WO2012147877A1 - Surface-modified lithium-containing compound oxide for positive electrode active substance of lithium ion secondary cell and method for producing same - Google Patents
Surface-modified lithium-containing compound oxide for positive electrode active substance of lithium ion secondary cell and method for producing same Download PDFInfo
- Publication number
- WO2012147877A1 WO2012147877A1 PCT/JP2012/061270 JP2012061270W WO2012147877A1 WO 2012147877 A1 WO2012147877 A1 WO 2012147877A1 JP 2012061270 W JP2012061270 W JP 2012061270W WO 2012147877 A1 WO2012147877 A1 WO 2012147877A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- composite oxide
- lithium
- containing composite
- gadolinium
- zirconium
- Prior art date
Links
- 150000002641 lithium Chemical class 0.000 title claims abstract description 109
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 39
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 19
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 19
- 150000001875 compounds Chemical class 0.000 title claims abstract description 11
- 239000013543 active substance Substances 0.000 title 1
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 111
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 109
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 86
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims abstract description 81
- 229910052688 Gadolinium Inorganic materials 0.000 claims abstract description 79
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 claims abstract description 79
- 239000002245 particle Substances 0.000 claims abstract description 72
- 239000011248 coating agent Substances 0.000 claims abstract description 66
- 238000000576 coating method Methods 0.000 claims abstract description 66
- 239000007788 liquid Substances 0.000 claims abstract description 33
- 239000002131 composite material Substances 0.000 claims description 231
- 239000000243 solution Substances 0.000 claims description 33
- 239000007774 positive electrode material Substances 0.000 claims description 23
- 238000010438 heat treatment Methods 0.000 claims description 22
- 239000002344 surface layer Substances 0.000 claims description 20
- 229910052748 manganese Inorganic materials 0.000 claims description 14
- 229910052759 nickel Inorganic materials 0.000 claims description 14
- 239000002904 solvent Substances 0.000 claims description 12
- WRAGBEWQGHCDDU-UHFFFAOYSA-M C([O-])([O-])=O.[NH4+].[Zr+] Chemical compound C([O-])([O-])=O.[NH4+].[Zr+] WRAGBEWQGHCDDU-UHFFFAOYSA-M 0.000 claims description 11
- 239000008151 electrolyte solution Substances 0.000 claims description 9
- LYQGMALGKYWNIU-UHFFFAOYSA-K gadolinium(3+);triacetate Chemical compound [Gd+3].CC([O-])=O.CC([O-])=O.CC([O-])=O LYQGMALGKYWNIU-UHFFFAOYSA-K 0.000 claims description 9
- 239000011230 binding agent Substances 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 8
- 229910052723 transition metal Inorganic materials 0.000 claims description 8
- 239000011888 foil Substances 0.000 claims description 7
- 239000002002 slurry Substances 0.000 claims description 7
- 229910052718 tin Inorganic materials 0.000 claims description 6
- 229910001938 gadolinium oxide Inorganic materials 0.000 claims description 5
- 229940075613 gadolinium oxide Drugs 0.000 claims description 5
- CMIHHWBVHJVIGI-UHFFFAOYSA-N gadolinium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[Gd+3].[Gd+3] CMIHHWBVHJVIGI-UHFFFAOYSA-N 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- GOZLPQZIQDBYMO-UHFFFAOYSA-N azanium;zirconium;fluoride Chemical compound [NH4+].[F-].[Zr] GOZLPQZIQDBYMO-UHFFFAOYSA-N 0.000 claims description 4
- 239000004020 conductor Substances 0.000 claims description 4
- ILCLBMDYDXDUJO-UHFFFAOYSA-K gadolinium(3+);trihydroxide Chemical compound [OH-].[OH-].[OH-].[Gd+3] ILCLBMDYDXDUJO-UHFFFAOYSA-K 0.000 claims description 4
- RQXZRSYWGRRGCD-UHFFFAOYSA-H gadolinium(3+);tricarbonate Chemical compound [Gd+3].[Gd+3].[O-]C([O-])=O.[O-]C([O-])=O.[O-]C([O-])=O RQXZRSYWGRRGCD-UHFFFAOYSA-H 0.000 claims description 3
- QLAFITOLRQQGTE-UHFFFAOYSA-H gadolinium(3+);trisulfate Chemical compound [Gd+3].[Gd+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O QLAFITOLRQQGTE-UHFFFAOYSA-H 0.000 claims description 3
- 239000006258 conductive agent Substances 0.000 claims description 2
- 238000010030 laminating Methods 0.000 claims description 2
- 239000000843 powder Substances 0.000 description 57
- 239000007864 aqueous solution Substances 0.000 description 23
- 238000001228 spectrum Methods 0.000 description 21
- 239000003513 alkali Substances 0.000 description 20
- 238000002441 X-ray diffraction Methods 0.000 description 17
- -1 ammonium zirconium halide Chemical class 0.000 description 15
- 230000020169 heat generation Effects 0.000 description 15
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 14
- 230000014759 maintenance of location Effects 0.000 description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- 238000004438 BET method Methods 0.000 description 13
- BUGHHNFDRCUTRM-UHFFFAOYSA-N gadolinium zirconium Chemical compound [Zr][Gd] BUGHHNFDRCUTRM-UHFFFAOYSA-N 0.000 description 13
- 239000000203 mixture Substances 0.000 description 13
- 239000000463 material Substances 0.000 description 12
- 229910052782 aluminium Inorganic materials 0.000 description 11
- 239000011572 manganese Substances 0.000 description 11
- 238000000634 powder X-ray diffraction Methods 0.000 description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 10
- 238000002156 mixing Methods 0.000 description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 9
- 239000002585 base Substances 0.000 description 9
- 239000001301 oxygen Substances 0.000 description 9
- 229910052760 oxygen Inorganic materials 0.000 description 9
- 239000002994 raw material Substances 0.000 description 9
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 8
- 239000011777 magnesium Substances 0.000 description 8
- 238000009826 distribution Methods 0.000 description 7
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 6
- 229910017052 cobalt Inorganic materials 0.000 description 6
- 239000010941 cobalt Substances 0.000 description 6
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 6
- 238000010304 firing Methods 0.000 description 6
- 229910052749 magnesium Inorganic materials 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- 239000010936 titanium Substances 0.000 description 6
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 230000001186 cumulative effect Effects 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 239000003792 electrolyte Substances 0.000 description 5
- 229910002804 graphite Inorganic materials 0.000 description 5
- 239000010439 graphite Substances 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 4
- 239000012736 aqueous medium Substances 0.000 description 4
- 239000010419 fine particle Substances 0.000 description 4
- 239000011737 fluorine Substances 0.000 description 4
- 229910052731 fluorine Inorganic materials 0.000 description 4
- MWFSXYMZCVAQCC-UHFFFAOYSA-N gadolinium(iii) nitrate Chemical compound [Gd+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O MWFSXYMZCVAQCC-UHFFFAOYSA-N 0.000 description 4
- UJVRJBAUJYZFIX-UHFFFAOYSA-N nitric acid;oxozirconium Chemical compound [Zr]=O.O[N+]([O-])=O.O[N+]([O-])=O UJVRJBAUJYZFIX-UHFFFAOYSA-N 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- YASYEJJMZJALEJ-UHFFFAOYSA-N Citric acid monohydrate Chemical compound O.OC(=O)CC(O)(C(O)=O)CC(O)=O YASYEJJMZJALEJ-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 3
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- MTEWCUZXTGXLQX-AHUNZLEGSA-H [Al+3].[Al+3].[O-]C(=O)\C=C/C([O-])=O.[O-]C(=O)\C=C/C([O-])=O.[O-]C(=O)\C=C/C([O-])=O Chemical compound [Al+3].[Al+3].[O-]C(=O)\C=C/C([O-])=O.[O-]C(=O)\C=C/C([O-])=O.[O-]C(=O)\C=C/C([O-])=O MTEWCUZXTGXLQX-AHUNZLEGSA-H 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 229960002303 citric acid monohydrate Drugs 0.000 description 3
- CKFRRHLHAJZIIN-UHFFFAOYSA-N cobalt lithium Chemical compound [Li].[Co] CKFRRHLHAJZIIN-UHFFFAOYSA-N 0.000 description 3
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 3
- 229910052808 lithium carbonate Inorganic materials 0.000 description 3
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 3
- 239000001095 magnesium carbonate Substances 0.000 description 3
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 3
- 239000004570 mortar (masonry) Substances 0.000 description 3
- 239000007773 negative electrode material Substances 0.000 description 3
- 239000005518 polymer electrolyte Substances 0.000 description 3
- 239000011164 primary particle Substances 0.000 description 3
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- AIFLGMNWQFPTAJ-UHFFFAOYSA-J 2-hydroxypropanoate;titanium(4+) Chemical compound [Ti+4].CC(O)C([O-])=O.CC(O)C([O-])=O.CC(O)C([O-])=O.CC(O)C([O-])=O AIFLGMNWQFPTAJ-UHFFFAOYSA-J 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 229910000733 Li alloy Inorganic materials 0.000 description 2
- 229910008019 Li1.02(Co0.979Mg0.01Al0.01Zr0.001)0.98O2 Inorganic materials 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 239000011246 composite particle Substances 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000011363 dried mixture Substances 0.000 description 2
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 239000001989 lithium alloy Substances 0.000 description 2
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 2
- 229910003002 lithium salt Inorganic materials 0.000 description 2
- 159000000002 lithium salts Chemical class 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 239000011255 nonaqueous electrolyte Substances 0.000 description 2
- 239000003002 pH adjusting agent Substances 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 150000002910 rare earth metals Chemical class 0.000 description 2
- 229910052706 scandium Inorganic materials 0.000 description 2
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000002411 thermogravimetry Methods 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 2
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 1
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 description 1
- 229910017008 AsF 6 Inorganic materials 0.000 description 1
- 229910052580 B4C Inorganic materials 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 229910020366 ClO 4 Inorganic materials 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229910015645 LiMn Inorganic materials 0.000 description 1
- 229910014689 LiMnO Inorganic materials 0.000 description 1
- 229910015915 LiNi0.8Co0.2O2 Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- 229910001228 Li[Ni1/3Co1/3Mn1/3]O2 (NCM 111) Inorganic materials 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229910018286 SbF 6 Inorganic materials 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 235000012538 ammonium bicarbonate Nutrition 0.000 description 1
- 239000001099 ammonium carbonate Substances 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 150000001722 carbon compounds Chemical class 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 150000005678 chain carbonates Chemical class 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- GNEMDYVJKXMKCS-UHFFFAOYSA-N cobalt zirconium Chemical compound [Co].[Zr] GNEMDYVJKXMKCS-UHFFFAOYSA-N 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 150000005676 cyclic carbonates Chemical class 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- WBFZBNKJVDQAMA-UHFFFAOYSA-D dipotassium;zirconium(4+);pentacarbonate Chemical compound [K+].[K+].[Zr+4].[Zr+4].[O-]C([O-])=O.[O-]C([O-])=O.[O-]C([O-])=O.[O-]C([O-])=O.[O-]C([O-])=O WBFZBNKJVDQAMA-UHFFFAOYSA-D 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- RCIJMMSZBQEWKW-UHFFFAOYSA-N methyl propan-2-yl carbonate Chemical compound COC(=O)OC(C)C RCIJMMSZBQEWKW-UHFFFAOYSA-N 0.000 description 1
- KKQAVHGECIBFRQ-UHFFFAOYSA-N methyl propyl carbonate Chemical compound CCCOC(=O)OC KKQAVHGECIBFRQ-UHFFFAOYSA-N 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- RGRFMLCXNGPERX-UHFFFAOYSA-L oxozirconium(2+) carbonate Chemical compound [Zr+2]=O.[O-]C([O-])=O RGRFMLCXNGPERX-UHFFFAOYSA-L 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 238000003918 potentiometric titration Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000011163 secondary particle Substances 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000003746 solid phase reaction Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- RCYJPSGNXVLIBO-UHFFFAOYSA-N sulfanylidenetitanium Chemical compound [S].[Ti] RCYJPSGNXVLIBO-UHFFFAOYSA-N 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000009210 therapy by ultrasound Methods 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
- XJUNLJFOHNHSAR-UHFFFAOYSA-J zirconium(4+);dicarbonate Chemical compound [Zr+4].[O-]C([O-])=O.[O-]C([O-])=O XJUNLJFOHNHSAR-UHFFFAOYSA-J 0.000 description 1
- IPCAPQRVQMIMAN-UHFFFAOYSA-L zirconyl chloride Chemical compound Cl[Zr](Cl)=O IPCAPQRVQMIMAN-UHFFFAOYSA-L 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G25/00—Compounds of zirconium
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G45/00—Compounds of manganese
- C01G45/20—Compounds containing manganese, with or without oxygen or hydrogen, and containing one or more other elements
- C01G45/22—Compounds containing manganese, with or without oxygen or hydrogen, and containing two or more other elements
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G51/00—Compounds of cobalt
- C01G51/40—Complex oxides containing cobalt and at least one other metal element
- C01G51/66—Complex oxides containing cobalt and at least one other metal element containing alkaline earth metals, e.g. SrCoO3
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G51/00—Compounds of cobalt
- C01G51/80—Compounds containing cobalt, with or without oxygen or hydrogen, and containing one or more other elements
- C01G51/82—Compounds containing cobalt, with or without oxygen or hydrogen, and containing two or more other elements
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/80—Compounds containing nickel, with or without oxygen or hydrogen, and containing one or more other elements
- C01G53/82—Compounds containing nickel, with or without oxygen or hydrogen, and containing two or more other elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1391—Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/80—Particles consisting of a mixture of two or more inorganic phases
- C01P2004/82—Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
- C01P2004/84—Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/11—Powder tap density
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention provides a surface-modified lithium-containing composite oxide, a positive electrode for a lithium ion secondary battery, a lithium ion secondary battery used for a positive electrode active material for a lithium ion secondary battery that has high safety and excellent rate characteristics and charge / discharge cycle durability.
- the present invention relates to a secondary battery and a manufacturing method thereof.
- non-aqueous electrolyte secondary batteries such as lithium secondary batteries that are small, lightweight, and have high energy density
- the positive electrode active material for the non-aqueous electrolyte secondary battery include LiCoO 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNiO 2 , LiNi 0.8 Co 0.2 O 2 , LiMn 2.
- a composite oxide of lithium and a transition metal or the like such as O 4 or LiMnO 2 (in the present invention, sometimes referred to as a lithium-containing composite oxide) is known.
- a lithium secondary battery using LiCoO 2 as a positive electrode active material and a lithium alloy and carbon such as graphite and carbon fiber as a negative electrode has a high energy density because a high voltage of 4V is obtained. As widely used.
- the discharge capacity, the stability to heat during heating (in the present invention, sometimes simply referred to as safety), and the unit volume of the positive electrode layer Further improvement in the capacity density (sometimes simply referred to as volume capacity density in the present invention) is desired, and the battery discharge is caused by the reaction between the positive electrode active material interface and the electrolyte by repeating the charge / discharge cycle.
- charge / discharge cycle durability such as capacity reduction and swelling.
- a zirconium cobalt-coated lithium cobalt composite oxide has been proposed by coating zirconium (Zr) on a pre-synthesized LiCoO 2 using an aqueous zirconyl nitrate solution and then firing at a relatively high temperature of 600 ° C. (See Patent Document 1).
- an oxide represented by a lithium-containing composite oxide or a raw material component and LiLnO 2 (Ln represents at least one selected from the group consisting of yttrium, scandium, and a trivalent rare earth metal) or a raw material component thereof has been proposed, which includes a step of granulating or forming a mixture with a binder, and a step of holding the granulated product at 600 to 800 ° C. and further holding at 800 to 1100 ° C. .
- Patent Document 2 Furthermore, a positive electrode active material characterized by containing at least one kind of rare earth oxide in a lithium-containing composite oxide having a layered structure has been proposed (see Patent Document 3).
- Patent Document 1 proposes a lithium cobalt composite oxide obtained by coating a lithium cobalt composite oxide synthesized in advance with an aqueous zirconyl nitrate solution and then firing at 600 ° C., which is a relatively high temperature.
- a coating treatment is performed using an aqueous solution having a low pH such as an aqueous solution of zirconyl nitrate
- the surface of the lithium-containing composite oxide is dissolved and contained in a composite powder such as lithium (Li) or cobalt (Co). Since a part of the element elutes, it is considered that safety is insufficient.
- nitrate is used as a raw material for producing the surface-modified lithium-containing composite oxide, there is a problem that toxic nitrogen oxide gas is produced as a by-product during production.
- the method for producing the surface-modified lithium-containing composite oxide described in Patent Document 2 is selected from the group consisting of a lithium-containing composite oxide or a raw material component and LiLnO 2 (Ln is yttrium, scandium, and a trivalent rare earth metal).
- the surface-modified lithium-containing composite oxide described in Patent Document 3 is characterized in that the lithium-containing composite oxide having a layered structure contains at least one kind of rare earth oxide.
- a 0.01M gadolinium nitrate aqueous solution was added to a lithium-containing composite oxide synthesized in advance in an atomic ratio of gadolinium (Gd) to nickel (Ni), manganese (Mn), and cobalt (Co) contained in the composite oxide.
- Gd gadolinium
- Ni nickel
- Mn manganese
- Co cobalt
- the present invention provides a surface-modified lithium-containing composite oxide, a positive electrode for a lithium ion secondary battery, a lithium ion secondary battery, and a method for producing them, which have high safety and excellent rate characteristics and charge / discharge cycle durability. For the purpose of provision.
- the gadolinium source is at least one selected from the group consisting of gadolinium acetate, gadolinium carbonate, gadolinium hydroxide, gadolinium sulfate, and gadolinium oxide.
- the zirconium source is at least one selected from the group consisting of ammonium zirconium carbonate and ammonium zirconium fluoride.
- the lithium-containing composite oxide is impregnated with a coating solution containing 0.01 to 1 mol% of gadolinium and zirconium in total of gadolinium and zirconium, according to any one of the above (1) to (4) Manufacturing method.
- a slurry obtained by mixing a positive electrode active material, a conductive agent, a binder and a solvent containing a surface-modified lithium-containing composite oxide obtained by the production method according to any one of (1) to (11) above A method for producing a positive electrode for a lithium ion secondary battery, wherein the solvent is removed by heating after coating the metal foil.
- the surface layer of the lithium-containing composite oxide particles includes a gadolinium / zirconium-containing composite compound having an amorphous structure. A surface-modified lithium-containing composite oxide.
- a surface-modified lithium-containing composite oxide having high safety, excellent rate characteristics and charge / discharge cycle durability, a positive electrode for a lithium ion secondary battery, a lithium ion secondary battery, and a method for producing them Provided.
- the reason why the surface-modified lithium-containing composite oxide obtained by the present invention exhibits excellent characteristics as a positive electrode for a lithium secondary battery as described above is not necessarily clear, but is estimated as follows.
- the gadolinium / zirconium-containing composite oxide is uniformly contained in the surface layer of the particles.
- the gadolinium-zirconium-containing composite oxide according to the present invention is stable against structural changes associated with charge / discharge, and the crystal structure of the lithium-containing composite oxide that accompanies charge / discharge even when a large amount of current flows. Can be prevented from collapsing. In addition, since the contact area between the surface of the lithium-containing composite oxide and the electrolytic solution can be reduced by being uniformly present, decomposition of the electrolytic solution can also be suppressed.
- the gadolinium / zirconium-containing composite oxide is a heat-stable compound.
- the surface-modified lithium-containing composite oxide of the present invention is considered to have a high safety and to obtain a surface-modified lithium-containing composite oxide having excellent rate characteristics and charge / discharge cycle durability. That is, from the viewpoint of the configuration and effect of the invention, the surface-modified lithium-containing composite oxide described in Patent Documents 1 to 3 is considered to be completely different from the surface-modified lithium-containing composite oxide obtained in the present invention. It is done.
- FIG. The powder X-ray-diffraction chart of each powder obtained when the coating liquid obtained in Example 1 was heated to 80 degreeC.
- the powder X-ray diffraction chart of each powder obtained when the coating liquid obtained in Example 1 was heated to 200 degreeC.
- the powder X-ray diffraction chart of each powder obtained when the coating liquid obtained in Example 1 was heated to 400 degreeC.
- the powder X-ray diffraction chart of each powder obtained when the coating liquid obtained in Example 1 was heated to 600 degreeC.
- the powder X-ray diffraction chart of each powder obtained when the coating liquid obtained in Example 1 was heated to 900 degreeC.
- the surface-modified lithium-containing composite oxide of the present invention can be obtained by impregnating lithium-containing composite oxide particles serving as a base material with a coating solution containing a gadolinium source and a zirconium source and then performing a heat treatment.
- Lithium-containing composite oxide is impregnated with the coating solution is represented by the general formula Li p N x M y O z F a.
- p, x, y, z and a are 0.9 ⁇ p ⁇ 1.4, 0.9 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 0.1, 1.9 ⁇ z ⁇ 2.
- p, x, y, z and a are preferably as follows. 0.93 ⁇ p ⁇ 1.2, 0.9 ⁇ x ⁇ 1.0, 0 ⁇ y ⁇ 0.1, 1.9 ⁇ z ⁇ 2.1, 0 ⁇ a ⁇ 0.05. Further, p, x, y, z and a are more preferably as follows. 0.97 ⁇ p ⁇ 1.1, 0.95 ⁇ x ⁇ 1.00, 0 ⁇ y ⁇ 0.05, 1.95 ⁇ z ⁇ 2.05, 0 ⁇ a ⁇ 0.01.
- the lithium-containing composite oxide of the base material contains fluorine, it becomes a positive electrode active material in which a part of oxygen is substituted with fluorine, and there is a tendency to further improve safety. Is preferably in the range of 0.001 ⁇ a ⁇ 0.01.
- the N element is at least one element selected from the group consisting of Co, Mn, and Ni.
- the N element is preferably Co, Ni, a combination of Co and Ni, a combination of Mn and Ni, or a combination of Co, Ni and Mn, and may be a combination of Co or Co, Ni and Mn. More preferably, Co is particularly preferable.
- the M element is at least one element selected from the group consisting of transition metal elements other than Co, Mn and Ni, Al, Sn and Group 2 elements.
- the transition metal element represents a transition metal of Group 4, Group 5, Group 6, Group 7, Group 8, Group 9, Group 10, Group 11, and Group 12 of the Periodic Table.
- the M element is preferably at least one selected from the group consisting of Al, Ti, Zr, Hf, Nb, Ta, Mg, Sn, and Zn.
- the M element is more preferably at least one selected from the group consisting of Al, Ti, Zr, Nb and Mg, and Al, Zr and Particularly preferred is at least one selected from the group consisting of Mg.
