[go: up one dir, main page]

WO2012149749A1 - 负荷预测方法、装置及节能控制通信系统 - Google Patents

负荷预测方法、装置及节能控制通信系统 Download PDF

Info

Publication number
WO2012149749A1
WO2012149749A1 PCT/CN2011/079839 CN2011079839W WO2012149749A1 WO 2012149749 A1 WO2012149749 A1 WO 2012149749A1 CN 2011079839 W CN2011079839 W CN 2011079839W WO 2012149749 A1 WO2012149749 A1 WO 2012149749A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
entity
load entity
information
network element
Prior art date
Application number
PCT/CN2011/079839
Other languages
English (en)
French (fr)
Inventor
周建华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2011/079839 priority Critical patent/WO2012149749A1/zh
Priority to EP11864701.5A priority patent/EP2672748B1/en
Priority to CN2011800019445A priority patent/CN102388643B/zh
Publication of WO2012149749A1 publication Critical patent/WO2012149749A1/zh
Priority to US14/143,357 priority patent/US20140114490A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/12Avoiding congestion; Recovering from congestion
    • H04L47/127Avoiding congestion; Recovering from congestion by using congestion prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. Transmission Power Control [TPC] or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0203Power saving arrangements in the radio access network or backbone network of wireless communication networks
    • H04W52/0206Power saving arrangements in the radio access network or backbone network of wireless communication networks in access points, e.g. base stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. Transmission Power Control [TPC] or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0251Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity
    • H04W52/0258Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity controlling an operation mode according to history or models of usage information, e.g. activity schedule or time of day
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of energy saving technologies, and in particular, to a load prediction method, apparatus, and energy saving control communication system.
  • DPM dynamic power manager
  • Stepl Step5 loop execution:
  • Stepl Monitor the load on the processing resources and the corresponding power consumption
  • Step2 Perform statistical analysis on local load and energy consumption to predict the load and resources for the next period;
  • Step3 Calculate the performance requirement of the processing resource according to the predicted load amount
  • Step4 According to the existing energy-saving strategy, the expected processing resource performance requirement, determine the working mode (or low-power mode) corresponding to the processing resource in the next period;
  • Step5 Before the next time period, the switching instruction is issued, and the processing resource is switched to the corresponding working mode.
  • DPM is a work state adjustment for processing resources for future business load situations, and it is necessary to predict future business load. If the prediction error exceeds a certain tolerance range, the performance of the processing resources will be insufficient, resulting in the device not being able to process the service load in time; or the performance of the resource supply is excessive, and the device is in a higher energy consumption state, resulting in poor energy saving effect. .
  • Embodiments of the present invention provide a load prediction method, apparatus, and energy-saving control communication system, which can improve load prediction accuracy and obtain better energy-saving effects.
  • a load prediction method includes: acquiring load information of the load entity; and acquiring load information of the adjacent load entity of the load entity;
  • a dynamic energy management device comprising: a first obtaining unit, configured to acquire load information of the load entity; a second acquiring unit, configured to acquire load information of the adjacent load entity of the load entity; and a prediction unit, configured to The load entity load information and the load entity adjacent load entity load information predict a load of the current load entity in a next time period.
  • An energy-saving control communication system comprising: OM (operating ti on and ma in tenance) and DPM, wherein the DPM is configured to acquire load information of the load entity; and acquire the adjacent load entity of the load entity Load information; predicting load of the current load entity in a next time period according to the load load information of the load entity and the load information of the adjacent load entity of the load entity; the 0M, configured to perform DPM neighbor identification configuration, neighbor route Message creation, release refresh, maintenance.
  • a method, device and system for predicting network element load provided by the technical solution of the present invention can improve load prediction accuracy and make communication device performance Better tracking of business load changes, better energy saving effect.
  • Figure 1 is a schematic diagram of hierarchical division of a communication network
  • FIG. 2 is a schematic diagram showing the relationship between network elements
  • FIG. 3 is a flowchart of a load prediction method according to Embodiment 1 of the present invention.
  • FIG. 4 is a structural diagram of a dynamic energy management device according to Embodiment 1 of the present invention
  • FIG. 5 is a structural diagram of an energy-saving control communication system according to Embodiment 1 of the present invention
  • FIG. 6 is a schematic diagram of a neighbor notification message transmitted between network elements
  • FIG. 7 is a flowchart of a load prediction method according to Embodiment 2 of the present invention.
  • FIG. 8 is a schematic flowchart of a process for processing neighbor information according to an embodiment of the present invention
  • FIG. 9 is a schematic flowchart of a method for correcting a network element prediction load according to an embodiment of the present invention
  • FIG. 10 is a structural diagram of a dynamic energy management device according to Embodiment 3 of the present invention
  • FIG. 11 is a schematic structural diagram of a DPM device according to Embodiment 3 of the present invention.
  • the load entity of the embodiment of the present invention includes a DPM, and the load entity may be a network element in a communication network, a network element subsystem, a network board, and the like.
  • the implementation of the embodiment of the present invention is the same as the principle of the embodiment of the present invention by using a network element as an example.
  • the embodiment of the present invention may also be a subsystem of a network element, a board of a network element, or the like.
  • the traffic plane there are two planes: the traffic plane and the control plane.
  • the channels that carry services between the NEs form the service plane.
  • the two-way solid line between the NEs is used to carry voice, video, and data services.
  • the information path between each network element and the network management unit forms the control plane.
  • the network element and the two-way dotted line on 0M indicate Information such as maintenance management and signaling of the communication network.
  • Each user has a business subordinate neighbor relationship on the service plane, and is a peer entity on the control plane.
  • the service plane can be divided into multiple layers, such as the backbone layer, the aggregation layer, and the access layer, according to the topology of the network and the type of the NE.
  • the traffic load of the communication network is gradually passed through each network element at each level in the network.
  • the relationship between the network elements is the relationship between the upper and lower levels (the network elements are in different network layers) or the level mutual mutual assistance relationship (the network elements are in the same network layer). Neighbor relationship between the yuan.
  • network element A and network element B are a mutual assistance group; from the network element A, the lower level of the Egres s (export) direction is the network element C, and the network element C is also the network element A whose Ingres s (inlet) direction The superior.
  • the traffic load or working status of a network element will have a certain impact on the future traffic load of the lower-level network connected to it. Making full use of the traffic load and working status information of neighboring network elements will be very beneficial to improve the error of the traffic prediction of this network element.
  • the present invention provides a new DPM architecture technical solution and a DPM processing flow, and adds functional modules for notifying the traffic load and the working status of each other between the DPM modules of the network element.
  • the load information from the upper and lower level network elements participates in the local traffic load prediction, which will greatly improve the accuracy of the prediction and solve or improve the problems existing in the prior art.
  • the load entity in this embodiment may be an entity, which may be a load entity, a network element in a communication network, a subsystem of a network element, a board of a network element, and the like.
  • the embodiment provides a load prediction method, as shown in FIG. 3, including: 301: acquiring load information of the load entity;
  • the execution subject of the embodiment of the present invention may be a load prediction device such as a dynamic energy consumption manager or the like.
  • the present embodiment provides a dynamic energy consumption manager.
  • the dynamic energy consumption manager includes: a first acquiring unit 401, a second obtaining unit 402, and a predicting unit 403. Adjustment unit 404. a first obtaining unit 401, configured to acquire load information of the load entity, and a second acquiring unit 402, configured to acquire load information of the adjacent load entity of the load entity;
  • the predicting unit 403 is configured to predict, according to the load entity load information and the load entity adjacent load entity load information, the load of the current load entity in a next time period.
  • the adjusting unit 404 is configured to adjust the working state of the load entity according to the predicted load of the current time period of the load entity.
  • the dynamic energy manager provided by the embodiment, when predicting the network device load, the first acquiring unit acquires the load entity load information, the second acquiring unit acquires the adjacent load entity load information, and the predicting unit performs the load information according to the acquired load information. Forecasting can improve the accuracy of load forecasting and achieve energy saving.
  • the embodiment further provides an energy-saving control communication system, including: DPM50 0M (maintenance operation terminal) 501, wherein
  • DPM501 configured to acquire the load information of the load entity; obtain load information of the adjacent load entity of the load entity; and predict the load according to the load information of the load entity and the load information of the adjacent load entity of the load entity The load of the entity in the next period.
  • OM502 is used to perform DPM neighbor identification configuration, neighbor routing message establishment, release refresh, and maintenance.
  • the DPM may be located in the load entity, and the load entity is a communication
  • the energy-saving control communication system provided in this embodiment is composed of DPM and 0M. According to the load information of the load entity and the adjacent load entity, the prediction obtained is more accurate, so that the performance of the communication device is better to track the change of the service load, and the energy is saved. The effect is more ideal.
  • the network element in the communication network is used as the load entity to describe the implementation manner of the embodiment in detail.
