[go: up one dir, main page]

WO2012147958A1 - Fluid pressure imprinting device and pressurization device - Google Patents

Fluid pressure imprinting device and pressurization device Download PDF

Info

Publication number
WO2012147958A1
WO2012147958A1 PCT/JP2012/061468 JP2012061468W WO2012147958A1 WO 2012147958 A1 WO2012147958 A1 WO 2012147958A1 JP 2012061468 W JP2012061468 W JP 2012061468W WO 2012147958 A1 WO2012147958 A1 WO 2012147958A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
pressure
pressurizing
stage
fluid
Prior art date
Application number
PCT/JP2012/061468
Other languages
French (fr)
Japanese (ja)
Inventor
河口宏輔
田中覚
Original Assignee
Scivax株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scivax株式会社 filed Critical Scivax株式会社
Priority to JP2013512491A priority Critical patent/JPWO2012147958A1/en
Publication of WO2012147958A1 publication Critical patent/WO2012147958A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/022Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing characterised by the disposition or the configuration, e.g. dimensions, of the embossments or the shaping tools therefor
    • B29C2059/023Microembossing

Definitions

  • the present invention relates to an imprint apparatus for continuously transferring a pattern of a mold onto a molding, and a pressure apparatus used for the imprint apparatus.
  • nanoimprint technology has attracted attention as a method for forming micro-order and nano-order ultrafine patterns.
  • a mold having a fine pattern is pressed on a molded object such as a resin, and the pattern is transferred to the molded object (see, for example, Patent Document 1 and Patent Document 2).
  • stage and the stage peripheral members for holding the mold or the workpiece need to be strong enough to withstand the pressurization, so that the thickness has to be increased.
  • the imprint apparatus described in Patent Document 2 seals between the pressurizing chamber and the molding object on the basis of the position of the stage, and pressurizes the molding object using fluid pressure.
  • the imprint apparatus since the back side of the stage is fixed, thermal expansion that occurs in the stage and stage peripheral members due to heating and cooling during molding occurs entirely on the surface side of the stage. As a result, there is a problem that distortion or misalignment occurs on the stage, which may cause molding defects.
  • an object of the present invention is to provide an imprint apparatus and a pressurizing apparatus that can reduce the thickness of the stage and the influence of thermal expansion around the stage.
  • an imprint apparatus of the present invention is for transferring a molding pattern of a mold onto a molding object, and pressurizing the mold and the molding object with a fluid.
  • a pressurizing unit having a chamber, a stage that supports the mold and the workpiece subjected to the pressure of the pressurizing unit, and a side of the stage that faces the pressurizing unit.
  • a pressure adjusting unit having a pressure adjusting chamber for pressurization, a pressurizing means for adjusting the pressure of the fluid in the pressurizing chamber, and an adjustment so that the pressure difference between the fluid in the pressurizing chamber and the pressure adjusting chamber is reduced. Pressure adjusting means.
  • the pressure adjusting means is constituted by a communication pipe that connects the pressurizing chamber and the pressure regulating chamber.
  • a decompression section having a decompression chamber for decompressing the atmosphere around the mold and the workpiece may be provided.
  • the pressure adjusting means is formed so as to be adjustable so that a pressure difference between the fluid in the decompression chamber and the pressure regulation chamber is small.
  • a temperature adjusting means for adjusting the temperature of the molding object may be provided.
  • the temperature adjustment means includes a fluid supply means for supplying a fluid having a predetermined temperature to the stage from a plurality of supply ports arranged in the pressure adjustment chamber, and a discharge channel for discharging the fluid in the pressure adjustment chamber.
  • the stage is preferably formed with a plurality of irregularities on the pressure regulating chamber side.
  • the pressurizing unit includes a pressurizing chamber casing that forms the pressurizing chamber together with the mold or the molding, a sealing unit that seals between the mold or the molding, and the pressurizing unit. Opening / closing means for opening and closing between the pressure chamber casing and the mold or the molding object, or a flexible film disposed on the surface in contact with the mold or the molding object And a pressurizing chamber casing that constitutes the pressurizing chamber together with the membrane.
  • the pressurizing device of the present invention is for pressurizing an object to be pressurized, and includes a pressurizing unit having a pressurizing chamber for pressurizing the object to be pressurized with a fluid, and the pressurizing unit.
  • pressurizing means for adjusting the pressure of the fluid in the pressurizing chamber, and pressure adjusting means for adjusting the pressure difference between the fluid in the pressurizing chamber and the pressure regulating chamber to be small.
  • the pressure adjusting means is constituted by a communication pipe that connects the pressurizing chamber and the pressure regulating chamber.
  • a decompression unit having a decompression chamber for decompressing the atmosphere around the object to be pressurized may be provided.
  • the pressure adjusting means is formed so as to be adjustable so that a pressure difference between the fluid in the decompression chamber and the pressure regulation chamber is small.
  • the pressurizing apparatus of the present invention can reduce the thickness of the stage and can reduce the weight of the apparatus. Moreover, the imprint apparatus of this invention using the said pressurization apparatus can make the heat capacity of a stage small by reducing the thickness of a stage, and can raise / lower temperature at high speed. In addition, the influence of thermal expansion around the stage can be reduced.
  • a pressurizing device of the present invention is for pressurizing an object to be pressurized, and includes a pressurizing unit having a pressurizing chamber for pressurizing the object to be pressurized with a fluid, and a pressure of the pressurizing unit.
  • the pressurizing means for adjusting and the pressure adjusting means for adjusting so as to reduce the pressure difference between the fluid in the pressurizing chamber and the pressure regulating chamber are mainly configured.
  • the object to be pressed may be singular or plural.
  • two of a mold and a molding object correspond to the pressed object.
  • fluid in this specification means a gas such as air or a liquid such as water.
  • the pressurizing unit has a pressurizing chamber for directly or indirectly pressurizing an object to be pressurized with a fluid.
  • a pressurizing chamber housing that constitutes a pressurizing chamber together with the object to be pressurized What is necessary is just to comprise by the sealing means which seals between the to-be-pressurized object, and the opening-and-closing means which opens and closes between the casing for pressurization chambers and the to-be-pressurized object.
  • the casing for the pressurizing chamber is formed in a bottomed cylindrical shape having an opening, and constitutes a pressurizing chamber that is a sealed space by closing the opening with an object to be pressurized.
  • This opening is formed larger than the area of the portion to be pressed of the object to be pressed.
  • Any material may be used as long as it has pressure resistance and heat resistance with respect to the conditions during pressurization.
  • a metal such as carbon steel or stainless steel can be used.
  • the sealing means closes the pressurizing chamber casing and the object to be pressed in order to seal the pressurizing chamber.
  • a concave groove shallower than the diameter of the cross section of the O-ring is formed at the stage side end of the side wall of the pressurizing chamber casing, and the O-ring is disposed in this groove. good.
  • the object to be pressurized can be held between the casing for the pressurizing chamber and the stage, and the casing for the pressurizing chamber and the object to be pressurized can be brought into close contact with each other, so that the pressurizing chamber can be sealed.
  • the pressurizing chamber can be reliably sealed if the parallelism is within the crushing margin of the O-ring.
  • the opening / closing means is for opening and closing the pressurizing chamber by bringing the pressurizing chamber casing and the object to be pressed close to or away from each other.
  • the pressurizing chamber casing is a hydraulic or pneumatic cylinder. It is possible to apply one that moves by means of an electric motor and one that moves by an electric motor and a ball screw.
  • the pressurizing unit there is a flexible film disposed on a surface that comes into contact with an object to be pressed, and a pressurizing chamber casing that forms a pressurizing chamber together with the film. It may be configured.
  • an elastic body such as resin, thin metal, or rubber can be used.
  • a material that can transmit the light is selected for the film.
  • the thickness of the film is 10 mm or less, preferably 3 mm or less, more preferably 1 mm or less.
  • the casing for the pressurizing chamber is formed in a bottomed cylindrical shape having an opening as in the previous example.
  • the pressurizing chamber casing and the membrane are fixed by an adhesive or the like, and the pressurizing chamber is sealed.
  • the pressurizing chamber casing and the membrane may be sealed by a sealing means in the same manner as described above.
  • the stage is for supporting an object to be pressed that has received pressure from the pressurizing unit.
  • the surface of the stage that comes into contact with the object to be pressed is sufficiently wide and is formed into an arbitrary shape suitable for molding the object to be pressed. Any material may be used as long as it has pressure resistance and heat resistance with respect to the conditions during pressurization. For example, a metal such as carbon steel or stainless steel can be used.
  • a thing with high heat conductivity such as a metal.
  • a material having low thermal conductivity may be used to prevent heat from escaping to the pressure adjusting chamber side, but in order to prevent uneven heating.
  • the stage surface side is preferably composed of a material having high thermal conductivity.
  • the pressure adjusting unit prevents the stage from being deformed by the pressure of the pressurizing unit, and gives the stage a reaction force against the pressure of the pressurizing unit.
  • the pressure adjusting unit may be constituted by, for example, a pressure adjusting chamber casing that forms a pressure adjusting chamber together with the stage, and a pressure adjusting chamber sealing unit that seals between the stage and the pressure adjusting chamber casing.
  • the pressure regulation chamber casing is formed in a bottomed cylindrical shape having an opening, and constitutes a pressure regulation chamber which is a sealed space by closing the opening with a stage.
  • the pressure regulating chamber sealing means brings the pressure regulating chamber casing and the stage into close contact with each other in order to seal the pressure regulating chamber.
  • an O-ring may be prepared as a sealing means, and a concave groove shallower than the diameter of the cross-section of the O-ring may be formed at the end of the side wall of the pressure regulation chamber casing, and the O-ring may be disposed in this groove.
  • the pressure regulation chamber can be sealed by bringing the pressure regulation chamber casing and the stage into close contact with each other.
  • stage and the casing for the pressure regulating chamber may be formed integrally without using the pressure regulating chamber sealing means.
  • the pressure adjusting chamber casing may not be provided with an opening, but may be a container having a surface in contact with the stage.
  • the material of the casing for the pressure regulation chamber may be any material as long as it has pressure resistance and heat resistance with respect to the conditions during pressurization, and for example, a metal such as carbon steel or stainless steel can be used. .
  • the pressure adjustment unit By configuring the pressure adjustment unit in this way, the thermal expansion that occurs in the stage and the peripheral members of the stage due to heating and cooling during molding can be released to the back side of the stage. Can be prevented from occurring.
  • the pressurizing means may be anything as long as the pressure of the fluid in the pressurizing chamber can be adjusted to a desired pressure.
  • the pressurizing chamber gas supply / discharge channel is provided in the pressurizing chamber casing.
  • a gas such as air or an inert gas may be supplied or exhausted to the pressurizing chamber through the gas supply / discharge passage for the pressurizing chamber.
  • a cylinder having a compressed gas or a pressure pump can be used. Further, the gas may be exhausted by opening and closing the deaeration valve. In addition, you may provide a safety valve etc. suitably.
  • the pressure adjusting means adjusts the pressure difference between the pressure chamber and the pressure adjusting chamber to be sufficiently small with respect to the strength of the stage in order to prevent the stage from being deformed.
  • a communication pipe that connects the pressurizing chamber and the pressure regulating chamber can be used.
  • a pressure supply chamber gas supply / discharge passage connected to the pressure adjustment chamber casing, and a pressure sensor for detecting the pressure in the pressure chamber and the pressure adjustment chamber are provided.
  • Gas such as air or inert gas from the pressure regulating chamber gas supply / exhaust flow path to the pressure regulating chamber so that the pressure difference between the fluid in the pressurizing chamber and the pressure regulating chamber is reduced based on the pressure detected by the pressure sensor.
  • the air may be supplied or exhausted.
  • a cylinder having a compressed gas or a pressure pump can be used for supplying the gas.
  • the gas may be exhausted by opening and closing the deaeration valve.
  • you may provide a safety valve etc. suitably.
  • a decompression section having a decompression chamber for decompressing the atmosphere around the object to be pressurized may be provided. Thereby, since the gas which exists between a to-be-pressurized object and a stage can be removed, a to-be-pressurized object can be pressed uniformly.
  • a decompression chamber that encloses the object to be pressurized may be formed, and the decompression chamber may be decompressed to remove the gas between the object to be pressurized and the stage.
  • the decompression chamber includes, for example, a bellows that covers the pressurization chamber casing, a seal member that seals between the bellows and the pressure regulation chamber casing on which the stage or stage is placed, and a gas supply / discharge flow for the decompression chamber It is formed by a decompression pump that exhausts the gas in the decompression chamber through the passage.
  • This seal member is disposed in a concave groove formed on the bellows stage side.
  • the decompression pump only needs to be capable of decompressing the decompression chamber to the extent that no transfer failure occurs when the object to be pressurized is pressurized.
  • the bellows and the seal member have a strength capable of withstanding an external force when the pressure is reduced.
  • the gas supply / discharge flow path for the pressurization chamber and the gas supply / discharge flow path for the decompression chamber common.
  • the gas in the decompression chamber and the pressurization chamber is discharged while the pressurization chamber is released to remove the gas in the decompression chamber, and then the gas is put into the pressurization chamber after the pressurization chamber is closed. What is necessary is just to supply and press a to-be-pressurized object.
  • the pressurizing part is composed of a pressurizing chamber casing and a membrane and the pressurizing chamber casing and the membrane are fixed with an adhesive or the like
  • the pressure adjusting means for pressure reduction for example, a communication path that connects the pressurizing chamber and the pressure reducing chamber via an opening / closing means may be provided. Thereby, the pressure chamber and the decompression chamber can be made the same pressure by opening the opening / closing means during decompression.
  • the imprint apparatus of the present invention is for transferring a molding pattern of a mold 100 to a molding object 200, and is used for pressurizing the mold 100 and the molding object 200 with a fluid.
  • a pressure unit 5 having a pressure chamber 51; a stage 2 that supports the mold 100 and the workpiece 200 that have received pressure from the pressure unit 5; and a stage 2 that is provided on the side of the stage 2 that faces the pressure unit 5.
  • Pressure adjusting section 3 having pressure adjusting chamber 31 for pressurizing 2 with fluid, pressurizing means 6 for adjusting the pressure of fluid in pressurizing chamber 51, and fluid in pressurizing chamber 51 and pressure adjusting chamber 31 And pressure adjusting means 8 for adjusting the pressure difference to be small.
  • the mold 100 is made of, for example, “metal such as nickel”, “ceramics”, “carbon material such as glassy carbon”, “silicon”, etc., and one end surface thereof (molding) Surface) having a predetermined pattern.
  • This pattern can be formed by subjecting the molding surface to precision machining.
  • it is formed on a silicon substrate or the like by a semiconductor micromachining technique such as etching, or the surface of the silicon substrate or the like is subjected to metal plating by an electroforming method, for example, nickel plating, and the metal plating layer is peeled off. It can also be formed.
  • a resin mold produced using an imprint technique In this case, the mold may be formed in a film shape that is flexible with respect to the molding surface of the molding object.
  • the material and manufacturing method of the mold 100 are not particularly limited as long as a fine pattern can be formed.
  • the molding pattern formed on the mold 100 is not only a geometrical shape composed of irregularities, but also for transferring a predetermined surface state, such as a mirror surface transfer having a predetermined surface roughness, Also included are those for transferring an optical element such as a lens having a predetermined curved surface.
  • the molding pattern is formed in various sizes such as the minimum width of the convex portion and the concave portion in the plane direction is 100 ⁇ m or less, 10 ⁇ m or less, 2 ⁇ m or less, 1 ⁇ m or less, 100 nm or less, 10 nm or less.
  • dimensions in the depth direction are formed in various sizes such as 10 nm or more, 100 nm or more, 200 nm or more, 500 nm or more, 1 ⁇ m or more, 10 ⁇ m or more, 100 ⁇ m or more.
  • the molded object 200 refers to a resin produced by, for example, a polymerization reaction (thermosetting or photocuring) of a thermoplastic resin or a polymerizable reactive group-containing compound.
  • thermoplastic resin examples include cyclic olefin ring-opening polymerization / hydrogenated product (COP) and cyclic olefin-based resin such as cyclic olefin copolymer (COC), acrylic resin, polycarbonate, vinyl ether resin, perfluoroalkoxyalkane (PFA), and the like.