- the atomic ratio of Al and Mg is preferably 1/4 to 4/1, particularly preferably 1/3 to 3/1, and y is preferably When 0.005 ⁇ y ⁇ 0.05, particularly preferably 0.01 ⁇ y ⁇ 0.035, the balance of battery performance, that is, the balance of discharge capacity, safety, and charge / discharge cycle durability is good. Therefore, it is preferable.
- the molar ratio Li / (N + M), which is a value obtained by dividing the molar amount of lithium in the lithium-containing composite oxide by the total molar amount of N element and M element, is 0.97 to 1.10.
- 0.99 to 1.05 is particularly preferable.
- the particle growth of the lithium-containing composite oxide by firing is promoted, and higher density particles can be obtained.
- the coating liquid preferably contains gadolinium and zirconium in a range of 0.01 to 1.00 mol% in total of gadolinium and zirconium with respect to the lithium-containing composite oxide as a base material, and more preferably 0.04 to 0.50 mol% is more preferable, and 0.07 to 0.15 mol% is particularly preferable.
- the total amount of gadolinium and zirconium contained in the surface layer of the particles is preferably 0.01 to 1.00 mol% of the gadolinium and zirconium with respect to the lithium-containing composite oxide. 50 mol% is more preferable, and 0.07 to 0.15 mol% is particularly preferable.
- the coating liquid preferably contains 0.03 to 0.5 mol% of gadolinium with respect to the lithium-containing composite oxide, more preferably 0.05 to 0.3 mol%, and more preferably 0.05 to 0. .25 mol% is particularly preferred.
- 0.03 to 0.5 mol% of zirconium is contained with respect to the lithium-containing composite oxide, more preferably 0.05 to 0.3 mol%, and more preferably 0.05 to 0.25 mol%.
- gadolinium contained in the surface layer of the particles is preferably 0.03 to 0.5 mol%, more preferably 0.05 to 0.3 mol%, and more preferably 0.05 to 0.3 mol% with respect to the lithium-containing composite oxide. 0.25 mol% is particularly preferable.
- zirconium contained in the surface layer of the particles is preferably 0.03 to 0.5 mol%, more preferably 0.05 to 0.3 mol%, and particularly preferably 0.05 to 0.25 mol%.
- the composition of the gadolinium-zirconium-containing composite oxide contained in the surface layer of the surface-modified lithium-containing composite oxide is not particularly limited, but the molar ratio of zirconium to gadolinium (Zr / Gd) is 0.1 to 10 is preferable, 0.3 to 5 is more preferable, and 0.5 to 2 is particularly preferable.
- the composition of the gadolinium / zirconium-containing composite oxide contained in the surface layer of the surface-modified lithium-containing composite oxide is preferably represented by the structural formula of Gd 2 Zr 2 O 7 .
- the gadolinium / zirconium-containing composite oxide preferably has an amorphous structure, that is, an amorphous structure.
- the surface-modified lithium-containing composite oxide of the present invention preferably has a gadolinium-zirconium-containing composite oxide having an amorphous structure in which the gadolinium source and the zirconium source are decomposed, that is, an amorphous structure, in the surface layer.
- the measurement conditions for powder X-ray diffraction were acceleration voltage of 40 kV or more and current of 40 mA or more.
- the gadolinium / zirconium-containing composite oxide may be a mixture containing several types of gadolinium / zirconium-containing composite oxide.
- the gadolinium / zirconium-containing composite oxide contains a total of gadolinium and zirconium with respect to the lithium-containing composite oxide, for example, in a proportion as low as 0.1 mol%, gadolinium Even if a zirconium-containing composite oxide is present, the diffraction peak of the X-ray diffraction spectrum derived from the gadolinium / zirconium-containing composite oxide may not be detected. In this case, it is possible to detect a diffraction peak of the X-ray diffraction spectrum by synthesizing a compound subjected to heat treatment by drying the coating liquid and measuring the X-ray diffraction spectrum.
- gadolinium oxide or zirconium oxide may further exist in the surface layer of the lithium-containing composite oxide particles.
- a solvent for the coating solution an aqueous solution is preferable and water is more preferable from the viewpoints of environmental impact and cost.
- the aqueous solution means a solution using an aqueous medium as a solvent, that is, a solvent mainly containing water, including water, alcohol, ethylene glycol, glycerin and the like. Of these, a solution containing 80 to 100% by mass of water is preferable.
- the lithium-containing composite oxide containing gadolinium / zirconium-containing composite oxide in its surface layer is compared with the conventional solid-phase reaction or when the raw material is added in solution to the lithium-containing composite oxide raw material.
- the battery characteristics are drastically improved because the gadolinium / zirconium-containing composite oxide can be uniformly attached and exist on the surface layer including the surface of the lithium-containing composite oxide particles.
- the gadolinium source used for the preparation of the coating liquid is not particularly limited, but is preferably one selected from the group consisting of gadolinium oxide, gadolinium hydroxide, gadolinium carbonate, gadolinium sulfate, and gadolinium acetate, and gadolinium hydroxide or gadolinium acetate is preferable. More preferably, gadolinium acetate is particularly preferable.
- the zirconium source used for the preparation of the coating liquid is not particularly limited, but at least selected from the group consisting of ammonium zirconium carbonate, ammonium zirconium halide, zirconyl chloride, zirconyl nitrate, zirconyl carbonate, basic zirconium carbonate, and potassium zirconium carbonate.
- ammonium zirconium carbonate or ammonium zirconium fluoride is more preferred, and ammonium zirconium carbonate is particularly preferred.
- the chemical formula of ammonium zirconium carbonate is represented by (NH 4 ) 2 [Zr (CO 3 ) 2 (OH) 2 ].
- the chemical formula of zirconium ammonium fluoride is represented by (NH 4 ) 2 ZrF 6 .
- the coating liquid contains a carboxylic acid.
- the carboxylic acid may be in the form of a compound salt.
- the carboxylic acid is preferably a carboxylic acid having two or more carboxyl groups, or a total of two or more carboxyl groups and hydroxyl groups or carbonyl groups.
- Such a carboxylic acid can improve the solubility of the gadolinium source and the zirconium source, and can uniformly disperse gadolinium and zirconium.
- a carboxylic acid having 2 to 4 carboxyl groups or a carboxylic acid having 1 to 4 hydroxyl groups the dispersibility of gadolinium and zirconium can be further improved.
- the pH of the coating solution is less than 1, the base lithium-containing composite oxide tends to dissolve, so a base such as ammonia can be added to adjust the pH to 1 to 10 is preferable, and the pH is more preferably 1 to 9.
- the pH of the coating solution can be adjusted by adding a pH adjusting agent and / or an alkaline aqueous solution to the coating solution.
- a pH adjuster ammonia, ammonium bicarbonate or the like can be used.
- an alkaline aqueous solution an aqueous solution of a hydroxide such as sodium hydroxide, potassium hydroxide, or lithium hydroxide can be used.
- the coating liquid containing a gadolinium source and a zirconium source may be any of a solution, a suspension in which solid fine particles are dispersed, or a colloidal solution in which solid fine particles are dispersed.
- the average particle size of the solid fine particles is preferably 3 ⁇ m or less, more preferably 1 ⁇ m or less, and 0.1 ⁇ m or less. Is particularly preferred.
- composite particles composed of a gadolinium source and a zirconium source are preferably dispersed as fine particles.
- dissolved may be sufficient.
- a coating solution it is prepared while heating as necessary. The temperature is preferably 40 ° C to 80 ° C, particularly preferably 50 ° C to 70 ° C. By heating, the gadolinium source and the zirconium source can be uniformly dispersed, and the coating liquid can be stabilized in a short time.
- the total concentration of the gadolinium source and the zirconium source contained in the coating liquid is preferably as high as possible.
- the concentration is too high, the viscosity increases, the mixing property with the gadolinium source and the zirconium source decreases, and it becomes difficult for gadolinium and zirconium to be uniformly coated on the particle surface of the lithium-containing composite oxide. 0.01 to 30% by mass is preferable, and 0.1 to 15% by mass is more preferable.
- the method of impregnating the coating liquid into the lithium-containing composite oxide is not particularly limited, but means for spraying the coating liquid onto the lithium-containing composite oxide powder to impregnate, or the coating liquid and the lithium-containing composite in a container
- a means for mixing with an oxide, stirring, and impregnating can be used.
- a spray dryer, a flash dryer, a belt dryer, a Laedige mixer, a thermoprocessor, or a paddle dryer can be used as the means for spraying.
- a twin screw kneader, an axial mixer, a paddle mixer, a turbulator, a Ladige mixer, or a drum mixer can be used.
- it is preferable to perform a reduced pressure treatment while impregnating because the lithium-containing composite oxide impregnated with the coating solution can be simultaneously dried in a short time.
- the resulting impregnated particles can be dried.
- the impregnated particles are preferably dried at 15 to 200 ° C., particularly preferably at 50 to 120 ° C., usually for 0.1 to 10 hours. Since the aqueous medium in the impregnated particles is removed in a later heat treatment step, it is not always necessary to completely remove it at this stage, but a large amount of energy is required to remove moisture in the heat treatment step, so it can be done. It is preferable to remove as much as possible.
- the heat treatment temperature of the impregnated particles impregnated with the coating liquid of the present invention is 250 to 550 ° C., and 300 to 500 ° C. is particularly preferable.
- gadolinium and zirconium are uniformly distributed on the surface layer of lithium-containing composite oxide particles, and surface modified lithium containing excellent battery characteristics such as rate characteristics and charge / discharge cycle durability A composite oxide can be obtained.
- heat treatment in this temperature range is preferable because the gadolinium / zirconium-containing composite oxide in the surface layer of the particles becomes a compound having an amorphous structure, that is, an amorphous structure.
- the organic acid used for preparing the coating liquid is not sufficiently decomposed.
- the temperature is 200 ° C.
- the coating liquid raw material is not decomposed from the dried state. It is not preferable.
- a temperature higher than 550 ° C. is not preferable because a highly crystalline gadolinium / zirconium-containing composite oxide starts to be formed, and the particle surface of the lithium-containing composite oxide cannot be uniformly coated.
- a gadolinium-zirconium-containing composite oxide having very high crystallinity is formed and sintered at 900 ° C., it is not preferable because the particle surface of the lithium-containing composite oxide cannot be uniformly coated.
- the heat treatment is preferably performed in an oxygen-containing atmosphere, and more specifically in an atmosphere having an oxygen concentration of 10 to 40% by volume.
- the heat treatment time is preferably 30 minutes or longer, more preferably 1 hour or longer, further preferably 3 hours or longer, more preferably 120 hours or shorter, more preferably 60 hours or shorter, further preferably 30 hours or shorter.
- the average particle size D50 is a particle size distribution at which the particle size distribution is obtained on a volume basis and the cumulative curve is 50% in a cumulative curve with the total volume being 100%.
- 50% diameter (D50) is meant.
- the particle size distribution is obtained from a frequency distribution and a cumulative volume distribution curve measured with a laser scattering particle size distribution measuring apparatus.
- the particle size is measured by sufficiently dispersing the particles in an aqueous medium by ultrasonic treatment or the like and measuring the particle size distribution (for example, using Microtrack HRAX-100 manufactured by Nikkiso Co., Ltd.).
- D10 means a point value at which the cumulative curve becomes 10%
- D90 means a point value at which the cumulative curve becomes 90%.
- the average particle diameter D50 means a volume average particle diameter of a secondary particle diameter obtained by agglomerating and sintering primary particles. Means consisting of primary particles only means the volume average particle size of the primary particles.
- the press density of the surface modified lithium-containing composite oxide obtained by the present invention is preferably 2.7 ⁇ 3.4g / cm 3, more preferably 2.8 ⁇ 3.3g / cm 3, 2.9 ⁇ 3.3 g / cm 3 is particularly preferred.
- the press density means the apparent density of the powder when the surface-modified lithium-containing composite oxide powder is pressed at a pressure of 0.3 ton / cm 2 .
- the amount of free alkali is preferably 0.035% by mass or less, more preferably 0.02% by mass or less.
- the surface-modified lithium-containing composite oxide of the present invention contains gadolinium and zirconium in the particle surface layer, the contact area between the lithium-containing composite oxide and the electrolytic solution is reduced, and atoms such as cobalt are charged during charging and discharging. Elution into the electrolyte can be suppressed. This can be quantitatively evaluated by measuring the amount of free alkali representing the amount of alkali eluted from the lithium-containing composite oxide. This numerical value of the free alkali amount indicates that the surface-modified lithium-containing composite oxide of the present invention is excellent in safety and charge / discharge cycle durability.
- the amount of free alkali is determined by dispersing 5 g of the surface-modified lithium-containing composite oxide powder in 50 g of pure water and stirring for 30 minutes, and then filtering the filtrate obtained by filtration to 0.02 mol% / liter. It is obtained from a hydrochloric acid aqueous solution used by potentiometric titration with an aqueous hydrochloric acid solution until the pH reaches 4.0.
- the amount of free alkali is sometimes simply referred to as alkali amount.
- the surface-modified lithium-containing composite oxide powder is bonded to a carbon-based conductive material such as acetylene black, graphite, or ketjen black. It is formed by mixing materials.
- a carbon-based conductive material such as acetylene black, graphite, or ketjen black. It is formed by mixing materials.
- the binder polyvinylidene fluoride, polytetrafluoroethylene, polyamide, carboxymethyl cellulose, acrylic resin, or the like is preferably used.
- the surface-modified lithium-containing composite oxide powder, conductive material and binder according to the present invention are made into a slurry or a kneaded product using a solvent or a dispersion medium. This is supported on a positive electrode current collector such as an aluminum foil or a stainless steel foil by coating or the like to produce a positive electrode for a lithium secondary battery.
- a porous polyethylene film, a porous polypropylene film, or the like is used as the separator.
- various solvents can be used as the solvent for the battery electrolyte, and among these, carbonates are preferred.
- the carbonate ester can be either cyclic or chain. Examples of the cyclic carbonate include propylene carbonate and ethylene carbonate (EC). Examples of the chain carbonate include dimethyl carbonate, diethyl carbonate (DEC), ethyl methyl carbonate (EMC), methyl propyl carbonate, methyl isopropyl carbonate, and the like.
- the above carbonate esters can be used alone or in admixture of two or more. Moreover, you may mix and use with another solvent. Further, depending on the material of the negative electrode active material, when a chain carbonate ester and a cyclic carbonate ester are used in combination, discharge characteristics, charge / discharge cycle durability, and charge / discharge efficiency may be improved.
- a vinylidene fluoride-hexafluoropropylene copolymer for example, trade name Kyner manufactured by Atchem Co.
- vinylidene fluoride is used.
- -It may be a gel polymer electrolyte containing a perfluoropropyl vinyl ether copolymer.
- Solutes added to the electrolyte or polymer electrolyte include ClO 4 ⁇ , CF 3 SO 3 ⁇ , BF 4 ⁇ , PF 6 ⁇ , AsF 6 ⁇ , SbF 6 ⁇ , CF 3 CO 2 ⁇ , (CF 3 Any one or more of lithium salts having SO 2 ) 2 N — or the like as an anion is preferably used. It is preferable to add at a concentration of 0.2 to 2.0 mol / l (liter) with respect to the electrolytic solution or polymer electrolyte comprising the lithium salt. If it deviates from this range, the ionic conductivity is lowered and the electrical conductivity of the electrolyte is lowered. Of these, 0.5 to 1.5 mol / l is particularly preferable.
- a material capable of inserting and extracting lithium ions is used as the negative electrode active material.
- the material for forming the negative electrode active material is not particularly limited.
- lithium metal, lithium alloy, carbon material, carbon compound, silicon carbide compound, silicon oxide compound, titanium sulfide, boron carbide compound, or periodic table 14 or group 15 examples include oxides mainly composed of metals.
- the carbon material those obtained by pyrolyzing an organic substance under various pyrolysis conditions, artificial graphite, natural graphite, soil graphite, expanded graphite, flake graphite, and the like can be used.
- the oxide a compound mainly composed of tin oxide can be used.
- Stainless steel or the like is used as the negative electrode current collector.
- Such a negative electrode is preferably produced by kneading the active material with an organic solvent to form a slurry, and applying the slurry to a metal foil current collector, drying, and pressing.
- the shape of the lithium battery using the lithium-containing composite oxide of the present invention as the positive electrode active material is not particularly limited.
- a sheet shape, a film shape, a folded shape, a wound-type bottomed cylindrical shape, a button shape, or the like is selected depending on the application.
- Example 1 An aqueous solution prepared by dissolving 1.91 g of magnesium carbonate, 20.68 g of aluminum maleate having an Al content of 2.65% by mass, and 7.76 g of citric acid monohydrate in 23.12 g of water had a zirconium content of 14.5 g.
- An aqueous solution obtained by mixing 1.28 g of a mass% zirconium ammonium carbonate aqueous solution and 195.33 g of cobalt oxyhydroxide having a cobalt content of 60.0 mass% and an average particle diameter of 13 ⁇ m were added and mixed.
- the obtained mixture was dried in a constant temperature bath at 80 ° C., 79.17 g of lithium carbonate having a lithium content of 18.7% by mass was mixed in a mortar, calcined at 990 ° C. for 14 hours in an oxygen-containing atmosphere, and then crushed.
- a lithium-containing composite oxide powder having a composition of Li 1.02 (Co 0.979 Mg 0.01 Al 0.01 Zr 0.001 ) 0.98 O 2 was obtained.
- the mixture was heated with stirring and dried at 120 ° C. for 4 hours to obtain gadolinium-zirconium impregnated particles in which all the gadolinium and zirconium in the added coating solution were impregnated in the lithium-containing composite oxide.
- the obtained gadolinium-zirconium impregnated particles were heat-treated at 400 ° C. for 12 hours in an oxygen-containing atmosphere, and then crushed to obtain an average particle diameter D50 of 14.2 ⁇ m, D10 of 8.4 ⁇ m, and D90 of 22.1 ⁇ m.
- a surface-modified lithium-containing composite oxide powder having a specific surface area of 0.29 m 2 / g determined by the BET method was obtained.
- the press density of this powder was 2.99 g / cm 3 .
- the alkali amount of the obtained surface-modified lithium-containing composite oxide was 0.013% by mass.
- the above surface-modified lithium-containing composite oxide powder, acetylene black, and polyvinylidene fluoride powder are mixed at a mass ratio of 90/5/5, and N-methylpyrrolidone is added to prepare a slurry.
- One side coating was performed on a 20 ⁇ m aluminum foil using a doctor blade.
- the positive electrode sheet for lithium batteries was produced by drying and performing roll press rolling 5 times.
- the electrolyte solution means a LiPF 6 / EC + DEC (1: 1) solution having a concentration of 1 M (meaning a mixed solution of EC and DEC in volume ratio (1: 1) containing LiPF 6 as a solute. Solvents described later are also this). 3), three stainless steel simple sealed cell type lithium batteries were assembled in an argon glove box.
- the battery was charged to 4.5 V with a load current of 180 mA / g of the positive electrode active material at 25 ° C. and then discharged to 2.75 V with a load current of 18 mA / g of the positive electrode active material.
- the discharge capacity per gram of the positive electrode active material was determined.
- 1 g of the positive electrode active material is discharged to 2.75 V at a high load current of 270 mA, and the discharge capacity (hereinafter sometimes referred to as high rate capacity) and discharge average potential (hereinafter referred to as high rate average potential). Asked).
- the high rate capacity was 164 mAh / g
- the high rate average potential was 3.96V.
- One of the three batteries is charged to 4.5 V with a load current of 75 mA / g of the positive electrode active material at 25 ° C. and discharged to 2.75 V with a load current of 75 mA / g of the positive electrode active material.
- the initial discharge capacity (hereinafter sometimes referred to as initial discharge capacity) was determined, and the battery was subsequently subjected to 50 charge / discharge cycle tests.
- the 4.5V initial discharge capacity was 178 mAh / g
- the initial charge / discharge efficiency was 91.2%
- the initial discharge average potential was 4.03 V
- the capacity retention rate after 50 charge / discharge cycles was 83
- the average potential during discharge was 3.94 V (hereinafter may be referred to as initial discharge capacity, initial charge / discharge efficiency, initial average potential, capacity retention rate, and average potential, respectively).
- the other battery was charged at 4.4 V for 10 hours, disassembled in an argon glove box, taken out from the charged positive electrode sheet, washed out, then punched out to a diameter of 3 mm, together with EC.
- the container was sealed in an aluminum capsule and heated at a rate of 5 ° C./min with a scanning differential calorimeter to measure the heat generation start temperature.
- the heat generation start temperature of the heat generation curve of the 4.4V charged product was 147 ° C.
- FIG. 1 shows a weight change curve obtained by measuring the weight change of the above coating solution by TG analysis.
- the weight greatly changes between 100 ° C. and 400 ° C., and the gadolinium source and the zirconium source are decomposed before being heated to 400 ° C.
- Example 2 A surface-modified lithium-containing composite oxide was synthesized in the same manner as in Example 1 except that the heat treatment temperature of the gadolinium-zirconium impregnated particles was changed from 400 ° C to 300 ° C.
- the average particle diameter D50 of this surface-modified lithium-containing composite oxide was 14.0 ⁇ m
- D10 was 8.4 ⁇ m
- D90 was 21.9 ⁇ m
- the specific surface area determined by the BET method was 0.28 m 2 / g.
- the alkali amount of the obtained surface-modified lithium-containing composite oxide powder was 0.014% by mass
- the press density was 3.01 g / cm 3 .
- the initial discharge capacity was 181 mAh / g
- the initial charge / discharge efficiency was 92.4%
- the initial average potential was 4.03 V
- the capacity retention rate was 78.7%
- the average potential was 3.86 V.
- the heat generation start temperature was 144 degreeC.
- Example 3 A surface-modified lithium-containing composite oxide was synthesized in the same manner as in Example 1 except that the heat treatment temperature of the gadolinium-zirconium impregnated particles was changed from 400 ° C. to 500 ° C.
- the average particle diameter D50 of this surface-modified lithium-containing composite oxide was 13.8 ⁇ m
- D10 was 8.2 ⁇ m
- D90 was 21.7 ⁇ m
- the specific surface area determined by the BET method was 0.21 m 2 / g.
- the alkali amount of the obtained powder of the surface modified lithium-containing composite oxide was 0.012% by mass
- the press density was 3.02 g / cm 3 .
- the initial discharge capacity was 179 mAh / g
- the initial charge / discharge efficiency was 91.2%
- the initial average potential was 4.03 V
- the capacity retention rate was 76.0%
- the average potential was 3.90 V.
- the heat generation starting temperature was 145 ° C.
- Example 4 (Example) 1.25 g of gadolinium acetate and zirconium ammonium carbonate (NH 4 ) 2 [Zr (CO 3 ) 2 (OH) 2 ] aqueous solution 1 having a zirconium content of 14.1% by mass with respect to 200 g of the lithium-containing composite oxide powder 1
- Example 1 except that .99 g was mixed with 66.76 g of water as a pH 6.0 coating solution, the gadolinium coating amount on the base material was 0.25 mol%, and the zirconium coating amount was 0.25 mol%.
- a surface-modified lithium-containing composite oxide was synthesized.
- the average particle diameter D50 of this surface-modified lithium-containing composite oxide was 14.2 ⁇ m, D10 was 8.2 ⁇ m, D90 was 23.2 ⁇ m, and the specific surface area determined by the BET method was 0.15 m 2 / g.
- the alkali amount of the obtained surface-modified lithium-containing composite oxide powder was 0.011% by mass, and the press density was 2.96 g / cm 3 .
- a peak derived from the lithium-containing composite oxide was confirmed.
- the high rate capacity was 160 mAh / g
- the high rate average potential was 3.97V
- the initial discharge capacity was 173 mAh / g
- the initial charge / discharge efficiency was 91.5%
- the initial average potential was 4.03 V
- the capacity retention rate was 89.8%
- the average potential was 4.00 V.
- the heat generation start temperature was 144 degreeC.
- Example 5 A pH of 6.35 g of gadolinium acetate and 3.32 g of an ammonium zirconium carbonate (NH 4 ) 2 [Zr (CO 3 ) 2 (OH) 2 ] aqueous solution having a zirconium content of 14.1% by mass mixed with 65.43 g of water. 1 coating solution was prepared. The coating liquid was added to and mixed with 200 g of the lithium-containing composite oxide powder, and the coating amount of gadolinium was 0.15 mol% and the coating amount of zirconium was 0.25 mol%. Similarly, a surface-modified lithium-containing composite oxide was synthesized.
- NH 4 ammonium zirconium carbonate
- Zr (CO 3 ) 2 (OH) 2 aqueous solution having a zirconium content of 14.1% by mass mixed with 65.43 g of water. 1 coating solution was prepared. The coating liquid was added to and mixed with 200 g of the lithium-containing composite oxide powder, and the coating amount of gadolinium was 0.15
- the average particle diameter D50 of this surface-modified lithium-containing composite oxide was 13.9 ⁇ m, D10 was 8.3 ⁇ m, D90 was 22.0 ⁇ m, and the specific surface area determined by the BET method was 0.43 m 2 / g.
- the alkali amount of the obtained surface-modified lithium-containing composite oxide powder was 0.010% by mass, and the press density was 2.93 g / cm 3 .
- a peak derived from the lithium-containing composite oxide was confirmed.
- the high rate capacity was 162 mAh / g, and the high rate average potential was 3.97V.
- the initial discharge capacity was 175 mAh / g, the initial charge / discharge efficiency was 90.6%, the initial average potential was 4.03 V, the capacity retention rate was 86.9%, and the average potential was 3.96 V.
- the heat generation start temperature was 144 degreeC.
- Example 6 A pH of 6.99 g of gadolinium acetate and 1.99 g of an ammonium zirconium carbonate (NH 4 ) 2 [Zr (CO 3 ) 2 (OH) 2 ] aqueous solution having a zirconium content of 14.1% by mass mixed with 65.93 g of water.
- a coating solution of 0 was prepared. The coating solution was added to and mixed with 200 g of the lithium-containing composite oxide powder, and the coating amount of gadolinium was 0.25 mol% and the coating amount of zirconium was 0.15 mol%. Similarly, a surface-modified lithium-containing composite oxide was synthesized.
- the average particle diameter D50 of this surface-modified lithium-containing composite oxide was 13.4 ⁇ m, D10 was 7.9 ⁇ m, D90 was 21.4 ⁇ m, and the specific surface area determined by the BET method was 0.28 m 2 / g.
- the alkali amount of the obtained surface-modified lithium-containing composite oxide powder was 0.010% by mass, and the press density was 2.93 g / cm 3 .
- a peak derived from the lithium-containing composite oxide was confirmed.
- the high rate capacity was 158 mAh / g, and the high rate average potential was 3.96V.
- the initial discharge capacity was 175 mAh / g, the initial charge / discharge efficiency was 90.8%, the initial average potential was 4.02 V, the capacity retention rate was 92.9%, and the average potential was 4.00 V.
- the heat generation starting temperature was 145 ° C.
- Example 7 Comparative Example
- Evaluation of the lithium-containing composite oxide powder having a composition of Li 1.02 (Co 0.979 Mg 0.01 Al 0.01 Zr 0.001 ) 0.98 O 2 which is the base material synthesized in Example 1 did.
- the average particle diameter D50 was 13.2 ⁇ m
- D10 was 7.5 ⁇ m
- D90 was 21.6 ⁇ m
- the specific surface area determined by the BET method was 0.24 m 2 / g
- the alkali amount was 0.018% by mass.
- the integrated width of diffraction peak of (110) plane at 2 ⁇ 66.5 ⁇ 1 ° was 0.101 °.
- the press density of this powder was 3.09 g / cm 3 .
- an electrode and a battery were prepared in the same manner as in Example 1 and evaluated.
- the high rate capacity was 156 mAh / g
- the high rate average potential was 3.92 V.
- the initial discharge capacity was 176 mAh / g
- the initial charge / discharge efficiency was 90.7%
- the initial average potential was 4.01 V
- the capacity retention rate was 28.8%
- the average potential was 3.36 V.
- the heat generation starting temperature was 143 ° C.
- Example 8 (Comparative example) A surface-modified lithium-containing composite oxide was synthesized in the same manner as in Example 1 except that the heat treatment temperature of the gadolinium-zirconium impregnated particles was changed from 400 ° C. to 200 ° C.
- the average particle diameter D50 of this surface-modified lithium-containing composite oxide was 14.1 ⁇ m
- D10 was 8.4 ⁇ m
- D90 was 22.0 ⁇ m
- the specific surface area determined by the BET method was 0.36 m 2 / g.
- the alkali amount of the obtained surface-modified lithium-containing composite oxide powder was 0.017% by mass
- the press density was 2.98 g / cm 3 .
- the initial discharge capacity was 176 mAh / g
- the initial charge / discharge efficiency was 91.2%
- the initial average potential was 4.02 V
- the capacity retention rate was 39.2%
- the average potential was 3.48 V.
- the heat generation starting temperature was 140 ° C.
- Example 9 (Comparative Example) A surface-modified lithium-containing composite oxide was synthesized in the same manner as in Example 1 except that the heat treatment temperature of the gadolinium-zirconium impregnated particles was changed from 400 ° C to 600 ° C.
- the average particle diameter D50 of this surface-modified lithium-containing composite oxide was 13.9 ⁇ m
- D10 was 8.4 ⁇ m
- D90 was 21.7 ⁇ m
- the specific surface area determined by the BET method was 0.19 m 2 / g.
- the alkali amount of the obtained surface-modified lithium-containing composite oxide powder was 0.011% by mass
- the press density was 3.04 g / cm 3 .
- the initial discharge capacity was 178 mAh / g
- the initial charge / discharge efficiency was 91.7%
- the initial average potential was 4.02 V
- the capacity retention rate was 57.8%
- the average potential was 3.73 V.
- the heat generation starting temperature was 145 ° C.
- Example 10 (Comparative Example) To 200 g of the lithium-containing composite oxide powder synthesized in Example 1, a coating solution of pH 5.2 in which 0.46 g of gadolinium nitrate was dissolved in 41.13 g of water was added, and gadolinium was mixed at 0.05 mol%. Drying at 120 ° C. for 4 hours with stirring gave gadolinium-impregnated particles. Further, the obtained gadolinium-impregnated particles were heat-treated at 925 ° C. for 12 hours in an oxygen-containing atmosphere and then pulverized to obtain an average particle diameter D50 of 15.3 ⁇ m, D10 of 9.3 ⁇ m, and D90 of 23.3 ⁇ m.
- a surface-modified lithium-containing composite oxide powder having a specific surface area of 0.17 m 2 / g determined by the BET method was obtained.
- the alkali amount of the obtained surface-modified lithium-containing composite oxide was 0.014% by mass.
- the press density of this powder was 3.11 g / cm 3 .
- a peak derived from the lithium-containing composite oxide was confirmed.
- an electrode and a battery were produced in the same manner as in Example 1 and evaluated.
- the high rate capacity was 154 mAh / g, and the high rate average potential was 3.95V.
- the initial discharge capacity was 176 mAh / g, the initial charge / discharge efficiency was 90.5%, the initial average potential was 4.02 V, the capacity retention rate was 58.4%, and the average potential was 3.67 V.
- the heat generation start temperature was 142 ° C.
- Example 11 (Comparative Example) To 200 g of the lithium-containing composite oxide powder synthesized in Example 1, a coating solution having a pH of 5.4 in which 0.93 g of gadolinium nitrate was dissolved in 205.64 g of water was added, and gadolinium was mixed at 0.10 mol%. Drying at 120 ° C. for 4 hours with stirring gave gadolinium-impregnated particles. Further, the obtained gadolinium-impregnated particles were heat-treated at 925 ° C. for 12 hours in an oxygen-containing atmosphere and then crushed to obtain an average particle diameter D50 of 15.1 ⁇ m, D10 of 9.3 ⁇ m, and D90 of 23.2 ⁇ m.
- a surface-modified lithium-containing composite oxide powder having a specific surface area of 0.16 m 2 / g determined by the BET method was obtained.
- the alkali amount of the obtained surface-modified lithium-containing composite oxide was 0.013% by mass.
- the press density of this powder was 3.09 g / cm 3 .
- a peak derived from the lithium-containing composite oxide was confirmed.
- an electrode and a battery were produced in the same manner as in Example 1 and evaluated.
- the high rate capacity was 159 mAh / g, and the high rate average potential was 3.96V.
- the initial discharge capacity was 176 mAh / g, the initial charge / discharge efficiency was 90.4%, the initial average potential was 4.02 V, the capacity retention rate was 71.2%, and the average potential was 3.84 V.
- the heat generation start temperature was 143 ° C.
- Example 12 In an aqueous solution in which 1.93 g of magnesium carbonate, 20.87 g of aluminum maleate having an Al content of 2.65% by mass, and 7.74 g of citric acid monohydrate were dissolved in 28.28 g of water, the titanium content was 8.3.
- An aqueous solution obtained by mixing 1.18 g of a mass% titanium lactate aqueous solution and 196.80 g of cobalt oxyhydroxide having an average particle size of 13 ⁇ m and a cobalt content of 60.0 mass% are added and mixed to obtain. The obtained mixture was dried in a constant temperature bath at 80 ° C.
- This dried mixture and 79.00 g of lithium carbonate having a lithium content of 18.7% by mass were mixed in a mortar, fired at 1010 ° C. for 14 hours in an oxygen-containing atmosphere, and then crushed to obtain Li 1.02 (Co 0 .979 Mg 0.01 Al 0.01 Ti 0.001 ) 0.98 O 2 was obtained as a lithium-containing composite oxide powder.
- a surface-modified lithium-containing composite oxide was synthesized in the same manner as in Example 1 except that the lithium-containing composite oxide obtained above was used as a base material.
- the average particle diameter D50 of this surface-modified lithium-containing composite oxide was 19.6 ⁇ m, D10 was 11.1 ⁇ m, D90 was 33.3 ⁇ m, and the specific surface area determined by the BET method was 0.21 m 2 / g. Moreover, the alkali amount of the obtained surface-modified lithium-containing composite oxide powder was 0.016% by mass, and the press density was 3.08 g / cm 3 .
- the X-ray diffraction spectrum of this surface-modified lithium-containing composite oxide powder was measured in the same manner as in Example 1, a peak derived from the lithium-containing composite oxide was confirmed.
- the high rate capacity was 152 mAh / g
- the high rate average potential was 3.98 V
- the initial discharge capacity was 170 mAh / g
- the initial charge / discharge efficiency was 89.0%
- the initial average potential was 4.02 V
- the capacity retention rate was 85.0%
- the average potential was 3.93 V.
- the heat generation start temperature was 142 degreeC.
- Example 13 In an aqueous solution in which 1.93 g of magnesium carbonate, 20.87 g of aluminum maleate having an Al content of 2.65% by mass, and 7.74 g of citric acid monohydrate were dissolved in 28.28 g of water, the titanium content was 8.3.
- An aqueous solution obtained by mixing 1.18 g of a mass% titanium lactate aqueous solution and 196.80 g of cobalt oxyhydroxide having an average particle size of 13 ⁇ m and a cobalt content of 60.0 mass% are added and mixed to obtain. The obtained mixture was dried in a constant temperature bath at 80 ° C.
- This dried mixture 79.00 g of lithium carbonate having a lithium content of 18.7% by mass, and 0.05 g of lithium fluoride were mixed in a mortar, fired at 1010 ° C. for 14 hours in an oxygen-containing atmosphere, and then crushed.
- a lithium-containing composite oxide powder having a composition of Li 1.02 (Co 0.979 Mg 0.01 Al 0.01 Ti 0.001 ) 0.98 O 0.9995 F 0.001 was obtained.
- a surface-modified lithium-containing composite oxide was synthesized in the same manner as in Example 1 except that the lithium-containing composite oxide obtained above was used as a base material.
- the average particle diameter D50 of this surface-modified lithium-containing composite oxide was 19.3 ⁇ m, D10 was 10.5 ⁇ m, D90 was 37.6 ⁇ m, and the specific surface area determined by the BET method was 0.21 m 2 / g. Moreover, the alkali amount of the obtained surface-modified lithium-containing composite oxide powder was 0.014% by mass, and the press density was 3.10 g / cm 3 .
- the X-ray diffraction spectrum of this surface-modified lithium-containing composite oxide powder was measured in the same manner as in Example 1, a peak derived from the lithium-containing composite oxide was confirmed.
- the high rate capacity was 157 mAh / g
- the high rate average potential was 3.97V
- the initial discharge capacity was 172 mAh / g
- the initial charge / discharge efficiency was 89.5%
- the initial average potential was 4.03 V
- the capacity retention rate was 81.0%
- the average potential was 3.97 V.
- the heat generation start temperature was 142 degreeC.
- a surface-modified lithium-containing composite oxide having high safety and excellent rate characteristics and charge / discharge cycle durability, a positive electrode for lithium ion secondary batteries and the lithium ion including the surface-modified lithium-containing composite oxide Secondary batteries and methods for manufacturing them are provided.
- the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2011-101705 filed on April 28, 2011 are cited here as disclosure of the specification of the present invention. Incorporated.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Secondary Cells (AREA)
Abstract
Description
本発明は、安全性が高く、レート特性及び充放電サイクル耐久性に優れたリチウムイオン二次電池用正極活物質に用いる表面修飾リチウム含有複合酸化物、リチウムイオン二次電池用正極、リチウムイオン二次電池、及びそれらの製造方法に関する。 The present invention provides a surface-modified lithium-containing composite oxide, a positive electrode for a lithium ion secondary battery, a lithium ion secondary battery used for a positive electrode active material for a lithium ion secondary battery that has high safety and excellent rate characteristics and charge / discharge cycle durability. The present invention relates to a secondary battery and a manufacturing method thereof.
近年、機器のポータブル化、コードレス化が進むにつれ、小型、軽量でかつ高エネルギー密度を有するリチウム二次電池などの非水電解液二次電池に対する要求がますます高まっている。かかる非水電解液二次電池用の正極活物質には、LiCoO2、LiNi1/3Co1/3Mn1/3O2、LiNiO2、LiNi0.8Co0.2O2、LiMn2O4、LiMnO2などのリチウムと遷移金属等との複合酸化物(本発明において、リチウム含有複合酸化物ということがある)が知られている。 In recent years, as devices become more portable and cordless, demands for non-aqueous electrolyte secondary batteries such as lithium secondary batteries that are small, lightweight, and have high energy density are increasing. Examples of the positive electrode active material for the non-aqueous electrolyte secondary battery include LiCoO 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNiO 2 , LiNi 0.8 Co 0.2 O 2 , LiMn 2. A composite oxide of lithium and a transition metal or the like such as O 4 or LiMnO 2 (in the present invention, sometimes referred to as a lithium-containing composite oxide) is known.
なかでも、LiCoO2を正極活物質として用い、リチウム合金、並びにグラファイト及びカーボンファイバーなどのカーボンを負極として用いたリチウム二次電池は、4V級の高い電圧が得られるため、高エネルギー密度を有する電池として広く使用されている。 Among them, a lithium secondary battery using LiCoO 2 as a positive electrode active material and a lithium alloy and carbon such as graphite and carbon fiber as a negative electrode has a high energy density because a high voltage of 4V is obtained. As widely used.
しかしながら、LiCoO2を正極活物質として用いた非水系二次電池の場合、放電容量、加熱時の熱に対する安定性(本発明において、単に安全性ということがある)及び正極電極層の単位体積あたりにおける容量密度(本発明において、単に体積容量密度ということがある)などの更なる向上が望まれるとともに、充放電サイクルを繰り返し行うことにより、正極活物質界面と電解液との反応による、電池放電容量の減少や膨化などの充放電サイクル耐久性の問題などがあった。 However, in the case of a non-aqueous secondary battery using LiCoO 2 as the positive electrode active material, the discharge capacity, the stability to heat during heating (in the present invention, sometimes simply referred to as safety), and the unit volume of the positive electrode layer Further improvement in the capacity density (sometimes simply referred to as volume capacity density in the present invention) is desired, and the battery discharge is caused by the reaction between the positive electrode active material interface and the electrolyte by repeating the charge / discharge cycle. There were problems with charge / discharge cycle durability such as capacity reduction and swelling.
これらの問題を解決するために、従来、種々の表面処理の検討がされてきた。例えば、予め合成したLiCoO2に硝酸ジルコニル水溶液を用いて、ジルコニウム(Zr)をコーティングした後、次いで比較的高温である600℃において焼成することにより、ジルコニウムをコーティングしたリチウムコバルト複合酸化物が提案されている(特許文献1参照)。 In order to solve these problems, various surface treatments have been conventionally studied. For example, a zirconium cobalt-coated lithium cobalt composite oxide has been proposed by coating zirconium (Zr) on a pre-synthesized LiCoO 2 using an aqueous zirconyl nitrate solution and then firing at a relatively high temperature of 600 ° C. (See Patent Document 1).
また、リチウム含有複合酸化物又は原料成分とLiLnO2(Lnはイットリウム、スカンジウム及び3価の希土類金属からなる群より選択される少なくとも1種を示す)で表される酸化物又はそれらの原料成分とを、バインダーとともに造粒又は形成する工程と、造粒物を600~800℃で保持した後、さらに800~1100℃で保持する工程を含むことを特徴とするリチウム複合酸化物が提案されている。(特許文献2参照)
さらに、層状構造を有するリチウム含有複合酸化物に少なくとも1種類以上の希土類酸化物を含有することを特徴とする正極活物質が提案されている(特許文献3参照)。
In addition, an oxide represented by a lithium-containing composite oxide or a raw material component and LiLnO 2 (Ln represents at least one selected from the group consisting of yttrium, scandium, and a trivalent rare earth metal) or a raw material component thereof Has been proposed, which includes a step of granulating or forming a mixture with a binder, and a step of holding the granulated product at 600 to 800 ° C. and further holding at 800 to 1100 ° C. . (See Patent Document 2)
Furthermore, a positive electrode active material characterized by containing at least one kind of rare earth oxide in a lithium-containing composite oxide having a layered structure has been proposed (see Patent Document 3).
しかし、上記したような種々の検討にも拘らず、放電容量、安全性、体積容量密度及び充放電サイクル耐久性などの各特性を全て満足するリチウム含有複合酸化物は、未だ得られていない。 However, in spite of various studies as described above, a lithium-containing composite oxide that satisfies all the characteristics such as discharge capacity, safety, volume capacity density, and charge / discharge cycle durability has not been obtained yet.
例えば、特許文献1では、予め合成したリチウムコバルト複合酸化物に硝酸ジルコニル水溶液をコーティング処理した後、次いで比較的高温である600℃において焼成したリチウムコバルト複合酸化物が提案されている。しかし、硝酸ジルコニル水溶液のようにpHが低い水溶液を用いてコーティング処理を行うと、リチウム含有複合酸化物の表面が溶解して、リチウム(Li)、コバルト(Co)などの複合体粉末に含まれる元素の一部が溶出するために、安全性が不十分であると考えられる。また、表面修飾リチウム含有複合酸化物の製造原料に硝酸塩を用いるために、製造時に有毒な窒素酸化物ガスが副生する問題がある。 For example, Patent Document 1 proposes a lithium cobalt composite oxide obtained by coating a lithium cobalt composite oxide synthesized in advance with an aqueous zirconyl nitrate solution and then firing at 600 ° C., which is a relatively high temperature. However, when a coating treatment is performed using an aqueous solution having a low pH such as an aqueous solution of zirconyl nitrate, the surface of the lithium-containing composite oxide is dissolved and contained in a composite powder such as lithium (Li) or cobalt (Co). Since a part of the element elutes, it is considered that safety is insufficient. In addition, since nitrate is used as a raw material for producing the surface-modified lithium-containing composite oxide, there is a problem that toxic nitrogen oxide gas is produced as a by-product during production.
また、特許文献2に記載の表面修飾リチウム含有複合酸化物の製造法は、リチウム含有複合酸化物又は原料成分とLiLnO2(Lnはイットリウム、スカンジウム及び3価の希土類金属からなる群より選択される少なくとも1種を示す)で表される酸化物又はそれらの原料成分とを、バインダーとともに造粒又は形成する工程と、造粒物を600~800℃で保持した後、さらに800~1100℃で焼成する工程からなっている。しかし、LiLnO2はリチウム含有複合酸化物の粒子表面に均一に分散して存在し難いために、特許文献2に記載の表面修飾リチウム含有複合酸化物は、レート特性、安全性、充放電サイクル耐久性などが不十分であると考えられる。 The method for producing the surface-modified lithium-containing composite oxide described in Patent Document 2 is selected from the group consisting of a lithium-containing composite oxide or a raw material component and LiLnO 2 (Ln is yttrium, scandium, and a trivalent rare earth metal). A step of granulating or forming an oxide represented by (2) at least one of them and a raw material component thereof together with a binder, holding the granulated product at 600 to 800 ° C., and further firing at 800 to 1100 ° C. It consists of a process to do. However, since LiLnO 2 is unlikely to be uniformly dispersed on the particle surface of the lithium-containing composite oxide, the surface-modified lithium-containing composite oxide described in Patent Document 2 has rate characteristics, safety, and charge / discharge cycle durability. It is considered that the sex is insufficient.