  • the load entity may also be a subsystem of the network element, a board of the network element, and the like.
  • a DPM module is locally disposed in a network element, and each network element DPM module completes a dynamic energy-saving control function under the management of 0M.
  • the DPM module neighbors quickly notify each other of the traffic load and working status on the control plane, as shown by the dotted line in Figure 6.
  • the embodiment of the present invention provides a method for predicting a network element load, as shown in FIG. 7, including:
  • the load information of the network element may have multiple acquisition methods.
  • a method for obtaining load information of the network element is obtained. The main steps of the method are:
  • the prediction error of T at a certain time the difference between the predicted value of the traffic load at time T and the actual value of the traffic load at time ⁇ .
  • the error value also constitutes a sequence of error values in time series;
  • the load information described herein includes the following content: the actual measured traffic load sequence; B. The predicted business load sequence;
  • the network element receives the traffic load from the upper and lower neighbors from the Ingres s (ingress) direction, and sends the processed traffic load to the upper and lower neighboring NEs through the Egres s (export) direction. Therefore, it is necessary to perform the above steps for all the I ngre s s and Egres s path directions to form a series of prediction results.
  • the prediction result in the Egres s direction needs to be sent to the corresponding neighbor through the subsequent neighbor notification function, and participates in the information processing and service load prediction process in the DPM on the service neighbor network element.
  • the prediction results in the Ing res s direction need to participate in the local subsequent load forecasting process.
  • the neighboring network element of the local network element includes: a mutual-assisted network element, a higher-level network element, and a lower-level network element
  • the acquiring load information of the neighboring network element of the local network element includes: receiving dynamic energy consumption of the network element In the manager DPM address coding table, the mutual help neighbor notification message sent by the mutual help network element, and processing the mutual help neighbor notification message to obtain the load information of the mutual network element; in the receiving network element DPM address coding table, the upper network element sends the The higher-order neighbor notification message corresponding to the local network element, and the upper-level neighbor notification message is processed, and the load information of the upper-level network element is obtained; in the receiving network element DPM address coding table, the lower-level network element sends the corresponding information corresponding to the local network element.
  • the lower-level neighbor notification message, and the lower-level neighbor notification message is processed, and the load information of the lower-level network element is obtained.
  • the load information of the mutual-assisted network element, the load information of the upper-level network element, and the load of the lower-level network element are summarized.
  • the information is the load information of the neighboring network elements of the local network element.
  • Neighbor notification message content specification including but not limited to: source address, destination address, current Time point, current business load, current working status, predicted traffic load, expected working status, corresponding time period start and end time points; neighbor notification message types: mutual neighbor messages, upper and lower neighbor notification messages; mutual neighbor notification message content: In addition to the address time and information, the current total service load of all Ingress of the NE, the total predicted service load of all Ingress of the NE, the current working status of the NE, and the expected working status of the NE, corresponding to the start and end of the time period.
  • the mutual-neighbor neighbor notification message is broadcast-type and sent to all the neighboring neighbors of the local network element registered on the neighbor routing information table.
  • the content of the lower-level neighbor notification message In addition to the address time information, the current service load of the Egress direction, the Egress direction prediction The service load, the current working state of the NE, the expected working state of the NE, and the start and end time of the corresponding time segment.
  • the notification message of the neighbors is peer-to-peer.
  • the DPM of the NE is the egress direction registered on the neighbor routing information table.
  • the neighbors respectively generate and send their unique subordinate neighbor notification messages.
  • the neighbor notification process steps are as follows: • Obtain the neighbor type and address from the neighbor routing address table.
  • the received neighbor notifications are classified according to the ingress direction and the neighbor type.
  • the following types of information are obtained for subsequent NEs.
  • Business load forecasting in DPM The service load information includes, but is not limited to, the current time service load, the predicted next time T service load, the working status, the start and end time, and the like;
  • the network element DPM address coding table is applied, and the method is: storing the address of one or more mutual assistance network elements in a corresponding location in the network element DPM address coding table, where the mutual assistance network element is: The network element that is in the same network layer and has a service connection with the local network element; the address of one or more upper-level network elements is stored in a corresponding location in the network element DPM address coding table,
  • the upper-level network element is: the network element in the previous network layer that is located in a different network layer with the local network element and has a service connection with the local network element; and stores the address of one or more lower-level network elements.
  • the lower-level network element is: in the next network layer that is located in a different network layer with the local network element and has a service connection with the local network element.
  • Network element is: in the next network layer that is located in a different network layer with the local network element and has a service connection with the local network element.
  • the network element DPM address coding table has an update and refresh function, and may update the network element DPM address coding table according to the address information of the neighboring network element of the local network element that is sent by the 0M; The timing refresh of the network element DPM address coding table.
  • the network management 0M In addition to the functions of the DPM registration/registration, energy-saving policy delivery, DPM enable/stop, status query, and exception report processing from each DPM, the network management 0M also adds the network element DPM route grouping.
  • the function module unit needs to perform network DPM neighbor identification configuration, neighbor notification information routing establishment, release, refresh maintenance, etc. according to the network topology structure.
  • Neighbor notification information routes are classified into three types, which correspond to three types of network element neighbors: upper-level network elements, lower-level network elements, and mutual-assisted group network elements. There may be multiple neighboring network elements.
  • each network element receives the traffic load from the neighboring neighbors from the I ngre ss direction, and sends the processed traffic load to the upper and lower neighbors through the Egre ss direction.
  • Network element The address of the neighboring neighbors needs to be grouped in the ingress and egress directions to form a neighbor notification routing form. This is used for the management and application.
  • Each ingress/egress address corresponds to an ingress/egress direction, which means that a neighboring NE neighbor is connected. .
  • the following table is an example of a network element DPM address encoding table:
  • the network management 0M needs to send corresponding neighbor notification routing information to the network element DPM:
  • the network management 0M obtains the registration notification of a network element DPM, and sends the neighbor notification routing information to the network element DPM.
  • the network management 0M obtains a network element DPM logout (stops running), and needs to recalculate and send the neighbor neighbor network element DPM neighbor notification routing form. Participate in the refresh.
  • the routing information of the DPM neighbor notification information is established and periodically updated under the management of the network management 0M.
  • the network element DPM module starts running and registers with the network management 0M.
  • the network management 0M sends neighboring notification routing information to the DPM.
  • the total predicted traffic volume obtained by adding and combining the predicted traffic of the next time period of all neighbors in the ingress direction of the network element DPM address coding table is used as the local next time period Ingress.
  • Total traffic load in the next time in the ingress direction next time period traffic load from Ingress neighbor 1 + next time service load from Ingress neighbor 2 + ⁇ + next time period from Ingress neighbor N T traffic load.
  • AD1 the average error of the predicted traffic load error on the aggregated Ingress
  • the weighting factors A and B are set by 0M through the DPM maintenance interface of the network element.
  • the ingress service load of the next time period of the NE is the next time period of the Ingress service load of the AX and the next time the Ingress service load of the BX local prediction.
  • the mutual-assisted network elements are deployed, load balancing is performed, and the policies of the service sharing are given.
  • the service sharing ratio or the traffic load difference in the mutual-assisted network element group is given by the 0M or the empirical data. Wait for the maximum value, etc. Therefore, the industry from the mutual aid network element The traffic load trend will have a better correction effect on the traffic load forecast in this network element.
  • the embodiment further corrects the predicted load of the local network element for a period of time according to the load of the neighboring network element.
  • the purpose of the load correction is to: (1) prevent large deviations in the prediction of the network element service; (2) linkage with the mutual assistance network element to quickly detect abnormal changes in the traffic load.
  • FIG. 9 is a flowchart for correcting a network element prediction load, reading prediction information of the network element, reading prediction information of the mutual network element, and calculating the local network element and the mutual assistance network element respectively.
  • Traffic load trend check whether the two traffic load trends are within the error range, determine the load forecast of the next time period of the network element according to the viewing result, and output the final predicted load information.
  • the network element DPM address coding table all the mutual assistance network elements send the mutual assistance neighbor notification message; respectively, to the network element DPM address coding table, the upper network element sends the corresponding corresponding to the local network element.