  • Fluorine resin such as polytetrafluoroethylene (PTFE), polystyrene, polyimide resin, polyester resin, or the like can be used.
  • Resins produced by polymerization reaction (thermosetting or photocuring) of polymerizable reactive group-containing compounds include epoxide-containing compounds, (meth) acrylic acid ester compounds, vinyl ether compounds, bisallyl nadiimide compounds As described above, unsaturated hydrocarbon group-containing compounds such as vinyl groups and allyl groups can be used. In this case, it is possible to use the polymerization-reactive group-containing compounds alone for thermal polymerization, and to add a heat-reactive initiator to improve thermosetting. Is also possible. Furthermore, the thing which can add a photoreactive initiator and can advance a polymerization reaction by light irradiation and can form a shaping
  • Organic peroxides and azo compounds can be preferably used as the heat-reactive radical initiator, and acetophenone derivatives, benzophenone derivatives, benzoin ether derivatives, xanthone derivatives and the like can be preferably used as the photoreactive radical initiator.
  • the reactive monomer may be used without a solvent, or may be used after being dissolved in a solvent and desolvated after coating.
  • the molded object 200 may be a flexible film or a layer formed on a substrate made of an inorganic compound such as silicon or a metal.
  • the pressurizing unit 5 includes a pressurizing chamber 51 for directly or indirectly pressurizing the mold 100 and the molding target 200 with a fluid.
  • the pressurizing chamber 51 includes the pressurizing chamber 51 together with the mold 100 or the molding target 200.
  • Sealing means 54 for sealing between the pressurizing chamber housing 52 and the mold 100 or the molding object 200, and opening and closing between the pressurizing chamber housing 52 and the mold 100 or the molding object 200. What is necessary is just to comprise with an opening-and-closing means.
  • FIG. 1 shows a case where the pressurizing chamber 51 is configured by the pressurizing chamber casing 52 and the molding 200.
  • the pressurizing chamber casing 52 is formed in a bottomed cylindrical shape having an opening, and constitutes the pressurizing chamber 51 which is a sealed space by closing the opening with the mold 100 or the molding object 200. It is.
  • the opening is formed to be larger than at least the pattern region transferred to the molding object 200.
  • the material may be anything as long as it has pressure resistance and heat resistance with respect to the molding conditions during the imprint process. For example, a metal such as carbon steel or stainless steel can be used.
  • the sealing means 54 is for bringing the pressurizing chamber casing 52 into close contact with the mold 100 or the molding target 200 in order to seal the pressurizing chamber 51.
  • an O-ring is prepared as the sealing means 54, and a concave groove shallower than the diameter of the cross-section of the O-ring is formed at the stage side end of the side wall of the pressurizing chamber casing 52.
  • An O-ring may be disposed in this groove. Accordingly, the mold 100 or the molding object 200 can be held between the pressurizing chamber casing 52 and the stage 2 and the pressurizing chamber casing 52 and the molding target 200 can be brought into close contact with each other. 51 can be sealed. Even if there is an inclination between the pressurizing chamber casing 52 and the mold 100 or the workpiece 200, the pressurizing chamber 51 is securely sealed if the parallelism is within the crushing margin of the O-ring. be able to.
  • the opening / closing means opens and closes the pressurizing chamber 51 by bringing the pressurizing chamber casing 52 and the mold 100 or the molding object 200 close to or away from each other. It is possible to apply one that moves by a hydraulic or pneumatic cylinder, one that moves by an electric motor and a ball screw, or the like.
  • the mold 100 or the molding target 200 constituting the pressurizing chamber 51 is a flexible film. In this way, a uniform pressure by the fluid can be applied to the surface to be molded.
  • a pressurizing chamber casing 52 constituting the chamber 51 may be used.
  • the material of the flexible film 57 for example, an elastic body such as a resin, a thin metal, or rubber can be used. Further, when a light source that emits light of a predetermined wavelength is provided on the pressurization chamber 51 side, a material that can transmit the light is selected for the film 57.
  • the thickness of the film 57 is 10 mm or less, preferably 3 mm or less, more preferably 1 mm or less.
  • the pressurizing chamber casing 52 is formed in a bottomed cylindrical shape having an opening, as in the previous example. Further, the pressurizing chamber casing 52 and the film 57 are fixed by an adhesive or the like, and the pressurizing chamber 51 is sealed. The pressurizing chamber casing 52 and the membrane 57 may be sealed by the sealing means 54 as described above.
  • the stage 2 is for supporting the mold 100 and the molding object 200 that have received the pressure of the pressurizing unit 5.
  • the surface of the stage 2 that is in contact with the mold 100 or the workpiece 200 is formed into a sufficiently wide and smooth flat surface.
  • the material may be anything as long as it has pressure resistance and heat resistance with respect to the molding conditions during the imprint process.
  • a metal such as carbon steel or stainless steel can be used.
  • one having low thermal conductivity may be used to prevent heat from escaping to the pressure regulating chamber 31 side.
  • the stage surface side is preferably composed of a material having high thermal conductivity.
  • a transparent material such as glass may be used.
  • the mold 100 and the stage 2 may be integrally formed in order to prevent unnecessary transfer marks from being generated on the object 200. For example, conventionally, after a pattern is formed by electroforming, only the portion of the pattern is cut out and used, but this can be used as it is without being cut out.
  • the pressure adjusting unit 3 prevents the stage 2 from being deformed by the pressure of the pressurizing unit 5, and gives the stage 2 a reaction force against the pressure of the pressurizing unit 5.
  • a pressure adjusting chamber casing 32 that forms a pressure adjusting chamber 31 together with the stage 2, and a pressure adjusting chamber sealing means 34 that seals between the stage 2 and the pressure adjusting chamber casing 32.
  • the pressure regulating chamber casing 32 is formed in a bottomed cylindrical shape having an opening, and the pressure regulating chamber 31 that is a sealed space is configured by closing the opening by the stage 2.
  • the pressure regulating chamber sealing means 34 is for bringing the pressure regulating chamber casing 32 and the stage 2 into close contact with each other in order to seal the pressure regulating chamber 31. For example, as shown in FIG.
  • an O-ring is prepared as the pressure-control chamber sealing means 34, and a concave groove shallower than the diameter of the cross-section of the O-ring is formed at the portion where the pressure-control chamber housing 32 and the stage 2 are in contact with each other. And an O-ring may be disposed in the groove.
  • the pressure regulation chamber casing 32 and the stage 2 can be brought into close contact with each other, and the pressure regulation chamber 31 can be sealed.
  • stage 2 and the pressure regulating chamber casing 32 may be integrally formed without using the pressure regulating chamber sealing means 34. If the pressure in the pressure adjusting chamber 31 is applied to the stage 2 as a reaction force, the pressure adjusting chamber housing 32 does not have an opening and is a container in which a surface that contacts the stage 2 is formed. It doesn't matter.
  • the material of the pressure regulation chamber casing 32 may be any material that has pressure resistance and heat resistance with respect to the molding conditions during the imprint process.
  • a metal such as carbon steel or stainless steel is used. be able to.
  • the pressure adjusting unit 3 By configuring the pressure adjusting unit 3 in this way, the thermal expansion that occurs in the stage 2 and the stage peripheral members due to heating and cooling during molding can be released to the back side of the stage 2, so It is possible to prevent distortion and displacement.
  • the pressurizing means 6 may be anything as long as the pressure of the fluid in the pressurizing chamber 51 can be adjusted to a pressure at which the pattern of the mold 100 can be transferred to the molding target 200.
  • the pressurizing chamber gas supply / discharge channel 62 is connected to the pressurizing chamber 52, and air or an inert gas or the like is supplied or exhausted to the pressurizing chamber 51 via the pressurizing chamber gas supply / exhaust channel 62.
  • a gas supply source 61 such as a cylinder or a compressor having a compressed gas can be used.
  • the gas may be exhausted by opening and closing a deaeration valve. In addition, you may provide a safety valve etc. suitably.
  • the pressure adjusting means 8 adjusts the pressure difference between the fluid in the pressurizing chamber 51 and the pressure regulating chamber 31 to be sufficiently small with respect to the strength of the stage 2 in order to prevent the stage 2 from being deformed.
  • a communication pipe that communicates the pressurizing chamber 51 and the pressure regulating chamber 31 can be used.
  • the pressure difference added to both surfaces of the stage 2 can be made zero. Therefore, the thickness of the stage 2 can be reduced and the entire apparatus can be reduced in weight. Further, when the thickness of the stage 2 is reduced, the heat capacity of the stage 2 is also reduced, so that the heating rate and cooling rate of the mold 100 or the molding 200 can be improved. Furthermore, the change in the position of the stage 2 due to thermal expansion can be reduced.
  • the pressure adjusting means 8 includes a pressure adjusting chamber gas supply / discharge passage connected to the pressure adjusting chamber casing 32, and pressures of the pressurizing chamber 51 and the pressure adjusting chamber 31.
  • a pressure sensor that detects the pressure from the pressure supply chamber gas supply / discharge passage so that the pressure difference between the fluid in the pressurization chamber 51 and the pressure adjustment chamber 31 is reduced based on the pressure detected by the pressure sensor.
  • You may comprise so that gas, such as air and an inert gas, may be supplied or exhausted to the pressure chamber 31.
  • a gas supply source such as a cylinder or a compressor having a compressed gas can be used. Further, the gas may be exhausted by opening and closing the deaeration valve. In addition, you may provide a safety valve etc. suitably.
  • the temperature control means adjusts the temperature of the molding by heating or cooling the molding.
  • a heating means for directly or indirectly heating the molding or a cooling means for cooling can be used.
  • any heating means can be used as long as one or both of the mold 100 and the molding object 200 can be heated to a predetermined temperature, for example, the glass transition temperature or the melting temperature or more of the molding object 200. But it ’s okay.
  • the object 200 may be heated from the stage 2 side or heated from the pressurizing chamber 51 side.
  • a heater that is provided in the stage 2 or on the side of the stage 2 facing the molding object 200 and that heats the mold 100 or the molding object 200 from the stage 2 side can be used.
  • a radiant heat source 14 see FIG.
  • the pressurizing chamber 51 or the pressure adjusting chamber 31 for heating by electromagnetic radiation, such as a ceramic heater or a halogen heater, is provided in the pressurizing chamber 51 or the pressure adjusting chamber 31, and the one that heats the mold 100 or the molding object 200 is used. You can also. Moreover, the gas supplied to the pressurizing chamber 51 and the pressure adjusting chamber 31 can be heated and heated by the heated gas.
  • electromagnetic radiation such as a ceramic heater or a halogen heater
  • any cooling means may be used as long as one or both of the mold 100 and the molding object 200 can be cooled to a predetermined temperature, for example, below the glass transition temperature or the melting temperature of the molding object 200. But it ’s okay.
  • the object 200 may be cooled from the stage 2 side or may be cooled from the pressurizing chamber 51 side.
  • a cooling water channel is provided in the stage 2 or on the side of the stage 2 facing the object to be molded, and the mold 100 or the object 200 can be cooled from the stage 2 side.
  • a cooling gas or a liquid that circulates in the pressurizing chamber 51 or the pressure adjusting chamber 31 to cool it may be used.
  • the temperature adjustment means includes a fluid supply means for supplying a fluid at a predetermined temperature to the stage 2 from a plurality of supply ports 11 disposed in the pressure adjustment chamber 31, and a fluid in the pressure adjustment chamber 31. And a discharge flow path 4 for discharging water.
  • liquid such as water or oil
  • a gas such as saturated water vapor can also be used.
  • the fluid supply means may be any device as long as it can supply a fluid at a predetermined temperature.
  • a heating tank 12 that heats the heating tank 12 to a predetermined temperature
  • a supply passage 13 that connects the heating tank 12 and the supply port 11, and a pump 19 that causes the fluid in the heating tank 12 to flow from the supply port 11 good.
  • the supply port 11 is arranged so that the fluid can be jetted or sprayed onto the stage 2.
  • the mold 100 or the molding target 200 held on the stage 2 is appropriately arranged at a position where it can be heated uniformly.
  • the pressure regulating chamber 31 side of the stage 2 may have any shape as long as it can receive the fluid supplied from the supply port 11, but in order to efficiently exchange heat with the fluid. It is preferable to have a plurality of irregularities 22 that increase the surface area.
  • the irregularities 22 may have any shape, but may be, for example, a quadrangular pyramid that can be evenly arranged.
  • the heating tank 12 includes a heating means 12a such as an electric heater that heats the fluid, and a temperature detection means (not shown) such as a thermocouple that detects the temperature of the fluid, thereby heating the fluid to a predetermined temperature. Can do.
  • a heating means 12a such as an electric heater that heats the fluid
  • a temperature detection means such as a thermocouple that detects the temperature of the fluid, thereby heating the fluid to a predetermined temperature.
  • the discharge flow path 4 is connected to the flow path 41 and the flow path 42 via the three-way valve 43, and by switching the three-way valve, the fluid in the pressure regulating chamber 31 may be discarded through the flow path 41. It may be returned to the heating tank 12 of the fluid supply means through the path 42 and reused.
  • the mold 100 or the molding object 200 can be heated at high speed and uniformly.
  • a cooling tank 15 for storing a cooling fluid for storing a cooling fluid
  • a cooling tank 15 and a supply flow path 13 are provided.
  • a cooling fluid supply flow path 16 connected through a three-way valve 17 may be used.
  • any fluid may be used as long as it is lower than the temperature of the mold 100 or the molding object 200.
  • a liquid such as water can be used.
  • the temperature adjusting means is not provided directly in the pressure adjusting chamber 31, but is disposed below the stage 2 in the pressure adjusting chamber 31 as shown in FIG.
  • a temperature adjustment casing 72 that forms the adjustment chamber 71 may be provided separately.
  • the temperature adjustment casing 72 may be any type as long as it has pressure resistance that can withstand the internal pressure during temperature adjustment.
  • a structure in which a plurality of support columns supporting the stage 2 are formed in the temperature control chamber can be used. Further, it is preferable that the temperature adjustment casing 72 has as high heat insulation as possible. Further, the stage 2 and the greenhouse casing 72 may be integrally formed.
  • the temperature control means may be a combination of the above-described heating means and cooling means.
  • a decompression section 9 having a decompression chamber for decompressing the atmosphere around the mold and the workpiece may be provided. Thereby, since the gas existing between the mold 100, the molding object 200, and the stage 2 can be removed, the mold 100 and the molding object 200 can be pressed uniformly.
  • a decompression chamber 91 containing either one or both of the mold 100 and the molding object 200 is formed, and the decompression chamber 91 is decompressed to reduce the mold 100, the molding object 200, and the stage 2. What removes the gas between them may be used.
  • the decompression chamber 91 includes, for example, a pressurization chamber casing 52, a bellows 93 that hangs down from a flange portion that extends horizontally from the top of the pressurization chamber casing 52, and covers the pressurization chamber casing 52.
  • the gas in the decompression chamber 91 is exhausted through the seal member 94 that seals between the bellows 93 and the pressure regulating chamber casing 32 on which the stage 2 or the stage 2 is placed, and the decompression chamber gas supply / discharge passage 95.
  • a vacuum pump 96 Formed by a vacuum pump 96.
  • the seal member 94 is disposed in a concave groove formed on the stage 2 side of the bellows 93.
  • the decompression pump 96 only needs to be capable of decompressing the decompression chamber 91 to the extent that no transfer failure occurs when the molding object 200 is pressurized to the mold 100. Needless to say, the bellows 93 and the seal member 94 are strong enough to withstand external force when decompressed.
  • the gas supply / discharge flow path 62 for the pressurizing chamber and the gas supply / discharge flow path 95 for the decompression chamber common.
  • the gas in the decompression chamber 91 and the pressurization chamber 51 is removed in a state where the pressurization chamber 51 is released to remove the gas in the decompression chamber 91, and then the pressurization chamber 51 is closed, A gas may be supplied to the pressurizing chamber 51 to press the molding object 200 against the mold 100.
  • the pressurizing unit 5 includes the pressurizing chamber casing 52 and the membrane 57 and the pressurizing chamber casing 52 and the membrane 57 are fixed to each other with an adhesive or the like, the pressurizing portion 5 is pressurized.
  • Pressure reducing pressure adjusting means (not shown) for making the pressure in the chamber 51 and the pressure reducing chamber 91 the same may be provided.
  • the pressure adjusting means for pressure reduction for example, a communication path that connects the pressurizing chamber 51 and the pressure reducing chamber 91 via an opening / closing means may be provided. Thereby, the pressurizing chamber 51 and the decompression chamber 91 can be set to the same pressure by opening the opening / closing means during decompression.
  • a light source 15 capable of emitting an electromagnetic wave having a predetermined wavelength to the molding target 200 may be disposed in the pressurizing chamber 51 as shown in FIG.
  • the light source 15 can be provided on the pressure regulating chamber 31 side.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

Provided are an imprinting device and pressurization device whereby the thickness of a stage can be reduced and the effects of thermal expansion around the stage can be reduced. An imprinting device for transferring the molding pattern of a mold (100) onto a molded article (200) comprises: a pressurization unit (5) having a pressurization chamber (51) for using a fluid to pressurize the mold (100) and the molded article (200); a stage (2) for supporting the mold (100) and the molded article (200) pressurized by the pressurization unit (5); a pressure adjustment unit (3) having a pressure adjustment chamber (31) for using a fluid to pressurize the stage (2), the pressure adjustment unit being provided to the side of the stage 2 facing the pressurization unit (5); a pressurizing means (6) for regulating the pressure of the fluid inside the pressurization chamber (51); and a pressure-regulating means (8) for regulating such that the pressure difference between the fluid of the pressure adjustment chamber (31) and the pressurization chamber (51) becomes smaller. The pressure-regulating means (8) comprises an interconnecting tube interconnecting the pressurization chamber and the pressure adjustment chamber.

Description

流体圧インプリント装置および加圧装置Fluid pressure imprint apparatus and pressurizing apparatus
 本発明は、型のパターンを被成形物に連続的に転写するためのインプリント装置およびこれに用いる加圧装置に関する。 The present invention relates to an imprint apparatus for continuously transferring a pattern of a mold onto a molding, and a pressure apparatus used for the imprint apparatus.
 近年、マイクロオーダ、ナノオーダの超微細なパターンを形成する方法として、ナノインプリント技術が注目されている。これは、樹脂等の被成形物に微細なパターンを有する型を加圧して、当該パターンを被成形物に転写するものである(例えば、特許文献1および特許文献2参照)。 In recent years, nanoimprint technology has attracted attention as a method for forming micro-order and nano-order ultrafine patterns. In this method, a mold having a fine pattern is pressed on a molded object such as a resin, and the pattern is transferred to the molded object (see, for example, Patent Document 1 and Patent Document 2).
国際公開番号WO2004/062886International Publication Number WO2004 / 062886 特開2009-154393JP 2009-154393 A
 ここで、型又は被成形物を保持するためのステージやステージ周辺部材は、加圧に耐え得る強度が必要なため、厚さを大きくする必要があった。 Here, the stage and the stage peripheral members for holding the mold or the workpiece need to be strong enough to withstand the pressurization, so that the thickness has to be increased.
 しかしながら、ステージ等を厚くすると装置の重量が大きくなるという問題や、コストが掛かるという問題があった。また、インプリント技術においては、被成形物の温度を調節する必要があるが、ステージが厚いと熱容量が大きくなるため、多くの熱量、換言すれば多くのエネルギーを必要とする問題や、高速に昇降温をすることが困難になるという問題があった。 However, there are problems that the weight of the apparatus increases and the cost increases when the stage is thickened. In the imprint technology, it is necessary to adjust the temperature of the molding. However, if the stage is thick, the heat capacity increases, so there is a problem of requiring a large amount of heat, in other words, a large amount of energy, and high speed. There was a problem that it was difficult to raise and lower the temperature.
 また、特許文献2に記載のインプリント装置は、加圧室と被成形物との間をステージの位置を基準としてシールし、流体圧を用いて被成形物を加圧するものである。しかしながら、当該インプリント装置では、ステージの裏面側が固定されているため、成型時の加熱や冷却によってステージやステージ周辺部材に生じる熱膨張は、総てステージの表面側に生じることになる。すると、ステージに歪みや位置ずれが生じ、成型不良等のおそれがあるという問題があった。 Further, the imprint apparatus described in Patent Document 2 seals between the pressurizing chamber and the molding object on the basis of the position of the stage, and pressurizes the molding object using fluid pressure. However, in the imprint apparatus, since the back side of the stage is fixed, thermal expansion that occurs in the stage and stage peripheral members due to heating and cooling during molding occurs entirely on the surface side of the stage. As a result, there is a problem that distortion or misalignment occurs on the stage, which may cause molding defects.
 そこで本発明では、ステージの厚さを小さくし、かつステージ周りの熱膨張の影響を小さくすることができるインプリント装置および加圧装置を提供することを目的とする。 Therefore, an object of the present invention is to provide an imprint apparatus and a pressurizing apparatus that can reduce the thickness of the stage and the influence of thermal expansion around the stage.
 上記目的を達成するために、本発明のインプリント装置は、型の成型パターンを被成型物に転写するためのものであって、前記型と前記被成形物を流体によって加圧するための加圧室を有する加圧部と、前記加圧部の圧力を受けた前記型および前記被成形物を支持するステージと、前記ステージの前記加圧部と対向する側に設けられ、前記ステージを流体によって加圧するための調圧室を有する調圧部と、前記加圧室内の流体の圧力を調節する加圧手段と、前記加圧室と前記調圧室の流体の圧力差が小さくなるように調節する圧力調節手段と、を具備することを特徴とする。 In order to achieve the above object, an imprint apparatus of the present invention is for transferring a molding pattern of a mold onto a molding object, and pressurizing the mold and the molding object with a fluid. A pressurizing unit having a chamber, a stage that supports the mold and the workpiece subjected to the pressure of the pressurizing unit, and a side of the stage that faces the pressurizing unit. A pressure adjusting unit having a pressure adjusting chamber for pressurization, a pressurizing means for adjusting the pressure of the fluid in the pressurizing chamber, and an adjustment so that the pressure difference between the fluid in the pressurizing chamber and the pressure adjusting chamber is reduced. Pressure adjusting means.
 この場合、前記圧力調節手段は、前記加圧室と前記調圧室を連通する連通管により構成される方が好ましい。 In this case, it is preferable that the pressure adjusting means is constituted by a communication pipe that connects the pressurizing chamber and the pressure regulating chamber.
 また、前記型と前記被成形物の周りの雰囲気を減圧するための減圧室を有する減圧部を具備しても良い。この場合、前記圧力調節手段は、前記減圧室と前記調圧室の流体の圧力差が小さくなるように調節可能に形成される方が好ましい。 Further, a decompression section having a decompression chamber for decompressing the atmosphere around the mold and the workpiece may be provided. In this case, it is preferable that the pressure adjusting means is formed so as to be adjustable so that a pressure difference between the fluid in the decompression chamber and the pressure regulation chamber is small.
 また、前記被成形物の温度を調節する温調手段を具備しても良い。この場合、前記温調手段は、前記調圧室内に配置される複数の供給口から所定温度の流体を前記ステージに供給する流体供給手段と、前記調圧室内の流体を排出する排出流路と、で構成されるもの用いる方が好ましい。また、前記ステージは、調圧室側に複数の凹凸が形成されている方が好ましい。 Further, a temperature adjusting means for adjusting the temperature of the molding object may be provided. In this case, the temperature adjustment means includes a fluid supply means for supplying a fluid having a predetermined temperature to the stage from a plurality of supply ports arranged in the pressure adjustment chamber, and a discharge channel for discharging the fluid in the pressure adjustment chamber. Are preferably used. The stage is preferably formed with a plurality of irregularities on the pressure regulating chamber side.
 また、前記加圧部は、前記型又は前記被成形物と共に前記加圧室を構成する加圧室用筐体と、前記型又は前記被成型物との間を密閉する密閉手段と、前記加圧室用筐体と前記型又は前記被成形物との間を開閉する開閉手段と、からなるか、あるいは、前記型又は前記被成形物と接触する面に配置された可撓性のある膜と、前記膜と共に前記加圧室を構成する加圧室用筐体と、からなるものを用いることができる。 In addition, the pressurizing unit includes a pressurizing chamber casing that forms the pressurizing chamber together with the mold or the molding, a sealing unit that seals between the mold or the molding, and the pressurizing unit. Opening / closing means for opening and closing between the pressure chamber casing and the mold or the molding object, or a flexible film disposed on the surface in contact with the mold or the molding object And a pressurizing chamber casing that constitutes the pressurizing chamber together with the membrane.
 また、本発明の加圧装置は、被加圧物を加圧するためのものであって、前記被加圧物を流体によって加圧するための加圧室を有する加圧部と、前記加圧部の圧力を受けた前記被加圧物を支持するステージと、前記ステージの前記加圧部と対向する側に設けられ、前記ステージを流体によって加圧するための調圧室を有する調圧部と、前記加圧室内の流体の圧力を調節する加圧手段と、前記加圧室と前記調圧室の流体の圧力差が小さくなるように調節する圧力調節手段と、を具備することを特徴とする。 The pressurizing device of the present invention is for pressurizing an object to be pressurized, and includes a pressurizing unit having a pressurizing chamber for pressurizing the object to be pressurized with a fluid, and the pressurizing unit. A stage that supports the object to be pressurized that has received the pressure, and a pressure regulating unit that is provided on the side of the stage facing the pressure unit and has a pressure regulating chamber for pressurizing the stage with a fluid; And pressurizing means for adjusting the pressure of the fluid in the pressurizing chamber, and pressure adjusting means for adjusting the pressure difference between the fluid in the pressurizing chamber and the pressure regulating chamber to be small. .
 この場合、前記圧力調節手段は、前記加圧室と前記調圧室を連通する連通管により構成される方が好ましい。 In this case, it is preferable that the pressure adjusting means is constituted by a communication pipe that connects the pressurizing chamber and the pressure regulating chamber.
 また、前記被加圧物の周りの雰囲気を減圧するための減圧室を有する減圧部を具備しても良い。この場合、前記圧力調節手段は、前記減圧室と前記調圧室の流体の圧力差が小さくなるように調節可能に形成される方が好ましい。 Further, a decompression unit having a decompression chamber for decompressing the atmosphere around the object to be pressurized may be provided. In this case, it is preferable that the pressure adjusting means is formed so as to be adjustable so that a pressure difference between the fluid in the decompression chamber and the pressure regulation chamber is small.
 本発明の加圧装置は、ステージの厚さを小さくすることができ、装置の重量を小さくすることができる。また、当該加圧装置を用いた本発明のインプリント装置は、ステージの厚さを小さくすることで、ステージの熱容量を小さくし、高速に昇降温を行うことができる。また、ステージ周りの熱膨張の影響を小さくすることができる。 The pressurizing apparatus of the present invention can reduce the thickness of the stage and can reduce the weight of the apparatus. Moreover, the imprint apparatus of this invention using the said pressurization apparatus can make the heat capacity of a stage small by reducing the thickness of a stage, and can raise / lower temperature at high speed. In addition, the influence of thermal expansion around the stage can be reduced.
本発明のインプリント装置を示す概略断面図である。It is a schematic sectional drawing which shows the imprint apparatus of this invention. 本発明のインプリント装置を示す概略断面図である。It is a schematic sectional drawing which shows the imprint apparatus of this invention. 本発明のインプリント装置を示す概略断面図である。It is a schematic sectional drawing which shows the imprint apparatus of this invention. 本発明のインプリント装置を示す概略断面図である。It is a schematic sectional drawing which shows the imprint apparatus of this invention. 本発明のインプリント装置を示す概略断面図である。It is a schematic sectional drawing which shows the imprint apparatus of this invention.
 本発明の加圧装置は、被加圧物を加圧するためのものであって、被加圧物を流体によって加圧するための加圧室を有する加圧部と、加圧部の圧力を受けた被加圧物を支持するステージと、ステージの加圧部と対向する側に設けられ、ステージを流体によって加圧するための調圧室を有する調圧部と、加圧室内の流体の圧力を調節する加圧手段と、加圧室と調圧室の流体の圧力差が小さくなるように調節する圧力調節手段と、で主に構成される。 A pressurizing device of the present invention is for pressurizing an object to be pressurized, and includes a pressurizing unit having a pressurizing chamber for pressurizing the object to be pressurized with a fluid, and a pressure of the pressurizing unit. A stage that supports the object to be pressurized, a pressure adjusting unit that is provided on the side of the stage facing the pressurizing unit and has a pressure adjusting chamber for pressurizing the stage with fluid, and a pressure of the fluid in the pressurizing chamber. The pressurizing means for adjusting and the pressure adjusting means for adjusting so as to reduce the pressure difference between the fluid in the pressurizing chamber and the pressure regulating chamber are mainly configured.
 ここで、被加圧物は、単数であっても複数であっても良い。例えば、後述する本発明のインプリント装置の場合には、型と被成形物の二つが被加圧物に該当する。 Here, the object to be pressed may be singular or plural. For example, in the case of the imprint apparatus of the present invention to be described later, two of a mold and a molding object correspond to the pressed object.
 また、特に説明がない場合、本明細書中で流体とは、空気等の気体や水等の液体を意味する。 Unless otherwise specified, the term “fluid” in this specification means a gas such as air or a liquid such as water.
 加圧部は、被加圧物を流体によって直接的又は間接的に加圧するための加圧室を有するもので、例えば、被加圧物と共に加圧室を構成する加圧室用筐体と、被加圧物との間を密閉する密閉手段と、加圧室用筐体と被加圧物との間を開閉する開閉手段と、で構成すれば良い。 The pressurizing unit has a pressurizing chamber for directly or indirectly pressurizing an object to be pressurized with a fluid. For example, a pressurizing chamber housing that constitutes a pressurizing chamber together with the object to be pressurized What is necessary is just to comprise by the sealing means which seals between the to-be-pressurized object, and the opening-and-closing means which opens and closes between the casing for pressurization chambers and the to-be-pressurized object.
 加圧室用筐体は、開口部を有する有底筒状に形成され、開口部を被加圧物によって閉じることにより、密閉された空間である加圧室を構成するものである。この開口部は、被加圧物の加圧したい部分の面積より大きく形成される。材質は、加圧中の条件に対し、耐圧性、耐熱性を有するものであればどのようなものでも良く、例えば、炭素鋼やステンレスなどの金属を用いることができる。 The casing for the pressurizing chamber is formed in a bottomed cylindrical shape having an opening, and constitutes a pressurizing chamber that is a sealed space by closing the opening with an object to be pressurized. This opening is formed larger than the area of the portion to be pressed of the object to be pressed. Any material may be used as long as it has pressure resistance and heat resistance with respect to the conditions during pressurization. For example, a metal such as carbon steel or stainless steel can be used.
 密閉手段は、加圧室を密閉にするために、加圧室用筐体と被加圧物との間を密接させるものである。例えば、密閉手段としてOリングを用意すると共に、加圧室用筐体の側壁のステージ側端部にOリングの断面の直径より浅い凹状の溝を形成し、この溝にOリングを配置すれば良い。これにより、被加圧物を加圧室用筐体とステージとによって挟持し、加圧室用筐体と被加圧物とを密接させることができるので、加圧室を密閉することができる。また、加圧室用筐体と被加圧物との間に傾きがあっても、その平行度がOリングのつぶし代以内であれば、加圧室を確実に密閉することができる。 The sealing means closes the pressurizing chamber casing and the object to be pressed in order to seal the pressurizing chamber. For example, if an O-ring is prepared as a sealing means, a concave groove shallower than the diameter of the cross section of the O-ring is formed at the stage side end of the side wall of the pressurizing chamber casing, and the O-ring is disposed in this groove. good. Thus, the object to be pressurized can be held between the casing for the pressurizing chamber and the stage, and the casing for the pressurizing chamber and the object to be pressurized can be brought into close contact with each other, so that the pressurizing chamber can be sealed. . Even if there is an inclination between the pressurizing chamber casing and the object to be pressed, the pressurizing chamber can be reliably sealed if the parallelism is within the crushing margin of the O-ring.
 開閉手段は、加圧室用筐体と被加圧物とを近接又離間することにより、加圧室を開閉するためのもので、例えば加圧室用筐体を油圧式又は空圧式のシリンダによって移動するものや、電気モータとボールねじによって移動するもの等を適用することができる。 The opening / closing means is for opening and closing the pressurizing chamber by bringing the pressurizing chamber casing and the object to be pressed close to or away from each other. For example, the pressurizing chamber casing is a hydraulic or pneumatic cylinder. It is possible to apply one that moves by means of an electric motor and one that moves by an electric motor and a ball screw.
 また、加圧部の別の例としては、被加圧物と接触する面に配置された可撓性のある膜と、当該膜と共に加圧室を構成する加圧室用筐体と、で構成しても良い。 As another example of the pressurizing unit, there is a flexible film disposed on a surface that comes into contact with an object to be pressed, and a pressurizing chamber casing that forms a pressurizing chamber together with the film. It may be configured.
 可撓性のある膜の材料としては、例えば、樹脂や薄い金属、ゴム等の弾性体などを用いることができる。また、加圧室側に被加圧物に対して所定波長の光を放射する光源を設ける場合には、当該膜は当該光を透過可能な材料が選択される。膜の厚さは、10mm以下、好ましくは3mm以下、更に好ましくは1mm以下に形成される。 As the material for the flexible film, for example, an elastic body such as resin, thin metal, or rubber can be used. In the case where a light source that emits light of a predetermined wavelength is provided on the pressurized chamber on the pressurized chamber side, a material that can transmit the light is selected for the film. The thickness of the film is 10 mm or less, preferably 3 mm or less, more preferably 1 mm or less.
 加圧室用筐体は、先の例と同様に、開口部を有する有底筒状に形成される。また、当該加圧室用筐体と膜は接着剤等により固着され、加圧室は密閉される。なお、当該加圧室用筐体と膜は、上述したのと同様に、密閉手段によって密閉しても良い。 The casing for the pressurizing chamber is formed in a bottomed cylindrical shape having an opening as in the previous example. In addition, the pressurizing chamber casing and the membrane are fixed by an adhesive or the like, and the pressurizing chamber is sealed. The pressurizing chamber casing and the membrane may be sealed by a sealing means in the same manner as described above.
 ステージは、加圧部の圧力を受けた被加圧物を支持するためのものである。ステージの被加圧物と接触する側の面は、十分に広くて、被加圧物の成形に適した任意の形状に形成される。材質は、加圧中の条件に対し、耐圧性、耐熱性を有するものであればどのようなものでも良く、例えば、炭素鋼やステンレスなどの金属を用いることができる。また、被加圧物をステージを介して調圧室側から加熱する場合には、金属等の熱伝導性の高いものを用いる方が好ましい。また、被加圧物を加圧室側から加熱する場合には、調圧室側に熱が逃げるのを防止するため熱伝導性の低いものを用いても良いが、加熱むらを防止するため、ステージ表面側は熱伝導性の高いもので構成する方が好ましい。 The stage is for supporting an object to be pressed that has received pressure from the pressurizing unit. The surface of the stage that comes into contact with the object to be pressed is sufficiently wide and is formed into an arbitrary shape suitable for molding the object to be pressed. Any material may be used as long as it has pressure resistance and heat resistance with respect to the conditions during pressurization. For example, a metal such as carbon steel or stainless steel can be used. Moreover, when heating a to-be-pressurized object from the pressure regulation chamber side via a stage, it is preferable to use a thing with high heat conductivity, such as a metal. In addition, when the object to be pressurized is heated from the pressurizing chamber side, a material having low thermal conductivity may be used to prevent heat from escaping to the pressure adjusting chamber side, but in order to prevent uneven heating. The stage surface side is preferably composed of a material having high thermal conductivity.
 調圧部は、加圧部の圧力によってステージが変形するのを防止するもので、ステージに加圧部の圧力に対する反力を与えるものである。 The pressure adjusting unit prevents the stage from being deformed by the pressure of the pressurizing unit, and gives the stage a reaction force against the pressure of the pressurizing unit.
 調圧部としては、例えば、ステージと共に調圧室を構成する調圧室用筐体と、ステージと調圧室用筐体の間を密閉する調圧室用密閉手段と、で構成すれば良い。この場合、調圧室用筐体は、開口部を有する有底筒状に形成され、開口部をステージによって閉じることにより、密閉された空間である調圧室を構成する。調圧室用密閉手段は、調圧室を密閉にするために、調圧室用筐体とステージとの間を密接させるものである。例えば、密閉手段としてOリングを用意すると共に、調圧室用筐体の側壁の端部にOリングの断面の直径より浅い凹状の溝を形成し、この溝にOリングを配置すれば良い。これにより、調圧室用筐体とステージとを密接させて、調圧室を密閉することができる。 The pressure adjusting unit may be constituted by, for example, a pressure adjusting chamber casing that forms a pressure adjusting chamber together with the stage, and a pressure adjusting chamber sealing unit that seals between the stage and the pressure adjusting chamber casing. . In this case, the pressure regulation chamber casing is formed in a bottomed cylindrical shape having an opening, and constitutes a pressure regulation chamber which is a sealed space by closing the opening with a stage. The pressure regulating chamber sealing means brings the pressure regulating chamber casing and the stage into close contact with each other in order to seal the pressure regulating chamber. For example, an O-ring may be prepared as a sealing means, and a concave groove shallower than the diameter of the cross-section of the O-ring may be formed at the end of the side wall of the pressure regulation chamber casing, and the O-ring may be disposed in this groove. As a result, the pressure regulation chamber can be sealed by bringing the pressure regulation chamber casing and the stage into close contact with each other.
 なお、ステージと調圧室用筐体は調圧室用密閉手段を用いずに一体に形成しても構わない。また、調圧室の圧力をステージに反力として与えるものであれば、調圧室用筐体は開口部を有さず、ステージに当接する面が形成された容器状のものでも構わない。 Note that the stage and the casing for the pressure regulating chamber may be formed integrally without using the pressure regulating chamber sealing means. In addition, as long as the pressure in the pressure adjusting chamber is applied to the stage as a reaction force, the pressure adjusting chamber casing may not be provided with an opening, but may be a container having a surface in contact with the stage.
 調圧室用筐体の材質は、加圧中の条件に対し、耐圧性、耐熱性を有するものであればどのようなものでも良く、例えば、炭素鋼やステンレスなどの金属を用いることができる。 The material of the casing for the pressure regulation chamber may be any material as long as it has pressure resistance and heat resistance with respect to the conditions during pressurization, and for example, a metal such as carbon steel or stainless steel can be used. .
 調圧部をこのように構成することにより、成型時の加熱や冷却によってステージやステージ周辺部材に生じる熱膨張を、ステージの裏面側に逃がすことができるので、ステージの表面側に歪みや位置ずれが生じるのを防止することができる。 By configuring the pressure adjustment unit in this way, the thermal expansion that occurs in the stage and the peripheral members of the stage due to heating and cooling during molding can be released to the back side of the stage. Can be prevented from occurring.
 加圧手段は、所望の圧力まで、加圧室内の流体の圧力を調節可能であればどのようなものでも良いが、例えば、加圧室用筐体に加圧室用気体給排流路を接続し、加圧室用気体給排流路を介して加圧室へ空気や不活性ガス等の気体を給気又は排気すれば良い。気体の供給には、圧縮された気体を有するボンベ又は加圧ポンプを用いることができる。また、気体の排気には、脱気弁の開閉によって気体を排気するようにすれば良い。なお、適宜安全弁等を設けても良い。 The pressurizing means may be anything as long as the pressure of the fluid in the pressurizing chamber can be adjusted to a desired pressure. For example, the pressurizing chamber gas supply / discharge channel is provided in the pressurizing chamber casing. A gas such as air or an inert gas may be supplied or exhausted to the pressurizing chamber through the gas supply / discharge passage for the pressurizing chamber. For supplying the gas, a cylinder having a compressed gas or a pressure pump can be used. Further, the gas may be exhausted by opening and closing the deaeration valve. In addition, you may provide a safety valve etc. suitably.
 圧力調節手段は、ステージが変形するのを防止するために、ステージの強度に対して、加圧室と調圧室の流体の圧力差が十分小さくなるように調節するものである。例えば、加圧室と調圧室を連通する連通管を用いることができる。これにより、加圧室と調圧室の圧力を必ず同一にすることができるので、ステージの両面に加わる圧力差を0にすることができる。したがって、ステージの厚さを小さくし、装置全体を軽量化することができる。また、ステージの厚さが小さくなるとステージの熱容量も小さくなるため、被加圧物の昇温速度や冷却速度を向上することができる。更に、熱膨張によるステージの歪みや位置ずれを小さくすることができる。 The pressure adjusting means adjusts the pressure difference between the pressure chamber and the pressure adjusting chamber to be sufficiently small with respect to the strength of the stage in order to prevent the stage from being deformed. For example, a communication pipe that connects the pressurizing chamber and the pressure regulating chamber can be used. Thereby, since the pressure of a pressurization chamber and a pressure regulation chamber can always be made the same, the pressure difference added to both surfaces of a stage can be made zero. Therefore, the thickness of the stage can be reduced and the entire apparatus can be reduced in weight. Further, since the heat capacity of the stage is reduced when the thickness of the stage is reduced, it is possible to improve the temperature increase rate and the cooling rate of the pressurized object. Furthermore, distortion and misalignment of the stage due to thermal expansion can be reduced.
 また、圧力調節手段の別の形態としては、調圧室用筐体に接続される調圧室用気体給排流路と、加圧室及び調圧室の圧力を検出する圧力センサーとを設け、当該圧力センサーが検出した圧力に基づいて加圧室と調圧室の流体の圧力差が小さくなるように調圧室用気体給排流路から調圧室へ空気や不活性ガス等の気体を給気又は排気するように構成しても良い。気体の供給には、圧縮された気体を有するボンベ又は加圧ポンプを用いることができる。また、気体の排気には、脱気弁の開閉によって気体を排気するようにすれば良い。なお、適宜安全弁等を設けても良い。 As another form of the pressure adjusting means, a pressure supply chamber gas supply / discharge passage connected to the pressure adjustment chamber casing, and a pressure sensor for detecting the pressure in the pressure chamber and the pressure adjustment chamber are provided. , Gas such as air or inert gas from the pressure regulating chamber gas supply / exhaust flow path to the pressure regulating chamber so that the pressure difference between the fluid in the pressurizing chamber and the pressure regulating chamber is reduced based on the pressure detected by the pressure sensor. The air may be supplied or exhausted. For supplying the gas, a cylinder having a compressed gas or a pressure pump can be used. Further, the gas may be exhausted by opening and closing the deaeration valve. In addition, you may provide a safety valve etc. suitably.
 また、被加圧物の周りの雰囲気を減圧するための減圧室を有する減圧部を設けても良い。これにより、被加圧物とステージの間に存在する気体を除去することができるので、被加圧物を均一に押圧することができる。 Further, a decompression section having a decompression chamber for decompressing the atmosphere around the object to be pressurized may be provided. Thereby, since the gas which exists between a to-be-pressurized object and a stage can be removed, a to-be-pressurized object can be pressed uniformly.
 減圧部としては、例えば、被加圧物を内包する減圧室を形成し、減圧室を減圧することで被加圧物とステージの間の気体を除去するものを用いれば良い。 As the decompression unit, for example, a decompression chamber that encloses the object to be pressurized may be formed, and the decompression chamber may be decompressed to remove the gas between the object to be pressurized and the stage.
 減圧室は、例えば、加圧室用筐体を覆う蛇腹と、当該蛇腹とステージ又はステージを載置する調圧室用筐体との間を密閉するシール部材と、減圧室用気体給排流路を介して減圧室内の気体を排気する減圧ポンプによって形成される。このシール部材は、蛇腹のステージ側に形成された凹状の溝に配置される。また、減圧ポンプは、被加圧物を加圧した際に転写不良が生じない範囲まで減圧室を減圧できるものであれば良い。なお、蛇腹やシール部材は、減圧にした際の外力に耐えられる強度を有するものであることは言うまでもない。 The decompression chamber includes, for example, a bellows that covers the pressurization chamber casing, a seal member that seals between the bellows and the pressure regulation chamber casing on which the stage or stage is placed, and a gas supply / discharge flow for the decompression chamber It is formed by a decompression pump that exhausts the gas in the decompression chamber through the passage. This seal member is disposed in a concave groove formed on the bellows stage side. Further, the decompression pump only needs to be capable of decompressing the decompression chamber to the extent that no transfer failure occurs when the object to be pressurized is pressurized. Needless to say, the bellows and the seal member have a strength capable of withstanding an external force when the pressure is reduced.
 また、上述した加圧室用気体給排流路と減圧室用気体給排流路を共通にすることも可能である。この場合、まず、加圧室を解放した状態で減圧室及び加圧室の気体を排出して減圧室内の気体を除去し、次に、加圧室を閉鎖した後、加圧室に気体を供給して被加圧物を押圧すれば良い。 It is also possible to make the gas supply / discharge flow path for the pressurization chamber and the gas supply / discharge flow path for the decompression chamber common. In this case, first, the gas in the decompression chamber and the pressurization chamber is discharged while the pressurization chamber is released to remove the gas in the decompression chamber, and then the gas is put into the pressurization chamber after the pressurization chamber is closed. What is necessary is just to supply and press a to-be-pressurized object.
 なお、加圧部を加圧室用筐体と膜とで構成し、当該加圧室用筐体と膜の間を接着剤等により固着する場合には、減圧時に加圧室内と減圧室内の圧力を同圧にするための減圧用圧力調節手段を設けても良い。減圧用圧力調節手段としては、例えば、加圧室と減圧室を開閉手段を介して接続する連通路を設ければ良い。これにより減圧時に開閉手段を開放することで、加圧室と減圧室を同圧にすることができる。 When the pressurizing part is composed of a pressurizing chamber casing and a membrane and the pressurizing chamber casing and the membrane are fixed with an adhesive or the like, You may provide the pressure adjustment means for pressure reduction for making a pressure into the same pressure. As the pressure adjusting means for pressure reduction, for example, a communication path that connects the pressurizing chamber and the pressure reducing chamber via an opening / closing means may be provided. Thereby, the pressure chamber and the decompression chamber can be made the same pressure by opening the opening / closing means during decompression.
 次に、図1ないし図5に基づいて、上述した本発明の加圧装置を本発明のインプリント装置に適用した場合について説明する。本発明のインプリント装置は、図1に示すように、型100の成型パターンを被成型物200に転写するためのものであって、型100と被成形物200を流体によって加圧するための加圧室51を有する加圧部5と、加圧部5の圧力を受けた型100および被成形物200を支持するステージ2と、ステージ2の加圧部5と対向する側に設けられ、ステージ2を流体によって加圧するための調圧室31を有する調圧部3と、加圧室51内の流体の圧力を調節する加圧手段6と、加圧室51と調圧室31の流体の圧力差が小さくなるように調節する圧力調節手段8と、で主に構成される。 Next, the case where the above-described pressurizing apparatus of the present invention is applied to the imprint apparatus of the present invention will be described with reference to FIGS. As shown in FIG. 1, the imprint apparatus of the present invention is for transferring a molding pattern of a mold 100 to a molding object 200, and is used for pressurizing the mold 100 and the molding object 200 with a fluid. A pressure unit 5 having a pressure chamber 51; a stage 2 that supports the mold 100 and the workpiece 200 that have received pressure from the pressure unit 5; and a stage 2 that is provided on the side of the stage 2 that faces the pressure unit 5. Pressure adjusting section 3 having pressure adjusting chamber 31 for pressurizing 2 with fluid, pressurizing means 6 for adjusting the pressure of fluid in pressurizing chamber 51, and fluid in pressurizing chamber 51 and pressure adjusting chamber 31 And pressure adjusting means 8 for adjusting the pressure difference to be small.
 なお、本明細書中で、型100とは、例えば「ニッケル等の金属」、「セラミックス」、「ガラス状カーボン等の炭素素材」、「シリコン」などから形成されており、その一端面(成型面)に所定のパターンを有するものを指す。このパターンは、その成型面に精密機械加工を施すことで形成することができる。また、シリコン基板等にエッチング等の半導体微細加工技術によって形成したり、このシリコン基板等の表面に電気鋳造(エレクトロフォーミング)法、例えばニッケルメッキ法によって金属メッキを施し、この金属メッキ層を剥離して形成したりすることもできる。また、インプリント技術を用いて作製した樹脂製の型を用いることも可能である。この場合、型は、被成形物の被成形面に対して可撓性のあるフィルム状に形成しても良い。もちろん型100は、微細パターンが形成できるものであれば材料やその製造方法が特に限定されるものではない。 In this specification, the mold 100 is made of, for example, “metal such as nickel”, “ceramics”, “carbon material such as glassy carbon”, “silicon”, etc., and one end surface thereof (molding) Surface) having a predetermined pattern. This pattern can be formed by subjecting the molding surface to precision machining. In addition, it is formed on a silicon substrate or the like by a semiconductor micromachining technique such as etching, or the surface of the silicon substrate or the like is subjected to metal plating by an electroforming method, for example, nickel plating, and the metal plating layer is peeled off. It can also be formed. It is also possible to use a resin mold produced using an imprint technique. In this case, the mold may be formed in a film shape that is flexible with respect to the molding surface of the molding object. Of course, the material and manufacturing method of the mold 100 are not particularly limited as long as a fine pattern can be formed.
 また、型100に形成される成型パターンは、凹凸からなる幾何学的な形状のみならず、例えば所定の表面粗さを有する鏡面状態の転写のように所定の表面状態を転写するためのものや、所定の曲面を有するレンズ等の光学素子を転写するためのものも含む。また、成型パターンは、平面方向の凸部の幅や凹部の幅の最小寸法が100μm以下、10μm以下、2μm以下、1μm以下、100nm以下、10nm以下等種々の大きさに形成される。また、深さ方向の寸法も、10nm以上、100nm以上、200nm以上、500nm以上、1μm以上、10μm以上、100μm以上等種々の大きさに形成される。 Further, the molding pattern formed on the mold 100 is not only a geometrical shape composed of irregularities, but also for transferring a predetermined surface state, such as a mirror surface transfer having a predetermined surface roughness, Also included are those for transferring an optical element such as a lens having a predetermined curved surface. In addition, the molding pattern is formed in various sizes such as the minimum width of the convex portion and the concave portion in the plane direction is 100 μm or less, 10 μm or less, 2 μm or less, 1 μm or less, 100 nm or less, 10 nm or less. Also, dimensions in the depth direction are formed in various sizes such as 10 nm or more, 100 nm or more, 200 nm or more, 500 nm or more, 1 μm or more, 10 μm or more, 100 μm or more.
 また、被成形物200とは、例えば、熱可塑性樹脂や重合反応性基含有化合物類の重合反応(熱硬化、または光硬化)によって製造される樹脂を指す。 The molded object 200 refers to a resin produced by, for example, a polymerization reaction (thermosetting or photocuring) of a thermoplastic resin or a polymerizable reactive group-containing compound.
 熱可塑性樹脂としては、環状オレフィン開環重合/水素添加体(COP)や環状オレフィン共重合体(COC)等の環状オレフィン系樹脂、アクリル樹脂、ポリカーボネート、ビニルエーテル樹脂、パーフルオロアルコキシアルカン(PFA)やポリテトラフルオロエチレン(PTFE)等のフッ素樹脂、ポリスチレン、ポリイミド系樹脂、ポリエステル系樹脂等を用いることができる。 Examples of the thermoplastic resin include cyclic olefin ring-opening polymerization / hydrogenated product (COP) and cyclic olefin-based resin such as cyclic olefin copolymer (COC), acrylic resin, polycarbonate, vinyl ether resin, perfluoroalkoxyalkane (PFA), and the like. Fluorine resin such as polytetrafluoroethylene (PTFE), polystyrene, polyimide resin, polyester resin, or the like can be used.
 重合反応性基含有化合物類の重合反応(熱硬化、または光硬化)によって製造される樹脂としては、エポキシド含有化合物類、(メタ)アクリル酸エステル化合物類、ビニルエーテル化合物類、ビスアリルナジイミド化合物類のようにビニル基・アリル基等の不飽和炭化水素基含有化合物類等を用いることができる。この場合、熱的に重合するために重合反応性基含有化合物類を単独で使用することも可能であるし、熱硬化性を向上させるために熱反応性の開始剤を添加して使用することも可能である。更に光反応性の開始剤を添加して光照射により重合反応を進行させて成型パターンを形成できるものでもよい。熱反応性のラジカル開始剤としては有機過酸化物、アゾ化合物が好適に使用でき、光反応性のラジカル開始剤としてはアセトフェノン誘導体、ベンゾフェノン誘導体、ベンゾインエーテル誘導体、キサントン誘導体等が好適に使用できる。また、反応性モノマーは無溶剤で使用しても良いし、溶媒に溶解して塗布後に脱溶媒して使用しても良い。 Resins produced by polymerization reaction (thermosetting or photocuring) of polymerizable reactive group-containing compounds include epoxide-containing compounds, (meth) acrylic acid ester compounds, vinyl ether compounds, bisallyl nadiimide compounds As described above, unsaturated hydrocarbon group-containing compounds such as vinyl groups and allyl groups can be used. In this case, it is possible to use the polymerization-reactive group-containing compounds alone for thermal polymerization, and to add a heat-reactive initiator to improve thermosetting. Is also possible. Furthermore, the thing which can add a photoreactive initiator and can advance a polymerization reaction by light irradiation and can form a shaping | molding pattern may be used. Organic peroxides and azo compounds can be preferably used as the heat-reactive radical initiator, and acetophenone derivatives, benzophenone derivatives, benzoin ether derivatives, xanthone derivatives and the like can be preferably used as the photoreactive radical initiator. The reactive monomer may be used without a solvent, or may be used after being dissolved in a solvent and desolvated after coating.
 なお、被成形物200は、可撓性のあるフィルム状に形成したものや、シリコン等の無機化合物又は金属からなる基板上に層状に形成したものを用いても良い。 Note that the molded object 200 may be a flexible film or a layer formed on a substrate made of an inorganic compound such as silicon or a metal.
 加圧部5は、型100と被成形物200を流体によって直接的又は間接的に加圧するための加圧室51を有するもので、例えば、型100又は被成形物200と共に加圧室51を構成する加圧室用筐体52と、型100又は被成型物200との間を密閉する密閉手段54と、加圧室用筐体52と型100又は被成形物200との間を開閉する開閉手段とで構成すれば良い。図1には、加圧室用筐体52と被成形物200とで加圧室51を構成した場合を示す。 The pressurizing unit 5 includes a pressurizing chamber 51 for directly or indirectly pressurizing the mold 100 and the molding target 200 with a fluid. For example, the pressurizing chamber 51 includes the pressurizing chamber 51 together with the mold 100 or the molding target 200. Sealing means 54 for sealing between the pressurizing chamber housing 52 and the mold 100 or the molding object 200, and opening and closing between the pressurizing chamber housing 52 and the mold 100 or the molding object 200. What is necessary is just to comprise with an opening-and-closing means. FIG. 1 shows a case where the pressurizing chamber 51 is configured by the pressurizing chamber casing 52 and the molding 200.
 加圧室用筐体52は、開口部を有する有底筒状に形成され、開口部を型100又は被成型物200によって閉じることにより、密閉された空間である加圧室51を構成するものである。この開口部は、少なくとも被成型物200に転写されるパターン領域より大きく形成される。材質は、インプリントプロセス中の成形条件に対し、耐圧性、耐熱性を有するものであればどのようなものでも良く、例えば、炭素鋼やステンレスなどの金属を用いることができる。 The pressurizing chamber casing 52 is formed in a bottomed cylindrical shape having an opening, and constitutes the pressurizing chamber 51 which is a sealed space by closing the opening with the mold 100 or the molding object 200. It is. The opening is formed to be larger than at least the pattern region transferred to the molding object 200. The material may be anything as long as it has pressure resistance and heat resistance with respect to the molding conditions during the imprint process. For example, a metal such as carbon steel or stainless steel can be used.
 密閉手段54は、加圧室51を密閉にするために、加圧室用筐体52と型100又は被成型物200との間を密接させるものである。例えば、図1に示すように、密閉手段54としてOリングを用意すると共に、加圧室用筐体52の側壁のステージ側端部にOリングの断面の直径より浅い凹状の溝を形成し、この溝にOリングを配置すれば良い。これにより、型100又は被成型物200を加圧室用筐体52とステージ2とによって挟持し、加圧室用筐体52と被成型物200とを密接させることができるので、加圧室51を密閉することができる。また、加圧室用筐体52と型100又は被成型物200との間に傾きがあっても、その平行度がOリングのつぶし代以内であれば、加圧室51を確実に密閉することができる。 The sealing means 54 is for bringing the pressurizing chamber casing 52 into close contact with the mold 100 or the molding target 200 in order to seal the pressurizing chamber 51. For example, as shown in FIG. 1, an O-ring is prepared as the sealing means 54, and a concave groove shallower than the diameter of the cross-section of the O-ring is formed at the stage side end of the side wall of the pressurizing chamber casing 52. An O-ring may be disposed in this groove. Accordingly, the mold 100 or the molding object 200 can be held between the pressurizing chamber casing 52 and the stage 2 and the pressurizing chamber casing 52 and the molding target 200 can be brought into close contact with each other. 51 can be sealed. Even if there is an inclination between the pressurizing chamber casing 52 and the mold 100 or the workpiece 200, the pressurizing chamber 51 is securely sealed if the parallelism is within the crushing margin of the O-ring. be able to.
 開閉手段は、図示しないが、加圧室用筐体52と型100又は被成型物200とを近接又離間することにより、加圧室51を開閉するもので、例えば加圧室用筐体52を油圧式又は空圧式のシリンダによって移動するものや、電気モータとボールねじによって移動するもの等を適用することができる。 Although not shown, the opening / closing means opens and closes the pressurizing chamber 51 by bringing the pressurizing chamber casing 52 and the mold 100 or the molding object 200 close to or away from each other. It is possible to apply one that moves by a hydraulic or pneumatic cylinder, one that moves by an electric motor and a ball screw, or the like.
 なお、加圧部5をこのように構成する場合には、加圧室51を構成する型100又は被成形物200は、可撓性のあるフィルム状のものである方が好ましい。このようにすれば、被成形面に流体による均一な圧力を加えることができる。 In addition, when the pressurizing unit 5 is configured in this way, it is preferable that the mold 100 or the molding target 200 constituting the pressurizing chamber 51 is a flexible film. In this way, a uniform pressure by the fluid can be applied to the surface to be molded.
 また、加圧部5の別の例としては、図4に示すように、型100又は被成形物200と接触する面に配置された可撓性のある膜57と、当該膜57と共に加圧室51を構成する加圧室用筐体52と、で構成しても良い。 As another example of the pressurizing unit 5, as shown in FIG. 4, a flexible film 57 disposed on a surface in contact with the mold 100 or the molding object 200, and pressurization together with the film 57 A pressurizing chamber casing 52 constituting the chamber 51 may be used.
 可撓性のある膜57の材料としては、例えば、樹脂や薄い金属、ゴム等の弾性体などを用いることができる。また、加圧室51側に被成形物200に対して所定波長の光を放射する光源を設ける場合には、当該膜57は当該光を透過可能な材料が選択される。膜57の厚さは、10mm以下、好ましくは3mm以下、更に好ましくは1mm以下に形成される。 As the material of the flexible film 57, for example, an elastic body such as a resin, a thin metal, or rubber can be used. Further, when a light source that emits light of a predetermined wavelength is provided on the pressurization chamber 51 side, a material that can transmit the light is selected for the film 57. The thickness of the film 57 is 10 mm or less, preferably 3 mm or less, more preferably 1 mm or less.
 加圧室用筐体52は、先の例と同様に、開口部を有する有底筒状に形成される。また、当該加圧室用筐体52と膜57は接着剤等により固着され、加圧室51内が密閉される。なお、当該加圧室用筐体52と膜57は、上述したのと同様に、密閉手段54によって密閉しても良い。 The pressurizing chamber casing 52 is formed in a bottomed cylindrical shape having an opening, as in the previous example. Further, the pressurizing chamber casing 52 and the film 57 are fixed by an adhesive or the like, and the pressurizing chamber 51 is sealed. The pressurizing chamber casing 52 and the membrane 57 may be sealed by the sealing means 54 as described above.
 ステージ2は、加圧部5の圧力を受けた型100及び被成形物200を支持するためのものである。ステージ2の型100又は被成形物200と接触する側の面は、十分に広くて円滑な平面状に形成される。材質は、インプリントプロセス中の成形条件に対し、耐圧性、耐熱性を有するものであればどのようなものでも良く、例えば、炭素鋼やステンレスなどの金属を用いることができる。また、型100又は被成形物200をステージ2を介して調圧室31側から加熱する場合には、金属等の熱伝導性の高いものを用いる方が好ましい。また、型100又は被成形物200を加圧室51側から加熱する場合には、調圧室31側に熱が逃げるのを防止するため熱伝導性の低いものを用いても良いが、加熱むらを防止するため、ステージ表面側は熱伝導性の高いもので構成する方が好ましい。また、光インプリントプロセスにおいて、光源を調圧室側に配置する場合には、ガラス等の透明な材料を用いれば良い。また、被成型物200に不要な転写跡が生じるのを防止するために、型100とステージ2を一体に形成しても良い。例えば従来は、パターンを電気鋳造によって形成した後、パターンの部分のみを切り出して用いているが、これを切り出さずにそのまま用いることができる。 The stage 2 is for supporting the mold 100 and the molding object 200 that have received the pressure of the pressurizing unit 5. The surface of the stage 2 that is in contact with the mold 100 or the workpiece 200 is formed into a sufficiently wide and smooth flat surface. The material may be anything as long as it has pressure resistance and heat resistance with respect to the molding conditions during the imprint process. For example, a metal such as carbon steel or stainless steel can be used. Further, when the mold 100 or the molding object 200 is heated from the pressure regulating chamber 31 side via the stage 2, it is preferable to use a metal or the like having high thermal conductivity. In addition, when heating the mold 100 or the molding object 200 from the pressurizing chamber 51 side, one having low thermal conductivity may be used to prevent heat from escaping to the pressure regulating chamber 31 side. In order to prevent unevenness, the stage surface side is preferably composed of a material having high thermal conductivity. In the optical imprint process, when the light source is disposed on the pressure adjusting chamber side, a transparent material such as glass may be used. Further, the mold 100 and the stage 2 may be integrally formed in order to prevent unnecessary transfer marks from being generated on the object 200. For example, conventionally, after a pattern is formed by electroforming, only the portion of the pattern is cut out and used, but this can be used as it is without being cut out.
 調圧部3は、加圧部5の圧力によってステージ2が変形するのを防止するもので、ステージ2に加圧部5の圧力に対する反力を与えるものである。 The pressure adjusting unit 3 prevents the stage 2 from being deformed by the pressure of the pressurizing unit 5, and gives the stage 2 a reaction force against the pressure of the pressurizing unit 5.
 調圧部3としては、例えば、ステージ2と共に調圧室31を構成する調圧室用筐体32と、ステージ2と調圧室用筐体32の間を密閉する調圧室用密閉手段34と、で構成すれば良い。この場合、調圧室用筐体32は、開口部を有する有底筒状に形成され、開口部をステージ2によって閉じることにより、密閉された空間である調圧室31を構成する。調圧室用密閉手段34は、調圧室31を密閉にするために、調圧室用筐体32とステージ2との間を密接させるものである。例えば、図1に示すように、調圧室用密閉手段34としてOリングを用意すると共に、調圧室用筐体32とステージ2が接触する部分にOリングの断面の直径より浅い凹状の溝を形成し、この溝にOリングを配置すれば良い。これにより、調圧室用筐体32とステージ2とを密接させて、調圧室31を密閉することができる。なお、図2に示すように、調圧室用筐体32とステージ2が接触する部分に断熱材33を調圧室用密閉手段34と共に配置しても良い。 As the pressure adjusting unit 3, for example, a pressure adjusting chamber casing 32 that forms a pressure adjusting chamber 31 together with the stage 2, and a pressure adjusting chamber sealing means 34 that seals between the stage 2 and the pressure adjusting chamber casing 32. And should be configured. In this case, the pressure regulating chamber casing 32 is formed in a bottomed cylindrical shape having an opening, and the pressure regulating chamber 31 that is a sealed space is configured by closing the opening by the stage 2. The pressure regulating chamber sealing means 34 is for bringing the pressure regulating chamber casing 32 and the stage 2 into close contact with each other in order to seal the pressure regulating chamber 31. For example, as shown in FIG. 1, an O-ring is prepared as the pressure-control chamber sealing means 34, and a concave groove shallower than the diameter of the cross-section of the O-ring is formed at the portion where the pressure-control chamber housing 32 and the stage 2 are in contact with each other. And an O-ring may be disposed in the groove. Thereby, the pressure regulation chamber casing 32 and the stage 2 can be brought into close contact with each other, and the pressure regulation chamber 31 can be sealed. In addition, as shown in FIG. 2, you may arrange | position the heat insulating material 33 with the sealing means 34 for pressure regulation chambers in the part which the housing | casing 32 for pressure regulation chambers and the stage 2 contact.
 なお、ステージ2と調圧室用筐体32は調圧室用密閉手段34を用いずに一体に形成しても構わない。また、調圧室31の圧力をステージ2に反力として与えるものであれば、調圧室用筐体32は開口部を有さず、ステージ2に当接する面が形成された容器状のものでも構わない。 It should be noted that the stage 2 and the pressure regulating chamber casing 32 may be integrally formed without using the pressure regulating chamber sealing means 34. If the pressure in the pressure adjusting chamber 31 is applied to the stage 2 as a reaction force, the pressure adjusting chamber housing 32 does not have an opening and is a container in which a surface that contacts the stage 2 is formed. It doesn't matter.
 調圧室用筐体32の材質は、インプリントプロセス中の成形条件に対し、耐圧性、耐熱性を有するものであればどのようなものでも良く、例えば、炭素鋼やステンレスなどの金属を用いることができる。 The material of the pressure regulation chamber casing 32 may be any material that has pressure resistance and heat resistance with respect to the molding conditions during the imprint process. For example, a metal such as carbon steel or stainless steel is used. be able to.
 調圧部3をこのように構成することにより、成型時の加熱や冷却によってステージ2やステージ周辺部材に生じる熱膨張を、ステージ2の裏面側に逃がすことができるので、ステージ2の表面側に歪みや位置ずれが生じるのを防止することができる。 By configuring the pressure adjusting unit 3 in this way, the thermal expansion that occurs in the stage 2 and the stage peripheral members due to heating and cooling during molding can be released to the back side of the stage 2, so It is possible to prevent distortion and displacement.
 加圧手段6は、型100のパターンを被成型物200に転写可能な圧力まで、加圧室51内の流体の圧力を調節可能であればどのようなものでも良いが、例えば、加圧室用筐体52に加圧室用気体給排流路62を接続し、加圧室用気体給排流路62を介して加圧室51へ空気や不活性ガス等の気体を給気又は排気すれば良い。気体の供給には、圧縮された気体を有するボンベやコンプレッサー等の気体供給源61を用いることができる。また、気体の排気には、図示しないが、脱気弁の開閉によって気体を排気するようにすれば良い。なお、適宜安全弁等を設けても良い。 The pressurizing means 6 may be anything as long as the pressure of the fluid in the pressurizing chamber 51 can be adjusted to a pressure at which the pattern of the mold 100 can be transferred to the molding target 200. For example, the pressurizing chamber The pressurizing chamber gas supply / discharge channel 62 is connected to the pressurizing chamber 52, and air or an inert gas or the like is supplied or exhausted to the pressurizing chamber 51 via the pressurizing chamber gas supply / exhaust channel 62. Just do it. For the gas supply, a gas supply source 61 such as a cylinder or a compressor having a compressed gas can be used. Further, although not shown in the drawings, the gas may be exhausted by opening and closing a deaeration valve. In addition, you may provide a safety valve etc. suitably.
 圧力調節手段8は、ステージ2が変形するのを防止するために、ステージ2の強度に対し、加圧室51と調圧室31の流体の圧力差が十分小さくなるように調節するものである。例えば、図1に示すように、加圧室51と調圧室31を連通する連通管を用いることができる。これにより、加圧室51と調圧室31の圧力を同一にすることができるので、ステージ2の両面に加わる圧力差を0にすることができる。したがって、ステージ2の厚さを小さくし、装置全体を軽量化することができる。また、ステージ2の厚さが小さくなるとステージ2の熱容量も小さくなるため、型100又は被成形物200の昇温速度や冷却速度を向上することができる。更に、熱膨張によるステージ2の位置の変化を小さくすることができる。 The pressure adjusting means 8 adjusts the pressure difference between the fluid in the pressurizing chamber 51 and the pressure regulating chamber 31 to be sufficiently small with respect to the strength of the stage 2 in order to prevent the stage 2 from being deformed. . For example, as shown in FIG. 1, a communication pipe that communicates the pressurizing chamber 51 and the pressure regulating chamber 31 can be used. Thereby, since the pressure of the pressurization chamber 51 and the pressure regulation chamber 31 can be made the same, the pressure difference added to both surfaces of the stage 2 can be made zero. Therefore, the thickness of the stage 2 can be reduced and the entire apparatus can be reduced in weight. Further, when the thickness of the stage 2 is reduced, the heat capacity of the stage 2 is also reduced, so that the heating rate and cooling rate of the mold 100 or the molding 200 can be improved. Furthermore, the change in the position of the stage 2 due to thermal expansion can be reduced.
 なお、図示しないが別の形態としては、圧力調節手段8を、調圧室用筐体32に接続される調圧室用気体給排流路と、加圧室51及び調圧室31の圧力を検出する圧力センサーとで構成し、当該圧力センサーが検出した圧力に基づいて加圧室51と調圧室31の流体の圧力差が小さくなるように調圧室用気体給排流路から調圧室31へ空気や不活性ガス等の気体を給気又は排気するように構成しても良い。気体の供給には、圧縮された気体を有するボンベやコンプレッサー等の気体供給源を用いることができる。また、気体の排気には、脱気弁の開閉によって気体を排気するようにすれば良い。なお、適宜安全弁等を設けても良い。 Although not shown in the drawings, as another form, the pressure adjusting means 8 includes a pressure adjusting chamber gas supply / discharge passage connected to the pressure adjusting chamber casing 32, and pressures of the pressurizing chamber 51 and the pressure adjusting chamber 31. A pressure sensor that detects the pressure from the pressure supply chamber gas supply / discharge passage so that the pressure difference between the fluid in the pressurization chamber 51 and the pressure adjustment chamber 31 is reduced based on the pressure detected by the pressure sensor. You may comprise so that gas, such as air and an inert gas, may be supplied or exhausted to the pressure chamber 31. FIG. For the gas supply, a gas supply source such as a cylinder or a compressor having a compressed gas can be used. Further, the gas may be exhausted by opening and closing the deaeration valve. In addition, you may provide a safety valve etc. suitably.
 温調手段は、被成形物を加熱又は冷却することにより被成形物の温度を調節するものである。温調手段は、被成形物を直接的又は間接的に加熱する加熱手段や冷却する冷却手段を用いることができる。 The temperature control means adjusts the temperature of the molding by heating or cooling the molding. As the temperature adjustment means, a heating means for directly or indirectly heating the molding or a cooling means for cooling can be used.
 加熱手段は、型100と被成型物200のいずれか一方又は両方を、所定温度、例えば被成型物200のガラス転移温度以上又は溶融温度以上に加熱することができるものであればどのようなものでも良い。また、被成形物200をステージ2側から加熱するものでも、加圧室51側から加熱するものでも良い。具体的には、ステージ2内又は、ステージ2の被成形物200と対向する側にヒータを設けてステージ2側から型100や被成型物200を加熱するものを用いることができる。また、加圧室51や調圧室31にセラミックヒータやハロゲンヒータのような電磁波による放射によって加熱する放射熱源14(図4参照)を設け、型100や被成型物200を加熱するものを用いることもできる。また、加圧室51や調圧室31に供給する気体を加熱しておき、加熱気体によって加熱することもできる。 Any heating means can be used as long as one or both of the mold 100 and the molding object 200 can be heated to a predetermined temperature, for example, the glass transition temperature or the melting temperature or more of the molding object 200. But it ’s okay. Further, the object 200 may be heated from the stage 2 side or heated from the pressurizing chamber 51 side. Specifically, a heater that is provided in the stage 2 or on the side of the stage 2 facing the molding object 200 and that heats the mold 100 or the molding object 200 from the stage 2 side can be used. Further, a radiant heat source 14 (see FIG. 4) for heating by electromagnetic radiation, such as a ceramic heater or a halogen heater, is provided in the pressurizing chamber 51 or the pressure adjusting chamber 31, and the one that heats the mold 100 or the molding object 200 is used. You can also. Moreover, the gas supplied to the pressurizing chamber 51 and the pressure adjusting chamber 31 can be heated and heated by the heated gas.
 冷却手段は、型100と被成型物200のいずれか一方又は両方を、所定温度、例えば被成型物200のガラス転移温度未満又は溶融温度未満に冷却することができるものであればどのようなものでも良い。また、被成形物200をステージ2側から冷却するものでも、加圧室51側から冷却するものでも良い。具体的には、ステージ2内又は、ステージ2の被成形物と対向する側に冷却用の水路を設けてステージ2側から型100や被成型物200を冷却するものを用いることができる。また、加圧室51や調圧室31に冷却用の気体や液体を循環させて冷却するものを用いても良い。 Any cooling means may be used as long as one or both of the mold 100 and the molding object 200 can be cooled to a predetermined temperature, for example, below the glass transition temperature or the melting temperature of the molding object 200. But it ’s okay. Further, the object 200 may be cooled from the stage 2 side or may be cooled from the pressurizing chamber 51 side. Specifically, a cooling water channel is provided in the stage 2 or on the side of the stage 2 facing the object to be molded, and the mold 100 or the object 200 can be cooled from the stage 2 side. Further, a cooling gas or a liquid that circulates in the pressurizing chamber 51 or the pressure adjusting chamber 31 to cool it may be used.
 また、別の実施例として、温調手段は、調圧室31内に配置される複数の供給口11から所定温度の流体をステージ2に供給する流体供給手段と、調圧室31内の流体を排出する排出流路4と、で構成しても良い。 As another embodiment, the temperature adjustment means includes a fluid supply means for supplying a fluid at a predetermined temperature to the stage 2 from a plurality of supply ports 11 disposed in the pressure adjustment chamber 31, and a fluid in the pressure adjustment chamber 31. And a discharge flow path 4 for discharging water.
 ここで、流体としては、水や油等の液体を用いることができる。また、飽和水蒸気等の気体を用いることも可能である。 Here, liquid such as water or oil can be used as the fluid. A gas such as saturated water vapor can also be used.
 流体供給手段は、所定温度の流体を供給することができるものであればどのようなものでも良いが、例えば図1に示すように、型100又は被成形物200を加熱する場合には、流体を所定温度に加熱する加熱タンク12と、加熱タンク12と供給口11を接続する供給流路13と、加熱タンク12の流体を供給口11から流すためのポンプ19とで構成されたもの用いれば良い。 The fluid supply means may be any device as long as it can supply a fluid at a predetermined temperature. For example, as shown in FIG. A heating tank 12 that heats the heating tank 12 to a predetermined temperature, a supply passage 13 that connects the heating tank 12 and the supply port 11, and a pump 19 that causes the fluid in the heating tank 12 to flow from the supply port 11 good.
 供給口11は、流体をステージ2に対して噴射又は噴霧できるように配置される。この場合、ステージ2に保持されている型100又は被成形物200を均一に加熱できるような位置に適切に配列する方が好ましい。 The supply port 11 is arranged so that the fluid can be jetted or sprayed onto the stage 2. In this case, it is preferable that the mold 100 or the molding target 200 held on the stage 2 is appropriately arranged at a position where it can be heated uniformly.
 また、ステージ2の調圧室31側は、供給口11から供給された流体を受けられるものであればどのような形状でも良いが、流体との間で効率よく熱交換できるようにするために、表面積を大きくする複数の凹凸22を有する方が好ましい。凹凸22の形状としてはどのようなものでも良いが、例えば均等に配列できる四角錐にすることができる。 In addition, the pressure regulating chamber 31 side of the stage 2 may have any shape as long as it can receive the fluid supplied from the supply port 11, but in order to efficiently exchange heat with the fluid. It is preferable to have a plurality of irregularities 22 that increase the surface area. The irregularities 22 may have any shape, but may be, for example, a quadrangular pyramid that can be evenly arranged.
 また、加熱タンク12は、流体を加熱する電熱ヒータ等の加熱手段12aと、流体の温度を検出する熱電対等の温度検出手段(図示せず)を備えることにより、流体を所定温度に加熱することができる。 The heating tank 12 includes a heating means 12a such as an electric heater that heats the fluid, and a temperature detection means (not shown) such as a thermocouple that detects the temperature of the fluid, thereby heating the fluid to a predetermined temperature. Can do.
 排出流路4は、三方弁43を介して流路41と流路42に接続され、三方弁を切り換えることにより、調圧室31内の流体を流路41を通して廃棄しても良いし、流路42を通して流体供給手段の加熱タンク12に戻し再利用しても良い。 The discharge flow path 4 is connected to the flow path 41 and the flow path 42 via the three-way valve 43, and by switching the three-way valve, the fluid in the pressure regulating chamber 31 may be discarded through the flow path 41. It may be returned to the heating tank 12 of the fluid supply means through the path 42 and reused.
 このように構成すれば、型100又は被成形物200の加熱を高速かつ均一に行うことができる。 With this configuration, the mold 100 or the molding object 200 can be heated at high speed and uniformly.
 また、型100又は被成形物200を冷却する場合には、図1に示すように、流体供給手段として、冷却用の流体を貯留する冷却用タンク15と、冷却用タンク15と供給流路13を三方弁17を介して接続する冷却流体供給流路16と、で構成されたもの用いれば良い。 Further, when cooling the mold 100 or the molding object 200, as shown in FIG. 1, as a fluid supply means, a cooling tank 15 for storing a cooling fluid, a cooling tank 15 and a supply flow path 13 are provided. And a cooling fluid supply flow path 16 connected through a three-way valve 17 may be used.
 冷却用の流体としては、型100又は被成形物200の温度よりも低いものであればどのようなものでも良いが、例えば水等の液体を用いることができる。 As the cooling fluid, any fluid may be used as long as it is lower than the temperature of the mold 100 or the molding object 200. For example, a liquid such as water can be used.
 これにより、インプリントの成型時等に加熱された型100や被成形物200を均一に冷却することができる。 Thereby, it is possible to uniformly cool the mold 100 and the molding 200 heated during imprint molding or the like.
 また、当該温調手段は、調圧室31内に直接設けるのではなく、図3に示すように調圧室31内のステージ2の下側に配置され、調圧室31と閉鎖された温調室71を形成する温調用筐体72を別途設けても良い。このように構成することにより、温調手段の熱膨張は調圧室側に生じるので、ステージの歪みや位置ずれを防止することができる。 In addition, the temperature adjusting means is not provided directly in the pressure adjusting chamber 31, but is disposed below the stage 2 in the pressure adjusting chamber 31 as shown in FIG. A temperature adjustment casing 72 that forms the adjustment chamber 71 may be provided separately. By configuring in this way, the thermal expansion of the temperature adjusting means occurs on the pressure adjusting chamber side, so that the stage can be prevented from being distorted or displaced.
 なお、温調用筐体72は、温調時の内圧に耐えられる耐圧性を有していればどのようなものでも良い。例えば、温調室内にステージ2を支える支柱を複数形成したものを用いることができる。また、温調用筐体72は、できる限り断熱性の高いものが好ましい。また、ステージ2と温室用筐体72は一体に形成されるものであっても良い。 The temperature adjustment casing 72 may be any type as long as it has pressure resistance that can withstand the internal pressure during temperature adjustment. For example, a structure in which a plurality of support columns supporting the stage 2 are formed in the temperature control chamber can be used. Further, it is preferable that the temperature adjustment casing 72 has as high heat insulation as possible. Further, the stage 2 and the greenhouse casing 72 may be integrally formed.
 また、温調手段は、上述した加熱手段や冷却手段を複数組み合わせたものでも構わない。 Further, the temperature control means may be a combination of the above-described heating means and cooling means.
 また、型と被成形物の周りの雰囲気を減圧するための減圧室を有する減圧部9を設けても良い。これにより、型100、被成型物200、ステージ2の間に存在する気体を除去することができるので、型100と被成型物200を均一に押圧することができる。 Further, a decompression section 9 having a decompression chamber for decompressing the atmosphere around the mold and the workpiece may be provided. Thereby, since the gas existing between the mold 100, the molding object 200, and the stage 2 can be removed, the mold 100 and the molding object 200 can be pressed uniformly.
 減圧部9としては、例えば、型100及び被成型物200のいずれか一方又は両方を内包する減圧室91を形成し、減圧室91を減圧することで型100、被成型物200、ステージ2の間の気体を除去するものを用いれば良い。 As the decompression unit 9, for example, a decompression chamber 91 containing either one or both of the mold 100 and the molding object 200 is formed, and the decompression chamber 91 is decompressed to reduce the mold 100, the molding object 200, and the stage 2. What removes the gas between them may be used.
 減圧室91は、例えば、加圧室用筐体52と、加圧室用筐体52の上部から水平に延伸するフランジ部から垂下し、加圧室用筐体52を覆う蛇腹93と、当該蛇腹93とステージ2又はステージ2を載置する調圧室用筐体32との間を密閉するシール部材94と、減圧室用気体給排流路95を介して減圧室91内の気体を排気する減圧ポンプ96によって形成される。このシール部材94は、蛇腹93のステージ2側に形成された凹状の溝に配置される。また、減圧ポンプ96は、型100に被成型物200を加圧した際に転写不良が生じない範囲まで減圧室91を減圧できるものであれば良い。なお、蛇腹93、シール部材94は、減圧した際の外力に耐えられる強度を有するものであることは言うまでもない。 The decompression chamber 91 includes, for example, a pressurization chamber casing 52, a bellows 93 that hangs down from a flange portion that extends horizontally from the top of the pressurization chamber casing 52, and covers the pressurization chamber casing 52. The gas in the decompression chamber 91 is exhausted through the seal member 94 that seals between the bellows 93 and the pressure regulating chamber casing 32 on which the stage 2 or the stage 2 is placed, and the decompression chamber gas supply / discharge passage 95. Formed by a vacuum pump 96. The seal member 94 is disposed in a concave groove formed on the stage 2 side of the bellows 93. Further, the decompression pump 96 only needs to be capable of decompressing the decompression chamber 91 to the extent that no transfer failure occurs when the molding object 200 is pressurized to the mold 100. Needless to say, the bellows 93 and the seal member 94 are strong enough to withstand external force when decompressed.
 また、上述した加圧室用気体給排流路62と減圧室用気体給排流路95を共通にすることも可能である。この場合、まず、加圧室51を解放した状態で減圧室91及び加圧室51の気体を排出して減圧室91内の気体を除去し、次に、加圧室51を閉鎖した後、加圧室51に気体を供給して型100に対し被成型物200を押圧すれば良い。 It is also possible to make the gas supply / discharge flow path 62 for the pressurizing chamber and the gas supply / discharge flow path 95 for the decompression chamber common. In this case, first, the gas in the decompression chamber 91 and the pressurization chamber 51 is removed in a state where the pressurization chamber 51 is released to remove the gas in the decompression chamber 91, and then the pressurization chamber 51 is closed, A gas may be supplied to the pressurizing chamber 51 to press the molding object 200 against the mold 100.
 なお、加圧部5を加圧室用筐体52と膜57とで構成し、当該加圧室用筐体52と膜57の間を接着剤等により固着する場合には、減圧時に加圧室51内と減圧室91内の圧力を同圧にするための減圧用圧力調節手段(図示せず)を設けても良い。減圧用圧力調節手段としては、例えば、加圧室51と減圧室91を開閉手段を介して接続する連通路を設ければ良い。これにより減圧時に開閉手段を開放することで、加圧室51と減圧室91を同圧にすることができる。 In addition, when the pressurizing unit 5 includes the pressurizing chamber casing 52 and the membrane 57 and the pressurizing chamber casing 52 and the membrane 57 are fixed to each other with an adhesive or the like, the pressurizing portion 5 is pressurized. Pressure reducing pressure adjusting means (not shown) for making the pressure in the chamber 51 and the pressure reducing chamber 91 the same may be provided. As the pressure adjusting means for pressure reduction, for example, a communication path that connects the pressurizing chamber 51 and the pressure reducing chamber 91 via an opening / closing means may be provided. Thereby, the pressurizing chamber 51 and the decompression chamber 91 can be set to the same pressure by opening the opening / closing means during decompression.
 また、光インプリントプロセスに用いる場合には、図5に示すように被成形物200に所定波長の電磁波を放射できる光源15を加圧室51に配置すれば良い。もちろん、光源15を調圧室31側に設けることも可能である。 Further, when used in the optical imprint process, a light source 15 capable of emitting an electromagnetic wave having a predetermined wavelength to the molding target 200 may be disposed in the pressurizing chamber 51 as shown in FIG. Of course, the light source 15 can be provided on the pressure regulating chamber 31 side.
 2 ステージ
 3 調圧部
 4 排出流路
 5 加圧部
 6 加圧手段
 8 圧力調節手段
 9 減圧部
 11 供給口
 22 凹凸
 31 調圧室
 51 加圧室
 52 加圧室用筐体
 54 密閉手段
 57 膜
 91 減圧室
 100 型
 200 被成形物
2 Stage 3 Pressure adjusting section 4 Discharge flow path 5 Pressurizing section 6 Pressurizing means 8 Pressure adjusting means 9 Pressure reducing section 11 Supply port 22 Concavity and convexity 31 Pressure adjusting chamber 51 Pressurizing chamber 52 Pressurizing chamber casing 54 Sealing means 57 Membrane 91 Decompression chamber 100 type 200

Claims (13)

  1.  型の成型パターンを被成型物に転写するためのインプリント装置であって、
     前記型と前記被成形物を流体によって加圧するための加圧室を有する加圧部と、
     前記加圧部の圧力を受けた前記型および前記被成形物を支持するステージと、
     前記ステージの前記加圧部と対向する側に設けられ、前記ステージを流体によって加圧するための調圧室を有する調圧部と、
     前記加圧室内の流体の圧力を調節する加圧手段と、
     前記加圧室と前記調圧室の流体の圧力差が小さくなるように調節する圧力調節手段と、
    を具備することを特徴とするインプリント装置。
    An imprint apparatus for transferring a molding pattern of a mold to a molding object,
    A pressurizing unit having a pressurizing chamber for pressurizing the mold and the molding object with a fluid;
    A stage that supports the mold and the molding that have been subjected to the pressure of the pressure unit;
    A pressure regulating unit provided on a side of the stage facing the pressurizing unit, and having a pressure regulating chamber for pressurizing the stage with a fluid;
    Pressurizing means for adjusting the pressure of the fluid in the pressurization chamber;
    Pressure adjusting means for adjusting the pressure difference between the fluid in the pressurizing chamber and the pressure regulating chamber to be small;
    An imprint apparatus comprising:
  2.  前記圧力調節手段は、前記加圧室と前記調圧室を連通する連通管により構成されることを特徴とする請求項1記載のインプリント装置。 2. The imprinting apparatus according to claim 1, wherein the pressure adjusting means includes a communication pipe that communicates the pressurizing chamber and the pressure regulating chamber.
  3.  前記型と前記被成形物の周りの雰囲気を減圧するための減圧室を有する減圧部を具備することを特徴とする請求項1又は2記載のインプリント装置。 3. The imprint apparatus according to claim 1, further comprising a decompression unit having a decompression chamber for decompressing an atmosphere around the mold and the molding.
  4.  前記圧力調節手段は、前記減圧室と前記調圧室の流体の圧力差が小さくなるように調節可能に形成されることを特徴とする請求項3記載のインプリント装置。 4. The imprint apparatus according to claim 3, wherein the pressure adjusting means is formed so as to be adjustable so that a pressure difference between fluids in the decompression chamber and the pressure regulating chamber is reduced.
  5.  前記被成形物の温度を調節する温調手段を具備することを特徴とする請求項1ないし4のいずれかに記載のインプリント装置。 The imprint apparatus according to any one of claims 1 to 4, further comprising temperature adjusting means for adjusting a temperature of the molding object.
  6.  前記温調手段は、前記調圧室内に配置される複数の供給口から所定温度の流体を前記ステージに供給する流体供給手段と、前記調圧室内の流体を排出する排出流路と、
    を具備することを特徴とする請求項5記載のインプリント装置。
    The temperature adjustment means includes a fluid supply means for supplying a fluid having a predetermined temperature to the stage from a plurality of supply ports arranged in the pressure adjustment chamber, a discharge flow path for discharging the fluid in the pressure adjustment chamber,
    The imprint apparatus according to claim 5, further comprising:
  7.  前記ステージは、調圧室側に複数の凹凸が形成されていることを特徴とする請求項6記載のインプリント装置。 The imprint apparatus according to claim 6, wherein the stage is formed with a plurality of irregularities on the pressure regulating chamber side.
  8.  前記加圧部は、前記型又は前記被成形物と共に前記加圧室を構成する加圧室用筐体と、前記型又は前記被成型物との間を密閉する密閉手段と、前記加圧室用筐体と前記型又は前記被成形物との間を開閉する開閉手段と、からなることを特徴とする請求項1ないし7のいずれかに記載のインプリント装置。 The pressurizing unit includes a pressurization chamber casing that forms the pressurization chamber together with the mold or the molding object, a sealing unit that seals between the mold or the molding object, and the pressurization chamber. The imprint apparatus according to any one of claims 1 to 7, further comprising an opening / closing means for opening and closing between the housing for use and the mold or the molding object.
  9.  前記加圧部は、前記型又は前記被成形物と接触する面に配置された可撓性のある膜と、前記膜と共に前記加圧室を構成する加圧室用筐体と、からなることを特徴とする請求項1ないし7のいずれかに記載のインプリント装置。 The pressurizing unit includes a flexible film disposed on a surface that comes into contact with the mold or the molding object, and a pressurization chamber casing that forms the pressurization chamber together with the film. The imprint apparatus according to claim 1, wherein:
  10.  被加圧物を加圧するための加圧装置であって、
     前記被加圧物を流体によって加圧するための加圧室を有する加圧部と、
     前記加圧部の圧力を受けた前記被加圧物を支持するステージと、
     前記ステージの前記加圧部と対向する側に設けられ、前記ステージを流体によって加圧するための調圧室を有する調圧部と、
     前記加圧室内の流体の圧力を調節する加圧手段と、
     前記加圧室と前記調圧室の流体の圧力差が小さくなるように調節する圧力調節手段と、
    を具備することを特徴とする加圧装置。
    A pressurizing device for pressurizing an object to be pressurized,
    A pressurizing unit having a pressurizing chamber for pressurizing the object to be pressurized with a fluid;
    A stage for supporting the object to be pressurized that has received the pressure of the pressure unit;
    A pressure regulating unit provided on a side of the stage facing the pressurizing unit, and having a pressure regulating chamber for pressurizing the stage with a fluid;
    Pressurizing means for adjusting the pressure of the fluid in the pressurization chamber;
    Pressure adjusting means for adjusting the pressure difference between the fluid in the pressurizing chamber and the pressure regulating chamber to be small;
    A pressurizing apparatus comprising:
  11.  前記圧力調節手段は、前記加圧室と前記調圧室を連通する連通管により構成されることを特徴とする請求項10記載の加圧装置。 11. The pressurizing apparatus according to claim 10, wherein the pressure adjusting means is constituted by a communication pipe that communicates the pressurizing chamber and the pressure regulating chamber.
  12.  前記被加圧物の周りの雰囲気を減圧するための減圧室を有する減圧部を具備することを特徴とする請求項10又は11記載の加圧装置。 The pressurizing device according to claim 10 or 11, further comprising a decompression unit having a decompression chamber for decompressing an atmosphere around the object to be pressurized.
  13.  前記圧力調節手段は、前記減圧室と前記調圧室の流体の圧力差が小さくなるように調節可能に形成されることを特徴とする請求項12記載の加圧装置。 13. The pressurizing apparatus according to claim 12, wherein the pressure adjusting means is formed so as to be adjustable so that a pressure difference between fluids in the decompression chamber and the pressure regulating chamber is reduced.
PCT/JP2012/061468 2011-04-28 2012-04-27 Fluid pressure imprinting device and pressurization device WO2012147958A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013512491A JPWO2012147958A1 (en) 2011-04-28 2012-04-27 Fluid pressure imprint apparatus and pressurizing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011101995 2011-04-28
JP2011-101995 2011-04-28

