected links in the association.
  • the protection group generating dynamic groups.
  • the protection groups with the same service layer detection point and the same protocol status are selected to form a dynamic group.
  • the node that receives the service data performs a protection switching operation on each protection group in the group on the self side, as follows:
  • the node receiving the service data selects a protection group representative of the group from the protection group of the group;
  • the protection switching operation is performed on each protection group in the group on the self side according to the protection switching protocol represented by the protection group of the group.
  • the protection group representative of the selected group is:
  • a protection group is randomly selected as a representative of the protection group of the group.
  • the method further includes: the node receiving the service data copies the protocol status represented by the protection group of the group on the own side to all other protection groups in the group.
  • the method further includes:
  • the node that receives the service data sends the group protection information to the node that sends the service data; the node that sends the service data determines the protection group in the group affected by the service layer according to the received group protection information, to the self Each protection group in the group on the side performs a protection switching operation.
  • the sending the group protection information to the node that sends the service data is: sending the service data to the APS (Automatic Protection Switched) signaling channel represented by the protection group of the group The node sends the group protection information.
  • APS Automatic Protection Switched
  • the determining, according to the received group protection information, the protection group in the group affected by the service layer is:
  • all the links that can be affected by the service layer are counted, and all the protection groups in which the affected link is associated are generated, and the node that generates the service data is generated. Dynamic grouping.
  • the node that sends the service data performs a protection switching operation on each protection group in the group on the self side, as follows:
  • the node that sends the service data performs a protection switching operation on each protection group in the group on the self side according to the protection switching protocol represented by the protection group of the same group as the node that receives the service data.
  • the method further includes:
  • the node that sends the service data copies the protocol status represented by the protection group of the group on its own side to all other protection groups in the group.
  • the present invention also provides a system for group protection, the system comprising: a first node, configured to: when detecting a failure of a service layer, determine a protection group in a group affected by the service layer, to the side of itself Each of the protection groups in the group performs a protection switching operation.
  • the first node is further configured to: after the protection switching operation is completed, copy the protocol status represented by the protection group of the group on the self side to all other protection groups in the group.
  • the system further includes: a second node, configured to: after receiving the group protection information sent by the first node, determine, according to the received group protection information, the protection in the group affected by the service layer And performing a protection switching operation on each protection group in the group on the self side; the first node is further configured to send the group protection information to the second node after the protection switching operation is completed.
  • the second node is further configured to: after the protection switching operation is completed, copy the protocol status represented by the protection group of the group on the self side to all other protection groups in the group.
  • the method and system for group protection provided by the present invention, when a node receiving service data detects a failure of a service layer, determining a protection group in a group affected by the service layer, and in the group on the self side
  • Each protection group performs a protection switching operation;
  • the group protection information includes: a group protection identifier and a service layer information, and after the service layer detects the fault, the trigger node performs group protection, so that the group can be prevented from affecting the group.
  • group protection is effectively realized, thereby realizing the organic unity of the advantages of group protection and the advantages of individual protection, thereby improving the performance of the system.
  • the node performs a protection switching operation on each protection group in the group on the self side, so that the service protection switching time can be further reduced, and the system is further improved. Performance. DRAWINGS
  • FIG. 1 is a schematic flow chart of a method for group protection according to the present invention
  • Embodiment 2 is a schematic diagram of an application scenario of Embodiment 1;
  • FIG. 3 is a schematic diagram of an application scenario of the second embodiment
  • FIG. 5 is a schematic diagram of an application scenario of Embodiment 4.
  • FIG. 6 is a schematic diagram of an application scenario of Embodiment 5.
  • FIG. 7 is a schematic structural diagram of a system for group protection according to the present invention. detailed description
  • the basic idea of the present invention is: when a node receiving service data detects a failure of a service layer, determining a protection group in a group affected by the service layer, and each protection group in the group on its own side Perform protection switching operations.
  • the method for group protection of the present invention includes the following steps:
  • Step 101 When the node that receives the service data detects that the service layer is faulty, determine the protection group in the group affected by the service layer, and perform protection switching operation on each protection group in the group on the own side. And sending the group protection information to the node that sends the service data after the operation is completed;
  • the group protection information includes: a group protection identifier and service layer information; and the determining the protection group in the group affected by the service layer, specifically:
  • All the links that the service layer can affect are configured in the node that receives the service data, and the node that receives the service data can count the link affected by the service layer.
  • the protection group can also be called a protection relationship
  • the generating a dynamic group group is specifically:
  • the service layer detection point and the protocol status of each protection group are configured in advance at the node that receives the service data, and the node receiving the service data can learn the service layer detection point and the protocol status of each protection group, thereby forming a dynamic group.
  • Performing a protection switching operation on each protection group in the group on the self side specifically: selecting, from the protection group of the group, a protection group representative of the group;
  • the protection group representative of the selected group is specifically:
  • the node receiving the service data can know the protection signal quality level of each protection group in the group by using the prior art
  • the protection switching operation can be performed on each protection group in the group on the own side according to the protection switching protocol represented by the protection group of the group. In this way, fast switching can be achieved;
  • the protection switching operation includes: a switching and/or a bridging action.
  • the specific processing procedure for performing the protection switching operation is prior art, and details are not described herein again.
  • the method may further include:
  • the node receiving the service data copies the protocol status represented by the protection group of the group on its own side to all other protection groups in the group;
  • the service layer information is used to guide the node that sends the service data to determine the protection group in the group;
  • the group protection information includes: the group protection identifier and the service layer information.
  • Step 102 The node that sends the service data determines the protection group in the group affected by the service layer according to the received group protection information, and performs protection switching operation on each protection group in the group on the own side. ;
  • the determining, according to the received group protection information, the protection group in the group affected by the service layer specifically:
  • All the links that the service layer can affect are configured in the node that sends the service data in advance, and the node that sends the service data can count the link affected by the service layer according to the node; the node that sends the service data Knowing in advance that the node receiving the service data generates a specific basis of the dynamic group, thereby generating the same dynamic group as the node receiving the service data;
  • each protection group in the group on the self side specifically: according to the protection switching protocol represented by the protection group of the same group as the node receiving the service data, on the self side
  • Each protection group in the group performs a protection switching operation;
  • the group protection information can be sent to the node that sends the service data through the APS signaling channel represented by the protection group of the group, the node that sends the service data can learn the group selected by the node that receives the service data.
  • the protection group representative can also be known by other means, for example: the group protection information further includes a protection group representative of the group selected by the node receiving the service data; after the protection switching operation is completed, the method may further include:
  • the node receiving the service data copies the protocol status represented by the protection group of the group on its own side to all other protection groups in the group;
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the application scenario of this embodiment is as follows: There are three services between node A and node Z, that is, there are three independent service bidirectional signals between node A and node Z, which are XI, X2, and X3, and XI, X2, and X3 are protected signals, each service signal is configured with independent 1+1/1:1 sublayer subnet interconnection (SNC/S) protection, and XI, X2, and X3 belong to
  • the protection groups are PG1, PG2, and PG3, respectively, where the working links of XI, X2, and X3 are Wl, W2, and W3, respectively, and the protection links are PI, P2, and P3, respectively; each SNC/S protection The group uses independent sub-layer monitoring, ie: a sub-layer detection point is set on the link of each SNC/S protection group to detect whether the link is faulty, and each SNC/S protection group uses independent APS overhead.
  • XI, X2, and X3 all pass the same service layer link. Specifically, SW is the common service service layer link of XI, X2, and X3, and SP is the common protection service layer link of XI, X2, and X3.
  • the service layer link is provided with a service layer detection point to detect whether the service layer link is faulty; wherein, as shown in FIG. 2, the sub-layer detection point is indicated to represent the service layer detection point.
  • the processing flow of the dynamic group protection refers to the technical solution provided by the present invention, and then the sub-layer monitoring of each service triggers the individual switching. At this time, since the signal is already in the group protection, The switching is completed, so the individual protection at this time does not require a protection switching action.
  • the process of the dynamic group protection includes the following steps:
  • Step al When the service layer link detects a fault, the node Z collects the link that the service layer can affect, and associates the protection group where the affected link is located to generate a dynamic group;
  • the fault is detected at the S-W of the node Z.
  • the counted links that the S-W can affect include: Wl, W2, and W3, since PG1, PG2, and PG3 have the same service. Layer detection points, therefore, PG1, PG2, and PG3 are added to the dynamic group; wherein the failure means that the SW has SF or SD.
  • Step bl Select PG3 as a representative of the dynamic group protection group, perform a dynamic group switching operation according to the PG3 protection switching protocol, and switch the XI, X2, and X3 on the own side to P1, P2, and P3, respectively;
  • the protection is 1+1 protection, and if the protection is 1:1 protection, the action of the bridge switching is added when the dynamic group switching operation is performed.
  • Step cl After the switching is completed, transmitting APS signaling in the APS signaling channel of the PG3, and copying the protocol status of the PG3 to all other protection groups in the dynamic group;
  • the APS signaling includes: a group protection identifier and service layer information
  • Step dl After receiving the APS signaling, the node A collects the link that can be affected by the S-W, and associates the protection group where the affected link is connected to generate a dynamic group;
  • the statistics of the links that the SW can affect include: Wl, W2, and W3. Since PG1, PG2, and PG3 have the same monthly security layer detection points, ⁇ , PG1, PG2, and PG3 are added to the dynamic group, and PG3 is a representative of the dynamic group protection group.
  • Step el According to the protection switching protocol of PG3, perform dynamic group switching operation, and switch XI, X2, and X3 on the self side to PI, P2, and P3, respectively;
  • the protection is 1+1 protection, and if the protection is 1 : 1 protection, the action of the bridge switching is added when the dynamic group switching operation is performed.
  • Step A1 The sub-node Z
  • the layer monitoring point detects that the corresponding link is faulty; here, it is assumed that W1 is faulty, that is: W1 appears SF or SD.
  • Step B1 Node Z finds that XI has been switched from W1 to P1. Therefore, the switching action is no longer performed, and the APS signal of XI is sent to node A through the APS channel of PG1;
  • Step C1 After receiving the APS signal, Node A finds that XI has been switched from W1 to P1. Therefore, the switching action is no longer performed.
  • the process of the individual to change includes the following steps. :
  • Step 11 When SF or SD occurs in W1 detected at the sub-layer detection point of node Z W1,
  • the Z node switches its XI to P1 and sends an APS request for the XI service to Node A through the APS signaling channel of PG1.
  • Step 12 After receiving the APS request, Node A switches its XI to P1.
  • the 1: 1 protection is similar to the 1+1 protection process, and when the switching operation is performed, the bridge switching operation is added.
  • the specific processing flow of the individual switching is prior art.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the application scenario of this embodiment is as follows: There are three services between node A and node Z, that is, there are three independent service bidirectional signals between node A and node Z, which are XI, X2, and X3, and XI, X2, and X3 are protected signals. Each service signal is configured with independent 1+1 non-intrusive subnet interconnection (SNC/N) protection.
  • SNC/N non-intrusive subnet interconnection
  • the protection groups of XI, X2, and X3 are respectively PG1, PG2, and PG3, where the working links of XI, X2, and X3 are W1, W2, and W3, respectively, and the protection links are PI, P2, and P3, respectively; each SNC/N protection group uses independent Non-intrusive monitoring, ie: Non-intrusive detection points are set on the link of each SNC/N protection group to detect whether the link is faulty, and each SNC/N protection group uses a separate APS overhead channel to process the protection protocol.
  • the non-intrusive monitoring includes: end-to-end monitoring (SNC/Ne) and sub-layer monitoring (SNC/Ns).
  • XI, X2, and X3 all pass the same service layer link.
  • S-W is the common service service layer link of XI, X2, and X3
  • S-P is the common protection service of XI, X2, and X3.
  • the layer link, the service layer link is provided with a service layer detection point to detect whether the service layer link is faulty; wherein, as shown in FIG. 3, ⁇ represents a non-intrusive detection point, indicating a service layer detection point.
  • Step a2 When the service layer link detects a fault, the node Z collects the link that the service layer can affect, and associates the protection group where the affected link is located to generate a dynamic group;
  • the fault is detected at the S-W of the node Z.
  • the counted links that the S-W can affect include: Wl, W2, and W3, since PG1, PG2, and PG3 have the same service. Layer detection points, therefore, PG1, PG2, and PG3 are added to the dynamic group; wherein the failure means that the SW has SF or SD.
  • Step b2 Select PG3 as the representative of the dynamic group protection group, perform the dynamic group switching operation according to the PG3 protection switching protocol, and switch the XI, X2, and X3 on the own side to Pl, P2, and P3, respectively.
  • Step c2 After the switching is completed, transmitting APS signaling in the APS signaling channel of the PG3, and copying the protocol status of the PG3 to all other protection groups in the dynamic group;
  • the APS signaling includes: a group protection identifier and service layer information
  • Step d2 After receiving the APS signaling, the node A collects the link that can be affected by the S-W, and associates the protection group with the affected link to generate a dynamic group;
  • the statistics of the links that S-W can affect include: Wl, W2, and W3. Since PG1, PG2, and PG3 have the same monthly service layer detection points, ⁇ , ⁇ PG1. PG2, and PG3 are added to the dynamic group, and PG3 is the representative of the dynamic group protection group.
  • Step e2 According to the protection switching protocol of PG3, perform dynamic group switching operation, and switch XI, X2, and X3 on the side of the body to PI, P2, and P3, respectively.
  • Step A2 Non-node Z Intervention monitoring detects that the corresponding link has failed;
  • Wl fails that is: W1 appears SF or SD.
  • Step B2 Node Z finds that XI has been switched from W1 to P1. Therefore, the switching action is no longer performed, and the APS signal of XI is sent to the A node through the APS channel of PG1;
  • Step C2 After receiving the APS signal, Node A finds that XI has been switched from W1 to P1. Therefore, the switching action is no longer performed.
  • the process of the individual to change includes the following steps. :
  • Step 21 When the SF or SD occurs in the W1 of the non-intrusive monitoring point of the node Z W1, the node Z switches the XI of the own side to P1, and sends the XI service to the node A through the APS signaling channel of the PG1. APS request.
  • Step 22 After receiving the APS request, Node A changes its XI to P1.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the application scenario of this embodiment is as follows: There are three services between node A and node Z, that is, there are three independent service bidirectional signals between node A and node Z, which are XI, X2, and X3, and XI, X2, and X3 are protected signals, each service signal is configured with independent 1+1 inherent subnet interconnection (SNC/I) protection, and the protection groups belonging to XI, X2, and X3 are respectively PG1. , PG2, and PG3, wherein the working links of XI, X2, and X3 are W1, W2, and W3, respectively, and the protection links are P1, P2, and P3, respectively, and each SNC/I protection group uses an independent APS.
  • SNC/I 1+1 inherent subnet interconnection
  • the overhead channel handles the protection protocol.
  • XI, X2, and X3 all pass the same service layer link.
  • S-W is the common service service layer link of XI, X2, and X3, and SP is the common protection service layer chain of XI, X2, and X3.
  • the service layer link is provided with a service layer detection point to detect whether the service layer link is faulty; wherein, as shown in FIG. 4, the service layer detection point is indicated.
  • the protection process of the dynamic group protection is triggered, so that the simplified protection switching is performed, and the service protection switching time is less than the industry requirement, namely: The service protection switching time is less than 50 ms.
  • the processing flow of the dynamic group protection refers to the technical solution provided by the present invention.
  • the process of the dynamic group protection includes the following steps:
  • Step a3 When the service layer link detects a fault, the node Z collects the link that the service layer can affect, and associates the protection group where the affected link is located to generate a dynamic group;
  • the fault is detected at the S-W of the node Z.
  • the counted links that the S-W can affect include: Wl, W2, and W3, since PG1, PG2, and PG3 have the same service. Layer detection points, therefore, PG1, PG2, and PG3 are added to the dynamic group; wherein the failure means that the SW has SF or SD.
  • Step b3 Select PG3 as the representative of the dynamic group protection group, perform the dynamic group switching operation according to the protection switching protocol of PG3, and convert the XI, X2, and X3 on the own side to Pl, P2, and P3, respectively.
  • Step c3 After the switching is completed, transmitting APS signaling in the APS signaling channel of the PG3, and copying the protocol status of the PG3 to all other protection groups in the dynamic group;
  • the APS signaling includes: a group protection identifier and service layer information
  • Step d3 After receiving the APS signaling, the node A collects the link that can be affected by the S-W, and associates the protection group with the affected link to generate a dynamic group;
  • the statistics of the links that S-W can affect include: Wl, W2, and W3. Since PG1, PG2, and PG3 have the same monthly service layer detection points, ⁇ , ⁇ PG1. PG2, and PG3 are added to the dynamic group, and PG3 is the representative of the dynamic group protection group.
  • Step e3 According to the protection switching protocol of the PG3, perform a dynamic group switching operation, and switch the XI, X2, and X3 on the self side to PI, P2, and P3, respectively. At this point, the process of dynamic group protection is completed. In other words, the alarm for the service layer has been processed.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the application scenario of this embodiment is as follows: In an Optical Transport Network (OTN), there are four services between the device and the device Z. In the device A with the branch line separated, the client The side inputs four 16th level synchronous transmission module (STM-16) service signals, denoted as Sl, S-2, S-3, and S-4, respectively, and S1, S-2, S-3, and S- 4 are protected signals. These four service signals are mapped to four optical path data units (ODU1) in device A, and one ODU1 protection is configured for each STM-16 service signal.
  • STM-16 16th level synchronous transmission module
  • the protection mode is The protection groups to which SNC/S, Sl, S-2, S-3, and S-4 belong are PG1, PG2, PG3, and PG4, respectively, of which Sl, S-2, S-3, and S-4
  • the working ODU1 is W1, W2, W3, and W4, respectively.
  • the protection ODU1 is P1, P2, P3, and P4, respectively.
  • the four ODU1s are aggregated on the group board to an ODU2, and are encapsulated and transmitted to the optical path transmission unit (OTU2). In the optical line, select the serial connection monitoring (TCM) of the ODU1 of the device Z as the sub-layer detection point.
  • TCM serial connection monitoring
  • S-W is S1, S-2, S-3, and S-4 public working ODU2 or OTU2
  • S-P is S1, S-2, S-3
  • the S-4 publicly protects the ODU2 or OTU2
  • a service layer detection point is set on the service layer link of the device Z to detect whether the service layer link is faulty.
