WO2012144630A1 - High carbon steel wire rod and method for producing high carbon steel wire rod - Google Patents
High carbon steel wire rod and method for producing high carbon steel wire rod Download PDFInfo
- Publication number
- WO2012144630A1 WO2012144630A1 PCT/JP2012/060783 JP2012060783W WO2012144630A1 WO 2012144630 A1 WO2012144630 A1 WO 2012144630A1 JP 2012060783 W JP2012060783 W JP 2012060783W WO 2012144630 A1 WO2012144630 A1 WO 2012144630A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- high carbon
- steel wire
- carbon steel
- upper limit
- Prior art date
Links
- 229910000677 High-carbon steel Inorganic materials 0.000 title claims abstract description 30
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 23
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 25
- 239000013078 crystal Substances 0.000 claims abstract description 19
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000012535 impurity Substances 0.000 claims abstract description 6
- 229910052742 iron Inorganic materials 0.000 claims abstract description 6
- 238000005096 rolling process Methods 0.000 claims description 37
- 238000001816 cooling Methods 0.000 claims description 23
- 229910000831 Steel Inorganic materials 0.000 claims description 22
- 239000010959 steel Substances 0.000 claims description 22
- 238000010438 heat treatment Methods 0.000 claims description 11
- 229910052748 manganese Inorganic materials 0.000 claims description 8
- 229910052710 silicon Inorganic materials 0.000 claims description 7
- 229910052799 carbon Inorganic materials 0.000 claims description 5
- 229910052745 lead Inorganic materials 0.000 claims description 4
- 229910052758 niobium Inorganic materials 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims description 3
- 229910052785 arsenic Inorganic materials 0.000 claims description 2
- 239000005539 carbonized material Substances 0.000 claims description 2
- 150000001247 metal acetylides Chemical class 0.000 abstract description 7
- 239000011651 chromium Substances 0.000 description 31
- 239000000463 material Substances 0.000 description 29
- 229910001562 pearlite Inorganic materials 0.000 description 16
- 238000000137 annealing Methods 0.000 description 15
- 229910001567 cementite Inorganic materials 0.000 description 15
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 15
- 238000000034 method Methods 0.000 description 11
- 238000004904 shortening Methods 0.000 description 11
- 230000000694 effects Effects 0.000 description 10
- 230000009466 transformation Effects 0.000 description 8
- 229910001566 austenite Inorganic materials 0.000 description 7
- 238000005868 electrolysis reaction Methods 0.000 description 6
- 238000005098 hot rolling Methods 0.000 description 6
- 230000006872 improvement Effects 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 238000010583 slow cooling Methods 0.000 description 6
- 238000010273 cold forging Methods 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 5
- 229910052761 rare earth metal Inorganic materials 0.000 description 5
- 239000006104 solid solution Substances 0.000 description 5
- 238000005728 strengthening Methods 0.000 description 5
- 229910052804 chromium Inorganic materials 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- FXNGWBDIVIGISM-UHFFFAOYSA-N methylidynechromium Chemical group [Cr]#[C] FXNGWBDIVIGISM-UHFFFAOYSA-N 0.000 description 4
- 238000010791 quenching Methods 0.000 description 4
- 230000000171 quenching effect Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 229910000975 Carbon steel Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229910052797 bismuth Inorganic materials 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 238000005496 tempering Methods 0.000 description 3
- 229910052720 vanadium Inorganic materials 0.000 description 3
- 229910000851 Alloy steel Inorganic materials 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 2
- 229910052779 Neodymium Inorganic materials 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000010962 carbon steel Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 229910052746 lanthanum Inorganic materials 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 229910052714 tellurium Inorganic materials 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- 241000446313 Lamella Species 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000012733 comparative method Methods 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000005261 decarburization Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000000967 suction filtration Methods 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/06—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
- C21D8/065—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
- C21D9/525—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/20—Ferrous alloys, e.g. steel alloys containing chromium with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
Definitions
- the present invention relates to a high carbon steel wire used as a bearing material in automobiles and various industrial machines and a method for producing the high carbon steel wire.
- a magnetic field is applied in the temperature range of 800 to 500 ° C. during cooling after hot rolling, and the cooling rate in the temperature range is set to 10 ° C./s or less to suppress the precipitation of proeutectoid cementite.
- a method has been proposed in which the time required for the spheroidizing annealing in the next step can be shortened by shortening the lamella spacing in the pearlite.
- special equipment for applying a magnetic field is required, resulting in an increase in production cost and offsetting the cost reduction effect by shortening the spheroidizing time. End up.
- Patent Document 2 a high carbon chromium bearing steel having a predetermined component composition is rolled while being controlled so that the temperature in the entire cross section is between the A1 point and the Acm point from extraction to finish rolling.
- a method that can omit or shorten the next spheroidizing annealing has been proposed.
- special equipment called a rapid rolling mill is required.
- This proposal like the previous proposal, causes an increase in production costs and shortens the spheroidizing time. The cost reduction effect is offset.
- a material to be rolled having a predetermined component composition is heated to a temperature range of Ae 1 point to Aem point, and then rolled at a relatively low temperature of 680 ° C. to (Aem point ⁇ 30 °) 2 Rolling is performed by the above-described rolling process and an all-continuous hot rolling method including one or more intermediate cooling processes between the rolling processes. Further, after rolling, the temperature range up to 400 ° C is 5 ° C / s. A method of final cooling under the following conditions has been proposed. Although the spheroidizing annealing can be simplified by implementing this proposal, it is considered that the hardness of the material after the spheroidizing treatment is not sufficiently reduced.
- the present invention has been made as a solution to the above-described conventional problems.
- the high carbon steel wire material capable of sufficiently reducing hardness and the high carbon
- An object of the present invention is to provide a method for producing a steel wire rod.
- the present invention provides the following high carbon steel wire and method for producing the high carbon steel wire.
- C 0.95 to 1.10%, Si: 0.15 to 0.70%, Mn: 1.15% or less (excluding 0%), Cr: 0.90 to 1.60%, P: 0.050% or less (not including 0%), S: 0.050% or less (not including 0%), Al: 0.100% or less (not including 0%), Ti: 0.015% or less (not including 0%), N: 0.025% or less (not including 0%), O: 0.0025% or less (not including 0%), the balance being Consisting of iron and inevitable impurities,
- the ferrite crystal grain size is 20.0 ⁇ m or less,
- carbonized_material is 6.0% or more by mass%,
- the high carbon steel wire characterized by the above-mentioned.
- Nb 0.5% or less (excluding 0%)
- V 0.5% or less (excluding 0%)
- B 0.005% or less (0%)
- the production method of the high carbon steel wire and the high carbon steel wire of the present invention from the viewpoint of cost and environmental load, it is possible to shorten the spheroidizing treatment time during production, and at the same time, the die during cold forging The life can be improved, and the hardness can be sufficiently reduced from the viewpoint of power saving during production.
- carbon steel and alloy steel have been widely used as materials for machine parts used in automobiles and various industrial machines.
- a high carbon chromium bearing steel (SUJ material) defined by “JIS G 4805” is often used as a bearing material.
- SUJ material high carbon chromium bearing steel
- the bearing steel is hot-rolled into a rolled wire rod, then spheroidized, cut, and cold forged into a predetermined shape. It is manufactured by quenching and tempering, and finally finishing.
- the material In general hot rolling of bearing steel, the material is heated to the austenite single-phase region and rolled in the austenite state. After rolling, the material is cooled relatively slowly (slow cooling). The metal structure becomes pearlite.
- Spheroidizing annealing is a treatment for softening a carbide (cementite) in steel by making it spherical and coarsening.
- cementite carbide
- the structure before the spheroidizing annealing is pearlite, it takes a long time for the fine lamellar cementite in the pearlite to be divided and coarsely spheroidized.
- the inventors of the present invention have made extensive studies in order to find a method capable of shortening the spheroidizing time during production and obtaining a high carbon steel wire material having sufficiently reduced hardness. As a result, during the spheroidization heating, when the matrix structure is reverse transformed from ferrite to austenite, the spheroidization of the carbides easily proceeds. I found out that I can do it.
- the ferrite crystal grain size (average crystal grain size of ferrite) before reverse transformation may be 20.0 ⁇ m or less.
- the ferrite crystal grain size before reverse transformation is preferably 15.0 ⁇ m or less, more preferably 10.0 ⁇ m or less, and even more preferably 7.5 ⁇ m or less.
- the ferrite crystal grain size before reverse transformation is preferably as small as possible.
- the lower limit value is not particularly specified, but the actual lower limit value is considered to be about 1.0 ⁇ m.
- the ferrite crystal grain size can be obtained by the following method. For the cross section perpendicular to the longitudinal direction of the rolled wire rod, mirror polishing, etching with nital, and observation of the structure with an optical microscope, the structure size of the D / 4 position (D: diameter) of a total of 10 cross sections A total of 400 to 1000 times of photographs are taken, and the results for a total of 30 fields are averaged.
- the present inventors have intensively studied to deal with these contradictory problems. As a result, the inventors have found a method capable of shortening the spheroidizing time while maintaining the spheroidized structure by making the carbides difficult to dissolve.
- the dissolution of carbide is greatly affected by the composition of the carbide, and particularly in the case of bearing steel, it is greatly affected by the Cr concentration in the carbide.
- the more concentrated Cr is in the carbide the more difficult it is to melt during heating, and the spheroidizing time can be shortened while maintaining low hardness by suppressing the formation of pearlite.
- the Cr solid solution strengthening of ferrite falls with the increase in the Cr concentration of cementite, and a low hardness can be obtained in a stable state.
- the Cr concentration in the carbide needs to be 6.0% by mass or more. It is preferably 6.5% by mass or more, more preferably 7.0% by mass or more.
- the upper limit value is not particularly defined, but the actual upper limit value is considered to be about 10.0% by mass.
- the high carbon steel wire rod of the present invention has a component range including all high carbon chromium bearing steel materials (SUJ materials 2 to 5) defined in “JIS G 4805 (2008)”. Specifically, in terms of mass%, C: 0.95 to 1.10%, Si: 0.15 to 0.70%, Mn: 1.15% or less (not including 0%), Cr: 0.00. It shall contain 90 to 1.60%. In addition, although all units are described as%, all the mass% is included unless otherwise specified, including descriptions in other specifications.
- the SUJ2 materials are C: 0.95 to 1.10%, Si: 0.15 to 0.35%, Mn: 0.50% or less, Cr: 1.30 to 1.
- Containing 60% SUJ3 material is C: 0.95 to 1.10%, Si: 0.40 to 0.70%, Mn: 0.90 to 1.15%, Cr: 0.90 to 1 20%
- SUJ4 material is C: 0.95 to 1.10%, Si: 0.15 to 0.35%, Mn: 0.50% or less, Cr: 1.30 to 1.60
- the SUJ5 material contains C: 0.95 to 1.10%, Si: 0.40 to 0.70%, Mn: 0.90 to 1.15%, Cr: 0.90 to 1.%. Contains 20%.
- C 0.95 to 1.10%
- C is an essential element for increasing the quenching hardness and maintaining the strength at room temperature and high temperature to impart wear resistance. Therefore, it is necessary to contain 0.95% or more. However, if the C content is excessively large, giant carbides are likely to be generated and adversely affect the rolling fatigue characteristics. Therefore, the C content must be suppressed to 1.10% or less.
- the minimum with preferable content of C is 0.98%, and a preferable upper limit is 1.05%.
- ⁇ Cr 0.90 to 1.60% Cr is an element that combines with C to form fine carbides, imparts wear resistance, and contributes to improved hardenability. Further, when Cr is concentrated in the carbide, it becomes difficult to dissolve during heating, which contributes to the promotion of spheroidization. In order to exert such an effect, it is necessary to contain 0.90% or more of Cr. However, when the Cr content is excessive, coarse carbides are generated and the rolling fatigue life is reduced. Therefore, the Cr content is 1.60% or less. The preferable lower limit of the Cr content is 1.00%, and the preferable upper limit is 1.55%.
- Si 0.15 to 0.70%
- Mn 1.15% or less (excluding 0%)
- Si is an element useful for improving the solid solution strengthening and hardenability of the matrix.
- it is necessary to contain Si by 0.15% or more, preferably 0.20% or more (more preferably 0.25% or more).
- the Si content is 0.70% or less, preferably 0.65% or less (more preferably 0.60% or less).
- Mn is an element useful for improving the solid solution strengthening and hardenability of the matrix.
- the Mn content is excessively increased, the workability and machinability are remarkably lowered, so the Mn content is 1.15.
- % Or less preferably 1.10% or less (more preferably 1.05% or less).
- the lower limit is not particularly defined, it is necessary to contain 0.1% or more, preferably 0.15% or more (more preferably 0.2% or more) in order to obtain the effects of solid solution strengthening and hardenability improvement. It is desirable to contain.
- the content of various elements is usually limited in bearing steel from the viewpoint of rolling fatigue properties and machinability.
- various elements shown below are defined as follows from their respective roles. If content of various elements is in the following range, the effect of the present invention will not be hindered.
- ⁇ P 0.050% or less (not including 0%)
- S 0.050% or less (not including 0%)
- P deteriorates the toughness and workability at the segregation part
- S forms inclusions and deteriorates the rolling fatigue characteristics.
- JIS G 4805 (2008) defines the upper limits of P and S, and it is preferable that both be 0.025% or less. A more preferred upper limit is 0.020%, and a still more preferred upper limit is 0.015%.
- Al 0.100% or less (excluding 0%)
- Al has the action of forming nitrides, refining the structure, and improving rolling fatigue characteristics.
- the upper limit of the Al content is 0.100%.
- a preferable upper limit is 0.050%, a more preferable upper limit is 0.030%, and a further preferable upper limit is 0.010%.
- Ti 0.015% or less (excluding 0%) Ti forms nitrides like Al.
- the upper limit of the Ti content is 0.015%.
- a preferable upper limit is 0.010%, a more preferable upper limit is 0.005%, and a further preferable upper limit is 0.002%.