Publications (1)

Publication Number Publication Date
WO2012147958A1 true WO2012147958A1 (en) 2012-11-01

Family

ID=47072469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/061468 WO2012147958A1 (en) 2011-04-28 2012-04-27 Fluid pressure imprinting device and pressurization device

Country Status (2)

Country Link
JP (1) JPWO2012147958A1 (en)
WO (1) WO2012147958A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013077386A1 (en) * 2011-11-25 2013-05-30 Scivax株式会社 Imprinting device and imprinting method
US10343312B2 (en) 2012-08-27 2019-07-09 Scivax Corporation Imprint device and imprint method
US10357903B2 (en) * 2012-12-06 2019-07-23 Scivax Corporation Roller-type pressurization device, imprinter, and roller-type pressurization method
US10421218B2 (en) 2014-06-03 2019-09-24 Scivax Corporation Roller-type depressing device, imprinting device, and roller-type depressing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02289311A (en) * 1989-01-25 1990-11-29 Hoya Corp Manufacture of stamper and board for information recording medium for which stamper is used
JP3833537B2 (en) * 2000-03-15 2006-10-11 オブデュキャット、アクチボラグ Pattern transfer device to object
JP3862216B2 (en) * 1999-12-10 2006-12-27 オブドゥカト アクティエボラーグ Apparatus and method for manufacturing structures
JP2007513509A (en) * 2003-12-05 2007-05-24 オブデュキャット、アクチボラグ Large area lithography devices and methods
JP2008221706A (en) * 2007-03-14 2008-09-25 Toshiba Mach Co Ltd Transfer apparatus and transfer method
JP2010506427A (en) * 2006-10-10 2010-02-25 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Contact lithographic apparatus, system and method facilitated by hydraulic pressure

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10284382A (en) * 1997-04-07 1998-10-23 Komatsu Ltd Temperature control equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02289311A (en) * 1989-01-25 1990-11-29 Hoya Corp Manufacture of stamper and board for information recording medium for which stamper is used
JP3862216B2 (en) * 1999-12-10 2006-12-27 オブドゥカト アクティエボラーグ Apparatus and method for manufacturing structures
JP3833537B2 (en) * 2000-03-15 2006-10-11 オブデュキャット、アクチボラグ Pattern transfer device to object
JP2007513509A (en) * 2003-12-05 2007-05-24 オブデュキャット、アクチボラグ Large area lithography devices and methods
JP2010506427A (en) * 2006-10-10 2010-02-25 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Contact lithographic apparatus, system and method facilitated by hydraulic pressure
JP2008221706A (en) * 2007-03-14 2008-09-25 Toshiba Mach Co Ltd Transfer apparatus and transfer method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013077386A1 (en) * 2011-11-25 2013-05-30 Scivax株式会社 Imprinting device and imprinting method
US9606431B2 (en) 2011-11-25 2017-03-28 Scivax Corporation Imprinting device and imprinting method
US10343312B2 (en) 2012-08-27 2019-07-09 Scivax Corporation Imprint device and imprint method
US10357903B2 (en) * 2012-12-06 2019-07-23 Scivax Corporation Roller-type pressurization device, imprinter, and roller-type pressurization method
US10421218B2 (en) 2014-06-03 2019-09-24 Scivax Corporation Roller-type depressing device, imprinting device, and roller-type depressing method

Also Published As

Publication number Publication date
JPWO2012147958A1 (en) 2014-07-28

Similar Documents

Publication Publication Date Title
JP6330157B2 (en) Imprint method using mold for imprint
US9808985B2 (en) Roller pressing device, imprinting device, and roller pressing method
JP5970646B2 (en) Imprint apparatus and imprint method
US10357903B2 (en) Roller-type pressurization device, imprinter, and roller-type pressurization method
WO2012147958A1 (en) Fluid pressure imprinting device and pressurization device
JPWO2015186736A1 (en) ROLLER PRESSURE DEVICE, IMPRINT DEVICE, AND ROLLER PRESSURE METHOD
JP6291687B2 (en) Imprint apparatus and imprint method
JP5488766B2 (en) Fluid pressure imprint apparatus and imprint method
EP2815868B1 (en) Imprint device and imprint method
WO2013008759A1 (en) Fluid pressure imprinting device provided with pressurization unit securing tool
JP6031655B2 (en) Fluid pressure imprint apparatus with a rigid stage
WO2012096076A1 (en) Demolding device, demolding method, and imprinting device using said demolding device and demolding method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12776869

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013512491

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DD 28/03/14)

122 Ep: pct application non-entry in european phase

Ref document number: 12776869

Country of ref document: EP

Kind code of ref document: A1