WO2012150822A2 - 하향링크 신호 수신방법 및 사용자기기와, 하향링크 신호 전송방법 및 기지국 - Google Patents
하향링크 신호 수신방법 및 사용자기기와, 하향링크 신호 전송방법 및 기지국 Download PDFInfo
- Publication number
- WO2012150822A2 WO2012150822A2 PCT/KR2012/003460 KR2012003460W WO2012150822A2 WO 2012150822 A2 WO2012150822 A2 WO 2012150822A2 KR 2012003460 W KR2012003460 W KR 2012003460W WO 2012150822 A2 WO2012150822 A2 WO 2012150822A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pdcch
- subframe
- downlink
- information
- transmitted
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0003—Two-dimensional division
- H04L5/0005—Time-frequency
- H04L5/0007—Time-frequency the frequencies being orthogonal, e.g. OFDM(A) or DMT
- H04L5/001—Time-frequency the frequencies being orthogonal, e.g. OFDM(A) or DMT the frequencies being arranged in component carriers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signalling, i.e. of overhead other than pilot signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0014—Three-dimensional division
- H04L5/0023—Time-frequency-space
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0058—Allocation criteria
- H04L5/0073—Allocation arrangements that take into account other cell interferences
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/14—Two-way operation using the same type of signal, i.e. duplex
- H04L5/1469—Two-way operation using the same type of signal, i.e. duplex using time-sharing
Definitions
- the present invention relates to a wireless communication system. Specifically, the present invention relates to a method and apparatus for receiving downlink control information and a method and apparatus for transmitting downlink control information.
- M2M smartphone-to-machine communication
- smart phones and tablet PCs which require high data transmission rates
- M2M smartphone-to-machine communication
- the amount of data required to be processed in a cellular network is growing very quickly.
- carrier aggregation technology, cognitive radio technology, etc. to efficiently use more frequency bands, and increase the data capacity transmitted within a limited frequency Multi-antenna technology, multi-base station cooperation technology, and the like are developing.
- the communication environment is evolving in the direction of increasing the density of nodes that users can access in the vicinity.
- a communication system with a high density of nodes can provide higher performance communication services to users by cooperation between nodes.
- the present invention provides a method and apparatus for efficiently transmitting / receiving downlink control information.
- a user equipment configured with a plurality of cells when a user equipment configured with a plurality of cells receives a downlink signal from a base station, a first downlink control channel is received using a first cell of the plurality of cells in a data region of a subframe. and; A downlink signal receiving method is provided, which receives a downlink data channel using a second cell of the plurality of cells based on the first downlink control channel.
- a user equipment configured with a plurality of cells, in receiving a downlink signal from a base station, comprises: a radio frequency (RF) unit configured to transmit or receive a radio signal; And a processor configured to control the RF unit, wherein the processor controls the RF unit to receive a first downlink control channel using a first cell of the plurality of cells in a data region of a subframe,
- RF radio frequency
- a user equipment is provided that controls the RF unit to receive a downlink data channel using a second cell of the plurality of cells based on a first downlink control channel.
- the base station when the base station transmits a downlink signal to a user equipment configured with a plurality of cells, the base station uses a first cell of the plurality of cells in a data region of a subframe to establish a first downlink control channel. Transmit; A downlink signal transmission method is provided for transmitting a downlink data channel using a second cell of the plurality of cells based on the first downlink control channel.
- a base station transmits a downlink signal to a user equipment configured with a plurality of cells, the radio frequency (RF) unit configured to transmit or receive a radio signal; And a processor configured to control the RF unit, wherein the processor controls the RF unit to transmit a first downlink control channel using a first cell of the plurality of cells in a data region of a subframe, A base station is provided that controls the RF unit to transmit a downlink data channel using a second cell of the plurality of cells based on a first downlink control channel.
- RF radio frequency
- a second downlink control channel is transmitted from the base station to the user equipment using the first cell in the control region of the subframe, and based on the second downlink control channel.
- a second downlink data channel may be left from the base station to the user equipment using a cell.
- the subframe may be a subframe other than a predetermined subframe such that the downlink control channel is transmitted only in the control region.
- the first downlink control channel is transmitted from the base station to the user equipment on a collection of resources aggregated at a first aggregation level
- the second downlink control channel is the first aggregation level. It can be transmitted from the base station to the user equipment on a collection of resources aggregated at a higher aggregation level.
- downlink control information can be efficiently transmitted / received. This increases the overall throughput of the wireless communication system.
- FIG. 1 illustrates an example of a radio frame structure used in a wireless communication system.
- FIG. 2 illustrates an example of a downlink / uplink (DL / UL) slot structure in a wireless communication system.
- FIG 3 illustrates a downlink subframe structure used in a 3GPP LTE (-A) system.
- FIG. 4 illustrates a reference signal used in a 3GPP LTE (-A) system.
- FIG 5 shows an example of an uplink subframe structure used in a 3GPP LTE (-A) system.
- 6 shows an example of performing communication by aggregating multiple carriers.
- FIG. 7 shows an example of allocating a PDCCH to a data region of a downlink subframe.
- FIG. 8 is a diagram for explaining an embodiment of the present invention regarding transmission / reception of information about an E-PDCCH search space.
- FIG. 9 is a diagram for explaining another embodiment of the present invention regarding transmission / reception of information about an E-PDCCH search space.
- FIG. 10 illustrates an embodiment of the present invention for transmitting transmission mode dependent DCI and fallback DCI.
- 11 to 13 are diagrams for explaining an embodiment of the present invention regarding prescheduling by E-PDCCH.
- 14 to 16 are diagrams for explaining an embodiment of the present invention for cross-carrier scheduling by E-PDCCH.
- 17 is a block diagram showing the components of the transmitter 10 and the receiver 20 for carrying out the present invention.
- the techniques, devices, and systems described below may be applied to various wireless multiple access systems.
- 3GPP LTE 3GPP LTE
- the technical features of the present invention are not limited thereto.
- any other mobile communication except for those specific to 3GPP LTE / LTE-A is described. Applicable to the system as well.
- a user equipment may be fixed or mobile, and various devices which communicate with the BS to transmit and receive user data and / or various control information belong to the same.
- the UE may be a terminal equipment (MS), a mobile station (MS), a mobile terminal (MT), a user terminal (UT), a subscriber station (SS), a wireless device, a personal digital assistant (PDA), or a wireless modem. It may be called a modem, a handheld device, or the like.
- a base station generally refers to a fixed station for communicating with a UE and / or another BS, and communicates various data and control information by communicating with the UE and another BS. do.
- the BS may be referred to in other terms such as ABS (Advanced Base Station), NB (Node-B), eNB (evolved-NodeB), BTS (Base Transceiver System), Access Point (Access Point), and Processing Server (PS).
- a relay means a device and / or a branch that expands the service area of the BS or is installed in a shaded area to smoothly service the BS.
- the relay may be called in other terms such as a relay node (RN) and a relay station (RS). From the UE's point of view, the relay is part of the radio access network and behaves like a BS with some exceptions.
- a BS that sends a signal to or receives a signal from a relay is called a donor BS.
- the relay is wirelessly connected to the donor BS.
- the relay behaves like a UE, with some exceptions (e.g., downlink control information is transmitted over the R-PDCCH rather than the PDCCH).
- the relay includes both the physical layer entity used for communication with the UE and the physical layer entity used for communication with the donor BS. Transmission from BS to relay, hereinafter BS-to-RN transmission occurs in downlink subframe, and transmission from relay to BS, RN-to-BS transmission occurs in uplink subframe.
- a relay may communicate with a network to which the one or more BSs belong through one or more BSs.
- Physical Downlink Control CHannel PDCCH
- Physical Control Format Indicator CHannel PCFICH
- PHICH Physical Hybrid automatic retransmit request Indicator CHannel
- PDSCH Physical Downlink Shared CHannel
- DCI Downlink Control Information
- CFI Control Format Indicator
- PUSCH Physical Uplink Shared CHannel
- UCI uplink control information
- the expression that the user equipment transmits the PUCCH / PUSCH is used in the same sense as transmitting the uplink control information / uplink data / random access signal on the PUSCH / PUCCH, respectively.
- the expression that the BS transmits PDCCH / PCFICH / PHICH / PDSCH is used in the same sense as transmitting downlink data / control information on the PDCCH / PCFICH / PHICH / PDSCH, respectively.
- a cell-specific reference signal (CRS) / demodulation reference signal (DMRS) / channel state information reference signal (CSI-RS) time-frequency resource (or RE) is allocated to the CRS / DMRS / CSI-RS, respectively.
- a time-frequency resource (or RE) carrying an available RE or CRS / DMRS / CSI-RS is allocated to the CRS / DMRS / CSI-RS, respectively.
- a subcarrier including a CRS / DMRS / CSI-RS RE is called a CRS / DMRS / CSI-RS subcarrier
- an OFDM symbol including a CRS / DMRS / CSI-RS RE is called a CRS / DMRS / CSI-RS symbol.
- FIG. 1 illustrates an example of a radio frame structure used in a wireless communication system.
- FIG. 1 (a) illustrates a radio frame structure that can be used for FDD in 3GPP LTE (-A)
- FIG. 1 (b) illustrates a radio frame structure that can be used for TDD in 3GPP LTE (-A). It is illustrated.
- a radio frame used in 3GPP LTE has a length of 10 ms (307200 T s ) and consists of 10 equally sized subframes. Numbers may be assigned to 10 subframes in one radio frame.
- Each subframe has a length of 1 ms and consists of two slots. 20 slots in one radio frame may be sequentially numbered from 0 to 19. Each slot is 0.5ms long.
- the time for transmitting one subframe is defined as a transmission time interval (TTI).
- the time resource may be classified by a radio frame number (also called a radio frame index), a subframe number (also called a subframe number), a slot number (or slot index), and the like.
- the radio frame may be configured differently according to the duplex mode. For example, in the FDD mode, since downlink transmission and uplink transmission are divided by frequency, a radio frame includes only one of a downlink subframe or an uplink subframe for a predetermined frequency band operating at a predetermined carrier frequency. . In the TDD mode, since downlink transmission and uplink transmission are separated by time, a radio frame includes both a downlink subframe and an uplink subframe for a predetermined frequency band operating at a predetermined carrier frequency.
- Table 1 illustrates a DL-UL configuration of subframes in a radio frame in the TDD mode.
- D represents a downlink subframe
- U represents an uplink subframe
- S represents a special subframe.
- the singular subframe includes three fields of Downlink Pilot TimeSlot (DwPTS), Guard Period (GP), and Uplink Pilot TimeSlot (UpPTS).
- DwPTS is a time interval reserved for downlink transmission
- UpPTS is a time interval reserved for uplink transmission.
- FIG. 2 illustrates an example of a downlink / uplink (DL / UL) slot structure in a wireless communication system.
- FIG. 2 shows a structure of a resource grid of a 3GPP LTE (-A) system. There is one resource grid per antenna port.
- -A 3GPP LTE
- a slot includes a plurality of Orthogonal Frequency Division Multiplexing (OFDM) symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain.
- An OFDM symbol may mean a symbol period.
- the RB includes a plurality of subcarriers in the frequency domain.
- the OFDM symbol may be called an OFDM symbol, an SC-FDM symbol, or the like according to a multiple access scheme.
- the number of OFDM symbols included in one slot may vary depending on the channel bandwidth and the length of the CP. For example, one slot includes seven OFDM symbols in the case of a normal CP, but one slot includes six OFDM symbols in the case of an extended CP.
- FIG. 2 illustrates a subframe in which one slot includes 7 OFDM symbols for convenience of description, embodiments of the present invention can be applied to subframes having other numbers of OFDM symbols in the same manner.
- a resource composed of one OFDM symbol and one subcarrier is called a resource element (RE) or tone.
- a signal transmitted in each slot may be represented by a resource grid including N DL / UL RB * N RB sc subcarriers and N DL / UL symb OFDM symbols.
- N DL RB represents the number of resource blocks (RBs) in a downlink slot
- N UL RB represents the number of RBs in an uplink slot.
- N DL RB and N UL RB depend on downlink transmission bandwidth and uplink transmission bandwidth, respectively.
- Each OFDM symbol includes N DL / UL RB * N RB sc subcarriers in the frequency domain.
- the types of subcarriers may be divided into data subcarriers for data transmission, reference signal subcarriers for transmission of reference signals, null subcarriers for guard bands, and DC components.
- the null subcarrier for the DC component is a subcarrier left unused and is mapped to a carrier frequency (carrier freqeuncy, f 0 ) in the OFDM signal generation process or the frequency upconversion process.
- the carrier frequency is also called the center frequency.
- N DL symb represents the number of OFDM symbols in the downlink slot
- N UL symb represents the number of OFDM symbols in the uplink slot.
- N RB sc represents the number of subcarriers constituting one RB.
- RB is defined as N DL / UL symb (e.g., seven) consecutive OFDM symbols in the time domain, and defined by N RB sc (e.g., twelve) consecutive subcarriers in the frequency domain. do. Therefore, one RB is composed of N DL / UL symb * N RB sc resource elements.
- Each resource element in the resource grid may be uniquely defined by an index pair (k, 1) in one slot. k is an index given from 0 to N DL / UL RB * N RB sc ⁇ 1 in the frequency domain, and l is an index given from 0 to N DL / UL symb ⁇ 1 in the time domain.
- Two RBs are referred to as a physical resource block (PRB) pair.
- Two RBs constituting a PRB pair have the same PRB number (or also referred to as a PRB index).
- VRB is a kind of logical resource allocation unit introduced for resource allocation.
- VRB has the same size as PRB. According to the mapping method of the VRB to the PRB, the VRB is divided into a localized type VRB and a distributed type VRB. Localized type VRBs are mapped directly to PRBs, so that a VRB number (also called a VRB index) corresponds directly to a PRB number.
- n PRB n VRB .
- the distributed type VRB is mapped to the PRB through interleaving. Thus, VRBs of distributed type having the same VRB number may be mapped to different numbers of PRBs in the first slot. Two PRBs, one located in two slots of a subframe and having the same VRB number, are called VRB pairs.
- PRB pairs and VRB pairs may be collectively referred to as RB pairs.
- RBs for a UE or a UE group are allocated based on the VRB, and in principle, VRBs having the same VRB number are allocated to the same UE or UE group.
- FIG 3 illustrates a downlink subframe structure used in a 3GPP LTE (-A) system.
- the downlink subframe is divided into a control region and a data region in the time domain.
- up to three (or four) OFDM symbols located in the first slot of a subframe correspond to a control region to which a control channel is allocated.
- a resource region available for PDCCH transmission in a downlink subframe is called a PDCCH region.
- the remaining OFDM symbols other than the OFDM symbol (s) used as the control region correspond to a data region to which a Physical Downlink Shared CHance (PDSCH) is allocated.
- PDSCH Physical Downlink Shared CHance
- a resource region available for PDSCH transmission in a downlink subframe is called a PDSCH region.
- Examples of a downlink control channel used in 3GPP LTE include a physical control format indicator channel (PCFICH), a physical downlink control channel (PDCCH), a physical hybrid ARQ indicator channel (PHICH), and the like.
- the PCFICH is transmitted in the first OFDM symbol of a subframe and carries information about the number of OFDM symbols used for transmission of a control channel within the subframe.
- the PHICH carries an HARQ ACK / NACK (acknowledgment / negative-acknowledgment) signal in response to uplink transmission.
- DCI downlink control information
- DCI includes resource allocation information and other control information for the UE or UE group.
- DCI includes a transmission format and resource allocation information of a downlink shared channel (DL-SCH), a transmission format and resource allocation information of an uplink shared channel (UL-SCH), a paging channel paging information on (paging channel, PCH), system information on DL-SCH, resource allocation information of higher-layer control message such as random access response transmitted on PDSCH, Tx power control command set for individual UEs in UE group, Tx power control command, activation instruction information of Voice over IP (VoIP), and the like.
- DL-SCH downlink shared channel
- UL-SCH uplink shared channel
- PCH paging channel paging information on
- PCH paging channel
- system information on DL-SCH resource allocation information of higher-layer control message such as random access response transmitted on PDSCH
- Tx power control command set for individual UEs in UE group Tx power control command
- the DCI carried by one PDCCH has a different size and use depending on the DCI format, and its size may vary depending on a coding rate.
- various formats such as format 0 for uplink and formats 1, 1A, 1B, 1C, 1D, 2, 2A, 3, and 3A are defined for downlink.
- Hopping flag RB allocation, modulation coding scheme (MCS), redundancy version (RV), new data indicator (NDI), transmit power control (TPC), cyclic shift DMRS Control information such as shift demodulation reference signal (UL) index, channel quality informaiton (CQI) request, DL assignment index (DL assignment index), HARQ process number, transmitted precoding matrix indicator (TPMI), and precoding matrix indicator (PMI) information
- MCS modulation coding scheme
- RV redundancy version
- NDI new data indicator
- TPC transmit power control
- UL shift demodulation reference signal
- CQI channel quality informaiton
- DL assignment index DL assignment index
- HARQ process number transmitted precoding matrix indicator
- PMI precoding matrix indicator
- Table 2 shows an example of the DCI format.
- RA resource allocation
- RA resource allocation
- formats 1, 2 and 2A are used for type 0 RA or type 1 RA
- DCI formats 1A, 1B, 1C and 1D are used for type 2 RA.
- the RB allocation information includes a bitmap indicating a resource block group (RBG) allocated to the UE.
- An RBG is a set of one or more consecutive PRBs. The size of the PRG depends on the system band.
- the RB allocation information indicates to the scheduled UE resources in the RBG subset in PRB units.
- Type 2 RA the RB allocation information indicates the VRB set continuously allocated to the scheduled UE.
- a plurality of PDCCHs may be transmitted in the control region.
- the UE may monitor the plurality of PDCCHs.
- the BS determines the DCI format according to the DCI to be transmitted to the UE, and adds a cyclic redundancy check (CRC) to the DCI.
- CRC cyclic redundancy check
- the CRC is masked (or scrambled) with an identifier (eg, a radio network temporary identifier (RNTI)) depending on the owner or purpose of use of the PDCCH.
- an identifier eg, cell-RNTI (C-RNTI) of the UE may be masked to the CRC.
- a paging identifier eg, paging-RNTI (P-RNTI)
- P-RNTI paging-RNTI
- SI-RNTI system information RNTI
- RA-RNTI random access-RNTI
- the PDCCH is transmitted on an aggregation of one or a plurality of consecutive control channel elements (CCEs).
- CCE is a logical allocation unit used to provide a PDCCH with a coding rate based on radio channel conditions.
- the CCE corresponds to a plurality of resource element groups (REGs). For example, one CCE corresponds to nine REGs and one REG corresponds to four REs.
- Four QPSK symbols are mapped to each REG.
- the resource element RE occupied by the reference signal RS is not included in the REG.
- the REG concept is also used for other downlink control channels (ie, PDFICH and PHICH).
- the DCI format and the number of DCI bits are determined according to the number of CCEs. For example, as shown in Table 3, four DCI formats are supported.
- CCEs are numbered consecutively, and to simplify the decoding process, a PDCCH having a format consisting of n CCEs can only be started in a CCE having a number corresponding to a multiple of n.
- the number of CCEs used for transmission of a specific PDCCH is determined by the base station according to the channel state. For example, in case of a PDCCH for a UE having a good downlink channel (eg, adjacent to a BS), one CCE may be sufficient. However, in case of a PDCCH for a UE having a poor channel (eg, near the cell boundary), eight CCEs may be required to obtain sufficient robustness.
- the power level of the PDCCH may be adjusted according to the channel state.
- a CCE set in which a PDCCH can be located is defined for each UE.
- the set of CCEs in which a UE can discover its PDCCH is referred to as a PDCCH search space, simply a search space (SS).
- An individual resource to which a PDCCH can be transmitted in a search space is referred to as a PDCCH candidate.
- the collection of PDCCH candidates to be monitored by the UE is defined as a search space.
- One PDCCH candidate corresponds to 1, 2, 4 or 8 CCEs depending on the CCE aggregation level.
- the BS sends the actual PDCCH (DCI) on any PDCCH candidate in the search space, and the UE monitors the search space to find the PDCCH (DCI). Specifically, the UE attempts blind decoding on the PDCCH candidates in the search space.
- DCI actual PDCCH
- a search space for each PDCCH format may have a different size, and a dedicated search space and a common search space are defined.
- the dedicated search space is a UE-specific search space and is configured for each individual UE.
- the common search space is configured for a plurality of UEs. All UEs are provided with information about a common search space. Table 4 illustrates the aggregation levels that define the search spaces.
- the UE By monitoring the corresponding search space at each aggregation level, the UE detecting its own PDCCH decodes and / or uplink subframes from the PDSCH in the data region of the downlink subframe based on the DCI carried by the detected PDCCH.
- the PUSCH is transmitted in the data region of.
- a plurality of PDCCHs for a plurality of UEs may be transmitted in a PDCCH region of the same subframe.
- the BS does not provide the UE with accurate information about where the PDCCH is in the PDCCH region.
- the UE finds its own PDCCH by monitoring a set of PDCCH candidates in a subframe.
- monitoring means that the UE attempts to decode the received PDCCH candidates according to each DCI format. This is called blind decoding.
- blind decoding Through blind decoding, the UE simultaneously performs identification of the PDCCH transmitted to it and decoding of control information transmitted through the corresponding PDCCH. For example, when demasking a PDCCH with C-RNTI, if there is no CRC error, the UE detects its own PDCCH.
- the number of DCI formats is defined smaller than the type of control information transmitted using the PDCCH.
- the DCI format includes a plurality of different information fields. The type of the information field, the number of information fields, the number of bits of each information field, etc. vary according to the DCI format. In addition, the size of control information matched to the DCI format varies according to the DCI format. Any DCI format may be used for transmitting two or more kinds of control information.
- Table 5 shows an example of control information transmitted by DCI format 0.
- bit size of each information field is merely an example, and does not limit the bit size of the field.
- the flag field is an information field for distinguishing between format 0 and format 1A. That is, DCI formats 0 and 1A have the same payload size and are distinguished by flag fields.
- the resource block allocation and hopping resource allocation fields may have different bit sizes according to a hopping PUSCH or a non-hoppping PUSCH.
- the RB Allocation and Hopping Resource Allocation field for the non-hopping PUSCH provides the ceil ⁇ log 2 (N UL RB (N UL RB +1) / 2) ⁇ bit to the resource allocation of the first slot in the uplink subframe. .
- N UL RB is the number of resource blocks included in an uplink slot and depends on an uplink transmission bandwidth set in a cell.
- the payload size of DCI format 0 may vary depending on the uplink bandwidth.
- DCI format 1A includes an information field for PDSCH allocation, and the payload size of DCI format 1A may also vary according to downlink bandwidth.
- DCI format 1A provides reference information bit size for DCI format 0. Thus, if the number of information bits of DCI format 0 is less than the number of information bits of DCI format 1A, '0' is added to DCI format 0 until the payload size of DCI format 0 is equal to the payload size of DCI format 1A. Is added. The added '0' is filled in the padding field of the DCI format.
- the UE is configured semi-statically by higher layer signaling to receive PDSCH data transmissions signaled on the PDCCH in accordance with one of transmission modes 1-9.
- Table 6 illustrates a transmission mode for configuring a multi-antenna technique and a DCI format in which the UE performs blind decoding in the transmission mode.
- Table 6 shows the relationship between PDCCH and PDSCH configured by C-RNTI, and the UE configured to decode PDCCH with CRC scrambled to C-RNTI by higher layer decodes the PDCCH and each combination defined in Table 6
- the PDSCH is decoded accordingly. For example, if the UE is configured in transmission mode 1 by higher layer signaling, the DCI formats 1A and 1 are respectively decoded to obtain a DCI.
- the BS When the transmission / reception of the PDCCH is described in more detail, the BS generates control information according to the DCI format.
- the BS may select one DCI format among a plurality of DCI formats (DCI formats 1, 2, ..., N) according to control information to be sent to the UE.
- Cyclic redundancy check (CRC) for error detection is attached to control information generated according to each DCI format.
- CRC Cyclic redundancy check
- an identifier eg, Radio Network Temporary Identifier
- RNTI Radio Network Temporary Identifier
- the PDCCH is CRC scrambled with an identifier (eg, RNTI). If C-RNTI is used, the PDCCH carries control information for that particular UE.
- the PDCCH is used by all UEs in the cell. Carries common control information
- the BS performs coded channel coding on the control information added with the CRC to generate coded data. Rate matching is performed according to a CCE aggregation level allocated to the DCI format, and modulated coded data are generated to generate modulation symbols.
- the modulation symbols constituting one PDCCH may have one of 1, 2, 4, and 8 CCE aggregation levels. Modulation symbols are mapped to CCE to RE mapping.