  • the neighbor neighbor notification message is sent to the lower-level NE of the network element DPM address coding table, and the lower-level neighbor notification message corresponding to the local network element.
  • when predicting the load of the network device, performing prediction calculation according to the load information of the device and the load information of the neighboring device of the device, predicting the load of the next time period of the device, and improving the accuracy of the load prediction.
  • the performance of the communication device is better to track the change of the business load, and the energy saving effect is more ideal.
  • the implementation process of the prediction method is described by using only a network element as an example. Similar to the foregoing method, the method in this embodiment is also applicable to a subsystem of a network element, a board of a network element, and the like. I will not repeat them here.
  • the network element in the communication network is used as a load entity for detailed description.
  • the load entity may also be a subsystem in the communication network and a board in the communication network.
  • the dynamic energy management device is provided as shown in FIG. 10, and includes: a first acquiring unit 11, a second acquiring unit 12, and a predicting unit 13.
  • the first obtaining unit 11 is configured to acquire the load information of the local network element.
  • the second obtaining unit 12 is configured to acquire the neighbor network element load information of the local network element.
  • the prediction unit 13 is configured to predict the load of the next time period of the network element according to the local network element load information and the neighbor network element load information of the local network element.
  • the second obtaining unit 12 includes: a first receiving module 121, configured to receive a mutual neighbor notification message sent by the mutual help network element in the DPM address coding table, and process the mutual neighbor notification message to obtain the current mutual network element
  • the second receiving module 122 is configured to receive the upper-layer neighbor notification message corresponding to the local network element sent by the upper-level network element, and process the upper-level neighbor notification message to obtain the upper-level network.
  • the current receiving information of the element the third receiving module 123, configured to receive the lower-level neighbor notification message corresponding to the local network element sent by the lower-level network element, and process the lower-level neighbor notification message in the DPM address coding table of the network element, Obtain the current load information of the lower-level network element;
  • the dynamic energy management device provided in this embodiment further includes a table construction unit 14 configured to: store the address of one or more mutual assistance network elements in a corresponding location in the network element DPM address coding table, where the mutual assistance network
  • the element is a network element that is in the same network layer as the local network element and has a service connection with the local network element.
  • the address of one or more upper-level network elements is stored in the network element DPM address coding table.
  • the upper-level network element is: a network element in a previous network layer that is located in a different network layer with the local network element and has a service connection with the local network element; one or more The address of the lower-level network element is stored in a corresponding location in the DPM address coding table of the network element, and the lower-level network element is located in a different network layer from the local network element, and has a service connection with the local network element.
  • the table construction unit 14 is further configured to: update the network element DPM address coding table and periodically refresh the network element DPM address coding table according to the address information of the neighboring network element of the local network element sent by the network management unit.
  • the sending unit 15 After the prediction unit predicts the load of the next time period of the network element, the sending unit 15 performs the following: simultaneously sending, to the network element DPM address coding table, all the mutual assistance network elements to send a mutual neighbor notification message; respectively, to the network element DPM In the address coding table, the upper-layer neighbor notification message corresponding to the local network element sent by the upper-level network element, and the lower-level neighbor corresponding to the local network element sent by the lower-level network element in the DPM address coding table of the network element Notification message.
  • the adjusting unit 16 is configured to adjust the working state of the next time period of the network element according to the predicted load of the next time period of the local network element.
  • the embodiment further provides: a first interface unit, configured to receive information sent by the 0M. 0M manages and maintains network elements through the first interface unit. a second interface unit, configured to communicate with each other between the DPMs. The local network element and the neighboring network element of the local network element apply the second interface unit for information interaction.
  • the dynamic energy management manager provided in this embodiment corresponds to the load prediction method described in Embodiment 2, and the detailed description of the method in Embodiment 2 can be referred to. ⁇
  • when predicting the load of the network device when predicting the load of the network device, performing prediction calculation according to the load information of the device and the load information of the neighboring device of the device, predicting the load of the next time period of the device, and improving the accuracy of the load prediction.
  • the performance of the communication device is better to track the change of the business load, and the energy saving effect is more ideal.
  • the embodiment also provides a dynamic energy management device.
  • the load entity in this embodiment may also be a network element in a communication network, a subsystem of a network element, a board of a network element, and the like.
  • the dynamic energy management manager includes: a first interface unit 1101, a core data storage unit 1102, a first acquisition unit 1103, a second acquisition unit 1104, a second interface unit 1105, a sending unit 1106, and a prediction.
  • the first interface unit 1101 is configured to receive information sent by the MME. 0M manages and maintains the load entity through the first interface unit.
  • the core data storage unit 1102 is configured to store an energy saving policy, neighbor routing information, traffic load information, and error key data of the 0M configuration.
  • the first obtaining unit 1103 is configured to acquire load information of the load entity. Specifically, the first acquiring unit is configured to collect the current service load, and form a sequence of actual value of the traffic load in chronological order;
  • the local service prediction algorithm predicts the traffic load at the next moment, and forms a sequence of service load prediction values in chronological order;
  • the prediction error of T at a certain time the difference between the predicted value of the traffic load at time T and the actual value of the traffic load at time ⁇ .
  • the error value also constitutes a sequence of error values in time series;
  • the error values are summed and then averaged to obtain the predicted average error, which is used as an indicator to measure the accuracy of the local prediction method.
  • the network element receives the traffic load from the upper and lower neighbors in the ingress direction, and sends the processed traffic load to the upper and lower neighbor NEs in the egress direction. Therefore, it is necessary to perform the above steps for all the Ingress and Egress path directions to form a series of prediction results.
  • the prediction result of the Egress direction needs to be sent to the corresponding neighbor through the subsequent neighbor notification function, and participates in the information processing and service load prediction process in the DPM on the service neighbor network element.
  • the prediction results in the Ingress direction need to participate in the local follow-up load forecasting process.
  • a second acquiring unit 1104 configured to acquire load information of the adjacent load entity of the load entity
  • the second interface unit 1105 is configured to communicate with each other between the DPMs.
  • the load entity and the load entity adjacent load entity apply the second interface unit for information interaction.
  • the sending unit 1106 is configured to send, to the load entity DPM address coding table, all mutual-assist load entities to send a mutual-homed neighbor notification message; respectively, to the load entity DPM address. , , ⁇ , , and prediction unit 1107, configured to load information according to the load entity and the load Body adjacent load entity load information, predicting the load of the current load entity for the next time period.
  • the management unit 1 1 08 is configured to add the redundant performance requirement B reserved by the energy saving policy to the predicted load A of the next time period of the current load entity, and update the predicted load of the current time period of the current load entity.
  • the adjusting unit 1 1 09 is configured to update the predicted load of the next period of the load entity according to the management unit 1 1 06, and adjust the working state of the next period of the load entity.
  • the device provided by the embodiment of the present invention when predicting the network element load, performs prediction calculation according to the current load information of the current network element and the current load information of the neighboring network element of the local network element, and predicts the load of the next time period of the local network element. .
  • the device provided by the technical solution of the present invention improves the accuracy of the network element load prediction, so that the communication device is Better performance tracking of business load changes, saving energy.
  • the apparatus and method provided by the present invention can be used in a communication system composed of a plurality of sub-systems.
  • a typical communication system consists of: a main control subsystem, a switching subsystem, a call/service processing subsystem, an interface subsystem, a storage subsystem, and the like.
  • each subsystem can be divided into a subordinate relationship of business processing on the service plane, and each subsystem can exchange messages on the control plane.
  • a dynamic energy management unit DPM can be deployed on each subsystem.
  • Each subsystem DPM runs under the management configuration of the main control subsystem, and communicates the business load information on the control plane.
  • the business load is predicted and the dynamic energy saving function is performed according to the steps and procedures of the previous embodiment.
  • the embodiments of the present invention are mainly applied to network device load forecasting, which can improve the accuracy of network device load prediction, thereby achieving network device energy saving.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • General Health & Medical Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Public Health (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明公开了一种负荷预测方法、装置及节能控制通信系统,涉及节能技术领域,能够提高负荷预测准确度,获得更好的节能效果。所述方法包括:获取本负荷实体负荷信息;获取所述本负荷实体相邻负荷实体负荷信息;根据所述本负荷实体负荷信息及所述本负荷实体相邻负荷实体负荷信息,预测所述本负荷实体下一时段的负荷。本发明实施例主要用于对通信网络中设备的节能调度。