- N 0.025% or less (excluding 0%) N is an element effective for solid solution strengthening, and contributes to the improvement of rolling fatigue characteristics as described above. However, if the content is excessive, problems such as deterioration of workability due to strain aging are caused. Therefore, even when it is actively contained, the content is made 0.025% or less.
- a preferable upper limit is 0.020%, a more preferable upper limit is 0.010%, and a further preferable upper limit is 0.0050%.
- O 0.0025% or less (excluding 0%) It is known that rolling fatigue breaks starting from inclusions mainly composed of oxide, and O is preferably reduced as much as possible.
- the upper limit of the O content is 0.0025%.
- a preferable upper limit is 0.0020%, a more preferable upper limit is 0.0015%, and a further preferable upper limit is 0.0010%.
- the steel material of the present invention there is an embodiment in which the above components are included and the balance is iron and inevitable impurities.
- the essential components contained in the steel are as described above, the following elements may be contained within a predetermined range as necessary.
- the steel material of the present invention includes the following elements, with the balance being iron and inevitable impurities.
- Cu 0.25% or less (not including 0%), Ni: 0.25% or less (not including 0%), Mo: 0.25% or less (not including 0%) Cu, Ni, and Mo all have the effect of improving the hardenability and contribute to the improvement of rolling fatigue characteristics as described above.
- the content is excessive, problems such as deterioration of workability are caused, so Cu: 0.25% or less, Ni: 0.25% or less, and Mo: 0.25% or less.
- the preferable upper limit is 0.20%, the more preferable upper limit is 0.15%, and the more preferable upper limit is 0.10%.
- Mo is an essential element of the SUJ4 material and the SUJ5 material, and both are contained in an amount of 0.10 to 0.25%.
- Nb 0.5% or less (not including 0%), V: 0.5% or less (not including 0%), B: 0.005% or less (not including 0%) Nb, V, and B all have the effect of improving the hardenability and contribute to the improvement of the rolling fatigue characteristics as described above, so are contained as necessary. However, if the content is excessive, characteristic deterioration is caused. Therefore, Nb: 0.5% or less, V: 0.5% or less, and B: 0.005% or less.
- the upper limit with preferable content of Nb and V is 0.25%, a more preferable upper limit is 0.10%, and a still more preferable upper limit is 0.05%.
- the upper limit with preferable content of B is 0.004%, a more preferable upper limit is 0.003%, and a still more preferable upper limit is 0.002%.
- Ca, REM (Ce, Y, La, Nd), Mg, Li, and Zr all have the effect of refining oxide and sulfide inclusions, and contribute to the improvement of rolling fatigue characteristics. It is contained as necessary. However, if the content is excessive, deterioration of characteristics is caused. Therefore, Ca: 0.05% or less, REM: 0.05% or less, Mg: 0.02% or less, Li: 0.02% or less, Zr : 0.2% or less.
- the upper limit with preferable content of Ca and REM is 0.02%, A more preferable upper limit is 0.01%, Furthermore, a preferable upper limit is 0.005%. Moreover, the upper limit with preferable content of Mg and Li is 0.01%, A more preferable upper limit is 0.005%, Furthermore, a preferable upper limit is 0.001%.
- the preferable upper limit of the Zr content is 0.1%, the more preferable upper limit is 0.05%, and the more preferable upper limit is 0.01%.
- REM represents one or more of Ce, Y, La and Nd, and when contained alone, the single amount only needs to satisfy the above range, and when two or more are used in combination, The total amount only needs to satisfy the above range.
- Pb 0.5% or less (not including 0%), Bi: 0.5% or less (not including 0%), Te: 0.1% or less (not including 0%)
- Pb, Bi, and Te all have an effect of improving machinability and are contained as necessary.
- Pb 0.5% or less
- Bi 0.5% or less
- Te 0.1%
- a preferable upper limit of the content of Pb and Bi is 0.2%, a more preferable upper limit is 0.1%, and a further preferable upper limit is 0.05%.
- the upper limit with preferable content of Te is 0.05%, a more preferable upper limit is 0.02%, and a still more preferable upper limit is 0.01%.
- the upper limit of the preferable content is 0.01%, the more preferable upper limit is 0.005%, and the more preferable upper limit is 0.002%.
- the bearing is rolled into a rolled wire rod by hot rolling the bearing steel, then spheroidizing annealing, cutting, cold forging into a predetermined shape, quenching and tempering, and finally finishing. Can be manufactured.
- the finish rolling temperature in the hot rolling process In order to make the ferrite crystal grain size 20 ⁇ m or less as defined in the present invention, it is necessary to control the finish rolling temperature in the hot rolling process and the cooling rate after finish rolling. Conventionally, from the viewpoint of softening the material, cooling after finish rolling has been generally performed by slow cooling. However, if annealing is performed after finish rolling, the austenite coarsens during the slow cooling, and as a result, the ferrite after transformation also tends to coarsen.
- the coarsening of ferrite reduces the hardness as it is rolled, but it does not necessarily lead to a decrease in hardness after spheroidizing treatment.
- the inventors have suppressed the austenite coarsening by setting the final rolling temperature to 850 ° C. or lower and the average cooling rate to 740 ° C. after finishing rolling to 10 ° C./s or higher. It was found that the ferrite crystal grain size could be 20.0 ⁇ m or less.
- the Cr concentration in the carbide is greatly affected by the heating temperature and the rolling temperature.
- cementite In order to increase the Cr concentration in the carbide, it is necessary that the cementite remains at a high temperature. The higher the temperature, the more the diffusion is promoted and the Cr concentration proceeds.
- the temperature when the temperature is too high, the cementite dissolves and the volume fraction of the Cr-concentrated cementite decreases. Since cementite precipitated during cooling does not have a high Cr concentration, when the cementite fraction during cooling increases, the proportion of carbides with a high Cr concentration decreases. In particular, the Cr concentration in cementite that precipitates during cooling decreases as it precipitates at low temperatures.
- the present inventors have studied, and as a result, the temperature from heating to finish rolling is set to a temperature range of 750 to 870 ° C., and the average cooling rate from 740 ° C. to 500 ° C. is 5 ° C. / It was confirmed that the Cr concentration in the carbide could be 6.0% by mass or more by setting it to s or less.
- slabs were manufactured by continuous casting using steels having respective component compositions shown in Table 1, and the slabs were disassembled and rolled into 155 mm square steel slabs. Using this steel slab, rolled wire rods were obtained under the production conditions shown in Tables 2 and 3. Various measurements and tests shown below were carried out using this rolled wire. In each component composition shown in Table 1, the balance is iron and inevitable impurities.
- the ferrite crystal grain size was determined by performing mirror polishing on the cross section perpendicular to the longitudinal direction of the rolled wire rod, etching with nital, and observing the structure with an optical microscope. ), 400-1000 times photographs were taken according to the tissue size, and the results for a total of 30 fields were averaged.
- the high carbon steel wire of the present invention may have a mixed structure of ferrite and pearlite or a structure mainly composed of pearlite.
- the pearlite nodule (block) size corresponding to the crystal grain size of ferrite is measured. did.
- “JIS G 0551” describes a particle size measurement method for only the ferrite portion excluding the pearlite portion.
- the crystal unit is determined by the contrast after etching. did.
- the ferrite particle size and pearlite nodule size were collectively measured.
- the Cr concentration in the carbide was determined by measuring the Cr concentration in the electrolytically extracted residue. First, the rolled wire was cut to a length of 20 mm, and then the portion from the outer surface to D / 4 (D: diameter) was removed by grinding to obtain a sample for electrolysis. Next, in order to remove the processed layer, preliminary electrolysis was performed by a constant current electrolysis method using a 10% AA-based electrolytic solution (% is a mass ratio). Thereafter, electrolysis by a constant current electrolysis method using a 10% AA-based electrolyte as main electrolysis was performed, and the residue was collected by filtering the electrolyte solution by a suction filtration method. For filtration, a polycarbonate mesh having a pore size of 0.1 ⁇ m was used. The obtained residue was treated for analysis, and then the Cr concentration was measured by ICP issuance analysis.
- Vickers hardness Vickers hardness was measured using each rolled wire after spheroidizing annealing. About the cross section perpendicular
- test results are shown in Tables 2-3. In this test, even when spheroidizing annealing is carried out under shortening conditions, a test with a Vickers hardness of 190 Hv or less is accepted.
- No. 8, 9, 11 to 14, 17 to 19, 21, 22, 24 to 37 are examples of the invention that satisfy the requirements of the present invention. Even when the spheroidizing annealing is performed under a shortened condition, it is the same as the normal condition. The Vickers hardness was 190 Hv or less. From this result, no. Nos. 8, 9, 11 to 14, 17 to 19, 21, 22, 24 to 37 are high carbon steels capable of shortening the spheroidizing time during production and sufficiently reducing the hardness after spheronizing. It can be said that it is a wire.
- the production method of the high carbon steel wire and the high carbon steel wire of the present invention from the viewpoint of cost and environmental load, it is possible to shorten the spheroidizing treatment time during production, and at the same time, the die during cold forging The life can be improved, and the hardness can be sufficiently reduced from the viewpoint of power saving during production.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
Abstract
Provided are: a high carbon steel wire rod which is sufficiently reduced in hardness and is capable of reducing the spheroidization time during the production thereof; and a method for producing a high carbon steel wire rod. The present invention relates to a high carbon steel wire rod which contains, in mass%, 0.95-1.10% of C, 0.15-0.70% of Si, 1.15% or less of Mn (excluding 0%), 0.90-1.60% of Cr, 0.050% or less of P, 0.050% or less of S, 0.100% or less of Al, 0.015% or less of Ti, 0.025% or less of N and 0.0025% or less of O, with the balance made up of iron and unavoidable impurities. This high carbon steel wire rod has a ferrite crystal grain size of 20.0 μm or less and a Cr concentration in the carbides of 6.0% by mass or more.
Description
本発明は、自動車や各種産業機械等で軸受の材料として用いられている高炭素鋼線材およびその高炭素鋼線材の製造方法に関するものである。
The present invention relates to a high carbon steel wire used as a bearing material in automobiles and various industrial machines and a method for producing the high carbon steel wire.
自動車や各種産業機械等に用いられる機械部品の素材として、従来から炭素鋼や合金鋼が汎用されている。その中でも特に軸受の材料として「JIS G 4805(2008)」で規定される高炭素クロム軸受鋼鋼材(SUJ材)が使用されていることが多い。この軸受は、これら素材を熱間圧延して鋼線材とした後に球状化焼鈍し、切断後、所定の形状に冷間鍛造して、焼入れ焼戻し処理し、最後に仕上げ加工を施すことで一般的には製造されている。
Conventionally, carbon steel and alloy steel have been widely used as materials for machine parts used in automobiles and various industrial machines. Among them, high carbon chromium bearing steel (SUJ material) defined in “JIS G 4805 (2008)” is often used as a bearing material. These bearings are generally obtained by hot rolling these materials into steel wire, then spheroidizing annealing, cutting, cold forging into a predetermined shape, quenching and tempering, and finally finishing. Is manufactured.
この製造工程では、特に球状化焼鈍に非常に長い時間を要しており、コスト、環境負荷の観点から、この球状化処理時間の短縮化が求められている。また、冷間鍛造時の金型寿命の向上、省電力化という観点から、球状化処理後の素材硬さを低下させることも併せて求められている。このような現況で、球状化処理時間の短縮化という観点から幾つかの提案がなされている。
In this manufacturing process, a particularly long time is required for spheroidizing annealing, and shortening of the spheroidizing time is required from the viewpoint of cost and environmental load. Further, from the viewpoint of improving the die life during cold forging and saving power, it is also required to reduce the material hardness after the spheroidizing treatment. Under such circumstances, some proposals have been made from the viewpoint of shortening the spheroidizing time.
特許文献1により、熱間圧延後の冷却の際に800~500℃の温度範囲で磁場を印加すると共に、その温度範囲における冷却速度を10℃/s以下とし、初析セメンタイトの析出を抑制し、パーライト中のラメラ間隔を短くすることで、次工程の球状化焼鈍に要する時間を短縮できる方法が提案されている。しかしながら、この提案を実施するためには磁場を印加するための特殊な設備を必要とするため、結果的に生産コストの上昇を招き、球状化処理時間の短縮化によるコストの低減効果が相殺されてしまう。
According to Patent Document 1, a magnetic field is applied in the temperature range of 800 to 500 ° C. during cooling after hot rolling, and the cooling rate in the temperature range is set to 10 ° C./s or less to suppress the precipitation of proeutectoid cementite. A method has been proposed in which the time required for the spheroidizing annealing in the next step can be shortened by shortening the lamella spacing in the pearlite. However, in order to implement this proposal, special equipment for applying a magnetic field is required, resulting in an increase in production cost and offsetting the cost reduction effect by shortening the spheroidizing time. End up.
また、特許文献2により、所定の成分組成を有する高炭素クロム軸受鋼を、抽出から仕上げ圧延に至る間、全断面内の温度がA1点~Acm点の間にあるように制御して圧延することで球状化組織を得ることで、次の球状化焼鈍を省略または短縮できる方法が提案されている。しかしながら、この提案を実施するためにはラピッド方式の圧延装置という特殊な設備を必要とするため、この提案でも先の提案と同様に、生産コストの上昇を招き、球状化処理時間の短縮化によるコストの低減効果が相殺されてしまう。
Further, according to Patent Document 2, a high carbon chromium bearing steel having a predetermined component composition is rolled while being controlled so that the temperature in the entire cross section is between the A1 point and the Acm point from extraction to finish rolling. Thus, by obtaining a spheroidized structure, a method that can omit or shorten the next spheroidizing annealing has been proposed. However, in order to implement this proposal, special equipment called a rapid rolling mill is required. This proposal, like the previous proposal, causes an increase in production costs and shortens the spheroidizing time. The cost reduction effect is offset.