  • the ODU2 in the OTU2 port of the device Z or the OTU2 in the OTU2 port detects the fault first, and then the link of the single service signal is detected at the TCM sublayer of the ODU1.
  • the dynamic group protection process is triggered, so that the simplified protection switching is performed, and the service protection switching time is less than the industry requirement, that is, the service protection switching time is less than 50 ms.
  • the dynamic group protection processing process is Refers to the technical solution provided by the present invention, and then triggers the individual switching by the TCM sublayer of each ODU1. At this time, since the signal has been switched in the group protection, the individual protection at this time There is no need to perform a protection switching action.
  • the process of the dynamic group protection includes the following steps:
  • Step a4 When the service layer link detects a fault, the device Z collects the link that the service layer can affect, and associates the protection group where the affected link is located to generate a dynamic group;
  • the service layer link of the device refers to S-W or S-P on the Z side of the device, assuming that the S-W of the device Z detects a failure, and at this time, the statistical S-W can affect
  • the links include: Wl, W2, W3, and W4. Since PG1, PG2, PG3, and PG4 have the same service layer detection point, PG1, PG2, PG3, and PG4 are added to the dynamic group; The fault refers to the occurrence of SF or SD in S-W.
  • Step b4 Select PG1 as the representative of the dynamic group protection group, perform the dynamic group switching operation according to the protection switching protocol of PG1, and switch the Sl1, S-2, S-3, and S-4 on the same side at the same time. Go to PI, P2, P3, and P4.
  • Step c4 After the switching is completed, transmitting APS signaling in the APS signaling channel of the PG1, and copying the protocol status of the PG1 to all other protection groups in the dynamic group;
  • the APS signaling includes: a group protection identifier and service layer information
  • Step d4 After receiving the APS signaling, the device A collects the link that can be affected by the S-W, and associates the protection group where the affected link is located to generate a dynamic group.
  • the statistics of the links that S-W can affect include: Wl, W2, W3, and W4. Since PG1, PG2, PG3, and PG4 have the same service layer detection point,
  • PG1, PG2, PG3, and PG4 are added to the dynamic group, and PG1 is the representative of the dynamic group protection group.
  • Step e4 Perform the dynamic group switching operation according to the protection switching protocol of PG1, and switch the S-l, S-2, S-3, and S-4 on the self side to Pl, P2, P3, and P4, respectively.
  • Step A4 Monitoring the sub-layer of device Z The point detects that the corresponding link is faulty; here, it is assumed that W3 is faulty, that is: W3 appears SF or SD.
  • Step B4 Device Z finds that S3 has been switched from W3 to P3. Therefore, the switching action is no longer performed, and the APS signal of S3 is sent to device A through the APS channel of PG3;
  • Step C4 After receiving the APS signal, Device A finds that S3 has been switched from W3 to P3. Therefore, the switching action is no longer performed.
  • Step 41 When the TCM detection point of the device Z W1 detects that SF or SD occurs in W1, the device Z switches the S1 on its own side to P1, and transmits the APS request of the SI service to the device A through the APS signaling channel of the PG1.
  • Step 42 After receiving the APS request, device A switches S1 on its own side to P1.
  • the specific processing flow of the individual switching is prior art.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • the device A in the device A, two service signals are input on the client side, which are respectively represented as XI and X2. And XI and X2 are protected signals, and the two service signals are respectively input to the 1+1 protection board after being passed through the optical transmission unit, and the 1+1 protection boards respectively provide optical channels for the service signals.
  • WDM Widelength Division Multiplexing
  • XI and X2 belong to the protection group of PG1 and PG2 respectively, wherein the working optical channels of XI and X2 are W1 and W2 respectively, and the protection optical channels are respectively P1 and P2; the working optical multiplexing sections of XI and X2 are S-W, the protection optical multiplex section is S-P; wherein the 1+1 protection board and the optical transmission unit of the device Z receiving the service data provide an inherent detection to detect whether each optical channel is faulty, the device Z
  • the optical amplifying unit and the optical demultiplexing unit provide service layer detection to detect whether the service layer link is faulty, and each protection group uses a separate APS overhead channel to process the protection protocol.
  • the optical amplifying unit and the optical demultiplexing unit of the device Z will detect the fault first, and then the 1+1 protection board and the optical transmission unit of the device Z will detect the optical channel of the single service signal.
  • the dynamic group protection process is triggered, so that the simplified protection switching is performed, and the service protection switching time is less than the industry requirement, that is, the service protection switching time is less than 50 ms.
  • the dynamic group protection is performed.
  • the processing procedure refers to the technical solution provided by the present invention, and then the individual switching is triggered by the 1+1 protection board and the optical transmission unit. At this time, since the signal has been switched in the group protection, the individual at this time Protection does not require a protection switching action.
  • the processing flow of the dynamic group protection includes the following steps:
  • Step a5 When the service layer link of the device Z detects a fault, the device Z collects the link that the service layer can affect, and associates the protection group where the affected link is located to generate a dynamic group;
  • the S-W of the device detects a fault.
  • the counted links affected by the S-W include: W1 and W2, since PG1 and PG2 have the same service layer detection point, namely: The optical amplifying unit and the optical demultiplexing unit are both in the Z device. Therefore, PG1 and PG2 are added to the dynamic group; wherein the fault refers to the occurrence of SF or SD in the S-W.
  • Step b5 Select PG1 as the representative of the dynamic group protection group, perform the dynamic group switching operation according to the protection switching protocol of PG1, and switch the XI and X2 on the own side to P1 and P2 at the same time.
  • Step c5 After the switching is completed, transmitting APS signaling in the APS signaling channel of the PG1, and copying the protocol status of the PG1 to all other protection groups in the dynamic group;
  • the APS signaling includes: a group protection identifier and service layer information
  • Step d5 After receiving the APS signaling, the device A collects the link that can be affected by the S-W, and associates the protection group with the affected link to generate a dynamic group.
  • the counted links that the S-W can affect include: W1 and W2. Since PG1 and PG2 have the same service layer detection point, PG1 and PG2 are added to the dynamic group, and PG1 is dynamic. Representative of the group protection group.
  • Step e5 According to the protection switching protocol of PG1, perform the dynamic group switching operation, and switch the XI and X2 on the self side to P1 and P2 at the same time.
  • the alarms of the 1+1 protection board and the optical transmission unit are processed, that is, the 1+1 protection board and the optical transmission unit detect the fault of the optical channel of a single service signal.
  • Step A5 The 1+1 protection board of the device Z and the optical transmission unit detect that the corresponding link is faulty.
  • Wl fails, that is: W1 appears SF or SD.
  • Step B5 Device Z finds that XI has been switched from W1 to P1. Therefore, the switching action is no longer performed, and the APS signal of XI is sent to device A through the APS channel of PG1;
  • Step C5 After receiving the APS signal, Device A finds that XI has been switched from W1 to P1. Therefore, the switching action is no longer performed.
  • the process of individual to change includes the following steps:
  • Step 51 When the 1+1 protection board and the optical transmission unit of the device Z detect that SF or SD occurs in the W1, the device Z switches the XI to the P1 on the own side, and passes the APS signaling channel of the PG1 to the device A. Send an APS request for the XI service.
  • Step 52 After receiving the APS request, Device A changes its XI to Pl.
  • the present invention further provides a system for group protection.
  • the system includes: a first node 71, configured to determine that the service layer is affected when a service layer failure is detected.
  • the protection group in the affected group performs a protection switching operation on each protection group in the group on the own side.
  • the system may further include a second node 72, configured to: after receiving the group protection information sent by the first node 71, determine, according to the received group protection information, the group affected by the service layer.
  • the protection group performs a protection switching operation on each protection group in the group on the own side;
  • the first node 71 is further configured to send the group protection information to the second node 72 after the protection switching operation is completed; the group protection information includes the group protection identifier and the service layer information.
  • the first node is a node that receives service data
  • the second node is a node that transmits service data
  • the first node 71 is specifically configured to: when determining a protection group in the group affected by the service layer,
  • All the links that can be affected by the service layer are counted, and the protection groups in which all the affected links are associated are counted, and a dynamic group is generated.
  • the first node 71 is specifically configured to: when performing a protection switching operation on each protection group in the group on the self side:
  • a protection group representative of the group is selected; and according to the protection switching protocol represented by the protection group of the group, a protection switching operation is performed on each protection group in the group.
  • the first node 71 is further configured to: after the protection switching operation is completed, copy the protocol status represented by the protection group of the group on the self side to all other protection groups in the group.
  • the first node 71 when sending the group protection information to the second node 72, is specifically configured to: send the group protection information to the second node 72 by using the APS signaling channel represented by the protection group of the group.
  • the second node 72 when determining the protection group in the group affected by the service layer according to the received group protection information, is specifically used to:
  • all the links that can be affected by the service layer are counted, and all the protection groups in which the affected link is associated are generated, and the node that generates the service data is generated. Dynamic grouping.
  • the second node 72 is specifically configured to: when performing protection switching operations on each protection group in the group on the self side:
  • Protection switching represented by a protection group of the same group as the node receiving the service data
  • the protocol performs a protection switching operation on each protection group in the group on its own side.
  • the second node 72 is further configured to: after the protection switching operation is completed, copy the protocol status represented by the protection group of the group on the self side to all other protection groups in the group.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明公开了一种组群保护的方法,该方法包括:当接收业务数据的节点检测出服务层出现故障时,确定受所述服务层影响的组群中的保护组,对自身侧的所述组群中的每个保护组进行保护倒换操作。本发明同时公开了一种组群保护的系统,采用本发明的方法及系统,能在不影响组群中的个体保护的前提下,有效地实现组群保护。

Description

一种组群保护方法及系统 技术领域
本发明涉及组群保护技术, 特别涉及一种组群保护方法及系统。 背景技术
在国 际电信联盟远程通信标准化组 ( ITU-T , International Telecommunication Union Telecommunication Standardization Sector )制定的 标准 G.808.1中, 定义了组群保护及个体保护。 其中, 组群保护主要有两个 应用场景, 一个应用场景为: 大量有保护的信号通过相同的服务层链路, 另一个应用场景为: 对反向复用或虚拟级联业务的流量信号进行统一保护。 组群保护的优点是: 可以将多个信号保护所组成的、 复杂的个体保护机制, 简化为单一的、 简单的组群保护机制, 从而满足业务保护倒换小于 50ms的 业界标准。
现有技术中, 在节点中预先配置属于同一个组群信号的个体信号, 当 节点检测到工作链路或保护链路的群信号失效( SFG, Signal fail Group )或 群信号劣化(SDG, Signal degrade Group ) 时, 即刻进行组群保护, 这里, 简化的统一检测、 统一倒换能够大大减少保护系统处理的复杂度, 从而减 小了由于保护组个数增加而造成的倒换超时的风险。 但是, 现有的组群保 护的技术方案中, 需要检测到工作链路或保护链路的 SFG或 SDG后, 才能 触发进行组群保护, 如此, 当组群中的单个信号发生故障时, 即: 单个信 号失效(SF, Signal Failure )或单个信号劣化( SD, Signal degrade ) 时, 则无法触发保护倒换, 从而影响业务的传输。 因此, 现有的群组保护的技 术方案无法实现个体保护及组群保护的优点的统一。 发明内容
有鉴于此, 本发明的主要目的在于提供一种组群保护方法及系统, 能 在不影响组群中的个体保护的前提下, 有效地实现组群保护。
为达到上述目的, 本发明的技术方案是这样实现的:
本发明提供了一种组群保护的方法, 该方法包括:
当接收业务数据的节点检测出服务层出现故障时, 确定受所述服务层 影响的组群中的保护组, 对自身侧的所述组群中的每个保护组进行保护倒 换操作。
上述方案中, 所述确定受所述服务层影响的组群中的保护组, 为: 统计所述服务层所能影响到的所有链路, 关联统计出的所有所述影响 到的链路所在的保护组, 生成动态组群。
上述方案中, 所述生成动态组群, 为:
从已关联的所有保护组中, 选出具有相同的服务层检测点及相同的协 议状态的保护组, 组成动态组群。
上述方案中, 所述接收业务数据的节点对自身侧的所述组群中的每个 保护组进行保护倒换操作, 为:
所述接收业务数据的节点从所述组群的保护组中, 选出所述组群的保 护组代表;
依据所述组群的保护组代表的保护倒换协议, 对自身侧的所述组群中 的每个保护组进行保护倒换操作。
上述方案中, 所述选出组群的保护组代表, 为:
选取所述组群中的第一个保护组, 作为所述组群的保护组代表; 或者, 选取所述组群中保护信号质量等级最高的保护组, 作为所述组群的保 护组代表; 或者,
随机选取一个保护组, 作为所述组群的保护组代表。 上述方案中, 保护倒换操作完成后, 该方法进一步包括: 所述接收业务数据的节点将自身侧的所述组群的保护组代表的协议状 态复制到所述组群内的其它所有保护组。
上述方案中, 在保护倒换操作完成后, 该方法进一步包括:
所述接收业务数据的节点向发送业务数据的节点发送组群保护信息; 发送业务数据的节点依据收到的组群保护信息, 确定受所述服务层影 响的组群中的保护组, 对自身侧的所述组群中的每个保护组进行保护倒换 操作。
上述方案中, 所述向发送业务数据的节点发送组群保护信息, 为: 通过所述组群的保护组代表的自动保护倒换 ( APS , Automatic Protection Switched )信令通道, 向所述发送业务数据的节点发送组群保护 信息。
上述方案中, 所述依据收到的组群保护信息, 确定受所述服务层影响 的组群中的保护组, 为:
依据收到的组群保护信息 , 统计所述服务层所能影响到的所有链路, 关联统计出的所有所述影响到的链路所在的保护组, 生成与所述接收业务 数据的节点相同的动态组群。
上述方案中, 所述发送业务数据的节点对自身侧的所述组群中的每个 保护组进行保护倒换操作, 为:
所述发送业务数据的节点依据与所述接收业务数据的节点相同的组群 的保护组代表的保护倒换协议, 对自身侧的所述组群中的每个保护组进行 保护倒换操作。
上述方案中, 保护倒换操作完成后, 该方法进一步包括:
所述发送业务数据的节点将自身侧的所述组群的保护组代表的协议状 态复制到所述组群内的其它所有保护组。 本发明还提供了一种组群保护的系统, 该系统包括: 第一节点, 用于 当检测出服务层出现故障时, 确定受所述服务层影响的组群中的保护组, 对自身侧的所述组群中的每个保护组进行保护倒换操作。
上述方案中, 所述第一节点, 还用于在保护倒换操作完成后, 将自身 侧的所述组群的保护组代表的协议状态复制到所述组群内的其它所有保护 组。
上述方案中, 该系统进一步包括: 第二节点, 用于收到第一节点发送 的组群保护信息后, 依据收到的组群保护信息, 确定受所述服务层影响的 组群中的保护组, 对自身侧的所述组群中的每个保护组进行保护倒换操作; 所述第一节点, 还用于保护倒换操作完成后, 向第二节点发送组群保 护信息。
上述方案中, 所述第二节点, 还用于在保护倒换操作完成后, 将自身 侧的所述组群的保护组代表的协议状态复制到所述组群内的其它所有保护 组。
本发明提供的组群保护的方法及系统, 当接收业务数据的节点检测出 服务层出现故障时, 确定受所述服务层影响的组群中的保护组, 对自身侧 的所述组群中的每个保护组进行保护倒换操作; 所述组群保护信息包含: 组群保护标识及服务层信息, 服务层检测出故障后, 触发节点进行组群保 护, 如此, 能在不影响组群中的个体保护的前提下, 有效地实现组群保护, 从而实现了组群保护的优点与个体保护的优点的有机统一, 进而提高系统 的性能。
另外, 依据所述组群的保护组代表的保护倒换协议, 节点对自身侧的 所述组群中的每个保护组进行保护倒换操作, 如此, 能进一步减少业务保 护倒换的时间, 进一步提高系统的性能。 附图说明
图 1为本发明组群保护的方法流程示意图;
图 2为实施例一的应用场景示意图;
图 3为实施例二的应用场景示意图;
图 4为实施例三的应用场景示意图;
图 5为实施例四的应用场景示意图;
图 6为实施例五的应用场景示意图;
图 7为本发明组群保护的系统结构示意图。 具体实施方式
本发明的基本思想是: 当接收业务数据的节点检测出服务层出现故障 时, 确定受所述服务层影响的组群中的保护组, 对自身侧的所述组群中的 每个保护组进行保护倒换操作。
下面结合附图及具体实施例对本发明再作进一步详细的说明。
本发明组群保护的方法, 如图 1所示, 包括以下步驟:
步驟 101 : 当接收业务数据的节点检测出服务层出现故障时, 确定受所 述服务层影响的组群中的保护组, 对自身侧的所述组群中的每个保护组进 行保护倒换操作, 并在操作完成后, 向发送业务数据的节点发送组群保护 信息;
其中, 所述组群保护信息包含: 组群保护标识及服务层信息; 所述确定受所述服务层影响的组群中的保护组, 具体为:
统计所述服务层所能影响到的所有链路, 关联统计出的所有所述影响 到的链路所在的保护组, 生成动态组群;
其中, 事先已在接收业务数据的节点配置所述服务层所能影响到的所 有链路, 接收业务数据的节点据此可以统计所述服务层影响到的链路; 所 述保护组还可以称为保护关系;
所述生成动态组群, 具体为:
从已关联的所有保护组中, 选出具有相同的服务层检测点及相同的协 议状态的保护组, 组成动态组群; 这里, 如果从已关联的所有保护组中, 选出的具有相同的服务层监测点及相同的协议状态的保护组有一组以上, 则每组均形成一个动态组群; 每个动态组群包含一个以上保护组;
这里, 事先已在接收业务数据的节点配置每个保护组的服务层检测点 及协议状态, 接收业务数据的节点据此可以获知每个保护组的服务层检测 点及协议状态, 从而组成动态组群;
所述对自身侧的所述组群中的每个保护组进行保护倒换操作, 具体为: 从所述组群的保护组中, 选出组群的保护组代表;
依据所述组群的保护组代表的保护倒换协议, 对自身侧的所述组群中 的每个保护组进行保护倒换操作;
其中, 所述选出组群的保护组代表, 具体为:
选取组群中的第一个保护组, 作为组群的保护组代表; 或者, 选取组群中保护信号质量等级最高的保护组, 作为组群的保护组代表; 或者,
随机选取一个保护组, 作为组群的保护组代表;
这里, 接收业务数据的节点可通过现有技术获知组群中每个保护组的 保护信号质量等级;
由于动态组群中的保护组的协议状态均相同, 因此, 可以依据所述组 群的保护组代表的保护倒换协议, 对自身侧的所述组群中的每个保护组进 行保护倒换操作, 如此, 能实现快速倒换;
所述保护倒换操作包括: 倒换和 /或桥接动作; 这里, 进行保护倒换操 作的具体处理过程为现有技术, 这里不再赘述。 在保护倒换操作完成后, 该方法还可以进一步包括:
接收业务数据的节点将自身侧的所述组群的保护组代表的协议状态复 制到所述组群内的其它所有保护组;
这里, 将协议状态复制到所述组群内的其它所有保护组的目的为: 为 下一次保护倒换作准备;
所述向发送业务数据的节点发送组群保护信息, 具体为:
通过所述组群的保护组代表的 APS信令通道, 向所述发送业务数据的 节点发送组群保护信息;
所述服务层信息用于指导发送业务数据的节点确定组群中的保护组; 所述组群保护信息包含: 组群保护标识及服务层信息。
步驟 102: 发送业务数据的节点依据收到的组群保护信息, 确定受所述 服务层影响的组群中的保护组, 对自身侧的所述组群中的每个保护组进行 保护倒换操作;
这里, 所述依据收到的组群保护信息, 确定受所述服务层影响的组群 中的保护组, 具体为:
依据收到的组群保护信息 , 统计所述服务层所能影响到的所有链路, 关联统计出的所有所述影响到的链路所在的保护组, 生成与所述接收业务 数据的节点相同的动态组群;
其中, 事先已在发送业务数据的节点配置所述服务层所能影响到的所 有链路, 发送业务数据的节点据此可以统计所述服务层影响到的链路; 所 述发送业务数据的节点事先已获知接收业务数据的节点生成动态组群的具 体依据, 从而据此生成与所述接收业务数据的节点相同的动态组群;
所述对自身侧的所述组群中的每个保护组进行保护倒换操作, 具体为: 依据与所述接收业务数据的节点相同的组群的保护组代表的保护倒换 协议, 对自身侧的所述组群中的每个保护组进行保护倒换操作; 这里, 由于组群保护信息可通过所述组群的保护组代表的 APS信令通 道发送给发送业务数据的节点, 发送业务数据的节点据此可获知接收业务 数据的节点选出的组群的保护组代表; 也可通过其它途径获知, 比如: 组 群保护信息进一步包含接收业务数据的节点选出的组群的保护组代表; 在保护倒换操作完成后, 该方法还可以进一步包括:
接收业务数据的节点将自身侧的所述组群的保护组代表的协议状态复 制到所述组群内的其它所有保护组;
这里, 将协议状态复制到所述组群内的其它所有保护组的目的为: 为 下一次保护倒换作准备。
下面结合实施例对本发明再作进一步详细的描述。
实施例一:
如图 2所示, 本实施例的应用场景为: 节点 A与节点 Z之间存在三个 业务, 即: 节点 A与节点 Z之间有三个独立的业务双向信号, 分别是 XI、 X2、 及 X3 , 且 XI、 X2、 及 X3均为被保护信号, 每个业务信号配置独立 的 1+1/1:1的子层子网互联(SNC/S )保护, XI、 X2、 及 X3所属的保护组 分别为 PG1、 PG2、 以及 PG3 , 其中, XI、 X2、 及 X3的工作链路分别为 Wl、 W2、 以及 W3 , 保护链路分别为 PI、 P2、 以及 P3; 每个 SNC/S保护 组使用独立的子层监视, 即: 每个 SNC/S保护组的链路上均设置有子层检 测点, 以检测链路是否出现故障, 且每个 SNC/S保护组使用独立的 APS开 销通道处理保护协议。 XI、 X2、 及 X3均通过相同的服务层链路, 具体地, S W为 XI、 X2、 及 X3公共的工作服务层链路, S P为 XI、 X2、 及 X3 公共的保护服务层链路, 服务层链路设置有服务层检测点, 以检测服务层 ^ 链路是否出现故障; 其中, 如图 2所示, 表示子层检测点, 表示 服务层检测点。
当服务层链路故障时, 会在节点的服务层首先检测到故障, 之后会在 节点的子层监视检测到单个业务信号的链路出现故障, 此时, 会触发动态 组群保护的处理流程, 从而实现简化的保护倒换, 使得业务保护倒换的时 间小于业界要求, 即: 业务保护倒换时间小于 50ms; 这里, 所述动态组群 保护的处理流程就是指本发明提供的技术方案, 然后再由各个业务的子层 监视触发个体倒换, 此时, 由于在组群保护中, 信号已经完成了切换, 因 此, 这时的个体保护不需要再进行保护倒换动作。 其中, 动态组群保护的 处理流程, 具体包括以下步驟:
步驟 al: 当服务层链路检测出故障时, 节点 Z统计所述服务层所能影 响到的链路, 关联所述影响到的链路所在的保护组, 生成动态组群;
这里, 假设在节点 Z的 S— W检测出故障, 此时, 统计出的 S— W所能 影响到的链路包括: Wl、 W2、 以及 W3 , 由于 PG1、 PG2、 以及 PG3具有 相同的服务层检测点, 因此, 将 PG1、 PG2、 以及 PG3加入到动态组群中; 其中, 所述故障是指 S W出现 SF或 SD。
步驟 bl : 选取 PG3为动态组群保护组的代表,依据 PG3的保护倒换协 议, 执行动态组群的倒换动作, 将自身侧的 XI、 X2、 以及 X3同时分别倒 换到 Pl、 P2、 以及 P3;
这里, 假设保护为 1+1保护, 如果保护为 1:1保护, 则在执行动态组群 的倒换动作时, 增加了桥接切换的动作。
步驟 cl : 倒换完成后, 在 PG3的 APS信令通道中, 传送 APS信令, 并将 PG3的协议状态复制到动态组群内的其它所有保护组;
这里, 所述 APS信令包含: 组群保护标识及服务层信息;
所述动态组群内的其它所有保护组就是指: PG1及 PG2。
步驟 dl : 节点 A收到 APS信令后, 统计 S— W所能影响到的链路, 关 联所述影响到的链路所在的保护组, 生成动态组群;
这里, 统计出的 S W所能影响到的链路包括: Wl、 W2、 以及 W3 , 由于 PGl、 PG2、 以及 PG3具有 ^目同的月良务层检测点, 因 匕, ^寻 PGl、 PG2、 以及 PG3加入到动态组群中, 且 PG3为动态组群保护组的代表。
步驟 el : 依据 PG3的保护倒换协议, 执行动态组群的倒换动作, 将自 身侧的 XI、 X2、 以及 X3同时分别倒换到 PI、 P2、 以及 P3;
这里, 相应的, 保护为 1+1保护, 如果保护为 1 : 1保护, 则在执行动态 组群的倒换动作时, 增加了桥接切换的动作。
至此, 动态组群保护的处理过程完成, 换句话说, 对于服务层的告警 已处理完成。
在完成服务层告警后, 会继续处理 SNC/S的告警, 即: 节点的子层监 视检测到单个业务信号的链路出现的故障, 具体处理过程包括以下步驟: 步驟 A1 : 在节点 Z的子层监测点检测到对应的链路出现故障; 这里, 假设 W1出现故障, 即: W1出现 SF或 SD。
步驟 B1 : 节点 Z发现 XI已经由 W1倒换到 P1 , 因此, 不再执行倒换 动作, 将 XI的 APS信号通过 PG1的 APS通道发送给节点 A;
步驟 C1 : 节点 A收到 APS信号后, 发现 XI 已经由 W1倒换到 P1 , 因此, 也不再执行倒换动作。
当服务层链路未出现故障, 且单个业务信号的链路出现故障时, 此时, 只进行个体倒换, 这里, 以 XI的双向 1+1保护为例, 个体到换的处理流程 包括以下步驟:
步驟 11 : 当在节点 Z W1的子层检测点检测到 W1出现 SF或 SD时,
Z节点将自身侧的 XI到换到 P1 , 并通过 PG1的 APS信令通道, 向节点 A 发送 XI业务的 APS请求。
步驟 12: 节点 A接收到 APS请求后, 将自身侧的 XI到换到 P1。
这里, 1 : 1保护与 1+1保护过程类似, 在执行倒换动作时, 增加了桥接 切换动作。 这里, 个体倒换的具体处理流程为现有技术。
实施例二:
如图 3所示, 本实施例的应用场景为: 节点 A与节点 Z之间存在三个 业务, 即: 节点 A与节点 Z之间有三个独立的业务双向信号, 分别是 XI、 X2、 及 X3 , 且 XI、 X2、 及 X3均为被保护信号, 每个业务信号配置独立 的 1+1的非介入子网互联(SNC/N )保护, XI、 X2、 及 X3所属的保护组 分别为 PG1、 PG2、 以及 PG3 , 其中, XI、 X2、 及 X3的工作链路分别为 Wl、 W2、 以及 W3 , 保护链路分别为 PI、 P2、 以及 P3; 每个 SNC/N保护 组使用独立的非介入监视, 即: 每个 SNC/N保护组的链路上均设置有非介 入检测点, 以检测链路是否出现故障, 且每个 SNC/N保护组使用独立的 APS 开销通道处理保护协议; 这里, 所述非介入监视包括: 端到端的监视 ( SNC/Ne )及子层的监视(SNC/Ns )。 XI、 X2、 及 X3均通过相同的服务 层链路, 具体地, S— W为 XI、 X2、 及 X3公共的工作服务层链路, S— P为 XI、 X2、 及 X3公共的保护服务层链路, 服务层链路设置有服务层检测点, 以检测服务层链路是否出现故障; 其中, 如图 3所示, ^ 表示非介入 检测点, 表示服务层检测点。
当服务层链路故障时, 会在节点的服务层首先监测到故障, 之后会在 节点的非介入监视检测到单个业务信号的链路出现故障, 此时, 会触发动 态组群保护的保护流程, 从而实现简化的保护倒换, 使得业务保护倒换的 时间小于业界要求, 即: 业务保护倒换时间小于 50ms; 这里, 所述动态组 群保护的处理流程就是指本发明提供的技术方案, 然后再由各个业务的子 层监视触发个体倒换, 此时, 由于在组群保护中, 信号已经完成了切换, 因此, 这时的个体保护不需要再进行保护倒换动作。 其中, 动态组群保护 的处理流程, 具体包括以下步驟: 步驟 a2: 当服务层链路检测出故障时, 节点 Z统计所述服务层所能影 响到的链路, 关联所述影响到的链路所在的保护组, 生成动态组群;
这里, 假设在节点 Z的 S— W检测出故障, 此时, 统计出的 S— W所能 影响到的链路包括: Wl、 W2、 以及 W3 , 由于 PG1、 PG2、 以及 PG3具有 相同的服务层检测点, 因此, 将 PG1、 PG2、 以及 PG3加入到动态组群中; 其中, 所述故障是指 S W出现 SF或 SD。
步驟 b2: 选取 PG3为动态组群保护组的代表,依据 PG3的保护倒换协 议, 执行动态组群的倒换动作, 将自身侧的 XI、 X2、 以及 X3同时分别倒 换到 Pl、 P2、 以及 P3。
步驟 c2: 倒换完成后, 在 PG3的 APS信令通道中, 传送 APS信令, 并将 PG3的协议状态复制到动态组群内的其它所有保护组;
这里, 所述 APS信令包含: 组群保护标识及服务层信息;
所述动态组群内的其它所有保护组就是指: PG1及 PG2。
步驟 d2: 节点 A收到 APS信令后, 统计 S— W所能影响到的链路, 关 联所述影响到的链路所在的保护组, 生成动态组群;
这里, 统计出的 S—W所能影响到的链路包括: Wl、 W2、 以及 W3 , 由于 PG1、 PG2、 以及 PG3具有 ^目同的月良务层检测点, 因 匕, ^寻 PG1、 PG2、 以及 PG3加入到动态组群中, 且 PG3为动态组群保护组的代表。
步驟 e2: 依据 PG3的保护倒换协议, 执行动态组群的倒换动作, 将自 身侧的 XI、 X2、 以及 X3同时分别倒换到 PI、 P2、 以及 P3。
至此, 动态组群保护的处理过程完成, 换句话说, 对于服务层的告警 已处理完成。
在完成服务层告警后, 会继续处理 SNC/N的告警, 即: 节点的非介入 监视检测到单个业务信号的链路出现的故障, 具体处理过程包括以下步驟: 步驟 A2: 在节点 Z的非介入监视检测到对应的链路出现故障; 这里, 假设 Wl出现故障, 即: W1出现 SF或 SD。
步驟 B2: 节点 Z发现 XI已经由 W1倒换到 P1 , 因此, 不再执行倒换 动作, 将 XI的 APS信号通过 PG1的 APS通道发送给 A节点;
步驟 C2: 节点 A收到 APS信号后, 发现 XI 已经由 W1倒换到 P1 , 因此, 也不再执行倒换动作。
当服务层链路未出现故障, 且单个业务信号的链路出现故障时, 此时, 只进行个体倒换, 这里, 以 XI的双向 1+1保护为例, 个体到换的处理流程 包括以下步驟:
步驟 21 :当在节点 Z W1的非介入监测点检测到 W1出现 SF或 SD时, 节点 Z将自身侧的 XI到换到 P1 , 并通过 PG1的 APS信令通道, 向节点 A 发送 XI业务的 APS请求。
步驟 22: 节点 A接收到 APS请求后, 将自身侧的 XI到换到 P1。
这里, 个体倒换的具体处理流程为现有技术。
实施例三:
如图 4所示, 本实施例的应用场景为: 节点 A与节点 Z之间存在三个 业务, 即: 节点 A与节点 Z之间有三个独立的业务双向信号, 分别是 XI、 X2、 及 X3 , 且 XI、 X2、 及 X3均为被保护信号, 每个业务信号配置独立 的 1+1的固有子网互联(SNC/I )保护, XI、 X2、 及 X3所属的保护组分别 为 PG1、 PG2、 以及 PG3 , 其中, XI、 X2、 及 X3的工作链路分别为 Wl、 W2、 以及 W3 , 保护链路分别为 Pl、 P2、 以及 P3 , 每个 SNC/I保护组使用 独立的 APS开销通道处理保护协议。 XI、 X2、 及 X3均通过相同的服务层 链路, 具体地, S— W为 XI、 X2、 及 X3公共的工作服务层链路, S P为 XI、 X2、 及 X3公共的保护服务层链路, 服务层链路设置有服务层检测点, 以检测服务层链路是否出现故障; 其中, 如图 4所示, 表示服务层检 测点。 当服务层链路故障时, 会在节点的服务层监测到故障, 此时, 会触发 动态组群保护的保护流程, 从而实现简化的保护倒换, 使得业务保护倒换 的时间小于业界要求, 即: 业务保护倒换时间小于 50ms; 这里, 所述动态 组群保护的处理流程就是指本发明提供的技术方案。 其中, 动态组群保护 的处理流程, 具体包括以下步驟:
步驟 a3: 当服务层链路检测出故障时, 节点 Z统计所述服务层所能影 响到的链路, 关联所述影响到的链路所在的保护组, 生成动态组群;
这里, 假设在节点 Z的 S— W检测出故障, 此时, 统计出的 S— W所能 影响到的链路包括: Wl、 W2、 以及 W3 , 由于 PG1、 PG2、 以及 PG3具有 相同的服务层检测点, 因此, 将 PG1、 PG2、 以及 PG3加入到动态组群中; 其中, 所述故障是指 S W出现 SF或 SD。
步驟 b3: 选取 PG3为动态组群保护组的代表,依据 PG3的保护倒换协 议, 执行动态组群的倒换动作, 将自身侧的 XI、 X2、 以及 X3同时分别倒 换到 Pl、 P2、 以及 P3。
步驟 c3: 倒换完成后, 在 PG3的 APS信令通道中, 传送 APS信令, 并将 PG3的协议状态复制到动态组群内的其它所有保护组;
这里, 所述 APS信令包含: 组群保护标识及服务层信息;
所述动态组群内的其它所有保护组就是指: PG1及 PG2。
步驟 d3: 节点 A收到 APS信令后, 统计 S— W所能影响到的链路, 关 联所述影响到的链路所在的保护组, 生成动态组群;
这里, 统计出的 S—W所能影响到的链路包括: Wl、 W2、 以及 W3 , 由于 PG1、 PG2、 以及 PG3具有 ^目同的月良务层检测点, 因 匕, ^寻 PG1、 PG2、 以及 PG3加入到动态组群中, 且 PG3为动态组群保护组的代表。
步驟 e3: 依据 PG3的保护倒换协议, 执行动态组群的倒换动作, 将自 身侧的 XI、 X2、 以及 X3同时分别倒换到 PI、 P2、 以及 P3。 至此, 动态组群保护的处理过程完成, 换句话说, 对于服务层的告警 已处理完成。
实施例四:
如图 5 所示, 本实施例的应用场景为: 在光传送网络(OTN, Optical Transport Network ) 中, 设备 Α与设备 Z之间存在 4个业务, 在支线路分 离的设备 A中, 在客户侧输入 4个第 16级同步传送模块( STM-16 ) 业务 信号, 分别表示为 S-l、 S-2、 S-3、 以及 S-4, 且 S-l、 S-2、 S-3、 以及 S-4 均为被保护信号, 这四个业务信号在设备 A中, 被映射为 4个光通路数据 单元( ODU1 ) 的信号, 为每个 STM-16业务信号配置一个 ODU1的保护, 保护的模式为 SNC/S, S-l、 S-2、 S-3、 以及 S-4所属的保护组分别为 PG1、 PG2、 PG3、 以及 PG4, 其中, S-l、 S-2、 S-3、 以及 S-4的工作 ODU1分别 为 Wl、 W2、 W3、 以及 W4, 保护 ODU1分别为 Pl、 P2、 P3、 以及 P4, 4 个 ODU1在群路板汇聚到一个 ODU2, 并封装到光通路传送单元( OTU2 ) 中传送到光线路中, 选择设备 Z的 ODU1的串联连接监视( TCM )为子层 检测点, 以检测子层链路是否出现故障, S— W为 S-l、 S-2、 S-3、 以及 S-4 公共的工作 ODU2或 OTU2, S— P为 S-l、 S-2、 S-3、 以及 S-4公共的保护 ODU2或 OTU2, 并在设备 Z的服务层链路设置有服务层检测点, 以检测服 务层链路是否出现故障。
当服务层链路故障时, 会在设备 Z的群路板的 OTU2端口或 OTU2端 口中的 ODU2首先检测到故障, 之后会在 ODU1的 TCM子层检测到单个 业务信号的链路出现故障, 此时, 会触发动态组群保护的处理流程, 从而 实现简化的保护倒换, 使得业务保护倒换的时间小于业界要求, 即: 业务 保护倒换时间小于 50ms, 这里, 所述动态组群保护的处理流程就是指本发 明提供的技术方案, 然后再由各个 ODU1的 TCM子层监视触发个体倒换, 此时, 由于在组群保护中, 信号已经完成了切换, 因此, 这时的个体保护 不需要再进行保护倒换动作。 其中, 动态组群保护的处理流程, 具体包括 以下步驟:
步驟 a4: 当服务层链路检测出故障时, 设备 Z统计所述服务层所能影 响到的链路, 关联所述影响到的链路所在的保护组, 生成动态组群;
这里, 所述在设备的服务层链路是指设备 Z侧的 S— W或 S— P, 假设在 设备 Z的 S— W检测出故障, 此时, 统计出的 S— W所能影响到的链路包括: Wl、 W2、 W3、 以及 W4, 由于 PG1、 PG2、 PG3、 以及 PG4具有相同的服 务层检测点, 因此, 将 PG1、 PG2、 PG3、 以及 PG4加入到动态组群中; 其 中, 所述故障是指 S— W出现 SF或 SD。
步驟 b4: 选取 PG1为动态组群保护组的代表,依据 PG1的保护倒换协 议, 执行动态组群的倒换动作, 将自身侧的 S-l、 S-2、 S-3、 以及 S-4同时 分别倒换到 PI、 P2、 P3、 以及 P4。
步驟 c4: 倒换完成后, 在 PG1的 APS信令通道中, 传送 APS信令, 并将 PG1的协议状态复制到动态组群内的其它所有保护组;
这里, 所述 APS信令包含: 组群保护标识及服务层信息; 其中, 所述
APS的格式如下:
Figure imgf000017_0001
具体地, 将 APS信令字节中保留的第四个字节加以利用, 将最高比特 定义为 G, 表示是否启动 Group机制; 后面七个 bit用作对服务层类型的定 义, 在本实施例中, 服务层类型的定义为 ODU2; 所述动态组群内的其它所有保护组就是指: PG2、 PG3、 以及 PG4。 步驟 d4: 设备 A收到 APS信令后, 统计 S— W所能影响到的链路, 关 联所述影响到的链路所在的保护组, 生成动态组群;
这里, 统计出的 S— W 所能影响到的链路包括: Wl、 W2、 W3、 以及 W4, 由于 PG1、 PG2、 PG3以及 PG4具有相同的服务层检测点, 因此, 将
PG1、 PG2、 PG3、 以及 PG4加入到动态组群中, 且 PG1为动态组群保护组 的代表。
步驟 e4: 依据 PGl的保护倒换协议, 执行动态组群的倒换动作, 将自 身侧的 S-l、 S-2、 S-3、 以及 S-4同时分别倒换到 Pl、 P2、 P3、 以及 P4。
至此, 动态组群保护的处理过程完成, 换句话说, 对于服务层的告警 已处理完成。
在完成服务层告警后, 会继续处理 TCM的告警, 即: 设备的子层监视 检测到单个业务信号的链路出现的故障, 具体处理过程包括以下步驟: 步驟 A4: 在设备 Z的子层监测点检测到对应的链路出现故障; 这里, 假设 W3出现故障, 即: W3出现 SF或 SD。
步驟 B4: 设备 Z发现 S3已经由 W3倒换到 P3 , 因此, 不再执行倒换 动作, 将 S3的 APS信号通过 PG3的 APS通道发送给设备 A;
步驟 C4: 设备 A收到 APS信号后, 发现 S3已经由 W3倒换到 P3 , 因 此, 也不再执行倒换动作。
当服务层链路未出现故障, 且单个业务信号的链路出现故障时, 此时, 只进行个体倒换, 这里, 以 S-1为例, 个体到换的处理流程包括以下步驟: 步驟 41: 当在设备 Z W1的 TCM检测点检测到 W1出现 SF或 SD时, 设备 Z将自身侧的 S1到换到 P1 , 并通过 PG1的 APS信令通道, 向设备 A 发送 SI业务的 APS请求。
步驟 42: 设备 A接收到 APS请求后, 将自身侧的 S1到换到 Pl。 这里, 个体倒换的具体处理流程为现有技术。
实施例五:
如图 6所示,本实施例的应用场景为:在波分复用(WDM, Wavelength Division Multiplexing ) 网络中, 在设备 A中, 在客户侧输入 2个业务信号, 分别表示为 XI及 X2, 且 XI及 X2均为被保护信号, 这两个业务信号分别 经过光传输单元后, 分别输入到 1+1保护单板中, 所述 1+1保护单板分别 为业务信号提供光通道的 1+1保护; XI及 X2所属的保护组分别为 PG1及 PG2, 其中, XI及 X2的工作光通道分别为 W1及 W2, 保护光通道分别为 P1及 P2; XI及 X2的工作光复用段为 S— W, 保护光复用段为 S— P; 其中, 接收业务数据的设备 Z的 1+1保护单板及光传输单元提供固有的检测, 以 检测每个光通道是否出现故障, 设备 Z的光放大单元及光解复用单元提供 服务层检测,以检测服务层链路是否出现故障,每个保护组使用独立的 APS 开销通道处理保护协议。
当服务层链路故障时, 设备 Z的光放大单元及光解复用单元会首先检 测到故障, 之后设备 Z的 1+1保护单板及光传输单元会检测到单个业务信 号的光通道出现故障, 此时, 会触发动态组群保护的处理流程, 从而实现 简化的保护倒换, 使得业务保护倒换的时间小于业界要求, 即: 业务保护 倒换时间小于 50ms; 这里, 所述动态组群保护的处理流程就是指本发明提 供的技术方案, 然后再由 1+1保护单板及光传输单元触发个体倒换, 此时, 由于在组群保护中, 信号已经完成了切换, 因此, 这时的个体保护不需要 再进行保护倒换动作。 其中, 动态组群保护的处理流程, 具体包括以下步 驟:
步驟 a5: 当在设备 Z的服务层链路检测出故障时, 设备 Z统计所述服 务层所能影响到的链路, 关联所述影响到的链路所在的保护组, 生成动态 组群; 这里, 假设在设备 Ζ的 S— W检测出故障, 此时, 统计出的 S— W所能 影响到的链路包括: W1及 W2, 由于 PG1及 PG2具有相同的服务层检测 点, 即: 均在 Z设备的光放大单元及光解复用单元, 因此, 将 PG1及 PG2 加入到动态组群中; 其中, 所述故障是指 S— W出现 SF或 SD。
步驟 b5: 选取 PG1为动态组群保护组的代表,依据 PG1的保护倒换协 议, 执行动态组群的倒换动作, 将自身侧的 XI及 X2 同时分别倒换到 P1 及 P2。
步驟 c5: 倒换完成后, 在 PG1的 APS信令通道中, 传送 APS信令, 并将 PG1的协议状态复制到动态组群内的其它所有保护组;
这里, 所述 APS信令包含: 组群保护标识及服务层信息;
所述动态组群内的其它所有保护组就是指: PG2。
步驟 d5: 设备 A收到 APS信令后, 统计 S— W所能影响到的链路, 关 联所述影响到的链路所在的保护组, 生成动态组群;
这里, 统计出的 S—W所能影响到的链路包括: W1及 W2, 由于 PG1 及 PG2具有相同的服务层检测点,因此,将 PG1及 PG2加入到动态组群中, 且 PG1为动态组群保护组的代表。
步驟 e5: 依据 PG1的保护倒换协议, 执行动态组群的倒换动作, 将自 身侧的 XI及 X2同时分别倒换到 P1及 P2。
至此, 动态组群保护的处理过程完成, 换句话说, 对于服务层的告警 已处理完成。
在完成服务层告警后, 会继续处理 1+1保护单板及光传输单元的告警, 即: 1+1保护单板及光传输单元检测到单个业务信号的光通道出现的故障, 具体处理过程包括以下步驟:
步驟 A5:设备 Z的 1+1保护单板及光传输单元检测到对应的链路出现 故障; 这里, 假设 Wl出现故障, 即: W1出现 SF或 SD。
步驟 B5: 设备 Z发现 XI已经由 W1倒换到 P1 , 因此, 不再执行倒换 动作, 将 XI的 APS信号通过 PG1的 APS通道发送给设备 A;
步驟 C5: 设备 A收到 APS信号后, 发现 XI 已经由 W1倒换到 P1 , 因此, 也不再执行倒换动作。
当光放大单元及光解复用单元为检测出服务层链路故障, 且 1+1保护 单板及光传输单元检测出单个业务信号的链路故障时, 此时, 只进行个体 倒换, 这里, 以 XI为例, 个体到换的处理流程包括以下步驟:
步驟 51 : 当设备 Z的 1+1保护单板及光传输单元检测到 W1 出现 SF 或 SD时,设备 Z将自身侧的 XI到换到 P1 ,并通过 PG1的 APS信令通道, 向设备 A发送 XI业务的 APS请求。
步驟 52: 设备 A接收到 APS请求后, 将自身侧的 XI到换到 Pl。
这里, 个体倒换的具体处理流程为现有技术。
这里需要说明的是: 本发明提供的组群保护的技术方案, 可适用于 OTN、 同步数字体系 (SDH, Synchronous Digital Hierarchy ), WDM网络、 异步传输模式(ATM, Asynchronous Transfer Mode ) 网络、 分组传送网络 ( PTN , Packet Transport Network )、 以及以太网传送网络等。
为实现上述方法, 本发明还提供了一种组群保护的系统, 如图 7所示, 该系统包括: 第一节点 71 , 用于当检测出服务层出现故障时, 确定受所述 服务层影响的组群中的保护组, 对自身侧的所述组群中的每个保护组进行 保护倒换操作。
其中, 该系统还可以进一步包括第二节点 72, 用于收到第一节点 71发 送的组群保护信息后, 依据收到的组群保护信息, 确定受所述服务层影响 的组群中的保护组, 对自身侧的所述组群中的每个保护组进行保护倒换操 作; 所述第一节点 71 ,还用于保护倒换操作完成后, 向第二节点 72发送组 群保护信息; 所述组群保护信息包含组群保护标识及服务层信息。
这里, 需要说明的是: 第一节点为接收业务数据的节点, 第二节点为 发送业务数据的节点。
其中, 在确定受所述服务层影响的组群中的保护组时, 所述第一节点 71 , 具体用于:
统计所述服务层所能影响到的所有链路, 关联统计出的所有所述影响 到的链路所在的保护组, 生成动态组群。
所述第一节点 71 , 在对自身侧的所述组群中的每个保护组进行保护倒 换操作时, 具体用于:
从所述组群的保护组中, 选出组群的保护组代表; 并依据所述组群的 保护组代表的保护倒换协议, 对所述组群中的每个保护组进行保护倒换操 作。
所述第一节点 71 , 还用于在保护倒换操作完成后, 将自身侧的所述组 群的保护组代表的协议状态复制到所述组群内的其它所有保护组。
所述第一节点 71 , 在向第二节点 72发送组群保护信息时, 具体用于: 通过所述组群的保护组代表的 APS信令通道,向第二节点 72发送组群 保护信息。
所述第二节点 72, 在依据收到的组群保护信息, 确定受所述服务层影 响的组群中的保护组时, 具体用于:
依据收到的组群保护信息 , 统计所述服务层所能影响到的所有链路, 关联统计出的所有所述影响到的链路所在的保护组, 生成与所述接收业务 数据的节点相同的动态组群。
所述第二节点 72, 在对自身侧的所述组群中的每个保护组进行保护倒 换操作时, 具体用于:
依据与所述接收业务数据的节点相同的组群的保护组代表的保护倒换 协议, 对自身侧的所述组群中的每个保护组进行保护倒换操作。
所述第二节点 72, 还用于在保护倒换操作完成后, 将自身侧的所述组 群的保护组代表的协议状态复制到所述组群内的其它所有保护组。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。

Claims

权利要求书
1、 一种组群保护的方法, 其特征在于, 该方法包括:
当接收业务数据的节点检测出服务层出现故障时, 确定受所述服务层 影响的组群中的保护组, 对自身侧的所述组群中的每个保护组进行保护倒 换操作。
2、 根据权利要求 1所述的方法, 其特征在于, 所述确定受所述服务层 影响的组群中的保护组, 为:
统计所述服务层所能影响到的所有链路, 关联统计出的所有所述影响 到的链路所在的保护组, 生成动态组群。
3、根据权利要求 2所述的方法, 其特征在于, 所述生成动态组群, 为: 从已关联的所有保护组中, 选出具有相同的服务层检测点及相同的协 议状态的保护组, 组成动态组群。
4、 根据权利要求 3所述的方法, 其特征在于, 所述接收业务数据的节 点对自身侧的所述组群中的每个保护组进行保护倒换操作, 为:
所述接收业务数据的节点从所述组群的保护组中, 选出所述组群的保 护组代表;
依据所述组群的保护组代表的保护倒换协议, 对自身侧的所述组群中 的每个保护组进行保护倒换操作。
5、 根据权利要求 4所述的方法, 其特征在于, 所述选出组群的保护组 代表, 为:
选取所述组群中的第一个保护组, 作为所述组群的保护组代表; 或者, 选取所述组群中保护信号质量等级最高的保护组, 作为所述组群的保 护组代表; 或者,
随机选取一个保护组, 作为所述组群的保护组代表。
6、 根据权利要求 4所述的方法, 其特征在于, 保护倒换操作完成后, 该方法进一步包括:
所述接收业务数据的节点将自身侧的所述组群的保护组代表的协议状 态复制到所述组群内的其它所有保护组。
7、 根据权利要求 1至 6任一项所述的方法, 其特征在于, 在保护倒换 操作完成后, 该方法进一步包括:
所述接收业务数据的节点向发送业务数据的节点发送组群保护信息; 发送业务数据的节点依据收到的组群保护信息, 确定受所述服务层影 响的组群中的保护组, 对自身侧的所述组群中的每个保护组进行保护倒换 操作。
8、 根据权利要求 7所述的方法, 其特征在于, 所述向发送业务数据的 节点发送组群保护信息, 为:
通过所述组群的保护组代表的自动保护倒换( APS )信令通道, 向所述 发送业务数据的节点发送组群保护信息。
9、 根据权利要求 7所述的方法, 其特征在于, 所述依据收到的组群保 护信息, 确定受所述服务层影响的组群中的保护组, 为:
依据收到的组群保护信息 , 统计所述服务层所能影响到的所有链路, 关联统计出的所有所述影响到的链路所在的保护组, 生成与所述接收业务 数据的节点相同的动态组群。
10、 根据权利要求 7所述的方法, 其特征在于, 所述发送业务数据的 节点对自身侧的所述组群中的每个保护组进行保护倒换操作, 为:
所述发送业务数据的节点依据与所述接收业务数据的节点相同的组群 的保护组代表的保护倒换协议, 对自身侧的所述组群中的每个保护组进行 保护倒换操作。
11、根据权利要求 10所述的方法, 其特征在于,保护倒换操作完成后, 该方法进一步包括: 所述发送业务数据的节点将自身侧的所述组群的保护组代表的协议状 态复制到所述组群内的其它所有保护组。
12、 一种组群保护的系统, 其特征在于, 该系统包括: 第一节点, 用 于当检测出服务层出现故障时, 确定受所述服务层影响的组群中的保护组, 对自身侧的所述组群中的每个保护组进行保护倒换操作。
13、 根据权利要求 12所述的系统, 其特征在于, 所述第一节点, 还用 于在保护倒换操作完成后, 将自身侧的所述组群的保护组代表的协议状态 复制到所述组群内的其它所有保护组。
14、 根据权利要求 12或 13所述的系统, 其特征在于, 该系统进一步 包括: 第二节点, 用于收到第一节点发送的组群保护信息后, 依据收到的 组群保护信息, 确定受所述服务层影响的组群中的保护组, 对自身侧的所 述组群中的每个保护组进行保护倒换操作;
所述第一节点, 还用于保护倒换操作完成后, 向第二节点发送组群保 护信息。
15、 根据权利要求 14所述的系统, 其特征在于, 所述第二节点, 还用 于在保护倒换操作完成后, 将自身侧的所述组群的保护组代表的协议状态 复制到所述组群内的其它所有保护组。
PCT/CN2012/074559 2011-08-29 2012-04-23 一种组群保护方法及系统 WO2012155767A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110250428.8A CN102957557B (zh) 2011-08-29 2011-08-29 一种组群保护方法及系统
CN201110250428.8 2011-08-29

Publications (1)

Publication Number Publication Date
WO2012155767A1 true WO2012155767A1 (zh) 2012-11-22

Family

ID=47176298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/074559 WO2012155767A1 (zh) 2011-08-29 2012-04-23 一种组群保护方法及系统

Country Status (2)

Country Link
CN (1) CN102957557B (zh)
WO (1) WO2012155767A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1848844A (zh) * 2005-11-17 2006-10-18 华为技术有限公司 在mpls网络中实现组保护的方法及装置
CN101150462A (zh) * 2007-10-18 2008-03-26 中兴通讯股份有限公司 保护倒换方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1848844A (zh) * 2005-11-17 2006-10-18 华为技术有限公司 在mpls网络中实现组保护的方法及装置
CN101150462A (zh) * 2007-10-18 2008-03-26 中兴通讯股份有限公司 保护倒换方法

Also Published As

Publication number Publication date
CN102957557A (zh) 2013-03-06
CN102957557B (zh) 2018-04-20

Similar Documents

Publication Publication Date Title
CN1070665C (zh) 包含信道切换保护装置的电信网络
US12095499B2 (en) Method for supporting SNCP over packet network
US7027390B2 (en) Packet routing apparatus and a method of communicating a packet
US7043541B1 (en) Method and system for providing operations, administration, and maintenance capabilities in packet over optics networks
CN100403660C (zh) 双纤光复用段共享保护环的保护方法及其节点装置
US10601537B2 (en) Fault propagation in segmented protection
CN1400781A (zh) 带有冗余交换矩阵的网络单元
US6967948B2 (en) Out-of-band signalling apparatus and method for an optical cross connect
CN100352223C (zh) 一种在城域传输网络中保护数据业务的方法
US20040221058A1 (en) Nested protection switching in a mesh connected communications network
WO2009074049A1 (fr) Procede et appareil de protection de reseau en anneau
CN101686151B (zh) 一种业务传送网络的通道保护方法和系统
US7697541B2 (en) Service scheduling unit and a method thereof
WO2011017863A1 (zh) 光数据单元环路共享保护控制方法与装置
CN1812360A (zh) 智能光网络的业务重路由触发方法
CN100403686C (zh) 数据业务保护倒换触发方法及装置
WO2012155767A1 (zh) 一种组群保护方法及系统
WO2012167490A1 (zh) 一种通道组保护方法和系统、节点设备
CN100571171C (zh) 一种通过串联监视功能实现子网连接保护的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12786356

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12786356

Country of ref document: EP

Kind code of ref document: A1