Description

负荷预测方法、 装置及节能控制通信系统
技术领域
本发明涉及节能技术领域, 尤其涉及一种负荷预测方法、 装置及节 能控制通信系统。
背景技术
现代通信网络中的设备 (如网元) 大多按照话务高峰时期的业务量 配置, 在平时运行时, 设备运行在轻负荷状态, 并未发挥其最大性能, 有较大冗余与能耗浪费, 为减少能源的浪费, 现有技术大多釆用动态能 耗管理器 ( dynamic power manager , DPM ) 来实现节能控制。
DPM功能及处理流程如下, Stepl ~ Step5循环执行:
Stepl: 监测处理资源上的承担的负荷及对应功耗;
Step2: 对本地的负荷及能耗进行统计分析, 预测下一个时段的负荷 及资源;
Step3: 根据预测的负荷量计算处理资源性能需求量;
Step4: 依据现有的节能策略, 预计的处理资源性能需求量, 确定下 一时段处理资源对应的工作模式 (或者低功耗模式) ;
Step5: 在下一个时段到来前, 发出切换指令, 处理资源切换到对应 的工作模式上。
DPM 是为将来的业务负荷情况进行处理资源的工作状态调节, 需要 对将来的业务负荷进行预测。 如果预测误差超过一定的容限范围, 将会 由于处理资源提供的性能不足, 导致设备不能及时处理业务负荷; 或者 处理资源提供的性能过剩, 设备处于较高能耗的工作状态, 导致节能效 果不佳。
在实现本发明实施例的过程中, 发明人发现, 现有技术的 DPM存在 负荷预测准确度低、 节能效果不理想的问题。 发明内容
本发明的实施例提供一种负荷预测方法、装置及节能控制通信系统, 能够提高负荷预测准确度, 获得更好的节能效果。
为达到上述目的, 本发明的实施例釆用如下技术方案: 一种负荷预测方法, 包括: 获取本负荷实体负荷信息; 获取所述本负荷实体相邻负荷实体负荷信息;
根据所述本负荷实体负荷信息及所述本负荷实体相邻负荷实体负荷 信息, 预测所述本负荷实体下一时段的负荷。 一种动态能耗管理器, 包括: 第一获取单元, 用于获取本负荷实体负荷信息; 第二获取单元, 用于获取所述本负荷实体相邻负荷实体负荷信息; 预测单元, 用于根据所述本负荷实体负荷信息及所述本负荷实体相 邻负荷实体负荷信息, 预测所述本负荷实体下一时段的负荷。 一种节能控制通信系统, 包括: OM ( opera t i on and ma in tenance , 维护操作终端) 和 DPM, 其中 所述 DPM, 用于获取本负荷实体负荷信息; 获取所述本负荷实体相邻 负荷实体负荷信息; 根据所述本负荷实体负荷信息及所述本负荷实体相 邻负荷实体负荷信息, 预测所述本负荷实体下一时段的负荷; 所述 0M, 用于进行 DPM邻居识别配置, 邻居路由消息的建立、 发布 刷新、 维护。 釆用上述技术方案所描述的本发明实施例, 在预测网络设备负荷时, 根据本实体的负荷信息和本实体相邻实体的负荷信息, 进行预测计算, 预测出本实体下一时段的负荷, 本发明技术方案提供的一种预测网元负 荷的方法、 装置及系统能够提高负荷预测准确度, 使得通信设备的性能 更好的跟踪业务负荷变化, 节能效果更理想。
附图说明
图 1为通信网络层次划分示意图;
图 2为网元相互关系示意图;
图 3为本发明实施例 1提供的负荷预测方法的流程图;
图 4为本发明实施例 1提供的动态能耗管理器的结构图; 图 5为本发明实施例 1提供的节能控制通信系统的结构图; 图 6为邻居通知消息在网元间传送示意图;
图 7为本发明实施例 2提供的负荷预测方法的流程图;
图 8为本发明实施例邻居信息处理流程示意图; 图 9本发明实施例对网元预测负荷进行修正的流程示意图; 图 1 0为本发明实施例 3提供的动态能耗管理器的结构图; 图 1 1为本发明实施例 3提供的 DPM装置的结构示意图。
具体实施方式 下面结合附图对本发明实施例一种负荷预测方法、 装置及节能控制 通信系统进行详细描述。 应当理解, 此处所描述的具体实施方式仅仅用 以解释本发明, 并不用于限定本发明。 本发明实施例所述的负荷实体包含 DPM , 负荷实体可以是负荷实体 为通信网络中的网元, 网元的子系统, 网元的单板等, 本发明实施例大 多以网元为例描述本发明实施例的实现方式, 与以网元为例描述本发明 实施例原理相同, 本发明的实施例也可以网元的子系统、 网元的单板等。
请参见图 1 , 在通信网络上, 存在着两个平面: 业务流平面及控制 平面。 网元间承载业务的通道组成了业务平面, 如图 1 中网元间双向实 线所示, 用于承载用户的语音、 视频、 数据等业务。 各网元与网管间的 信息通路组成了控制平面, 如图 1 中, 网元、 0M上的双向虚线所示, 承 载通信网络的维护管理、 信令等信息。 各网友间在业务平面上存在业务 上下级邻居关系, 而在控制平面上是对等的实体。 如图 1 所示, 依据组 网拓朴结构及网元类型, 可以把业务平面划分为多个层次, 例如骨干层、 汇聚层、 接入层等。
请参见图 2 , 通信网络业务流量负荷是逐级贯穿网络中各层级上的 各个网元。 对应于业务流量, 各网元间的相互关系是上下级关系 (网元 在不同网络层内 ) 或者平级互助关系 (网元在同一网络层内) , 本文中 定义这种两种关系为网元间的邻居关系。 例如图 2 中, 网元 A及网元 B 为一个互助组; 从网元 A看其 Egres s (出口 ) 方向的下级是网元 C , 同 时网元 C也是网元 A其 Ingres s (入口) 方向的上级。 正是由于网元是互相连接的, 所以一个网元的业务负荷或者工作状 态会对与其相连的下级网络将来的业务负荷大小产生一定的影响。 充分 利用相邻网元的业务负荷及工作状态信息将非常有利于改善本网元业务 负荷预测的误差。 本发明基于以上事实,提供了一种新型的 DPM架构技术方案以及 DPM 处理流程, 在网元的 DPM模块间增加互相通知业务负载量、 工作状态等 信息的功能模块。 来自于上级及平级网元的负载信息参与本地的业务负 荷预测, 将极大改进预测的准确度, 解决或改善现有技术中存在的问题。
实施例 1 :
本实施例中的负荷实体可以是实体可以是负荷实体为通信网络中的 网元, 网元的子系统, 网元的单板等。
本实施例提供一种负荷预测方法, 如图 3所示, 包括: 301、 获取本负荷实体负荷信息;
302、 获取所述本负荷实体相邻负荷实体负荷信息;
303、根据所述本负荷实体负荷信息及所述本负荷实体相邻负荷实体 负荷信息, 预测所述本负荷实体下一时段的负荷。
304、 根据预测的本负荷实体下一时段的负荷, 调整本负荷实体的工 作状态。
本发明实施例的执行主体可以是负荷预测装置, 如动态能耗管理器 等。
釆用本实施例提供的方法, 在预测网络设备负荷时, 根据本设备的 负荷信息和本设备相邻设备的负荷信息, 进行预测计算, 预测出本设备 下一时段的负荷, 能够提高负荷预测准确度, 取得更好的节能效果。 为了实现上述负荷预测方法,本实施例提供了一种动态能耗管理器, 如图 4所示, 该动态能耗管理器包括: 第一获取单元 401、 第二获取单元 402、 预测单元 403、 调整单元 404。 第一获取单元 401 , 用于获取本负荷实体负荷信息; 第二获取单元 402 , 用于获取所述本负荷实体相邻负荷实体负荷信 息;
预测单元 403 , 用于根据所述本负荷实体负荷信息及所述本负荷实 体相邻负荷实体负荷信息, 预测所述本负荷实体下一时段的负荷。
调整单元 404 , 用于根据预测的本负荷实体下一时段的负荷, 调整 本负荷实体的工作状态。 釆用实施例提供的动态能耗管理器, 在预测网络设备负荷时, 第一 获取单元获取本负荷实体负荷信息, 第二获取单元获取相邻负荷实体负 荷信息, 预测单元根据获取的负荷信息进行预测, 可以提高负荷预测准 确度, 从而达到节能的目的。
请参阅图 5 ,本实施例还提供一种节能控制通信系统,包括: DPM50 0M (维护操作终端) 501 , 其中
DPM501 , 用于获取本负荷实体负荷信息; 获取所述本负荷实体相邻 负荷实体负荷信息; 根据所述本负荷实体负荷信息及所述本负荷实体相 邻负荷实体负荷信息, 预测所述本负荷实体下一时段的负荷。
OM502 , 用于进行 DPM邻居识别配置, 邻居路由消息的建立、 发布刷 新、 维护。
具体地, 所述 DPM可以位于所述负荷实体内, 所述负荷实体为通信 网络中的网元, 网元的子系统, 网元的单板等。
本实施例提供的节能控制通信系统, 由 DPM和 0M组成, 根据本负荷 实体及相邻负荷实体的负荷信息, 得出的预测更准确, 使得通信设备的 性能更好的跟踪业务负荷变化, 节能效果更理想。
实施例 2 :
本实施例以通信网络中的网元作为负荷实体进行详细表述本实施 例的实现方式, 此外负荷实体还可以是网元的子系统, 网元的单板等。
请参见图 6 , 本发明实施例中, 分布式地在网元本地设置了 DPM模 块, 各网元 DPM模块在 0M的管理下完成动态节能的控制功能。 各 DPM模 块邻居间在控制平面上快速地互相通知业务负载量、 工作状态等信息, 如图 6中虚线所示。 进一步, 本发明实施例提供一种预测网元负荷的方法, 如图 7所示, 包括:
7 01、 获取本网元的负荷信息。 具体地, 本网元的负荷信息可以有多种获取方法, 在此举一种获取 本网元的负荷信息得方法, 该方法主要步骤获为:
■ 釆集当前业务负载, 按时间顺序, 构成业务负荷实际值序列;
■ 按本地的业务预测算法预计下一时刻的业务负荷, 形成预计的业务 负荷曲线;
■ 某一时刻 T的预测误差 = T时刻业务负荷的预测值与 Τ时刻的业务 负荷实际值的差。 误差值也按时间先后构成误差值序列;