特許文献3に記載の表面修飾リチウム含有複合酸化物は、層状構造を有するリチウム含有複合酸化物に少なくとも1種類以上の希土類酸化物を含有することを特徴としている。予め合成したリチウム含有複合酸化物に0.01M硝酸ガドリニウム水溶液を、前記複合酸化物に含有されるニッケル(Ni)、マンガン(Mn)、コバルト(Co)に対するガドリニウム(Gd)の原子比で、0.001%から10%の範囲となるように添加して、スラリー状とした後に、遊星ボールミルで粉砕、混合後、アルミナ坩堝に入れて、925℃で10時間の第2焼成を空気中で行っている。混合機で粉砕と混合を繰り返して、高い温度での焼成を行っているため、硝酸ガドリニウムは酸化ガドリニウムへと焼結しており、リチウム含有複合酸化物の粒子表面へ均一に希土類酸化物が存在した状態にはならない。このため、特許文献3に記載の表面修飾リチウム含有複合酸化物はレート特性、安全性、充放電サイクル耐久性などが不十分であると考えられる。また、表面修飾リチウム含有複合酸化物の製造原料に硝酸塩を用いるために、製造時に有毒な窒素酸化物ガスが副生する問題がある。 The surface-modified lithium-containing composite oxide described in Patent Document 3 is characterized in that the lithium-containing composite oxide having a layered structure contains at least one kind of rare earth oxide. A 0.01M gadolinium nitrate aqueous solution was added to a lithium-containing composite oxide synthesized in advance in an atomic ratio of gadolinium (Gd) to nickel (Ni), manganese (Mn), and cobalt (Co) contained in the composite oxide. Add to a range of 0.001% to 10% to form a slurry, pulverize and mix with a planetary ball mill, place in an alumina crucible, and perform second baking at 925 ° C. for 10 hours in air. ing. Since pulverization and mixing are repeated in a mixer and firing is performed at a high temperature, gadolinium nitrate is sintered to gadolinium oxide, and the rare earth oxide is uniformly present on the particle surface of the lithium-containing composite oxide. It will not be in the state. For this reason, it is considered that the surface-modified lithium-containing composite oxide described in Patent Document 3 has insufficient rate characteristics, safety, charge / discharge cycle durability, and the like. In addition, since nitrate is used as a raw material for producing the surface-modified lithium-containing composite oxide, there is a problem that toxic nitrogen oxide gas is produced as a by-product during production.
そこで、本発明は、安全性が高く、レート特性及び充放電サイクル耐久性に優れた表面修飾リチウム含有複合酸化物、リチウムイオン二次電池用正極、リチウムイオン二次電池、及びそれらの製造方法の提供を目的とする。 Accordingly, the present invention provides a surface-modified lithium-containing composite oxide, a positive electrode for a lithium ion secondary battery, a lithium ion secondary battery, and a method for producing them, which have high safety and excellent rate characteristics and charge / discharge cycle durability. For the purpose of provision.
本発明者らは、上記課題を達成するために鋭意研究を続けたところ、下記の構成を要旨とする本発明に到達したものである。
(1)一般式LipNxMyOzFa(但し、Nは、Co、Mn及びNiからなる群から選ばれる少なくとも1種の元素であり、Mは、Co、Mn及びNi以外の遷移金属元素、Al、Sn並びに第2族の元素からなる群から選ばれる少なくとも1種の元素である。0.9≦p≦1.4、0.9≦x≦1、0≦y≦0.1、1.9≦z≦2.1、0≦a≦0.05)で表されるリチウム含有複合酸化物の粒子に、ガドリニウム源及びジルコニウム源を含有するコーティング液を含浸させ、得られる含浸粒子を250~550℃で熱処理することで、上記リチウム含有複合酸化物の粒子の表面層にガドリニウム・ジルコニウム含有複合酸化物を含有させることを特徴とする表面修飾リチウム含有複合酸化物の製造方法。
(2)前記コーティング液のpHが1~10である上記(1)に記載の製造方法。
(3)前記ガドリニウム源が、酢酸ガドリニウム、炭酸ガドリニウム、水酸化ガドリニウム、硫酸ガドリニウム及び酸化ガドリニウムからなる群から選ばれる少なくとも1種である上記(1)又は(2)に記載の製造方法。
(4)前記ジルコニウム源が、炭酸ジルコニウムアンモニウム及びフッ化ジルコニウムアンモニウムからなる群から選ばれる少なくとも1種である上記(1)~(3)のいずれかに記載の製造方法。
(5)前記リチウム含有複合酸化物に対して、ガドリニウム及びジルコニウムの合計で0.01~1mol%のガドリニウム及びジルコニウムを含有するコーティング液を含浸させる上記(1)~(4)のいずれかに記載の製造方法。
(6)前記コーティング液が、リチウム含有複合酸化物に対して、0.03~0.5mol%のガドリニウムを含む上記(1)~(5)のいずれかに記載の製造方法。
(7)前記コーティング液が、リチウム含有複合酸化物に対して、0.03~0.5mol%のジルコニウムを含む上記(1)~(6)のいずれかに記載の製造方法。
(8)前記ガドリニウム・ジルコニウム含有複合酸化物における、ガドリニウムに対するジルコニウムのモル比(Zr/Gd)が、0.1~10である上記(1)~(7)のいずれかに記載の製造方法。
(9)前記ガドリニウム・ジルコニウム含有複合酸化物に含有されるガドリニウムが、リチウム複合酸化物に対して0.03~0.5mol%である上記(1)~(8)のいずれかに記載の製造方法。
(10)前記ガドリニウム・ジルコニウム含有複合酸化物に含有されるジルコニウムが、リチウム複合酸化物に対して0.03~0.5mol%である上記(1)~(9)のいずれかに記載の製造方法。
(11)熱処理温度が300~500℃である上記(1)~(10)のいずれかに記載の製造方法。
(12)上記(1)~(11)のいずれかに記載の製造方法で得られる表面修飾リチウム含有複合酸化物を含有する正極活物質、導電剤、バインダー及び溶媒を混合して、得られるスラリーを金属箔に塗布した後、加熱により溶媒を除去することを特徴とするリチウムイオン二次電池用正極の製造方法。
(13)上記(12)に記載の製造方法で得られる正極に、セパレータ及び負極を積層して、これを電池ケースに収納した後、電解液を注入することを特徴とするリチウムイオン二次電池の製造方法。
(14)一般式LipNxMyOzFa(但し、Nは、Co、Mn及びNiからなる群から選ばれる少なくとも1種の元素であり、Mは、Co、Mn及びNi以外の遷移金属元素、Al、Sn並びに第2族の元素からなる群から選ばれる少なくとも1種の元素である。0.9≦p≦1.4、0.9≦x≦2.0、0≦y≦0.1、1.9≦z≦4.2、0≦a≦0.05)で表されるリチウム含有複合酸化物粒子の表面層に、アモルファス構造を有するガドリニウム・ジルコニウム含有複合化合物を含むことを特徴とする表面修飾リチウム含有複合酸化物。
(15)粒子の表面層に含まれるガドリニウム及びジルコニウムが、リチウム含有複合酸化物に対して、ガドリニウム及びジルコニウムの合計で0.01~1.00mol%の割合である上記(14)に記載の表面修飾リチウム含有複合酸化物。
(16)正極活物質、導電材及びバインダーを含む正極であって、前記正極活物質が、上記(14)又は(15)に記載の表面修飾リチウム含有複合酸化物であるリチウム二次電池用正極。
(17)正極、負極、及び電解液を含むリチウムイオン二次電池であって、前記正極が上記(16)に記載の正極であるリチウムイオン二次電池。
The inventors of the present invention have intensively studied to achieve the above-mentioned problems, and have reached the present invention having the following configuration.
(1) In formula Li p N x M y O z F a ( where, N is the, Co, at least one element selected from the group consisting of Mn and Ni, M is, Co, other than Mn and Ni It is at least one element selected from the group consisting of transition metal elements, Al, Sn, and elements of group 2. 0.9 ≦ p ≦ 1.4, 0.9 ≦ x ≦ 1, 0 ≦ y ≦ 0 .1, 1.9 ≦ z ≦ 2.1, 0 ≦ a ≦ 0.05) obtained by impregnating a coating liquid containing a gadolinium source and a zirconium source into lithium-containing composite oxide particles. A method for producing a surface-modified lithium-containing composite oxide, wherein the impregnated particles are heat-treated at 250 to 550 ° C. so that the surface layer of the lithium-containing composite oxide particles contains gadolinium / zirconium-containing composite oxide. .
(2) The production method according to the above (1), wherein the coating solution has a pH of 1 to 10.
(3) The production method according to (1) or (2), wherein the gadolinium source is at least one selected from the group consisting of gadolinium acetate, gadolinium carbonate, gadolinium hydroxide, gadolinium sulfate, and gadolinium oxide.
(4) The production method according to any one of (1) to (3), wherein the zirconium source is at least one selected from the group consisting of ammonium zirconium carbonate and ammonium zirconium fluoride.
(5) The lithium-containing composite oxide is impregnated with a coating solution containing 0.01 to 1 mol% of gadolinium and zirconium in total of gadolinium and zirconium, according to any one of the above (1) to (4) Manufacturing method.
(6) The production method according to any one of (1) to (5), wherein the coating liquid contains 0.03 to 0.5 mol% of gadolinium with respect to the lithium-containing composite oxide.
(7) The manufacturing method according to any one of (1) to (6), wherein the coating liquid contains 0.03 to 0.5 mol% of zirconium with respect to the lithium-containing composite oxide.
(8) The production method according to any one of (1) to (7), wherein in the gadolinium / zirconium-containing composite oxide, the molar ratio of zirconium to gadolinium (Zr / Gd) is 0.1 to 10.
(9) The production according to any one of (1) to (8), wherein gadolinium contained in the gadolinium / zirconium-containing composite oxide is 0.03 to 0.5 mol% with respect to the lithium composite oxide. Method.
(10) The production according to any one of (1) to (9), wherein zirconium contained in the gadolinium / zirconium-containing composite oxide is 0.03 to 0.5 mol% with respect to the lithium composite oxide. Method.
(11) The production method according to any one of (1) to (10) above, wherein the heat treatment temperature is 300 to 500 ° C.
(12) A slurry obtained by mixing a positive electrode active material, a conductive agent, a binder and a solvent containing a surface-modified lithium-containing composite oxide obtained by the production method according to any one of (1) to (11) above A method for producing a positive electrode for a lithium ion secondary battery, wherein the solvent is removed by heating after coating the metal foil.
(13) A lithium ion secondary battery characterized by laminating a separator and a negative electrode on a positive electrode obtained by the production method described in (12) above, storing the battery in a battery case, and then injecting an electrolytic solution. Manufacturing method.
(14) In formula Li p N x M y O z F a ( where, N is the, Co, at least one element selected from the group consisting of Mn and Ni, M is, Co, other than Mn and Ni It is at least one element selected from the group consisting of transition metal elements, Al, Sn, and elements of group 2. 0.9 ≦ p ≦ 1.4, 0.9 ≦ x ≦ 2.0, 0 ≦ y ≦ 0.1, 1.9 ≦ z ≦ 4.2, 0 ≦ a ≦ 0.05) The surface layer of the lithium-containing composite oxide particles includes a gadolinium / zirconium-containing composite compound having an amorphous structure. A surface-modified lithium-containing composite oxide.
(15) The surface according to (14), wherein gadolinium and zirconium contained in the surface layer of the particles are in a proportion of 0.01 to 1.00 mol% in total of gadolinium and zirconium with respect to the lithium-containing composite oxide. Modified lithium-containing composite oxide.
(16) A positive electrode for a lithium secondary battery comprising a positive electrode active material, a conductive material, and a binder, wherein the positive electrode active material is the surface-modified lithium-containing composite oxide according to (14) or (15). .
(17) A lithium ion secondary battery including a positive electrode, a negative electrode, and an electrolytic solution, wherein the positive electrode is the positive electrode according to (16).
本発明によれば、安全性が高く、レート特性及び充放電サイクル耐久性に優れた表面修飾リチウム含有複合酸化物、リチウムイオン二次電池用正極、リチウムイオン二次電池、及びそれらの製造方法が提供される。
本発明により得られる表面修飾リチウム含有複合酸化物が、何故に上記の如き、リチウム二次電池用正極として優れた特性を発揮するかについては必ずしも明らかではないが、次のように推定される。
本発明の表面修飾リチウム含有複合酸化物は、その粒子の表面層に、ガドリニウム・ジルコニウム含有複合酸化物が均一に含有されている。本発明に係るガドリニウム・ジルコニウム含有複合酸化物は、充放電に伴う構造変化に対して安定であり、多量の電流を流した場合においても、充放電に伴って起こるリチウム含有複合酸化物の結晶構造の崩壊を抑制できる。その上、均一に存在することでリチウム含有複合酸化物表面と電解液と接触面積を小さくできるため、電解液の分解も抑制できる。また、ガドリニウム・ジルコニウム含有複合酸化物は熱に対して安定な化合物である。そのため、本発明の表面修飾リチウム含有複合酸化物は高い安全性を有して、かつレート特性及び充放電サイクル耐久性に優れた表面修飾リチウム含有複合酸化物が得られると考えられる。すなわち、発明の構成及び効果の観点から、特許文献1~3に記載された表面修飾リチウム含有複合酸化物は、本発明で得られる表面修飾リチウム含有複合酸化物とは全く異なるものであると考えられる。
According to the present invention, a surface-modified lithium-containing composite oxide having high safety, excellent rate characteristics and charge / discharge cycle durability, a positive electrode for a lithium ion secondary battery, a lithium ion secondary battery, and a method for producing them. Provided.
The reason why the surface-modified lithium-containing composite oxide obtained by the present invention exhibits excellent characteristics as a positive electrode for a lithium secondary battery as described above is not necessarily clear, but is estimated as follows.
In the surface-modified lithium-containing composite oxide of the present invention, the gadolinium / zirconium-containing composite oxide is uniformly contained in the surface layer of the particles. The gadolinium-zirconium-containing composite oxide according to the present invention is stable against structural changes associated with charge / discharge, and the crystal structure of the lithium-containing composite oxide that accompanies charge / discharge even when a large amount of current flows. Can be prevented from collapsing. In addition, since the contact area between the surface of the lithium-containing composite oxide and the electrolytic solution can be reduced by being uniformly present, decomposition of the electrolytic solution can also be suppressed. The gadolinium / zirconium-containing composite oxide is a heat-stable compound. For this reason, the surface-modified lithium-containing composite oxide of the present invention is considered to have a high safety and to obtain a surface-modified lithium-containing composite oxide having excellent rate characteristics and charge / discharge cycle durability. That is, from the viewpoint of the configuration and effect of the invention, the surface-modified lithium-containing composite oxide described in Patent Documents 1 to 3 is considered to be completely different from the surface-modified lithium-containing composite oxide obtained in the present invention. It is done.
本発明の表面修飾リチウム含有複合酸化物は、母材となるリチウム含有複合酸化物の粒子にガドリニウム源及びジルコニウム源を含有するコーティング液を含浸させた後、熱処理することで得られる。コーティング液を含浸させるリチウム含有複合酸化物は、一般式LipNxMyOzFaで表される。
上記の一般式における、p、x、y、z及びaは、0.9≦p≦1.4、0.9≦x≦1、0≦y≦0.1、1.9≦z≦2.1、0≦a≦0.05である。なかでも、p、x、y、z及びaは、それぞれ、下記が好ましい。0.93≦p≦1.2、0.9≦x≦1.0、0≦y≦0.1、1.9≦z≦2.1、0≦a≦0.05。さらに、p、x、y、z及びaは、それぞれ、下記がより好ましい。0.97≦p≦1.1、0.95≦x≦1.00、0≦y≦0.05、1.95≦z≦2.05、0≦a≦0.01。
The surface-modified lithium-containing composite oxide of the present invention can be obtained by impregnating lithium-containing composite oxide particles serving as a base material with a coating solution containing a gadolinium source and a zirconium source and then performing a heat treatment. Lithium-containing composite oxide is impregnated with the coating solution is represented by the general formula Li p N x M y O z F a.
In the above general formula, p, x, y, z and a are 0.9 ≦ p ≦ 1.4, 0.9 ≦ x ≦ 1, 0 ≦ y ≦ 0.1, 1.9 ≦ z ≦ 2. 0.1, 0 ≦ a ≦ 0.05. Of these, p, x, y, z and a are preferably as follows. 0.93 ≦ p ≦ 1.2, 0.9 ≦ x ≦ 1.0, 0 ≦ y ≦ 0.1, 1.9 ≦ z ≦ 2.1, 0 ≦ a ≦ 0.05. Further, p, x, y, z and a are more preferably as follows. 0.97 ≦ p ≦ 1.1, 0.95 ≦ x ≦ 1.00, 0 ≦ y ≦ 0.05, 1.95 ≦ z ≦ 2.05, 0 ≦ a ≦ 0.01.
母材のリチウム含有複合酸化物がフッ素を含まない場合は、フッ素を含む場合と比べて、放電容量が高くなる傾向があり、容量を重視するときはa=0が好ましい。また、母材のリチウム含有複合酸化物がフッ素を含む場合は、酸素の一部がフッ素で置換された正極活物質となり、安全性がさらに向上する傾向が見られるため、安全性を重視するときは、aは0.001≦a≦0.01の範囲が好ましい。
上記の一般式において、N元素は、Co、Mn及びNiからなる群から選ばれる少なくとも1種の元素である。なかでも、N元素は、Co、Ni、CoとNiの組み合わせ、MnとNiの組み合わせ、又はCoとNiとMnの組み合わせである場合が好ましく、Co又はCoとNiとMnの組み合わせである場合がより好ましく、Coが特に好ましい。
When the lithium-containing composite oxide as a base material does not contain fluorine, the discharge capacity tends to be higher than when it contains fluorine, and when the capacity is important, a = 0 is preferable. When the lithium-containing composite oxide of the base material contains fluorine, it becomes a positive electrode active material in which a part of oxygen is substituted with fluorine, and there is a tendency to further improve safety. Is preferably in the range of 0.001 ≦ a ≦ 0.01.
In the above general formula, the N element is at least one element selected from the group consisting of Co, Mn, and Ni. Among these, the N element is preferably Co, Ni, a combination of Co and Ni, a combination of Mn and Ni, or a combination of Co, Ni and Mn, and may be a combination of Co or Co, Ni and Mn. More preferably, Co is particularly preferable.
本発明において、M元素は、Co、Mn及びNi以外の遷移金属元素、Al、Sn並びに第2族の元素からなる群から選ばれる少なくとも1種の元素である。ここで遷移金属元素は、周期表の4族、5族、6族、7族、8族、9族、10族、11族、及び12族の遷移金属を表す。なかでも、M元素は、Al、Ti、Zr、Hf、Nb、Ta、Mg、Sn及びZnからなる群から選ばれる少なくとも1種であると好ましい。特に、放電容量、安全性、充放電サイクル耐久性などの見地より、M元素は、Al、Ti、Zr、Nb及びMgからなる群から選ばれる少なくとも1種であるとより好ましく、Al、Zr及びMgからなる群から選ばれる少なくとも1種であると特に好ましい。 In the present invention, the M element is at least one element selected from the group consisting of transition metal elements other than Co, Mn and Ni, Al, Sn and Group 2 elements. Here, the transition metal element represents a transition metal of Group 4, Group 5, Group 6, Group 7, Group 8, Group 9, Group 10, Group 11, and Group 12 of the Periodic Table. Among these, the M element is preferably at least one selected from the group consisting of Al, Ti, Zr, Hf, Nb, Ta, Mg, Sn, and Zn. In particular, from the viewpoint of discharge capacity, safety, charge / discharge cycle durability, etc., the M element is more preferably at least one selected from the group consisting of Al, Ti, Zr, Nb and Mg, and Al, Zr and Particularly preferred is at least one selected from the group consisting of Mg.
また、M元素がAlとMgを含む場合、AlとMgが原子比で好ましくは1/4~4/1であり、特に好ましくは1/3~3/1であり、かつyが好ましくは、0.005≦y≦0.05、特に好ましくは0.01≦y≦0.035である場合には、電池性能のバランス、即ち、放電容量、安全性、充放電サイクル耐久性のバランスが良いので好ましい。 When the M element contains Al and Mg, the atomic ratio of Al and Mg is preferably 1/4 to 4/1, particularly preferably 1/3 to 3/1, and y is preferably When 0.005 ≦ y ≦ 0.05, particularly preferably 0.01 ≦ y ≦ 0.035, the balance of battery performance, that is, the balance of discharge capacity, safety, and charge / discharge cycle durability is good. Therefore, it is preferable.
また、M元素がZrとMgを含む場合、ZrとMgが原子比で好ましくは1/40~2/1であり、特に好ましくは1/30~1/5であり、かつyが好ましくは0.005≦y≦0.05であり、特に好ましくは0.01≦y≦0.035である場合には、電池性能のバランス、即ち、放電容量、安全性、充放電サイクル耐久性のバランスが良いので特に好ましい。その一方で、M元素の添加量yが増加すると放電容量が減少する傾向が見られるので、放電容量を特に重視する場合は、y=0が好ましい。 When the M element contains Zr and Mg, the atomic ratio of Zr and Mg is preferably 1/40 to 2/1, particularly preferably 1/30 to 1/5, and y is preferably 0. 0.005 ≦ y ≦ 0.05, and particularly preferably 0.01 ≦ y ≦ 0.035, the balance of battery performance, that is, the balance of discharge capacity, safety, and charge / discharge cycle durability. It is particularly preferable because it is good. On the other hand, since the discharge capacity tends to decrease as the additive amount y of the M element increases, y = 0 is preferable when the discharge capacity is particularly important.
本発明において、リチウム含有複合酸化物中のリチウムのモル量を、N元素とM元素のモル量の合計で割った値であるモル比Li/(N+M)は、0.97~1.10であることが好ましく、0.99~1.05が特に好ましく、この場合、焼成によるリチウム含有複合酸化物の粒子成長が促進され、より高密度な粒子を得ることができる。 In the present invention, the molar ratio Li / (N + M), which is a value obtained by dividing the molar amount of lithium in the lithium-containing composite oxide by the total molar amount of N element and M element, is 0.97 to 1.10. Preferably, 0.99 to 1.05 is particularly preferable. In this case, the particle growth of the lithium-containing composite oxide by firing is promoted, and higher density particles can be obtained.
コーティング液においては、母材であるリチウム含有複合酸化物に対して、ガドリニウム及びジルコニウムの合計で0.01~1.00mol%の範囲のガドリニウム及びジルコニウムが含まれると好ましく、なかでも0.04~0.50mol%がより好ましく、0.07~0.15mol%が特に好ましい。なお、同様に粒子の表面層に含まれるガドリニウム及びジルコニウムは、リチウム含有複合酸化物に対して、ガドリニウム及びジルコニウムの合計で0.01~1.00mol%の割合が好ましく、0.04~0.50mol%がより好ましく、0.07~0.15mol%が特に好ましい。 The coating liquid preferably contains gadolinium and zirconium in a range of 0.01 to 1.00 mol% in total of gadolinium and zirconium with respect to the lithium-containing composite oxide as a base material, and more preferably 0.04 to 0.50 mol% is more preferable, and 0.07 to 0.15 mol% is particularly preferable. Similarly, the total amount of gadolinium and zirconium contained in the surface layer of the particles is preferably 0.01 to 1.00 mol% of the gadolinium and zirconium with respect to the lithium-containing composite oxide. 50 mol% is more preferable, and 0.07 to 0.15 mol% is particularly preferable.
またコーティング液においては、リチウム含有複合酸化物に対して、0.03~0.5mol%のガドリニウムが含まれると好ましく、なかでも0.05~0.3mol%がより好ましく、0.05~0.25mol%が特に好ましい。また、リチウム含有複合酸化物に対して、0.03~0.5mol%のジルコニウムが含まれると好ましく、なかでも0.05~0.3mol%がより好ましく、0.05~0.25mol%が特に好ましい。なお、同様に粒子の表面層に含まれるガドリニウムは、リチウム含有複合酸化物に対して、0.03~0.5mol%が好ましく、0.05~0.3mol%がより好ましく、0.05~0.25mol%が特に好ましい。また、粒子の表面層に含まれるジルコニウムは、0.03~0.5mol%が好ましく、0.05~0.3mol%がより好ましく、0.05~0.25mol%が特に好ましい。 Further, the coating liquid preferably contains 0.03 to 0.5 mol% of gadolinium with respect to the lithium-containing composite oxide, more preferably 0.05 to 0.3 mol%, and more preferably 0.05 to 0. .25 mol% is particularly preferred. Further, it is preferable that 0.03 to 0.5 mol% of zirconium is contained with respect to the lithium-containing composite oxide, more preferably 0.05 to 0.3 mol%, and more preferably 0.05 to 0.25 mol%. Particularly preferred. Similarly, gadolinium contained in the surface layer of the particles is preferably 0.03 to 0.5 mol%, more preferably 0.05 to 0.3 mol%, and more preferably 0.05 to 0.3 mol% with respect to the lithium-containing composite oxide. 0.25 mol% is particularly preferable. Further, zirconium contained in the surface layer of the particles is preferably 0.03 to 0.5 mol%, more preferably 0.05 to 0.3 mol%, and particularly preferably 0.05 to 0.25 mol%.
表面修飾リチウム含有複合酸化物の表面層に含有される、すなわち、その表面層に存在するガドリニウム・ジルコニウム含有複合酸化物の組成は特に限定されないが、ガドリニウムに対するジルコニウムのモル比(Zr/Gd)は、0.1~10が好ましく、なかでも0.3~5がより好ましく、0.5~2が特に好ましい。なかでも、表面修飾リチウム含有複合酸化物の表面層に含有される、ガドリニウム・ジルコニウム含有複合酸化物の組成は、Gd2Zr2O7の構造式で表わされるものが好ましい。また、ガドリニウム・ジルコニウム含有複合酸化物は不定形の構造、すなわちアモルファス構造を有するのが好ましい。本発明の表面修飾リチウム含有複合酸化物は、ガドリニウム源及びジルコニウム源が分解した、不定形な構造、すなわちアモルファス構造を有するガドリニウム・ジルコニウム含有複合酸化物を表面層に有するのが好ましい。 The composition of the gadolinium-zirconium-containing composite oxide contained in the surface layer of the surface-modified lithium-containing composite oxide, that is, the gadolinium-zirconium-containing composite oxide present in the surface layer is not particularly limited, but the molar ratio of zirconium to gadolinium (Zr / Gd) is 0.1 to 10 is preferable, 0.3 to 5 is more preferable, and 0.5 to 2 is particularly preferable. In particular, the composition of the gadolinium / zirconium-containing composite oxide contained in the surface layer of the surface-modified lithium-containing composite oxide is preferably represented by the structural formula of Gd 2 Zr 2 O 7 . The gadolinium / zirconium-containing composite oxide preferably has an amorphous structure, that is, an amorphous structure. The surface-modified lithium-containing composite oxide of the present invention preferably has a gadolinium-zirconium-containing composite oxide having an amorphous structure in which the gadolinium source and the zirconium source are decomposed, that is, an amorphous structure, in the surface layer.
ガドリニウム・ジルコニウム含有複合酸化物は、Cu-Kα線を用いた粉末X線回折法により得られるスペクトルにおいて、2θ=29.5±1.5°及び48.5±1.5°に回折ピークを有することが好ましく、特に主ピークは2θ=29.5±1.5°であることが好ましい。なお、粉末X線回折の測定条件は加速電圧40kV以上かつ電流40mA以上の条件とした。
なお、ガドリニウム・ジルコニウム含有複合酸化物は、数種類のガドリニウム・ジルコニウム含有複合酸化物を含む混合物であってもよい。
The gadolinium-zirconium-containing composite oxide has diffraction peaks at 2θ = 29.5 ± 1.5 ° and 48.5 ± 1.5 ° in the spectrum obtained by powder X-ray diffraction using Cu—Kα rays. In particular, the main peak is preferably 2θ = 29.5 ± 1.5 °. The measurement conditions for powder X-ray diffraction were acceleration voltage of 40 kV or more and current of 40 mA or more.
The gadolinium / zirconium-containing composite oxide may be a mixture containing several types of gadolinium / zirconium-containing composite oxide.
本発明の表面修飾リチウム含有複合酸化物において、ガドリニウム・ジルコニウム含有複合酸化物がリチウム含有複合酸化物に対して、ガドリニウム及びジルコニウムの合計で、例えば0.1mol%と低い割合で含有する場合、ガドリニウム・ジルコニウム含有複合酸化物が存在しても、ガドリニウム・ジルコニウム含有複合酸化物に由来するX線回折スペクトルの回折ピークが検出できない場合がある。この場合は、コーティング液を乾燥させて熱処理を行った化合物を合成し、そのX線回折スペクトルを測定することにより、X線回折スペクトルの回折ピークを検出することができる。 In the surface-modified lithium-containing composite oxide of the present invention, when the gadolinium / zirconium-containing composite oxide contains a total of gadolinium and zirconium with respect to the lithium-containing composite oxide, for example, in a proportion as low as 0.1 mol%, gadolinium Even if a zirconium-containing composite oxide is present, the diffraction peak of the X-ray diffraction spectrum derived from the gadolinium / zirconium-containing composite oxide may not be detected. In this case, it is possible to detect a diffraction peak of the X-ray diffraction spectrum by synthesizing a compound subjected to heat treatment by drying the coating liquid and measuring the X-ray diffraction spectrum.
本発明の表面修飾リチウム含有複合酸化物においては、リチウム含有複合酸化物の粒子の表面層に、酸化ガドリニウム、又は酸化ジルコニウムがさらに存在してもよい。
コーティング液の溶媒としては、環境への影響及びコストの観点から、水性溶液が好ましく、水がより好ましい。なお、水性溶液とは、溶媒として、水性媒体を用いた溶液、すなわち水、アルコール、エチレングリコール、グリセリンなどを含み、水を主体とする溶媒を意味する。なかでも水が80~100質量%である溶液が好ましい。
In the surface-modified lithium-containing composite oxide of the present invention, gadolinium oxide or zirconium oxide may further exist in the surface layer of the lithium-containing composite oxide particles.
As a solvent for the coating solution, an aqueous solution is preferable and water is more preferable from the viewpoints of environmental impact and cost. The aqueous solution means a solution using an aqueous medium as a solvent, that is, a solvent mainly containing water, including water, alcohol, ethylene glycol, glycerin and the like. Of these, a solution containing 80 to 100% by mass of water is preferable.
本発明において、ガドリニウム・ジルコニウム含有複合酸化物をその表面層に含有させたリチウム含有複合酸化物は、従来の固相反応や、リチウム含有複合酸化物の原料に溶液で原料を添加する場合に比べて、ガドリニウム・ジルコニウム含有複合酸化物がリチウム含有複合酸化物の粒子の表面を含めた表面層により均一に付着、存在せしめることができるために電池特性が飛躍的に向上するものと考えられる。 In the present invention, the lithium-containing composite oxide containing gadolinium / zirconium-containing composite oxide in its surface layer is compared with the conventional solid-phase reaction or when the raw material is added in solution to the lithium-containing composite oxide raw material. Thus, it is considered that the battery characteristics are drastically improved because the gadolinium / zirconium-containing composite oxide can be uniformly attached and exist on the surface layer including the surface of the lithium-containing composite oxide particles.
前記コーティング液の調製に用いるガドリニウム源としては、特に限定されないが、酸化ガドリニウム、水酸化ガドリニウム、炭酸ガドリニウム、硫酸ガドリニウム及び酢酸ガドリニウムからなる群から選ばれる1種が好ましく、水酸化ガドリニウム又は酢酸ガドリニウムがより好ましく、酢酸ガドリニウムが特に好ましい。 The gadolinium source used for the preparation of the coating liquid is not particularly limited, but is preferably one selected from the group consisting of gadolinium oxide, gadolinium hydroxide, gadolinium carbonate, gadolinium sulfate, and gadolinium acetate, and gadolinium hydroxide or gadolinium acetate is preferable. More preferably, gadolinium acetate is particularly preferable.
前記コーティング液の調製に用いるジルコニウム源としては、特に限定されないが、炭酸ジルコニウムアンモニウム、ハロゲン化ジルコニウムアンモニウム、塩化ジルコニル、硝酸ジルコニル、炭酸ジルコニル、塩基性炭酸ジルコニウム及び炭酸ジルコニウムカリウムからなる群から選ばれる少なくとも1種が好ましく、炭酸ジルコニウムアンモニウム又はフッ化ジルコニウムアンモニウムがより好ましく、炭酸ジルコニウムアンモニウムが特に好ましい。なお、炭酸ジルコニウムアンモニウムの化学式は(NH4)2[Zr(CO3)2(OH)2]で表される。またフッ化ジルコニウムアンモニウムの化学式は(NH4)2ZrF6で表される。 The zirconium source used for the preparation of the coating liquid is not particularly limited, but at least selected from the group consisting of ammonium zirconium carbonate, ammonium zirconium halide, zirconyl chloride, zirconyl nitrate, zirconyl carbonate, basic zirconium carbonate, and potassium zirconium carbonate. One is preferred, ammonium zirconium carbonate or ammonium zirconium fluoride is more preferred, and ammonium zirconium carbonate is particularly preferred. The chemical formula of ammonium zirconium carbonate is represented by (NH 4 ) 2 [Zr (CO 3 ) 2 (OH) 2 ]. The chemical formula of zirconium ammonium fluoride is represented by (NH 4 ) 2 ZrF 6 .
本発明において、コーティング液にカルボン酸が含まれると好ましい。なお、このカルボン酸は化合物の塩の形態でもよい。このカルボン酸は、カルボキシル基を2つ以上有するか、又はカルボキシル基と水酸基若しくはカルボニル基との合計が2つ以上有するカルボン酸が好ましい。このようなカルボン酸はガドリニウム源及びジルコニウム源の溶解性を向上させ、ガドリニウムとジルコニウムを均一に分散させることができる。特に2~4個のカルボキシル基を有するカルボン酸、又は1~4個の水酸基を有するカルボン酸を用いることで、ガドリニウムとジルコニウムの分散性をさらに向上できる。
酸性度の高いカルボン酸を用いるときは、コーティング液のpHが1未満であると母材のリチウム含有複合酸化物は溶解する傾向が見られるので、アンモニア等の塩基を添加してpHを1~10にすることが好ましく、pHを1~9にすることがより好ましい。
In the present invention, it is preferable that the coating liquid contains a carboxylic acid. The carboxylic acid may be in the form of a compound salt. The carboxylic acid is preferably a carboxylic acid having two or more carboxyl groups, or a total of two or more carboxyl groups and hydroxyl groups or carbonyl groups. Such a carboxylic acid can improve the solubility of the gadolinium source and the zirconium source, and can uniformly disperse gadolinium and zirconium. In particular, by using a carboxylic acid having 2 to 4 carboxyl groups or a carboxylic acid having 1 to 4 hydroxyl groups, the dispersibility of gadolinium and zirconium can be further improved.
When using a highly acidic carboxylic acid, if the pH of the coating solution is less than 1, the base lithium-containing composite oxide tends to dissolve, so a base such as ammonia can be added to adjust the pH to 1 to 10 is preferable, and the pH is more preferably 1 to 9.
また、コーティング液にpH調整剤及び/又はアルカリ水溶液を添加して、コーティング液のpHを調整することができる。pH調整剤としてはアンモニア、重炭酸アンモニウム等を用いることができる。アルカリ水溶液としては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等の水酸化物等の水溶液を用いることができる。 Also, the pH of the coating solution can be adjusted by adding a pH adjusting agent and / or an alkaline aqueous solution to the coating solution. As the pH adjuster, ammonia, ammonium bicarbonate or the like can be used. As the alkaline aqueous solution, an aqueous solution of a hydroxide such as sodium hydroxide, potassium hydroxide, or lithium hydroxide can be used.
本発明において、ガドリニウム源及びジルコニウム源を含有するコーティング液は、溶液、固体の微粒子が分散した懸濁液、又は固体の微粒子が分散したコロイド溶液のいずれでもよい。懸濁液又はコロイド溶液である場合は、安定性と分散性を考慮すると、固体の微粒子の平均粒径は、3μm以下であるのが好ましく、1μm以下であるのがより好ましく、0.1μm以下であるのが特に好ましい。 In the present invention, the coating liquid containing a gadolinium source and a zirconium source may be any of a solution, a suspension in which solid fine particles are dispersed, or a colloidal solution in which solid fine particles are dispersed. In the case of a suspension or colloidal solution, in consideration of stability and dispersibility, the average particle size of the solid fine particles is preferably 3 μm or less, more preferably 1 μm or less, and 0.1 μm or less. Is particularly preferred.
本発明のコーティング液は、ガドリニウム源及びジルコニウム源からなる複合粒子が微粒子として分散しているのが好ましい。また、ガドリニウム源及びジルコニウム源からなる複合粒子が、ガドリニウム源及び/又はジルコニウム源が溶解した溶液に分散した分散液であってもよい。
コーティング液を調製する場合には、必要に応じて加温しながら調製する。好ましくは40℃~80℃、特に好ましくは50℃~70℃に加温すると好ましい。加温によって、ガドリニウム源及びジルコニウム源を均一に分散させることができ、コーティング液を短時間に安定させることができる。
In the coating liquid of the present invention, composite particles composed of a gadolinium source and a zirconium source are preferably dispersed as fine particles. Moreover, the dispersion liquid which the composite particle which consists of a gadolinium source and a zirconium source disperse | distributed to the solution in which the gadolinium source and / or the zirconium source were melt | dissolved may be sufficient.
When preparing a coating solution, it is prepared while heating as necessary. The temperature is preferably 40 ° C to 80 ° C, particularly preferably 50 ° C to 70 ° C. By heating, the gadolinium source and the zirconium source can be uniformly dispersed, and the coating liquid can be stabilized in a short time.
本発明では、後の熱処理の工程において水媒体が少量であることが望まれるため、コーティング液に含有されるガドリニウム源及びジルコニウム源の合計の濃度は、高いほど好ましい。しかし、あまりに濃度を高くすると粘度が高くなり、ガドリニウム源及びジルコニウム源との混合性が低下し、リチウム含有複合酸化物の粒子表面にガドリニウム及びジルコニウムが均一に被覆されにくくなるので、その濃度は0.01~30質量%が好ましく、0.1~15質量%がより好ましい。 In the present invention, since a small amount of the aqueous medium is desired in the subsequent heat treatment step, the total concentration of the gadolinium source and the zirconium source contained in the coating liquid is preferably as high as possible. However, if the concentration is too high, the viscosity increases, the mixing property with the gadolinium source and the zirconium source decreases, and it becomes difficult for gadolinium and zirconium to be uniformly coated on the particle surface of the lithium-containing composite oxide. 0.01 to 30% by mass is preferable, and 0.1 to 15% by mass is more preferable.
リチウム含有複合酸化物に対してコーティング液を含浸させる方法は、特に限定はされないが、コーティング液をリチウム含有複合酸化物の粉末に噴霧して含浸させる手段、又は容器中でコーティング液とリチウム含有複合酸化物とを混合して、攪拌して、含浸させる手段などが使用できる。噴霧する手段としては、具体的には、スプレードライヤー、フラッシュドライヤー、ベルトドライヤー、レーディゲミキサー、サーモプロセッサー又はパドルドライヤーが使用できる。容器中で混合して、攪拌させる手段としては、2軸スクリューニーダー、アキシアルミキサー、パドルミキサー、タービュライザー、レーディゲミキサー又はドラムミキサーが使用できる。また、含浸しながら、減圧処理を行うと、短時間で、同時に、コーティング液を含浸したリチウム含有複合酸化物の乾燥ができるため好ましい。 The method of impregnating the coating liquid into the lithium-containing composite oxide is not particularly limited, but means for spraying the coating liquid onto the lithium-containing composite oxide powder to impregnate, or the coating liquid and the lithium-containing composite in a container A means for mixing with an oxide, stirring, and impregnating can be used. Specifically, a spray dryer, a flash dryer, a belt dryer, a Laedige mixer, a thermoprocessor, or a paddle dryer can be used as the means for spraying. As a means for mixing and stirring in a container, a twin screw kneader, an axial mixer, a paddle mixer, a turbulator, a Ladige mixer, or a drum mixer can be used. Further, it is preferable to perform a reduced pressure treatment while impregnating, because the lithium-containing composite oxide impregnated with the coating solution can be simultaneously dried in a short time.
本発明のリチウム含有複合酸化物粉末にコーティング液を含浸した後に、得られる含浸粒子を乾燥することができる。この場合、含浸粒子を、好ましくは15~200℃、特に好ましくは50~120℃にて、通常0.1~10時間乾燥することにより行われる。含浸粒子中の水媒体は後の熱処理工程で除去されるために、この段階で必ずしも完全に除去する必要はないが、熱処理工程で水分を除去するのに多量のエネルギーが必要になるので、できる限り除去しておくのが好ましい。 After impregnating the lithium-containing composite oxide powder of the present invention with a coating solution, the resulting impregnated particles can be dried. In this case, the impregnated particles are preferably dried at 15 to 200 ° C., particularly preferably at 50 to 120 ° C., usually for 0.1 to 10 hours. Since the aqueous medium in the impregnated particles is removed in a later heat treatment step, it is not always necessary to completely remove it at this stage, but a large amount of energy is required to remove moisture in the heat treatment step, so it can be done. It is preferable to remove as much as possible.
また、本発明のコーティング液を含浸した含浸粒子の熱処理温度は、250~550℃であり、なかでも300~500℃が好ましい。この温度範囲にて熱処理することで、リチウム含有複合酸化物粒子の表面層に、ガドリニウム及びジルコニウムが均一に分布して、レート特性及び充放電サイクル耐久性などの電池特性が優れた表面修飾リチウム含有複合酸化物を得ることができる。また、この温度範囲にて熱処理することで、粒子の表面層のガドリニウム・ジルコニウム含有複合酸化物が不定形な構造、すなわちアモルファス構造を有する化合物となるために好ましい。熱処理温度が、250℃未満であると、コーティング液を調製するために用いた有機酸の分解が不十分となり、例えば、200℃であるとコーティング液原料が乾燥した状態から分解が起こっていないため好ましくない。また、550℃より高い温度では、高結晶性のガドリニウム・ジルコニウム含有複合酸化物が生成し始めており、リチウム含有複合酸化物の粒子表面に均一に被覆できないために好ましくない。例えば、900℃では非常に高い結晶性を有するガドリニウム・ジルコニウム含有複合酸化物が形成され、焼結しているために、リチウム含有複合酸化物の粒子表面に均一に被覆できないために好ましくない。
また、熱処理は、酸素含有雰囲気下で行うのが好ましく、具体的には、酸素濃度10~40体積%の雰囲気下がより好ましい。熱処理の時間は、30分以上が好ましく、1時間以上がより好ましく、3時間以上がさらに好ましい、また120時間以下が好ましく、60時間以下がより好ましく、30時間以下がさらに好ましい。
The heat treatment temperature of the impregnated particles impregnated with the coating liquid of the present invention is 250 to 550 ° C., and 300 to 500 ° C. is particularly preferable. By heat-treating in this temperature range, gadolinium and zirconium are uniformly distributed on the surface layer of lithium-containing composite oxide particles, and surface modified lithium containing excellent battery characteristics such as rate characteristics and charge / discharge cycle durability A composite oxide can be obtained. Further, heat treatment in this temperature range is preferable because the gadolinium / zirconium-containing composite oxide in the surface layer of the particles becomes a compound having an amorphous structure, that is, an amorphous structure. When the heat treatment temperature is lower than 250 ° C., the organic acid used for preparing the coating liquid is not sufficiently decomposed. For example, when the temperature is 200 ° C., the coating liquid raw material is not decomposed from the dried state. It is not preferable. A temperature higher than 550 ° C. is not preferable because a highly crystalline gadolinium / zirconium-containing composite oxide starts to be formed, and the particle surface of the lithium-containing composite oxide cannot be uniformly coated. For example, since a gadolinium-zirconium-containing composite oxide having very high crystallinity is formed and sintered at 900 ° C., it is not preferable because the particle surface of the lithium-containing composite oxide cannot be uniformly coated.
The heat treatment is preferably performed in an oxygen-containing atmosphere, and more specifically in an atmosphere having an oxygen concentration of 10 to 40% by volume. The heat treatment time is preferably 30 minutes or longer, more preferably 1 hour or longer, further preferably 3 hours or longer, more preferably 120 hours or shorter, more preferably 60 hours or shorter, further preferably 30 hours or shorter.
本発明の表面修飾リチウム含有複合酸化物は、その平均粒径D50が好ましくは5~30μm、特に好ましくは8~25μmであり、比表面積が好ましくは0.1~0.7m2/g、特に好ましくは0.15~0.5m2/gであり、Cu-Kαを線源とするX線回折によって測定される2θ=66.5±1°の(110)面回折ピーク積分幅が好ましくは0.08~0.14°、特に好ましくは0.08~0.12°である。 The surface modified lithium-containing composite oxide of the present invention has an average particle diameter D50 of preferably 5 to 30 μm, particularly preferably 8 to 25 μm, and a specific surface area of preferably 0.1 to 0.7 m 2 / g, particularly Preferably, the integrated width of (110) plane diffraction peak of 2θ = 66.5 ± 1 ° measured by X-ray diffraction using Cu—Kα as a radiation source is preferably 0.15 to 0.5 m 2 / g. It is 0.08 to 0.14 °, particularly preferably 0.08 to 0.12 °.
なお、本発明において、平均粒径D50とは、体積基準で粒度分布を求め、全体積を100%とした累積カーブにおいて、その累積カーブが50%となる点の粒径である、体積基準累積50%径(D50)を意味する。粒度分布は、レーザー散乱粒度分布測定装置で測定した頻度分布及び累積体積分布曲線で求められる。粒径の測定は、粒子を水媒体中に超音波処理などで充分に分散させて粒度分布を測定する(例えば、日機装社製マイクロトラックHRAX-100などを用いる)ことにより行なわれる。また、D10は累積カーブが10%となる点の値、D90は累積カーブが90%となる点の値を意味する。 In the present invention, the average particle size D50 is a particle size distribution at which the particle size distribution is obtained on a volume basis and the cumulative curve is 50% in a cumulative curve with the total volume being 100%. 50% diameter (D50) is meant. The particle size distribution is obtained from a frequency distribution and a cumulative volume distribution curve measured with a laser scattering particle size distribution measuring apparatus. The particle size is measured by sufficiently dispersing the particles in an aqueous medium by ultrasonic treatment or the like and measuring the particle size distribution (for example, using Microtrack HRAX-100 manufactured by Nikkiso Co., Ltd.). D10 means a point value at which the cumulative curve becomes 10%, and D90 means a point value at which the cumulative curve becomes 90%.
また本発明で得られる表面修飾リチウム含有複合酸化物において、平均粒径D50とは、一次粒子が相互に凝集、焼結してなる二次粒径についての体積平均粒径を意味するが、粒子が一次粒子のみからなる場合は、一次粒子についての体積平均粒径を意味する。
また、本発明により得られる表面修飾リチウム含有複合酸化物のプレス密度は、2.7~3.4g/cm3が好ましく、2.8~3.3g/cm3がより好ましく、2.9~3.3g/cm3が特に好ましい。本発明において、プレス密度とは表面修飾リチウム含有複合酸化物粉末を0.3トン/cm2の圧力でプレスしたときの粉末の見かけ密度を意味する。また、本発明の表面修飾リチウム含有複合酸化物は、遊離アルカリ量は0.035質量%以下が好ましく、特には0.02質量%以下がより好ましい。
In the surface-modified lithium-containing composite oxide obtained in the present invention, the average particle diameter D50 means a volume average particle diameter of a secondary particle diameter obtained by agglomerating and sintering primary particles. Means consisting of primary particles only means the volume average particle size of the primary particles.
Further, the press density of the surface modified lithium-containing composite oxide obtained by the present invention is preferably 2.7 ~ 3.4g / cm 3, more preferably 2.8 ~ 3.3g / cm 3, 2.9 ~ 3.3 g / cm 3 is particularly preferred. In the present invention, the press density means the apparent density of the powder when the surface-modified lithium-containing composite oxide powder is pressed at a pressure of 0.3 ton / cm 2 . In the surface-modified lithium-containing composite oxide of the present invention, the amount of free alkali is preferably 0.035% by mass or less, more preferably 0.02% by mass or less.
本発明の表面修飾リチウム含有複合酸化物は、その粒子の表面層にガドリニウム及びジルコニウムが存在するため、リチウム含有複合酸化物と電解液との接触面積を減少させ、充放電時にコバルトなどの原子の電解液への溶出を抑制できる。これはリチウム含有複合酸化物から、溶出するアルカリ量を表す遊離アルカリ量を測定することで定量的に評価することができる。この遊離アルカリ量の数値は、本発明の表面修飾リチウム含有複合酸化物の安全性、充放電サイクル耐久性が優れることを示す。本発明において、遊離アルカリ量は、表面修飾リチウム含有複合酸化物の粉末5gを50gの純水中に分散して30分間撹拌した後、ろ過して得られたろ液を0.02mol%/リットルの塩酸水溶液で電位差滴定して、pHが4.0に至るまでに使用した塩酸水溶液から求められる。なお、本発明において、遊離アルカリ量を単にアルカリ量ということがある。 Since the surface-modified lithium-containing composite oxide of the present invention contains gadolinium and zirconium in the particle surface layer, the contact area between the lithium-containing composite oxide and the electrolytic solution is reduced, and atoms such as cobalt are charged during charging and discharging. Elution into the electrolyte can be suppressed. This can be quantitatively evaluated by measuring the amount of free alkali representing the amount of alkali eluted from the lithium-containing composite oxide. This numerical value of the free alkali amount indicates that the surface-modified lithium-containing composite oxide of the present invention is excellent in safety and charge / discharge cycle durability. In the present invention, the amount of free alkali is determined by dispersing 5 g of the surface-modified lithium-containing composite oxide powder in 50 g of pure water and stirring for 30 minutes, and then filtering the filtrate obtained by filtration to 0.02 mol% / liter. It is obtained from a hydrochloric acid aqueous solution used by potentiometric titration with an aqueous hydrochloric acid solution until the pH reaches 4.0. In the present invention, the amount of free alkali is sometimes simply referred to as alkali amount.
表面修飾リチウム含有複合酸化物からリチウム二次電池用の正極を製造する場合には、該表面修飾リチウム含有複合酸化物の粉末に、アセチレンブラック、黒鉛、ケッチェンブラックなどのカーボン系導電材と結合材を混合することにより形成される。上記結合材には、好ましくは、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリアミド、カルボキシメチルセルロース、アクリル樹脂等が用いられる。本発明に係る表面修飾リチウム含有複合酸化物の粉末、導電材及び結合材を溶媒又は分散媒を使用し、スラリー又は混練物とされる。これをアルミニウム箔、ステンレス箔などの正極集電体に塗布などにより担持せしめてリチウム二次電池用の正極が製造される。 When manufacturing a positive electrode for a lithium secondary battery from a surface-modified lithium-containing composite oxide, the surface-modified lithium-containing composite oxide powder is bonded to a carbon-based conductive material such as acetylene black, graphite, or ketjen black. It is formed by mixing materials. For the binder, polyvinylidene fluoride, polytetrafluoroethylene, polyamide, carboxymethyl cellulose, acrylic resin, or the like is preferably used. The surface-modified lithium-containing composite oxide powder, conductive material and binder according to the present invention are made into a slurry or a kneaded product using a solvent or a dispersion medium. This is supported on a positive electrode current collector such as an aluminum foil or a stainless steel foil by coating or the like to produce a positive electrode for a lithium secondary battery.
本発明の表面修飾リチウム含有複合酸化物を正極活物質に用いるリチウム二次電池において、セパレータとしては、多孔質ポリエチレン、多孔質ポリプロピレンのフィルムなどが使用される。また、電池の電解液の溶媒としては、種々の溶媒が使用できるが、なかでも炭酸エステルが好ましい。炭酸エステルは環状、鎖状いずれも使用できる。環状炭酸エステルとしては、プロピレンカーボネート、エチレンカーボネート(EC)などが例示される。鎖状炭酸エステルとしては、ジメチルカーボネート、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、メチルプロピルカーボネート、メチルイソプロピルカーボネートなどが例示される。 In the lithium secondary battery using the surface-modified lithium-containing composite oxide of the present invention as the positive electrode active material, a porous polyethylene film, a porous polypropylene film, or the like is used as the separator. In addition, various solvents can be used as the solvent for the battery electrolyte, and among these, carbonates are preferred. The carbonate ester can be either cyclic or chain. Examples of the cyclic carbonate include propylene carbonate and ethylene carbonate (EC). Examples of the chain carbonate include dimethyl carbonate, diethyl carbonate (DEC), ethyl methyl carbonate (EMC), methyl propyl carbonate, methyl isopropyl carbonate, and the like.
本発明では、上記炭酸エステルを単独で又は2種以上を混合して使用できる。また、他の溶媒と混合して使用してもよい。また、負極活物質の材料によっては、鎖状炭酸エステルと環状炭酸エステルを併用すると、放電特性、充放電サイクル耐久性、充放電効率が改良できる場合がある。 In the present invention, the above carbonate esters can be used alone or in admixture of two or more. Moreover, you may mix and use with another solvent. Further, depending on the material of the negative electrode active material, when a chain carbonate ester and a cyclic carbonate ester are used in combination, discharge characteristics, charge / discharge cycle durability, and charge / discharge efficiency may be improved.
また、本発明に係る表面修飾リチウム含有複合酸化物を正極活物質に用いるリチウム二次電池においては、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(例えばアトケム社製:商品名カイナー)又はフッ化ビニリデン-パーフルオロプロピルビニルエーテル共重合体を含むゲルポリマー電解質としてもよい。上記の電解液又はポリマー電解質に添加される溶質としては、ClO4 -、CF3SO3 -、BF4 -、PF6 -、AsF6 -、SbF6 -、CF3CO2 -、(CF3SO2)2N-などをアニオンとするリチウム塩のいずれか1種以上が好ましく使用される。上記リチウム塩からなる電解液又はポリマー電解質に対して、0.2~2.0mol/l(リットル)の濃度で添加するのが好ましい。この範囲を逸脱すると、イオン伝導度が低下し、電解質の電気伝導度が低下する。なかでも、0.5~1.5mol/lが特に好ましい。 Further, in the lithium secondary battery using the surface-modified lithium-containing composite oxide according to the present invention as a positive electrode active material, a vinylidene fluoride-hexafluoropropylene copolymer (for example, trade name Kyner manufactured by Atchem Co.) or vinylidene fluoride is used. -It may be a gel polymer electrolyte containing a perfluoropropyl vinyl ether copolymer. Solutes added to the electrolyte or polymer electrolyte include ClO 4 − , CF 3 SO 3 − , BF 4 − , PF 6 − , AsF 6 − , SbF 6 − , CF 3 CO 2 − , (CF 3 Any one or more of lithium salts having SO 2 ) 2 N — or the like as an anion is preferably used. It is preferable to add at a concentration of 0.2 to 2.0 mol / l (liter) with respect to the electrolytic solution or polymer electrolyte comprising the lithium salt. If it deviates from this range, the ionic conductivity is lowered and the electrical conductivity of the electrolyte is lowered. Of these, 0.5 to 1.5 mol / l is particularly preferable.
本発明に係る表面修飾リチウム含有複合酸化物を正極活物質に用いるリチウム電池において、負極活物質には、リチウムイオンを吸蔵、放出可能な材料が用いられる。この負極活物質を形成する材料は特に限定されないが、例えばリチウム金属、リチウム合金、炭素材料、炭素化合物、炭化ケイ素化合物、酸化ケイ素化合物、硫化チタン、炭化ホウ素化合物、又は周期表14若しくは15族の金属を主体とした酸化物などが挙げられる。炭素材料としては、種々の熱分解条件で有機物を熱分解したものや人造黒鉛、天然黒鉛、土壌黒鉛、膨張黒鉛、鱗片状黒鉛などを使用できる。また、酸化物としては、酸化スズを主体とする化合物が使用できる。負極集電体としては、ステンレスなどが用いられる。かかる負極は、上記活物質を有機溶媒と混練してスラリーとし、該スラリーを金属箔集電体に塗布、乾燥、プレスして得ることにより好ましくは製造される。 In the lithium battery using the surface-modified lithium-containing composite oxide according to the present invention as the positive electrode active material, a material capable of inserting and extracting lithium ions is used as the negative electrode active material. The material for forming the negative electrode active material is not particularly limited. For example, lithium metal, lithium alloy, carbon material, carbon compound, silicon carbide compound, silicon oxide compound, titanium sulfide, boron carbide compound, or periodic table 14 or group 15 Examples include oxides mainly composed of metals. As the carbon material, those obtained by pyrolyzing an organic substance under various pyrolysis conditions, artificial graphite, natural graphite, soil graphite, expanded graphite, flake graphite, and the like can be used. As the oxide, a compound mainly composed of tin oxide can be used. Stainless steel or the like is used as the negative electrode current collector. Such a negative electrode is preferably produced by kneading the active material with an organic solvent to form a slurry, and applying the slurry to a metal foil current collector, drying, and pressing.
本発明のリチウム含有複合酸化物を正極活物質に用いるリチウム電池の形状には特に制約はない。シート状、フィルム状、折り畳み状、巻回型有底円筒形、ボタン形などが用途に応じて選択される。 The shape of the lithium battery using the lithium-containing composite oxide of the present invention as the positive electrode active material is not particularly limited. A sheet shape, a film shape, a folded shape, a wound-type bottomed cylindrical shape, a button shape, or the like is selected depending on the application.
以下に実施例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されないことはもちろんである。
[例1](実施例)
炭酸マグネシウム1.91g、Al含量が2.65質量%のマレイン酸アルミニウム20.68g、及びクエン酸一水和物7.76gを水23.12gに溶解させた水溶液に、ジルコニウム含量が14.5質量%の炭酸ジルコニウムアンモニウム水溶液1.28gを混合して得た水溶液と、コバルト含量が60.0質量%である、平均粒径13μmのオキシ水酸化コバルト195.33gを加え、混合した。得られた混合物を80℃の恒温槽にて乾燥し、リチウム含量が18.7質量%の炭酸リチウム79.17gを乳鉢で混合し、酸素含有雰囲気下990℃で14時間焼成した後、解砕してLi1.02(Co0.979Mg0.01Al0.01Zr0.001)0.98O2の組成を有するリチウム含有複合酸化物の粉末を得た。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
[Example 1] (Example)
An aqueous solution prepared by dissolving 1.91 g of magnesium carbonate, 20.68 g of aluminum maleate having an Al content of 2.65% by mass, and 7.76 g of citric acid monohydrate in 23.12 g of water had a zirconium content of 14.5 g. An aqueous solution obtained by mixing 1.28 g of a mass% zirconium ammonium carbonate aqueous solution and 195.33 g of cobalt oxyhydroxide having a cobalt content of 60.0 mass% and an average particle diameter of 13 μm were added and mixed. The obtained mixture was dried in a constant temperature bath at 80 ° C., 79.17 g of lithium carbonate having a lithium content of 18.7% by mass was mixed in a mortar, calcined at 990 ° C. for 14 hours in an oxygen-containing atmosphere, and then crushed. Thus , a lithium-containing composite oxide powder having a composition of Li 1.02 (Co 0.979 Mg 0.01 Al 0.01 Zr 0.001 ) 0.98 O 2 was obtained.
酢酸ガドリニウム0.42gを水68.92gに溶解させ、ついでジルコニウム含量が14.1質量%の炭酸ジルコニウムアンモニウム(NH4)2[Zr(CO3)2(OH)2]水溶液0.66gを混合することにより、pH6.0のコーティング液を調製した。この混合により、水溶液の色が無色透明から乳白色に変化した。上記のリチウム含有複合酸化物の粉末200gに対して、コーティング液を加え混合した。リチウム含有複合酸化物に対して、ガドリニウムを0.05mol%、ジルコニウムを0.05mol%とした。混合して撹拌しながら昇温し、120℃で4時間乾燥して、加えたコーティング液中の全てのガドリニウムとジルコニウムがリチウム含有複合酸化物に含浸された、ガドリニウム-ジルコニウム含浸粒子を得た。 0.42 g of gadolinium acetate was dissolved in 68.92 g of water, and then mixed with 0.66 g of an aqueous solution of ammonium zirconium carbonate (NH 4 ) 2 [Zr (CO 3 ) 2 (OH) 2 ] having a zirconium content of 14.1% by mass. As a result, a coating solution having a pH of 6.0 was prepared. By this mixing, the color of the aqueous solution changed from colorless and transparent to milky white. The coating liquid was added to and mixed with 200 g of the lithium-containing composite oxide powder. Gadolinium was 0.05 mol% and zirconium was 0.05 mol% with respect to the lithium-containing composite oxide. The mixture was heated with stirring and dried at 120 ° C. for 4 hours to obtain gadolinium-zirconium impregnated particles in which all the gadolinium and zirconium in the added coating solution were impregnated in the lithium-containing composite oxide.
さらに、得られたガドリニウム-ジルコニウム含浸粒子を酸素含有雰囲気下400℃で12時間、熱処理した後、解砕することで平均粒径D50が14.2μm、D10が8.4μm、D90が22.1μmであり、BET法により求めた比表面積が0.29m2/gである、表面修飾リチウム含有複合酸化物の粉末を得た。この粉末のプレス密度は2.99g/cm3であった。得られた表面修飾リチウム含有複合酸化物のアルカリ量は0.013質量%であった。 Further, the obtained gadolinium-zirconium impregnated particles were heat-treated at 400 ° C. for 12 hours in an oxygen-containing atmosphere, and then crushed to obtain an average particle diameter D50 of 14.2 μm, D10 of 8.4 μm, and D90 of 22.1 μm. A surface-modified lithium-containing composite oxide powder having a specific surface area of 0.29 m 2 / g determined by the BET method was obtained. The press density of this powder was 2.99 g / cm 3 . The alkali amount of the obtained surface-modified lithium-containing composite oxide was 0.013% by mass.
また、理学電機社製RINT 2100型を用いて、Cu-Kα線を使用し、加速電圧40KV、電流40mA、スキャン範囲15~75°、サンプリング幅0.020、スキャンスピード2.000°/min、発散スリット1°、発散縦制限スリット10mm、散乱スリット1°、受光スリット0.15mmにて、得られた表面修飾リチウム含有複合酸化物のX線回折スペクトルを測定した。この測定により得られたスペクトルチャートから、リチウム含有複合酸化物に由来するピークが確認された。 Also, using RINT 2100 type manufactured by Rigaku Corporation, using Cu-Kα line, acceleration voltage 40KV, current 40mA, scan range 15-75 °, sampling width 0.020, scan speed 2.000 ° / min, The X-ray diffraction spectrum of the obtained surface-modified lithium-containing composite oxide was measured with a divergence slit of 1 °, a divergence length limiting slit of 10 mm, a scattering slit of 1 °, and a light receiving slit of 0.15 mm. From the spectrum chart obtained by this measurement, a peak derived from the lithium-containing composite oxide was confirmed.
また、表面修飾リチウム含有複合酸化物の粉末について、CuKα線を使用した粉末X線回折において、2θ=66.5±1°の(110)面の回折ピーク積分幅は0.111°であった。
上記の表面修飾リチウム含有複合酸化物の粉末と、アセチレンブラックと、ポリフッ化ビニリデン粉末とを90/5/5の質量比で混合し、N-メチルピロリドンを添加してスラリーを作製し、厚さ20μmのアルミニウム箔にドクターブレードを用いて片面塗工した。乾燥し、ロールプレス圧延を5回行うことによりリチウム電池用の正極体シートを作製した。
Further, regarding the powder of the surface-modified lithium-containing composite oxide, in the powder X-ray diffraction using CuKα ray, the diffraction peak integral width of (110) plane at 2θ = 66.5 ± 1 ° was 0.111 °. .
The above surface-modified lithium-containing composite oxide powder, acetylene black, and polyvinylidene fluoride powder are mixed at a mass ratio of 90/5/5, and N-methylpyrrolidone is added to prepare a slurry. One side coating was performed on a 20 μm aluminum foil using a doctor blade. The positive electrode sheet for lithium batteries was produced by drying and performing roll press rolling 5 times.
そして、上記正極体シートを打ち抜いたものを正極に用い、厚さ500μmの金属リチウム箔を負極に用い、負極集電体にステンレスを使用し、セパレータには厚さ25μmの多孔質ポリプロピレンを用い、さらに電解液には、濃度1MのLiPF6/EC+DEC(1:1)溶液(LiPF6を溶質とするECとDECとの体積比(1:1)の混合溶液を意味する。後記する溶媒もこれに準じる。)を用いてステンレス製簡易密閉セル型リチウム電池をアルゴングローブボックス内で3個組み立てた。 Then, the one obtained by punching out the positive electrode sheet is used for the positive electrode, a metal lithium foil having a thickness of 500 μm is used for the negative electrode, stainless steel is used for the negative electrode current collector, and a porous polypropylene having a thickness of 25 μm is used for the separator. Furthermore, the electrolyte solution means a LiPF 6 / EC + DEC (1: 1) solution having a concentration of 1 M (meaning a mixed solution of EC and DEC in volume ratio (1: 1) containing LiPF 6 as a solute. Solvents described later are also this). 3), three stainless steel simple sealed cell type lithium batteries were assembled in an argon glove box.
上記3個のうち1個の電池については、25℃にて正極活物質1gにつき180mAの負荷電流で4.5Vまで充電した後、正極活物質1gにつき18mAの負荷電流にて2.75Vまで放電して、正極活物質1g当たりの放電容量を求めた。続いて、正極活物質1gにつき270mAの高負荷電流にて2.75Vまで放電して、そのときの放電容量(以下、ハイレート容量ということがある)、放電平均電位(以下、ハイレート平均電位ということがある)も求めた。その結果、ハイレート容量は164mAh/g、ハイレート平均電位は3.96Vであった。 For one of the above three batteries, the battery was charged to 4.5 V with a load current of 180 mA / g of the positive electrode active material at 25 ° C. and then discharged to 2.75 V with a load current of 18 mA / g of the positive electrode active material. The discharge capacity per gram of the positive electrode active material was determined. Subsequently, 1 g of the positive electrode active material is discharged to 2.75 V at a high load current of 270 mA, and the discharge capacity (hereinafter sometimes referred to as high rate capacity) and discharge average potential (hereinafter referred to as high rate average potential). Asked). As a result, the high rate capacity was 164 mAh / g, and the high rate average potential was 3.96V.
また上記3個のうち1個の電池については、25℃にて正極活物質1gにつき75mAの負荷電流で4.5Vまで充電し、正極活物質1gにつき75mAの負荷電流にて2.75Vまで放電して初期放電容量(以下、初期放電容量ということがある)を求め、この電池について、引き続き充放電サイクル試験を50回行った。その結果、4.5V初期放電容量は178mAh/g、初期の充放電効率は91.2%、初期の放電時平均電位は4.03Vであり、50回充放電サイクル後の容量維持率は83.7%、放電時平均電位は3.94Vであった(以下、それぞれ、初期放電容量、初期充放電効率、初期平均電位、容量維持率、平均電位ということがある)。 One of the three batteries is charged to 4.5 V with a load current of 75 mA / g of the positive electrode active material at 25 ° C. and discharged to 2.75 V with a load current of 75 mA / g of the positive electrode active material. The initial discharge capacity (hereinafter sometimes referred to as initial discharge capacity) was determined, and the battery was subsequently subjected to 50 charge / discharge cycle tests. As a result, the 4.5V initial discharge capacity was 178 mAh / g, the initial charge / discharge efficiency was 91.2%, the initial discharge average potential was 4.03 V, and the capacity retention rate after 50 charge / discharge cycles was 83 The average potential during discharge was 3.94 V (hereinafter may be referred to as initial discharge capacity, initial charge / discharge efficiency, initial average potential, capacity retention rate, and average potential, respectively).
また、他方の電池については、それぞれ4.4Vで10時間充電し、アルゴングローブボックス内で解体し、充電後の正極体シートを取り出し、その正極体シートを洗滌後、直径3mmに打ち抜き、ECとともにアルミニウム製カプセルに密閉し、走査型差動熱量計にて5℃/分の速度で昇温して発熱開始温度を測定した。その結果、4.4V充電品の発熱曲線の発熱開始温度は147℃であった。 The other battery was charged at 4.4 V for 10 hours, disassembled in an argon glove box, taken out from the charged positive electrode sheet, washed out, then punched out to a diameter of 3 mm, together with EC. The container was sealed in an aluminum capsule and heated at a rate of 5 ° C./min with a scanning differential calorimeter to measure the heat generation start temperature. As a result, the heat generation start temperature of the heat generation curve of the 4.4V charged product was 147 ° C.
なお、別途、上記のコーティング溶液をTG分析により重量変化を測定して得られた重量変化曲線を図1に示す。図1より、100℃から400℃の間に大きく重量が変化しており、400℃に加熱するまでにガドリニウム源及びジルコニウム源が分解していることがわかる。 Separately, FIG. 1 shows a weight change curve obtained by measuring the weight change of the above coating solution by TG analysis. As can be seen from FIG. 1, the weight greatly changes between 100 ° C. and 400 ° C., and the gadolinium source and the zirconium source are decomposed before being heated to 400 ° C.
さらに、上記のコーティング液を80℃、200℃、400℃、600℃及び900℃に加熱したときに得られた粉末の粉末X線回折をそれぞれ測定した。得られたスペクトルチャートを図2~図6に示す。図3より、200℃では2θ=29.5°付近と2θ=48.5°付近にブロードなピークが現れており、ガドリニウム・ジルコニウム含有複合酸化物の生成が示唆されるが、TG分析の結果を併せて考察するとガドリニウム源及びジルコニウム源の分解が不十分であるものと推察される。一方、図5より、600℃では、2θ=29.5°付近及び2θ=48.5°付近のピークに加えて、2θ=58.2°付近にもピークを確認できることから、高結晶性のガドリニウム・ジルコニウム含有複合酸化物が生成していることがわかった。したがって、図4より、400℃で焼成して得られた粉末はガドリニウム源及びジルコニウム源が分解し、かつ不定形な構造、すなわちアモルファス構造を有すると考えられる。また、図6より、900℃に加熱したときに得られた粉末の粉末X線回折のスペクトルチャートはGd2Zr2O7の粉末X線回折のスペクトルチャートと一致した。 Furthermore, the powder X-ray diffraction of the powder obtained when said coating liquid was heated at 80 degreeC, 200 degreeC, 400 degreeC, 600 degreeC, and 900 degreeC was measured, respectively. The obtained spectrum charts are shown in FIGS. FIG. 3 shows that broad peaks appear at 2θ = 29.5 ° and 2θ = 48.5 ° at 200 ° C., suggesting the formation of gadolinium-zirconium-containing composite oxides. In addition, it is inferred that the decomposition of the gadolinium source and the zirconium source is insufficient. On the other hand, from FIG. 5, at 600 ° C., in addition to the peaks near 2θ = 29.5 ° and 2θ = 48.5 °, peaks can be confirmed near 2θ = 58.2 °. It was found that a gadolinium / zirconium-containing composite oxide was formed. Therefore, it is considered from FIG. 4 that the powder obtained by firing at 400 ° C. has a gadolinium source and a zirconium source decomposed and has an amorphous structure, that is, an amorphous structure. Further, from FIG. 6, the powder X-ray diffraction spectrum chart of the powder obtained when heated to 900 ° C. coincided with the powder X-ray diffraction spectrum chart of Gd 2 Zr 2 O 7 .
[例2](実施例)
ガドリニウム-ジルコニウム含浸粒子の熱処理温度を400℃から300℃に変更したこと以外は、例1と同様にして、表面修飾リチウム含有複合酸化物を合成した。この表面修飾リチウム含有複合酸化物の平均粒径D50は14.0μm、D10は8.4μm、D90は21.9μmであり、BET法により求めた比表面積は0.28m2/gであった。また、得られた表面修飾リチウム含有複合酸化物の粉末のアルカリ量は0.014質量%であり、プレス密度は3.01g/cm3であった。
この表面修飾リチウム含有複合酸化物の粉末について、例1と同様にX線回折スペクトルを測定すると、リチウム含有複合酸化物に由来するピークが確認された。2θ=66.5±1°の(110)面の回折ピーク積分幅は0.099°であった。
上記の表面修飾リチウム含有複合酸化物に関して、例1と同様に電極及び電池を作製して、評価を行った。その結果、ハイレート容量は162mAh/g、ハイレート平均電位は3.96Vであった。
また、初期放電容量は181mAh/g、初期充放電効率は92.4%、初期平均電位は4.03Vであり、容量維持率は78.7%、平均電位は3.86Vであった。また、発熱開始温度は144℃であった。
[Example 2] (Example)
A surface-modified lithium-containing composite oxide was synthesized in the same manner as in Example 1 except that the heat treatment temperature of the gadolinium-zirconium impregnated particles was changed from 400 ° C to 300 ° C. The average particle diameter D50 of this surface-modified lithium-containing composite oxide was 14.0 μm, D10 was 8.4 μm, D90 was 21.9 μm, and the specific surface area determined by the BET method was 0.28 m 2 / g. Moreover, the alkali amount of the obtained surface-modified lithium-containing composite oxide powder was 0.014% by mass, and the press density was 3.01 g / cm 3 .
When the X-ray diffraction spectrum of this surface-modified lithium-containing composite oxide powder was measured in the same manner as in Example 1, a peak derived from the lithium-containing composite oxide was confirmed. The integrated width of diffraction peak of (110) plane at 2θ = 66.5 ± 1 ° was 0.099 °.
Regarding the surface-modified lithium-containing composite oxide, an electrode and a battery were produced in the same manner as in Example 1 and evaluated. As a result, the high rate capacity was 162 mAh / g, and the high rate average potential was 3.96V.
The initial discharge capacity was 181 mAh / g, the initial charge / discharge efficiency was 92.4%, the initial average potential was 4.03 V, the capacity retention rate was 78.7%, and the average potential was 3.86 V. Moreover, the heat generation start temperature was 144 degreeC.
[例3](実施例)
ガドリニウム-ジルコニウム含浸粒子の熱処理温度を400℃から500℃に変更したこと以外は、例1と同様にして、表面修飾リチウム含有複合酸化物を合成した。この表面修飾リチウム含有複合酸化物の平均粒径D50は13.8μm、D10は8.2μm、D90は21.7μmであり、BET法により求めた比表面積は0.21m2/gであった。また、得られた表面修飾リチウム含有複合酸化物の粉末のアルカリ量は0.012質量%であり、プレス密度は3.02g/cm3であった。
この表面修飾リチウム含有複合酸化物の粉末について、例1と同様にX線回折スペクトルを測定すると、リチウム含有複合酸化物に由来するピークが確認された。2θ=66.5±1°の(110)面の回折ピーク積分幅は0.104°であった。
上記の表面修飾リチウム含有複合酸化物に関して、例1と同様に電極及び電池を作製して、評価を行った。その結果、ハイレート容量は164mAh/g、ハイレート平均電位は3.96Vであった。
また、初期放電容量は179mAh/g、初期充放電効率は91.2%、初期平均電位は4.03Vであり、容量維持率は76.0%、平均電位は3.90Vであった。また、発熱開始温度は145℃であった。
[Example 3] (Example)
A surface-modified lithium-containing composite oxide was synthesized in the same manner as in Example 1 except that the heat treatment temperature of the gadolinium-zirconium impregnated particles was changed from 400 ° C. to 500 ° C. The average particle diameter D50 of this surface-modified lithium-containing composite oxide was 13.8 μm, D10 was 8.2 μm, D90 was 21.7 μm, and the specific surface area determined by the BET method was 0.21 m 2 / g. Moreover, the alkali amount of the obtained powder of the surface modified lithium-containing composite oxide was 0.012% by mass, and the press density was 3.02 g / cm 3 .
When the X-ray diffraction spectrum of this surface-modified lithium-containing composite oxide powder was measured in the same manner as in Example 1, a peak derived from the lithium-containing composite oxide was confirmed. The integrated width of diffraction peak of (110) plane at 2θ = 66.5 ± 1 ° was 0.104 °.
Regarding the surface-modified lithium-containing composite oxide, an electrode and a battery were produced in the same manner as in Example 1 and evaluated. As a result, the high rate capacity was 164 mAh / g, and the high rate average potential was 3.96V.
The initial discharge capacity was 179 mAh / g, the initial charge / discharge efficiency was 91.2%, the initial average potential was 4.03 V, the capacity retention rate was 76.0%, and the average potential was 3.90 V. The heat generation starting temperature was 145 ° C.
[例4](実施例)
リチウム含有複合酸化物の粉末200gに対して、酢酸ガドリニウム1.25gと、ジルコニウム含量が14.1質量%の炭酸ジルコニウムアンモニウム(NH4)2[Zr(CO3)2(OH)2]水溶液1.99gを水66.76gに混合したpH6.0のコーティング液として用いて、母材に対するガドリニウムのコート量を0.25mol%、ジルコニウムのコート量を0.25mol%とした他は、例1と同様にして表面修飾リチウム含有複合酸化物を合成した。この表面修飾リチウム含有複合酸化物の平均粒径D50は14.2μm、D10は8.2μm、D90は23.2μmであり、BET法により求めた比表面積が0.15m2/gであった。得られた表面修飾リチウム含有複合酸化物の粉末のアルカリ量は0.011質量%であり、プレス密度は2.96g/cm3であった。
この表面修飾リチウム含有複合酸化物の粉末について、例1と同様にX線回折スペクトルを測定すると、リチウム含有複合酸化物に由来するピークが確認された。2θ=66.5±1°の(110)面の回折ピーク積分幅は0.105°であった。
上記の表面修飾リチウム含有複合酸化物に関して、例1と同様に電極及び電池を作製して、評価を行った。その結果、ハイレート容量は160mAh/g、ハイレート平均電位は3.97Vであった。
また、初期放電容量は173mAh/g、初期充放電効率は91.5%、初期平均電位は4.03Vであり、容量維持率は89.8%、平均電位は4.00Vであった。また、発熱開始温度は144℃であった。
[Example 4] (Example)
1.25 g of gadolinium acetate and zirconium ammonium carbonate (NH 4 ) 2 [Zr (CO 3 ) 2 (OH) 2 ] aqueous solution 1 having a zirconium content of 14.1% by mass with respect to 200 g of the lithium-containing composite oxide powder 1 Example 1 except that .99 g was mixed with 66.76 g of water as a pH 6.0 coating solution, the gadolinium coating amount on the base material was 0.25 mol%, and the zirconium coating amount was 0.25 mol%. Similarly, a surface-modified lithium-containing composite oxide was synthesized. The average particle diameter D50 of this surface-modified lithium-containing composite oxide was 14.2 μm, D10 was 8.2 μm, D90 was 23.2 μm, and the specific surface area determined by the BET method was 0.15 m 2 / g. The alkali amount of the obtained surface-modified lithium-containing composite oxide powder was 0.011% by mass, and the press density was 2.96 g / cm 3 .
When the X-ray diffraction spectrum of this surface-modified lithium-containing composite oxide powder was measured in the same manner as in Example 1, a peak derived from the lithium-containing composite oxide was confirmed. The integrated width of diffraction peak of (110) plane at 2θ = 66.5 ± 1 ° was 0.105 °.
Regarding the surface-modified lithium-containing composite oxide, an electrode and a battery were produced in the same manner as in Example 1 and evaluated. As a result, the high rate capacity was 160 mAh / g, and the high rate average potential was 3.97V.
The initial discharge capacity was 173 mAh / g, the initial charge / discharge efficiency was 91.5%, the initial average potential was 4.03 V, the capacity retention rate was 89.8%, and the average potential was 4.00 V. Moreover, the heat generation start temperature was 144 degreeC.
[例5](実施例)
酢酸ガドリニウム1.25gと、ジルコニウム含量が14.1質量%の炭酸ジルコニウムアンモニウム(NH4)2[Zr(CO3)2(OH)2]水溶液3.32gを水65.43gに混合したpH6.1のコーティング液を調製した。リチウム含有複合酸化物の粉末200gに対して、該コーティング液を加えて、混合して、ガドリニウムのコート量を0.15mol%、ジルコニウムのコート量を0.25mol%とした他は、例1と同様にして表面修飾リチウム含有複合酸化物を合成した。この表面修飾リチウム含有複合酸化物の平均粒径D50は13.9μm、D10は8.3μm、D90は22.0μmであり、BET法により求めた比表面積が0.43m2/gであった。得られた表面修飾リチウム含有複合酸化物の粉末のアルカリ量は0.010質量%であり、プレス密度は2.93g/cm3であった。
この表面修飾リチウム含有複合酸化物の粉末について、例1と同様にX線回折スペクトルを測定すると、リチウム含有複合酸化物に由来するピークが確認された。2θ=66.5±1°の(110)面の回折ピーク積分幅は0.105°であった。
上記の表面修飾リチウム含有複合酸化物に関して、例1と同様に電極及び電池を作製して、評価を行った。その結果、ハイレート容量は162mAh/g、ハイレート平均電位は3.97Vであった。
また、初期放電容量は175mAh/g、初期充放電効率は90.6%、初期平均電位は4.03Vであり、容量維持率は86.9%、平均電位は3.96Vであった。また、発熱開始温度は144℃であった。
[Example 5] (Example)
A pH of 6.35 g of gadolinium acetate and 3.32 g of an ammonium zirconium carbonate (NH 4 ) 2 [Zr (CO 3 ) 2 (OH) 2 ] aqueous solution having a zirconium content of 14.1% by mass mixed with 65.43 g of water. 1 coating solution was prepared. The coating liquid was added to and mixed with 200 g of the lithium-containing composite oxide powder, and the coating amount of gadolinium was 0.15 mol% and the coating amount of zirconium was 0.25 mol%. Similarly, a surface-modified lithium-containing composite oxide was synthesized. The average particle diameter D50 of this surface-modified lithium-containing composite oxide was 13.9 μm, D10 was 8.3 μm, D90 was 22.0 μm, and the specific surface area determined by the BET method was 0.43 m 2 / g. The alkali amount of the obtained surface-modified lithium-containing composite oxide powder was 0.010% by mass, and the press density was 2.93 g / cm 3 .
When the X-ray diffraction spectrum of this surface-modified lithium-containing composite oxide powder was measured in the same manner as in Example 1, a peak derived from the lithium-containing composite oxide was confirmed. The integrated width of diffraction peak of (110) plane at 2θ = 66.5 ± 1 ° was 0.105 °.
Regarding the surface-modified lithium-containing composite oxide, an electrode and a battery were produced in the same manner as in Example 1 and evaluated. As a result, the high rate capacity was 162 mAh / g, and the high rate average potential was 3.97V.
The initial discharge capacity was 175 mAh / g, the initial charge / discharge efficiency was 90.6%, the initial average potential was 4.03 V, the capacity retention rate was 86.9%, and the average potential was 3.96 V. Moreover, the heat generation start temperature was 144 degreeC.
[例6](実施例)
酢酸ガドリニウム2.08gと、ジルコニウム含量が14.1質量%の炭酸ジルコニウムアンモニウム(NH4)2[Zr(CO3)2(OH)2]水溶液1.99gを水65.93gに混合したpH6.0のコーティング液を調製した。リチウム含有複合酸化物の粉末200gに対して、該コーティング液を加えて、混合して、ガドリニウムのコート量を0.25mol%、ジルコニウムのコート量を0.15mol%とした他は、例1と同様にして表面修飾リチウム含有複合酸化物を合成した。この表面修飾リチウム含有複合酸化物の平均粒径D50は13.4μm、D10は7.9μm、D90は21.4μmであり、BET法により求めた比表面積が0.28m2/gであった。得られた表面修飾リチウム含有複合酸化物の粉末のアルカリ量は0.010質量%であり、プレス密度は2.93g/cm3であった。
この表面修飾リチウム含有複合酸化物の粉末について、例1と同様にX線回折スペクトルを測定すると、リチウム含有複合酸化物に由来するピークが確認された。2θ=66.5±1°の(110)面の回折ピーク積分幅は0.112°であった。
上記の表面修飾リチウム含有複合酸化物に関して、例1と同様に電極及び電池を作製して、評価を行った。その結果、ハイレート容量は158mAh/g、ハイレート平均電位は3.96Vであった。
また、初期放電容量は175mAh/g、初期充放電効率は90.8%、初期平均電位は4.02Vであり、容量維持率は92.9%、平均電位は4.00Vであった。また、発熱開始温度は145℃であった。
[Example 6] (Example)
A pH of 6.99 g of gadolinium acetate and 1.99 g of an ammonium zirconium carbonate (NH 4 ) 2 [Zr (CO 3 ) 2 (OH) 2 ] aqueous solution having a zirconium content of 14.1% by mass mixed with 65.93 g of water. A coating solution of 0 was prepared. The coating solution was added to and mixed with 200 g of the lithium-containing composite oxide powder, and the coating amount of gadolinium was 0.25 mol% and the coating amount of zirconium was 0.15 mol%. Similarly, a surface-modified lithium-containing composite oxide was synthesized. The average particle diameter D50 of this surface-modified lithium-containing composite oxide was 13.4 μm, D10 was 7.9 μm, D90 was 21.4 μm, and the specific surface area determined by the BET method was 0.28 m 2 / g. The alkali amount of the obtained surface-modified lithium-containing composite oxide powder was 0.010% by mass, and the press density was 2.93 g / cm 3 .
When the X-ray diffraction spectrum of this surface-modified lithium-containing composite oxide powder was measured in the same manner as in Example 1, a peak derived from the lithium-containing composite oxide was confirmed. The integrated width of diffraction peak of (110) plane at 2θ = 66.5 ± 1 ° was 0.112 °.
Regarding the surface-modified lithium-containing composite oxide, an electrode and a battery were produced in the same manner as in Example 1 and evaluated. As a result, the high rate capacity was 158 mAh / g, and the high rate average potential was 3.96V.
The initial discharge capacity was 175 mAh / g, the initial charge / discharge efficiency was 90.8%, the initial average potential was 4.02 V, the capacity retention rate was 92.9%, and the average potential was 4.00 V. The heat generation starting temperature was 145 ° C.
[例7](比較例)
例1で合成した母材であるLi1.02(Co0.979Mg0.01Al0.01Zr0.001)0.98O2の組成を有するリチウム含有複合酸化物の粉末の評価をした。その結果、平均粒径D50が13.2μm、D10が7.5μm、D90が21.6μmであり、BET法により求めた比表面積が0.24m2/g、アルカリ量は0.018質量%であった。
このリチウム含有複合酸化物の粉末について、例1と同様にX線回折スペクトルを測定すると、リチウム含有複合酸化物に由来するピークが確認された。2θ=66.5±1°の(110)面の回折ピーク積分幅は0.101°であった。この粉末のプレス密度は3.09g/cm3であった。
上記のリチウム含有複合酸化物に関して、例1と同様に電極及び電池を作製して、評価を行った。その結果、ハイレート容量は156mAh/g、ハイレート平均電位は3.92Vであった。
また、初期放電容量は176mAh/g、初期充放電効率は90.7%、初期平均電位は4.01Vであり、容量維持率は28.8%、平均電位は3.36Vであった。また、発熱開始温度は143℃であった。
[Example 7] (Comparative Example)
Evaluation of the lithium-containing composite oxide powder having a composition of Li 1.02 (Co 0.979 Mg 0.01 Al 0.01 Zr 0.001 ) 0.98 O 2 which is the base material synthesized in Example 1 did. As a result, the average particle diameter D50 was 13.2 μm, D10 was 7.5 μm, D90 was 21.6 μm, the specific surface area determined by the BET method was 0.24 m 2 / g, and the alkali amount was 0.018% by mass. there were.
When the X-ray diffraction spectrum of this lithium-containing composite oxide powder was measured in the same manner as in Example 1, a peak derived from the lithium-containing composite oxide was confirmed. The integrated width of diffraction peak of (110) plane at 2θ = 66.5 ± 1 ° was 0.101 °. The press density of this powder was 3.09 g / cm 3 .
Regarding the above lithium-containing composite oxide, an electrode and a battery were prepared in the same manner as in Example 1 and evaluated. As a result, the high rate capacity was 156 mAh / g, and the high rate average potential was 3.92 V.
The initial discharge capacity was 176 mAh / g, the initial charge / discharge efficiency was 90.7%, the initial average potential was 4.01 V, the capacity retention rate was 28.8%, and the average potential was 3.36 V. The heat generation starting temperature was 143 ° C.
[例8](比較例)
ガドリニウム-ジルコニウム含浸粒子の熱処理温度を400℃から200℃に変更したこと以外は、例1と同様にして、表面修飾リチウム含有複合酸化物を合成した。この表面修飾リチウム含有複合酸化物の平均粒径D50は14.1μm、D10は8.4μm、D90は22.0μmであり、BET法により求めた比表面積は0.36m2/gであった。また、得られた表面修飾リチウム含有複合酸化物の粉末のアルカリ量は0.017質量%であり、プレス密度は2.98g/cm3であった。
この表面修飾リチウム含有複合酸化物の粉末について、例1と同様にX線回折スペクトルを測定すると、リチウム含有複合酸化物に由来するピークが確認された。2θ=66.5±1°の(110)面の回折ピーク積分幅は0.104°であった。
上記の表面修飾リチウム含有複合酸化物に関して、例1と同様に電極及び電池を作製して、評価を行った。その結果、ハイレート容量は160mAh/g、ハイレート平均電位は3.95Vであった。
また、初期放電容量は176mAh/g、初期充放電効率は91.2%、初期平均電位は4.02Vであり、容量維持率は39.2%、平均電位は3.48Vであった。また、発熱開始温度は140℃であった。
[Example 8] (Comparative example)
A surface-modified lithium-containing composite oxide was synthesized in the same manner as in Example 1 except that the heat treatment temperature of the gadolinium-zirconium impregnated particles was changed from 400 ° C. to 200 ° C. The average particle diameter D50 of this surface-modified lithium-containing composite oxide was 14.1 μm, D10 was 8.4 μm, D90 was 22.0 μm, and the specific surface area determined by the BET method was 0.36 m 2 / g. Moreover, the alkali amount of the obtained surface-modified lithium-containing composite oxide powder was 0.017% by mass, and the press density was 2.98 g / cm 3 .
When the X-ray diffraction spectrum of this surface-modified lithium-containing composite oxide powder was measured in the same manner as in Example 1, a peak derived from the lithium-containing composite oxide was confirmed. The integrated width of diffraction peak of (110) plane at 2θ = 66.5 ± 1 ° was 0.104 °.
Regarding the surface-modified lithium-containing composite oxide, an electrode and a battery were produced in the same manner as in Example 1 and evaluated. As a result, the high rate capacity was 160 mAh / g, and the high rate average potential was 3.95 V.
The initial discharge capacity was 176 mAh / g, the initial charge / discharge efficiency was 91.2%, the initial average potential was 4.02 V, the capacity retention rate was 39.2%, and the average potential was 3.48 V. The heat generation starting temperature was 140 ° C.
[例9](比較例)
ガドリニウム-ジルコニウム含浸粒子の熱処理温度を400℃から600℃に変更したこと以外は、例1と同様にして、表面修飾リチウム含有複合酸化物を合成した。この表面修飾リチウム含有複合酸化物の平均粒径D50は13.9μm、D10は8.4μm、D90は21.7μmであり、BET法により求めた比表面積は0.19m2/gであった。また、得られた表面修飾リチウム含有複合酸化物の粉末のアルカリ量は0.011質量%であり、プレス密度は3.04g/cm3であった。
この表面修飾リチウム含有複合酸化物の粉末について、例1と同様にX線回折スペクトルを測定すると、リチウム含有複合酸化物に由来するピークが確認された。2θ=66.5±1°の(110)面の回折ピーク積分幅は0.104°であった。
上記の表面修飾リチウム含有複合酸化物に関して、例1と同様に電極及び電池を作製して、評価を行った。その結果、ハイレート容量は162mAh/g、ハイレート平均電位は3.96Vであった。
また、初期放電容量は178mAh/g、初期充放電効率は91.7%、初期平均電位は4.02Vであり、容量維持率は57.8%、平均電位は3.73Vであった。また、発熱開始温度は145℃であった。
[Example 9] (Comparative Example)
A surface-modified lithium-containing composite oxide was synthesized in the same manner as in Example 1 except that the heat treatment temperature of the gadolinium-zirconium impregnated particles was changed from 400 ° C to 600 ° C. The average particle diameter D50 of this surface-modified lithium-containing composite oxide was 13.9 μm, D10 was 8.4 μm, D90 was 21.7 μm, and the specific surface area determined by the BET method was 0.19 m 2 / g. Moreover, the alkali amount of the obtained surface-modified lithium-containing composite oxide powder was 0.011% by mass, and the press density was 3.04 g / cm 3 .
When the X-ray diffraction spectrum of this surface-modified lithium-containing composite oxide powder was measured in the same manner as in Example 1, a peak derived from the lithium-containing composite oxide was confirmed. The integrated width of diffraction peak of (110) plane at 2θ = 66.5 ± 1 ° was 0.104 °.
Regarding the surface-modified lithium-containing composite oxide, an electrode and a battery were produced in the same manner as in Example 1 and evaluated. As a result, the high rate capacity was 162 mAh / g, and the high rate average potential was 3.96V.
The initial discharge capacity was 178 mAh / g, the initial charge / discharge efficiency was 91.7%, the initial average potential was 4.02 V, the capacity retention rate was 57.8%, and the average potential was 3.73 V. The heat generation starting temperature was 145 ° C.
[例10](比較例)
例1で合成したリチウム含有複合酸化物の粉末200gに対して、硝酸ガドリニウム0.46gを水41.13gに溶解したpH5.2のコーティング液を加え、ガドリニウムを0.05mol%として、混合して撹拌しながら120℃で4時間乾燥して、ガドリニウム含浸粒子を得た。また、得られたガドリニウム含浸粒子を酸素含有雰囲気下925℃で12時間、熱処理した後、解砕することで平均粒径D50が15.3μm、D10が9.3μm、D90が23.3μmであり、BET法により求めた比表面積が0.17m2/gである、表面修飾リチウム含有複合酸化物の粉末を得た。得られた表面修飾リチウム含有複合酸化物のアルカリ量は0.014質量%であった。この粉末のプレス密度は3.11g/cm3であった。
この表面修飾リチウム含有複合酸化物の粉末について、例1と同様にX線回折スペクトルを測定すると、リチウム含有複合酸化物に由来するピークが確認された。2θ=66.5±1°の(110)面の回折ピーク積分幅は0.093°であった。
上記の表面修飾リチウム含有複合酸化物に関して、例1と同様に電極及び電池を作製して、評価を行った。その結果、ハイレート容量は154mAh/g、ハイレート平均電位は3.95Vであった。
また、初期放電容量は176mAh/g、初期充放電効率は90.5%、初期平均電位は4.02Vであり、容量維持率は58.4%、平均電位は3.67Vであった。また、発熱開始温度は142℃であった
[Example 10] (Comparative Example)
To 200 g of the lithium-containing composite oxide powder synthesized in Example 1, a coating solution of pH 5.2 in which 0.46 g of gadolinium nitrate was dissolved in 41.13 g of water was added, and gadolinium was mixed at 0.05 mol%. Drying at 120 ° C. for 4 hours with stirring gave gadolinium-impregnated particles. Further, the obtained gadolinium-impregnated particles were heat-treated at 925 ° C. for 12 hours in an oxygen-containing atmosphere and then pulverized to obtain an average particle diameter D50 of 15.3 μm, D10 of 9.3 μm, and D90 of 23.3 μm. A surface-modified lithium-containing composite oxide powder having a specific surface area of 0.17 m 2 / g determined by the BET method was obtained. The alkali amount of the obtained surface-modified lithium-containing composite oxide was 0.014% by mass. The press density of this powder was 3.11 g / cm 3 .
When the X-ray diffraction spectrum of this surface-modified lithium-containing composite oxide powder was measured in the same manner as in Example 1, a peak derived from the lithium-containing composite oxide was confirmed. The integrated width of diffraction peak of (110) plane at 2θ = 66.5 ± 1 ° was 0.093 °.
Regarding the surface-modified lithium-containing composite oxide, an electrode and a battery were produced in the same manner as in Example 1 and evaluated. As a result, the high rate capacity was 154 mAh / g, and the high rate average potential was 3.95V.
The initial discharge capacity was 176 mAh / g, the initial charge / discharge efficiency was 90.5%, the initial average potential was 4.02 V, the capacity retention rate was 58.4%, and the average potential was 3.67 V. The heat generation start temperature was 142 ° C.
[例11](比較例)
例1で合成したリチウム含有複合酸化物の粉末200gに対して、硝酸ガドリニウム0.93gを水205.64gに溶解したpH5.4のコーティング液を加え、ガドリニウムを0.10mol%として、混合して撹拌しながら120℃で4時間乾燥して、ガドリニウム含浸粒子を得た。また、得られたガドリニウム含浸粒子を酸素含有雰囲気下925℃で12時間、熱処理した後、解砕することで平均粒径D50が15.1μm、D10が9.3μm、D90が23.2μmであり、BET法により求めた比表面積が0.16m2/gである、表面修飾リチウム含有複合酸化物の粉末を得た。得られた表面修飾リチウム含有複合酸化物のアルカリ量は0.013質量%であった。この粉末のプレス密度は3.09g/cm3であった。
この表面修飾リチウム含有複合酸化物の粉末について、例1と同様にX線回折スペクトルを測定すると、リチウム含有複合酸化物に由来するピークが確認された。2θ=66.5±1°の(110)面の回折ピーク積分幅は0.099°であった。
上記の表面修飾リチウム含有複合酸化物に関して、例1と同様に電極及び電池を作製して、評価を行った。その結果、ハイレート容量は159mAh/g、ハイレート平均電位は3.96Vであった。
また、初期放電容量は176mAh/g、初期充放電効率は90.4%、初期平均電位は4.02Vであり、容量維持率は71.2%、平均電位は3.84Vであった。また、発熱開始温度は143℃であった
[Example 11] (Comparative Example)
To 200 g of the lithium-containing composite oxide powder synthesized in Example 1, a coating solution having a pH of 5.4 in which 0.93 g of gadolinium nitrate was dissolved in 205.64 g of water was added, and gadolinium was mixed at 0.10 mol%. Drying at 120 ° C. for 4 hours with stirring gave gadolinium-impregnated particles. Further, the obtained gadolinium-impregnated particles were heat-treated at 925 ° C. for 12 hours in an oxygen-containing atmosphere and then crushed to obtain an average particle diameter D50 of 15.1 μm, D10 of 9.3 μm, and D90 of 23.2 μm. A surface-modified lithium-containing composite oxide powder having a specific surface area of 0.16 m 2 / g determined by the BET method was obtained. The alkali amount of the obtained surface-modified lithium-containing composite oxide was 0.013% by mass. The press density of this powder was 3.09 g / cm 3 .
When the X-ray diffraction spectrum of this surface-modified lithium-containing composite oxide powder was measured in the same manner as in Example 1, a peak derived from the lithium-containing composite oxide was confirmed. The integrated width of diffraction peak of (110) plane at 2θ = 66.5 ± 1 ° was 0.099 °.
Regarding the surface-modified lithium-containing composite oxide, an electrode and a battery were produced in the same manner as in Example 1 and evaluated. As a result, the high rate capacity was 159 mAh / g, and the high rate average potential was 3.96V.
The initial discharge capacity was 176 mAh / g, the initial charge / discharge efficiency was 90.4%, the initial average potential was 4.02 V, the capacity retention rate was 71.2%, and the average potential was 3.84 V. Moreover, the heat generation start temperature was 143 ° C.
[例12](実施例)
炭酸マグネシウム1.93g、Al含量が2.65質量%のマレイン酸アルミニウム20.87g、及びクエン酸一水和物7.74gを水28.28gに溶解させた水溶液に、チタン含量が8.3質量%の乳酸チタン水溶液1.18gを混合して得た水溶液と、コバルト含量が60.0質量%である、平均粒径13μmのオキシ水酸化コバルト196.80gを加え、混合して、得られた混合物を80℃の恒温槽にて乾燥した。この乾燥した混合物と、リチウム含量が18.7質量%の炭酸リチウム79.00gを乳鉢で混合し、酸素含有雰囲気下1010℃で14時間焼成した後、解砕してLi1.02(Co0.979Mg0.01Al0.01Ti0.001)0.98O2の組成を有するリチウム含有複合酸化物の粉末を得た。
上記で得られたリチウム含有複合酸化物を母材として用いたこと以外は、例1と同様にして、表面修飾リチウム含有複合酸化物を合成した。この表面修飾リチウム含有複合酸化物の平均粒径D50は19.6μm、D10は11.1μm、D90は33.3μmであり、BET法により求めた比表面積は0.21m2/gであった。また、得られた表面修飾リチウム含有複合酸化物の粉末のアルカリ量は0.016質量%であり、プレス密度は3.08g/cm3であった。
この表面修飾リチウム含有複合酸化物の粉末について、例1と同様にX線回折スペクトルを測定すると、リチウム含有複合酸化物に由来するピークが確認された。2θ=66.5±1°の(110)面の回折ピーク積分幅は0.105°であった。
上記の表面修飾リチウム含有複合酸化物に関して、例1と同様に電極及び電池を作製して、評価を行った。その結果、ハイレート容量は152mAh/g、ハイレート平均電位は3.98Vであった。
また、初期放電容量は170mAh/g、初期充放電効率は89.0%、初期平均電位は4.02Vであり、容量維持率は85.0%、平均電位は3.93Vであった。また、発熱開始温度は142℃であった。
[Example 12] (Example)
In an aqueous solution in which 1.93 g of magnesium carbonate, 20.87 g of aluminum maleate having an Al content of 2.65% by mass, and 7.74 g of citric acid monohydrate were dissolved in 28.28 g of water, the titanium content was 8.3. An aqueous solution obtained by mixing 1.18 g of a mass% titanium lactate aqueous solution and 196.80 g of cobalt oxyhydroxide having an average particle size of 13 μm and a cobalt content of 60.0 mass% are added and mixed to obtain. The obtained mixture was dried in a constant temperature bath at 80 ° C. This dried mixture and 79.00 g of lithium carbonate having a lithium content of 18.7% by mass were mixed in a mortar, fired at 1010 ° C. for 14 hours in an oxygen-containing atmosphere, and then crushed to obtain Li 1.02 (Co 0 .979 Mg 0.01 Al 0.01 Ti 0.001 ) 0.98 O 2 was obtained as a lithium-containing composite oxide powder.
A surface-modified lithium-containing composite oxide was synthesized in the same manner as in Example 1 except that the lithium-containing composite oxide obtained above was used as a base material. The average particle diameter D50 of this surface-modified lithium-containing composite oxide was 19.6 μm, D10 was 11.1 μm, D90 was 33.3 μm, and the specific surface area determined by the BET method was 0.21 m 2 / g. Moreover, the alkali amount of the obtained surface-modified lithium-containing composite oxide powder was 0.016% by mass, and the press density was 3.08 g / cm 3 .
When the X-ray diffraction spectrum of this surface-modified lithium-containing composite oxide powder was measured in the same manner as in Example 1, a peak derived from the lithium-containing composite oxide was confirmed. The integrated width of diffraction peak of (110) plane at 2θ = 66.5 ± 1 ° was 0.105 °.
Regarding the surface-modified lithium-containing composite oxide, an electrode and a battery were produced in the same manner as in Example 1 and evaluated. As a result, the high rate capacity was 152 mAh / g, and the high rate average potential was 3.98 V.
The initial discharge capacity was 170 mAh / g, the initial charge / discharge efficiency was 89.0%, the initial average potential was 4.02 V, the capacity retention rate was 85.0%, and the average potential was 3.93 V. Moreover, the heat generation start temperature was 142 degreeC.
[例13](実施例)
炭酸マグネシウム1.93g、Al含量が2.65質量%のマレイン酸アルミニウム20.87g、及びクエン酸一水和物7.74gを水28.28gに溶解させた水溶液に、チタン含量が8.3質量%の乳酸チタン水溶液1.18gを混合して得た水溶液と、コバルト含量が60.0質量%である、平均粒径13μmのオキシ水酸化コバルト196.80gを加え、混合して、得られた混合物を80℃の恒温槽にて乾燥した。この乾燥した混合物と、リチウム含量が18.7質量%の炭酸リチウム79.00gと、フッ化リチウム0.05gを乳鉢で混合し、酸素含有雰囲気下1010℃で14時間焼成した後、解砕してLi1.02(Co0.979Mg0.01Al0.01Ti0.001)0.98O1.9995F0.001の組成を有するリチウム含有複合酸化物の粉末を得た。
上記で得られたリチウム含有複合酸化物を母材として用いたこと以外は、例1と同様にして、表面修飾リチウム含有複合酸化物を合成した。この表面修飾リチウム含有複合酸化物の平均粒径D50は19.3μm、D10は10.5μm、D90は37.6μmであり、BET法により求めた比表面積は0.21m2/gであった。また、得られた表面修飾リチウム含有複合酸化物の粉末のアルカリ量は0.014質量%であり、プレス密度は3.10g/cm3であった。
この表面修飾リチウム含有複合酸化物の粉末について、例1と同様にX線回折スペクトルを測定すると、リチウム含有複合酸化物に由来するピークが確認された。2θ=66.5±1°の(110)面の回折ピーク積分幅は0.105°であった。
上記の表面修飾リチウム含有複合酸化物に関して、例1と同様に電極及び電池を作製して、評価を行った。その結果、ハイレート容量は157mAh/g、ハイレート平均電位は3.97Vであった。
また、初期放電容量は172mAh/g、初期充放電効率は89.5%、初期平均電位は4.03Vであり、容量維持率は81.0%、平均電位は3.97Vであった。また、発熱開始温度は142℃であった。
[Example 13] (Example)
In an aqueous solution in which 1.93 g of magnesium carbonate, 20.87 g of aluminum maleate having an Al content of 2.65% by mass, and 7.74 g of citric acid monohydrate were dissolved in 28.28 g of water, the titanium content was 8.3. An aqueous solution obtained by mixing 1.18 g of a mass% titanium lactate aqueous solution and 196.80 g of cobalt oxyhydroxide having an average particle size of 13 μm and a cobalt content of 60.0 mass% are added and mixed to obtain. The obtained mixture was dried in a constant temperature bath at 80 ° C. This dried mixture, 79.00 g of lithium carbonate having a lithium content of 18.7% by mass, and 0.05 g of lithium fluoride were mixed in a mortar, fired at 1010 ° C. for 14 hours in an oxygen-containing atmosphere, and then crushed. Thus , a lithium-containing composite oxide powder having a composition of Li 1.02 (Co 0.979 Mg 0.01 Al 0.01 Ti 0.001 ) 0.98 O 0.9995 F 0.001 was obtained.
A surface-modified lithium-containing composite oxide was synthesized in the same manner as in Example 1 except that the lithium-containing composite oxide obtained above was used as a base material. The average particle diameter D50 of this surface-modified lithium-containing composite oxide was 19.3 μm, D10 was 10.5 μm, D90 was 37.6 μm, and the specific surface area determined by the BET method was 0.21 m 2 / g. Moreover, the alkali amount of the obtained surface-modified lithium-containing composite oxide powder was 0.014% by mass, and the press density was 3.10 g / cm 3 .
When the X-ray diffraction spectrum of this surface-modified lithium-containing composite oxide powder was measured in the same manner as in Example 1, a peak derived from the lithium-containing composite oxide was confirmed. The integrated width of diffraction peak of (110) plane at 2θ = 66.5 ± 1 ° was 0.105 °.
Regarding the surface-modified lithium-containing composite oxide, an electrode and a battery were produced in the same manner as in Example 1 and evaluated. As a result, the high rate capacity was 157 mAh / g, and the high rate average potential was 3.97V.
The initial discharge capacity was 172 mAh / g, the initial charge / discharge efficiency was 89.5%, the initial average potential was 4.03 V, the capacity retention rate was 81.0%, and the average potential was 3.97 V. Moreover, the heat generation start temperature was 142 degreeC.
本発明によれば、安全性が高く、レート特性及び充放電サイクル耐久性に優れた表面修飾リチウム含有複合酸化物、該表面修飾リチウム含有複合酸化物を含むリチウムイオン二次電池用正極及びリチウムイオン二次電池、並びにそれらの製造方法が提供される。
なお、2011年4月28日に出願された日本特許出願2011-101705号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
According to the present invention, a surface-modified lithium-containing composite oxide having high safety and excellent rate characteristics and charge / discharge cycle durability, a positive electrode for lithium ion secondary batteries and the lithium ion including the surface-modified lithium-containing composite oxide Secondary batteries and methods for manufacturing them are provided.
The entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2011-101705 filed on April 28, 2011 are cited here as disclosure of the specification of the present invention. Incorporated.
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013512444A JPWO2012147877A1 (en) | 2011-04-28 | 2012-04-26 | Surface-modified lithium-containing composite oxide for positive electrode active material for lithium ion secondary battery and method for producing the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-101705 | 2011-04-28 | ||
JP2011101705 | 2011-04-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012147877A1 true WO2012147877A1 (en) | 2012-11-01 |
Family
ID=47072391
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/061270 WO2012147877A1 (en) | 2011-04-28 | 2012-04-26 | Surface-modified lithium-containing compound oxide for positive electrode active substance of lithium ion secondary cell and method for producing same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2012147877A1 (en) |
WO (1) | WO2012147877A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3135634A4 (en) * | 2014-04-24 | 2017-11-22 | Daiichi Kigenso Kagaku Kogyo Co., Ltd. | Method for producing garnet-type compound, garnet-type compound, and all-solid lithium secondary cell containing said garnet-type compound |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001256977A (en) * | 2000-03-07 | 2001-09-21 | Samsung Sdi Co Ltd | Negative electrode active material for lithium secondary battery and method for producing the same |
JP2005524204A (en) * | 2002-04-23 | 2005-08-11 | エルジー ケム. エルティーディ. | Lithium metal composite oxide having excellent life characteristics and safety and method for producing the same |
JP2009507751A (en) * | 2005-09-08 | 2009-02-26 | ハンファ ケミカル コーポレーション | Method for coating metal oxide surface with metal oxide ultrafine particles, and coated body produced therefrom |
-
2012
- 2012-04-26 JP JP2013512444A patent/JPWO2012147877A1/en active Pending
- 2012-04-26 WO PCT/JP2012/061270 patent/WO2012147877A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001256977A (en) * | 2000-03-07 | 2001-09-21 | Samsung Sdi Co Ltd | Negative electrode active material for lithium secondary battery and method for producing the same |
JP2005524204A (en) * | 2002-04-23 | 2005-08-11 | エルジー ケム. エルティーディ. | Lithium metal composite oxide having excellent life characteristics and safety and method for producing the same |
JP2009507751A (en) * | 2005-09-08 | 2009-02-26 | ハンファ ケミカル コーポレーション | Method for coating metal oxide surface with metal oxide ultrafine particles, and coated body produced therefrom |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3135634A4 (en) * | 2014-04-24 | 2017-11-22 | Daiichi Kigenso Kagaku Kogyo Co., Ltd. | Method for producing garnet-type compound, garnet-type compound, and all-solid lithium secondary cell containing said garnet-type compound |
Also Published As
Publication number | Publication date |
---|---|
JPWO2012147877A1 (en) | 2014-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5193223B2 (en) | Surface-modified lithium-containing composite oxide for positive electrode active material for lithium ion secondary battery and method for producing the same | |
JP5486516B2 (en) | Surface-modified lithium-containing composite oxide for positive electrode active material for lithium ion secondary battery and method for producing the same | |
JP4896034B2 (en) | Lithium-containing composite oxide and method for producing the same | |
JP5193159B2 (en) | Method for producing lithium-containing composite oxide for positive electrode of lithium secondary battery | |
JP5112318B2 (en) | Lithium-containing composite oxide and method for producing the same | |
US8192711B2 (en) | Process for production of cathode active material for lithiun ion secondary battery | |
JP5132308B2 (en) | Method for producing lithium-containing composite oxide for positive electrode of lithium secondary battery | |
JP4854982B2 (en) | Method for producing lithium-containing composite oxide for positive electrode of lithium secondary battery | |
JP5065884B2 (en) | Method for producing lithium-containing composite oxide for positive electrode of lithium secondary battery | |
JP5132307B2 (en) | Method for producing lithium-containing composite oxide for positive electrode of lithium secondary battery | |
WO2007037235A1 (en) | Process for producing lithium-containing composite oxide | |
JPWO2008155989A1 (en) | Lithium-containing composite oxide powder and method for producing the same | |
WO2005112152A1 (en) | Method for producing lithium-containing complex oxide for positive electrode of lithium secondary battery | |
JP5210531B2 (en) | Lithium-containing composite oxide particles for non-aqueous electrolyte secondary battery and method for producing the same | |
KR20120098591A (en) | Process for production of positive electrode material for lithium ion secondary battery | |
WO2007037234A1 (en) | Process for producing lithium-containing composite oxide for positive electrode of lithium secondary cell | |
JP4833058B2 (en) | Method for producing lithium-containing composite oxide for positive electrode of lithium secondary battery | |
JP5015543B2 (en) | Method for producing lithium-containing composite oxide | |
JP2007119340A (en) | Method for producing lithium-containing multiple oxide | |
JP2006298699A (en) | Method for manufacturing lithium cobalt composite oxide having large particle size | |
JP4472430B2 (en) | Method for producing lithium composite oxide for positive electrode of lithium secondary battery | |
WO2012147877A1 (en) | Surface-modified lithium-containing compound oxide for positive electrode active substance of lithium ion secondary cell and method for producing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12776644 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013512444 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12776644 Country of ref document: EP Kind code of ref document: A1 |