- the UE demaps the physical resource element to the CCE to detect the PDCCH.
- the UE Since the UE does not know at which CCE aggregation level it should receive the PDCCH, it demodulates each CCE aggregation level. The UE performs rate dematching on the demodulated data. Since the UE does not know which DCI format (or DCI payload size) it should receive control information, the UE performs rate de-matching for each DCI format (or DCI payload size) for the configured transmission mode. To perform. Channel decoding is performed on the rate dematched data according to the code rate, and the CRC is checked to detect whether an error occurs. If no error occurs, the UE may determine that it has detected its PDCCH.
- the UE continues to perform blind decoding for different CCE aggregation levels or for different DCI formats (or DCI payload sizes).
- the UE Upon detecting its own PDCCH, the UE removes the CRC from the decoded data and obtains control information.
- the BS transmits a reference signal (RS) for estimation of a channel state, demodulation of a signal, etc. for accurate demodulation of the PDCCH and / PDSCH by the UE.
- RS refers to a signal of a predetermined waveform, which is defined by a UE and a UE known to each other, also called a pilot.
- FIG. 4 illustrates a reference signal used in a 3GPP LTE (-A) system.
- FIG. 4 (a) shows the positions of RS resources in a subframe having a general CP
- FIG. 4 (b) shows the positions of RS resources in a subframe having an extended CP.
- RSs can be broadly classified into a dedicated reference signal (DRS) and a common reference signal (CRS). RSs may be classified into demodulation reference signals and channel measurement reference signals. CRS and DRS are also called cell-specific RS and demodulation RS (DMRS), respectively. DMRS is also called UE-specific RS. DMRS and CRS may be transmitted together, but only one of them may be transmitted. However, when only the DMRS is transmitted without the CRS, the DMRS transmitted by applying the same precoder as the data may be used only for the purpose of demodulation, and thus RS for channel measurement should be separately provided.
- DRS dedicated reference signal
- CRS common reference signal
- RSs may be classified into demodulation reference signals and channel measurement reference signals.
- CRS and DRS are also called cell-specific RS and demodulation RS (DMRS), respectively.
- DMRS is also called UE-specific RS.
- DMRS and CRS may be transmitted together, but only one of them may be transmitted
- an additional measurement RS is transmitted to the UE (not shown).
- the CSI-RS is transmitted every predetermined transmission period consisting of a plurality of subframes, unlike the CRS transmitted every subframe, based on the fact that the channel state is relatively not changed over time.
- CRS REs represent REs that antenna port 0 to antenna port 4 uses for CRS transmission.
- the CRS is transmitted in all downlink subframes in a cell supporting PDSCH transmission.
- CRS can be used for both demodulation and measurement purposes and is shared by all user equipment in the cell.
- the CRS sequence is transmitted on all antenna ports regardless of the number of layers.
- REs denoted by D represent REs used for RS transmission for demodulation of the PDSCH when the BS performs PDSCH transmission through a single antenna port.
- UE-specific RS REs are used for RS transmission for demodulation of PDSCH through up to eight antenna ports.
- the BS transmits a UE-specific RS in REs when data demodulation is needed, and the presence or absence of the UE-specific RS is notified to the UE by a higher layer.
- FIG 5 shows an example of an uplink subframe structure used in a 3GPP LTE (-A) system.
- an uplink subframe may be divided into a control region and a data region in the frequency domain.
- One or several physical uplink control channels (PUCCHs) may be allocated to the control region to carry uplink control information (UCI).
- the UCI carried by one PUCCH is different in size and use according to the PUCCH format, and may vary in size according to a coding rate.
- One or several physical uplink shared channels may be allocated to a data region of an uplink subframe to carry user data.
- PUSCHs physical uplink shared channels
- the UE adopts the SC-FDMA scheme for uplink transmission in order to maintain a single carrier characteristic, in the 3GPP LTE release 8 or release 9 system, PUCCH and PUSCH cannot be simultaneously transmitted on one carrier.
- whether to support simultaneous transmission of a PUCCH and a PUSCH may be indicated in a higher layer.
- subcarriers having a long distance based on a direct current (DC) subcarrier are used as a control region.
- subcarriers located at both ends of the uplink transmission bandwidth are allocated for transmission of uplink control information.
- the DC subcarrier is a component that is not used for signal transmission and is mapped to a carrier frequency f 0 during frequency upconversion.
- the PUCCH for one UE is allocated to an RB pair belonging to resources operating at one carrier frequency in one subframe, and the RBs belonging to the RB pair occupy different subcarriers in two slots.
- the PUCCH allocated in this way is expressed as that the RB pair allocated to the PUCCH is frequency hopped at the slot boundary. However, if frequency hopping is not applied, RB pairs occupy the same subcarrier.
- 6 shows an example of performing communication by aggregating multiple carriers.
- a typical wireless communication system performs data transmission / reception through one downlink (DL) band and one uplink (UL) band corresponding thereto (frequency division duplex (FDD) mode). Or a predetermined radio frame divided into an uplink time unit and a downlink time unit in a time domain, and perform data transmission / reception through uplink / downlink time units. time division duplex (TDD) mode).
- FDD frequency division duplex
- TDD time division duplex
- carrier aggregation performs downlink or uplink communication using a plurality of carrier frequencies
- OFDM for performing downlink or uplink communication by carrying a base frequency band divided into a plurality of orthogonal subcarriers on one carrier frequency (orthogonal frequency division multiplexing) system.
- CCs component carriers
- Each of the CCs may be adjacent or non-adjacent to each other in the frequency domain.
- FIG. 6 illustrates a case where the bandwidth of the UL CC and the bandwidth of the DL CC are the same and symmetrical, but the bandwidth of each CC may be determined independently.
- a DL / UL CC limited to a specific UE may be referred to as a configured serving UL / DL CC at a specific UE.
- the BS may be used for communication with the UE by activating some or all of the serving CCs configured in the UE or by deactivating some CCs.
- the BS may change the number of CCs that are activated / deactivated and may change the number of CCs that are activated / deactivated. If the BS allocates available CC to the UE cell-specifically or UE-specifically, at least one of the CCs once assigned unless the CC assignment for the UE is globally reconfigured or the UE is handed over. One is not deactivated.
- PCC Primary CC
- SCC Secondary CC
- PCC and SCC may be divided based on control information. For example, specific control information may be set to be transmitted and received only through a specific CC, such specific CC may be referred to as PCC, and the remaining CC (s) may be referred to as SCC (s).
- a cell is defined as a combination of DL resources and UL resources, that is, a combination of a DL CC and a UL CC.
- the cell may be configured with only DL resources or a combination of DL resources and UL resources.
- the linkage between the carrier frequency of the DL resource (or DL CC) and the carrier frequency of the UL resource (or UL CC) is indicated by system information.
- system information can be.
- a combination of a DL resource and a UL resource may be indicated by a system information block type 2 (SIB2) linkage.
- SIB2 system information block type 2
- the carrier frequency means a center frequency of each cell or CC.
- a cell operating on a primary frequency is referred to as a primary cell (PCell) or a PCC
- a cell operating on a secondary frequency (or SCC) is referred to as a secondary cell, SCell) or SCC.
- the carrier corresponding to the PCell in the downlink is called a DL primary CC (DL PCC)
- the carrier corresponding to the PCell in the uplink is called a UL primary CC (DL PCC).
- SCell refers to a cell that is configurable after RRC (Radio Resource Control) connection is established and can be used for providing additional radio resources.
- RRC Radio Resource Control
- the SCell may, together with the PCell, form a set of serving cells for the UE.
- the carrier corresponding to the SCell in downlink is called DL secondary CC (DL SCC), and the carrier corresponding to the SCell in uplink is called UL secondary CC (UL SCC).
- DL SCC DL secondary CC
- UL SCC UL secondary CC
- the term cell used in carrier aggregation is distinguished from a term cell which refers to a certain geographic area where communication service is provided by one BS or one antenna group.
- a cell of a carrier aggregation is referred to as a CC, and a cell of a geographic area is called a cell. This is called.
- a new remote radio head (RRH) is being discussed.
- a method of transmitting a UL / DL grant for another CC in a channel CC having a good channel situation is discussed.
- this is called cross-carrier scheduling.
- a CC used for transmission of a UL / DL grant in cross-carrier scheduling is called a scheduling CC
- a CC used for UL / DL transmission according to the UL / DL grant is called a scheduled CC.
- the UL / DL grant may include information indicating the corresponding scheduling CC.
- FIG. 7 shows an example of allocating a PDCCH to a data region of a downlink subframe.
- a PDCCH according to the existing 3GPP LTE standard may be allocated to a PDCCH region of a subframe. Meanwhile, the PDCCH may be additionally allocated using some resources of the PDSCH region.
- the PDCCH can be used not only for CRS-based transmit diversity or spatial multiplexing transmission but also to operate based on the UE-specific reference signal DMRS. Can be.
- the PDCCH transmitted in the PDSCH region is referred to as an enhanced PDCCH (E-PDCCH) or an advanced PDCCH (A-PDCCH) to distinguish it from the existing PDCCH transmitted in the first OFDM symbol (s) of the downlink subframe.
- E-PDCCH enhanced PDCCH
- A-PDCCH advanced PDCCH
- the PDSCH1 based on the E-PDCCH may be transmitted from the BS to the UE using physical layer information or higher layer information transmitted through the existing PDCCH and PDSCH2 by the PDCCH.
- the UE configured to receive the E-PDCCH is configured to receive some or all of the existing primary synchronization signal (PSS), secondary synchronization signal (SSS), broadcast channel (BCH), PCFICH, PHICH, and paging channel (PCH). Can be configured.
- PSS primary synchronization signal
- SSS secondary synchronization signal
- BCH broadcast channel
- PCFICH PCFICH
- PHICH paging channel
- E-PDSCH scheduled by E-PDCCH is also called E-PDSCH.
- the latter system is referred to as a legacy system in order to distinguish between a system configuring both the PDCCH and the E-PDCCH and an existing system configuring only the PDCCH without the E-PDCCH.
- a UE implemented according to an enhancement system in other words an enhancement UE, is configured to receive both a PDCCH and an E-PDCCH.
- a UE implemented to receive only a PDCCH becomes a legacy UE when compared to a UE capable of receiving an E-PDCCH.
- FIG. 8 is a diagram for explaining an embodiment of the present invention regarding transmission / reception of information about an E-PDCCH search space.
- the present invention proposes to provide a search space (hereinafter, E-PDCCH search space) for the E-PDCCH to the UE using the PDCCH.
- E-PDCCH search space may be indicated to the UE by RRC signaling, in this case, it is difficult to dynamically change the E-PDCCH discovery space and handover from a cell which does not provide an E-PDCCH to a cell providing an E-PDCCH.
- the disadvantage is that the procedure can be cumbersome.
- an embodiment of the present invention transmits / receives information about an E-PDCCH search space (hereinafter, E-PDCCH search space configuration information) using a DCI format.
- C-PDCCH compact PDCCH
- the UE is configured to further blind decode the C-PDCCH to know the E-PDCCH search space.
- the C-PDCCH may be located in a discovery space (hereinafter, referred to as a PDCCH discovery space) for an existing PDCCH, or may be located in a separate compact common / UE-specific discovery space.
- a UE capable of receiving the PDCCH and the E-PDCCH at the same time should be configured to enable mode setting.
- whether the UE should monitor the PDCCH and the E-PDCCH at the same time may be set in advance.
- subframe (time) which channel should be monitored among PDCCH and E-PDCCH may be preset.
- the enhancement UE may be configured to monitor the PDCCH and the E-PDCCH at the same time and may be configured to monitor only one of the two in a particular subframe.
- the C-PDCCH includes not only information about a search space on the PCC but also information about a search space on the SCC. It is assumed that the SCC search space exists in the PDSCH region of the PCC.
- the existing PDCCH format may be maintained as it is, but addition of a new RNTI called E-PDCCH RNTI may be considered. That is, the E-PDCCH discovery space configuration information may be transmitted / received through the existing PDCCH, but the E-PDCCH discovery space configuration information may be masked and transmitted / received by the E-PDCCH RNTI.
- the BS may be configured to mask the PDCCH carrying the E-PDCCH discovery space information to the UE in the existing PDCCH region by masking the PDCCH with the E-PDCCH RNTI, and the UE may demask the PDCCH with the E-PDCCH RNTI to E-PDCCH space configuration information. It can be configured to obtain.
- configuration information of the E-PDCCH search space may be delivered to the information transmitted through the C-PDCCH or the existing PDCCH.
- FDD subframe configuration pattern (eg 8 bit map)
- the additional information may also include start and end position information of the E-PDCCH or PDSCH, that is, information indicating an OFDM symbol at which the E-PDCCH or PDSCH starts or ends.
- the additional information transmitted through the C-PDCCH or the existing PDCCH may include DMRS or CRS information according to interleaving or non-interleaving.
- E-PDCCH related signaling information transmitted / received through C-PDCCH or an existing PDCCH.
- the above-described information may be transmitted through medium access control (MAC) signaling as well as C-PDCCH or existing PDCCH.
- MAC medium access control
- FIG. 9 is a diagram for explaining another embodiment of the present invention regarding transmission / reception of information about an E-PDCCH search space.
- a super compact DCI (hereinafter referred to as SC DCI) format indicating the location of the E-PDCCH search space may be transmitted / received in a specific symbol and a specific resource region.
- SC DCI may be transmitted / received via PDCCH or PDSCH.
- the SC DCI may be blind decoded based on the UE ID.
- SC DCI may be configured in a very compact form since the main purpose is to indicate the E-PDCCH search space. Therefore, the CCE for the transmission of the SC DCI is composed of much less resources than the CCE (hereinafter, legacy CCE) of the existing PDCCH consisting of nine REGs.
- the CCE for the SC DCI is called a mini CCE.
- one mini CCE may be configured in a DCI format of three or four REG sizes including an E-PDCCH VRB set address or number.
- all RBs or specific RBs in a third or fourth OFDM symbol may be defined as a new search space for SC DCI transmitted / received on a mini CCE composed of four REGs.
- the PDCCH capacity can be increased.
- the mini CCE is used to transmit the E-PDCCH discovery space configuration information, a communication service can be provided to more UEs by using a limited radio resource area. That is, the UE capacity is increased.
- about 22 legacy CCEs are used in one OFDM symbol and 66 legacy CCEs are used in three OFDM symbols in a system using a 20 MHz bandwidth and 100 RBs.
- 66 or more mini CCEs can be secured in one OFDM symbol, and 66 or more E-PDCCH CCEs can be addressed. .
- a mini CCE search space small and reducing the number of REGs constituting the mini CCE search space. For example, if the mini CCE search space consists of 16 REGs, for a mini CCE with 4 REGs, only 4 blind decoding complexity is added.
- the UE to use the mini CCE and the UE not to use the mini CCE may be configured in advance by RRC signaling.
- a DCI format field such as PDSCH RA information may be included in the SC DCI.
- the UE may detect its own E-PDCCH by performing blind decoding in the E-PDCCH search space determined based on the C-PDCCH, the existing PDCCH, or the SC DCI, and decode the PDSCH based on the DCI carried by the E-PDCCH. can do.
- FIG. 10 illustrates an embodiment of the present invention for transmitting transmission mode dependent DCI and fallback DCI.
- the UE of the existing 3GPP LTE system that is, the legacy UE, blindly decodes the PDCCH search space based on the UE identifier (ID) for both the TM DCI and the fallback DCI.
- the present invention uses a transmission mode (TM) dependent DCI format (hereinafter referred to as TM DCI format) and a DCI format introduced for fallback operation (eg, DCI format 1A) (hereinafter referred to as fallback DCI format).
- TM DCI format transmission mode dependent DCI format
- DCI format 1A DCI format introduced for fallback operation
- An embodiment of blind decoding in different search spaces is proposed.
- DCI of TM DCI format is mainly transmitted / received using E-PDCCH
- DCI of fallback DCI format is transmitted / received using PDCCH.
- the BS configures the control information in a DCI format according to a specific TM determined by reflecting the channel condition, and transmits the control information to the UE through the E-PDCCH. If it is inappropriate to use the DCI format according to TM, the control information is configured in the fallback DCI format and the control information is transmitted to the UE through the PDCCH.
- control information configured in the TM DCI format is referred to as TM DCI
- control information configured in the fallback DCI format is referred to as fallback DCI.
- the UE decodes the TM DCI from the E-PDCCH (or R-PDCCH) for PDSCH1 decoding, and operates in fallback mode because the channel condition is not normal.
- the fallback DCI decoding from the PDCCH is used for PDSCH1 decoding. That is, TM DCI may be blind decoded in the E-PDCCH and fallback DCI in the PDCCH.
- TM DCI may be transmitted / decoded on the PDCCH and fallback DCI on the E-PDCCH.
- Whether TM DCI is transmitted in the PDCCH and DCI is transmitted in the E-PDCCH or fallback DCI is transmitted in the PDCCH and TM DCI is transmitted in the E-PDCCH may be preconfigured by RRC signaling.
- the RNTI used for decoding the E-PDCCH / PDCCH may be used for decoding of the PDCCH / E-PDCCH, but a newly defined RNTI may be used.
- the configuration of whether to operate using only the PDCCH like the legacy UE or to use both the PDCCH and the E-PDCCH may be notified to the UE in advance by RRC signaling.
- the UE may be notified every subframe or whenever needed by physical layer or MAC layer signaling.
- E-PDCCH Search Space Configuration As in the method described in the embodiment, some or all of the information on the E-PDCCH configuration may be transmitted / received in the PDCCH region.
- FIG. 10 illustrates a case in which an E-PDCCH is transmitted over a PRB pair in a frequency division multiplexing (FDM) scheme, but the E-PDCCH search space is divided in a first slot and a second slot with a slot boundary.
- a DL / UL grant may be sent or received in each search space.
- only the DL grant in the first slot may be limited to transmitting / receiving only the UL grant in the second slot.
- This embodiment may be used together with or separately from the embodiments related to the above-mentioned ⁇ E-PDCCH search space configuration information>.
- 11 to 13 are diagrams for explaining an embodiment of the present invention regarding prescheduling by E-PDCCH.
- the present invention proposes an embodiment in which the E-PDCCH is transmitted / received in a subframe located before the subframe in which the PDSCH is transmitted.
- a subframe in which the E-PDCCH carrying prescheduling information is located is called a scheduling subframe
- a subframe in which the PDCCH is located based on the scheduling information is called a scheduled subframe.
- the PDCCH carries information for scheduling a PDSCH of a corresponding subframe. That is, in the case of the PDCCH, the scheduling subframe and the scheduled subframe are the same.
- the E-PDCCH may carry information for scheduling a PDSCH of subframe # n + 1 following subframe #n which is a scheduling subframe.
- 11 illustrates an example in which an E-PDCCH carrying scheduling information of UL / DL transmission for a scheduled subframe is transmitted / received before one subframe, but the E-PDCCH is transmitted / received even before any subframe. Can be received.
- an E-PDCCH for the scheduled subframe is embedded in the PDSCH of k previous subframes (subframe #n) of the scheduled subframe (subframe # n + k) and transmitted.
- k is a positive integer, for example, k may be 1 for FDD and may be determined according to a corresponding TDD DL-UL configuration for TDD.
- the UE may demodulate the PDSCH in subframe #n to obtain a scheduling assignment for PDSCH1 allocated to subframe # n + k.
- the UE acquires PDSCH and E-PDCCH based on the PDCCH of subframe #n, and obtains PDSCH1 in a subframe located after the subframe #n indicated by the E-PDCCH. Accordingly, PDSCH and PDSCH1 may be transmitted / received over subframe #n and subframe # n + k using one PDCCH transmitted in subframe #n. According to the method of FIG. 12, a separate discovery space for the E-PDCCH is not needed, and when there are many UEs to be scheduled and there is insufficient PDCCH multiplexing capacity, scheduling allocation in the form of bundled subframe scheduling is possible.
- the E-PDCCH may be inserted in a rate matching or puncturing form in a specific region of the PDSCH.
- the specific region may be predefined or inferred based on PDSCH resource assignment (RA) information. That is, a specific region for E-PDCCH may be pre-designated for each UE, or E-PDCCH resources in PDSCH may be inferred based on RA.
- RA resource assignment
- the first (second) resource of the smallest (large) index indicated by the RA bitmap may be used for the E-PDCCH.
- E-PDCCH only one RB per RBG may be defined as an E-PDCCH.
- E-PDCCH when the E-PDCCH is separately mapped to an independent position in the PDSCH region, only the E-PDCCH may be separately decoded.
- the decoded E-PDCCH carries scheduling information for PDSCH1 present in subframe # n + k. Meanwhile, the E-PDCCH may be treated as data like PDSCH and encoded together.
- FIG. 13 shows an example in which FIG. 12 is expanded to a case of carrier aggregation. Referring to FIG. 13, except that the scheduling information for SCC PDSCH1 of subframe #n among PDSCHs transmitted through the SCC (hereinafter, SCC PDSCH) is transmitted through PCC in subframe #n.
- SCC PDSCH scheduling information for SCC PDSCH1 of subframe #n among PDSCHs transmitted through the SCC
- whether to preschedule by the E-PDCCH may be configured in advance by the RRC or in association with the transmission mode.
- the PDCCH may include indication information indicating whether an E-PDCCH exists.
- This embodiment may be used together or separately with the embodiments related to the above-described ⁇ E-PDCCH discovery space configuration information> and / or ⁇ transmission mode dependent DCI format over the E-PDCCH>.
- 14 to 16 are diagrams for explaining an embodiment of the present invention for cross-carrier scheduling by E-PDCCH.
- the E-PDCCH is used for delivering a scheduling assignment for PDSCH1.
- the present invention proposes an embodiment in which the E-PDCCH is used for cross-carrier scheduling.
- the PDCCH for SCC (hereinafter, SCC PDCCH) is transmitted / received in the PDSCH region instead of the PDCCH region, and used for scheduling allocation for PDSCH (hereinafter, referred to as PCC PDSCH) and / or SCC PDSCH transmitted / received on the PCC.
- PCC PDSCH scheduling allocation for PDSCH
- the E-PDCCH carries scheduling information about the PCC PDSCH and the SCC PDCCH.
- cross-carrier scheduling may be performed using a combination of PDCCH and E-PDCCH.
- the PDCCH may carry only scheduling assignment associated with PCC PDSCH2
- the E-PDCCH may carry scheduling assignment for SCC PDSCH2 as well as PCC PDSCH1 and SCC PDSCH1. That is, the E-PDCCH may carry scheduling information about a plurality of carriers.
- scheduling allocation for both the component CC # 1, which is a scheduling CC, and the component carrier # 2, which is a scheduled CC are possible for a UE configured to listen to only the E-PDCCH.
- the PDCCH carries only scheduling allocation for PCC PDSCH2, and other allocation information for PDSCH1, SCC PDSCH1, and SCC PDSCH2 may carry an E-PDCCH.
- the E-PDCCH is used only for cross-carrier.
- the amount of downlink control information increases, which may cause a case where the PDCCH region is insufficient.
- cross-carrier scheduling when cross-carrier scheduling is performed, a state in which required downlink control information cannot be transmitted using only the PDCCH region may occur.
- the E-PDCCH is used for cross-carrier scheduling, the problem of capacity shortage in the PDCCH region can be solved.
- component carrier # 1 which is a PCC
- component carrier # 2 which is an SCC
- the scheduling CC does not necessarily need to be a PCC. That is, the SCC also becomes a scheduling CC and may be used for transmission / reception of scheduling information about another SCC.
- This embodiment may be used together or separately with the embodiments related to the above-described ⁇ E-PDCCH discovery space configuration information>, ⁇ transmission mode dependent DCI format via E-PDCCH> and / or ⁇ pre-scheduling by E-PDCCH>. Can be.
- different aggregation levels may be used for PDCCH transmission and E-PDCCH transmission.
- PDCCH candidates of a lower aggregation level eg, CCE aggregation level 1 or 2
- PDCCHs of a higher aggregation level eg, CCE aggregation level 4 or 8
- Candidates have a relatively large amount of resources.
- the present invention proposes that the E-PDCCH is configured to be transmitted / received in the PDSCH region at a lower aggregation level, and the PDCCH is configured to be transmitted / received in the PDCCH region at a higher aggregation level.
- DCI requiring high aggregation level may be transmitted / received in the PDCCH region
- DCI not requiring high aggregation level may be transmitted / received in the PDSCH region.
- the PDCCH is transmitted at aggregation level 4 or 8
- the E-PDCCH is defined to be transmitted at aggregation level 1 or 2
- the UE is a PDCCH only at aggregation level 4 and aggregation level 8 in the search space in the PDCCH region.
- the E-PDCCH needs to be monitored only at aggregation level 1 and aggregation level 2 in the search space in the PDSCH region.