■ 取当前时刻前 Ν (例如 Ν = 3 0 ) 个时刻点误差值取绝对值相加后再 平均, 获得预测平均误差, 作为衡量本地预测方法准确度的指标。 由此可见, 本文中所述负荷信息包含以下内容 Α、 实际测量所得业务负荷序列; B、 预测所得业务负荷序列;
C、 误差序列或者误差指示;
D、 时间信息; 由于网元从 Ingres s (入口)方向接收来自于上、 下级邻居的业务负 荷, 并通过 Egre s s (出口 ) 方向把已处理的业务负荷发送给上、 下级邻 居网元。 因此需要对所有各 I ngre s s及 Egres s通路方向均进行上述步骤 的处理, 形成系列化的预测结果。 其中 Egres s方向的预测结果需在通过 后续的邻居通知功能发送给对应的邻居, 参与业务邻居网元上 DPM 中的 信息处理及业务负荷预测过程。 Ing res s方向的预测结果需参与本地的后 续负荷预测过程。
702、 获取所述本网元相邻网元的负荷信息。 具体地, 所述本网元相邻网元包括: 互助网元、 上级网元、 下级网 元, 所述获取所述本网元相邻网元的负荷信息, 包括: 接收网元动态能耗管理器 DPM地址编码表中, 互助网元发送的互助 邻居通知消息, 并处理所述互助邻居通知消息, 得到互助网元的负荷信 息; 接收网元 DPM地址编码表中, 上级网元发送的与所述本网元对应的 上级邻居通知消息, 并处理所述上级邻居通知消息, 得到上级网元的负 荷信息; 接收网元 DPM地址编码表中, 下级网元发送的与所述本网元对应的 下级邻居通知消息, 并处理所述下级邻居通知消息, 得到下级网元的负 荷信息; 最后汇总所述互助网元的负荷信息、 所述上级网元的负荷信息、 所 述下级网元的负荷信息, 即得到所述本网元相邻网元的负荷信息。 接下来, 邻居通知消息定义及发送流程为: 邻居通知消息内容规定: 包括但不限于: 源地址、 目的地址、 当前 时间点、 当前业务负荷、 当前工作状态、 预测的业务负荷、 预计工作状 态、 对应时间段开始及结束时间点; 邻居通知消息种类: 互助邻居消息、 上下级邻居通知消息; 互助邻居通知消息内容: 除地址时间、 信息外, 网元所有 Ingress 当前总业务负荷, 网元所有 Ingress 总预测业务负荷, 网元当前工作状 态、 网元预计工作状态, 对应时间段开始及结束时间点。 互助邻居通知消息是广播型的, 发送给与邻居路由信息表上登记的 本网元所有互助邻居; 上下级邻居通知消息内容: 除地址时间信息外, 所属 Egress方向当 前业务负荷, 所属 Egress方向预测业务负荷, 网元当前工作状态, 网元 预计工作状态, 对应时间段开始及结束时间 , ; 上下级邻居通知消息是点对点的, 需要为网元 DPM 为邻居路由信息 表上登记的每个 Egress方向邻居分别生成并发送其唯一的上下级邻居通 知消息; 具体地, 邻居通知流程步骤如下: • 从邻居路由地址表中获取邻居类型及地址;
• 获取相关流程产生信息, 按前述内容要求封装与邻居类型对应的邻居 通知信息;
• 按地址发送, 遍历邻居路由地址表; 邻居信息处理流程,请参见图 8 ,对接收到的邻居通知进行按 ingress 方向, 邻居种类进行分类处理, 获得以下几类信息, 用于后续的网元 DPM 中业务负荷预测。 业务负荷信息包括但不限于: 当前时刻业务负荷、 预 测的下一时刻 T业务负荷、 工作状态、 启止时间等;
• Ingress方向各邻居的业务负荷信息:
• Ingress方向各邻居业务负荷汇总信息: * 各互助邻居的业务负荷信息; * 互助邻居业务负荷汇总信息; 具体地, 如图 8所示, 收到控制面消息; 识别出时邻居 X的通知消 息; 根据通知消息刷新邻居 X 的信息记录, 信息记录中包括当前负荷、 预测负荷、 工作状态、 起止时间 ; 对邻居信息处理, 判断邻居类型 (上 下级邻居或互助邻居) ; 分别^相应处理。 本实施例应用了网元 DPM地址编码表, 其建立方法是: 将一个或多个互助网元的地址存放在网元 DPM地址编码表中对应的 位置, 所述互助网元, 即为: 与所述本网元位于同一网络层内, 且与所 述本网元有业务联系的网元; 将一个或多个上级网元的地址存放在网元 DPM地址编码表中对应的 位置, 所述上级网元, 即为: 与所述本网元位于不同网络层内, 且与所 述本网元有业务联系的上一网络层中的网元; 将一个或多个下级网元的地址存放在网元 DPM地址编码表中对应的 位置, 所述下级网元, 即为: 与所述本网元位于不同网络层内, 且与所 述本网元有业务联系的下一网络层中的网元。 进一步, 所述网元 DPM地址编码表具有更新及刷新功能, 其可以根 据 0M发送的所述本网元相邻网元的地址信息, 更新所述网元 DPM地址编 码表; 还可以接受 0M对网元 DPM地址编码表的定时刷新。
网管 0M除了继续具备:各 DPM登记 /注册、 节能策略下发、 各 DPM的 使能 /停止、 状态查询、 来自各 DPM 的异常报告处理等功能外, 网管 0M 还新增了网元 DPM路由分组功能模块单元, 需要根据网络拓朴结构, 进 行网元 DPM邻居识别配置、 邻居通知信息路由的建立、 发布、 刷新维护 等工作。 邻居通知信息路由分为三类, 对应于三类网元邻居: 上级网元、 下级网元、 互助组网元, 每类邻居网元可以有多个。
请参见图 2 , 由于各网元从 I ngre s s 方向接收来自与上下级邻居的 业务负荷, 并通过 Egre s s方向把已处理的业务负荷发送给上、 下级邻居 网元。 上下级邻居的地址需要按 Ingress及 Egress方向进行地址分组, 形成邻居通知路由表单, 以便于管理及应用, 每个 Ingress/Egress地址 对应于一个 Ingress/Egress方向, 即意味着一个相连的网元邻居。 下表 即为一个网元 DPM地址编码表实例:
Figure imgf000011_0001
在下列情况下,网管 0M需向网元 DPM发送对应的邻居通知路由信息:
• 网管 0M获得某网元 DPM启动注册通知, 需向该网元 DPM发送邻 居通知路由信息。
• 网管 0M获得某网元 DPM注销 (停止运行) , 需重新计算并发送 受影响的邻居网元 DPM的邻居通知路由表单。 參 定时刷新。
网元 DPM邻居通知信息路由信息在网管 0M 的管理下建立及定时刷 新。
• 网元 DPM模块启动运行并向网管 0M注册,网管 0M向 DPM发生邻 居通知路由信息。
• 来自网管 0M的定时刷新邻居通知路由信息。
703、 根据所述本网元负荷信息及所述本网元相邻网元负荷信息, 预 测本网元下一时段的负荷。 引入邻居业务通知信息后, 有多种方法进行本网元业务负荷预测, 本实施例提供的方法有:
方法一
根据业务流量的逐级贯穿的事实,把网元 DPM地址编码表相 Ingress 方向上所有邻居的下一时段的预测业务量相加合并后得到的总预测业务 量, 作为本地的下一时段的 Ingress业务负荷量:
Ingress 方向下一时段总业务负荷 =来自 Ingress邻居 1 的下一时 段业务负荷 +来自 Ingress邻居 2的下一时段业务负荷 + ··· +来自 Ingress 邻居 N的下一时段 T业务负荷。 方法二
在前述的邻居信息处理流程中, 已计算得出了汇总后的 Ingress上 预测业务负荷误差的平均误差, 称之为 AD1;
在网元 DPM 的本地业务负荷釆集及统计分析过程得出了本地预测 Ingress业务负荷的平均误差称之为 AD2; 如果 ( AD2> \D1 ) , 本网元下一时段的业务负荷 =汇总后的 Ingress方向业务 T时刻业务负荷;
如果 ( Z D2<Z D1 ) , 本网元下一时段的 Ingress业务负荷 =本地 预测的下一时段 Ingress业务负荷。 方法三
参照平均误差 AD1及 XD2, 由 0M通过网元的 DPM维护接口设定加 权系数 A、 B,
或者按公式 A = AD2/ (AD2 + AD1 ) , B=AD1/ (AD2 + AD1 ) 计算 得到加权系数 A、 B, 然后按下列公式计算下一时段本网元 Ingress方向 的业务负荷;
本网元下一时段的 Ingress 业务负荷= AX汇总后的 Ingress 级下 一时段业务负荷 + BX本地预测的下一时段 Ingress业务负荷。 由于在网络规划中会部署互助网元, 进行负荷分担, 并给定业务分 担的策略, 例如业务策略中由 0M给定或者由经验数据给定互助网元组中 业务分担比例 /各业务负荷差异等最大值等。 因此来自于互助网元中的业 务负荷趋势会对本网元中的业务负荷预测有较好的修正作用。
实践中, 当预测出本网元下一段时间负荷后, 为了使所预测的负荷 更准确, 本实施例还根据相邻网元的负荷, 对预测的本网元下一段时间 负荷进行修正。
负荷修正的目的是: ( 1 )防止本网元业务预测出现较大偏差; ( 2 ) 与互助网元联动、 快速发现业务负荷的异常变化。
具体地, 请参阅图 9 , 其为对网元预测负荷进行修正的流程图, 读 取本网元的预测信息, 读取互助网元的预测信息, 分别计算出本网元和 互助网元的业务负荷趋势, 查看两业务负荷趋势是否在误差范围内, 根 据查看结果确定本网元下一时段的负荷预测, 输出最终预测负荷信息。
704、 向所述本网相邻网元发送本网元负荷信息。 具体为, 同时向所述网元 DPM地址编码表中, 所有互助网元发送互 助邻居通知消息; 分别向所述网元 DPM地址编码表中, 上级网元发送的与所述本网元 对应的上级邻居通知消息; 分别向所述网元 DPM地址编码表中, 下级网元发送的与所述本网元 对应的下级邻居通知消息。
705、 调整工作状态。 即, 在下一时段到来时, 把物理资源的工作状 态切换到目标状态。