更には、特許文献3により、所定の成分組成を有する被圧延材を、Ae1点~Aem点の温度域に加熱した後、680℃~(Aem点-30°)の比較的低温で圧延する2以上の圧延工程と、それら圧延工程の間に1以上の中間冷却工程を備える全連続式熱間圧延方法により圧延し、更に、圧延後に、400℃までの温度域を冷却速度が5℃/s以下の条件で最終冷却する方法が提案されている。この提案を実施することで球状化焼鈍を簡略化することはできるものの、球状化処理後の素材の硬さの低減が十分でないと考えられる。
Further, according to Patent Document 3, a material to be rolled having a predetermined component composition is heated to a temperature range of Ae 1 point to Aem point, and then rolled at a relatively low temperature of 680 ° C. to (Aem point −30 °) 2 Rolling is performed by the above-described rolling process and an all-continuous hot rolling method including one or more intermediate cooling processes between the rolling processes. Further, after rolling, the temperature range up to 400 ° C is 5 ° C / s. A method of final cooling under the following conditions has been proposed. Although the spheroidizing annealing can be simplified by implementing this proposal, it is considered that the hardness of the material after the spheroidizing treatment is not sufficiently reduced.
本発明は、上記従来の問題を解決せんとしてなされたもので、製造時の球状化処理時間の短縮化が図れるうえに、十分に硬さを低減することができる高炭素鋼線材およびその高炭素鋼線材の製造方法を提供することを課題とするものである。
The present invention has been made as a solution to the above-described conventional problems. In addition to shortening the spheroidizing time during production, the high carbon steel wire material capable of sufficiently reducing hardness and the high carbon An object of the present invention is to provide a method for producing a steel wire rod.
本発明は、以下の高炭素鋼線材、及び、高炭素鋼線材の製造方法を提供する。
(1)質量%で、C:0.95~1.10%、Si:0.15~0.70%、Mn:1.15%以下(0%を含まない)、Cr:0.90~1.60%、P:0.050%以下(0%を含まない)、S:0.050%以下(0%を含まない)、Al:0.100%以下(0%を含まない)、Ti:0.015%以下(0%を含まない)、N:0.025%以下(0%を含まない)、O:0.0025%以下(0%を含まない)を含有し、残部が鉄および不可避的不純物からなり、
フェライト結晶粒径が20.0μm以下であって、
且つ、炭化物中のCr濃度が、質量%で6.0%以上であることを特徴とする高炭素鋼線材。 The present invention provides the following high carbon steel wire and method for producing the high carbon steel wire.
(1) By mass%, C: 0.95 to 1.10%, Si: 0.15 to 0.70%, Mn: 1.15% or less (excluding 0%), Cr: 0.90 to 1.60%, P: 0.050% or less (not including 0%), S: 0.050% or less (not including 0%), Al: 0.100% or less (not including 0%), Ti: 0.015% or less (not including 0%), N: 0.025% or less (not including 0%), O: 0.0025% or less (not including 0%), the balance being Consisting of iron and inevitable impurities,
The ferrite crystal grain size is 20.0 μm or less,
And the Cr density | concentration in carbide | carbonized_material is 6.0% or more by mass%, The high carbon steel wire characterized by the above-mentioned.
(1)質量%で、C:0.95~1.10%、Si:0.15~0.70%、Mn:1.15%以下(0%を含まない)、Cr:0.90~1.60%、P:0.050%以下(0%を含まない)、S:0.050%以下(0%を含まない)、Al:0.100%以下(0%を含まない)、Ti:0.015%以下(0%を含まない)、N:0.025%以下(0%を含まない)、O:0.0025%以下(0%を含まない)を含有し、残部が鉄および不可避的不純物からなり、
フェライト結晶粒径が20.0μm以下であって、
且つ、炭化物中のCr濃度が、質量%で6.0%以上であることを特徴とする高炭素鋼線材。 The present invention provides the following high carbon steel wire and method for producing the high carbon steel wire.
(1) By mass%, C: 0.95 to 1.10%, Si: 0.15 to 0.70%, Mn: 1.15% or less (excluding 0%), Cr: 0.90 to 1.60%, P: 0.050% or less (not including 0%), S: 0.050% or less (not including 0%), Al: 0.100% or less (not including 0%), Ti: 0.015% or less (not including 0%), N: 0.025% or less (not including 0%), O: 0.0025% or less (not including 0%), the balance being Consisting of iron and inevitable impurities,
The ferrite crystal grain size is 20.0 μm or less,
And the Cr density | concentration in carbide | carbonized_material is 6.0% or more by mass%, The high carbon steel wire characterized by the above-mentioned.
(2)更に、質量%で、Cu:0.25%以下(0%を含まない)、Ni:0.25%以下(0%を含まない)、Mo:0.25%以下(0%を含まない)の1種以上を含有する(1)記載の高炭素鋼線材。
(2) Further, by mass%, Cu: 0.25% or less (excluding 0%), Ni: 0.25% or less (excluding 0%), Mo: 0.25% or less (0% The high carbon steel wire according to (1), which contains one or more of (not included).
(3)更に、質量%で、Nb:0.5%以下(0%を含まない)、V:0.5%以下(0%を含まない)、B:0.005%以下(0%を含まない)の1種以上を含有する(1)または(2)記載の高炭素鋼線材。
(3) Further, by mass%, Nb: 0.5% or less (excluding 0%), V: 0.5% or less (excluding 0%), B: 0.005% or less (0% The high carbon steel wire according to (1) or (2), which contains one or more of (not included).
(4)更に、質量%で、Ca:0.05%以下(0%を含まない)、REM:0.05%以下(0%を含まない)、Mg:0.02%以下(0%を含まない)、Li:0.02%以下(0%を含まない)、Zr:0.2%以下(0%を含まない)の1種以上を含有する(1)乃至(3)のいずれか一つに記載の高炭素鋼線材。
(4) Further, in terms of mass%, Ca: 0.05% or less (excluding 0%), REM: 0.05% or less (not including 0%), Mg: 0.02% or less (0% (1) to (3) containing one or more of Li: 0.02% or less (not including 0%), Zr: 0.2% or less (not including 0%) The high carbon steel wire according to one.
(5)更に、質量%で、Pb:0.5%以下(0%を含まない)、Bi:0.5%以下(0%を含まない)、Te:0.1%以下(0%を含まない)の1種以上を含有する(1)乃至(4)のいずれか一つに記載の高炭素鋼線材。
(5) Further, by mass%, Pb: 0.5% or less (excluding 0%), Bi: 0.5% or less (excluding 0%), Te: 0.1% or less (0% The high carbon steel wire according to any one of (1) to (4), which contains one or more of (not included).
(6)更に、質量%で、As:0.02%以下(0%を含まない)を含有する(1)乃至(5)のいずれか一つに記載の高炭素鋼線材。
(6) The high carbon steel wire according to any one of (1) to (5), further containing, by mass%, As: 0.02% or less (not including 0%).
(7)加熱から仕上げ圧延まで鋼材を750~870℃に維持すること、
仕上げ圧延を850℃以下で行うこと、
仕上げ圧延後、740℃まで、平均冷却速度10℃/s以上で冷却すること、及び、
740℃から500℃まで、平均冷却速度5℃/s以下で冷却すること、
をこの順番で含む(1)乃至(6)のいずれか一つに記載の高炭素線材の製造方法。 (7) maintain the steel at 750-870 ° C. from heating to finish rolling;
Performing finish rolling at 850 ° C. or lower,
After finish rolling, cooling to 740 ° C. at an average cooling rate of 10 ° C./s or more, and
Cooling from 740 ° C to 500 ° C at an average cooling rate of 5 ° C / s or less,
The high carbon wire manufacturing method according to any one of (1) to (6), including:
仕上げ圧延を850℃以下で行うこと、
仕上げ圧延後、740℃まで、平均冷却速度10℃/s以上で冷却すること、及び、
740℃から500℃まで、平均冷却速度5℃/s以下で冷却すること、
をこの順番で含む(1)乃至(6)のいずれか一つに記載の高炭素線材の製造方法。 (7) maintain the steel at 750-870 ° C. from heating to finish rolling;
Performing finish rolling at 850 ° C. or lower,
After finish rolling, cooling to 740 ° C. at an average cooling rate of 10 ° C./s or more, and
Cooling from 740 ° C to 500 ° C at an average cooling rate of 5 ° C / s or less,
The high carbon wire manufacturing method according to any one of (1) to (6), including:
本発明の高炭素鋼線材および高炭素鋼線材の製造方法によると、コスト、環境負荷という観点から、製造時の球状化処理時間の短縮化が図れるうえに、併せて冷間鍛造時の金型寿命の向上を図れ、製造時の省電力化という観点から、硬さを十分に低減させることが可能となる。
According to the production method of the high carbon steel wire and the high carbon steel wire of the present invention, from the viewpoint of cost and environmental load, it is possible to shorten the spheroidizing treatment time during production, and at the same time, the die during cold forging The life can be improved, and the hardness can be sufficiently reduced from the viewpoint of power saving during production.
前述したように、自動車や各種産業機械等に用いられる機械部品の素材としては、従来から炭素鋼や合金鋼が汎用されている。その中でも特に軸受の材料としては「JIS G 4805」で規定される高炭素クロム軸受鋼鋼材(SUJ材)が使用されることが多い。このSUJ材等の軸受鋼を用いて軸受を製造するにあたっては、通常、軸受鋼を熱間圧延して圧延線材とした後に、球状化焼鈍し、切断後、所定の形状に冷間鍛造して、焼入れ焼戻し処理し、最後に仕上げ加工を施すことで製造されている。
As described above, carbon steel and alloy steel have been widely used as materials for machine parts used in automobiles and various industrial machines. Among them, a high carbon chromium bearing steel (SUJ material) defined by “JIS G 4805” is often used as a bearing material. When manufacturing a bearing using bearing steel such as SUJ material, usually, the bearing steel is hot-rolled into a rolled wire rod, then spheroidized, cut, and cold forged into a predetermined shape. It is manufactured by quenching and tempering, and finally finishing.
一般的な軸受鋼の熱間圧延では、素材をオーステナイト単相域まで加熱して、オーステナイト状態で圧延され、圧延後は比較的緩やかに冷却(徐冷)することで、冷却後の圧延線材の金属組織はパーライトになる。球状化焼鈍は、鋼中の炭化物(セメンタイト)を球状化し、粗大化することで軟質化する処理である。この球状化焼鈍前の組織がパーライトである場合は、パーライト中の微細なラメラセメンタイトが分断、粗大球状化するのに長い時間を要することになる。
In general hot rolling of bearing steel, the material is heated to the austenite single-phase region and rolled in the austenite state. After rolling, the material is cooled relatively slowly (slow cooling). The metal structure becomes pearlite. Spheroidizing annealing is a treatment for softening a carbide (cementite) in steel by making it spherical and coarsening. When the structure before the spheroidizing annealing is pearlite, it takes a long time for the fine lamellar cementite in the pearlite to be divided and coarsely spheroidized.
このような実情があり、前記したように、オーステナイト+セメンタイト二相域に加熱した上で圧延することで、圧延ままで球状炭化物(セメンタイト)を存在させ、炭化物の球状化、粗大化を促進させようとする技術開発が従来から行われてきた。更には、加熱、圧延、冷却温度を適宜調整することで、圧延ままでパーライト組織の生成を抑制し、擬似球状の組織を得ることで、球状化処理を省略または短縮しようという技術が開発されてきた。
There is such a situation, and as described above, by rolling after heating to the austenite + cementite two-phase region, spherical carbide (cementite) is present as it is rolled, promoting the spheroidization and coarsening of the carbide The technology development to be performed has been performed conventionally. Furthermore, by appropriately adjusting the heating, rolling, and cooling temperatures, a technique has been developed that suppresses the formation of a pearlite structure while rolling and obtains a pseudo-spherical structure, thereby eliminating or shortening the spheroidizing treatment. It was.
しかしながら、これら従来から開発されてきた技術では、セメンタイトが球状化した組織は得ることができるものの、反面、硬さが高くなる傾向があり、また、球状化処理時間の短縮化も十分に図ることはできなかった。
However, with these conventionally developed technologies, a structure in which cementite is spheroidized can be obtained, but on the other hand, there is a tendency for hardness to increase, and the spheroidizing treatment time can be sufficiently shortened. I couldn't.
(フェライト結晶粒径)
本発明者らは、製造時における球状化処理時間の短縮化が図れるうえに、硬さが十分に低下した高炭素鋼線材を得ることができる方法を見出すために、鋭意検討を行った。その結果、球状化処理の加熱時に、母相組織がフェライトからオーステナイトへ逆変態すると炭化物の球状化が容易に進行することから、逆変態を促進すれば、球状化時間の短縮化を図れることができることを見出した。 (Ferrite crystal grain size)
The inventors of the present invention have made extensive studies in order to find a method capable of shortening the spheroidizing time during production and obtaining a high carbon steel wire material having sufficiently reduced hardness. As a result, during the spheroidization heating, when the matrix structure is reverse transformed from ferrite to austenite, the spheroidization of the carbides easily proceeds. I found out that I can do it.
本発明者らは、製造時における球状化処理時間の短縮化が図れるうえに、硬さが十分に低下した高炭素鋼線材を得ることができる方法を見出すために、鋭意検討を行った。その結果、球状化処理の加熱時に、母相組織がフェライトからオーステナイトへ逆変態すると炭化物の球状化が容易に進行することから、逆変態を促進すれば、球状化時間の短縮化を図れることができることを見出した。 (Ferrite crystal grain size)
The inventors of the present invention have made extensive studies in order to find a method capable of shortening the spheroidizing time during production and obtaining a high carbon steel wire material having sufficiently reduced hardness. As a result, during the spheroidization heating, when the matrix structure is reverse transformed from ferrite to austenite, the spheroidization of the carbides easily proceeds. I found out that I can do it.
母相組織の、フェライトからオーステナイトへの逆変態を促進するためには、逆変態前のフェライト結晶粒径(フェライトの平均結晶粒径)を20.0μm以下とすれば良い。結晶粒微細化によって、逆変態時の核生成サイトである結晶粒界面積が増大するほど、逆変態が促進される。逆変態前のフェライト結晶粒径は、好ましくは15.0μm以下、より好ましくは10.0μm以下、更に好ましくは7.5μm以下とすれば良い。一方、逆変態前のフェライト結晶粒径は、小さければ小さい方が良く本発明では下限値を特に規定しないが、実際の下限値は1.0μm程度であると考えられる。
なお、フェライト結晶粒径は、以下のような方法で求めることができる。圧延線材の長手方向に対して垂直な断面について、鏡面研磨後、ナイタールでエッチングを行い、光学顕微鏡にて組織観察を行い、合計10断面のD/4位置(D:直径)について、組織サイズに合わせて400~1000倍の写真を撮影し、合計30視野の結果を平均化する。比較法によって粒度番号Nを求め、下記の式から粒径Dα(単位:μm)に換算することで、フェライト結晶粒径を求めることができる。
Dα=[0.254/2(N-1)/2 ]×1000 In order to promote reverse transformation of the matrix structure from ferrite to austenite, the ferrite crystal grain size (average crystal grain size of ferrite) before reverse transformation may be 20.0 μm or less. As the crystal grain refinement increases the interfacial area of the crystal grain, which is a nucleation site during reverse transformation, reverse transformation is promoted. The ferrite crystal grain size before reverse transformation is preferably 15.0 μm or less, more preferably 10.0 μm or less, and even more preferably 7.5 μm or less. On the other hand, the ferrite crystal grain size before reverse transformation is preferably as small as possible. In the present invention, the lower limit value is not particularly specified, but the actual lower limit value is considered to be about 1.0 μm.
The ferrite crystal grain size can be obtained by the following method. For the cross section perpendicular to the longitudinal direction of the rolled wire rod, mirror polishing, etching with nital, and observation of the structure with an optical microscope, the structure size of the D / 4 position (D: diameter) of a total of 10 cross sections A total of 400 to 1000 times of photographs are taken, and the results for a total of 30 fields are averaged. The particle size number N is obtained by a comparative method, and the ferrite crystal particle size can be obtained by converting the particle size Dα (unit: μm) from the following formula.
Dα = [0.254 / 2 (N-1) / 2 ] × 1000
なお、フェライト結晶粒径は、以下のような方法で求めることができる。圧延線材の長手方向に対して垂直な断面について、鏡面研磨後、ナイタールでエッチングを行い、光学顕微鏡にて組織観察を行い、合計10断面のD/4位置(D:直径)について、組織サイズに合わせて400~1000倍の写真を撮影し、合計30視野の結果を平均化する。比較法によって粒度番号Nを求め、下記の式から粒径Dα(単位:μm)に換算することで、フェライト結晶粒径を求めることができる。
Dα=[0.254/2(N-1)/2 ]×1000 In order to promote reverse transformation of the matrix structure from ferrite to austenite, the ferrite crystal grain size (average crystal grain size of ferrite) before reverse transformation may be 20.0 μm or less. As the crystal grain refinement increases the interfacial area of the crystal grain, which is a nucleation site during reverse transformation, reverse transformation is promoted. The ferrite crystal grain size before reverse transformation is preferably 15.0 μm or less, more preferably 10.0 μm or less, and even more preferably 7.5 μm or less. On the other hand, the ferrite crystal grain size before reverse transformation is preferably as small as possible. In the present invention, the lower limit value is not particularly specified, but the actual lower limit value is considered to be about 1.0 μm.
The ferrite crystal grain size can be obtained by the following method. For the cross section perpendicular to the longitudinal direction of the rolled wire rod, mirror polishing, etching with nital, and observation of the structure with an optical microscope, the structure size of the D / 4 position (D: diameter) of a total of 10 cross sections A total of 400 to 1000 times of photographs are taken, and the results for a total of 30 fields are averaged. The particle size number N is obtained by a comparative method, and the ferrite crystal particle size can be obtained by converting the particle size Dα (unit: μm) from the following formula.
Dα = [0.254 / 2 (N-1) / 2 ] × 1000
(炭化物中のCr濃度)
一方、球状化処理の加熱温度を高くすると拡散速度が速くなり、また、逆変態が進行するため、炭化物(セメンタイト)の球状化、粗大化が促進される。しかしながら、加熱温度を高くし過ぎると炭化物の溶解量が増え、冷却時にパーライトが生成しやすくなり、硬さが増加する。徐冷すればパーライト生成を抑制できるが、時間短縮が図れなくなる。 (Cr concentration in carbide)
On the other hand, when the heating temperature of the spheroidizing treatment is increased, the diffusion rate is increased and the reverse transformation proceeds, so that the spheroidization and coarsening of the carbide (cementite) are promoted. However, if the heating temperature is too high, the amount of carbide dissolved increases, pearlite is easily generated during cooling, and the hardness increases. The slow cooling can suppress the formation of pearlite, but the time cannot be shortened.
一方、球状化処理の加熱温度を高くすると拡散速度が速くなり、また、逆変態が進行するため、炭化物(セメンタイト)の球状化、粗大化が促進される。しかしながら、加熱温度を高くし過ぎると炭化物の溶解量が増え、冷却時にパーライトが生成しやすくなり、硬さが増加する。徐冷すればパーライト生成を抑制できるが、時間短縮が図れなくなる。 (Cr concentration in carbide)
On the other hand, when the heating temperature of the spheroidizing treatment is increased, the diffusion rate is increased and the reverse transformation proceeds, so that the spheroidization and coarsening of the carbide (cementite) are promoted. However, if the heating temperature is too high, the amount of carbide dissolved increases, pearlite is easily generated during cooling, and the hardness increases. The slow cooling can suppress the formation of pearlite, but the time cannot be shortened.
本発明者らは、これら相矛盾する問題に対処するためにも鋭意検討を行った。その結果、炭化物を溶解しにくくすることで、球状化組織を維持しつつ、球状化処理時間の短縮化を図れることができる方法を見出した。
The present inventors have intensively studied to deal with these contradictory problems. As a result, the inventors have found a method capable of shortening the spheroidizing time while maintaining the spheroidized structure by making the carbides difficult to dissolve.
炭化物の溶解は、炭化物の組成の影響を大きく受け、特に軸受鋼の場合は炭化物中のCr濃度の影響を大きく受けることが分かった。Crが炭化物に濃化するほど加熱時に溶けにくくなり、パーライトの生成抑制により低硬さを維持しつつ、球状化時間を短縮することが可能になる。また、セメンタイトのCr濃度上昇によって、フェライトのCr固溶強化が低下し、低硬さを安定した状態で得ることができる。このような作用を発揮させるためには、炭化物中のCr濃度を6.0質量%以上とする必要がある。好ましくは6.5質量%以上、より好ましくは7.0質量%以上とすれば良い。本発明では上限値を特に規定しないが、実際の上限値は10.0質量%程度であると考えられる。
It has been found that the dissolution of carbide is greatly affected by the composition of the carbide, and particularly in the case of bearing steel, it is greatly affected by the Cr concentration in the carbide. The more concentrated Cr is in the carbide, the more difficult it is to melt during heating, and the spheroidizing time can be shortened while maintaining low hardness by suppressing the formation of pearlite. Moreover, the Cr solid solution strengthening of ferrite falls with the increase in the Cr concentration of cementite, and a low hardness can be obtained in a stable state. In order to exert such an action, the Cr concentration in the carbide needs to be 6.0% by mass or more. It is preferably 6.5% by mass or more, more preferably 7.0% by mass or more. In the present invention, the upper limit value is not particularly defined, but the actual upper limit value is considered to be about 10.0% by mass.
(成分組成)
本発明の高炭素鋼線材は、「JIS G 4805(2008)」で規定される高炭素クロム軸受鋼鋼材(SUJ材2~5)を全て含む成分範囲とする。具体的には、質量%で、C:0.95~1.10%、Si:0.15~0.70%、Mn:1.15%以下(0%を含まない)、Cr:0.90~1.60%を含有するものとする。尚、単位は全て%と記載するが、他の明細書中の記載を含め、特に断りのない限り全て質量%のことを示す。 (Component composition)
The high carbon steel wire rod of the present invention has a component range including all high carbon chromium bearing steel materials (SUJ materials 2 to 5) defined in “JIS G 4805 (2008)”. Specifically, in terms of mass%, C: 0.95 to 1.10%, Si: 0.15 to 0.70%, Mn: 1.15% or less (not including 0%), Cr: 0.00. It shall contain 90 to 1.60%. In addition, although all units are described as%, all the mass% is included unless otherwise specified, including descriptions in other specifications.
本発明の高炭素鋼線材は、「JIS G 4805(2008)」で規定される高炭素クロム軸受鋼鋼材(SUJ材2~5)を全て含む成分範囲とする。具体的には、質量%で、C:0.95~1.10%、Si:0.15~0.70%、Mn:1.15%以下(0%を含まない)、Cr:0.90~1.60%を含有するものとする。尚、単位は全て%と記載するが、他の明細書中の記載を含め、特に断りのない限り全て質量%のことを示す。 (Component composition)
The high carbon steel wire rod of the present invention has a component range including all high carbon chromium bearing steel materials (SUJ materials 2 to 5) defined in “JIS G 4805 (2008)”. Specifically, in terms of mass%, C: 0.95 to 1.10%, Si: 0.15 to 0.70%, Mn: 1.15% or less (not including 0%), Cr: 0.00. It shall contain 90 to 1.60%. In addition, although all units are described as%, all the mass% is included unless otherwise specified, including descriptions in other specifications.
尚、上記SUJ材のうち、SUJ2材は、C:0.95~1.10%、Si:0.15~0.35%、Mn:0.50%以下、Cr:1.30~1.60%を含有し、SUJ3材は、C:0.95~1.10%、Si:0.40~0.70%、Mn:0.90~1.15%、Cr:0.90~1.20%を含有し、SUJ4材は、C:0.95~1.10%、Si:0.15~0.35%、Mn:0.50%以下、Cr:1.30~1.60%を含有し、SUJ5材は、C:0.95~1.10%、Si:0.40~0.70%、Mn:0.90~1.15%、Cr:0.90~1.20%を含有する。
Of the above-mentioned SUJ materials, the SUJ2 materials are C: 0.95 to 1.10%, Si: 0.15 to 0.35%, Mn: 0.50% or less, Cr: 1.30 to 1. Containing 60%, SUJ3 material is C: 0.95 to 1.10%, Si: 0.40 to 0.70%, Mn: 0.90 to 1.15%, Cr: 0.90 to 1 20%, SUJ4 material is C: 0.95 to 1.10%, Si: 0.15 to 0.35%, Mn: 0.50% or less, Cr: 1.30 to 1.60 The SUJ5 material contains C: 0.95 to 1.10%, Si: 0.40 to 0.70%, Mn: 0.90 to 1.15%, Cr: 0.90 to 1.%. Contains 20%.
・C:0.95~1.10%
Cは、焼入れ硬さを増大させ、室温および高温における強度を維持して耐摩耗性を付与するために必須の元素である。従って、0.95%以上含有させる必要がある。しかしながら、Cの含有量が多くなりすぎると巨大炭化物が生成しやすくなり、転動疲労特性によって悪影響を及ぼすようになるので、Cの含有量は1.10%以下に抑えなければならない。Cの含有量の好ましい下限は0.98%、好ましい上限は1.05%である。 ・ C: 0.95 to 1.10%
C is an essential element for increasing the quenching hardness and maintaining the strength at room temperature and high temperature to impart wear resistance. Therefore, it is necessary to contain 0.95% or more. However, if the C content is excessively large, giant carbides are likely to be generated and adversely affect the rolling fatigue characteristics. Therefore, the C content must be suppressed to 1.10% or less. The minimum with preferable content of C is 0.98%, and a preferable upper limit is 1.05%.
Cは、焼入れ硬さを増大させ、室温および高温における強度を維持して耐摩耗性を付与するために必須の元素である。従って、0.95%以上含有させる必要がある。しかしながら、Cの含有量が多くなりすぎると巨大炭化物が生成しやすくなり、転動疲労特性によって悪影響を及ぼすようになるので、Cの含有量は1.10%以下に抑えなければならない。Cの含有量の好ましい下限は0.98%、好ましい上限は1.05%である。 ・ C: 0.95 to 1.10%
C is an essential element for increasing the quenching hardness and maintaining the strength at room temperature and high temperature to impart wear resistance. Therefore, it is necessary to contain 0.95% or more. However, if the C content is excessively large, giant carbides are likely to be generated and adversely affect the rolling fatigue characteristics. Therefore, the C content must be suppressed to 1.10% or less. The minimum with preferable content of C is 0.98%, and a preferable upper limit is 1.05%.
・Cr:0.90~1.60%
Crは、Cと結びついて微細な炭化物を形成し、耐摩耗性を付与すると共に、焼入れ性の向上に寄与する元素である。また、Crが炭化物に濃化することで加熱時に溶けにくくなり、球状化促進に寄与する。このような作用を発揮させるためには、Crを0.90%以上含有させる必要がある。しかし、Crの含有量が過剰になると、粗大な炭化物が生成し、転動疲労寿命が低下する。従って、Crの含有量は1.60%以下とする。Crの含有量の好ましい下限は1.00%、好ましい上限は1.55%である。 ・ Cr: 0.90 to 1.60%
Cr is an element that combines with C to form fine carbides, imparts wear resistance, and contributes to improved hardenability. Further, when Cr is concentrated in the carbide, it becomes difficult to dissolve during heating, which contributes to the promotion of spheroidization. In order to exert such an effect, it is necessary to contain 0.90% or more of Cr. However, when the Cr content is excessive, coarse carbides are generated and the rolling fatigue life is reduced. Therefore, the Cr content is 1.60% or less. The preferable lower limit of the Cr content is 1.00%, and the preferable upper limit is 1.55%.
Crは、Cと結びついて微細な炭化物を形成し、耐摩耗性を付与すると共に、焼入れ性の向上に寄与する元素である。また、Crが炭化物に濃化することで加熱時に溶けにくくなり、球状化促進に寄与する。このような作用を発揮させるためには、Crを0.90%以上含有させる必要がある。しかし、Crの含有量が過剰になると、粗大な炭化物が生成し、転動疲労寿命が低下する。従って、Crの含有量は1.60%以下とする。Crの含有量の好ましい下限は1.00%、好ましい上限は1.55%である。 ・ Cr: 0.90 to 1.60%
Cr is an element that combines with C to form fine carbides, imparts wear resistance, and contributes to improved hardenability. Further, when Cr is concentrated in the carbide, it becomes difficult to dissolve during heating, which contributes to the promotion of spheroidization. In order to exert such an effect, it is necessary to contain 0.90% or more of Cr. However, when the Cr content is excessive, coarse carbides are generated and the rolling fatigue life is reduced. Therefore, the Cr content is 1.60% or less. The preferable lower limit of the Cr content is 1.00%, and the preferable upper limit is 1.55%.
・Si:0.15~0.70%、Mn:1.15%以下(0%を含まない)
Siは、マトリックスの固溶強化および焼入れ性を向上させるために有用な元素である。こうした効果を発揮させるためには、Siは0.15%以上含有させる必要があり、好ましくは0.20%以上(より好ましくは0.25%以上)含有させることが望ましい。しかしながら、Si含有量が多くなり過ぎると加工性や被削性が著しく低下するので、Si含有量は0.70%以下、好ましくは0.65%以下(より好ましくは0.60%以下)に抑えるべきである。
Mnは、マトリックスの固溶強化および焼入れ性を向上させるために有用な元素であるが、Mn含有量が多くなり過ぎると加工性や被削性が著しく低下するので、Mn含有量は1.15%以下、好ましくは1.10%以下(より好ましくは1.05%以下)に抑えるべきである。下限については特に定めていないが、固溶強化や焼入れ性向上の効果を得るには0.1%以上含有させる必要があり、好ましくは0.15%以上(より好ましくは0.2%以上)含有させることが望ましい。 Si: 0.15 to 0.70%, Mn: 1.15% or less (excluding 0%)
Si is an element useful for improving the solid solution strengthening and hardenability of the matrix. In order to exert such effects, it is necessary to contain Si by 0.15% or more, preferably 0.20% or more (more preferably 0.25% or more). However, since the workability and machinability are remarkably lowered when the Si content is excessively increased, the Si content is 0.70% or less, preferably 0.65% or less (more preferably 0.60% or less). Should be suppressed.
Mn is an element useful for improving the solid solution strengthening and hardenability of the matrix. However, if the Mn content is excessively increased, the workability and machinability are remarkably lowered, so the Mn content is 1.15. % Or less, preferably 1.10% or less (more preferably 1.05% or less). Although the lower limit is not particularly defined, it is necessary to contain 0.1% or more, preferably 0.15% or more (more preferably 0.2% or more) in order to obtain the effects of solid solution strengthening and hardenability improvement. It is desirable to contain.
Siは、マトリックスの固溶強化および焼入れ性を向上させるために有用な元素である。こうした効果を発揮させるためには、Siは0.15%以上含有させる必要があり、好ましくは0.20%以上(より好ましくは0.25%以上)含有させることが望ましい。しかしながら、Si含有量が多くなり過ぎると加工性や被削性が著しく低下するので、Si含有量は0.70%以下、好ましくは0.65%以下(より好ましくは0.60%以下)に抑えるべきである。
Mnは、マトリックスの固溶強化および焼入れ性を向上させるために有用な元素であるが、Mn含有量が多くなり過ぎると加工性や被削性が著しく低下するので、Mn含有量は1.15%以下、好ましくは1.10%以下(より好ましくは1.05%以下)に抑えるべきである。下限については特に定めていないが、固溶強化や焼入れ性向上の効果を得るには0.1%以上含有させる必要があり、好ましくは0.15%以上(より好ましくは0.2%以上)含有させることが望ましい。 Si: 0.15 to 0.70%, Mn: 1.15% or less (excluding 0%)
Si is an element useful for improving the solid solution strengthening and hardenability of the matrix. In order to exert such effects, it is necessary to contain Si by 0.15% or more, preferably 0.20% or more (more preferably 0.25% or more). However, since the workability and machinability are remarkably lowered when the Si content is excessively increased, the Si content is 0.70% or less, preferably 0.65% or less (more preferably 0.60% or less). Should be suppressed.
Mn is an element useful for improving the solid solution strengthening and hardenability of the matrix. However, if the Mn content is excessively increased, the workability and machinability are remarkably lowered, so the Mn content is 1.15. % Or less, preferably 1.10% or less (more preferably 1.05% or less). Although the lower limit is not particularly defined, it is necessary to contain 0.1% or more, preferably 0.15% or more (more preferably 0.2% or more) in order to obtain the effects of solid solution strengthening and hardenability improvement. It is desirable to contain.
そのほか、軸受鋼では本発明が課題とする球状化特性の改善の他に、転動疲労特性や被削性などの観点から様々な元素の含有量が制限されるのが通常である。本発明では、以下に示す各種元素に関して夫々の役割から次のように規定する。各種元素の含有量が下記範囲内であれば、本発明の効果を妨げることがない。
In addition, in addition to the improvement of the spheroidizing property that is the subject of the present invention, the content of various elements is usually limited in bearing steel from the viewpoint of rolling fatigue properties and machinability. In the present invention, various elements shown below are defined as follows from their respective roles. If content of various elements is in the following range, the effect of the present invention will not be hindered.
・P:0.050%以下(0%を含まない)、S:0.050%以下(0%を含まない)
Pは、偏析部での靭性、加工性を劣化させ、Sは、介在物を形成して転動疲労特性を劣化させるため、いずれも0.050%以下とする。また、「JIS G 4805(2008)」には、P、Sの上限が規定されており、いずれも0.025%以下とするのが好ましい。より好ましい上限は0.020%、更に好ましくい上限は0.015%である。 ・ P: 0.050% or less (not including 0%), S: 0.050% or less (not including 0%)
P deteriorates the toughness and workability at the segregation part, and S forms inclusions and deteriorates the rolling fatigue characteristics. Further, “JIS G 4805 (2008)” defines the upper limits of P and S, and it is preferable that both be 0.025% or less. A more preferred upper limit is 0.020%, and a still more preferred upper limit is 0.015%.
Pは、偏析部での靭性、加工性を劣化させ、Sは、介在物を形成して転動疲労特性を劣化させるため、いずれも0.050%以下とする。また、「JIS G 4805(2008)」には、P、Sの上限が規定されており、いずれも0.025%以下とするのが好ましい。より好ましい上限は0.020%、更に好ましくい上限は0.015%である。 ・ P: 0.050% or less (not including 0%), S: 0.050% or less (not including 0%)
P deteriorates the toughness and workability at the segregation part, and S forms inclusions and deteriorates the rolling fatigue characteristics. Further, “JIS G 4805 (2008)” defines the upper limits of P and S, and it is preferable that both be 0.025% or less. A more preferred upper limit is 0.020%, and a still more preferred upper limit is 0.015%.
・Al:0.100%以下(0%を含まない)
Alは、窒化物を形成し、組織を微細化させ、転動疲労特性を向上させる作用を有する。一方、過剰に含有させると脱炭を促進し、転動疲労特性等に不具合を生じる。従って、本発明では、Alの含有量の上限を0.100%とする。好ましい上限は0.050%、より好ましい上限は0.030%、更に好ましい上限は0.010%である。 ・ Al: 0.100% or less (excluding 0%)
Al has the action of forming nitrides, refining the structure, and improving rolling fatigue characteristics. On the other hand, if it is contained excessively, decarburization is promoted, resulting in problems in rolling fatigue characteristics and the like. Therefore, in the present invention, the upper limit of the Al content is 0.100%. A preferable upper limit is 0.050%, a more preferable upper limit is 0.030%, and a further preferable upper limit is 0.010%.
Alは、窒化物を形成し、組織を微細化させ、転動疲労特性を向上させる作用を有する。一方、過剰に含有させると脱炭を促進し、転動疲労特性等に不具合を生じる。従って、本発明では、Alの含有量の上限を0.100%とする。好ましい上限は0.050%、より好ましい上限は0.030%、更に好ましい上限は0.010%である。 ・ Al: 0.100% or less (excluding 0%)
Al has the action of forming nitrides, refining the structure, and improving rolling fatigue characteristics. On the other hand, if it is contained excessively, decarburization is promoted, resulting in problems in rolling fatigue characteristics and the like. Therefore, in the present invention, the upper limit of the Al content is 0.100%. A preferable upper limit is 0.050%, a more preferable upper limit is 0.030%, and a further preferable upper limit is 0.010%.
・Ti:0.015%以下(0%を含まない)
Tiは、Alと同様に窒化物を形成するが、窒化物が比較的粗大であるため組織微細化への寄与は小さい上、転動疲労特性を劣化させる場合がある。よって、本発明では、Tiの含有量の上限を0.015%とする。好ましい上限は0.010%、より好ましい上限は0.005%、更に好ましい上限は0.002%である。 Ti: 0.015% or less (excluding 0%)
Ti forms nitrides like Al. However, since the nitrides are relatively coarse, the contribution to the refinement of the structure is small and rolling fatigue characteristics may be deteriorated. Therefore, in the present invention, the upper limit of the Ti content is 0.015%. A preferable upper limit is 0.010%, a more preferable upper limit is 0.005%, and a further preferable upper limit is 0.002%.
Tiは、Alと同様に窒化物を形成するが、窒化物が比較的粗大であるため組織微細化への寄与は小さい上、転動疲労特性を劣化させる場合がある。よって、本発明では、Tiの含有量の上限を0.015%とする。好ましい上限は0.010%、より好ましい上限は0.005%、更に好ましい上限は0.002%である。 Ti: 0.015% or less (excluding 0%)
Ti forms nitrides like Al. However, since the nitrides are relatively coarse, the contribution to the refinement of the structure is small and rolling fatigue characteristics may be deteriorated. Therefore, in the present invention, the upper limit of the Ti content is 0.015%. A preferable upper limit is 0.010%, a more preferable upper limit is 0.005%, and a further preferable upper limit is 0.002%.
・N:0.025%以下(0%を含まない)
Nは、固溶強化に有効な元素であって、前記したように転動疲労特性の向上にも寄与する。但し、その含有量が過剰になると、歪時効による加工性の劣化などの不具合を招くため、積極的に含有させる場合でも0.025%以下とする。好ましい上限は0.020%、より好ましい上限は0.010%、更に好ましい上限は0.0050%である。 ・ N: 0.025% or less (excluding 0%)
N is an element effective for solid solution strengthening, and contributes to the improvement of rolling fatigue characteristics as described above. However, if the content is excessive, problems such as deterioration of workability due to strain aging are caused. Therefore, even when it is actively contained, the content is made 0.025% or less. A preferable upper limit is 0.020%, a more preferable upper limit is 0.010%, and a further preferable upper limit is 0.0050%.
Nは、固溶強化に有効な元素であって、前記したように転動疲労特性の向上にも寄与する。但し、その含有量が過剰になると、歪時効による加工性の劣化などの不具合を招くため、積極的に含有させる場合でも0.025%以下とする。好ましい上限は0.020%、より好ましい上限は0.010%、更に好ましい上限は0.0050%である。 ・ N: 0.025% or less (excluding 0%)
N is an element effective for solid solution strengthening, and contributes to the improvement of rolling fatigue characteristics as described above. However, if the content is excessive, problems such as deterioration of workability due to strain aging are caused. Therefore, even when it is actively contained, the content is made 0.025% or less. A preferable upper limit is 0.020%, a more preferable upper limit is 0.010%, and a further preferable upper limit is 0.0050%.
・O:0.0025%以下(0%を含まない)
転動疲労では酸化物を主とする介在物を起点として破壊することが知られており、Oは、極力低減することが好ましい。本発明では、Oの含有量の上限を0.0025%とする。好ましい上限は0.0020%、より好ましい上限は0.0015%、更に好ましい上限は0.0010%である。 O: 0.0025% or less (excluding 0%)
It is known that rolling fatigue breaks starting from inclusions mainly composed of oxide, and O is preferably reduced as much as possible. In the present invention, the upper limit of the O content is 0.0025%. A preferable upper limit is 0.0020%, a more preferable upper limit is 0.0015%, and a further preferable upper limit is 0.0010%.
転動疲労では酸化物を主とする介在物を起点として破壊することが知られており、Oは、極力低減することが好ましい。本発明では、Oの含有量の上限を0.0025%とする。好ましい上限は0.0020%、より好ましい上限は0.0015%、更に好ましい上限は0.0010%である。 O: 0.0025% or less (excluding 0%)
It is known that rolling fatigue breaks starting from inclusions mainly composed of oxide, and O is preferably reduced as much as possible. In the present invention, the upper limit of the O content is 0.0025%. A preferable upper limit is 0.0020%, a more preferable upper limit is 0.0015%, and a further preferable upper limit is 0.0010%.
本発明の鋼材として、上記成分を含み、残部が鉄および不可避不純物である態様が挙げられる。鋼材中に含まれる必須成分は以上の通りであるが、必要に応じて以下に示す元素を所定の範囲内で含有しても良い。本発明の鋼材として、上記成分に加え、以下に示す元素を含有し、残部が鉄および不可避不純物である態様も挙げられる。
As the steel material of the present invention, there is an embodiment in which the above components are included and the balance is iron and inevitable impurities. Although the essential components contained in the steel are as described above, the following elements may be contained within a predetermined range as necessary. In addition to the above-described components, the steel material of the present invention includes the following elements, with the balance being iron and inevitable impurities.
・Cu:0.25%以下(0%を含まない)、Ni:0.25%以下(0%を含まない)、Mo:0.25%以下(0%を含まない)
Cu、Ni、Moは、いずれも焼入れ性を向上させる作用を有し、前記したように転動疲労特性の向上にも寄与する。但し、それらの含有量が過剰になると、加工性の劣化などの不具合を招くため、Cu:0.25%以下、Ni:0.25%以下、Mo:0.25%以下とする。いずれも、好ましい上限は0.20%、より好ましい上限は0.15%、更に好ましい上限は0.10%である。尚、MoはSUJ4材およびSUJ5材の必須含有元素であって、いずれも0.10~0.25%含有される。 Cu: 0.25% or less (not including 0%), Ni: 0.25% or less (not including 0%), Mo: 0.25% or less (not including 0%)
Cu, Ni, and Mo all have the effect of improving the hardenability and contribute to the improvement of rolling fatigue characteristics as described above. However, if the content is excessive, problems such as deterioration of workability are caused, so Cu: 0.25% or less, Ni: 0.25% or less, and Mo: 0.25% or less. In any case, the preferable upper limit is 0.20%, the more preferable upper limit is 0.15%, and the more preferable upper limit is 0.10%. Mo is an essential element of the SUJ4 material and the SUJ5 material, and both are contained in an amount of 0.10 to 0.25%.
Cu、Ni、Moは、いずれも焼入れ性を向上させる作用を有し、前記したように転動疲労特性の向上にも寄与する。但し、それらの含有量が過剰になると、加工性の劣化などの不具合を招くため、Cu:0.25%以下、Ni:0.25%以下、Mo:0.25%以下とする。いずれも、好ましい上限は0.20%、より好ましい上限は0.15%、更に好ましい上限は0.10%である。尚、MoはSUJ4材およびSUJ5材の必須含有元素であって、いずれも0.10~0.25%含有される。 Cu: 0.25% or less (not including 0%), Ni: 0.25% or less (not including 0%), Mo: 0.25% or less (not including 0%)
Cu, Ni, and Mo all have the effect of improving the hardenability and contribute to the improvement of rolling fatigue characteristics as described above. However, if the content is excessive, problems such as deterioration of workability are caused, so Cu: 0.25% or less, Ni: 0.25% or less, and Mo: 0.25% or less. In any case, the preferable upper limit is 0.20%, the more preferable upper limit is 0.15%, and the more preferable upper limit is 0.10%. Mo is an essential element of the SUJ4 material and the SUJ5 material, and both are contained in an amount of 0.10 to 0.25%.
・Nb:0.5%以下(0%を含まない)、V:0.5%以下(0%を含まない)、B:0.005%以下(0%を含まない)
Nb、V、Bは、いずれも焼入れ性を向上させる作用を有し、前記したように転動疲労特性の向上にも寄与するため、必要に応じて含有される。但し、それらの含有量が過剰になると、特性劣化を招くため、Nb:0.5%以下、V:0.5%以下、B:0.005%以下とする。NbおよびVの含有量の好ましい上限は0.25%、より好ましい上限は0.10%、更に好ましい上限は0.05%である。また、Bの含有量の好ましい上限は0.004%、より好ましい上限は0.003%、更に好ましい上限は0.002%である。 Nb: 0.5% or less (not including 0%), V: 0.5% or less (not including 0%), B: 0.005% or less (not including 0%)
Nb, V, and B all have the effect of improving the hardenability and contribute to the improvement of the rolling fatigue characteristics as described above, so are contained as necessary. However, if the content is excessive, characteristic deterioration is caused. Therefore, Nb: 0.5% or less, V: 0.5% or less, and B: 0.005% or less. The upper limit with preferable content of Nb and V is 0.25%, a more preferable upper limit is 0.10%, and a still more preferable upper limit is 0.05%. Moreover, the upper limit with preferable content of B is 0.004%, a more preferable upper limit is 0.003%, and a still more preferable upper limit is 0.002%.
Nb、V、Bは、いずれも焼入れ性を向上させる作用を有し、前記したように転動疲労特性の向上にも寄与するため、必要に応じて含有される。但し、それらの含有量が過剰になると、特性劣化を招くため、Nb:0.5%以下、V:0.5%以下、B:0.005%以下とする。NbおよびVの含有量の好ましい上限は0.25%、より好ましい上限は0.10%、更に好ましい上限は0.05%である。また、Bの含有量の好ましい上限は0.004%、より好ましい上限は0.003%、更に好ましい上限は0.002%である。 Nb: 0.5% or less (not including 0%), V: 0.5% or less (not including 0%), B: 0.005% or less (not including 0%)
Nb, V, and B all have the effect of improving the hardenability and contribute to the improvement of the rolling fatigue characteristics as described above, so are contained as necessary. However, if the content is excessive, characteristic deterioration is caused. Therefore, Nb: 0.5% or less, V: 0.5% or less, and B: 0.005% or less. The upper limit with preferable content of Nb and V is 0.25%, a more preferable upper limit is 0.10%, and a still more preferable upper limit is 0.05%. Moreover, the upper limit with preferable content of B is 0.004%, a more preferable upper limit is 0.003%, and a still more preferable upper limit is 0.002%.
・Ca:0.05%以下(0%を含まない)、REM:0.05%以下(0%を含まない)、Mg:0.02%以下(0%を含まない)、Li:0.02%以下(0%を含まない)、Zr:0.2%以下(0%を含まない)
Ca、REM(Ce、Y、La、Nd)、Mg、Li、Zrは、いずれも酸化物や硫化物の介在物を微細化する作用を有し、転動疲労特性の向上に寄与するため、必要に応じて含有される。但し、それらの含有量が過剰になると、特性劣化を招くため、Ca:0.05%以下、REM:0.05%以下、Mg:0.02%以下、Li:0.02%以下、Zr:0.2%以下とする。CaおよびREMの含有量の好ましい上限は0.02%、より好ましい上限は0.01%、更に好ましい上限は0.005%である。また、MgおよびLiの含有量の好ましい上限は0.01%、より好ましい上限は0.005%、更に好ましい上限は0.001%である。また、Zrの含有量の好ましい上限は0.1%、より好ましい上限は0.05%、更に好ましい上限は0.01%である。なお、REMとは、上述の通り、Ce、Y、La及びNdの1種以上を表し、単独で含有する場合は単独の量が上記範囲を満たせばよく、2種以上を併用する時は、その合計量が上記範囲を満たせばよい。 Ca: 0.05% or less (not including 0%), REM: 0.05% or less (not including 0%), Mg: 0.02% or less (not including 0%), Li: 0.00 02% or less (not including 0%), Zr: 0.2% or less (not including 0%)
Ca, REM (Ce, Y, La, Nd), Mg, Li, and Zr all have the effect of refining oxide and sulfide inclusions, and contribute to the improvement of rolling fatigue characteristics. It is contained as necessary. However, if the content is excessive, deterioration of characteristics is caused. Therefore, Ca: 0.05% or less, REM: 0.05% or less, Mg: 0.02% or less, Li: 0.02% or less, Zr : 0.2% or less. The upper limit with preferable content of Ca and REM is 0.02%, A more preferable upper limit is 0.01%, Furthermore, a preferable upper limit is 0.005%. Moreover, the upper limit with preferable content of Mg and Li is 0.01%, A more preferable upper limit is 0.005%, Furthermore, a preferable upper limit is 0.001%. The preferable upper limit of the Zr content is 0.1%, the more preferable upper limit is 0.05%, and the more preferable upper limit is 0.01%. Note that, as described above, REM represents one or more of Ce, Y, La and Nd, and when contained alone, the single amount only needs to satisfy the above range, and when two or more are used in combination, The total amount only needs to satisfy the above range.
Ca、REM(Ce、Y、La、Nd)、Mg、Li、Zrは、いずれも酸化物や硫化物の介在物を微細化する作用を有し、転動疲労特性の向上に寄与するため、必要に応じて含有される。但し、それらの含有量が過剰になると、特性劣化を招くため、Ca:0.05%以下、REM:0.05%以下、Mg:0.02%以下、Li:0.02%以下、Zr:0.2%以下とする。CaおよびREMの含有量の好ましい上限は0.02%、より好ましい上限は0.01%、更に好ましい上限は0.005%である。また、MgおよびLiの含有量の好ましい上限は0.01%、より好ましい上限は0.005%、更に好ましい上限は0.001%である。また、Zrの含有量の好ましい上限は0.1%、より好ましい上限は0.05%、更に好ましい上限は0.01%である。なお、REMとは、上述の通り、Ce、Y、La及びNdの1種以上を表し、単独で含有する場合は単独の量が上記範囲を満たせばよく、2種以上を併用する時は、その合計量が上記範囲を満たせばよい。 Ca: 0.05% or less (not including 0%), REM: 0.05% or less (not including 0%), Mg: 0.02% or less (not including 0%), Li: 0.00 02% or less (not including 0%), Zr: 0.2% or less (not including 0%)
Ca, REM (Ce, Y, La, Nd), Mg, Li, and Zr all have the effect of refining oxide and sulfide inclusions, and contribute to the improvement of rolling fatigue characteristics. It is contained as necessary. However, if the content is excessive, deterioration of characteristics is caused. Therefore, Ca: 0.05% or less, REM: 0.05% or less, Mg: 0.02% or less, Li: 0.02% or less, Zr : 0.2% or less. The upper limit with preferable content of Ca and REM is 0.02%, A more preferable upper limit is 0.01%, Furthermore, a preferable upper limit is 0.005%. Moreover, the upper limit with preferable content of Mg and Li is 0.01%, A more preferable upper limit is 0.005%, Furthermore, a preferable upper limit is 0.001%. The preferable upper limit of the Zr content is 0.1%, the more preferable upper limit is 0.05%, and the more preferable upper limit is 0.01%. Note that, as described above, REM represents one or more of Ce, Y, La and Nd, and when contained alone, the single amount only needs to satisfy the above range, and when two or more are used in combination, The total amount only needs to satisfy the above range.
・Pb:0.5%以下(0%を含まない)、Bi:0.5%以下(0%を含まない)、Te:0.1%以下(0%を含まない)
Pb、Bi、Teは、いずれも被削性を向上する作用を有し、必要に応じて含有される。但し、それらの含有量が過剰になると、熱間加工特性の劣化、疵の発生などの不具合を招くため、Pb:0.5%以下、Bi:0.5%以下、Te:0.1%以下とする。PbおよびBiの含有量の好ましい上限は0.2%、より好ましい上限は0.1%、更に好ましい上限は0.05%である。また、Teの含有量の好ましい上限は0.05%、より好ましい上限は0.02%、更に好ましい上限は0.01%である。 Pb: 0.5% or less (not including 0%), Bi: 0.5% or less (not including 0%), Te: 0.1% or less (not including 0%)
Pb, Bi, and Te all have an effect of improving machinability and are contained as necessary. However, if the content is excessive, problems such as deterioration of hot working characteristics and generation of wrinkles are caused. Therefore, Pb: 0.5% or less, Bi: 0.5% or less, Te: 0.1% The following. A preferable upper limit of the content of Pb and Bi is 0.2%, a more preferable upper limit is 0.1%, and a further preferable upper limit is 0.05%. Moreover, the upper limit with preferable content of Te is 0.05%, a more preferable upper limit is 0.02%, and a still more preferable upper limit is 0.01%.
Pb、Bi、Teは、いずれも被削性を向上する作用を有し、必要に応じて含有される。但し、それらの含有量が過剰になると、熱間加工特性の劣化、疵の発生などの不具合を招くため、Pb:0.5%以下、Bi:0.5%以下、Te:0.1%以下とする。PbおよびBiの含有量の好ましい上限は0.2%、より好ましい上限は0.1%、更に好ましい上限は0.05%である。また、Teの含有量の好ましい上限は0.05%、より好ましい上限は0.02%、更に好ましい上限は0.01%である。 Pb: 0.5% or less (not including 0%), Bi: 0.5% or less (not including 0%), Te: 0.1% or less (not including 0%)
Pb, Bi, and Te all have an effect of improving machinability and are contained as necessary. However, if the content is excessive, problems such as deterioration of hot working characteristics and generation of wrinkles are caused. Therefore, Pb: 0.5% or less, Bi: 0.5% or less, Te: 0.1% The following. A preferable upper limit of the content of Pb and Bi is 0.2%, a more preferable upper limit is 0.1%, and a further preferable upper limit is 0.05%. Moreover, the upper limit with preferable content of Te is 0.05%, a more preferable upper limit is 0.02%, and a still more preferable upper limit is 0.01%.
・As:0.02%以下(0%を含まない)
Asは、鋼材の脆化を招く有害元素であり、極力低減するのが好ましい。但し、必要以上の低減はコスト増を招くため工業上好ましくない。従って、As:0.02%以下とする。好ましい含有量の上限は0.01%、より好ましい上限は0.005%、更に好ましい上限は0.002%である。 As: 0.02% or less (excluding 0%)
As is a harmful element that causes embrittlement of the steel material, and is preferably reduced as much as possible. However, an unnecessarily reduced increase causes an increase in cost, which is not industrially preferable. Therefore, As: 0.02% or less. The upper limit of the preferable content is 0.01%, the more preferable upper limit is 0.005%, and the more preferable upper limit is 0.002%.
Asは、鋼材の脆化を招く有害元素であり、極力低減するのが好ましい。但し、必要以上の低減はコスト増を招くため工業上好ましくない。従って、As:0.02%以下とする。好ましい含有量の上限は0.01%、より好ましい上限は0.005%、更に好ましい上限は0.002%である。 As: 0.02% or less (excluding 0%)
As is a harmful element that causes embrittlement of the steel material, and is preferably reduced as much as possible. However, an unnecessarily reduced increase causes an increase in cost, which is not industrially preferable. Therefore, As: 0.02% or less. The upper limit of the preferable content is 0.01%, the more preferable upper limit is 0.005%, and the more preferable upper limit is 0.002%.
(製造条件)
上記したように、軸受は、軸受鋼を熱間圧延して圧延線材とした後に、球状化焼鈍し、切断後、所定の形状に冷間鍛造し、焼入れ焼戻し処理し、最後に仕上げ加工を施すことで製造することができる。 (Production conditions)
As described above, the bearing is rolled into a rolled wire rod by hot rolling the bearing steel, then spheroidizing annealing, cutting, cold forging into a predetermined shape, quenching and tempering, and finally finishing. Can be manufactured.
上記したように、軸受は、軸受鋼を熱間圧延して圧延線材とした後に、球状化焼鈍し、切断後、所定の形状に冷間鍛造し、焼入れ焼戻し処理し、最後に仕上げ加工を施すことで製造することができる。 (Production conditions)
As described above, the bearing is rolled into a rolled wire rod by hot rolling the bearing steel, then spheroidizing annealing, cutting, cold forging into a predetermined shape, quenching and tempering, and finally finishing. Can be manufactured.
フェライト結晶粒径を本発明で規定する20μm以下とするには、熱間圧延工程における仕上げ圧延温度、および仕上げ圧延後の冷却速度を制御することが必要である。従来は素材を軟質化するという観点から仕上げ圧延後の冷却は、徐冷により行うことが一般的であった。しかしながら、仕上げ圧延後に徐冷を施すと、徐冷中にオーステナイトの粗大化が進行し、結果的に変態後のフェライトも粗大化する傾向がある。
In order to make the ferrite crystal grain size 20 μm or less as defined in the present invention, it is necessary to control the finish rolling temperature in the hot rolling process and the cooling rate after finish rolling. Conventionally, from the viewpoint of softening the material, cooling after finish rolling has been generally performed by slow cooling. However, if annealing is performed after finish rolling, the austenite coarsens during the slow cooling, and as a result, the ferrite after transformation also tends to coarsen.
本発明者らが鋭意検討を行った結果、フェライトの粗大化は圧延ままでは硬さを低下させるが、それが必ずしも球状化処理後の硬さ低下につながらないことを知見した。本発明者らは更に検討を行った結果、仕上げ圧延温度を850℃以下、仕上げ圧延後、740℃までの平均冷却速度を10℃/s以上とすることで、オーステナイトの粗大化を抑制することができ、フェライト結晶粒径を20.0μm以下とできることを知見した。
As a result of intensive studies by the present inventors, it has been found that the coarsening of ferrite reduces the hardness as it is rolled, but it does not necessarily lead to a decrease in hardness after spheroidizing treatment. As a result of further investigation, the inventors have suppressed the austenite coarsening by setting the final rolling temperature to 850 ° C. or lower and the average cooling rate to 740 ° C. after finishing rolling to 10 ° C./s or higher. It was found that the ferrite crystal grain size could be 20.0 μm or less.
一方、炭化物(セメンタイト)中のCr濃度は、加熱温度、圧延温度の影響が大きいといえる。炭化物中のCr濃度を高くするには、高温かつセメンタイトが残存することが要件になる。高温であるほど拡散促進されCr濃化が進むが、一方で高温になりすぎるとセメンタイトは溶解し、Cr濃化したセメンタイトの体積分率が減少する。冷却時に析出するセメンタイトはCr濃度が高くないため、冷却時のセメンタイト分率が増加すると、Cr濃度が高い炭化物の割合が少なくなる。特に冷却時に析出するセメンタイト中のCr濃度は、低温で析出するほど低下する。これらの知見をもとに、本発明者らが検討を行った結果、加熱~仕上げ圧延までの温度を750~870℃の温度域として、740℃から500℃までの平均冷却速度を5℃/s以下とすることで、炭化物中のCr濃度を6.0質量%以上とできることを確認した。
On the other hand, it can be said that the Cr concentration in the carbide (cementite) is greatly affected by the heating temperature and the rolling temperature. In order to increase the Cr concentration in the carbide, it is necessary that the cementite remains at a high temperature. The higher the temperature, the more the diffusion is promoted and the Cr concentration proceeds. On the other hand, when the temperature is too high, the cementite dissolves and the volume fraction of the Cr-concentrated cementite decreases. Since cementite precipitated during cooling does not have a high Cr concentration, when the cementite fraction during cooling increases, the proportion of carbides with a high Cr concentration decreases. In particular, the Cr concentration in cementite that precipitates during cooling decreases as it precipitates at low temperatures. Based on these findings, the present inventors have studied, and as a result, the temperature from heating to finish rolling is set to a temperature range of 750 to 870 ° C., and the average cooling rate from 740 ° C. to 500 ° C. is 5 ° C. / It was confirmed that the Cr concentration in the carbide could be 6.0% by mass or more by setting it to s or less.
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、本発明の趣旨に適合し得る範囲で適宜変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited by the following examples, but may be implemented with appropriate modifications within a scope that can meet the gist of the present invention. These are all included in the technical scope of the present invention.
本発明の実施例では、まず、表1に示す各成分組成の鋼を用いて連続鋳造により鋳片を製造し、その鋳片を分解圧延して155mm角の鋼片とした。この鋼片を用いて、表2および表3に示す各製造条件で圧延線材を得た。この圧延線材を用いて以下に示す各種測定、試験を実施した。尚、表1に示す各成分組成において、残部は鉄および不可避的不純物である。
In the examples of the present invention, first, slabs were manufactured by continuous casting using steels having respective component compositions shown in Table 1, and the slabs were disassembled and rolled into 155 mm square steel slabs. Using this steel slab, rolled wire rods were obtained under the production conditions shown in Tables 2 and 3. Various measurements and tests shown below were carried out using this rolled wire. In each component composition shown in Table 1, the balance is iron and inevitable impurities.
(フェライト結晶粒径)
フェライト結晶粒径は、圧延線材の長手方向に対して垂直な断面について、鏡面研磨後、ナイタールでエッチングを行い、光学顕微鏡にて組織観察を行い、合計10断面のD/4位置(D:直径)について、組織サイズに合わせて400~1000倍の写真を撮影し、合計30視野の結果を平均化した。フェライト結晶粒径は比較法によって粒度番号Nを求め、下記の式から粒径Dα(単位:μm)に換算した。
Dα=[0.254/2(N-1)/2 ]×1000 (Ferrite crystal grain size)
The ferrite crystal grain size was determined by performing mirror polishing on the cross section perpendicular to the longitudinal direction of the rolled wire rod, etching with nital, and observing the structure with an optical microscope. ), 400-1000 times photographs were taken according to the tissue size, and the results for a total of 30 fields were averaged. The grain size number N of the ferrite crystal grain size was determined by a comparison method, and converted to the grain size Dα (unit: μm) from the following formula.
Dα = [0.254 / 2 (N-1) / 2 ] × 1000
フェライト結晶粒径は、圧延線材の長手方向に対して垂直な断面について、鏡面研磨後、ナイタールでエッチングを行い、光学顕微鏡にて組織観察を行い、合計10断面のD/4位置(D:直径)について、組織サイズに合わせて400~1000倍の写真を撮影し、合計30視野の結果を平均化した。フェライト結晶粒径は比較法によって粒度番号Nを求め、下記の式から粒径Dα(単位:μm)に換算した。
Dα=[0.254/2(N-1)/2 ]×1000 (Ferrite crystal grain size)
The ferrite crystal grain size was determined by performing mirror polishing on the cross section perpendicular to the longitudinal direction of the rolled wire rod, etching with nital, and observing the structure with an optical microscope. ), 400-1000 times photographs were taken according to the tissue size, and the results for a total of 30 fields were averaged. The grain size number N of the ferrite crystal grain size was determined by a comparison method, and converted to the grain size Dα (unit: μm) from the following formula.
Dα = [0.254 / 2 (N-1) / 2 ] × 1000
尚、本発明の高炭素鋼線材においては、フェライト・パーライトの混合組織やパーライト主体の組織となる場合があるが、パーライトについては、フェライトの結晶粒径に相当するパーライトノジュール(ブロック)サイズを測定した。フェライト・パーライトの粒度測定については、「JIS G 0551」に、パーライト部分を除いたフェライト部分のみの粒度測定法が記載されている。一方、パーライトノジュール(ブロック)の測定については、「高橋、南雲、浅野、日本金属学会誌、42号、1978年、708ページ」に記載されているように、エッチング後のコントラストによって結晶単位を判断した。また、混合組織の場合は、フェライト粒径、パーライトノジュールサイズをまとめて測定した。
The high carbon steel wire of the present invention may have a mixed structure of ferrite and pearlite or a structure mainly composed of pearlite. For pearlite, the pearlite nodule (block) size corresponding to the crystal grain size of ferrite is measured. did. Regarding the particle size measurement of ferrite and pearlite, “JIS G 0551” describes a particle size measurement method for only the ferrite portion excluding the pearlite portion. On the other hand, for the measurement of pearlite nodules (blocks), as described in “Takahashi, Nagumo, Asano, Journal of the Japan Institute of Metals, 42, 1978, p. 708”, the crystal unit is determined by the contrast after etching. did. In the case of a mixed structure, the ferrite particle size and pearlite nodule size were collectively measured.
(炭化物中のCr濃度)
炭化物中のCr濃度は、電解抽出した残渣中のCr濃度を測定することで求めた。まず、圧延材線材を長さ20mmに切断した後、外表面からD/4(D:直径)までの部分を研削除去して、電解用サンプルとした。次に、加工層を除去するために、10%AA系電解液(%は質量比)を用いた定電流電解法にて予備電解を行った。この後、本電解として10%AA系電解液を用いた定電流電解法による電解を行い、吸引ろ過法により電解液をろ過して残渣を採取した。ろ過にはポアサイズ0.1μmのポリカーボネート製のメッシュを用いた。得られた残渣を分析用の処理を施した後、ICP発行分析法にて、Cr濃度を測定した。 (Cr concentration in carbide)
The Cr concentration in the carbide was determined by measuring the Cr concentration in the electrolytically extracted residue. First, the rolled wire was cut to a length of 20 mm, and then the portion from the outer surface to D / 4 (D: diameter) was removed by grinding to obtain a sample for electrolysis. Next, in order to remove the processed layer, preliminary electrolysis was performed by a constant current electrolysis method using a 10% AA-based electrolytic solution (% is a mass ratio). Thereafter, electrolysis by a constant current electrolysis method using a 10% AA-based electrolyte as main electrolysis was performed, and the residue was collected by filtering the electrolyte solution by a suction filtration method. For filtration, a polycarbonate mesh having a pore size of 0.1 μm was used. The obtained residue was treated for analysis, and then the Cr concentration was measured by ICP issuance analysis.
炭化物中のCr濃度は、電解抽出した残渣中のCr濃度を測定することで求めた。まず、圧延材線材を長さ20mmに切断した後、外表面からD/4(D:直径)までの部分を研削除去して、電解用サンプルとした。次に、加工層を除去するために、10%AA系電解液(%は質量比)を用いた定電流電解法にて予備電解を行った。この後、本電解として10%AA系電解液を用いた定電流電解法による電解を行い、吸引ろ過法により電解液をろ過して残渣を採取した。ろ過にはポアサイズ0.1μmのポリカーボネート製のメッシュを用いた。得られた残渣を分析用の処理を施した後、ICP発行分析法にて、Cr濃度を測定した。 (Cr concentration in carbide)
The Cr concentration in the carbide was determined by measuring the Cr concentration in the electrolytically extracted residue. First, the rolled wire was cut to a length of 20 mm, and then the portion from the outer surface to D / 4 (D: diameter) was removed by grinding to obtain a sample for electrolysis. Next, in order to remove the processed layer, preliminary electrolysis was performed by a constant current electrolysis method using a 10% AA-based electrolytic solution (% is a mass ratio). Thereafter, electrolysis by a constant current electrolysis method using a 10% AA-based electrolyte as main electrolysis was performed, and the residue was collected by filtering the electrolyte solution by a suction filtration method. For filtration, a polycarbonate mesh having a pore size of 0.1 μm was used. The obtained residue was treated for analysis, and then the Cr concentration was measured by ICP issuance analysis.
(球状化焼鈍条件)
(H1)通常条件:均熱785℃×6時間→ 徐冷(冷却速度:10℃/h)
(H2)短縮条件:均熱785℃×6時間→ 徐冷(冷却速度:30℃/h) (Spheroidizing annealing conditions)
(H1) Normal conditions: Soaking 785 ° C. × 6 hours → Slow cooling (cooling rate: 10 ° C./h)
(H2) Shortening conditions: soaking 785 ° C. × 6 hours → slow cooling (cooling rate: 30 ° C./h)
(H1)通常条件:均熱785℃×6時間→ 徐冷(冷却速度:10℃/h)
(H2)短縮条件:均熱785℃×6時間→ 徐冷(冷却速度:30℃/h) (Spheroidizing annealing conditions)
(H1) Normal conditions: Soaking 785 ° C. × 6 hours → Slow cooling (cooling rate: 10 ° C./h)
(H2) Shortening conditions: soaking 785 ° C. × 6 hours → slow cooling (cooling rate: 30 ° C./h)
(ビッカース硬さ)
球状化焼鈍後の各圧延線材を用いてビッカース硬さを測定した。圧延線材の長手方向に対して垂直な断面について、鏡面研磨後、荷重を1kgとして、圧延線材のD/4位置(D:直径)計4点のビッカース硬さ(Hv)を測定した。4点の平均値を、球状化焼鈍後の各圧延線材のビッカース硬さとする。 (Vickers hardness)
Vickers hardness was measured using each rolled wire after spheroidizing annealing. About the cross section perpendicular | vertical with respect to the longitudinal direction of a rolled wire rod, the Vickers hardness (Hv) of a total of 4 points | pieces was measured for D / 4 position (D: diameter) of a rolled wire rod, after a mirror surface grinding | polishing, and making a load 1 kg. Let the average value of 4 points | pieces be the Vickers hardness of each rolling wire after spheroidizing annealing.
球状化焼鈍後の各圧延線材を用いてビッカース硬さを測定した。圧延線材の長手方向に対して垂直な断面について、鏡面研磨後、荷重を1kgとして、圧延線材のD/4位置(D:直径)計4点のビッカース硬さ(Hv)を測定した。4点の平均値を、球状化焼鈍後の各圧延線材のビッカース硬さとする。 (Vickers hardness)
Vickers hardness was measured using each rolled wire after spheroidizing annealing. About the cross section perpendicular | vertical with respect to the longitudinal direction of a rolled wire rod, the Vickers hardness (Hv) of a total of 4 points | pieces was measured for D / 4 position (D: diameter) of a rolled wire rod, after a mirror surface grinding | polishing, and making a load 1 kg. Let the average value of 4 points | pieces be the Vickers hardness of each rolling wire after spheroidizing annealing.
試験結果を表2~3に示す。本試験では、球状化焼鈍を短縮条件で実施した場合でも、ビッカース硬さが190Hv以下であるのものを合格とする。
The test results are shown in Tables 2-3. In this test, even when spheroidizing annealing is carried out under shortening conditions, a test with a Vickers hardness of 190 Hv or less is accepted.
No.8,9,11~14,17~19,21,22,24~37は、本発明の要件を満足する発明例であり、球状化焼鈍を短縮条件で実施した場合でも、通常条件と同様にビッカース硬さが190Hv以下となった。この結果から、No.8,9,11~14,17~19,21,22,24~37は、製造時の球状化処理時間の短縮化が図れると共に、球状化処理後の硬さが十分に低下した高炭素鋼線材であるといえる。
No. 8, 9, 11 to 14, 17 to 19, 21, 22, 24 to 37 are examples of the invention that satisfy the requirements of the present invention. Even when the spheroidizing annealing is performed under a shortened condition, it is the same as the normal condition. The Vickers hardness was 190 Hv or less. From this result, no. Nos. 8, 9, 11 to 14, 17 to 19, 21, 22, 24 to 37 are high carbon steels capable of shortening the spheroidizing time during production and sufficiently reducing the hardness after spheronizing. It can be said that it is a wire.
これに対し、本発明の要件を満足しないNo.1~7,10,15,16,20,23では、球状化焼鈍を短縮条件で実施した場合(No.2~4は通常条件でも)、ビッカース硬さが190Hvを超えてしまっている。
In contrast, No. which does not satisfy the requirements of the present invention. In 1 to 7, 10, 15, 16, 20, and 23, when the spheroidizing annealing is performed under a shortened condition (No. 2 to 4 are normal conditions), the Vickers hardness exceeds 190 Hv.
本出願を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
本出願は、2011年4月20日出願の日本特許出願(特願2011-094098)に基づくものであり、その内容はここに参照として取り込まれる。 Although this application has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application filed on April 20, 2011 (Japanese Patent Application No. 2011-094098), the contents of which are incorporated herein by reference.
本出願は、2011年4月20日出願の日本特許出願(特願2011-094098)に基づくものであり、その内容はここに参照として取り込まれる。 Although this application has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application filed on April 20, 2011 (Japanese Patent Application No. 2011-094098), the contents of which are incorporated herein by reference.
本発明の高炭素鋼線材および高炭素鋼線材の製造方法によると、コスト、環境負荷という観点から、製造時の球状化処理時間の短縮化が図れるうえに、併せて冷間鍛造時の金型寿命の向上を図れ、製造時の省電力化という観点から、硬さを十分に低減させることが可能となる。
According to the production method of the high carbon steel wire and the high carbon steel wire of the present invention, from the viewpoint of cost and environmental load, it is possible to shorten the spheroidizing treatment time during production, and at the same time, the die during cold forging The life can be improved, and the hardness can be sufficiently reduced from the viewpoint of power saving during production.
Claims (7)
- 質量%で、C:0.95~1.10%、Si:0.15~0.70%、Mn:1.15%以下(0%を含まない)、Cr:0.90~1.60%、P:0.050%以下(0%を含まない)、S:0.050%以下(0%を含まない)、Al:0.100%以下(0%を含まない)、Ti:0.015%以下(0%を含まない)、N:0.025%以下(0%を含まない)、O:0.0025%以下(0%を含まない)を含有し、残部が鉄および不可避的不純物からなり、
フェライト結晶粒径が20.0μm以下であって、
且つ、炭化物中のCr濃度が、質量%で6.0%以上であることを特徴とする高炭素鋼線材。 % By mass: C: 0.95 to 1.10%, Si: 0.15 to 0.70%, Mn: 1.15% or less (excluding 0%), Cr: 0.90 to 1.60 %, P: 0.050% or less (not including 0%), S: 0.050% or less (not including 0%), Al: 0.100% or less (not including 0%), Ti: 0 0.15% or less (excluding 0%), N: 0.025% or less (not including 0%), O: 0.0025% or less (not including 0%), the balance being iron and inevitable Consisting of mechanical impurities
The ferrite crystal grain size is 20.0 μm or less,
And the Cr density | concentration in carbide | carbonized_material is 6.0% or more by mass%, The high carbon steel wire characterized by the above-mentioned. - 更に、質量%で、Cu:0.25%以下(0%を含まない)、Ni:0.25%以下(0%を含まない)、Mo:0.25%以下(0%を含まない)の1種以上を含有する請求項1記載の高炭素鋼線材。 Further, by mass%, Cu: 0.25% or less (excluding 0%), Ni: 0.25% or less (not including 0%), Mo: 0.25% or less (not including 0%) The high carbon steel wire according to claim 1, which contains at least one of the following.
- 更に、質量%で、Nb:0.5%以下(0%を含まない)、V:0.5%以下(0%を含まない)、B:0.005%以下(0%を含まない)の1種以上を含有する請求項1または2記載の高炭素鋼線材。 Furthermore, by mass%, Nb: 0.5% or less (excluding 0%), V: 0.5% or less (not including 0%), B: 0.005% or less (not including 0%) The high carbon steel wire according to claim 1 or 2, comprising at least one of the following.
- 更に、質量%で、Ca:0.05%以下(0%を含まない)、REM:0.05%以下(0%を含まない)、Mg:0.02%以下(0%を含まない)、Li:0.02%以下(0%を含まない)、Zr:0.2%以下(0%を含まない)の1種以上を含有する請求項1乃至3のいずれか一項に記載の高炭素鋼線材。 Furthermore, in mass%, Ca: 0.05% or less (excluding 0%), REM: 0.05% or less (not including 0%), Mg: 0.02% or less (not including 0%) , Li: 0.02% or less (excluding 0%), Zr: 0.2% or less (not including 0%) High carbon steel wire.
- 更に、質量%で、Pb:0.5%以下(0%を含まない)、Bi:0.5%以下(0%を含まない)、Te:0.1%以下(0%を含まない)の1種以上を含有する請求項1乃至4のいずれか一項に記載の高炭素鋼線材。 Furthermore, by mass%, Pb: 0.5% or less (excluding 0%), Bi: 0.5% or less (not including 0%), Te: 0.1% or less (not including 0%) The high carbon steel wire according to any one of claims 1 to 4, comprising one or more of the following.
- 更に、質量%で、As:0.02%以下(0%を含まない)を含有する請求項1乃至5のいずれか一項に記載の高炭素鋼線材。 Furthermore, the high carbon steel wire according to any one of claims 1 to 5, further comprising, by mass%, As: 0.02% or less (not including 0%).
- 加熱から仕上げ圧延まで鋼材を750~870℃に維持すること、
仕上げ圧延を850℃以下で行うこと、
仕上げ圧延後、740℃まで、平均冷却速度10℃/s以上で冷却すること、及び、
740℃から500℃まで、平均冷却速度5℃/s以下で冷却すること、
をこの順番で含む請求項1乃至6のいずれか一項に記載の高炭素線材の製造方法。 Maintaining the steel at 750-870 ° C from heating to finish rolling;
Performing finish rolling at 850 ° C. or lower,
After finish rolling, cooling to 740 ° C. at an average cooling rate of 10 ° C./s or more, and
Cooling from 740 ° C to 500 ° C at an average cooling rate of 5 ° C / s or less,
The manufacturing method of the high carbon wire as described in any one of Claims 1 thru | or 6 containing these in this order.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-094098 | 2011-04-20 | ||
JP2011094098 | 2011-04-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012144630A1 true WO2012144630A1 (en) | 2012-10-26 |
Family
ID=47041730
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/060783 WO2012144630A1 (en) | 2011-04-20 | 2012-04-20 | High carbon steel wire rod and method for producing high carbon steel wire rod |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5204328B2 (en) |
TW (1) | TW201305352A (en) |
WO (1) | WO2012144630A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105164293A (en) * | 2013-03-28 | 2015-12-16 | 株式会社神户制钢所 | High-strength steel wire material exhibiting excellent cold-drawing properties, and high-strength steel wire |
KR20160147041A (en) | 2014-06-02 | 2016-12-21 | 신닛테츠스미킨 카부시키카이샤 | Steel wire material |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6082342B2 (en) * | 2013-12-20 | 2017-02-15 | 株式会社神戸製鋼所 | Manufacturing method of high carbon steel wire |
WO2016063867A1 (en) * | 2014-10-20 | 2016-04-28 | 新日鐵住金株式会社 | Steel wire for bearing with excellent wire drawability and coil formability after wiredrawing |
JP6193842B2 (en) * | 2014-12-11 | 2017-09-06 | 株式会社神戸製鋼所 | Steel wire rod for bearing |
KR102047403B1 (en) * | 2017-12-26 | 2019-11-22 | 주식회사 포스코 | Steel wire rod for cold forging, processed good using the same, and methods for manufacturing thereof |
KR102421642B1 (en) * | 2019-12-20 | 2022-07-18 | 주식회사 포스코 | Wire rod for bearing and methods for manufacturing thereof |
JP7587106B2 (en) | 2020-07-09 | 2024-11-20 | 日本製鉄株式会社 | Steel wire and wire mesh |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10212528A (en) * | 1997-01-30 | 1998-08-11 | Daido Steel Co Ltd | Manufacture of product wire of ball bearing steel |
JP2000119808A (en) * | 1998-10-13 | 2000-04-25 | Kobe Steel Ltd | Steel wire capable of papid spheroidizing and excellent in cold forgeability, and its manufacture |
JP2002275584A (en) * | 2001-03-16 | 2002-09-25 | Sumitomo Metal Ind Ltd | Steel material for bearing element parts with excellent machinability |
JP2009275263A (en) * | 2008-05-15 | 2009-11-26 | Sumitomo Metal Ind Ltd | Method for manufacturing steel material for bearing steel |
JP2011117010A (en) * | 2009-11-30 | 2011-06-16 | Kobe Steel Ltd | Bearing steel having excellent cold workability |
-
2012
- 2012-04-13 JP JP2012092063A patent/JP5204328B2/en not_active Expired - Fee Related
- 2012-04-20 WO PCT/JP2012/060783 patent/WO2012144630A1/en active Application Filing
- 2012-04-20 TW TW101114093A patent/TW201305352A/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10212528A (en) * | 1997-01-30 | 1998-08-11 | Daido Steel Co Ltd | Manufacture of product wire of ball bearing steel |
JP2000119808A (en) * | 1998-10-13 | 2000-04-25 | Kobe Steel Ltd | Steel wire capable of papid spheroidizing and excellent in cold forgeability, and its manufacture |
JP2002275584A (en) * | 2001-03-16 | 2002-09-25 | Sumitomo Metal Ind Ltd | Steel material for bearing element parts with excellent machinability |
JP2009275263A (en) * | 2008-05-15 | 2009-11-26 | Sumitomo Metal Ind Ltd | Method for manufacturing steel material for bearing steel |
JP2011117010A (en) * | 2009-11-30 | 2011-06-16 | Kobe Steel Ltd | Bearing steel having excellent cold workability |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105164293A (en) * | 2013-03-28 | 2015-12-16 | 株式会社神户制钢所 | High-strength steel wire material exhibiting excellent cold-drawing properties, and high-strength steel wire |
KR20160147041A (en) | 2014-06-02 | 2016-12-21 | 신닛테츠스미킨 카부시키카이샤 | Steel wire material |
Also Published As
Publication number | Publication date |
---|---|
JP5204328B2 (en) | 2013-06-05 |
TW201305352A (en) | 2013-02-01 |
JP2012233254A (en) | 2012-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5204328B2 (en) | High carbon steel wire and method for producing high carbon steel wire | |
CN105899703B (en) | Parts of bearings, parts of bearings steel and their manufacture method | |
JP6058439B2 (en) | Hot-rolled steel sheet with excellent cold workability and surface hardness after processing | |
JP6068314B2 (en) | Hot-rolled steel sheet with excellent cold workability and surface hardness after carburizing heat treatment | |
JP6160783B2 (en) | Steel sheet and manufacturing method thereof | |
KR101965520B1 (en) | Rolled steel bar or rolled wire material for cold-forged component | |
JP5761080B2 (en) | High-strength hot-rolled steel sheet excellent in elongation, hole expansibility and fatigue characteristics, and manufacturing method thereof | |
WO2016148037A1 (en) | Steel sheet for carburization having excellent cold workability and toughness after carburizing heat treatment | |
KR101965521B1 (en) | Rolled steel bar or rolled wire material for cold-forged component | |
WO2006008960A1 (en) | Component for machine structure, method for producing same, and material for high-frequency hardening | |
KR20190060805A (en) | Carbon steel sheet for carburizing and method of manufacturing steel sheet for carburizing | |
JP6193842B2 (en) | Steel wire rod for bearing | |
JP6284813B2 (en) | Hot-rolled steel sheet with excellent cold workability and excellent hardness after processing | |
JP6058508B2 (en) | Hot-rolled steel sheet with excellent cold workability, surface properties and hardness after processing | |
JP4486040B2 (en) | Steel wire for cold forming springs with excellent cold cutability and fatigue characteristics and manufacturing method thereof | |
JP4752800B2 (en) | Non-tempered steel | |
JP2019011510A (en) | Steel sheet for carburization excellent in cold workability and toughness after carburization heat treatment | |
JP6390685B2 (en) | Non-tempered steel and method for producing the same | |
JP6082342B2 (en) | Manufacturing method of high carbon steel wire | |
JP6459704B2 (en) | Steel for cold forging parts | |
JP4196485B2 (en) | Machine structural steel with excellent machinability, cold forgeability and hardenability | |
JP2018062692A (en) | Hot rolled steel sheet | |
KR20240146676A (en) | Steel | |
KR20240151817A (en) | Steel | |
JP2009030089A (en) | Steel for carburized parts with excellent grain size prevention characteristics and method for manufacturing carburized parts |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12774418 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12774418 Country of ref document: EP Kind code of ref document: A1 |