- PDCCH transmission and E-PDCCH transmission may be appropriately combined and operated according to the characteristics of the control information.
- Common control information that a plurality of UEs should attempt to decode in common is transmitted / received on the PDCCH, and dedicated control information (ie UE-specific control information) for a specific UE or UE group is transmitted / received on the E-PDCCH.
- dedicated control information ie UE-specific control information
- common control information carried by the PDCCH may not be transmitted / received on the E-PDCCH. It can be seen that the E-PDCCH is not transmitted in the common search space but only in the dedicated search space.
- Change and update information of important information such as system information or cell selection / reselection information, other broadcast information (for example, a master information block (MIB) message, system information block type 1) 1, SIB1) message, system information (SI) message, a message defined to be transmitted in a common search space according to the 3GPP LTE-A system, etc. may be common control information, and dynamic scheduling information (for example, , DL allocation, UL scheduling grant, etc.) and related information may be dedicated control information.
- MIB message, SIB1 message, and SI message masked with SI-RNTI, a paging message masked with P-RNTI, and a random access response channel (RACH) response message masked with RA-RNTI are commonly searched. Can be transmitted / received in space
- both the common search space and the dedicated search space exist as search spaces for the E-PDCCH.
- the common search space for the E-PDCCH (hereinafter referred to as the E-PDCCH common search space)
- important information shared by several UEs is transmitted / received through the E-PDCCH
- a dedicated search space for the E-PDCCH (hereinafter referred to as E
- the aforementioned dynamic scheduling information may be transmitted / received through the E-PDCCH.
- the UE is common in E-PDCCH in a special subframe (for example, a subframe whose subframe number is 0 or 5 (SF # 0 or SF # 5)) in which the aforementioned critical information is transmitted / received. It may be configured to perform blind decoding in a common search space (hereinafter, PDCCH common search space) for the PDCCH and not the search space to obtain the important information.
- PDCCH common search space a common search space
- the UE may be configured to arbitrarily listen to the PDCCH. As such, even when blind decoding is performed in both the E-PDCCH common search space and the E-PDCCH dedicated search space for DCI reception, there is no change in the complexity of blind decoding for detecting the E-PDCCH.
- the E-PDCCH has a structural feature in which control information can be transmitted somewhere in the PDSCH region, deviating from the structure in which the control information should be transmitted in the PDCCH region of the downlink subframe.
- This structural feature consists of a macro cell in which communication service is provided by a macro BS and a micro cell (eg, femto cell, pico cell, etc.) in which communication service is provided by a micro BS having a smaller service coverage than the macro BS. It may be used for the purpose of reducing mutual interference between the macro cell and the micro cell in a wireless network.
- a multimedia broadcast single frequency network (MBSFN) subframe in which control information and RS exist in the first two OFDM symbols is configured, and an ABS (almost blank subframe) is applied to the corresponding subframe, a specific downlink in the ABS Since only the transmission of a signal (eg, CRS) is allowed or the downlink signal is transmitted only at a very weak transmission power, interference may be removed or mitigated in the remaining areas except for the first two OFDM symbols. It is preferable that the control information and data are configured to be transmitted in the resource region where interference is limited.
- MMSFN multimedia broadcast single frequency network
- a space in which an E-PDCCH may exist that is, a search space (SS)
- SS search space
- RRC Radio Resource Control
- the UE performs blind decoding only on the corresponding SS to perform DL decoding.
- Decoding ie, DL grant
- UL scheduling grant ie, UL grant
- the search space for detecting the E-PDCCH exists in the PDSCH region
- the UL / DL grant may be configured to be decoded based on the DMRS.
- the present invention not only operates in a mode for receiving DCI by decoding the E-PDCCH (hereinafter, the normal mode), but also in a mode for receiving DCI by decoding the PDCCH (hereinafter, referred to as a fallback mode).
- the UE according to the present embodiment may not only receive the PDSCH by decoding the E-PDCCH but also may be configured to receive the PDSCH by decoding the PDCCH in a specific situation or a specific subframe.
- the BS / UE may perform PDSCH transmission / reception on the E-PDCCH in a normal mode, and then switch to the fallback mode to perform PDSCH transmission / reception on the PDCCH in case of emergency.
- the subframe in which the UE switches to the fallback mode and attempts to detect the PDCCH in the PDSCH region may be predefined. If the UE cannot receive the E-PDCCH due to an abnormal channel situation, it is possible to perform blind decoding on the PDCCH after that.
- the UE may be configured to attempt decoding of the PDCCH instead of the E-PDCCH if certain conditions are met. For example, if the E-PDCCH reception quality falls below a threshold value, and if the E-PDCCH decoding failure persists more than N times in a specified time interval, N subframes (that is, since the E-PDCCH decoding failure starts).
- a timer is started when the E-PDCCH decoding failure starts, and the timer expires, etc. can be used as the specific condition.
- the UE that fails to detect the E-PDCCH may obtain the required DCI in the designated subframe so as to decode the PDCCH.
- the PDSCH on the PDCCH may carry the same contents as the PDSCH on the E-PDCCH, that is, the E-PDSCH, but may be configured to carry new contents.
- a subframe in which the UE attempts only detection of the PDCCH is called a fallback subframe.
- the fallback subframe may be designated in each radio frame or a specific subframe every integer multiple of the radio frame.
- a subframe in which broadcast (eg, BCH, paging, etc.) information is transmitted or a subframe associated with the broadcast information may be set as a fallback subframe.
- a subframe corresponding to a specific subframe or subframe pattern previously configured by RRC may be set as a fallback subframe.
- the UE receives / decodes the PDSCH by decoding the E-PDCCH.
- the subframe operating in the mode and the fallback subframe operating in the fallback mode for receiving / demodulating the PDSCH by decoding the PDCCH may be configured in the radio frame.
- the fallback subframe is a subframe promised to be difficult or not to receive the E-PDCCH, and the UE decodes the PDSCH or the E-PDSCH by decoding the PDCCH in the corresponding subframe.
- the E-PDCCH may carry a DL grant which is scheduling information for the PDSCH.
- the E-PDCCH may be applied even when carrying a DCI other than the DL grant.
- the E-PDCCH may carry a UL grant, in which case, the UE detecting the E-PDCCH may be an uplink subframe (eg, a predetermined subframe) associated with a downlink subframe in which the E-PDCCH is detected. Uplink subframes after the number of subframes) may be configured to transmit a PUSCH according to the UL grant.
- 17 is a block diagram showing the components of the transmitter 10 and the receiver 20 for carrying out the present invention.
- the transmitter 10 and the receiver 20 are radio frequency (RF) units 13 and 23 capable of transmitting or receiving radio signals carrying information and / or data, signals, messages, and the like, and in a wireless communication system.
- the device is operatively connected to components such as the memory 12 and 22 storing the communication related information, the RF units 13 and 23 and the memory 12 and 22, and controls the components.
- a processor 11, 21 configured to control the memory 12, 22 and / or the RF units 13, 23, respectively, to perform at least one of the embodiments of the invention described above.
- the memories 12 and 22 may store a program for processing and controlling the processors 11 and 21, and may temporarily store input / output information.
- the memories 12 and 22 may be utilized as buffers.
- the processors 11 and 21 typically control the overall operation of the various modules in the transmitter or receiver. In particular, the processors 11 and 21 may perform various control functions for carrying out the present invention.
- the processors 11 and 21 may also be called controllers, microcontrollers, microprocessors, microcomputers, or the like.
- the processors 11 and 21 may be implemented by hardware or firmware, software, or a combination thereof.
- application specific integrated circuits ASICs
- DSPs digital signal processors
- DSPDs digital signal processing devices
- PLDs programmable logic devices
- FPGAs field programmable gate arrays
- the firmware or software when implementing the present invention using firmware or software, may be configured to include a module, a procedure, or a function for performing the functions or operations of the present invention, and configured to perform the present invention.
- the firmware or software may be provided in the processors 11 and 21 or stored in the memory 12 and 22 to be driven by the processors 11 and 21.
- the processor 11 of the transmission apparatus 10 is predetermined from the processor 11 or a scheduler connected to the processor 11 and has a predetermined encoding and modulation on a signal and / or data to be transmitted to the outside. After performing the transmission to the RF unit 13.
- the processor 11 converts the data sequence to be transmitted into K layers through demultiplexing, channel encoding, scrambling, and modulation.
- the coded data string is also referred to as a codeword and is equivalent to a transport block, which is a data block provided by the MAC layer.
- One transport block (TB) is encoded into one codeword, and each codeword is transmitted to a receiving device in the form of one or more layers.
- the RF unit 13 may include an oscillator for frequency upconversion.
- the RF unit 13 may include N t transmit antennas, where N t is a positive integer.
- the signal processing of the receiver 20 is the reverse of the signal processing of the transmitter 10.
- the RF unit 23 of the receiving device 20 receives a radio signal transmitted by the transmitting device 10.
- the RF unit 23 may include N r reception antennas (N r is a positive integer), and the RF unit 23 performs frequency down conversion on each of the signals received through the reception antennas (frequency down). -convert) Restore to baseband signal.
- the RF unit 23 may include an oscillator for frequency downconversion.
- the processor 21 may decode and demodulate a radio signal received through a reception antenna to restore data originally transmitted by the transmission apparatus 10.
- the RF units 13, 23 have one or more antennas.
- the antenna transmits a signal processed by the RF units 13 and 23 to the outside or receives a radio signal from the outside according to an embodiment of the present invention under the control of the processors 11 and 21. , 23).
- Antennas are also called antenna ports.
- Each antenna may correspond to one physical antenna or may be configured by a combination of more than one physical antenna elements.
- the signal transmitted from each antenna can no longer be decomposed by the receiver 20.
- a reference signal (RS) transmitted in correspondence with the corresponding antenna defines the antenna as viewed from the perspective of the receiver 20, and whether the channel is a single radio channel from one physical antenna or includes the antenna.
- RS reference signal
- the receiver 20 enables channel estimation for the antenna. That is, the antenna is defined such that a channel carrying a symbol on the antenna can be derived from the channel through which another symbol on the same antenna is delivered.
- the antenna In the case of an RF unit supporting a multi-input multi-output (MIMO) function for transmitting and receiving data using a plurality of antennas, two or more antennas may be connected.
- MIMO multi-input multi-output
- the UE or the relay operates as the transmitter 10 in the uplink, and operates as the receiver 20 in the downlink.
- the BS operates as the receiving device 20 in the uplink and the transmitting device 10 in the downlink.
- a BS processor (hereinafter, referred to as a BS processor) configures a PDCCH and / or an E-PDCCH according to any one of the embodiments of the present invention described above, and transmits the PDCCH and / or the E-PDCCH to a UE.
- the RF unit (hereinafter, referred to as BS RF unit) can be controlled.
- the BS processor may control the BS RF unit to transmit a PDSCH to the UE or to receive a PUSCH from the UE according to the DCI transmitted to the UE through the PDCCH and / or the E-PDCCH.
- the BS processor may control the BS RF unit to transmit E-PDCCH search space configuration information using C-PDCCH or an existing PDCCH or SC DCI.
- the BS processor may configure the DCI to be transmitted through the PDCCH only in a specific DCI format (for example, DCI format 1A), and the DCI to be transmitted through the E-PDCCH in a DCI format corresponding to the corresponding transmission mode.
- the BS processor configures the DCI to be transmitted through the PDCCH in DCI format 1A, controls the BS RF unit to transmit control information of the DCI format 1A on the PDCCH, and to be transmitted through the E-PDCCH.
- the DCI may be configured in a DCI format corresponding to a transmission mode to a corresponding UE and control the BS RF unit to transmit a DCI format dependent on the transmission mode to the UE.
- the reverse is also possible.
- the BS processor may use the E-PDCCH for prescheduling and / or cross-carrier scheduling.
- the BS processor may control the BS RF unit to transmit scheduling information for a data channel to be transmitted / received in a specific CC to the corresponding UE using a CC different from the specific CC.
- the BS processor may configure the PDCCH and the E-PDCCH based on the characteristics of the control information.
- the BS RF unit is controlled to transmit dynamic scheduling information using an E-PDCCH, and the BS RF unit is controlled to transmit important information that can be used by other UEs as well as a specific UE. can do.
- the BS processor may configure the PDCCH and the E-PDCCH at different aggregation levels. Accordingly, the BS RF unit transmits the PDCCH in the resource collection of the aggregation level, and the E-PDCCH is the aggregation level of the PDCCH. Can be sent from a collection of resources at different aggregation levels.
- the BS processor may control the BS RF unit to transmit the E-PDCCH in the data region of the general subframe, but may not control the BS RF unit to transmit the E-PDCCH in the fallback subframe.
- the BS processor may control the BS RF unit to transmit the PDCCH in the control region of the fallback subframe.
- the BS processor may control the BS RF unit to further transmit the PDCCH in the control region of the subframe in the normal mode.
- the processor of the UE detects the PDCCH and / or the E-PDCCH according to any one of the embodiments of the present invention described above, and the PDCCH and / or the The RF unit may be controlled based on the DCI carried by the E-PDCCH to receive the PDSCH and / or transmit the PUSCH.
- the UE processor acquires the E-PDCCH discovery space configuration information according to the ⁇ E-PDCCH discovery space configuration information> and detects the E-PDCCH in the E-PDCCH discovery space according to the E-PDCCH discovery space configuration information. Blind decoding can be performed.
- the UE processor performs blind decoding according to only the fallback DCI format in the PDCCH discovery space, and in the E-PDCCH discovery space, the UE performs a transmission mode configured in the configured transmission mode. It may be configured to perform blind decoding according to the corresponding DCI format. Alternatively, the UE may be configured to perform blind decoding according to the DCI format corresponding to the configured transmission mode in the PDCCH search space, and perform blind decoding according to only the fallback DCI format in the E-PDCCH discovery space.
- the E-PDCCH may carry scheduling information on a subsequent subframe rather than the subframe including the E-PDCCH.
- the E-PDCCH may be used to transmit scheduling information for a CC other than the CC used for transmitting the E-PDCCH.
- the UE processor Upon detecting the E-PDCCH on a given CC, the UE processor sends an RF unit (hereinafter referred to as a UE RF unit) of the UE to receive a PDSCH or transmit a PUSCH on the CC associated with the DCI based on the DCI carried by the E-PDCCH. Can be controlled.
- the UE processor may perform blind decoding at each aggregation level defined for the PDCCH to detect the PDCCH, and perform blind decoding at each aggregation level defined for the E-PDCCH to detect the E-PDCCH.
- the UE processor may operate in a normal mode under normal circumstances, and may perform blind decoding for detecting an E-PDCCH in a data region of a general subframe in the normal mode.
- the UE processor may also perform blind decoding for detecting the PDCCH in the control region of the general subframe.
- the UE processor may operate in a fallback mode in a specific condition or a specific subframe. In this case, the UE processor monitors the PDCCH in the control region of the subframe but does not monitor the E-PDCCH in the data region.
- Embodiments of the present invention may be used in a base station, relay or user equipment, and other equipment in a wireless communication system.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
본 발명은 제어영역과 데이터영역으로 구분되는 하향링크 서브프레임에서 제어채널을 전송/수신하는 방법 및 장치를 제공한다. 본 발명에서는 특정 반송파의 데이터영역에서 전송되는 하향링크 제어채널이 다른 반송파에 대한 스케줄링 정보를 나르도록 구성될 수 있다.
Description
본 발명은 무선 통신 시스템에 관한 것이다. 구체적으로, 본 발명은 하향링크 제어정보를 수신하는 방법 및 장치와, 하향링크 제어정보를 전송하는 방법 및 장치에 관한 것이다.
기기간(Machine-to-Machine, M2M) 통신과, 높은 데이터 전송량을 요구하는 스마트폰, 태블릿 PC 등의 다양한 장치 및 기술이 출현 및 보급되고 있다. 이에 따라, 셀룰러 망에서 처리될 것이 요구되는 데이터 양이 매우 빠르게 증가하고 있다. 이와 같이 빠르게 증가하는 데이터 처리 요구량을 만족시키기 위해, 더 많은 주파수 대역을 효율적으로 사용하기 위한 반송파 집성(carrier aggregation) 기술, 인지무선(cognitive radio) 기술 등과, 한정된 주파수 내에서 전송되는 데이터 용량을 높이기 위한 다중 안테나 기술, 다중 기지국 협력 기술 등이 발전하고 있다. 한편, 사용자가 주변에서 엑세스할 수 있는 노드의 밀도가 높아지는 방향으로 통신 환경이 진화하고 있다. 높은 밀도의 노드를 구비한 통신 시스템은 노드들 간의 협력에 의해 더 높은 성능의 통신 서비스를 사용자에게 제공할 수 있다.
새로운 무선 통신 기술의 도입에 따라, 기지국이 서비스를 제공해야 하는 사용자기기들의 개수가 증가할 뿐만 아니라, 각 사용자기기에 제공해야 하는 하향링크 제어정보의 양이 증가하고 있다. 기지국이 사용자기기(들)와의 통신에 이용가능한 무선 자원의 양은 유한하므로, 기지국이 유한한 무선 자원을 이용하여 하향링크 제어정보를 사용자기기(들)에 효율적으로 제공하기 위한 새로운 방안이 요구된다.
따라서, 본 발명은 하향링크 제어정보를 효율적으로 전송/수신하는 방법 및 장치를 제공한다.
본 발명이 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 이하의 발명의 상세한 설명으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명이 일 양상으로, 복수의 셀들이 구성된 사용자기기가 기지국으로부터 하향링크 신호를 수신함에 있어서, 서브프레임의 데이터영역에서 상기 복수의 셀들 중 제1셀을 이용하여 제1하향링크 제어채널을 수신하고; 상기 제1하향링크 제어채널을 기반으로 상기 복수의 셀들 중 제2셀을 이용하여 하향링크 데이터채널을 수신하는, 하향링크 신호 수신방법이 제공된다.
본 발명의 다른 양상으로, 복수의 셀들이 구성된 사용자기기가 기지국으로부터 하향링크 신호를 수신함에 있어서, 무선 신호를 전송 혹은 수신하도록 구성된 무선 주파수(radio frequency, RF) 유닛; 및 상기 RF 유닛을 제어하도록 구성된 프로세서를 포함하되, 상기 프로세서는 서브프레임의 데이터영역에서 상기 복수의 셀들 중 제1셀을 이용하여 제1하향링크 제어채널을 수신하도록 상기 RF 유닛을 제어하고, 상기 제1하향링크 제어채널을 기반으로 상기 복수의 셀들 중 제2셀을 이용하여 하향링크 데이터채널을 수신하도록 상기 RF 유닛을 제어하는, 사용자기기가 제공된다.
본 발명의 또 다른 양상으로, 기지국이 복수의 셀들이 구성된 사용자기기에 하향링크 신호를 전송함에 있어서, 서브프레임의 데이터영역에서 상기 복수의 셀들 중 제1셀을 이용하여 제1하향링크 제어채널을 전송하고; 상기 제1하향링크 제어채널을 기반으로 상기 복수의 셀들 중 제2셀을 이용하여 하향링크 데이터채널을 전송하는, 하향링크 신호 전송방법이 제공된다.
본 발명의 또 다른 양상으로, 기지국이 복수의 셀들이 구성된 사용자기기에 하향링크 신호를 전송함에 있어서, 무선 신호를 전송 혹은 수신하도록 구성된 무선 주파수(radio frequency, RF) 유닛; 및 상기 RF 유닛을 제어하도록 구성된 프로세서를 포함하되, 상기 프로세서는 서브프레임의 데이터영역에서 상기 복수의 셀들 중 제1셀을 이용하여 제1하향링크 제어채널을 전송하도록 상기 RF 유닛을 제어하고, 상기 제1하향링크 제어채널을 기반으로 상기 복수의 셀들 중 제2셀을 이용하여 하향링크 데이터채널을 전송하도록 상기 RF 유닛을 제어하는, 기지국이 제공된다.
본 발명의 각 양상에서 상기 서브프레임의 제어영역에서 상기 제1셀을 이용하여 제2하향링크 제어채널이 상기 기지국으로부터 상기 사용자기기로 전송되고, 상기 제2하향링크 제어채널을 기반으로 상기 제1셀을 이용하여 제2하향링크 데이터채널이 상기 기지국으로부터 상기 사용자기기로 잔성될 수 있다.
본 발명의 각 양상에 있어서, 상기 서브프레임은 제어영역에서만 하향링크 제어채널이 전송되도록 기설정된 서브프레임이 아닌 서브프레임일 수 있다.
본 발명의 각 양상에 있어서, 상기 제1하향링크 제어채널은 제1집성 레벨로 집성된 자원의 모음 상에서 상기 기지국으로부터 상기 사용자기기로 전송되고, 상기 제2하향링크 제어채널은 상기 제1집성 레벨보다 큰 집성 레벨로 집성된 자원의 모음 상에서 상기 기지국으로부터 상기 사용자기기로 전송될 수 있다.
상기 과제 해결방법들은 본 발명의 실시예들 중 일부에 불과하며, 본원 발명의 기술적 특징들이 반영된 다양한 실시예들이 당해 기술분야의 통상적인 지식을 가진 자에 의해 이하 상술할 본 발명의 상세한 설명을 기반으로 도출되고 이해될 수 있다.
본 발명에 의하면, 하향링크 제어정보가 효율적으로 전송/수신될 수 있다. 이에 따라, 무선 통신 시스템의 전체 처리량(throughput)이 높아진다.
본 발명에 따른 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과는 이하의 발명의 상세한 설명으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.
도 1은 무선 통신 시스템에서 사용되는 무선 프레임 구조의 일 예를 나타낸 것이다.
도 2는 무선 통신 시스템에서 하향링크/상향링크(DL/UL) 슬롯 구조의 일례를 나타낸 것이다.
도 3은 3GPP LTE(-A) 시스템에서 사용되는 하향링크 서브프레임 구조를 예시한 것이다.
도 4는 3GPP LTE(-A) 시스템에서 사용되는 참조신호를 예시한 것이다.
도 5는 3GPP LTE(-A) 시스템에서 사용되는 상향링크 서브프레임 구조의 일례를 나타낸 것이다.
도 6은 다중 반송파를 집성하여 통신을 수행하는 예를 나타낸다.
도 7은 하향링크 서브프레임의 데이터영역에 PDCCH를 할당하는 예를 나타낸다.
도 8은 E-PDCCH 탐색 공간에 관한 정보의 전송/수신에 관한 본 발명의 실시예를 설명하기 위한 도면이다.
도 9는 E-PDCCH 탐색 공간에 관한 정보의 전송/수신에 관한 본 발명의 다른 실시예를 설명하기 위한 도면이다.
도 10은 전송모드 종속적 DCI와 폴백 DCI를 전송하는 본 발명의 실시예를 설명하기 위한 도면이다.
도 11 내지 도 13은 E-PDCCH에 의한 사전 스케줄링에 관한 본 발명의 실시예를 설명하기 위한 도면이다.
도 14 내지 도 16은 E-PDCCH에 의한 크로스-반송파 스케줄링에 관한 본 발명의 실시예를 설명하기 위한 도면이다.
도 17은 본 발명을 수행하는 전송장치(10) 및 수신장치(20)의 구성요소를 나타내는 블록도이다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다.
또한, 이하에서 설명되는 기법(technique) 및 장치, 시스템은 다양한 무선 다중 접속 시스템에 적용될 수 있다. 설명의 편의를 위하여, 이하에서는 본 발명이 3GPP LTE(-A)에 적용되는 경우를 가정하여 설명한다. 그러나, 본 발명의 기술적 특징이 이에 제한되는 것은 아니다. 예를 들어, 이하의 상세한 설명이 이동통신 시스템이 3GPP LTE/LTE-A 시스템에 대응하는 이동통신 시스템을 기초로 설명되더라도, 3GPP LTE/LTE-A에 특유한 사항을 제외하고는 다른 임의의 이동통신 시스템에도 적용 가능하다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.
본 발명에 있어서, 사용자기기(UE: User Equipment)는 고정되거나 이동성을 가질 수 있으며, BS와 통신하여 사용자데이터 및/또는 각종 제어정보를 송수신하는 각종 기기들이 이에 속한다. UE는 단말(Terminal Equipment), MS(Mobile Station), MT(Mobile Terminal), UT(User Terminal), SS(Subscribe Station), 무선기기(wireless device), PDA(Personal Digital Assistant), 무선 모뎀(wireless modem), 휴대기기(handheld device) 등으로 불릴 수 있다. 또한, 본 발명에 있어서, 기지국(Base Station, BS)은 일반적으로 UE 및/또는 다른 BS와 통신하는 고정된 지점(fixed station)을 말하며, UE 및 타 BS과 통신하여 각종 데이터 및 제어정보를 교환한다. BS는 ABS(Advanced Base Station), NB(Node-B), eNB(evolved-NodeB), BTS(Base Transceiver System), 엑세스 포인트(Access Point), PS(Processing Server) 등 다른 용어로 불릴 수 있다. 본 발명에 있어서, 릴레이(relay)는 BS의 서비스 영역을 확장하거나, 음영 지역에 설치되어 BS의 서비스를 원활하게 기기 및/또는 지점을 의미한다. 릴레이는 RN(Relay Node), RS(Relay Station) 등 다른 용어로 불릴 수 있다. UE의 관점에서 릴레이는 무선 엑세스 네트워크의 일부이며, 몇몇 예외를 제외하고, BS처럼 동작한다. 릴레이에 신호를 전송하거나 상기 릴레이로부터 신호를 수신하는 BS를 도너(donor) BS라고 한다. 릴레이는 도너 BS에 무선으로 연결된다. BS의 관점에서 릴레이는, 몇몇 예외(예를 들어, 하향링크 제어정보가 PDCCH가 아닌 R-PDCCH를 통해 전송됨)를 제외하고, UE처럼 동작한다. 따라서, 릴레이는 UE와의 통신에 사용되는 물리 계층(layer) 엔터티와 도너 BS와의 통신에 사용되는 물리 계층 엔터티를 모두 포함한다. BS에서 릴레이로의 전송, 이하, BS-to-RN 전송은 하향링크 서브프레임에서 일어나며, 릴레이에서 BS로의 전송, 이하, RN-to-BS 전송은 상향링크 서브프레임에서 일어난다. 한편, BS-to-RN 전송 및 RN-to-BS 전송은 하향링크 주파수 대역에서 일어나며, RN-to-BS 전송 및 UE-to-RN 전송은 상향링크 주파수 대역에서 일어난다. 본 발명에서, 릴레이는 하나 이상의 BS를 통해 상기 하나 이상의 BS가 속한 네트워크(network)와 통신할 수 있다.
본 발명에서 PDCCH(Physical Downlink Control CHannel)/PCFICH(Physical Control Format Indicator CHannel)/PHICH((Physical Hybrid automatic retransmit request Indicator CHannel)/PDSCH(Physical Downlink Shared CHannel)은 각각 DCI(Downlink Control Information)/CFI(Control Format Indicator)/하향링크 ACK/NACK(ACKnowlegement/Negative ACK)/하향링크 데이터를 나르는 시간-주파수 자원의 모음(set) 혹은 자원요소의 모음을 의미한다. 또한, PUCCH(Physical Uplink Control CHannel)/PUSCH(Physical Uplink Shared CHannel)는 각각 UCI(Uplink Control Information)/상향링크 데이터를 나르는 시간-주파수 자원의 모음 혹은 자원요소의 모음을 의미한다. 본 발명에서는, 특히, PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH에 할당되거나 이에 속한 시간-주파수 자원 혹은 자원요소(Resource Element, RE)를 각각 PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH RE 또는 PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH 자원이라고 칭한다. 따라서, 본 발명에서 사용자기기가 PUCCH/PUSCH를 전송한다는 표현은, 각각, PUSCH/PUCCH 상에서 상향링크 제어정보/상향링크 데이터/랜덤 엑세스 신호를 전송한다는 것과 동일한 의미로 사용된다. 또한, 본 발명에서 BS가 PDCCH/PCFICH/PHICH/PDSCH를 전송한다는 표현은, 각각, PDCCH/PCFICH/PHICH/PDSCH 상에서 하향링크 데이터/제어정보를 전송한다는 것과 동일한 의미로 사용된다.
또한, 본 발명에서 CRS(Cell-specific Reference Signal)/DMRS(Demodulation Reference Signal)/CSI-RS(Channel State Information Reference Signal) 시간-주파수 자원(혹은 RE)은 각각 CRS/DMRS/CSI-RS에 할당 혹은 이용가능한 RE 혹은 CRS/DMRS/CSI-RS를 나르는 시간-주파수 자원(혹은 RE)를 의미한다. 또한, CRS/DMRS/CSI-RS RE를 포함하는 부반송파를 CRS/DMRS/CSI-RS 부반송파라 칭하며, CRS/DMRS/CSI-RS RE를 포함하는 OFDM 심볼을 CRS/DMRS/CSI-RS 심볼이라 칭하다.
도 1은 무선 통신 시스템에서 사용되는 무선 프레임 구조의 일 예를 나타낸 것이다. 특히, 도 1(a)는 3GPP LTE(-A)에서 FDD에 사용될 수 있는 무선 프레임 구조를 예시한 것이고, 도 1(b)는 3GPP LTE(-A)에서 TDD에 사용될 수 있는 무선 프레임 구조를 예시한 것이다.
도 1을 참조하면, 3GPP LTE(-A)에서 사용되는 무선프레임은 10ms(307200Ts)의 길이를 가지며, 10개의 균등한 크기의 서브프레임으로 구성된다. 일 무선프레임 내 10개의 서브프레임에는 각각 번호가 부여될 수 있다. 여기에서, Ts는 샘플링 시간을 나타내고, Ts=1/(2048*15kHz)로 표시된다. 각각의 서브프레임은 1ms의 길이를 가지며 2개의 슬롯으로 구성된다. 일 무선프레임 내에서 20개의 슬롯들은 0부터 19까지 순차적으로 넘버링될 수 있다. 각각의 슬롯은 0.5ms의 길이를 가진다. 일 서브프레임을 전송하기 위한 시간은 전송시간간격(TTI: transmission time interval)로 정의된다. 시간 자원은 무선프레임 번호(혹은 무선 프레임 인덱스라고도 함)와 서브프레임 번호(혹은 서브프레임 번호라고도 함), 슬롯 번호(혹은 슬롯 인덱스) 등에 의해 구분될 수 있다.
무선 프레임은 듀플렉스(duplex) 모드에 따라 다르게 구성될 수 있다. 예를 들어, FDD 모드에서, 하향링크 전송 및 상향링크 전송은 주파수에 의해 구분되므로, 무선 프레임은 소정 반송파 주파수에서 동작하는 소정 주파수 대역에 대해 하향링크 서브프레임 또는 상향링크 서브프레임 중 하나만을 포함한다. TDD 모드에서 하향링크 전송 및 상향링크 전송은 시간에 의해 구분되므로, 소정 반송파 주파수에서 동작하는 소정 주파수 대역에 대해 무선 프레임은 하향링크 서브프레임과 상향링크 서브프레임을 모두 포함한다.
표 1은 TDD 모드에서, 무선 프레임 내 서브프레임들의 DL-UL 구성을 예시한 것이다.
표 1
DL-UL configuration | Downlink-to-Uplink Switch-point periodicity | Subframe number | |||||||||
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ||
0 | 5ms | D | S | U | U | U | D | S | U | U | U |
1 | 5ms | D | S | U | U | D | D | S | U | U | D |
2 | 5ms | D | S | U | D | D | D | S | U | D | D |
3 | 10ms | D | S | U | U | U | D | D | D | D | D |
4 | 10ms | D | S | U | U | D | D | D | D | D | D |
5 | 10ms | D | S | U | D | D | D | D | D | D | D |
6 | 5ms | D | S | U | U | U | D | S | U | U | D |
표 1에서, D는 하향링크 서브프레임을, U는 상향링크 서브프레임을, S는 특이(special) 서브프레임을 나타낸다. 특이 서브프레임은 DwPTS(Downlink Pilot TimeSlot), GP(Guard Period), UpPTS(Uplink Pilot TimeSlot)의 3개 필드를 포함한다. DwPTS는 하향링크 전송용으로 유보되는 시간 구간이며, UpPTS는 상향링크 전송용으로 유보되는 시간 구간이다.
도 2는 무선 통신 시스템에서 하향링크/상향링크(DL/UL) 슬롯 구조의 일례를 나타낸 것이다. 특히, 도 2는 3GPP LTE(-A) 시스템의 자원격자(resource grid)의 구조를 나타낸다. 안테나 포트당 1개의 자원격자가 있다.
도 2를 참조하면, 슬롯은 시간 도메인에서 복수의 OFDM(Orthogonal Frequency Division Multiplexing) 심볼을 포함하고, 주파수 도메인에서 다수의 자원블록(resource block, RB)을 포함한다. OFDM 심볼은 일 심볼 구간을 의미하기도 한다. 자원블록은 주파수 도메인에서 다수의 부반송파를 포함한다. OFDM 심볼은 다중 접속 방식에 따라 OFDM 심볼, SC-FDM 심볼 등으로 불릴 수 있다. 하나의 슬롯에 포함되는 OFDM 심볼의 수는 채널 대역폭, CP의 길이에 따라 다양하게 변경될 수 있다. 예를 들어, 일반(normal) CP의 경우에는 하나의 슬롯이 7개의 OFDM 심볼을 포함하나, 확장(extended) CP의 경우에는 하나의 슬롯이 6개의 OFDM 심볼을 포함한다. 도 2에서는 설명의 편의를 위하여 하나의 슬롯이 7 OFDM 심볼로 구성되는 서브프레임을 예시하였으나, 본 발명의 실시예들은 다른 개수의 OFDM 심볼을 갖는 서브프레임들에도 마찬가지의 방식으로 적용될 수 있다. 참고로, 하나의 OFDM 심볼과 하나의 부반송파로 구성된 자원을 자원요소(resource element, RE) 혹은 톤(tone)이라고 한다.
도 2를 참조하면, 각 슬롯에서 전송되는 신호는 NDL/UL
RB*NRB
sc개의 부반송파(subcarrier)와 NDL/UL
symb개의 OFDM 심볼로 구성되는 자원격자(resource grid)로 표현될 수 있다. 여기서, NDL
RB은 하향링크 슬롯에서의 자원블록(resource block, RB)의 개수를 나타내고, NUL
RB은 상향링크 슬롯에서의 RB의 개수를 나타낸다. NDL
RB와 NUL
RB은 하향링크 전송 대역폭과 상향링크 전송 대역폭에 각각 의존한다. 각 OFDM 심볼은, 주파수 도메인에서, NDL/UL
RB*NRB
sc개의 부반송파를 포함한다. 부반송파의 유형은 데이터 전송을 위한 데이터 부반송파, 참조신호의 전송 위한 참조신호 부반송파, 가드 밴드(guard band) 및 DC 성분을 위한 널 부반송파로 나뉠 수 있다. DC 성분을 위한 널 부반송파는 미사용인 채 남겨지는 부반송파로서, OFDM 신호 생성 과정 혹은 주파수 상향변환 과정에서 반송파 주파수(carrier freqeuncy, f0)로 맵핑된다. 반송파 주파수는 중심 주파수(center frequency)라고도 한다. NDL
symb은 하향링크 슬롯 내 OFDM 심볼의 개수를 나타내며, NUL
symb은 상향링크 슬롯 내 OFDM 심볼의 개수를 나타낸다. NRB
sc는 하나의 RB를 구성하는 부반송파의 개수를 나타낸다. RB는 시간 도메인에서 NDL/UL
symb개(예를 들어, 7개)의 연속하는 OFDM 심볼로서 정의되며, 주파수 도메인에서 NRB
sc개(예를 들어, 12개)의 연속하는 부반송파에 의해 정의된다. 따라서, 하나의 RB는 NDL/UL
symb*NRB
sc개의 자원요소로 구성된다. 자원격자 내 각 자원요소는 일 슬롯 내 인덱스 쌍 (k, 1)에 의해 고유하게 정의될 수 있다. k는 주파수 도메인에서 0부터 NDL/UL
RB*NRB
sc-1까지 부여되는 인덱스이며, l은 시간 도메인에서 0부터 NDL/UL
symb-1까지 부여되는 인덱스이다.
일 서브프레임에서 NRB
sc개의 연속하는 동일한 부반송파를 점유하면서, 상기 서브프레임의 2개의 슬롯 각각에 1개씩 위치하는 2개의 RB를 PRB(physical resource block, PRB) 쌍이라고 한다. PRB 쌍을 구성하는 2개의 RB는 동일한 PRB 번호(혹은, PRB 인덱스라고도 함)를 갖는다. VRB는 자원할당을 위해 도입된 일종의 논리적 자원할당 단위이다. VRB는 PRB와 동일한 크기를 갖는다. VRB를 PRB로 맵핑하는 방식에 따라, VRB는 로컬라이즈(localized) 타입의 VRB와 분산(distributed) 타입의 VRB로 구분된다. 로컬라이즈 타입의 VRB들은 PRB들에 바로 맵핑되어, VRB 번호(VRB 인덱스라고도 함)가 PRB 번호에 바로 대응된다. 즉, nPRB=nVRB가 된다. 로컬라이즈 타입의 VRB들에는 0부터 NDL
VRB-1 순으로 번호가 부여되며, NDL
VRB=NDL
RB이다. 따라서, 로컬라이즈 맵핑 방식에 의하면, 동일한 VRB 번호를 갖는 VRB가 첫번째 슬롯과 두번째 슬롯에서, 동일 PRB 번호의 PRB에 맵핑된다. 반면, 분산 타입의 VRB는 인터리빙을 거쳐 PRB에 맵핑된다. 따라서, 동일한 VRB 번호를 갖는 분산 타입의 VRB는 첫번째 슬롯에서 서로 다른 번호의 PRB에 맵핑될 수 있다. 서브프레임의 두 슬롯에 1개씩 위치하며 동일한 VRB 번호를 갖는 2개의 PRB를 VRB 쌍이라 칭한다. PRB 쌍과 VRB 쌍은 RB 쌍으로 통칭될 수 있다. UE 혹은 UE 그룹을 위한 RB는 VRB를 기준으로 할당되며, 원칙적으로 동일 VRB 번호를 갖는 VRB는 동일 UE 혹은 UE 그룹에 할당된다.
도 3은 3GPP LTE(-A) 시스템에서 사용되는 하향링크 서브프레임 구조를 예시한 것이다.
하향링크 서브프레임은 시간 도메인에서 제어영역과 데이터영역으로 구분된다. 도 3을 참조하면, 서브프레임의 첫 번째 슬롯에서 앞부분에 위치한 최대 3(혹은 4)개의 OFDM 심볼은 제어 채널이 할당되는 제어영역(control region)에 대응한다. 이하, 하향링크 서브프레임에서 PDCCH 전송에 이용가능한 자원영역을 PDCCH 영역이라 칭한다. 제어영역으로 사용되는 OFDM 심볼(들)이 아닌 남은 OFDM 심볼들은 PDSCH(Physical Downlink Shared CHancel)가 할당되는 데이터영역(data region)에 해당한다. 이하, 하향링크 서브프레임에서 PDSCH 전송에 이용가능한 자원영역을 PDSCH 영역이라 칭한다. 3GPP LTE에서 사용되는 하향링크 제어 채널의 예는 PCFICH(Physical Control Format Indicator Channel), PDCCH(Physical Downlink Control Channel), PHICH(Physical hybrid ARQ indicator Channel) 등을 포함한다. PCFICH는 서브프레임의 첫 번째 OFDM 심볼에서 전송되고 서브프레임 내에서 제어 채널의 전송에 사용되는 OFDM 심볼의 개수에 관한 정보를 나른다. PHICH는 상향링크 전송의 응답으로 HARQ ACK/NACK(acknowledgment/negative-acknowledgment) 신호를 나른다.
PDCCH를 통해 전송되는 제어 정보를 DCI(Downlink Control Information)라고 지칭한다. DCI는 UE 또는 UE 그룹을 위한 자원 할당 정보 및 다른 제어 정보를 포함한다. 예를 들어, DCI는 하향링크 공유 채널(downlink shared channel, DL-SCH)의 전송 포맷 및 자원 할당 정보, 상향링크 공유 채널(uplink shared channel, UL-SCH)의 전송 포맷 및 자원 할당 정보, 페이징 채널(paging channel, PCH) 상의 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상에서 전송되는 랜덤 접속 응답과 같은 상위-계층 제어 메시지의 자원 할당 정보, UE 그룹 내의 개별 UE들에 대한 Tx 파워 제어 명령 세트, Tx 파워 제어 명령, VoIP(Voice over IP)의 활성화 지시 정보 등을 포함한다. 일 PDCCH가 나르는 DCI는 DCI 포맷에 따라서 그 크기와 용도가 다르며, 부호화율에 따라 그 크기가 달라질 수 있다. 현재 3GPP LTE 시스템에서는 상향링크용으로 포맷 0, 하향링크용으로 포맷 1, 1A, 1B, 1C, 1D, 2, 2A, 3, 3A 등의 다양한 포맷이 정의되어 있다. DCI 포맷 각각의 용도에 맞게, 호핑 플래그, RB 할당(RB allocation), MCS(modulation coding scheme), RV(redundancy version), NDI(new data indicator), TPC(transmit power control), 순환천이 DMRS(cyclic shift demodulation reference signal), UL 인덱스, CQI(channel quality informaiton) 요청, DL 할당 인덱스(DL assignment index), HARQ 프로세스 넘버, TPMI(transmitted precoding matrix indicator), PMI(precoding matrix indicator) 정보 등의 제어정보가 취사 선택된 조합이 하향링크 제어정보로서 UE에게 전송된다. 표 2는 DCI 포맷의 예를 나타낸다.
표 2
DCI format | Description |
0 | Resource grants for the PUSCH transmissions (uplink) |
1 | Resource assignments for single codeword PDSCH transmissions |
1A | Compact signaling of resource assignments for single codeword PDSCH |
1B | Compact resource assignments for PDSCH using rank-1 closed loop precoding |
1C | Very compact resource assignments for PDSCH (e.g. paging/broadcast system information) |
1D | Compact resource assignments for PDSCH using multi-user MIMO |
2 | Resource assignments for PDSCH for closed-loop MIMO operation |
2A | Resource assignments for PDSCH for open-loop MIMO operation |
3/3A | Power control commands for PUCCH and PUSCH with 2-bit/1-bit power adjustments |
3GPP LTE(-A) 시스템에는 다양한 자원할당(resource allocation, RA) 타입(예를 들어, 타입 0 RA, 타입 1 RA, 타입 2 RA 등)이 정의된다. 타입 0 RA 혹은 타입 1 RA를 위해서는 포맷 1, 2 및 2A가 사용되고, 타입 2 RA를 위해서는 DCI 포맷 1A, 1B, 1C 및 1D가 사용된다. 타입 0 RA에서 RB 할당 정보는 UE에게 할당된 자원블록그룹(resource block group, RBG)를 지시하는 비트맵을 포함한다. RBG는 하나 이상의 연속된 PRB로 구성된 세트이다. PRG의 크기는 시스템 대역에 의존한다. 타입 1 RA에서, RB 할당 정보는 스케줄링된 UE에게 RBG 서브세트 내의 자원을 PRB 단위로 지시한다. 타입 2 RA에서 RB 할당 정보는 스케줄링된 UE에게 연속적으로 할당된 VRB 세트를 지시한다.
복수의 PDCCH가 제어영역 내에서 전송될 수 있다. UE는 복수의 PDCCH를 모니터링 할 수 있다. BS는 UE에게 전송될 DCI에 따라 DCI 포맷을 결정하고, DCI에 CRC(cyclic redundancy check)를 부가한다. CRC는 PDCCH의 소유자 또는 사용 목적에 따라 식별자(예, RNTI(radio network temporary identifier))로 마스킹(또는 스크램블)된다. 예를 들어, PDCCH가 특정 UE을 위한 것일 경우, 해당 UE의 식별자(예, cell-RNTI (C-RNTI))가 CRC에 마스킹 될 수 있다. PDCCH가 페이징 메시지를 위한 것일 경우, 페이징 식별자(예, paging-RNTI (P-RNTI))가 CRC에 마스킹 될 수 있다. PDCCH가 시스템 정보(보다 구체적으로, 시스템 정보 블록(system information block, SIB))를 위한 것일 경우, SI-RNTI(system information RNTI)가 CRC에 마스킹 될 수 있다. PDCCH가 랜덤 접속 응답을 위한 것일 경우, RA-RNTI(random access-RNTI)가 CRC에 마스킹 될 수 있다. CRC 마스킹(또는 스크램블)은 예를 들어 비트 레벨에서 CRC와 RNTI를 XOR 연산하는 것을 포함한다.
PDCCH는 하나 또는 복수의 연속된 제어 채널 요소(control channel element, CCE)들의 집성(aggregation) 상에서 전송된다. CCE는 PDCCH에 무선 채널 상태에 기초한 코딩 레이트를 제공하는데 사용되는 논리적 할당 유닛이다. CCE는 복수의 자원 요소 그룹(resource element group, REG)에 대응한다. 예를 들어, 하나의 CCE는 9개의 REG에 대응되고 하나의 REG는 네 개의 RE에 대응한다. 네 개의 QPSK 심볼이 각각의 REG에 맵핑된다. 참조신호(RS)에 의해 점유된 자원요소(RE)는 REG에 포함되지 않는다. 따라서, 주어진 OFDM 심볼 내에서 REG의 개수는 RS의 존재 여부에 따라 달라진다. REG 개념은 다른 하향링크 제어채널(즉, PDFICH 및 PHICH)에도 사용된다. DCI 포맷 및 DCI 비트의 개수는 CCE의 개수에 따라 결정된다. 예를 들어, 표 3과 같이 4개의 DCI 포맷이 지원된다.
표 3
DCI format | Number of CCEs (n) | Number of REGs | Number of DCI bits |
0 | 1 | 0 | 72 |
1 | 2 | 18 | 144 |
2 | 3 | 36 | 288 |
3 | 4 | 72 | 576 |
CCE들은 번호가 매겨져 연속적으로 사용되고, 복호 프로세스를 간단히 하기 위해, n개 CCE들로 구성된 포맷을 가지는 PDCCH는 n의 배수에 해당하는 번호를 가지는 CCE에서만 시작될 수 있다. 특정 PDCCH의 전송에 사용되는 CCE의 개수는 채널 상태에 따라 기지국에 의해 결정된다. 예를 들어, 좋은 하향링크 채널을 가지는 UE(예, BS에 인접함)을 위한 PDCCH의 경우 하나의 CCE로도 충분할 수 있다. 그러나, 열악한 채널을 가지는 UE(예, 셀 경계에 근처에 존재)를 위한 PDCCH의 경우 충분한 로버스트(robustness)를 얻기 위해서는 8개의 CCE가 요구될 수 있다. 또한, PDCCH의 파워 레벨은 채널 상태에 맞춰 조정될 수 있다.
3GPP LTE 시스템의 경우, 각각의 UE을 위해 PDCCH가 위치할 수 있는 CCE 세트를 정의하였다. UE가 자신의 PDCCH를 발견할 수 있는 CCE 세트를 PDCCH 탐색 공간, 간단히 탐색 공간(Search Space, SS)라고 지칭한다. 탐색 공간 내에서 PDCCH가 전송될 수 있는 개별 자원을 PDCCH 후보라고 지칭한다. UE가 모니터할 PDCCH 후보들의 모음은 탐색 공간으로 정의된다. 하나의 PDCCH 후보는 CCE 집성 레벨에 따라 1, 2, 4 또는 8개의 CCE에 대응한다. BS는 탐색 공간 내의 임의의 PDCCH 후보 상에서 실제 PDCCH (DCI)를 전송하고, UE는 PDCCH (DCI)를 찾기 위해 탐색 공간를 모니터링한다. 구체적으로, UE는 탐색 공간 내의 PDCCH 후보들에 대해 블라인드 복호(blind decoding)를 시도한다.
3GPP LTE 시스템에서 각각의 PDCCH 포맷을 위한 탐색 공간은 다른 크기를 가질 수 있으며, 전용(dedicated) 탐색 공간과 공통(common) 탐색 공간이 정의되어 있다. 전용 탐색 공간은 UE-특정 탐색 공간이며, 각각의 개별 UE을 위해 구성된다. 공통 탐색 공간은 복수의 UE들을 위해 구성된다. 모든 UE는 공통 탐색 공간에 관한 정보를 제공받는다. 표 4는 탐색 공간들을 정의하는 집성 레벨들을 예시한 것이다.
표 4
Search Space | Number of PDCCH candidates | ||
Type | Aggregation level | Size [in CCEs] | |
UE-specific | 1 | 6 | 6 |
2 | 12 | 6 | |
4 | 8 | 2 | |
8 | 16 | 2 | |
Common | 4 | 16 | 4 |
8 | 16 | 2 |
각 집성 레벨로 해당 탐색 공간을 모니터하여, 자신의 PDCCH를 검출(detect)한 UE는 상기 검출된 PDCCH가 나르는 DCI를 기반으로 하향링크 서브프레임의 데이터영역에서 PDSCH를 복호 및/또는 상향링크 서브프레임의 데이터영역에서 PUSCH를 전송한다.
복수의 UE에 대한 복수의 PDCCH가 동일 서브프레임의 PDCCH 영역 내에서 전송될 수 있다. BS는 UE에게 해당 PDCCH가 PDCCH 영역의 어디에 있는지에 관한 정확한 정보를 제공하지 않는다. 따라서, UE는 서브프레임 내에서 PDCCH 후보(candidate)들의 집합을 모니터링 하여 자신의 PDCCH를 찾는다. 여기서, 모니터링이란 UE가 수신된 PDCCH 후보들을 각각의 DCI 포맷에 따라 복호(decoding) 시도하는 것을 말한다. 이를 블라인드 복호라 한다. 블라인드 복호를 통해, UE는 자신에게 전송된 PDCCH의 식별(identification)과 해당 PDCCH를 통해 전송되는 제어정보의 복호를 동시에 수행한다. 예를 들어, C-RNTI로 PDCCH를 디마스킹한 경우, CRC 에러가 없으면 UE는 자신의 PDCCH를 검출한 것이다. 한편, 블라인드 복호의 오버헤드를 감소시키기 위하여, PDCCH를 이용하여 전송되는 제어 정보의 종류보다 DCI 포맷의 개수가 더 작게 정의된다. DCI 포맷은 복수의 서로 다른 정보 필드를 포함한다. DCI 포맷에 따라 정보 필드의 종류, 정보 필드의 개수, 각 정보 필드의 비트 수 등이 달라진다. 또한, DCI 포맷에 따라 DCI 포맷에 정합되는 제어 정보의 사이즈가 달라진다. 임의의 DCI 포맷은 두 종류 이상의 제어 정보 전송에 사용될 수 있다.
표 5은 DCI 포맷 0이 전송하는 제어 정보의 예를 나타낸다. 아래에서 각 정보 필드의 비트 크기는 예시일 뿐, 필드의 비트 크기를 제한하는 것은 아니다.
표 5
Information Field | bit(s) | |
(1) | Flag for format 0/format 1A differentiation | 1 |
(2) | Hopping flag | 1 |
(3) | Resource block assignment and hopping resource allocation | ceil{log2(NUL RB(NUL RB+1)/2)} |
(4) | Modulation and coding scheme and redundancy version | 5 |
(5) | New data indicator | 1 |
(6) | TPC command for scheduled PUSCH | 2 |
(7) | Cyclic shift for DMRS | 3 |
(8) | UL index (TDD) | 2 |
(9) | CQI request | 1 |
플래그 필드는 포맷 0과 포맷 1A의 구별을 위한 정보 필드이다. 즉, DCI 포맷 0과 1A는 동일한 페이로드 사이즈를 가지며 플래그 필드에 의해 구분된다. 자원블록 할당 및 호핑 자원 할당 필드는 호핑 PUSCH 또는 논-호핑(non-hoppping) PUSCH에 따라 필드의 비트 크기가 달라질 수 있다. 논-호핑 PUSCH를 위한 자원블록 할당 및 호핑 자원 할당 필드는 ceil{log2(NUL
RB(NUL
RB+1)/2)} 비트를 상향링크 서브프레임 내 첫 번째 슬롯의 자원 할당에 제공한다. 여기서, NUL
RB은 상향링크 슬롯에 포함되는 자원블록의 수로, 셀에서 설정되는 상향링크 전송 대역폭에 종속한다. 따라서, DCI 포맷 0의 페이로드 사이즈는 상향링크 대역폭에 따라 달라질 수 있다. DCI 포맷 1A는 PDSCH 할당을 위한 정보 필드를 포함하고 DCI 포맷 1A의 페이로드 사이즈도 하향링크 대역폭에 따라 달라질 수 있다. DCI 포맷 1A는 DCI 포맷 0에 대해 기준 정보 비트 사이즈를 제공한다. 따라서, DCI 포맷 0의 정보 비트들의 수가 DCI 포맷 1A의 정보 비트들의 수보다 적은 경우, DCI 포맷 0의 페이로드 사이즈가 DCI 포맷 1A의 페이로드 사이즈와 동일해질 때까지 DCI 포맷 0에 '0'이 부가된다. 부가된 '0'은 DCI 포맷의 패딩 필드(padding field)에 채워진다.
한편, 블라인드 복호 시도에 따른 연산 부하를 일정 수준 이하로 유지하기 위해, 모든 DCI 포맷이 동시에 탐색되지는 않는다. 예를 들어, UE는 전송 모드 1부터 9 중 하나에 따라 PDCCH를 통해 시그널링된 PDSCH 데이터 전송을 수신하도록, 상위 계층 시그널링에 의해 반-정적으로(semi-statically) 구성된다. 표 6은 다중-안테나 기술을 구성하기 위한 전송 모드 및 해당 전송 모드에서 UE가 블라인드 복호를 수행하는 DCI 포맷을 예시한 것이다.
표 6
Transmission mode | DCI format | Search Space | Transmission scheme of PDSCH corresponding to PDCCH |
Mode 1 | DCI format 1A | Common andUE specific by C-RNTI | Single-antenna port, port 0 |
DCI format 1 | UE specific by C-RNTI | Single-antenna port, port 0 | |
Mode 2 | DCI format 1A | Common andUE specific by C-RNTI | Transmit diversity |
DCI format 1 | UE specific by C-RNTI | Transmit diversity | |
Mode 3 | DCI format 1A | Common andUE specific by C-RNTI | Transmit diversity |
DCI format 2A | UE specific by C-RNTI | Large delay CDD or Transmit diversity | |
Mode 4 | DCI format 1A | Common andUE specific by C-RNTI | Transmit diversity |
DCI format 2 | UE specific by C-RNTI | Closed-loop spatial multiplexing or Transmit diversity | |
Mode 5 | DCI format 1A | Common andUE specific by C-RNTI | Transmit diversity |
DCI format 1D | UE specific by C-RNTI | Multi-user MIMO | |
Mode 6 | DCI format 1A | Common andUE specific by C-RNTI | Transmit diversity |
DCI format 1B | UE specific by C-RNTI | Closed-loop spatial multiplexing using a single transmission layer | |
Mode 7 | DCI format 1A | Common andUE specific by C-RNTI | If the number of PBCH antenna ports is one, Single antenna port, port 0 is used, otherwise Transmit diversity |
DCI format 1 | UE specific by C-RNTI | Single-antenna port, port 5 | |
Mode 8 | DCI format 1A | Common andUE specific by C-RNTI | If the number of PBCH antenna ports is one, Single antenna port, port 0 is used, otherwise Transmit diversity |
DCI format 2B | UE specific by C-RNTI | Dual laayer transmission, port 7 and 8 or single-antenna port, port 7 or 8 | |
Mode 9 | DCI format 1A | Common andUE specific by C-RNTI | Non-MBSFN subframe: If the number of PBCH antenna ports is one, Single-antenna port, port 0 is used, otherwise If the number of PBCH antenna ports is one, Single antenna port, port 0 is used, otherwise Transmit diversityMBSFN subframe: Single-antenna port, port 7 |
DCI format 2C | UE specific by C-RNTI | Up to 8 layer transmission, ports 7-14 |
특히, 표 6은 C-RNTI에 의해 구성된 PDCCH 및 PDSCH의 관계를 나타내며, 상위 계층에 의해 C-RNTI에 스크램블링된 CRC로 PDCCH를 복호하도록 구성된 UE는 상기 PDCCH를 복호하고 표 6에 정의된 각 조합에 따라 해당 PDSCH를 복호한다. 예를 들어, UE가 상위 계층 시그널링에 의해 전송 모드 1으로 구성되면, 상기 DCI 포맷 1A 및 1으로 PDCCH를 각각 복호하여 DCI를 획득한다.
PDCCH의 전송/수신을 조금 더 구체적으로 설명하면, BS는 DCI 포맷에 따라 제어 정보를 생성한다. BS는 UE로 보내려는 제어 정보에 따라 복수의 DCI 포맷(DCI format 1, 2,..., N) 중 하나의 DCI 포맷을 선택할 수 있다. 각각의 DCI 포맷에 따라 생성된 제어 정보에 에러 검출(error detection)을 위한 CRC(Cyclic Redundancy Check)를 부착한다. CRC에는 PDCCH의 소유자(owner)나 용도에 따라 식별자(예, RNTI(Radio Network Temporary Identifier))가 마스킹 된다. 다른 말로, PDCCH는 식별자(예, RNTI)로 CRC 스크램블 된다. C-RNTI가 사용되면 PDCCH는 해당하는 특정 UE를 위한 제어 정보를 나르고, 그 외 다른 RNTI(예를 들어, P-RNTI, SI-RNTI, RA-RNTI)가 사용되면 PDCCH는 셀 내 모든 UE가 수신하는 공통 제어 정보를 나른다. BS는 CRC가 부가된 제어 정보에 채널 코딩을 수행하여 부호화된 데이터(coded data)를 생성한다. DCI 포맷에 할당된 CCE 집성 레벨(aggregation level)에 따른 레이트 매칭(rate matching)을 수행하고, 부호화된 데이터를 변조하여 변조 심볼들을 생성한다. 하나의 PDCCH를 구성하는 변조 심볼들은 CCE 집성 레벨이 1, 2, 4, 8 중 하나일 수 있다. 변조 심볼들은 물리적인 자원요소(RE)에 맵핑(CCE to RE mapping)에 맵핑된다. UE는 PDCCH를 검출하기 위해, 물리적인 자원요소를 CCE로 디맵핑(CCE to RE demapping)한다. UE는 자신이 어떤 CCE 집성 레벨로 PDCCH를 수신해야 하는지 모르므로 각각의 CCE 집성 레벨에 대해서 복조(Demodulation)한다. UE는 복조된 데이터에 레이트 디매칭(rate dematching)을 수행한다. UE는 자신이 어떤 DCI 포맷(또는 DCI 페이로드 사이즈)을 가진 제어 정보를 수신해야 하는지 모르기 때문에, 상기 UE가 구성된 전송 모드에 대한 각각의 DCI 포맷(또는 DCI 페이로드 사이즈)에 대해서 레이트 디매칭을 수행한다. 레이트 디매칭된 데이터에 코드 레이트에 따라 채널 복호를 수행하고, CRC를 체크하여 에러 발생 여부를 검출한다. 에러가 발생하지 않으면, UE는 자신의 PDCCH를 검출한 것으로 판단할 수 있다. 만일, 에러가 발생하면, UE는 다른 CCE 집성 레벨이나, 다른 DCI 포맷(또는 DCI 페이로드 사이즈)에 대해서 계속해서 블라인드 복호를 수행한다. 자신의 PDCCH를 검출한 UE는 복호된 데이터로부터 CRC를 제거하고 제어 정보를 획득한다.
한편, BS는 UE에 의한 PDCCH 및/PDSCH의 정확한 복조를 위하여, 채널상태의 추정, 신호의 복조 등을 위한 참조신호(reference signal, RS)를 전송한다. RS라 함은, UE와 UE가 서로 알고 있는 기정의된, 특별한 파형의 신호를 의미하며, 파일럿(pilot)이라고도 한다.
도 4는 3GPP LTE(-A) 시스템에서 사용되는 참조신호를 예시한 것이다. 특히, 도 4(a)는 일반 CP를 갖는 서브프레임에서 RS 자원들의 위치를 나타내고, 도 4(b)는 확장 CP를 갖는 서브프레임 내 RS 자원들의 위치를 나타낸다.
RS들은 크게 전용 참조신호(dedicated reference signal, DRS)와 공통 참조신호(common reference signal, CRS)로 분류될 있다. RS들은 복조용 참조신호와 채널측정용 참조신호로 분류되기도 한다. CRS와 DRS는 각각 셀-특정(cell-specific) RS와 복조(demodulation) RS(DMRS)라 불리기도 한다. 또한, DMRS는 UE-특정(UE-specific) RS라고 불리기도 한다. DMRS와 CRS는 함께 전송될 수도 있으나 둘 중 한 가지만 전송될 수도 있다. 다만, CRS없이 DMRS만 전송되는 경우, 데이터와 동일한 프리코더를 적용하여 전송되는 DMRS는 복조 목적으로만 사용될 수 있으므로, 채널측정용 RS가 별도로 제공되어야 한다. 예를 들어, 3GPP LTE(-A)에서는 UE가 채널 상태 정보를 측정할 수 있도록 하기 위하여, 추가적인 측정용 RS인 CSI-RS가 상기 UE에게 전송된다(미도시). CSI-RS는 채널상태가 상대적으로 시간에 따른 변화도가 크지 않다는 사실에 기반하여, 매 서브프레임마다 전송되는 CRS와 달리, 다수의 서브프레임으로 구성되는 소정 전송 주기마다 전송된다.
도 4에서, CRS RE들은 안테나 포트 0부터 안테나 포트 4가 CRS 전송에 사용하는 RE들을 나타낸다. CRS는 PDSCH 전송을 지원하는 셀 내 모든 하향링크 서브프레임에서 전송된다. CRS는 복조 목적 및 측정 목적 둘 다에 이용될 수 있으며, 셀 내 모든 사용자기기에 의해 공용된다. CRS 시퀀스는 레이어의 개수에 관계없이 모든 안테나 포트에서 전송된다.
도 4에서, D로 표시된 RE들은 BS가 단일 안테나 포트를 통해 PDSCH 전송을 수행하는 경우, 상기 PDSCH의 복조를 위한 RS 전송에 사용되는 RE들을 나타낸다. 한편, 도 4에서, UE-특정 RS RE들은 최대 8개 안테나 포트를 통한 PDSCH의 복조를 위한 RS 전송에 사용된다. BS는 데이터 복조가 필요한 경우 RE들에서 UE-특정 RS를 전송하며, UE-특정 RS의 존재 유무는 상위 계층에 의해 UE에게 통지된다.
도 5는 3GPP LTE(-A) 시스템에서 사용되는 상향링크 서브프레임 구조의 일례를 나타낸 것이다.
도 5를 참조하면, 상향링크 서브프레임은 주파수 도메인에서 제어영역과 데이터영역으로 구분될 수 있다. 하나 또는 여러 PUCCH(physical uplink control channel)가 UCI(uplink control information)를 나르기 위해, 상기 제어영역에 할당될 수 있다. 일 PUCCH가 나르는 UCI는 PUCCH 포맷에 따라서 그 크기와 용도가 다르며, 부호화율에 따라 그 크기가 달라질 수 있다.
하나 또는 여러 PUSCH(physical uplink shared channel)가 사용자 데이터를 나르기 위해, 상향링크 서브프레임의 데이터영역에 할당될 수 있다. UE가 상향링크 전송에 SC-FDMA 방식을 채택하는 경우, 단일 반송파 특성을 유지하기 위해, 3GPP LTE 릴리즈(release) 8 혹은 릴리즈 9 시스템에서는, 일 반송파 상에서는 PUCCH와 PUSCH를 동시에 전송할 수 없다. 3GPP LTE 릴리즈 10 시스템에서는, PUCCH와 PUSCH의 동시 전송 지원 여부가 상위 계층에서 지시될 수 있다.
상향링크 서브프레임에서는 DC(Direct Current) 부반송파를 기준으로 거리가 먼 부반송파들이 제어영역으로 활용된다. 다시 말해, 상향링크 전송 대역폭의 양쪽 끝부분에 위치하는 부반송파들이 상향링크 제어정보의 전송에 할당된다. DC 부반송파는 신호 전송에 사용되지 않고 남겨지는 성분으로, 주파수 상향변환 과정에서 반송파 주파수 f0로 맵핑된다. 일 UE에 대한 PUCCH는 일 서브프레임에서, 일 반송파 주파수에서 동작하는 자원들에 속한 RB 쌍에 할당되며, 상기 RB 쌍에 속한 RB들은 두 개의 슬롯에서 각각 다른 부반송파를 점유한다. 이와 같이 할당되는 PUCCH를, PUCCH에 할당된 RB쌍이 슬롯 경계에서 주파수 호핑된다고 표현한다. 다만, 주파수 호핑이 적용되지 않는 경우에는, RB 쌍이 동일한 부반송파를 점유한다.
도 6은 다중 반송파를 집성하여 통신을 수행하는 예를 나타낸다.
일반적인 무선 통신 시스템은 하나의 하향링크(downlink, DL) 대역과 이에 대응하는 하나의 상향링크(uplink, UL) 대역을 통해 데이터 송/수신을 수행(주파수분할듀플렉스(frequency division duplex, FDD) 모드의 경우)하거나, 소정 무선 프레임(Radio Frame)을 시간 도메인(time domain)에서 상향링크 시간 유닛과 하향링크 시간 유닛으로 구분하고, 상/하향링크 시간 유닛을 통해 데이터 송/수신을 수행(시분할듀플렉스(time division duplex, TDD) 모드의 경우)한다. 그러나, 최근 무선 통신 시스템에서, 보다 넓은 주파수 대역을 사용하기 위하여 복수의 상/하향링크 주파수 블록을 모아 더 큰 상/하향링크 대역폭을 사용하는 반송파 집성(carrier aggregation 또는 bandwidth aggregation) 기술의 도입이 논의되고 있다. 반송파 집성은 복수의 반송파 주파수를 사용하여 하향링크 혹은 상향링크 통신을 수행한다는 점에서, 복수의 직교하는 부반송파로 분할된 기본 주파수 대역을 하나의 반송파 주파수에 실어 하향링크 혹은 상향링크 통신을 수행하는 OFDM(orthogonal frequency division multiplexing) 시스템과 구분된다. 도 6을 참조하면, 상/하향링크에 각각 5개의 20MHz 컴포넌트 반송파(component carrier, CC)들이 모여서 100MHz의 대역폭이 지원될 수 있다. 각각의 CC들은 주파수 도메인에서 서로 인접하거나 비-인접할 수 있다. 도 6은 편의상 UL CC의 대역폭과 DL CC의 대역폭이 모두 동일하고 대칭인 경우가 도시되었으나, 각 CC의 대역폭은 독립적으로 정해질 수 있다. 또한, UL CC의 개수와 DL CC의 개수가 다른 비대칭적 반송파 집성도 가능하다. 특정 UE에게 한정된 DL/UL CC를 특정 UE에서의 구성된 (configured) 서빙 (serving) UL/DL CC라고 부를 수 있다.
BS는 상기 UE에 구성된 서빙 CC들 중 일부 또는 전부를 활성화(activate)하거나, 일부 CC를 비활성화(deactivate)함으로써, UE와의 통신에 사용할 수 있다. 상기 BS는 활성화/비활성화되는 CC를 변경할 수 있으며, 활성화/비활성화되는 CC의 개수를 변경할 수 있다. BS가 UE에 이용가능한 CC를 셀-특정적 혹은 UE-특정적으로 할당하면, 상기 UE에 대한 CC 할당이 전면적으로 재구성되거나 상기 UE가 핸드오버(handover)하지 않는 한, 일단 할당된 CC 중 적어도 하나는 비활성화되지 않는다. UE에 대한 CC 할당의 전면적인 재구성이 아닌 한 비활성화되지 않는 CC를 1차 CC(Primary CC, PCC)라고 칭하고, BS가 자유롭게 활성화/비활성화할 수 있는 CC를 2차 CC(Secondary CC, SCC)라고 칭한다. PCC와 SCC는 제어정보를 기준으로 구분될 수도 있다. 예를 들어, 특정 제어정보는 특정 CC를 통해서만 송수신되도록 설정될 수 있는데, 이러한 특정 CC를 PCC로 지칭하고, 나머지 CC(들)을 SCC(s)로 지칭할 수 있다.
한편, 3GPP LTE(-A)는 무선 자원을 관리하기 위해 셀(Cell)의 개념을 사용한다. 셀이라 함은 하향링크 자원(DL resources)와 상향링크 자원(UL resources)의 조합, 즉, DL CC와 UL CC의 조합으로 정의된다. 셀은 DL 자원 단독, 또는 DL 자원과 UL 자원의 조합으로 구성될 수 있다. 반송파 집성이 지원되는 경우, DL 자원(또는, DL CC)의 반송파 주파수(carrier frequency)와 UL 자원(또는, UL CC)의 반송파 주파수(carrier frequency) 사이의 링키지(linkage)는 시스템 정보에 의해 지시될 수 있다. 예를 들어, 시스템 정보 블록 타입2(System Information Block Type2, SIB2) 링키지(linkage)에 의해서 DL 자원과 UL 자원의 조합이 지시될 수 있다. 여기서, 반송파 주파수라 함은 각 셀 혹은 CC의 중심 주파수(center frequency)를 의미한다. 1차 주파수(Primary frequency) 상에서 동작하는 셀을 1차 셀(Primary Cell, PCell) 혹은 PCC로 지칭하고, 2차 주파수(Secondary frequency)(또는 SCC) 상에서 동작하는 셀을 2차 셀(Secondary Cell, SCell) 혹은 SCC로 지칭할 수 있다. 하향링크에서 PCell에 대응하는 반송파는 하향링크 1차 CC(DL PCC)라고 하며, 상향링크에서 PCell에 대응하는 반송파는 UL 1차 CC(DL PCC)라고 한다. SCell이라 함은 RRC(Radio Resource Control) 연결 설정이 이루어진 이후에 구성 가능하고 추가적인 무선 자원을 제공을 위해 사용될 수 있는 셀을 의미한다. UE의 성능(capabilities)에 따라, SCell이 PCell과 함께, 상기 UE를 위한 서빙 셀의 모음(set)를 형성할 수 있다. 하향링크에서 SCell에 대응하는 반송파는 DL 2차 CC(DL SCC)라 하며, 상향링크에서 상기 SCell에 대응하는 반송파는 UL 2차 CC(UL SCC)라 한다. RRC_CONNECTED 상태에 있지만 반송파 집성이 설정되지 않았거나 반송파 집성을 지원하지 않는 UE의 경우, PCell로만 구성된 서빙 셀이 단 하나 존재한다.
참고로, 반송파 집성에서 사용되는 셀(Cell)이라는 용어는 일 BS 혹은 일 안테나 그룹에 의해 통신 서비스가 제공되는 일정 지리적 영역을 지칭하는 셀(cell)이라는 용어와 구분된다. 일정 지리적 영역을 지칭하는 셀(cell)과 반송파 집성의 셀(Cell)을 구분하기 위하여, 본 발명에서는 반송파 집성의 셀(Cell)을 CC로 칭하고, 지리적 영역의 셀(cell)을 셀(cell)이라 칭한다.
시스템의 성능 향상을 위해 새로이 RRH (remote radio head)의 도입이 논의되고 있다. 한편, 반송파 집성 상황 하에서는 일 UE에 복수의 서빙 CC가 구성될 수 있으므로, 채널상황이 좋은 서빙 CC에서 다른 CC를 위한 UL/DL 그랜트를 전송하는 방안이 논의되고 있다. 이와 같이, 스케줄링 정보인 UL/DL 그랜트를 나르는 CC와 UL/DL 그랜트에 대응하는 UL/DL 전송이 수행되는 CC가 다른 경우, 이를 크로스-반송파 스케줄링이라 한다. 크로스-반송파 스케줄링에서 UL/DL 그랜트의 전송에 사용되는 CC를 스케줄링 CC라 하고, 상기 UL/DL 그랜트에 따른 UL/DL 전송에 사용되는 CC를 피스케줄링 CC라 한다. 상기 UL/DL 그랜트는 해당 피스케줄링 CC를 나타내는 정보를 포함할 수 있다. RRH 기술, 크로스-반송파 스케줄링 기술 등이 도입되면, BS가 전송해야 할 PDCCH의 양이 점점 늘어나게 된다. 그러나, PDCCH가 전송될 수 있는 PDCCH 영역의 크기는 종전과 동일하므로, PDCCH 전송이 시스템 성능의 보틀넥(bottleneck)으로 작용하게 된다. 따라서, PDCCH 전송이 시스템 성능을 제약하는 것을 방지하기 위하여, 하향링크 서브프레임의 PDSCH 영역을 이용하여 PDCCH 전송을 수행하려는 논의가 있다.
도 7은 하향링크 서브프레임의 데이터영역에 PDCCH를 할당하는 예를 나타낸다.
도 7을 참조하면, 서브프레임의 PDCCH 영역에는 기존 3GPP LTE 표준에 따른 PDCCH가 할당될 수 있다. 한편, PDSCH 영역의 일부 자원을 이용하여 PDCCH가 추가 할당될 수 있다. PDCCH가 PDSCH 영역에서 전송될 경우, 이러한 PDCCH는 CRS 기반의 전송 다이버시티(transmit diversity) 또는 공간 다중화(spatial multiplexing) 전송에 이용될 수 있을 뿐만 아니라, UE-특정 참조신호인 DMRS 기반으로도 동작할 수 있다. 이하, 하향링크 서브프레임의 선두 OFDM 심볼(들)에서 전송되는 기존의 PDCCH와의 구분을 위하여, PDSCH 영역에서 전송되는 PDCCH를 E-PDCCH(enhanced PDCCH) 혹은 A-PDCCH(advanced PDCCH)라 칭하여, 본 발명의 실시예들을 설명한다.
도 7을 참조하면, E-PDCCH 기반의 PDSCH1은 기존의 PDCCH 및 상기 PDCCH에 의한 PDSCH2를 통해 전송되는 물리 계층 정보 또는 상위 계층 정보를 이용하여 BS로부터 UE로 전송될 수 있다. E-PDCCH를 수신할 수 있도록 구성되는 UE는 기존의 PSS(primary synchronization signal), SSS(secondary synchronization signal), BCH(broadcast channel), PCFICH, PHICH, PCH(paging channel)의 일부 또는 전체를 수신하도록 구성될 수 있다.
E-PDCCH에 의해 스케줄링된 PDSCH는 E-PDSCH라고 불리기도 한다. 또한, PDCCH 및 E-PDCCH를 모두 구성하는 시스템과, E-PDCCH 없이 PDCCH만을 구성하던 기존 시스템과의 구분을 위하여 후자의 시스템을 레거시 시스템이라 칭한다. 본 발명의 실시예들에 있어서, 개선 시스템에 따라 구현된 UE, 다시 말해, 개선 UE는 PDCCH 및 E-PDCCH를 모두 수신할 수 있도록 구성된다고 가정된다. PDCCH만을 수신할 수 있도록 구현된 UE는 E-PDCCH를 수신할 수 있는 UE와 비교하면, 레거시 UE가 된다. 이하, PDCCH와 E-PDCCH를 동시에 수신할 수 있도록 구현된 UE 또는 릴레이를 위해, PDCCH와 E-PDCCH를 무선 프레임에 공존시키는 방안을 제시한다.
<E-PDCCH 탐색 공간 구성 정보>
도 8은 E-PDCCH 탐색 공간에 관한 정보의 전송/수신에 관한 본 발명의 실시예를 설명하기 위한 도면이다.
본 발명은 E-PDCCH를 위한 탐색 공간(이하, E-PDCCH 탐색 공간)을 PDCCH를 이용하여 UE에 제공할 것을 제안한다. E-PDCCH 탐색 공간이 RRC 시그널링에 의해 UE에 지시될 수도 있으나, 이 경우, E-PDCCH 탐색 공간의 동적 변경이 어렵고, E-PDCCH를 제공하지 않는 셀로부터 E-PDCCH를 제공하는 셀로의 핸드오버 절차가 번거로워질 수 있다는 단점이 있다. 따라서, 본 발명의 일 실시예는 E-PDCCH 탐색 공간에 관한 정보(이하, E-PDCCH 탐색 공간 구성 정보)를 DCI 포맷을 이용하여 전송/수신한다.
도 8(a)를 참조하면, 본 실시예의 구현을 위한 일 방법으로, E-PDCCH 탐색 공간 구성 정보를 나르는 새로운 포맷의 PDCCH(이하, 콤팩트 PDCCH(C-PDCCH))를 도입하는 것이 고려될 수 있다. UE는 E-PDCCH 탐색 공간을 알기 위해 C-PDCCH를 추가적으로 블라인드 복호하도록 구성된다. C-PDCCH는 기존 PDCCH를 위한 탐색 공간(이하, PDCCH 탐색 공간)에 위치될 수도 있으나, 별도의 콤팩트 공통/UE-특정 탐색 공간에 위치될 수도 있다. 다만, PDCCH와 E-PDCCH를 동시에 수신할 수 있는 UE는 모드 설정을 할 수 있도록 구성되어야 한다. 예를 들어, UE가 PDCCH 및 E-PDCCH를 동시에 모니터해야 하는지 여부가 사전에 설정될 수 있다. 또는 어떤 서브프레임(시간)에서 PDCCH 및 E-PDCCH 중에 어떤 채널을 모니터해야 하는지가 미리 설정될 수 있다. 개선 UE는 PDCCH 및 E-PDCCH를 동시에 모니터하도록 구성될 수 있고, 특정 서브프레임에서는 둘 중 하나만 모니터하도록 구성될 수 있다. 한편, 반송파 집성이 구성된 경우, C-PDCCH는 PCC 상의 탐색 공간에 관한 정보뿐만 아니라, SCC 상의 탐색 공간에 관한 정보를 포함한다. SCC 탐색 공간은 PCC의 PDSCH 영역에 존재한다고 가정한다.
도 8(b)를 참조하면, 본 실시예의 구현을 위한 다른 방법으로, 기존 PDCCH 포맷을 그대로 유지하되, E-PDCCH RNTI라는 새로운 RNTI의 추가가 고려될 수도 있다. 즉, E-PDCCH 탐색 공간 구성 정보가 기존 PDCCH를 통해 전송/수신되되, E-PDCCH 탐색 공간 구성 정보가 E-PDCCH RNTI로 마스킹되어 전송/수신될 수 있다. BS는 E-PDCCH 탐색 공간 정보를 나르는 PDCCH를 E-PDCCH RNTI로 마스킹하여 기존 PDCCH 영역에서 UE에게 전송하도록 구성될 수 있고, UE는 E-PDCCH RNTI로 PDCCH를 디마스킹하여 E-PDCCH 공간 구성 정보를 획득하도록 구성될 수 있다.
본 실시예에 있어서, C-PDCCH 혹은 기존의 PDCCH를 통해 전달되는 정보에는 E-PDCCH 탐색 공간의 구성 정보뿐만 아니라, 다음과 같은 추가 정보가 전달될 수 있다.
- FDD 서브프레임 구성 패턴(예, 8 비트 맵)
- TDD 서브프레임 구성 인덱스
- 자원 할당 타입 {0, 1, 2L, 2D}
- RA(resource allocation) 비트맵 {0/1, 2}
- PDCCH 시작 심볼
- PUCCH 자원
상기 기술된 정보 이외에도 E-PDCCH 혹은 PDSCH의 시작 및 끝 위치 정보, 즉, E-PDCCH 혹은 PDSCH가 시작되는 혹은 끝나는 OFDM 심볼을 지시하는 정보도 상기 추가 정보에 포함될 수 있다.
본 실시예는 BS와 UE 사이의 전송/수신에 적용될 수 있을 뿐만 아니라, BS와 릴레이 사이의 전송/수신에 적용될 수 있다. 이 경우, C-PDCCH 혹은 기존의 PDCCH를 통해 전달되는 추가 정보에는 인터리빙 혹은 비-인터리빙에 따른 DMRS 혹은 CRS 정보가 포함될 수 있다.
다음은 C-PDCCH 혹은 기존의 PDCCH를 통해 전송/수신되는 E-PDCCH 관련 시그널링 정보를 예시한 것이다.
상기 기술된 정보는 C-PDCCH 혹은 기존 PDCCH뿐만 아니라 MAC(Medium Access Control) 시그널링을 통해 전달될 수도 있다.
도 9는 E-PDCCH 탐색 공간에 관한 정보의 전송/수신에 관한 본 발명의 다른 실시예를 설명하기 위한 도면이다.
E-PDCCH 탐색 공간의 위치를 알려주는 수퍼 콤팩트 DCI(이하, SC DCI) 포맷이 특정 심볼 및 특정 자원영역에서 전송/수신될 수 있다. SC DCI는 PDCCH을 통해 혹은 PDSCH를 통해 전송/수신될 수 있다. SC DCI는 UE ID를 기반으로 블라인드 복호될 수 있다. SC DCI는 E-PDCCH 탐색 공간을 지시하는 것이 주요 목적이므로, 매우 콤팩트한 형태로 구성될 수 있다. 따라서, SC DCI의 전송을 위한 CCE는 9개의 REG로 구성되는 기존 PDCCH의 CCE(이하, 레거시 CCE)보다 훨씬 적은 자원들로 구성된다. 이하, SC DCI를 위한 CCE를 미니 CCE라 칭한다. 예를 들어, 일 미니 CCE는 E-PDCCH VRB 세트 주소 혹은 번호를 포함하는 3개 또는 4개 REG 크기의 DCI 포맷으로 구성될 수 있다. 도 9를 참조하면, 세 번째 혹은 네 번째 OFDM 심볼 내 전체 RB들 혹은 특정 RB들이 4개 REG로 구성된 미니 CCE 상에서 전송/수신되는 SC DCI를 위한 새로운 탐색 공간으로 정의될 수 있다.
본 실시예에 의하면, SC DCI에 의해 E-PDCCH 탐색 공간이 동적으로 구성될 수 있으므로, PDCCH 용량이 증가될 수 있다. 또한, 본 발명에 의하면, 미니 CCE가 E-PDCCH 탐색 공간 구성 정보의 전송에 사용되므로, 제한된 무선 자원 영역을 이용하여, 보다 많은 UE들에게 통신 서비스가 제공될 수 있다. 즉, UE 용량이 증가된다. 통상, 20MHz 대역폭과 100개 RB를 사용하는 시스템에서는 1개 OFDM 심볼에서 약 22개의 레거시 CCE가 사용되고, 3개 OFDM 심볼에서는 66개 레거시 CCE가 사용될 수 있다. 예를 들어, 4번째 OFDM 심볼에 3개 REG 크기의 미니 CCE를 사용하면, 1개 OFDM 심볼에서 66개 이상의 미니 CCE가 확보될 수 있고, 이를 통해 66개 이상의 E-PDCCH CCE가 어드레싱될 수 있다.
미니 CCE를 사용하면, UE가 동일한 탐색 공간에서 많은 개수의 CCE를 블라인드 복호해야 한다는 추가 부담이 발생할 수 있다. 그러나, 이 문제는 미니 CCE를 위한 탐색 공간(이하, 미니 CCE 탐색 공간)를 작게 설정하고, 상기 미니 CCE 탐색 공간을 구성하는 REG의 개수를 적게 함으로써 해결될 수 있다. 예를 들어, 미니 CCE 탐색 공간이 16개 REG로 구성되면, 4개 REG를 갖는 미니 CCE의 경우, 4회의 블라인드 복호 복잡성만이 추가된다. 미니 CCE를 사용할 UE와 미니 CCE를 사용하지 않는 UE는 RRC 시그널링에 의해 사전에 구성될 수 있다.
추가적으로, E-PDCCH의 DCI의 일부 정보를 SC DCI에 포함시키는 것도 가능하다. E-PDCCH 탐색 공간뿐만 아니라, PDSCH RA 정보와 같은 DCI 포맷 필드 등도 SC DCI에 포함될 수 있다.
UE는 C-PDCCH, 기존 PDCCH 혹은 SC DCI를 기반으로 결정된 E-PDCCH 탐색 공간에서 블라인드 복호를 수행하여 자신의 E-PDCCH를 검출할 수 있으며, 상기 E-PDCCH가 나르는 DCI를 기반으로 PDSCH를 복호할 수 있다.
<E-PDCCH를 통한 전송모드 종속 DCI 포맷>
도 10은 전송모드 종속적 DCI와 폴백 DCI를 전송하는 본 발명의 실시예를 설명하기 위한 도면이다.
기존 3GPP LTE 시스템의 UE, 즉, 레거시 UE는 TM DCI와 폴백 DCI 둘 다 UE 식별자(ID)를 기반으로 PDCCH 탐색 공간에서 블라인드 복호한다. 이와 달리, 본 발명은 전송모드(transmission mode, TM) 종속적 DCI 포맷(이하, TM DCI 포맷)와 폴백 동작을 위해 도입된 DCI 포맷(예를 들어, DCI 포맷 1A)(이하, 폴백 DCI 포맷)를 서로 다른 탐색 공간에서 블라인드 복호하는 실시예를 제안한다.
예를 들어, 도 10을 참조하면, TM DCI 포맷의 DCI는 주로 E-PDCCH를 이용하여 전송/수신되고, 폴백 DCI 포맷의 DCI는 PDCCH를 이용하여 전송/수신된다. 이 경우, BS는 채널 상황이 정상적인 경우에는 해당 채널 상황이 반영되어 결정된 특정 TM에 따른 DCI 포맷으로 제어정보를 구성하여 E-PDCCH를 통해 UE에 상기 제어정보를 전송하고, 채널 상황이 비정상적이어서 상기 TM에 따른 DCI 포맷을 사용하는 것이 부적절한 경우에는 폴백 DCI 포맷으로 제어정보를 구성하여 PDCCH를 통해 상기 UE에 상기 제어정보를 전송한다. 이하, TM DCI 포맷으로 구성된 제어정보를 TM DCI라 하고, 폴백 DCI 포맷으로 구성된 제어정보를 폴백 DCI라 칭한다. 상기 UE는 상기 TM에 따라 정상적으로 하향링크 전송을 수신할 수 있는 경우에는 E-PDCCH(혹은 R-PDCCH)로부터 TM DCI를 복호하여 PDSCH1 복호에 사용하고, 채널상황이 정상적이지 않아 폴백 모드로 동작하는 경우에는 PDCCH로부터 폴백 DCI 복호하여 PDSCH1 복호에 사용한다. 즉, TM DCI는 E-PDCCH에서, 폴백 DCI는 PDCCH에서 블라인드 복호될 수 있다. 반대로, TM DCI는 PDCCH에서, 폴백 DCI는 E-PDCCH에서 전송/복호되는 것도 가능하다. PDCCH에서 TM DCI가 전송되고 E-PDCCH에서 DCI가 전송되는지, 아니면 PDCCH에서 폴백 DCI가 전송되고 E-PDCCH에서 TM DCI가 전송되는지 여부는 RRC 시그널링에 의해 사전에 미리 구성될 수 있다. 폴백 모드에서, PDCCH/E-PDCCH의 복호에는 E-PDCCH/PDCCH의 복호에 사용된 RNTI가 그대로 사용될 수도 있으나, 새로 정의된 RNTI를 사용될 수도 있다.
다른 예로, 레거시 UE처럼 PDCCH만을 이용하여 동작할 것인지 아니면 PDCCH와 E-PDCCH를 모두 이용할 것인지에 대한 구성이 RRC 시그널링에 의해 미리 UE에 통지될 수도 있다. 또는, 물리 계층이나 MAC 계층 시그널링에 의해 매 서브프레임 혹은 필요할 때마다 UE에게 통지될 수도 있다. <E-PDCCH 탐색 공간 구성> 실시예에서 설명된 방법처럼, E-PDCCH 구성에 관한 정보의 일부 또는 전체가 PDCCH 영역에서 전송/수신되는 것도 가능하다.
반송파 집성 상황에서는 SCC 스케줄링 할당(assignment) 정보를 나르는 E-PDCCH는 PCC PDSCH 영역에서 전송된다고 가정한다. 반송파 집성 상황에서도, TM DCI와 폴백 DCI가 분리되어 다른 영역에서 전송된다.
참고로, 도 10은 E-PDCCH가 FDM(frequency division multiplexing) 방식으로 PRB 쌍에 걸쳐 전송되는 경우를 예시하였으나, 슬롯을 경계로 하여 첫 번째 슬롯과 두 번째 슬롯에서 E-PDCCH 탐색 공간이 구분되어 구성되고, 각 탐색 공간에서 DL/UL 그랜트가 전송 혹은 수신될 수도 있다. 다른 예로, 첫 번째 슬롯에서는 DL 그랜트만 두 번째 슬롯에서는 UL 그랜트만 전송/수신되는 것으로 제약될 수도 있다.
본 실시예는 전술한 <E-PDCCH 탐색 공간 구성 정보>에 관한 실시예들과 함께 혹은 따로 사용될 수 있다.
<E-PDCCH에 의한 사전 스케줄링>
도 11 내지 도 13은 E-PDCCH에 의한 사전 스케줄링에 관한 본 발명의 실시예를 설명하기 위한 도면이다.
E-PDCCH가 동일 서브프레임에서 전송/수신되는 PDSCH를 스케줄링하면, ACK/NACK 전송을 위한 프로세싱 시간이 부족해질 수 있다. 따라서, 본 발명에서는 E-PDCCH가 PDSCH가 전송되는 서브프레임보다 앞에 위치하는 서브프레임에서 전송/수신되는 실시예를 제안한다. 이하, 사전 스케줄링 정보를 나르는 E-PDCCH가 위치하는 서브프레임을 스케줄링 서브프레임이라 칭하고, 상기 스케줄링 정보에 의한 PDCCH가 위치하는 서브프레임을 피스케줄링 서브프레임이라 칭한다.
도 11을 참조하면, PDCCH는 해당 서브프레임의 PDSCH를 스케줄링하는 정보를 나른다. 즉, PDCCH의 경우, 스케줄링 서브프레임과 피스케줄링 서브프레임이 동일하다. E-PDCCH는 스케줄링 서브프레임인 서브프레임 #n 다음에 오는 서브프레임 #n+1의 PDSCH를 스케줄링하는 정보를 나를 수 있다. 도 11에서는 1개 서브프레임 전에 피스케줄링 서브프레임을 위한 UL/DL 전송의 스케줄링 정보를 나르는 E-PDCCH가 전송/수신되는 경우가 예시되었으나, 그 이전 임의의 서브프레임에서도 상기 E-PDCCH가 전송/수신될 수 있다. 사전 스케줄링 정보를 나르는 E-PDCCH가 전송/수신되는 서브프레임의 위치가 가변되는 것도 가능하나, 구현의 편의를 고려하면, 사전 스케줄링 정보를 나르는 E-PDCCH가 전송/수신되는 서브프레임이 사전에 지정되는 것이 좋다.
도 12를 참조하면, 피스케줄링 서브프레임(서브프레임 #n+k)의 k개 이전 서브프레임(서브프레임 #n)의 PDSCH에 상기 피스케줄링 서브프레임을 위한 E-PDCCH가 삽입(embed)되어 전송/수신될 수 있다. 여기서, k는 양의 정수이며, 예를 들어, k는 FDD의 경우 1일 수 있으며, TDD의 경우 해당 TDD DL-UL 구성에 따라 결정될 수 있다. UE는 상기 서브프레임 #n에서 PDSCH를 복조하여, 서브프레임 #n+k에 할당된 PDSCH1에 대한 스케줄링 할당(assignment)를 획득할 수 있다. 다시 말해, UE는 서브프레임 #n의 PDCCH를 바탕으로 PDSCH 및 E-PDCCH를 획득하고, 상기 E-PDCCH가 가리키는 상기 서브프레임 #n 이후에 위치한 서브프레임에서 PDSCH1을 획득한다. 따라서, 서브프레임 #n에서 전송된 하나의 PDCCH를 이용하여, 서브프레임 #n과 서브프레임 #n+k에 걸쳐 PDSCH 및 PDSCH1이 전송/수신될 수 있다. 도 12의 방법에 의하면, E-PDCCH를 위한 별도의 탐색 공간이 필요하지 않으며, 스케줄링할 UE가 많아서 PDCCH 다중화 용량이 부족한 경우, 번들된(bundled) 서브프레임 스케줄링 형태로 스케줄링 할당이 가능해진다.
도 12에서, E-PDCCH는 PDSCH의 특정 영역에 레이트 매칭 또는 펑처링 형태로 삽입될 수 있다. 이 경우, 상기 특정 영역은 사전에 미리 정의되거나 또는 PDSCH 자원할당(resource assignment, RA) 정보를 바탕으로 유추될 수 있다. 즉, UE별로 E-PDCCH용 특정 영역이 미리 지정되거나, PDSCH 내 E-PDCCH 자원이 RA를 기반으로 유추될 수 있다. 예를 들어, RA 비트맵이 가리키는 가장 작은(큰) 인덱스의 첫 번째(두 번째) 자원이 E-PDCCH에 이용될 수 있다. CCE 집성과 같이 낮은 코드 레이트가 요구되는 경우에는 주파수-우선(frequency-first) 맵핑 혹은 시간-우선(time-first) 맵핑 규칙을 이용하여, 인접 자원으로 E-PDCCH가 맵핑되는 영역이 확대된다. 또는 타입 0 RA의 경우, 자원블록그룹(RBG)당 하나의 RB만 E-PDCCH로 할당되도록 정의될 수 있다. 이와 같이 E-PDCCH가 PDSCH 영역 내 독립적인 위치에 별도로 맵핑되면, E-PDCCH만 별도로 복호되는 것이 가능하다. 복호된 E-PDCCH는 서브프레임 #n+k에 존재하는 PDSCH1에 대한 스케줄링 정보를 나른다. 한편, E-PDCCH가 PDSCH와 같이 데이터로 취급되어 함께 부호화(encode)될 수도 있다.
도 13은 도 12를 반송파 집성의 경우로 확장한 예를 나타낸다. 도 13을 참조하면, SCC를 통해 전송되는 PDSCH(이하, SCC PDSCH)들 중 서브프레임 #n의 SCC PDSCH1에 대한 스케줄링 정보가 서브프레임 #n에서 PCC를 통해 전송된다는 점을 제외하고는 도 11 및 도 12에서 설명한 기술이 그대로 적용될 수 있다.
도 11 내지 도 13의 실시예들에 있어서, E-PDCCH에 의한 사전 스케줄링 여부는 사전에 RRC에 의해 구성되거나, 전송 모드와 연계되어 구성될 수 있다. 혹은 PDCCH에 E-PDCCH 존재여부를 알려주는 지시정보가 포함될 수도 있다.
본 실시예는 전술한 <E-PDCCH 탐색 공간 구성 정보> 및/또는 <E-PDCCH를 통한 전송모드 종속 DCI 포맷>에 관한 실시예들과 함께 혹은 따로 사용될 수 있다.
<E-PDCCH에 의한 크로스-반송파 스케줄링>
도 14 내지 도 16은 E-PDCCH에 의한 크로스-반송파 스케줄링에 관한 본 발명의 실시예를 설명하기 위한 도면이다.
전술한 실시예들에서는 E-PDCCH가 PDSCH1에 대한 스케줄링 할당을 전달하는 용도로 사용된다. 본 발명은 E-PDCCH는 크로스-반송파 스케줄링에 이용하는 실시예를 제안한다. 예를 들어, SCC를 위한 PDCCH(이하, SCC PDCCH)가 PDCCH 영역 대신 PDSCH 영역에서 전송/수신되어, PCC 상에서 전송/수신되는 PDSCH(이하, PCC PDSCH) 및/또는 SCC PDSCH에 대한 스케줄링 할당에 이용될 수 있다.
예를 들어, 도 14를 참조하면, UE가 PDCCH를 청취할 수 없거나, PDCCH가 PDSCH 스케줄링에 관여하지 않는 경우, E-PDCCH가 PCC PDSCH 및 SCC PDCCH에 관한 스케줄링 정보를 나른다.
다른 예로, PDCCH와 E-PDCCH의 조합으로 크로스-반송파 스케줄링이 수행될 수도 있다. 도 15를 참조하면, PDCCH는 PCC PDSCH2와 연관된 스케줄링 할당만 나르고, E-PDCCH는 PCC PDSCH1 및 SCC PDSCH1뿐만 아니라 SCC PDSCH2에 대한 스케줄링 할당을 나를 수 있다. 즉, E-PDCCH가 다수의 반송파에 대한 스케줄링 정보를 나를 수 있다. 이 경우, E-PDCCH만을 청취하도록 구성된 UE에게 스케줄링 CC인 콤퍼넌트 반송파 #1과 피스케줄링 CC인 콤퍼넌트 반송파 #2 둘 다에 대한 스케줄링 할당이 가능하다.
도 16을 참조하면, PDCCH는 PCC PDSCH2에 대한 스케줄링 할당만 나르고, 그 외 PDSCH1, SCC PDSCH1, SCC PDSCH2에 대한 할당 정보는 E-PDCCH가 나를 수도 있다. 다시 말해, E-PDCCH가 크로스-반송파 전용으로만 사용되는 것도 가능하다.
반송파 집성이 구성되면, 하향링크 제어정보의 양이 늘어나게 되어, PDCCH 영역이 부족해지는 경우가 발생할 수 있다. 여기에, 크로스-반송파 스케줄링이 수행되면, PDCCH 영역만으로는 필요한 하향링크 제어정보가 전송될 수 없는 상태가 발생할 수 있다. 본 실시예에 따라, 크로스-반송파 스케줄링에 E-PDCCH가 사용되면, PDCCH 영역의 용량 부족 문제가 해소될 수 있다.
도 13 내지 도 16에서는 PCC인 콤퍼넌트 반송파 #1이 스케줄링 CC이고 SCC인 콤퍼넌트 반송파 #2가 피스케줄링 CC인 경우를 예시하였으나, 스케줄링 CC가 반드시 PCC일 필요는 없다. 즉, SCC도 스케줄링 CC가 되어 다른 SCC에 관한 스케줄링 정보의 전송/수신에 사용될 수 있다.
본 실시예는 전술한 <E-PDCCH 탐색 공간 구성 정보>, <E-PDCCH를 통한 전송모드 종속 DCI 포맷> 및/또는 <E-PDCCH에 의한 사전 스케줄링>에 관한 실시예들과 함께 혹은 따로 사용될 수 있다.
<집성 레벨에 따른 E-PDCCH/PDCCH 전송>
전술한 본 발명의 실시예들에 있어서, PDCCH 전송과 E-PDCCH 전송에 서로 다른 집성 레벨이 사용될 수 있다. 표 4를 참조하면, 하위 집성 레벨(예를 들어, CCE 집성 레벨 1 혹은 2)의 PDCCH 후보는 차지하는 자원이 많지 않은 반면에, 상위 집성 레벨(예를 들어, CCE 집성 레벨 4 혹은 8)의 PDCCH 후보는 차지하는 자원이 상대적으로 많다. 따라서, 본 발명은 E-PDCCH는 하위 집성 레벨로 PDSCH 영역에서 전송/수신되도록 구성하고, PDCCH는 상위 집성 레벨로 PDCCH 영역에서 전송/수신되도록 구성할 것을 제안한다. 다시 말해, 높은 집성 레벨을 필요로 하는 DCI는 PDCCH 영역에서 전송/수신되고, 높은 집성 레벨을 필요로 하지 않는 DCI는 PDSCH 영역에서 전송/수신될 수 있다. 예를 들어, PDCCH는 집성 레벨 4 혹은 8로 전송되고, E-PDCCH는 집성 레벨 1 혹은 2로 전송되는 것으로 정의된다고 가정하면, UE는 PDCCH 영역 내 탐색 공간에서는 집성 레벨 4와 집성 레벨 8에서만 PDCCH를 모니터링하고, PDSCH 영역 내 탐색 공간에서는 집성 레벨 1과 집성 레벨 2로만 E-PDCCH를 모니터링하면 된다.
<제어정보의 특성에 따른 E-PDCCH/PDCCH 전송>
제어정보의 특성에 따라서 PDCCH 전송과 E-PDCCH 전송이 적절히 조합되어 운영될 수 있다. 복수의 UE들이 공통으로 복호를 시도해야 하는 공통 제어 정보는 PDCCH 상에서 전송/수신되고, 특정 UE 혹은 UE 그룹을 위한 전용 제어 정보(즉, UE-특정 제어 정보)는 E-PDCCH 상에서 전송/수신될 수 있다. 이 경우, PDCCH가 나르는 공통 제어 정보는 E-PDCCH 상에서는 전송/수신되지 않을 수 있다. 이는 E-PDCCH가 공통 탐색 공간에서는 전송되지 않고, 전용 탐색 공간에서만 전송되는 것으로 볼 수 있다. 시스템 정보 혹은 셀 선택/재선택 정보와 같은 중요한 정보의 변경 및 갱신 정보, 그 외 방송 정보(예를 들어, 마스터 정보 블록(master information block, MIB) 메시지, 시스템 정보 블록 타입 1(system information block type 1, SIB1) 메시지, 시스템 정보(system information, SI) 메시지), 3GPP LTE-A 시스템에 따른 공통 탐색 공간에서 전송되도록 정의된 메시지 등이 공통 제어 정보가 될 수 있으며, 동적 스케줄링 정보(예를 들어, DL 할당, UL 스케줄링 그랜트 등)와 이와 연관된 정보가 전용 제어 정보가 될 수 있다. 참고로, SI-RNTI로 마스킹된 MIB 메시지, SIB1 메시지 및 SI 메시지와, P-RNTI로 마스킹된 페이징 메시지, RA-RNTI로 마스킹된 임의접속채널(random access response channel, RACH) 응답 메시지가 공통 탐색 공간에서 전송/수신될 수 있다.
공통 탐색 공간과 전용 탐색 공간이 모두 E-PDCCH를 위한 탐색 공간으로 존재하는 것도 가능하다. E-PDCCH를 위한 공통 탐색 공간(이하, E-PDCCH 공통 탐색 공간)에서는 여러 UE에 의해 공용되는 중요 정보가 E-PDCCH를 통해 전송/수신되고, E-PDCCH를 위한 전용 탐색 공간(이하, E-PDCCH 전용 탐색 공간)에서는 앞서 언급한 동적 스케줄링 정보가 E-PDCCH를 통해 전송/수신될 수 있다. 다만, UE는, 앞서 언급된 중요 정보가 전송/수신되도록 지정된 특별 서브프레임(예를 들어, 서브프레임 번호가 0 또는 5인 서브프레임(SF #0 또는 SF #5))에서는, E-PDCCH 공통 탐색 공간이 아닌, PDCCH를 위한 공통 탐색 공간(이하, PDCCH 공통 탐색 공간)에서 블라인드 복호를 수행하여 상기 중요 정보를 획득하도록 구성될 수도 있다. 또한, 특정 중요 정보, 예를 들어, 페이징 정보, 전력 제어 명령 등을 획득할 수 있도록 하기 위하여, 임의로 PDCCH를 청취(hearing)할 수 있도록 UE가 구성되는 것도 가능하다. 이와 같이, DCI의 수신을 위하여 E-PDCCH 공통 탐색 공간과 E-PDCCH 전용 탐색 공간 모두에서 블라인드 복호를 수행하더라도, E-PDCCH의 검출을 위한 블라인드 복호의 복잡도(complexity)에는 변화가 없다.
<폴백 모드>
E-PDCCH는 하향링크 서브프레임의 PDCCH 영역에서 제어정보가 전송되어야 하는 구조를 탈피하여, PDSCH 영역 어딘가에서 제어정보가 전송될 수 있는 구조적인 특징을 갖는다. 이러한 구조적 특징은 매크로 BS에 의해 통신 서비스가 제공되는 매크로 셀과, 매크로 BS에 비해 서비스 커버리지가 작은 마이크로 BS에 의해 통신 서비스가 제공되는 마이크로 셀(예를 들어, 펨토 셀, 피코 셀 등)로 구성된 무선 네트워크에서 상기 매크로 셀과 상기 마이크로 셀 사이의 상호 간섭을 줄이는 목적으로 사용될 수도 있다. 예를 들어, 처음 2개 OFDM 심볼에 제어정보 및 RS가 존재하는 MBSFN(Multimedia Broadcast Single Frequency Network) 서브프레임이 구성됨과 동시에 해당 서브프레임에 ABS(almost blank subframe)가 적용되면, ABS에서는 특정 하향링크 신호(예를 들어, CRS)의 전송만이 허용되거나, 하향링크 신호가 아주 약한 전송전력으로만 전송되므로, 처음 2개 OFDM 심볼을 제외한 나머지 영역에서는 간섭이 제거 혹은 완화될 수 있다. 제어정보와 데이터는 이와 같이 간섭이 제한된 자원영역에서 전송될 수 있도록 구성되는 것이 바람직하다. 예를 들어, E-PDCCH가 존재할 수 있는 공간, 즉, 탐색 공간(search space, SS)은 RRC(Radio Resource Control) 시그널링 등에 의해 사전에 지정되고, UE는 해당 SS에 한해서 블라인드 복호를 수행하여 DL 할당(즉, DL 그랜트), UL 스케줄링 그랜트(즉, UL 그랜트) 등을 복호해 낼 수 있다. 나아가, E-PDCCH를 검출하기 위한 탐색 공간은 PDSCH 영역에 존재하므로, UL/DL 그랜트는 DMRS를 기반으로 복호되도록 구성될 수 있다.
상호 간섭을 미칠 수 있는 셀들 중 특정 셀이 ABS를 구성한 서브프레임에서 다른 셀의 E-PDCCH가 구성되더라도, 상기 서브프레임의 PDSCH 영역에 예기치 못한 간섭이 발생할 여지는 여전히 존재한다. 또한, E-PDCCH를 위한 탐색 공간 재설정, RRC 재구성 등으로 인하여, UE가 E-PDCCH를 정상적으로 복호할 수 없는 상황이 발생할 수 있다. 이러한 경우, E-PDCCH 대신 PDCCH를 복호하여 UE가 네트워크와의 통신을 수행하기 위해 필요한 DCI를 획득할 수 있도록 시스템을 디자인하는 것이, 무선 시스템 동작을 더 강건하게 할 수 있다. 따라서, 본 발명은 E-PDCCH를 복호하여 DCI를 수신하는 모드(이하, 일반(normal) 모드)로 동작할 뿐만 아니라, PDCCH를 복호하여 DCI를 수신하는 모드(이하, 폴백(fallback) 모드)로 동작하는 UE를 제안한다. 예를 들어, 본 실시예에 따른 UE는 E-PDCCH를 복호하여 PDSCH를 수신할 수 있을 뿐만 아니라 특정 상황 혹은 특정 서브프레임에서는 PDCCH를 복호하여 PDSCH를 수신하도록 구성될 수 있다. BS/UE는 일반적으로는 일반 모드에서 E-PDCCH에 의한 PDSCH 전송/수신을 수행하다가, 유사시 PDCCH에 의한 PDSCH 전송/수신을 수행하도록 폴백 모드로 전환할 수 있다.
UE가 폴백 모드로 전환하여 PDSCH 영역에서 PDCCH 검출을 시도하는 서브프레임은 미리 지정될 수 있다. 비정상적인 채널 상황으로 인하여, UE가 E-PDCCH를 수신할 수 없는 상황이 일정 시간 구간을 넘어서면, 그 이후로 PDCCH에 대한 블라인드 복호를 수행하는 것도 가능하다. UE는 특정 조건이 만족되면 E-PDCCH 대신 PDCCH의 복호를 시도하도록 구성될 수 있다. 예를 들어, E-PDCCH 수신 품질이 임계 값 이하로 내려가는 경우, E-PDCCH 복호 실패가 지정된 시간 구간에서 N번 이상 지속되는 경우, E-PDCCH 복호 실패가 시작된 이후로 N개 서브프레임(즉, 시간)이 경과한 경우, E-PDCCH 복호 실패가 시작할 때 타이머를 가동하고 상기 타이머가 만료된 경우 등이 상기 특정 조건으로서 이용될 수 있다. E-PDCCH 검출에 실패한 UE는 PDCCH를 복호할 수 있도록 지정된 서브프레임에서 필요한 DCI를 얻을 수 있다.
PDCCH에 의한 PDSCH는 E-PDCCH에 의한 PDSCH, 즉, E-PDSCH와 동일한 내용을 나를 수도 있지만, 새로운 내용을 나르도록 구성될 수도 있다. 이하, UE가 PDCCH의 검출만을 시도하는 서브프레임을 폴백 서브프레임이라 칭한다.
폴백 서브프레임은 각 무선 프레임에서 지정되거나, 무선 프레임의 정수배마다 특정 서브프레임으로 지정될 수 있다. 또는, 브로드캐스트(예를 들어, BCH, 페이징 등) 정보가 전송되는 서브프레임 혹은 브로드캐스트 정보와 연관된 서브프레임이 폴백 서브프레임으로 설정될 수도 있다. 또는, 사전에 RRC에 의해 구성된 특정 서브프레임 또는 서브프레임 패턴에 대응하는 서브프레임이 폴백 서브프레임으로 설정될 수도 있다.
전술한 <E-PDCCH 탐색 공간 구성 정보>, <E-PDCCH를 통한 전송모드 종속 DCI 포맷>, <E-PDCCH에 의한 사전 스케줄링>, <E-PDCCH에 의한 크로스-반송파 스케줄링>, <집성 레벨에 따른 E-PDCCH/PDCCH 전송> 및/또는 <제어정보의 특성에 따른 E-PDCCH/PDCCH 전송>의 실시예들 중 어느 하나에 따라 UE가 E-PDCCH를 복호하여 PDSCH를 수신/복조하는 일반 모드로 동작하는 서브프레임과, PDCCH를 복호하여 PDSCH를 수신/복조하는 폴백 모드로 동작하는 폴백 서브프레임이 무선 프레임에 설정될 수 있다. 특히, 폴백 서브프레임은 E-PDCCH 수신이 어렵거나 혹은 수신하지 않도록 약속된 서브프레임으로서, UE는 해당 서브프레임에서는 PDCCH를 복호하여 PDSCH 또는 E-PDSCH를 복호한다.
전술한 본 발명의 실시예들은 E-PDCCH가 PDSCH에 대한 스케줄링 정보인 DL 그랜트를 나르는 경우를 예로 하여 주로 설명되었다. 그러나, E-PDCCH는 DL 그랜트가 아닌 다른 DCI를 나르는 경우에도 적용될 수 있다. 예를 들어, E-PDCCH는 UL 그랜트를 나를 수도 있으며, 이 경우, 상기 E-PDCCH를 검출한 UE는 상기 E-PDCCH가 검출된 하향링크 서브프레임과 연관된 상향링크 서브프레임(예를 들어, 소정 개수의 서브프레임 이후의 상향링크 서브프레임)에서 상기 UL 그랜트에 따른 PUSCH를 전송하도록 구성될 수 있다.
도 17은 본 발명을 수행하는 전송장치(10) 및 수신장치(20)의 구성요소를 나타내는 블록도이다.
전송장치(10) 및 수신장치(20)는 정보 및/또는 데이터, 신호, 메시지 등을 나르는 무선 신호를 전송 또는 수신할 수 있는 RF(Radio Frequency) 유닛(13, 23)과, 무선통신 시스템 내 통신과 관련된 각종 정보를 저장하는 메모리(12, 22), 상기 RF 유닛(13, 23) 및 메모리(12, 22)등의 구성요소와 동작적으로 연결되어, 상기 구성요소를 제어하여 해당 장치가 전술한 본 발명의 실시예들 중 적어도 하나를 수행하도록 메모리(12, 22) 및/또는 RF 유닛(13,23)을 제어하도록 구성된 프로세서(11, 21)를 각각 포함한다.
메모리(12, 22)는 프로세서(11, 21)의 처리 및 제어를 위한 프로그램을 저장할 수 있고, 입/출력되는 정보를 임시 저장할 수 있다. 메모리(12, 22)가 버퍼로서 활용될 수 있다.
프로세서(11, 21)는 통상적으로 전송장치 또는 수신장치 내 각종 모듈의 전반적인 동작을 제어한다. 특히, 프로세서(11, 21)는 본 발명을 수행하기 위한 각종 제어 기능을 수행할 수 있다. 프로세서(11, 21)는 컨트롤러(controller), 마이크로 컨트롤러(microcontroller), 마이크로 프로세서(microprocessor), 마이크로 컴퓨터(microcomputer) 등으로도 불릴 수 있다. 프로세서(11, 21)는 하드웨어(hardware) 또는 펌웨어(firmware), 소프트웨어, 또는 이들의 결합에 의해 구현될 수 있다. 하드웨어를 이용하여 본 발명을 구현하는 경우에는, 본 발명을 수행하도록 구성된 ASICs(application specific integrated circuits) 또는 DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays) 등이 프로세서(11, 21)에 구비될 수 있다. 한편, 펌웨어나 소프트웨어를 이용하여 본 발명을 구현하는 경우에는 본 발명의 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등을 포함하도록 펌웨어나 소프트웨어가 구성될 수 있으며, 본 발명을 수행할 수 있도록 구성된 펌웨어 또는 소프트웨어는 프로세서(11, 21) 내에 구비되거나 메모리(12, 22)에 저장되어 프로세서(11, 21)에 의해 구동될 수 있다.
전송장치(10)의 프로세서(11)는 상기 프로세서(11) 또는 상기 프로세서(11)와 연결된 스케줄러로부터 스케줄링되어 외부로 전송될 신호 및/또는 데이터에 대하여 소정의 부호화(coding) 및 변조(modulation)를 수행한 후 RF 유닛(13)에 전송한다. 예를 들어, 프로세서(11)는 전송하고자 하는 데이터 열을 역다중화 및 채널 부호화, 스크램블링, 변조과정 등을 거쳐 K개의 계층으로 변환한다. 부호화된 데이터 열은 코드워드로 지칭되기도 하며, MAC 계층이 제공하는 데이터 블록인 전송 블록과 등가이다. 일 전송블록(transport block, TB)는 일 코드워드로 부호화되며, 각 코드워드는 하나 이상의 계층의 형태로 수신장치에 전송되게 된다. 주파수 상향 변환을 위해 RF 유닛(13)은 오실레이터(oscillator)를 포함할 수 있다. RF 유닛(13)은 Nt개(Nt는 양의 정수)의 전송 안테나를 포함할 수 있다.
수신장치(20)의 신호 처리 과정은 전송장치(10)의 신호 처리 과정의 역으로 구성된다. 프로세서(21)의 제어 하에, 수신장치(20)의 RF 유닛(23)은 전송장치(10)에 의해 전송된 무선 신호를 수신한다. 상기 RF 유닛(23)은 Nr개(Nr은 양의 정수)의 수신 안테나를 포함할 수 있으며, 상기 RF 유닛(23)은 수신 안테나를 통해 수신된 신호 각각을 주파수 하향 변환하여(frequency down-convert) 기저대역 신호로 복원한다. RF 유닛(23)은 주파수 하향 변환을 위해 오실레이터를 포함할 수 있다. 상기 프로세서(21)는 수신 안테나를 통하여 수신된 무선 신호에 대한 복호(decoding) 및 복조(demodulation)를 수행하여, 전송장치(10)가 본래 전송하고자 했던 데이터를 복원할 수 있다.
RF 유닛(13, 23)은 하나 이상의 안테나를 구비한다. 안테나는, 프로세서(11, 21)의 제어 하에 본 발명의 일 실시예에 따라, RF 유닛(13, 23)에 의해 처리된 신호를 외부로 전송하거나, 외부로부터 무선 신호를 수신하여 RF 유닛(13, 23)으로 전달하는 기능을 수행한다. 안테나는 안테나 포트로 불리기도 한다. 각 안테나는 하나의 물리 안테나에 해당하거나 하나보다 많은 물리 안테나 요소(element)의 조합에 의해 구성될 수 있다. 각 안테나로부터 전송된 신호는 수신장치(20)에 의해 더 이상 분해될 수 없다. 해당 안테나에 대응하여 전송된 참조신호(reference signal, RS)는 수신장치(20)의 관점에서 본 안테나를 정의하며, 채널이 일 물리 안테나로부터의 단일(single) 무선 채널인지 혹은 상기 안테나를 포함하는 복수의 물리 안테나 요소(element)들로부터의 합성(composite) 채널인지에 관계없이, 상기 수신장치(20)로 하여금 상기 안테나에 대한 채널 추정을 가능하게 한다. 즉, 안테나는 상기 안테나 상의 심볼을 전달하는 채널이 상기 동일 안테나 상의 다른 심볼이 전달되는 상기 채널로부터 도출될 수 있도록 정의된다. 다수의 안테나를 이용하여 데이터를 송수신하는 다중 입출력(Multi-Input Multi-Output, MIMO) 기능을 지원하는 RF 유닛의 경우에는 2개 이상의 안테나와 연결될 수 있다.
본 발명의 실시예들에 있어서, UE 또는 릴레이는 상향링크에서는 전송장치(10)로 동작하고, 하향링크에서는 수신장치(20)로 동작한다. 본 발명의 실시예들에 있어서, BS는 상향링크에서는 수신장치(20)로 동작하고, 하향링크에서는 전송장치(10)로 동작한다.
BS의 프로세서(이하, BS 프로세서)는 전술한 본 발명의 실시예들 중 어느 하나에 따라 PDCCH 및/또는 E-PDCCH를 구성하고, 상기 PDCCH 및/또는 상기 E-PDCCH를 UE에 전송하도록 상기 BS의 RF 유닛(이하, BS RF 유닛)을 제어할 수 있다. 또한, 상기 BS 프로세서는 상기 PDCCH 및/또는 상기 E-PDCCH를 통해 상기 UE에 전송한 DCI에 따라 PDSCH를 상기 UE에게 전송하거나 상기 UE로부터 PUSCH를 수신하도록 상기 BS RF 유닛을 제어할 수 있다.
상기 BS 프로세서는 E-PDCCH 탐색 공간 구성 정보를 C-PDCCH 혹은 기존 PDCCH 혹은 SC DCI를 이용하여 전송하도록 상기 BS RF 유닛을 제어할 수 있다. 상기 BS 프로세서는 PDCCH를 통해 전송될 DCI는 특정 DCI 포맷(예를 들어, DCI 포맷 1A)으로만 구성하고, E-PDCCH를 통해 전송될 DCI는 해당 전송 모드에 대응하는 DCI 포맷으로 구성할 수 있다. 예를 들어, 상기 BS 프로세서는 PDCCH를 통해 전송될 DCI는 DCI 포맷 1A로 구성하고, 상기 BS RF 유닛을 제어하여 상기 DCI 포맷 1A의 제어정보를 상기 PDCCH 상에서 전송하고, E-PDCCH를 통해 전송될 DCI는 해당 UE로의 전송 모드에 대응하는 DCI 포맷으로 구성하고, 상기 BS RF 유닛을 제어하여 상기 전송 모드에 종속한 DCI 포맷을 상기 UE로 전송할 수 있다. 그 반대도 가능하다. 또한, 상기 BS 프로세서는 E-PDCCH를 사전 스케줄링 및/또는 크로스-반송파 스케줄링에 이용할 수 있다. 예를 들어, 상기 BS 프로세서는 특정 CC에서 전송/수신될 데이터채널에 대한 스케줄링 정보를 상기 특정 CC와는 다른 CC를 이용하여 해당 UE에게 전송하도록 BS RF 유닛을 제어할 수 있다. 또한, 상기 BS 프로세서는 PDCCH와 E-PDCCH를 제어정보의 특성을 기반으로 구성할 수 있다. 예를 들어, 동적 스케줄링 정보는 E-PDCCH를 이용하여 전송하도록 상기 BS RF 유닛을 제어하고, 특정 UE뿐만이 아니라 다른 UE들도 사용할 수 있는 중요 정보는 PDCCH를 이용하여 전송하도록 상기 BS RF 유닛을 제어할 수 있다. 또한, 상기 BS 프로세서는 PDCCH 및 E-PDCCH를 서로 다른 집성 레벨로 구성할 수 있으며, 이에 따라, BS RF 유닛은 PDCCH를 해당 집성 레벨의 자원 모음에서 전송하고, E-PDCCH는 상기 PDCCH의 집성 레벨과는 다른 집성 레벨의 자원 모음에서 전송할 수 있다. 또한, 상기 BS 프로세서는 일반 서브프레임의 데이터영역에서는 E-PDCCH를 전송하도록 BS RF 유닛을 제어하나, 폴백 서브프레임에서는 E-PDCCH를 전송하도록 BS RF 유닛을 제어하지 않을 수 있다. 다만, 상기 BS 프로세서는 폴백 서브프레임의 제어영역에서 PDCCH를 전송하도록 상기 BS RF 유닛을 제어할 수 있다. 상기 BS 프로세서는 일반 모드에서 서브프레임의 제어영역에서 PDCCH를 더 전송하도록 상기 BS RF 유닛을 제어할 수도 있다.
UE의 프로세서(이하, UE 프로세서) 또는 릴레이의 프로세서(이하, 릴레이 프로세서)는 전술한 본 발명의 실시예들 중 어느 하나에 따라 PDCCH 및/또는 E-PDCCH를 검출하고, 상기 PDCCH 및/또는 상기 E-PDCCH가 나르는 DCI를 기반으로 해당 RF 유닛을 제어하여 PDSCH를 수신 및/또는 PUSCH를 전송할 수 있다. 상기 UE 프로세서는 <E-PDCCH 탐색 공간 구성 정보> 실시예에 따라 E-PDCCH 탐색 공간 구성 정보를 획득하고, 상기 E-PDCCH 탐색 공간 구성 정보에 따른 E-PDCCH 탐색 공간에서 E-PDCCH의 검출을 위한 블라인드 복호를 수행할 수 있다.
PDCCH 탐색 공간과 E-PDCCH 탐색 공간에서 블라인드 복호를 수행함에 있어서, 상기 UE 프로세서는 PDCCH 탐색 공간에서는 폴백 DCI 포맷만에 따라 블라인드 복호를 수행하고, E-PDCCH 탐색 공간에서는 상기 UE가 구성된 전송 모드에 대응하는 DCI 포맷에 따라 블라인드 복호를 수행하도록 구성될 수 있다. 혹은, 그 반대로, PDCCH 탐색 공간에서는 상기 UE가 구성된 전송모드에 대응하는 DCI 포맷에 따라 블라인드 복호를 수행하고, E-PDCCH 탐색 공간에서는 폴백 DCI 포맷만에 따라 블라인드 복호를 수행하도록 구성될 수도 있다. 상기 E-PDCCH는 상기 E-PDCCH가 포함된 서브프레임이 아닌 이후 서브프레임에 대한 스케줄링 정보를 나를 수 있다. 상기 E-PDCCH는 상기 E-PDCCH의 전송에 사용된 CC가 아닌 다른 CC에 대한 스케줄링 정보의 전송에 사용될 수 있다. 소정 CC 상에서 E-PDCCH를 검출하면, 상기 UE 프로세서는 상기 E-PDCCH가 나르는 DCI를 기반으로 상기 DCI와 연관된 CC 상에서 PDSCH를 수신하거나 PUSCH를 전송하도록 UE의 RF 유닛(이하, UE RF 유닛)을 제어할 수 있다. 상기 UE 프로세서는 PDCCH의 검출을 위해서는 PDCCH를 위해 정의된 각 집성 레벨로 블라인드 복호를 수행하고, E-PDCCH의 검출을 위해서는 E-PDCCH을 위해 정의된 각 집성 레벨로 블라인드 복호를 수행할 수 있다. 상기 UE 프로세서는 정상적인 상황에서는 일반 모드로 동작할 수 있으며, 일반 모드에서는 일반 서브프레임의 데이터 영역에서 E-PDCCH를 검출하는 블라인드 복호를 수행할 수 있다. UE 프로세서가 일반 모드로 동작하는 경우, UE 프로세서는 상기 일반 서브프레임의 제어영역에서 PDCCH를 검출하는 블라인드 복호도 수행할 수 있다. 상기 UE 프로세서는 특정 조건 혹은 특정 서브프레임에서는 폴백 모드로 동작할 수 있으며, 이 경우, 상기 UE 프로세서는 서브프레임의 제어영역에서 PDCCH를 모니터링하나, 데이터영역에서 E-PDCCH를 모니터링하지는 않는다.
상술한 바와 같이 개시된 본 발명의 바람직한 실시예들에 대한 상세한 설명은 당업자가 본 발명을 구현하고 실시할 수 있도록 제공되었다. 상기에서는 본 발명의 바람직한 실시예들을 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 따라서, 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다.
본 발명의 실시예들은 무선 통신 시스템에서, 기지국, 릴레이 또는 사용자기기, 기타 다른 장비에 사용될 수 있다.
Claims (10)
- 복수의 셀들이 구성된 사용자기기가 기지국으로부터 하향링크 신호를 수신함에 있어서,서브프레임의 데이터영역에서 상기 복수의 셀들 중 제1셀을 이용하여 제1하향링크 제어채널을 수신하고;상기 제1하향링크 제어채널을 기반으로 상기 복수의 셀들 중 제2셀을 이용하여 하향링크 데이터채널을 수신하는,하향링크 신호 수신방법.
- 제1항에 있어서,상기 서브프레임의 제어영역에서 상기 제1셀을 이용하여 제2하향링크 제어채널을 수신하고,상기 제2하향링크 제어채널을 기반으로 상기 제1셀을 이용하여 제2하향링크 데이터채널을 수신하는,하향링크 신호 수신방법.
- 제1항에 있어서,상기 서브프레임은 제어영역에서만 하향링크 제어채널을 수신하도록 기설정된 서브프레임이 아닌,하향링크 신호 수신방법.
- 제1항 내지 제3항 중 어느 한 항에 있어서,상기 제1하향링크 제어채널은 제1집성 레벨로 집성된 자원의 모음 상에서 수신되고, 상기 제2하향링크 제어채널은 상기 제1집성 레벨보다 큰 집성 레벨로 집성된 자원의 모음 상에서 수신되는,하향링크 신호 수신방법.
- 복수의 셀들이 구성된 사용자기기가 기지국으로부터 하향링크 신호를 수신함에 있어서,무선 신호를 전송 혹은 수신하도록 구성된 무선 주파수(radio frequency, RF) 유닛; 및상기 RF 유닛을 제어하도록 구성된 프로세서를 포함하되,상기 프로세서는 서브프레임의 데이터영역에서 상기 복수의 셀들 중 제1셀을 이용하여 제1하향링크 제어채널을 수신하도록 상기 RF 유닛을 제어하고, 상기 제1하향링크 제어채널을 기반으로 상기 복수의 셀들 중 제2셀을 이용하여 하향링크 데이터채널을 수신하도록 상기 RF 유닛을 제어하는,사용자기기.
- 제5항에 있어서,상기 프로세서는, 상기 서브프레임의 제어영역에서 상기 제1셀을 이용하여 제2하향링크 제어채널을 수신하도록 상기 RF 유닛을 제어하고, 상기 제2하향링크 제어채널을 기반으로 상기 제1셀을 이용하여 제2하향링크 데이터채널을 수신하도록 상기 RF 유닛을 제어하는,사용자기기.
- 제5항에 있어서,상기 서브프레임은 제어영역에서만 하향링크 제어채널을 수신하도록 기설정된 서브프레임이 아닌,사용자기기.
- 제5항 내지 제7항 중 어느 한 항에 있어서,상기 프로세서는 상기 제1하향링크 제어채널을 제1집성 레벨로 집성된 자원의 모음 상에서 수신하도록 상기 RF 유닛을 제어하고, 상기 제2하향링크 제어채널을 상기 제1집성 레벨보다 큰 집성 레벨로 집성된 자원의 모음 상에서 수신하도록 상기 RF 유닛을 제어하는,사용자기기.
- 기지국이 복수의 셀들이 구성된 사용자기기에 하향링크 신호를 전송함에 있어서,서브프레임의 데이터영역에서 상기 복수의 셀들 중 제1셀을 이용하여 제1하향링크 제어채널을 전송하고;상기 제1하향링크 제어채널을 기반으로 상기 복수의 셀들 중 제2셀을 이용하여 하향링크 데이터채널을 전송하는,하향링크 신호 전송방법.
- 기지국이 복수의 셀들이 구성된 사용자기기에 하향링크 신호를 전송함에 있어서,무선 신호를 전송 혹은 수신하도록 구성된 무선 주파수(radio frequency, RF) 유닛; 및상기 RF 유닛을 제어하도록 구성된 프로세서를 포함하되,상기 프로세서는 서브프레임의 데이터영역에서 상기 복수의 셀들 중 제1셀을 이용하여 제1하향링크 제어채널을 전송하도록 상기 RF 유닛을 제어하고, 상기 제1하향링크 제어채널을 기반으로 상기 복수의 셀들 중 제2셀을 이용하여 하향링크 데이터채널을 전송하도록 상기 RF 유닛을 제어하는,기지국.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/114,179 US9398578B2 (en) | 2011-05-03 | 2012-05-03 | Method for receiving downlink signal, and user device, and method for transmitting downlink signal, and base station |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161482178P | 2011-05-03 | 2011-05-03 | |
US61/482,178 | 2011-05-03 | ||
US201161483044P | 2011-05-05 | 2011-05-05 | |
US61/483,044 | 2011-05-05 | ||
US201161484224P | 2011-05-10 | 2011-05-10 | |
US61/484,224 | 2011-05-10 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2012150822A2 true WO2012150822A2 (ko) | 2012-11-08 |
WO2012150822A3 WO2012150822A3 (ko) | 2013-03-21 |
Family
ID=47108144
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2012/003460 WO2012150822A2 (ko) | 2011-05-03 | 2012-05-03 | 하향링크 신호 수신방법 및 사용자기기와, 하향링크 신호 전송방법 및 기지국 |
Country Status (2)
Country | Link |
---|---|
US (1) | US9398578B2 (ko) |
WO (1) | WO2012150822A2 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3041303A4 (en) * | 2013-09-23 | 2016-10-19 | Huawei Tech Co Ltd | METHOD, DEVICE AND SYSTEM FOR CONFIGURING A SEARCH |
WO2020199967A1 (zh) * | 2019-03-29 | 2020-10-08 | 华为技术有限公司 | 一种数据的接收和发送方法及终端装置 |
Families Citing this family (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9432170B2 (en) | 2011-05-12 | 2016-08-30 | Lg Electronics Inc. | Method for transmitting signal using plurality of antenna ports and transmission end apparatus for same |
US9419763B2 (en) * | 2011-05-31 | 2016-08-16 | Lg Electronics Inc. | Method for searching for enhanced physical downlink control channel region |
KR101962245B1 (ko) * | 2011-09-23 | 2019-03-27 | 삼성전자 주식회사 | 광대역 단말과 협대역 단말을 함께 운용하는 무선통신시스템에서 협대역 단말의 시스템 접속 방법 및 장치 |
US20140056244A1 (en) * | 2012-05-11 | 2014-02-27 | Telefonaktiebolaget L M Ericsson (Publ) | A Node and Method for Downlink Communications Scheduling |
US9014109B2 (en) * | 2012-06-05 | 2015-04-21 | Hitachi, Ltd. | Method and apparatus for bit-level PDSCH muting and/or receiver puncturing in LTE-advanced heterogeneous networks |
US8838119B2 (en) | 2012-06-26 | 2014-09-16 | Futurewei Technologies, Inc. | Method and system for dynamic cell configuration |
EP2922357B1 (en) * | 2012-11-14 | 2020-03-18 | LG Electronics Inc. | Method for operating terminal in carrier aggregation system, and apparatus using said method |
US9210670B2 (en) * | 2013-03-18 | 2015-12-08 | Samsung Electronics Co., Ltd. | Uplink power control in adaptively configured TDD communication systems |
CN105165094B (zh) * | 2013-04-03 | 2019-02-05 | 寰发股份有限公司 | 获得数据信道调度信息的方法及装置 |
MX352077B (es) * | 2013-05-31 | 2017-11-08 | Huawei Tech Co Ltd | Metodo de comunicacion, estacion base y equipo de usuario. |
US9706568B2 (en) * | 2013-06-28 | 2017-07-11 | Texas Instruments Incorporated | Uplink control signaling for joint FDD and TDD carrier aggregation |
US9893778B2 (en) * | 2013-07-25 | 2018-02-13 | Lg Electronics Inc. | Method and apparatus for transreceiving channel state information in wireless communication system |
JP6553592B2 (ja) * | 2014-03-20 | 2019-07-31 | 京セラ株式会社 | 通信制御方法及びユーザ端末 |
US11271703B2 (en) * | 2014-05-02 | 2022-03-08 | Qualcomm Incorporated | Techniques for improving control channel capacity |
US9907071B2 (en) * | 2014-07-18 | 2018-02-27 | Qualcomm Incorporated | Resource management for UEs under coverage enhancement |
US11006400B2 (en) * | 2015-01-16 | 2021-05-11 | Sharp Kabushiki Kaisha | User equipments, base stations and methods |
KR102080982B1 (ko) | 2015-02-06 | 2020-02-24 | 애플 인크. | 비면허 무선 주파수 대역에서의 시분할 lte 전송을 위한 방법 및 장치 |
GB2538286A (en) * | 2015-05-14 | 2016-11-16 | Fujitsu Ltd | Control channels in wireless communication |
US9660765B1 (en) * | 2015-07-13 | 2017-05-23 | Mbit Wireless, Inc. | Method and apparatus for broadcast information reception in wireless communication systems |
DE102015111565B3 (de) * | 2015-07-16 | 2017-01-12 | Intel IP Corporation | Verfahren und zugehöriges Mobilgerät zur schnellen Blinddecodierung |
WO2017018762A1 (ko) * | 2015-07-24 | 2017-02-02 | 삼성전자 주식회사 | 비 면허 대역을 사용하는 이동 통신 시스템에서의 제어 신호 및 채널 전송 방법 |
CN106559204B (zh) * | 2015-09-29 | 2020-05-26 | 电信科学技术研究院 | 一种导频的配置方法及装置 |
WO2017065666A1 (en) * | 2015-10-13 | 2017-04-20 | Telefonaktiebolaget Lm Ericsson (Publ) | Dynamical search space alterations |
US10348445B2 (en) * | 2015-12-30 | 2019-07-09 | Telefonaktiebolaget Lm Ericsson (Publ) | Methods and devices for cell edge robustness of PDCCH |
US10219252B2 (en) * | 2016-01-15 | 2019-02-26 | Qualcomm Incorporated | Shortened control channel resource mapping |
US10536246B2 (en) * | 2016-03-22 | 2020-01-14 | Telefonaktiebolaget Lm Ericsson (Publ) | Dynamic demodulation indication |
CN108886768B (zh) * | 2016-03-31 | 2020-11-10 | 华为技术有限公司 | 传输数据的方法、基站和用户设备 |
JP2019096921A (ja) * | 2016-04-07 | 2019-06-20 | シャープ株式会社 | 端末装置、基地局装置、通信方法、および、集積回路 |
CN109314982B (zh) * | 2016-06-10 | 2022-03-01 | Lg 电子株式会社 | 无线通信系统中减少时延的信号发送和接收方法及其装置 |
CN114726493B (zh) * | 2016-07-20 | 2024-12-10 | 日本电气株式会社 | 用于信息传输和信息接收的方法和装置 |
US10356675B2 (en) * | 2016-08-09 | 2019-07-16 | Qualcomm Incorporated | Handover candidate cell identification and radio link failure (RLF) mitigation in coverage areas |
US10582397B2 (en) * | 2016-11-09 | 2020-03-03 | Qualcomm Incorporated | Beam refinement reference signal transmissions during control symbol |
US10575361B2 (en) * | 2017-01-31 | 2020-02-25 | Apple Inc. | Fast switching between control channels during radio resource control connection |
ES2932358T3 (es) * | 2017-03-24 | 2023-01-18 | Lg Electronics Inc | Método para recibir un mensaje de radiobúsqueda, método para transmitir un mensaje de radiobúsqueda, terminal y estación base para los mismos |
US11310764B2 (en) | 2017-03-24 | 2022-04-19 | Lg Electronics Inc. | Method for receiving paging message and terminal for same |
CN109429310B (zh) * | 2017-07-20 | 2021-04-06 | 维沃移动通信有限公司 | 一种drx参数的指示方法、相关设备及系统 |
US11445483B2 (en) * | 2017-08-01 | 2022-09-13 | Qualcomm Incorporated | Uplink control channel resource definition and mapping to user equipment |
WO2019051802A1 (zh) * | 2017-09-15 | 2019-03-21 | Oppo广东移动通信有限公司 | 传输数据的方法、网络设备和终端设备 |
US11089582B2 (en) * | 2018-04-05 | 2021-08-10 | Huawei Technologies Co., Ltd. | Method and system for downlink control information payload size determination |
US10863511B2 (en) | 2018-04-10 | 2020-12-08 | FG Innovation Company Limited | Methods and related devices for performing cross-carrier scheduling with beam operations |
CN110677911B (zh) * | 2018-07-03 | 2022-05-20 | 大唐移动通信设备有限公司 | 一种发送物理下行控制信道的配置信息的方法及装置 |
US11979885B2 (en) * | 2018-11-01 | 2024-05-07 | Telefonaktiebolaget Lm Ericsson (Publ) | Extended physical downlink control channel monitoring |
CN111586881B (zh) * | 2019-02-15 | 2022-09-16 | 华为技术有限公司 | 随机接入的方法和装置 |
US12143964B2 (en) | 2019-05-02 | 2024-11-12 | Telefonaktiebolaget Lm Ericsson (Publ) | Robust UE-autonomous antenna adaptation |
WO2021068109A1 (zh) * | 2019-10-08 | 2021-04-15 | 华为技术有限公司 | 一种信号发送、接收方法、装置及系统 |
US12219569B2 (en) | 2020-05-29 | 2025-02-04 | Acer Incorporated | Method for receiving downlink control information band and user equipment using the same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070093657A (ko) * | 2006-03-14 | 2007-09-19 | 삼성전자주식회사 | 직교 주파수 다중 접속 방식의 시스템에서 자원 할당 방법및 장치 |
KR20080073645A (ko) * | 2007-02-06 | 2008-08-11 | 엘지전자 주식회사 | 무선통신 시스템에서 데이터 송수신 방법 |
KR20100014179A (ko) * | 2008-07-31 | 2010-02-10 | 삼성전자주식회사 | 직교 주파수 다중 접속 방식의 이동통신 시스템에서 복수개의 주파수 대역에 자원을 할당하는 방법 및 장치 |
KR20110030607A (ko) * | 2008-07-25 | 2011-03-23 | 엘지전자 주식회사 | 무선 통신 시스템에서 데이터 수신 방법 및 장치 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3537815B1 (en) * | 2008-11-04 | 2020-10-28 | Apple Inc. | Providing a downlink control structure in a first carrier to indicate control information in a second, different carrier |
US9065617B2 (en) * | 2009-08-17 | 2015-06-23 | Qualcomm Incorporated | MIMO related signaling in wireless communication |
KR20110020708A (ko) * | 2009-08-24 | 2011-03-03 | 삼성전자주식회사 | Ofdm 시스템에서 셀간 간섭 조정을 위한 제어 채널 구성과 다중화 방법 및 장치 |
US20110069637A1 (en) * | 2009-09-18 | 2011-03-24 | Futurewei Technologies, Inc. | System and Method for Control Channel Search Space Location Indication for a Relay Backhaul Link |
BR112012006948B1 (pt) * | 2009-09-28 | 2021-04-27 | Samsung Electronics., Ltd | Método para estender uma região de pdcch e aparelho de ue para receber informação de dci |
CN101714892B (zh) * | 2009-11-02 | 2014-12-31 | 中兴通讯股份有限公司 | 一种下行控制信息的传输方法及系统 |
US8804586B2 (en) * | 2010-01-11 | 2014-08-12 | Blackberry Limited | Control channel interference management and extended PDCCH for heterogeneous network |
CN101959249B (zh) * | 2010-01-30 | 2012-09-26 | 华为技术有限公司 | 组成载波管理方法与设备 |
BR112012025034B1 (pt) * | 2010-03-31 | 2022-02-01 | Huawei Technologies Co., Ltd | Método de relatório de qualidade de canal de enlace descendente aperiódico, meio de armazenamento legível por computador que armazena instruções, e aparelho de um sistema de comunicação via rádio utilizando agregação de portadora |
KR101684867B1 (ko) * | 2010-04-07 | 2016-12-09 | 삼성전자주식회사 | 공간 다중화 이득을 이용한 제어 정보 송수신 방법 |
CN101964188B (zh) * | 2010-04-09 | 2012-09-05 | 华为技术有限公司 | 语音信号编码、解码方法、装置及编解码系统 |
WO2011137383A1 (en) * | 2010-04-30 | 2011-11-03 | Interdigital Patent Holdings, Inc. | Downlink control in heterogeneous networks |
KR101676013B1 (ko) * | 2010-05-03 | 2016-11-14 | 삼성전자주식회사 | 무선 통신 시스템에서 제어 채널을 재설정하는 방법 및 장치 |
US20120054258A1 (en) * | 2010-08-27 | 2012-03-01 | Futurewei Technologies, Inc. | System and Method for Transmitting a Control Channel |
EP2624487B1 (en) * | 2010-09-30 | 2018-12-05 | LG Electronics Inc. | Method for computing a channel quality indicator by a user equipment in a wireless communication system and corresponding user equipment |
EP2661819B1 (en) * | 2011-01-07 | 2018-07-25 | Interdigital Patent Holdings, Inc. | Method, system and apparatus for downlink shared channel reception in cooperative multipoint transmissions |
WO2012109542A1 (en) * | 2011-02-11 | 2012-08-16 | Interdigital Patent Holdings, Inc | Systems and methods for an enhanced control channel |
US9844030B2 (en) * | 2011-03-14 | 2017-12-12 | Lg Electronics Inc. | Method and device for transmitting control information in wireless communication system |
JP5587824B2 (ja) * | 2011-05-02 | 2014-09-10 | 株式会社Nttドコモ | 無線基地局装置、移動端末装置、無線通信システムおよび無線通信方法 |
-
2012
- 2012-05-03 WO PCT/KR2012/003460 patent/WO2012150822A2/ko active Application Filing
- 2012-05-03 US US14/114,179 patent/US9398578B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070093657A (ko) * | 2006-03-14 | 2007-09-19 | 삼성전자주식회사 | 직교 주파수 다중 접속 방식의 시스템에서 자원 할당 방법및 장치 |
KR20080073645A (ko) * | 2007-02-06 | 2008-08-11 | 엘지전자 주식회사 | 무선통신 시스템에서 데이터 송수신 방법 |
KR20110030607A (ko) * | 2008-07-25 | 2011-03-23 | 엘지전자 주식회사 | 무선 통신 시스템에서 데이터 수신 방법 및 장치 |
KR20100014179A (ko) * | 2008-07-31 | 2010-02-10 | 삼성전자주식회사 | 직교 주파수 다중 접속 방식의 이동통신 시스템에서 복수개의 주파수 대역에 자원을 할당하는 방법 및 장치 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3041303A4 (en) * | 2013-09-23 | 2016-10-19 | Huawei Tech Co Ltd | METHOD, DEVICE AND SYSTEM FOR CONFIGURING A SEARCH |
EP3474480A1 (en) * | 2013-09-23 | 2019-04-24 | Huawei Technologies Co., Ltd. | Method, apparatus and system for configuring search space |
US10397853B2 (en) | 2013-09-23 | 2019-08-27 | Huawei Technologies Co., Ltd | Method, apparatus and system for configuring search space |
WO2020199967A1 (zh) * | 2019-03-29 | 2020-10-08 | 华为技术有限公司 | 一种数据的接收和发送方法及终端装置 |
US12213145B2 (en) | 2019-03-29 | 2025-01-28 | Huawei Technologies Co., Ltd. | Data receiving and sending method and terminal apparatus |
Also Published As
Publication number | Publication date |
---|---|
US9398578B2 (en) | 2016-07-19 |
US20140050191A1 (en) | 2014-02-20 |
WO2012150822A3 (ko) | 2013-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012150822A2 (ko) | 하향링크 신호 수신방법 및 사용자기기와, 하향링크 신호 전송방법 및 기지국 | |
WO2012150823A2 (ko) | 하향링크 신호 수신방법 및 사용자기기와, 하향링크 신호 전송방법 및 기지국 | |
WO2017010798A1 (ko) | 하향링크 신호 수신 방법 및 사용자기기와, 하향링크 신호 전송 방법 및 기지국 | |
WO2013025086A2 (ko) | 제어 채널의 할당 방법 및 이를 위한 장치 | |
WO2013105832A1 (ko) | 하향링크 제어 신호 수신 방법 및 사용자기기와, 하향링크 제어 신호 전송 방법 및 기지국 | |
WO2013125871A1 (ko) | 사용자기기의 통신 방법 및 사용자기기와, 기지국의 통신 방법 및 기지국 | |
WO2016144076A1 (en) | Method and apparatus for configuring frame structure and frequency hopping for mtc ue in wireless communication system | |
WO2013032202A2 (ko) | 하향링크 신호 수신 방법 및 사용자기기와, 하향링크 신호 전송 방법 및 기지국 | |
WO2013015632A2 (ko) | 무선 통신 시스템에서 제어 정보의 전송 방법 및 장치 | |
WO2013055193A2 (ko) | 무선 통신 시스템에서 제어 정보의 수신 방법 및 장치 | |
WO2013122384A1 (ko) | 장치 대 장치 통신 방법 및 이를 수행하기 위한 장치 | |
WO2016153290A1 (ko) | 상향링크 데이터 전송 방법 및 사용자기기와, 상향링크 데이터 수신 방법 및 기지국 | |
WO2014142593A1 (ko) | 제어 채널의 송수신 방법 및 이를 위한 장치 | |
WO2016093618A1 (ko) | 반송파 집성을 지원하는 무선 통신 시스템에서 단말의 채널 상태 정보 보고 방법 및 이를 위한 장치 | |
WO2012124969A2 (ko) | 신호 송수신 방법 및 이를 위한 장치 | |
WO2016182391A1 (en) | Method and apparatus for performing initial access procedure for low cost user equipment in wireless communication system | |
WO2019009665A1 (en) | METHOD AND APPARATUS FOR MANAGING MULTIPLE NUMEROLOGIES IN A WIRELESS COMMUNICATION SYSTEM | |
WO2012169753A2 (ko) | 상향링크 제어정보 전송방법 및 사용자기기와, 상향링크 제어정보 수신방법 및 기지국 | |
WO2013015637A2 (ko) | 상향링크 신호 전송방법 및 사용자기기, 상향링크 신호 수신방법 및 기지국 | |
WO2012177073A2 (ko) | 상향링크 제어정보 전송방법 및 사용자기기와, 상향링크 제어정보 수신방법 및 기지국 | |
WO2013141594A1 (ko) | Ack/nack 신호 전송 또는 수신 방법 | |
WO2016048027A2 (ko) | 하향링크 신호 수신 방법 및 사용자기기와, 하향링크 신호 전송 방법 및 기지국 | |
WO2017026777A1 (ko) | 무선 통신 시스템에서 하향링크 채널 수신 또는 상향링크 채널 전송 방법 및 이를 위한 장치 | |
WO2013125872A1 (ko) | 하향링크 신호 수신 또는 전송 방법, 및 이를 위한 장치 | |
WO2012169716A1 (ko) | 제어정보 송수신 방법 및 송수신 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12779680 Country of ref document: EP Kind code of ref document: A2 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14114179 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12779680 Country of ref document: EP Kind code of ref document: A2 |