釆用上述实施例, 在预测网络设备负荷时, 根据本设备的负荷信息 和本设备相邻设备的负荷信息, 进行预测计算, 预测出本设备下一时段 的负荷, 能够提高负荷预测的准确度, 使得通信设备的性能更好的跟踪 业务负荷变化, 节能效果更理想。
需要说明的是, 本实施例仅以网元为例描述了所述预测方法的实现 过程, 与上述方法类似, 本实施例的方法同样适用于网元的子系统, 网 元的单板等, 在此不再赘述。
Figure imgf000013_0001
本实施例以通信网络中的网元作为负荷实体进行详细表述, 此外负 荷实体还可以是通信网络中的子系统、 通信网络中的单板。
基于上述实施例,本实施例提供一种动态能耗管理器,如图 10所示, 包括: 第一获取单元 11、 第二获取单元 12、 预测单元 13。 第一获取单元 11, 用于获取本网元负荷信息。 第二获取单元 12, 用于获取所述本网元相邻网元负荷信息。 预测单元 13, 用于根据所述本网元负荷信息及所述本网元相邻网元 负荷信息, 预测本网元下一时段的负荷。
具体地, 第二获取单元 12包括: 第一接收模块 121, 用于接收 DPM地址编码表中, 互助网元发送的互 助邻居通知消息, 并处理所述互助邻居通知消息, 得到互助网元当前的 负荷信息; 第二接收模块 122, 用于接收网元 DPM地址编码表中, 上级网元发送 的与所述本网元对应的上级邻居通知消息, 并处理所述上级邻居通知消 息, 得到上级网元当前的负荷信息; 第三接收模块 123, 用于接收网元 DPM地址编码表中, 下级网元发送 的与所述本网元对应的下级邻居通知消息, 并处理所述下级邻居通知消 息, 得到下级网元当前的负荷信息;
将所述互助网元当前的负荷信息、 所述上级网元当前的负荷信息、 所述下级网元当前的负荷信息, 三者汇总, 即得到所述本网元相邻网元 当前的负荷信息。 进一步, 预测单元 13, 包括: 第一预测模块 131, 用于根据 Χ=Χ1+Χ2 +〜+Χη, 预测的本网元下一时 段负荷, 其中, X 为预测的本网元入口下一时段的总负荷、 XI 为入口相 邻网元 1预测的下一时段的负荷、 X2为入口相邻网元 2预测的下一时段 的负荷、 Xn为入口相邻网元 n预测的下一时段的负荷; 第二预测模块 132, 用于比较 AD1及 AD2的大小, 其中, AD1为根 据 Χ=Χ1+Χ2+···+Χη预测本网元下一时段负荷时的平均误差、 ΔΜ为本网 元预测本网元下一时段负荷时的平均误差, 若 AD1 > ΔΌ2, 取本网元预 测的本网元下一时段的负荷, 为预测的本网元下一时段的负荷; 若 AD1 < △ D2, 取根据 Χ=Χ1+Χ2 +〜+Χη预测的本网元下一时段的负荷, 为预测的 本网元下一时段的负荷; 第三预测模块 133, 用于根据 Υ=Αχ Β + C x D, 其中, Y为预测的本 网元下一时刻的负荷、 A值可以设定或 A= \D2/ ( \D2 + AD1 ) 、 B为根据 Χ=Χ1+Χ2 + ···+Χη 预测的本网元下一时刻的负荷、 C 值可以设定或 C=AD1/ (ΔΌ2 + AD1 ) , D为本网元预测的本网元下一时段的负荷, AD1 为根据 Χ=Χ1+Χ2+···+Χη预测本网元下一时段负荷时的平均误差、 AD2为 本网元预测本网元下一时段负荷时的平均误差。 接下来, 当预测单元预测出本网元下一时段的负荷后, 修正单元可 以利用所述本网元的互助网元的业务量, 修正所述本网元下一时段的负 荷预测。 再下来, 本实施例提供的动态能耗管理器还包括建表单元 14, 用于: 将一个或多个互助网元的地址存放在网元 DPM地址编码表中对应的 位置, 所述互助网元, 即为: 与所述本网元位于同一网络层内, 且与所 述本网元有业务联系的网元; 将一个或多个上级网元的地址存放在网元 DPM地址编码表中对应的 位置, 所述上级网元, 即为: 与所述本网元位于不同网络层内, 且与所 述本网元有业务联系的上一网络层中的网元; 将一个或多个下级网元的地址存放在网元 DPM地址编码表中对应的 位置, 所述下级网元, 即为: 与所述本网元位于不同网络层内, 且与所 述本网元有业务联系的下一网络层中的网元。 所述建表单元 14还用于, 根据网管 0Μ发送的所述本网元相邻网元 的地址信息, 更新所述网元 DPM地址编码表及定时刷新所述网元 DPM地 址编码表。 预测单元预测出本网元下一时段的负荷后, 发送单元 15进行如下内 容: 同时向所述网元 DPM地址编码表中, 所有互助网元发送互助邻居通 知消息; 分别向所述网元 DPM地址编码表中, 上级网元发送的与所述本网元 对应的上级邻居通知消息; 分别向所述网元 DPM地址编码表中, 下级网元发送的与所述本网元 对应的下级邻居通知消息。 调整单元 16, 用于根据预测的本网元下一时段的负荷, 调整本网元 下一时段的工作状态。 此外, 本实施例还提供了: 第一接口单元, 用于接收 0M发送的信息。 0M通过第一接口单元对网 元进行管理和维护。 第二接口单元, 用于所述 DPM之间相互通信。 本网元与本网元相邻 网元应用第二接口单元进行信息交互。 本实施例提供的动态能耗管理器与实施例 2 所述的负荷预测方法对 应, 可参照实施例 2中方法的详细描述。 釆用上述实施例, 在预测网络设备负荷时, 根据本设备的负荷信息 和本设备相邻设备的负荷信息, 进行预测计算, 预测出本设备下一时段 的负荷, 能够提高负荷预测的准确度, 使得通信设备的性能更好的跟踪 业务负荷变化, 节能效果更理想。
本实施例还提供一种动态能耗管理器, 本实施例所述的负荷实体还 可以为通信网络中的网元, 网元的子系统, 网元的单板等。
如图 11 所示, 所述动态能耗管理器包括: 第一接口单元 1101、 核 心数据存储单元 1102、 第一获取单元 1103、 第二获取单元 1104、 第二接 口单元 1105、 发送单元 1106、 预测单元 1107、 管理单元 1108、 调整单 元 1109。 第一接口单元 1101, 用于接收 0M发送的信息。 0M通过第一接口单 元对负荷实体进行管理和维护。
核心数据存储单元 1102, 用于存储 0M配置的节能策略、 邻居路由 信息、 业务负荷信息、 误差键数据。
第一获取单元 1103, 用于获取本负荷实体负荷信息; 具体地, 第一获取单元, 用于釆集当前业务负载, 按时间顺序, 构 成业务负荷实际值序列;
按本地的业务预测算法预计下一时刻的业务负荷, 按时间顺序, 构 成业务负荷预测值序列;
某一时刻 T的预测误差 = T时刻业务负荷的预测值与 Τ时刻的业务 负荷实际值的差。 误差值也按时间先后构成误差值序列;
取当前时刻前 Ν (例如 Ν = 30 )个时刻点误差值取绝对值相加后再平 均, 获得预测平均误差, 作为衡量本地预测方法准确度的指标。
由于网元从 Ingress 方向接收来自于上、 下级邻居的业务负荷, 并 通过 Egress方向把已处理的业务负荷发送给上、 下级邻居网元。 因此需 要对所有各 Ingress及 Egress通路方向均进行上述步骤的处理, 形成系 列化的预测结果。 其中 Egress方向的预测结果需在通过后续的邻居通知 功能发送给对应的邻居, 参与业务邻居网元上 DPM 中的信息处理及业务 负荷预测过程。 Ingress 方向的预测结果需参与本地的后续负荷预测过 程。
第二获取单元 1104, 用于获取所述本负荷实体相邻负荷实体负荷信 息;
第二接口单元 1105, 用于所述 DPM之间相互通信。 本负荷实体与本 负荷实体相邻负荷实体应用第二接口单元进行信息交互。
发送单元 1106, 用于同时向所述负荷实体 DPM地址编码表中, 所有 互助负荷实体发送互助邻居通知消息; 分别向所述负荷实体 DPM地址编 息。 、 、― 、 、 预测单元 1107, 用于根据所述本负荷实体负荷信息及所述本负荷实 体相邻负荷实体负荷信息, 预测所述本负荷实体下一时段的负荷。
管理单元 1 1 08 , 用于将节能策略预留的冗余性能需求 B加入预测的 本负荷实体下一时段的负荷 A 中, 更新预测的所述本负荷实体下一时段 的负荷。
调整单元 1 1 09 , 用于根据管理单元 1 1 06 更新预测的所述本负荷实 体下一时段的负荷, 调整本负荷实体下一时段的工作状态。 本发明实施例提供的装置, 在预测网元负荷时, 根据本网元当前的 负荷信息和本网元相邻网元当前的负荷信息, 进行预测计算, 预测出本 网元下一时段的负荷。 与现有技术在预测网元负荷信息时, 与现有技术 只根据单个网元自身的信息进行负荷预测相比, 本发明技术方案提供的 装置提高了网元负荷预测准确度, 使得通信设备的性能更好的跟踪业务 负荷变化, 节约了能耗。 需要说明的是, 本发明提供的装置与方法同样可以使用于由多个子 系统组成的通信系统中。 例如一个典型的通信系统由: 主控子系统、 交 换子系统、 呼叫 /业务处理子系统、 接口子系统、 存储子系统等各子系统 组成。 同样可以在业务平面上把各子系统划分为业务处理的上下级关系, 同时各子系统在控制面上可以互通消息。 因此, 参照前述实施例, 可以在各子系统上部署动态能耗管理单元 DPM。 各子系统 DPM在主控子系统的管理配置下运行, 在控制面上互通业 务负荷信息, 按前实施例的步骤及流程进行业务负荷的预测及执行动态 节能功能。 本发明实施例主要应用于网络设备负荷预测, 能够提高网络设备负 荷预测的准确度, 从而实现网络设备节能。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局 限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可 轻易想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明 的保护范围应所述以权利要求的保护范围为准。

Claims

权 利 要 求 书
1、 一种负荷预测方法, 其特征在于, 包括: 获取本负荷实体负荷信息; 获取所述本负荷实体相邻负荷实体负荷信息; 根据所述本负荷实体负荷信息及所述本负荷实体相邻负荷实体负荷 信息, 预测所述本负荷实体下一时段的负荷。
2、 根据权利要求 1所述的负荷预测方法, 其特征在于, 所述本负荷 实体相邻负荷实体包括: 互助负荷实体、 上级负荷实体、 下级负荷实体, 所述获取所述本负荷实体相邻负荷实体负荷信息, 包括: 接收负荷实体动态能耗管理器 DPM 地址编码表中, 互助负荷实体发 送的互助邻居通知消息, 并处理所述互助邻居通知消息, 得到互助负荷 实体的负荷信息, 所述负荷信息包括: 当前的实际负荷、 预测的负荷、 预测误差、 时间信息; 接收负荷实体 DPM 地址编码表中, 上级负荷实体发送的与所述本负 荷实体对应的上级邻居通知消息, 并处理所述上级邻居通知消息, 得到 上级负荷实体的负荷信息; 接收负荷实体 DPM 地址编码表中, 下级负荷实体发送的与所述本负 荷实体对应的下级邻居通知消息, 并处理所述下级邻居通知消息, 得到 下级负荷实体的负荷信息; 汇总所述互助负荷实体的负荷信息、 所述上级负荷实体负荷信息及 所述下级负荷实体负荷信息, 得到所述本负荷实体相邻负荷实体的负荷 信息。
3、 根据权利要求 1所述的负荷预测方法, 其特征在于, 所述根据本 负荷实体负荷信息及所述本负荷实体相邻负荷实体负荷信息, 预测所述 本负荷实体下一时段的负荷, 包括: 根据 Χ=Χ 1 +Χ 2 +〜+Χη , 预测的本负荷实体下一时段负荷, 其中, X为 预测的本负荷实体入口下一时段的总负荷、 XI为入口相邻负荷实体 1预 测的下一时段的负荷、 X2为入口相邻负荷实体 2预测的下一时段的负荷、 Xn为入口相邻负荷实体元 n预测的下一时段的负荷; 或者 比较 及 AD2的大小, 其中, AD1为根据 Χ=Χ1+Χ2 +〜+Χη预测本 负荷实体下一时段负荷时的平均误差、 AD2 为本负荷实体预测本负荷实 体下一时段负荷时的平均误差, 若 AD1 > ΑΌ2, 取本单元预测的本负荷 实体下一时段的负荷, 为预测的本负荷实体下一时段的负荷; 若 AD1 < △ D2, 取根据 Χ=Χ1+Χ2 + ···+Χη预测的本负荷实体下一时段的负荷, 为预 测的本负荷实体下一时段的负荷; 或者 根据 Y=AxB + Cx D, 其中, Y为预测的本负荷实体下一时刻的负荷、 A值可以设定或 A= \D2/ (AD2 + AD1 )、 B为根据 Χ=Χ1+Χ2+〜+Χη预测的 本负荷实体下一时刻的负荷、 C值可以设定或 C=Z D1/ (Z D2 + Z D1 ) 、 D 为本单元预测的本负荷实体下一时段的负荷, 为根据 Χ=Χ1+Χ2 + ···+Χη 预测本负荷实体下一时段负荷时的平均误差、 AD2 为本负荷实体预测本 负荷实体下一时段负荷时的平均误差。
4、 根据权利要求 2所述的负荷预测方法, 其特征在于, 还包括: 利用所述本负荷实体的互助负荷实体的负荷信息, 修正所述本负荷 实体下一时段的负荷预测。
5、 根据权利要求 2所述的负荷预测方法, 其特征在于, 还包括, 建 立负荷实体 DPM地址编码表, 具体为: 将一个或多个互助负荷实体的地址存放在负荷实体 DPM地址编码表 中对应的位置, 所述互助负荷实体为与所述本负荷实体位于同一网络层 内, 且与所述本负荷实体有业务联系的网元; 将一个或多个上级负荷实体的地址存放在单元 DPM地址编码表中对 应的位置, 所述上级负荷实体为与所述本负荷实体位于不同网络层内, 且与所述本负荷实体有业务联系的上一网络层中的负荷实体; 将一个或多个下级负荷实体的地址存放在负荷实体 DPM地址编码表 中对应的位置, 所述下级负荷实体为与所述本负荷实体位于不同网络层 内, 且与所述本负荷实体有业务联系的下一网络层中的单元。
6、 根据权利要求 2所述的负荷预测方法, 其特征在于, 还包括:
息, 更新所述负荷实体 DPM地址编码表; 定时刷新所述负荷实体 DPM地址编码表。
7、根据权利要求 1或 2所述的负荷预测方法, 其特征在于, 还包括,
同时向所述负荷实体 DPM地址编码表中, 所有互助负荷实体发送互 助邻居通知消息; 分别向所述负荷实体 DPM地址编码表中, 上级负荷实体发送的与所 述本负荷实体对应的上级邻居通知消息; 分别向所述负荷实体 DPM地址编码表中, 下级负荷实体发送的与所 述本负荷实体对应的下级邻居通知消息。
8、 根据权利要求 1-7任一项所述的负荷预测方法, 其特征在于, 所 述负荷实体为通信网络中的网元, 网元的子系统, 网元的单板。
9、 一种动态能耗管理器, 其特征在于, 包括: 第一获取单元, 用于获取本负荷实体负荷信息; 第二获取单元, 用于获取所述本负荷实体相邻负荷实体负荷信息; 预测单元, 用于根据所述本负荷实体负荷信息及所述本负荷实体相 邻负荷实体负荷信息, 预测所述本负荷实体下一时段的负荷。
10、 根据权利要求 9 所述的动态能耗管理器, 其特征在于, 所述本 负荷实体相邻负荷实体包括: 互助负荷实体、 上级负荷实体、 下级负荷 实体, 所述第二获取单元用于: 接收负荷实体动态能耗管理器 DPM地址编码表中, 互助负荷实体发 送的互助邻居通知消息, 并处理所述互助邻居通知消息, 得到互助负荷 实体的负荷信息, 所述负荷信息包括: 当前的实际负荷、 预测的负荷、 预测误差、 时间信息; 接收负荷实体 DPM地址编码表中, 上级负荷实体发送的与所述本负 荷实体对应的上级邻居通知消息, 并处理所述上级邻居通知消息, 得到 上级负荷实体的负荷信息; 接收负荷实体 DPM地址编码表中, 下级负荷实体发送的与所述本负 荷实体对应的下级邻居通知消息, 并处理所述下级邻居通知消息, 得到 下级负荷实体的负荷信息; 汇总所述互助负荷实体的负荷信息、 所述上级负荷实体负荷信息及 所述下级负荷实体负荷信息, 得到所述本负荷实体相邻负荷实体的负荷 信息。
11、 根据权利要求 9 所述的动态能耗管理器, 其特征在于, 所述预 测单元, 包括以下任一模块: 第一预测模块, 用于根据 Χ=Χ1+Χ2 +〜+Χη, 预测的本负荷实体下一时 段负荷, 其中, X 为预测的本负荷实体入口下一时段的总负荷、 XI 为入 口相邻负荷实体 1预测的下一时段的负荷、 X2为入口相邻负荷实体 2预 测的下一时段的负荷、 Xn为入口相邻负荷实体元 n预测的下一时段的负 荷; 第二预测模块, 用于比较 AD1 及 AD2 的大小, 其中, AD1 为根据 Χ=Χ1+Χ2 + ···+Χη预测本负荷实体下一时段负荷时的平均误差、 AD2 为本 负荷实体预测本负荷实体下一时段负荷时的平均误差, 若 AD1 > AD2, 取本单元预测的本负荷实体下一时段的负荷, 为预测的本负荷实体下一 时段的负荷; 若 AD1 < AD2, 取根据 Χ=Χ1+Χ2+〜+Χη预测的本负荷实体 下一时段的负荷, 为预测的本负荷实体下一时段的负荷; 第三预测模块, 用于根据 Υ=Αχ Β + C x D, 其中, Y为预测的本负荷 实体下一时刻的负荷、 A值可以设定或 A= \D2/ ( XD2 + XD1 ) 、 B为根据 Χ=Χ1 +Χ2 + ··· +Χη 预测的本负荷实体下一时刻的负荷、 C 值可以设定或 C=A D1 / (A D2 + A D1 ) 、 D为本单元预测的本负荷实体下一时段的负荷,
△ D1为根据 Χ=Χ1 +Χ2 +〜+Χη预测本负荷实体下一时段负荷时的平均误差、
△ D2为本负荷实体预测本负荷实体下一时段负荷时的平均误差。
1 2、根据权利要求 1 0所述的动态能耗管理器, 其特征在于, 还包括: 修正单元, 用于利用所述本负荷实体的互助负荷实体的负荷信息, 修正所述本负荷实体下一时段的负荷预测。
1 3、根据权利要求 1 0所述的动态能耗管理器, 其特征在于, 还包括: 建表单元, 用于: 将一个或多个互助负荷实体的地址存放在负荷实体 DPM地址编码表 中对应的位置, 所述互助负荷实体为与所述本负荷实体位于同一网络层 内, 且与所述本负荷实体有业务联系的网元; 将一个或多个上级负荷实体的地址存放在单元 DPM地址编码表中对 应的位置, 所述上级负荷实体为与所述本负荷实体位于不同网络层内, 且与所述本负荷实体有业务联系的上一网络层中的负荷实体; 将一个或多个下级负荷实体的地址存放在负荷实体 DPM地址编码表 中对应的位置, 所述下级负荷实体为与所述本负荷实体位于不同网络层 内, 且与所述本负荷实体有业务联系的下一网络层中的单元。
14、 根据权利要求 1 3所述的动态能耗管理器, 其特征在于, 所述建 表单元还用于: 根据 0 M发送的所述本负荷实体相邻负荷实体的地址信息, 更新所述 负荷实体 DPM地址编码表; 定时刷新所述负荷实体 DPM地址编码表。
1 5、 根据权利要求 9或 1 0所述的动态能耗管理器, 其特征在于, 还 包括发送单元, 用于: 同时向所述负荷实体 DPM地址编码表中, 所有互助负荷实体发送互 助邻居通知消息; 分别向所述负荷实体 DPM地址编码表中, 上级负荷实体发送的与所 述本负荷实体对应的上级邻居通知消息; 分别向所述负荷实体 DPM地址编码表中, 下级负荷实体发送的与所 述本负荷实体对应的下级邻居通知消息。
1 6、 根据权利要求 6所述的动态能耗管理器, 其特征在于, 还包括: 第一接口单元, 用于接收 0M发送的信息。
1 7、 根据权利要求 2所述的动态能耗管理器, 其特征在于, 还包括: 第二接口单元, 用于所述 DPM之间相互通信。
1 8、根据权利要求 9- 1 7任一项所述的动态能耗管理器,其特征在于, 所述负荷实体为通信网络中的网元, 网元的子系统, 网元的单板。
1 9、 一种节能控制通信系统, 其特征在于, 包括: 0M和 DPM , 所述 DPM , 用于获取本负荷实体负荷信息; 获取所述本负荷实体相邻负荷实体 负荷信息; 根据所述本负荷实体负荷信息及所述本负荷实体相邻负荷实 体负荷信息, 预测所述本负荷实体下一时段的负荷; 所述 0M , 用于进行 DPM邻居识别配置, 邻居路由消息的建立、 发布 刷新、 维护。
2 0、 根据权利要求 1 9 所述的节能控制通信系统, 其特征在于, 所述 DPM 位于所述负荷实体内, 所述负荷实体为通信网络中的网元, 网元的子 系统, 网元的单板。
PCT/CN2011/079839 2011-09-19 2011-09-19 负荷预测方法、装置及节能控制通信系统 WO2012149749A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2011/079839 WO2012149749A1 (zh) 2011-09-19 2011-09-19 负荷预测方法、装置及节能控制通信系统
EP11864701.5A EP2672748B1 (en) 2011-09-19 2011-09-19 Load prediction method, apparatus and energy-saving control communication system
CN2011800019445A CN102388643B (zh) 2011-09-19 2011-09-19 负荷预测方法、装置及节能控制通信系统
US14/143,357 US20140114490A1 (en) 2011-09-19 2013-12-30 Load prediction method, apparatus, and energy-saving control communications system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/079839 WO2012149749A1 (zh) 2011-09-19 2011-09-19 负荷预测方法、装置及节能控制通信系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/143,357 Continuation US20140114490A1 (en) 2011-09-19 2013-12-30 Load prediction method, apparatus, and energy-saving control communications system

Publications (1)

Publication Number Publication Date
WO2012149749A1 true WO2012149749A1 (zh) 2012-11-08

Family

ID=45826524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/079839 WO2012149749A1 (zh) 2011-09-19 2011-09-19 负荷预测方法、装置及节能控制通信系统

Country Status (4)

Country Link
US (1) US20140114490A1 (zh)
EP (1) EP2672748B1 (zh)
CN (1) CN102388643B (zh)
WO (1) WO2012149749A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103369640B (zh) * 2012-03-29 2018-03-27 中兴通讯股份有限公司 基站节电方法及装置
CN103150610A (zh) * 2013-02-28 2013-06-12 哈尔滨工业大学 基于模糊信息粒化与支持向量机的供热负荷预报方法
CN104378310B (zh) * 2014-11-26 2017-07-04 中国联合网络通信集团有限公司 一种资源调度方法及装置
EP3306584A4 (en) * 2015-05-27 2019-01-09 Nec Corporation INFORMATION PROCESSING DEVICE, INFORMATION PROCESSING, INFORMATION PROCESSING AND INFORMATION PROCESSING SYSTEM
CN109088742B (zh) * 2017-06-14 2021-11-19 中国移动通信有限公司研究院 一种业务预测方法及网元设备、计算机可读存储介质
CN111160598A (zh) * 2019-11-13 2020-05-15 浙江中控技术股份有限公司 一种基于动态能耗基准的能源预测与能耗管控方法及系统
CN113543284A (zh) * 2020-04-17 2021-10-22 中兴通讯股份有限公司 节能方法、基站、控制单元及存储介质
US20230180123A1 (en) * 2020-05-28 2023-06-08 Telefonaktiebolaget Lm Ericsson (Publ) Adjusting power consumption in a telecommunications network based on traffic prediction
CN111564848B (zh) * 2020-06-09 2022-05-03 剑科云智(深圳)科技有限公司 一种微型电网的智能电力调度方法和用电负荷预测装置
CN112434885B (zh) * 2020-12-15 2023-06-06 中国联合网络通信集团有限公司 节能小区的业务预测方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1627673A (zh) * 2003-12-10 2005-06-15 华为技术有限公司 自适应的码分多址系统负载预测方法
CN1968490A (zh) * 2006-06-27 2007-05-23 华为技术有限公司 实现小区负载预测的方法
EP2296394A1 (en) * 2009-09-10 2011-03-16 Alcatel Lucent Base station, method and computer program product for load balancing in a group of base stations

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4784318B2 (ja) * 2006-01-25 2011-10-05 ソニー株式会社 無線通信装置及び方法、並びに信号減衰量推定装置及び方法
ES2621965T3 (es) * 2008-01-11 2017-07-05 Ntt Docomo, Inc. Procedimiento de comunicación móvil y estación base de radio
EP2120493A1 (en) * 2008-03-19 2009-11-18 Nokia Siemens Networks Oy Mechanism for automated re-configuration of an access network element
US8217626B2 (en) * 2008-05-09 2012-07-10 Research In Motion Limited System and method for dynamic power management of a mobile device
ES2436786T3 (es) * 2008-12-29 2014-01-07 Unwired Planet, Llc Método y estación base para ahorro de energía
US8315224B2 (en) * 2010-01-22 2012-11-20 General Electric Company Methods and systems for reuse of radio resources in medical telemetry networks
KR20110102589A (ko) * 2010-03-11 2011-09-19 삼성전자주식회사 무선통신시스템에서 전력 소모를 줄이기 위한 장치 및 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1627673A (zh) * 2003-12-10 2005-06-15 华为技术有限公司 自适应的码分多址系统负载预测方法
CN1968490A (zh) * 2006-06-27 2007-05-23 华为技术有限公司 实现小区负载预测的方法
EP2296394A1 (en) * 2009-09-10 2011-03-16 Alcatel Lucent Base station, method and computer program product for load balancing in a group of base stations

Also Published As

Publication number Publication date
EP2672748B1 (en) 2017-04-05
EP2672748A4 (en) 2015-11-18
CN102388643A (zh) 2012-03-21
US20140114490A1 (en) 2014-04-24
EP2672748A1 (en) 2013-12-11
CN102388643B (zh) 2013-12-04

Similar Documents

Publication Publication Date Title
WO2012149749A1 (zh) 负荷预测方法、装置及节能控制通信系统
CN108600102B (zh) 一种基于智慧协同网络的柔性数据传输系统
CN103179046B (zh) 基于openflow的数据中心流量控制方法及系统
CN104918267B (zh) 一种无线传感器网络的心跳检测方法和装置
CN102123087B (zh) 快速定标多级转发负载均衡方法及多级转发网络系统
CN104410582A (zh) 一种基于流量预测的电力通信网流量均衡方法
WO2013037230A1 (zh) 一种wcdma网络扩容规划的方法和装置
CN108900428A (zh) 基于交换机动态迁移的控制器负载均衡方法
CN103888994A (zh) 一种具有热灾备能力的多网关处理方法及系统
WO2014023245A1 (zh) 一种流量预测方法、系统及流量监测方法、系统
CN102724730A (zh) 一种无线传感器网络基于数据融合的多径路由方法及装置
Matheen et al. IoT multimedia sensors for energy efficiency and security: A review of QoS aware and methods in wireless multimedia sensor networks
CN116455729A (zh) 一种基于链路质量评估模型的故障链路检测与恢复方法
Zilberman et al. Toward carbon-aware networking
CN102571782B (zh) 一种新型负载平衡服务器集群系统
CN103532816A (zh) 一种考虑地理位置约束的虚拟网络可靠映射方法
WO2012065440A1 (zh) 虚拟路由器冗余协议备份组中设备优先级实现方法及装置
CN114123186B (zh) 基于智能配电网的自愈优化控制方法、系统、终端及介质
CN118472924A (zh) 面向配电网应急供电的电动汽车调度方法和系统
JP5598362B2 (ja) トラフィックデータの監視システムおよびサーバ間データ整合方法
CN106549805B (zh) 一种sdn网络架构及其通信方法
CN104243579A (zh) 应用于水利施工现场的计算节点的控制方法及系统
CN107453997A (zh) 一种基于双代价的优化路由方法
CN105704038B (zh) 一种用于临时保电电网的通信保障方法
CN113873033B (zh) 一种具有容错功能的智能边缘计算网关平台

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180001944.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11864701

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2011864701

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011864701

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE