WO2012144087A1 - 白色光源およびそれを用いた白色光源システム - Google Patents
白色光源およびそれを用いた白色光源システム Download PDFInfo
- Publication number
- WO2012144087A1 WO2012144087A1 PCT/JP2011/064405 JP2011064405W WO2012144087A1 WO 2012144087 A1 WO2012144087 A1 WO 2012144087A1 JP 2011064405 W JP2011064405 W JP 2011064405W WO 2012144087 A1 WO2012144087 A1 WO 2012144087A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- white light
- light source
- phosphor
- λmax2
- λmax1
- Prior art date
Links
- 238000000295 emission spectrum Methods 0.000 claims abstract description 59
- 230000003595 spectral effect Effects 0.000 claims abstract description 20
- 230000005457 Black-body radiation Effects 0.000 claims abstract description 17
- 238000001228 spectrum Methods 0.000 claims abstract description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 85
- 239000011347 resin Substances 0.000 claims description 12
- 229920005989 resin Polymers 0.000 claims description 12
- 239000002245 particle Substances 0.000 claims description 11
- 230000001747 exhibiting effect Effects 0.000 abstract 1
- 229910052693 Europium Inorganic materials 0.000 description 25
- -1 europium activated strontium aluminate Chemical class 0.000 description 19
- 241000282414 Homo sapiens Species 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 9
- YJPIGAIKUZMOQA-UHFFFAOYSA-N Melatonin Natural products COC1=CC=C2N(C(C)=O)C=C(CCN)C2=C1 YJPIGAIKUZMOQA-UHFFFAOYSA-N 0.000 description 8
- 229960003987 melatonin Drugs 0.000 description 8
- DRLFMBDRBRZALE-UHFFFAOYSA-N melatonin Chemical compound COC1=CC=C2NC=C(CCNC(C)=O)C2=C1 DRLFMBDRBRZALE-UHFFFAOYSA-N 0.000 description 8
- 230000002411 adverse Effects 0.000 description 7
- 230000027288 circadian rhythm Effects 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 230000028327 secretion Effects 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- 239000000203 mixture Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 230000004907 flux Effects 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- 230000002596 correlated effect Effects 0.000 description 3
- 229940088597 hormone Drugs 0.000 description 3
- 239000005556 hormone Substances 0.000 description 3
- 230000033764 rhythmic process Effects 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 150000004762 orthosilicates Chemical class 0.000 description 2
- 229910019655 synthetic inorganic crystalline material Inorganic materials 0.000 description 2
- 229910002704 AlGaN Inorganic materials 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- DXNVUKXMTZHOTP-UHFFFAOYSA-N dialuminum;dimagnesium;barium(2+);oxygen(2-) Chemical class [O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[Mg+2].[Mg+2].[Al+3].[Al+3].[Ba+2].[Ba+2] DXNVUKXMTZHOTP-UHFFFAOYSA-N 0.000 description 1
- 239000002223 garnet Substances 0.000 description 1
- YTYSNXOWNOTGMY-UHFFFAOYSA-N lanthanum(3+);trisulfide Chemical compound [S-2].[S-2].[S-2].[La+3].[La+3] YTYSNXOWNOTGMY-UHFFFAOYSA-N 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- IBIRZFNPWYRWOG-UHFFFAOYSA-N phosphane;phosphoric acid Chemical compound P.OP(O)(O)=O IBIRZFNPWYRWOG-UHFFFAOYSA-N 0.000 description 1
- 210000004560 pineal gland Anatomy 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 238000010340 saliva test Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 208000019116 sleep disease Diseases 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21K—NON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
- F21K9/00—Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
- F21K9/20—Light sources comprising attachment means
- F21K9/23—Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B45/00—Circuit arrangements for operating light-emitting diodes [LED]
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B45/00—Circuit arrangements for operating light-emitting diodes [LED]
- H05B45/20—Controlling the colour of the light
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/85—Packages
- H10H20/851—Wavelength conversion means
- H10H20/8511—Wavelength conversion means characterised by their material, e.g. binder
- H10H20/8512—Wavelength conversion materials
- H10H20/8513—Wavelength conversion materials having two or more wavelength conversion materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
- F21Y2101/00—Point-like light sources
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
- F21Y2115/00—Light-generating elements of semiconductor light sources
- F21Y2115/10—Light-emitting diodes [LED]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of semiconductor or other solid state devices
- H01L25/03—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/075—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H10H20/00
- H01L25/0753—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H10H20/00 the devices being arranged next to each other
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Definitions
- the present invention relates to a white light source and a white light source system using the white light source, and more particularly to a white light source having an emission spectrum approximate to an emission spectrum of natural light and a white light source system using the same.
- White light sources using LEDs are widely used as general lighting equipment such as traffic lights, backlights for liquid crystal display devices, and interior lights.
- a white light source using a conventional blue LED has an emission spectrum whose peak height of blue light emitted from the blue LED is higher than 1.5 times the peak height of yellow light from the phosphor, and is affected by blue light. There was a strong tendency.
- the conventional white LED has a strong emission peak of the blue LED.
- white light with a strong blue peak is significantly different from natural light.
- natural light means sunlight.
- Patent Document 2 In consideration of the influence of the white light source on the human body, International Publication WO 2008/069101 (Patent Document 2) mixes four types of light emission peaks by combining LEDs and phosphors having different light emission peaks. Provides white light with little deviation from the spectral luminous efficiency.
- the spectral luminous efficiency refers to the sensitivity of the human eye to light, and is defined by the CIE (International Commission on Illumination) as the standard spectral relative luminous sensitivity V ( ⁇ ). Therefore, the spectral luminous efficiency and the standard spectral relative luminous sensitivity V ( ⁇ ) have the same meaning.
- FIG. 1 shows the spectral luminous efficiency V ( ⁇ ) defined by CIE. That is, according to FIG. 1, humans recognize light having a wavelength of about 555 nm with the highest sensitivity.
- Patent Document 2 aims to control light having a wavelength in the range of 420 to 490 nm in consideration of the influence of blue light on the human body. Such a method is considered to have the effect of normalizing the secretion of melatonin as a kind of hormone involved in regulation by the biological clock at night.
- humans have a circadian rhythm (circadian rhythm, 24-hour rhythm) that is dominated by the body clock.
- Human beings are based on living under natural light, but in modern society, lifestyles are diversifying, such as long indoor work and reversal of day and night. Continuing a life without natural light for a long time is disturbed by the circadian rhythm, and there are concerns about adverse effects on the human body.
- a white light source using a current LED that is, a white light source using a blue LED, has an emission spectrum that is significantly different from that of natural light. If you live for a long time under the irradiation of such a white light source, there is a concern that it may adversely affect human circadian rhythm.
- the present invention has been made to address such problems, and has an object to provide a white light source having an emission spectrum that approximates the emission spectrum of natural light and a white light source system using the same. is there.
- the white light source according to the present invention has a light emission spectrum P ( ⁇ ) of a white light source including a blue light emitting LED having an emission peak at 421 to 490 nm and a black body having the same color temperature as the white light source.
- the emission spectrum of radiation is B ( ⁇ )
- the spectral luminous efficiency spectrum is V ( ⁇ )
- the wavelength at which P ( ⁇ ) ⁇ V ( ⁇ ) is maximum is ⁇ max1
- B ( ⁇ ) ⁇ V ( ⁇ ) is the maximum.
- ⁇ max2 is a relational expression: ⁇ 0.2 ⁇ [(P ( ⁇ ) ⁇ V ( ⁇ )) / (P ( ⁇ max1) ⁇ V ( ⁇ max1)) ⁇ (B ( ⁇ ) ⁇ V ( ⁇ )) / (B ( ⁇ max2) ⁇ V ( ⁇ max2))] ⁇ + 0.2.
- the relational expression: ⁇ 0.1 ⁇ [(P ( ⁇ ) ⁇ V ( ⁇ )) / (P ( ⁇ max1) ⁇ V ( ⁇ max1)) ⁇ (B ( ⁇ ) ⁇ V ( ⁇ ) ) / (B ( ⁇ max2) ⁇ V ( ⁇ max2))] ⁇ + 0.1 is more preferable.
- the color temperature of the white light source is preferably 2500-5400K.
- the white light source preferably includes an LED and a phosphor.
- the emission peak wavelength of the phosphor is preferably in the range of 420 to 700 nm.
- the white light source preferably includes three or more types, preferably four or more types of phosphors having different peak wavelengths. Further, it is more preferable to provide five or more types of phosphors having different peak wavelengths.
- the interval between adjacent peak wavelengths of each phosphor is preferably 150 nm or less.
- the phosphor preferably forms a phosphor layer in which the phosphor and the resin are mixed. Moreover, it is preferable that the phosphor layer has a multilayer structure in which a plurality of phosphor elements in which phosphor particles are dispersed in a resin are laminated.
- another white light source of the present invention includes a plurality of blue light emitting LEDs, and ⁇ 0.2 ⁇ [(P ( ⁇ ) ⁇ V ( ⁇ )) / (P ( ⁇ max1) ⁇ V ( ⁇ max1)) ⁇ (B ( ⁇ ) ⁇ V ( ⁇ )) / (B ( ⁇ max2) ⁇ V ( ⁇ max2))] ⁇ + 0.2 and a plurality of white light sources having different emission spectra are arranged in one housing. It is characterized by.
- the white light source system of the present invention is characterized by comprising a plurality of white light sources according to the present invention.
- the white light source according to the present invention can reproduce the same emission spectrum as natural light. For this reason, even if white light from a white light source is exposed for a long time, the adverse effect on the human body can be made to the same level as natural light.
- 6 is a graph showing a difference A ( ⁇ ) in Example 1. It is a graph which shows the emission spectrum P ((lambda)) of the white light source of Example 2.
- FIG. It is a graph which shows the emission spectrum B ((lambda)) of the black body radiation of Example 2 (color temperature of 4100K).
- 10 is a graph showing (P ( ⁇ ) ⁇ V ( ⁇ )) / (P ( ⁇ max1) ⁇ V ( ⁇ max1)) in Example 2.
- 6 is a graph showing (B ( ⁇ ) ⁇ V ( ⁇ )) / (B ( ⁇ max2) ⁇ V ( ⁇ max2)) in Example 2 (color temperature 4100K).
- 10 is a graph showing a difference A ( ⁇ ) in Example 2.
- Example 6 is a graph showing an emission spectrum P ( ⁇ ) of a white light source of Example 3. It is a graph which shows the emission spectrum B ((lambda)) of the black body radiation of Example 3 (color temperature 5400K).
- 10 is a graph showing (P ( ⁇ ) ⁇ V ( ⁇ )) / (P ( ⁇ max1) ⁇ V ( ⁇ max1)) in Example 3.
- 10 is a graph showing (B ( ⁇ ) ⁇ V ( ⁇ )) / (B ( ⁇ max2) ⁇ V ( ⁇ max2)) in Example 3 (color temperature 5400K).
- 10 is a graph showing a difference A ( ⁇ ) in Example 3.
- 5 is a graph showing a difference A ( ⁇ ) of Comparative Example 1. It is sectional drawing which shows one Example of the white light source (bulb type) of this invention. It is sectional drawing which shows another Example of the white light source (bulb type) which concerns on this invention.
- the white light source according to the embodiment of the present invention has a P ( ⁇ ) emission spectrum of a white light source having a blue light emitting LED having an emission peak at 421 to 490 nm, and an emission spectrum of black body radiation showing the same color temperature as the white light source.
- B ( ⁇ ), spectral luminous efficiency spectrum V ( ⁇ ), P ( ⁇ ) ⁇ V ( ⁇ ) has the maximum wavelength ⁇ max1, and B ( ⁇ ) ⁇ V ( ⁇ ) has the maximum wavelength.
- ⁇ represents a wavelength of 380 to 780 nm which is a visible light region.
- the procedure for constructing a white light source that satisfies the above relational expression is as follows. First, the emission spectrum P ( ⁇ ) of a white light source is measured. The emission spectrum is measured by total luminous flux measurement using an integrating sphere according to JIS-C-8152. The color temperature is obtained by calculation from the emission spectrum. The unit of color temperature is Kelvin (K).
- an emission spectrum B ( ⁇ ) of black body radiation that is the same as the color temperature of the white light source is obtained.
- the emission spectrum B ( ⁇ ) is obtained from the Planck distribution.
- the plank distribution can be obtained by the mathematical formula shown in FIG. In FIG. 2, h is the Planck constant, c is the speed of light, ⁇ is the wavelength, e is the base of the natural logarithm, k is the Boltzmann constant, and T is the color temperature. Since the emission spectrum of blackbody radiation is constant for h, c, e, and k, the emission spectrum corresponding to the wavelength ⁇ can be obtained if the color temperature T is determined.
- black body radiation is also called black body radiation, and in the present invention, it indicates the emission spectrum of natural light (sunlight). Natural light has different color temperatures, for example, during the daytime, in the morning, and at sunrise. Specifically, the color temperature of natural light during the day is about 5100K, the color temperature of natural light in the morning is about 4200K, and the color temperature of natural light at sunrise is about 2700K. In the morning, 7:00 am is assumed.
- FIG. 3 shows an emission spectrum P ( ⁇ ) of Example 1 described later.
- FIG. 5 shows (P ( ⁇ ) ⁇ V ( ⁇ )) / (P ( ⁇ max1) ⁇ V ( ⁇ max1)) of Example 1.
- FIG. 6 shows (B ( ⁇ ) ⁇ V ( ⁇ )) / (B ( ⁇ max2) ⁇ V ( ⁇ max2)) of Example 1 (color temperature 2700K).
- the spectral luminous efficiency shown in FIG. 1 was used as V ( ⁇ ) when obtaining FIG. 5 and FIG.
- FIG. 5 shows a value obtained by multiplying the emission spectrum P ( ⁇ ) and the spectral luminous efficiency V ( ⁇ ) of Example 1 shown in FIG. 3 by the value for each wavelength, (P ( ⁇ max1) ⁇ V ( ⁇ max1). It is the figure which plotted the value divided by)).
- FIG. 6 is obtained by dividing the value obtained by multiplying the emission spectrum B ( ⁇ ) and the spectral luminous efficiency V ( ⁇ ) of FIG. 4 by the value for each wavelength by (B ( ⁇ max2) ⁇ V ( ⁇ max2)). It is the figure which plotted the value.
- (B ( ⁇ ) ⁇ V ( ⁇ )) indicates the intensity of the emission spectrum of black body radiation in the spectral luminous efficiency V ( ⁇ ) region, and is the maximum value (B ( ⁇ max2) ⁇ By dividing by V ( ⁇ max2)), a value with 1.0 as the upper limit can be obtained as shown in FIG.
- the difference A ( ⁇ ) [(P ( ⁇ ) ⁇ V ( ⁇ )) / (P ( ⁇ max1) ⁇ V ( ⁇ max1)) ⁇ (B ( ⁇ ) ⁇ V ( ⁇ )) / (B ( ⁇ max2 ) ⁇ V ( ⁇ max2))].
- the white light source of this example is ⁇ 0.2 ⁇ [(P ( ⁇ ) ⁇ V ( ⁇ )) / (P ( ⁇ max1) ⁇ V ( ⁇ max1)) ⁇ (B ( ⁇ ) ⁇ V ( ⁇ )) / (B ( ⁇ max2) ⁇ V ( ⁇ max2))] ⁇ + 0.2.
- FIG. 7 shows the difference A ( ⁇ ) of Example 1.
- the range of the difference A ( ⁇ ) is ⁇ 0.03 ⁇ A ( ⁇ ) ⁇ + 0.11, and it can be seen that natural light during the day is reproduced.
- the emission spectrum is designed to approximate the emission spectrum of black body radiation, compared to the conventional white LED having a blue light peak protruding, Adverse effects can be greatly suppressed.
- the emission spectrum may be controlled according to the purpose.
- this white light source is used as a lighting equipment for a ward, a place where a long-time indoor work must be performed, or a room, adverse effects on the circadian rhythm of patients living there and workers performing work can be suppressed.
- natural light can be reproduced, it can be applied to agricultural fields such as plant cultivation using natural light.
- Such a white light source preferably has a light emission color temperature of 2500 to 5400K. If this color temperature is less than 2500K or more than 5400K, the deviation from natural light becomes large, and it may be difficult to adjust the color temperature.
- a preferable range of the color temperature is 2700-5200K.
- the white light source having such a difference A ( ⁇ ) preferably includes an LED (light emitting diode) and a phosphor.
- a blue light emitting LED having a light emission peak wavelength in the range of 421 to 490 nm is preferable. It is preferable that the LED light having an emission peak in the ultraviolet to violet region be converted into visible light by a phosphor.
- the blue, green, and red LEDs whose LED emission peak wavelength exceeds 490 nm has a large emission peak height, so the difference A ( ⁇ ) is controlled within the range of ⁇ 0.2 ⁇ A ( ⁇ ) ⁇ + 0.2. It is hard to do. Further, as long as the light emission source has an emission peak wavelength of 421 to 490 nm, a semiconductor laser or the like may be used instead of the LED.
- the phosphor has an emission peak wavelength in the range of 420 to 700 nm when excited with a light source of 421 to 490 nm. Moreover, it is preferable to use 3 or more types of fluorescent substance from which a peak wavelength differs, and also 5 or more types of fluorescent substance.
- the peak wavelength of each phosphor is preferably 150 nm or less, more preferably 10 to 100 nm, and more preferably 10 to 50 nm. In other words, by combining three or more phosphors and further five or more phosphors from the blue region to the red region and shifting the peak wavelength every 10 to 100 nm, ⁇ 0.2 ⁇ difference A ( ⁇ ) ⁇ + 0 .2 can be realized.
- the material of the phosphor is not particularly limited as long as the emission peak is 420 to 700 nm, but the following phosphor is preferable as the phosphor excited at 421 to 490 nm.
- the half width of the peak wavelength of the emission spectrum of the phosphor is preferably 40 nm or more, and more preferably 50 to 100 nm.
- blue phosphor examples include europium activated alkaline earth phosphate phosphor (peak wavelength 440 to 455 nm), europium activated barium magnesium aluminate phosphor (peak wavelength 450 to 460 nm) and the like. It is done.
- blue-green phosphors include europium activated strontium aluminate phosphors (peak wavelength: 480 to 500 nm) and europium and manganese activated barium magnesium aluminate phosphors (peak wavelength: 510 to 520 nm).
- green phosphor examples include europium activated orthosilicate phosphor (peak wavelength 520 to 550 nm), europium activated ⁇ sialon phosphor (peak wavelength 535 to 545 nm), europium activated strontium sialon phosphor ( Peak wavelength 510 to 530 nm).
- yellow phosphor examples include europium activated orthosilicate phosphor (peak wavelength 550 to 580 nm) and cerium activated rare earth aluminum garnet phosphor (peak wavelength 550 to 580 nm).
- red phosphor examples include europium activated strontium sialon phosphor (peak wavelength 600 to 630 nm), europium activated calcium strontium oxynitride phosphor (peak wavelength 610 to 650 nm), europium activated acid. Examples thereof include lanthanum sulfide phosphors (peak wavelength: 620 to 630 nm) and manganese activated magnesium fluorogermanate (peak wavelength: 640 to 660 nm).
- the difference A ( ⁇ ) it is preferable to use three or more, more preferably five or more of the blue phosphor, blue-green phosphor, green phosphor, yellow phosphor and red phosphor. .
- the color temperature can be controlled by changing the mixing ratio of the respective phosphors.
- the average particle size of each phosphor is preferably 5 to 40 ⁇ m. If the average particle size is less than 5 ⁇ m, the particle size is too small to be produced, which increases the cost. On the other hand, when the average particle size is larger than 40 ⁇ m, it is difficult to uniformly mix the phosphors.
- FIG. 19 shows a bulb-type white light source as an embodiment of the white light source of the present invention.
- 1 is an LED bulb (white light source)
- 2 is an LED module
- 3 is a base part
- 4 is a globe
- 5 is an insulating member
- 6 is a base
- 7 is a substrate
- 8 is an LED chip
- 9 is a phosphor layer
- Reference numeral 10 denotes a transparent resin layer.
- the LED bulb 1 shown in FIG. 19 includes an LED module 2, a base part 3 on which the LED module 2 is installed, a globe 4 as a housing attached on the base part 3 so as to cover the LED module 2, A base 6 attached to the lower end portion of the base portion 3 via an insulating member 5 and a lighting circuit 11 provided in the base portion 3 are provided.
- the LED module 2 includes an ultraviolet or purple LED chip 8 mounted on a substrate 7.
- a plurality of LED chips 8 are surface-mounted on the substrate 7.
- a light emitting diode of InGaN, GaN, AlGaN or the like is used for the LED chip 8 emitting ultraviolet to purple light.
- a wiring network (not shown) is provided on the surface of the substrate 7 (and further inside if necessary), and the electrodes of the LED chip 8 are electrically connected to the wiring network of the substrate 7.
- a wiring 12 is drawn out on the side surface or the bottom surface of the LED module 2, and the wiring 12 is electrically connected to the lighting circuit 11 provided in the base portion 3.
- the LED chip 8 is lit by a DC voltage applied via the lighting circuit 11.
- a phosphor layer 9 that emits white light by absorbing ultraviolet or violet light emitted from the LED chip 8 is provided.
- the phosphor layer 9 is formed by combining three or more, further five or more phosphors having different peak wavelengths. Moreover, you may mix with resin and form the fluorescent substance layer 9 as needed. Further, various phosphors may be mixed to form a mixed phosphor layer, or a multilayer phosphor layer in which about 1 to 3 types of phosphor layers are mixed.
- the phosphor layer 9 is provided on the inner surface of the globe 4.
- the phosphor layer 9 may be mixed with the outer surface of the globe 4 or the globe 4 itself, or the transparent resin layer 10 may be fluorescent. Body particles may be mixed.
- the light bulb type white light source is illustrated in FIG. 19, the present invention is not limited to this and can be applied to a one-chip type white light source.
- the white light source according to the present invention is not limited to the above-mentioned bulb type, but can be applied to a fluorescent lamp type (long and thin type), a chandelier type, and the shape is not limited.
- a white light source that reproduces natural light can be provided. Further, a white light source system that reproduces the rhythm of natural light of the day can be obtained by combining white light sources that reproduce natural light such as daytime, sunrise, morning, and evening. Thereby, the white light source and white light source system which suppressed the bad influence to the circadian rhythm of a human body can be provided.
- Example 1 A blue light emitting LED having an emission peak wavelength of 450 nm was prepared as an LED chip. Next, as a phosphor that emits light when irradiated with an electromagnetic wave of 450 nm, a europium-activated strontium aluminate blue-green phosphor having a peak wavelength of 490 nm and a europium-activated orthosilicate green fluorescence having a peak wavelength of 530 nm A europium activated orthosilicate yellow phosphor having a peak wavelength of 555 nm, a europium activated orthosilicate yellow phosphor having a peak wavelength of 555 nm, and a europium activated strontium sialon red phosphor having a peak wavelength of 630 nm A mixture with was prepared.
- the average particle diameter of each phosphor was 15 ⁇ m.
- the bulb-type white light source shown in FIG. 19 was produced by applying to the inner surface of the globe.
- the obtained white light source had a correlated color temperature of emission color of 2700K. This color temperature 2700K is a color temperature equivalent to the natural light of Asahi.
- FIG. 3 shows the result of measuring the emission spectrum of the bulb-type white light source of Example 1 by measuring the total luminous flux using an integrating sphere according to JIS-C-8152. Further, (P ( ⁇ ) ⁇ V ( ⁇ )) / (P ( ⁇ max1) ⁇ V ( ⁇ max1)) of Example 1 was obtained using the spectral luminous distribution V ( ⁇ ) of FIG. FIG. Note that ⁇ max1 in Example 1 is 574 nm.
- FIG. 4 shows the emission spectrum of black body radiation having a color temperature of 2700 K obtained by the Planck distribution (the formula of FIG. 2).
- FIG. 6 shows the result of obtaining (B ( ⁇ ) ⁇ V ( ⁇ )) / (B ( ⁇ max2) ⁇ V ( ⁇ max2)), where the emission spectrum of FIG. 4 is B ( ⁇ ). Note that ⁇ max2 is 572 nm.
- Difference A ( ⁇ ) [(P ( ⁇ ) ⁇ V ( ⁇ )) / (P ( ⁇ max1) ⁇ V ( ⁇ max1)) ⁇ (B ( ⁇ ) ⁇ V ( ⁇ )) / (B ( ⁇ max2) ⁇ V ( ⁇ max2))].
- the result is shown in FIG.
- the difference A ( ⁇ ) from the natural light emission spectrum during the day is ⁇ 0.2 to +0.2 in the visible light region of 380 to 780 nm.
- the difference A ( ⁇ ) was ⁇ 0.03 to +0.11.
- Example 2 A blue light emitting LED having an emission peak wavelength of 445 nm was prepared as an LED chip.
- phosphors that emit light when irradiated with electromagnetic waves of 445 nm europium-activated strontium aluminate blue-green phosphors having a peak wavelength of 490 nm and europium-activated orthosilicate green fluorescence having a peak wavelength of 530 nm
- europium activated orthosilicate yellow phosphor with a peak wavelength of 530 nm europium activated strontium sialon red fluorescence with a peak wavelength of 630 nm
- a mixture with the body was prepared.
- the average particle size of each phosphor was 15 ⁇ m.
- the bulb-type white light source 1 shown in FIG. The obtained white light source 1 had a correlated color temperature of emission color of 4100K. This color temperature of 4100 K is a color temperature equivalent to that of natural light in the morning.
- Example 2 The emission spectrum of the white light source of Example 2 was investigated by measuring the total luminous flux using an integrating sphere as in Example 1. The result is shown in FIG. Further, FIG. 1 is obtained by calculating (P ( ⁇ ) ⁇ V ( ⁇ )) / (P ( ⁇ max1) ⁇ V ( ⁇ max1)) of Example 2 using the spectral luminous efficiency V ( ⁇ ) of FIG. 10. Note that ⁇ max1 in Example 2 is 559 nm.
- FIG. 9 shows the emission spectrum of black body radiation having a color temperature of 4100 K obtained by the Planck distribution (the formula of FIG. 2).
- FIG. 11 shows the result of obtaining (B ( ⁇ ) ⁇ V ( ⁇ )) / (B ( ⁇ max2) ⁇ V ( ⁇ max2)), where the emission spectrum of FIG. 9 is B ( ⁇ ). Note that ⁇ max2 is 560 nm.
- the difference A ( ⁇ ) of Example 2 is expressed as [(P ( ⁇ ) ⁇ V ( ⁇ )) / (P ( ⁇ max1) ⁇ V ( ⁇ max1)) ⁇ (B ( ⁇ ) ⁇ V ( ⁇ )) / (B ( ⁇ max2) ⁇ V ( ⁇ max2))].
- the result is shown in FIG.
- the white light source according to Example 2 has a difference A ( ⁇ ) from the morning light emission spectrum in the range of ⁇ 0.2 to +0.2 in the visible light region of 380 to 780 nm. Specifically, the difference A ( ⁇ ) was ⁇ 0.04 to +0.07.
- Example 3 A blue light emitting LED having an emission peak wavelength of 450 nm was prepared as an LED chip.
- Phosphors that emit light when irradiated with electromagnetic waves of 450 nm are europium-activated strontium aluminate blue-green phosphors having a peak wavelength of 490 nm, europium-activated orthosilicate green phosphors having a peak wavelength of 530 nm, It comprised from the mixture of the europium activation orthosilicate yellow fluorescent substance whose peak wavelength is 555 nm, and the europium activation strontium sialon red fluorescent substance whose peak wavelength is 630 nm.
- the average particle size of each phosphor was 15 ⁇ m.
- the light bulb type white light source 1 shown in FIG. 19 was produced.
- the color temperature of the emission color of the obtained white light source 1 was a correlated color temperature of 5400K.
- the color temperature of this white light source is the same as that of natural light during the day.
- Example 2 the emission spectrum P ( ⁇ ) of the white light source according to Example 3 was investigated by measuring the total luminous flux using an integrating sphere. The result is shown in FIG. Further, (P ( ⁇ ) ⁇ V ( ⁇ )) / (P ( ⁇ max1) ⁇ V ( ⁇ max1)) of Example 3 was obtained using the spectral luminous efficiency V ( ⁇ ) of FIG. FIG. Note that ⁇ max1 in Example 3 is 550 nm.
- FIG. 14 shows the emission spectrum of black body radiation having a color temperature of 5400 K obtained by the Planck distribution (the formula of FIG. 2).
- FIG. 16 shows the result of calculating (B ( ⁇ ) ⁇ V ( ⁇ )) / (B ( ⁇ max2) ⁇ V ( ⁇ max2)), where the emission spectrum of FIG. 14 is B ( ⁇ ). Note that ⁇ max2 is 555 nm.
- the difference A ( ⁇ ) in Example 3 is expressed as [(P ( ⁇ ) ⁇ V ( ⁇ )) / (P ( ⁇ max1) ⁇ V ( ⁇ max1)) ⁇ (B ( ⁇ ) ⁇ V ( ⁇ )) / (B ( ⁇ max2) ⁇ V ( ⁇ max2))].
- the result is shown in FIG.
- the white light source according to Example 3 has a difference A ( ⁇ ) from the daytime natural light emission spectrum of ⁇ 0.2 to +0.2 in the visible light region of 380 to 780 nm. Specifically, the difference A ( ⁇ ) was ⁇ 0.06 to +0.06.
- Comparative Example 1 A white light source according to Comparative Example 1 was produced by combining a blue light emitting diode having an emission peak wavelength of 460 nm and a cerium-activated yttrium aluminum garnet yellow phosphor.
- the color temperature of the white light source of Comparative Example 1 was 5100 K, and the difference A ( ⁇ ) was ⁇ 0.28 to +0.04 as shown in FIG.
- the secretion amount (average value of 10 persons) of each Example was shown. The results are shown in Table 1 below.
- the melatonin secretion amount of the subject increased as compared with the case where the conventional white light source of Comparative Example 1 was used.
- Melatonin is a kind of hormone secreted from the pineal gland of the brain, and it is generally said that melatonin secretion is low during the day and high at night. This is thought to be due to living under natural light during the day. Therefore, melatonin is considered as a hormone necessary for obtaining a peaceful sleep. In the United States and the like, it is also widely used as a supplement for preventing oxidation in the body.
- using the white light source of this example can provide the same effect as natural light, and sleep disorders and circadian rhythms.
- the effect which suppresses going crazy can be expected.
- sunrise natural light (Example 1)
- morning natural light (Example 2)
- daytime natural light (Example 3)
- the LED chip 8a and the phosphor layer 9a for emitting natural light during the day, the LED chip 8b and the phosphor layer 9b for emitting natural light at sunrise, and the morning natural light LED chip 8c for emitting light and phosphor layer 9c are arranged on a common substrate 7, and these LED chips 8a, 8b, 8c are accommodated in the same common globe 4 to constitute a white light source system 1a. It is also possible to do. Further, a transparent resin layer 9 may be provided between the LED chip 8 and the phosphor layer 10.
- Each LED chip 8a, 8b, 8c is connected to the lighting circuit 11a by the wiring 12a.
- the user can select an LED chip to be appropriately turned on by a switching mechanism (not shown) built in the lighting circuit 11a as required.
- the white light source system 1a having the above configuration, it is possible to selectively receive daytime natural light, sunrise natural light, and morning natural light from the single white light source system 1a in accordance with the user's request and illumination cycle. It becomes possible. That is, a white light source system that reproduces the natural light rhythm of the day can be obtained by combining white light sources that reproduce natural light such as daytime, sunrise, morning, and evening.
- the white light source and the white light source system according to the present invention can reproduce the same emission spectrum as that of natural light. Therefore, even if the white light from the white light source is exposed for a long time, the adverse effect on the human body can be made to the same level as natural light.
- LED bulb (white light source) 1a White light source system 2, 2a LED module 3 Base part 4 Globe (housing) 5 Insulating member 6 Base 7 Substrate 8, 8a, 8b, 8c LED chip 9, 9a, 9b, 9c Phosphor layer 10 Transparent resin layer 11, 11a Lighting circuit 12, 12a Wiring
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Optics & Photonics (AREA)
- General Engineering & Computer Science (AREA)
- Led Device Packages (AREA)
- Non-Portable Lighting Devices Or Systems Thereof (AREA)
Abstract
Description
(実施例1)
LEDチップとして発光ピーク波長450nmの青色発光LEDを用意した。次に、450nmの電磁波を照射することにより発光する蛍光体として、ピーク波長が490nmであるユーロピウム付活ストロンチウムアルミン酸塩青緑色蛍光体と、ピーク波長が530nmであるユーロピウム付活オルソ珪酸塩緑色蛍光体、ピーク波長が555nmであるユーロピウム付活オルソ珪酸塩黄色蛍光体と、ピーク波長が555nmであるユーロピウム付活オルソ珪酸塩黄色蛍光体と、ピーク波長が630nmであるユーロピウム付活ストロンチウムサイアロン赤色蛍光体との混合物を用意した。なお、各蛍光体の平均粒径は15μmとした。各蛍光体の混合比は重量比(質量比)として青緑色蛍光体:緑色蛍光体:黄色蛍光体:赤色蛍光体=20:25:15:40の比率で混合し、透明樹脂と混合して、グローブ内面に塗布することにより、図19に示した電球型白色光源を作製した。得られた白色光源は、発光色の相関色温度が2700Kであった。この色温度2700Kは朝日の自然光と同等の色温度である。
LEDチップとして発光ピーク波長が445nmの青色発光LEDを用意した。次に、445nmの電磁波を照射することにより発光する蛍光体として、ピーク波長が490nmであるユーロピウム付活ストロンチウムアルミン酸塩青緑色蛍光体と、ピーク波長が530nmであるユーロピウム付活オルソ珪酸塩緑色蛍光体と、ピーク波長が555nmであるユーロピウム付活オルソ珪酸塩緑色蛍光体と、ピーク波長が530nmであるユーロピウム付活オルソ珪酸塩黄色蛍光体と、ピーク波長が630nmであるユーロピウム付活ストロンチウムサイアロン赤色蛍光体との混合物を用意した。
LEDチップとして発光ピーク波長が450nmの青色発光LEDを用意した。450nmの電磁波を照射することにより発光する蛍光体は、ピーク波長が490nmであるユーロピウム付活ストロンチウムアルミン酸塩青緑色蛍光体と、ピーク波長が530nmであるユーロピウム付活オルソ珪酸塩緑色蛍光体と、ピーク波長が555nmであるユーロピウム付活オルソ珪酸塩黄色蛍光体と、ピーク波長が630nmであるユーロピウム付活ストロンチウムサイアロン赤色蛍光体との混合物から構成した。
発光ピーク波長460nmの青色発光ダイオードと、セリウム付活イットリウムアルミニウムガーネット黄色蛍光体とを組み合わせて、比較例1に係る白色光源を作製した。比較例1の白色光源の色温度は5100Kであり、差異A(λ)は図18に示した通り-0.28~+0.04であった。
1a 白色光源システム
2,2a LEDモジュール
3 基体部
4 グローブ(ハウジング)
5 絶縁部材
6 口金
7 基板
8,8a,8b,8c LEDチップ
9,9a,9b,9c 蛍光体層
10 透明樹脂層
11,11a 点灯回路
12,12a 配線
Claims (12)
- 発光ピークが421~490nmにある青色発光LEDを具備した白色光源の発光スペクトルをP(λ)、白色光源と同じ色温度を示す黒体輻射の発光スペクトルをB(λ)、分光視感効率のスペクトルをV(λ)、P(λ)×V(λ)が最大となる波長をλmax1、B(λ)×V(λ)が最大となる波長をλmax2としたとき、関係式:
-0.2≦[(P(λ)×V(λ))/(P(λmax1)×V(λmax1))-(B(λ)×V(λ))/(B(λmax2)×V(λmax2))]≦+0.2、
を満たすことを特徴とする白色光源。 - 関係式:-0.1≦[(P(λ)×V(λ))/(P(λmax1)×V(λmax1))-(B(λ)×V(λ))/(B(λmax2)×V(λmax2))]≦+0.1、
を満たすことを特徴とする請求項1記載の白色光源。 - 前記白色光源の色温度が2500~5400Kであることを特徴とする請求項1ないし請求項2のいずれか1項に記載の白色光源。
- 前記白色光源がLEDと蛍光体とを具備することを特徴とする請求項1ないし請求項3のいずれか1項に記載の白色光源。
- 前記蛍光体の発光ピークが420~700nmの範囲にあることを特徴とする請求項4記載の白色光源。
- 前記白色光源が、ピーク波長が異なる3種類以上の蛍光体を具備することを特徴とする請求項4ないし請求項5のいずれか1項に記載の白色光源。
- 前記白色光源が、ピーク波長が異なる5種類以上の蛍光体を具備することを特徴とする請求項4ないし請求項6のいずれか1項に記載の白色光源。
- 各蛍光体の隣接するピーク波長の間隔が150nm以下であることを特徴とする請求項4ないし請求項7のいずれか1種であることを特徴とする白色光源。
- 蛍光体は、蛍光体粒子と樹脂とを混合した蛍光体層を形成していることを特徴とする請求項4ないし請求項8のいずれか1項に記載の白色光源。
- 前記蛍光体層が、樹脂中に蛍光体粒子を分散した蛍光体要素を複数積層した多層構造を具備していることを特徴とする請求項9記載の白色光源。
- 複数の青色発光LEDを具備し、-0.2≦[(P(λ)×V(λ))/(P(λmax1)×V(λmax1))-(B(λ)×V(λ))/(B(λmax2)×V(λmax2))]≦+0.2を満たし、かつ異なる発光スペクトルを有する複数の白色光源を一つのハウジング内に配置したことを特徴とする請求項1ないし請求項10のいずれか1項に記載の白色光源。
- 請求項1ないし請求項11のいずれか1項に記載の白色光源を複数個用いたことを特徴とする白色光源システム。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/110,830 US9109762B2 (en) | 2011-04-22 | 2011-06-23 | White light source and white light source system including the same |
EP11863791.7A EP2701213B8 (en) | 2011-04-22 | 2011-06-23 | White light source and white light source system using same |
JP2013510842A JP5770269B2 (ja) | 2011-04-22 | 2011-06-23 | 白色光源およびそれを用いた白色光源システム |
EP23177418.3A EP4258819A3 (en) | 2011-04-22 | 2011-06-23 | White light equipment |
EP21160434.3A EP3848985B1 (en) | 2011-04-22 | 2011-06-23 | White light equipment |
CN201180070338.9A CN103493226B (zh) | 2011-04-22 | 2011-06-23 | 白光源以及包括所述白光源的白光源系统 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011095906 | 2011-04-22 | ||
JP2011-095906 | 2011-04-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012144087A1 true WO2012144087A1 (ja) | 2012-10-26 |
Family
ID=47041230
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/064405 WO2012144087A1 (ja) | 2011-04-22 | 2011-06-23 | 白色光源およびそれを用いた白色光源システム |
Country Status (5)
Country | Link |
---|---|
US (1) | US9109762B2 (ja) |
EP (4) | EP3270425A1 (ja) |
JP (1) | JP5770269B2 (ja) |
CN (1) | CN103493226B (ja) |
WO (1) | WO2012144087A1 (ja) |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2012108065A1 (ja) * | 2011-02-09 | 2014-07-03 | 株式会社東芝 | 白色光源およびそれを用いた白色光源システム |
JP2014203932A (ja) * | 2013-04-03 | 2014-10-27 | 株式会社東芝 | 発光装置 |
JP2015002733A (ja) * | 2013-06-20 | 2015-01-08 | フューチャーグリーン・アグリカルチュラル・カンパニー・リミテッドFuturegreen Agricultural Company Limited | 植物工場用led照明モジュールとこれを搭載した植物工場用led照明装置 |
JP2016115941A (ja) * | 2014-12-16 | 2016-06-23 | シチズン電子株式会社 | 発光装置 |
JP2016115934A (ja) * | 2014-12-11 | 2016-06-23 | シチズン電子株式会社 | 発光装置及び発光装置の製造方法 |
WO2016096367A1 (en) * | 2014-12-16 | 2016-06-23 | Philips Lighting Holding B.V.. | Lighting device, lighting system and use thereof |
JP2017507491A (ja) * | 2014-02-21 | 2017-03-16 | フィリップス ライティング ホールディング ビー ヴィ | 発光モジュール、ランプ、照明器具及び物体を照射する方法 |
JPWO2016067609A1 (ja) * | 2014-10-28 | 2017-09-14 | 株式会社東芝 | 白色光源および白色光源システム |
US9825206B2 (en) | 2016-02-25 | 2017-11-21 | Toyoda Gosei, Co., Ltd. | Light-emitting device |
KR20180011191A (ko) | 2015-06-24 | 2018-01-31 | 가부시끼가이샤 도시바 | 백색 광원 시스템 |
JP2018534751A (ja) * | 2015-11-10 | 2018-11-22 | フィリップス ライティング ホールディング ビー ヴィ | 可変uv成分を有する調整可能な白色光源 |
EP3461873A1 (en) | 2017-09-28 | 2019-04-03 | Nichia Corporation | Light-emitting device |
JP2019054286A (ja) * | 2013-11-08 | 2019-04-04 | ルミマイクロ コーポレーション リミテッドLumimicro Corp. Ltd. | 発光装置 |
US10378709B2 (en) | 2015-03-23 | 2019-08-13 | Kabushiki Kaisha Toshiba | Illumination system for reproducing the color temperature range of solar light for illuminating exhibits |
US10473274B2 (en) | 2015-06-24 | 2019-11-12 | Kabushiki Kaisha Toshiba | White light source system |
JP2019207995A (ja) * | 2018-05-29 | 2019-12-05 | 日亜化学工業株式会社 | 発光装置 |
JPWO2018179105A1 (ja) * | 2017-03-28 | 2020-01-16 | 株式会社朝日ラバー | 照明装置の製造方法 |
JP2020136597A (ja) * | 2019-02-25 | 2020-08-31 | パナソニックIpマネジメント株式会社 | 発光装置及び照明装置 |
JP2020136619A (ja) * | 2019-02-25 | 2020-08-31 | パナソニックIpマネジメント株式会社 | 発光装置及び照明装置 |
JP2020167399A (ja) * | 2019-03-29 | 2020-10-08 | 日亜化学工業株式会社 | 発光装置 |
JP2020532874A (ja) * | 2017-09-06 | 2020-11-12 | ジーエルビーテック カンパニー リミテッド | D50/d65高演色性標準led発光モジュールおよび照明装置 |
WO2021199752A1 (ja) | 2020-03-31 | 2021-10-07 | 日亜化学工業株式会社 | 発光装置及びそれを備えた灯具 |
EP2772953B1 (en) * | 2011-10-24 | 2022-01-26 | Seoul Semiconductor Co., Ltd. | White light source and white light source system using white light source |
JP2022163070A (ja) * | 2019-03-29 | 2022-10-25 | 日亜化学工業株式会社 | 発光装置 |
WO2023276259A1 (ja) | 2021-07-01 | 2023-01-05 | 日亜化学工業株式会社 | 発光装置、灯具及び照明器具 |
US11598508B2 (en) | 2020-06-30 | 2023-03-07 | Nichia Corporation | Light emitting device |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6189217B2 (ja) | 2011-11-07 | 2017-08-30 | 株式会社東芝 | 白色光源およびそれを用いた白色光源システム |
WO2013125521A1 (ja) * | 2012-02-20 | 2013-08-29 | シャープ株式会社 | 照明装置 |
CN114216066A (zh) * | 2014-03-04 | 2022-03-22 | 豪倍公司 | 光束整形光谱滤波的光学元件及其照明设备 |
JP6783985B2 (ja) | 2016-09-29 | 2020-11-11 | 豊田合成株式会社 | 発光装置 |
EP3572712B1 (en) * | 2017-04-21 | 2022-03-30 | Suzhou Opple Lighting Co., Ltd. | Light source module, and lighting apparatus |
EP4322232A3 (en) * | 2017-06-27 | 2024-05-29 | Seoul Semiconductor Co., Ltd. | Light emitting device |
CN113178437B (zh) * | 2017-12-21 | 2023-08-11 | 厦门市三安光电科技有限公司 | 一种白光led封装结构以及白光源系统 |
CN114173449B (zh) * | 2021-10-18 | 2023-06-13 | 佛山电器照明股份有限公司 | 日间节律光谱的调制方法 |
CN114173448B (zh) * | 2021-10-18 | 2023-06-13 | 佛山电器照明股份有限公司 | 夜间节律光谱的调制方法 |
CN114501722B (zh) * | 2022-01-06 | 2023-06-13 | 佛山电器照明股份有限公司 | 节律光谱的调制方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10242513A (ja) | 1996-07-29 | 1998-09-11 | Nichia Chem Ind Ltd | 発光ダイオード及びそれを用いた表示装置 |
WO2008069101A1 (ja) | 2006-12-08 | 2008-06-12 | Sharp Kabushiki Kaisha | 光源、光源システムおよび照明装置 |
JP2009019163A (ja) * | 2007-07-13 | 2009-01-29 | Sharp Corp | 発光装置用蛍光体粒子集合体、発光装置、および液晶表示用バックライト装置 |
JP2009289957A (ja) * | 2008-05-29 | 2009-12-10 | Yamaguchi Univ | 半導体発光装置、および撮像装置 |
JP2010067961A (ja) * | 2008-09-11 | 2010-03-25 | Advanced Optoelectronic Technology Inc | 高演色性発光ダイオードの製造方法とシステム |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002344021A (ja) * | 2001-05-16 | 2002-11-29 | Nichia Chem Ind Ltd | 発光装置 |
JP4106615B2 (ja) * | 2002-07-31 | 2008-06-25 | 信越半導体株式会社 | 発光素子及びそれを用いた照明装置 |
US7768189B2 (en) * | 2004-08-02 | 2010-08-03 | Lumination Llc | White LEDs with tunable CRI |
US20070268234A1 (en) * | 2003-03-28 | 2007-11-22 | Sharp Kabushiki Kaisha | Display Device |
JP2007049114A (ja) * | 2005-05-30 | 2007-02-22 | Sharp Corp | 発光装置とその製造方法 |
JP2007165508A (ja) * | 2005-12-13 | 2007-06-28 | Sumitomo Osaka Cement Co Ltd | 発光素子封止用組成物及び発光素子並びに光半導体装置 |
KR100875443B1 (ko) * | 2006-03-31 | 2008-12-23 | 서울반도체 주식회사 | 발광 장치 |
JP2007299714A (ja) * | 2006-05-08 | 2007-11-15 | Osram-Melco Ltd | 照明器具 |
JP4745184B2 (ja) * | 2006-10-03 | 2011-08-10 | スタンレー電気株式会社 | 照明装置 |
JP2008198951A (ja) * | 2007-02-15 | 2008-08-28 | Nitto Denko Corp | 光半導体素子封止用エポキシ樹脂組成物の製法 |
WO2008103876A1 (en) * | 2007-02-22 | 2008-08-28 | Cree Led Lighting Solutions, Inc. | Lighting devices, methods of lighting, light filters and methods of filtering light |
WO2009029575A1 (en) * | 2007-08-24 | 2009-03-05 | Photonic Developments Llc | Light emitting diode lamp free of melatonin-suppressing radiation |
JP5418746B2 (ja) * | 2008-03-10 | 2014-02-19 | スタンレー電気株式会社 | 車両用灯具 |
WO2010002221A2 (ko) * | 2008-07-03 | 2010-01-07 | 삼성엘이디 주식회사 | 파장변환형 발광다이오드 칩 및 이를 구비한 발광장치 |
DE102008050643B4 (de) * | 2008-10-07 | 2022-11-03 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Leuchtmittel |
JP5342867B2 (ja) * | 2008-12-19 | 2013-11-13 | スタンレー電気株式会社 | 半導体発光装置及び駆動方法 |
CN101806430A (zh) * | 2009-02-17 | 2010-08-18 | 福建省苍乐电子企业有限公司 | 高显色性白光led |
CN102395649A (zh) * | 2009-04-13 | 2012-03-28 | 日本化学工业株式会社 | 红色荧光体及其制造方法 |
CN201443698U (zh) * | 2009-05-27 | 2010-04-28 | 中微光电子(潍坊)有限公司 | 一种色温可变的led发光装置 |
US8217406B2 (en) | 2009-12-02 | 2012-07-10 | Abl Ip Holding Llc | Solid state light emitter with pumped nanophosphors for producing high CRI white light |
CN106449626A (zh) * | 2016-12-13 | 2017-02-22 | 易美芯光(北京)科技有限公司 | 一种双芯片蓝光健康的led光源 |
-
2011
- 2011-06-23 EP EP17187460.5A patent/EP3270425A1/en not_active Withdrawn
- 2011-06-23 EP EP11863791.7A patent/EP2701213B8/en active Active
- 2011-06-23 CN CN201180070338.9A patent/CN103493226B/zh active Active
- 2011-06-23 US US14/110,830 patent/US9109762B2/en active Active
- 2011-06-23 JP JP2013510842A patent/JP5770269B2/ja active Active
- 2011-06-23 EP EP21160434.3A patent/EP3848985B1/en active Active
- 2011-06-23 EP EP23177418.3A patent/EP4258819A3/en active Pending
- 2011-06-23 WO PCT/JP2011/064405 patent/WO2012144087A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10242513A (ja) | 1996-07-29 | 1998-09-11 | Nichia Chem Ind Ltd | 発光ダイオード及びそれを用いた表示装置 |
WO2008069101A1 (ja) | 2006-12-08 | 2008-06-12 | Sharp Kabushiki Kaisha | 光源、光源システムおよび照明装置 |
JP2009019163A (ja) * | 2007-07-13 | 2009-01-29 | Sharp Corp | 発光装置用蛍光体粒子集合体、発光装置、および液晶表示用バックライト装置 |
JP2009289957A (ja) * | 2008-05-29 | 2009-12-10 | Yamaguchi Univ | 半導体発光装置、および撮像装置 |
JP2010067961A (ja) * | 2008-09-11 | 2010-03-25 | Advanced Optoelectronic Technology Inc | 高演色性発光ダイオードの製造方法とシステム |
Cited By (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2012108065A1 (ja) * | 2011-02-09 | 2014-07-03 | 株式会社東芝 | 白色光源およびそれを用いた白色光源システム |
EP2772953B1 (en) * | 2011-10-24 | 2022-01-26 | Seoul Semiconductor Co., Ltd. | White light source and white light source system using white light source |
EP4044264A1 (en) * | 2011-10-24 | 2022-08-17 | Seoul Semiconductor Co., Ltd. | White light source and white light source system using white light source |
JP2014203932A (ja) * | 2013-04-03 | 2014-10-27 | 株式会社東芝 | 発光装置 |
JP2015002733A (ja) * | 2013-06-20 | 2015-01-08 | フューチャーグリーン・アグリカルチュラル・カンパニー・リミテッドFuturegreen Agricultural Company Limited | 植物工場用led照明モジュールとこれを搭載した植物工場用led照明装置 |
JP2019054286A (ja) * | 2013-11-08 | 2019-04-04 | ルミマイクロ コーポレーション リミテッドLumimicro Corp. Ltd. | 発光装置 |
JP2017507491A (ja) * | 2014-02-21 | 2017-03-16 | フィリップス ライティング ホールディング ビー ヴィ | 発光モジュール、ランプ、照明器具及び物体を照射する方法 |
EP4024454A1 (en) | 2014-10-28 | 2022-07-06 | Seoul Semiconductor Co., Ltd. | White light source and white light source system |
JP2019062236A (ja) * | 2014-10-28 | 2019-04-18 | 株式会社東芝 | 白色光源 |
JP2021122014A (ja) * | 2014-10-28 | 2021-08-26 | 東芝マテリアル株式会社 | 白色光源の使用方法および白色光源システムの使用方法 |
JP7285877B2 (ja) | 2014-10-28 | 2023-06-02 | ソウル セミコンダクター カンパニー リミテッド | 白色光源システム |
JPWO2016067609A1 (ja) * | 2014-10-28 | 2017-09-14 | 株式会社東芝 | 白色光源および白色光源システム |
US10420183B2 (en) | 2014-10-28 | 2019-09-17 | Kabushiki Kaisha Toshiba | White light source and white light source system |
JP2016115934A (ja) * | 2014-12-11 | 2016-06-23 | シチズン電子株式会社 | 発光装置及び発光装置の製造方法 |
US11808443B2 (en) | 2014-12-16 | 2023-11-07 | Signify Holding B.V. | Lighting device, lighting system and use thereof |
JP2021061448A (ja) * | 2014-12-16 | 2021-04-15 | シチズン電子株式会社 | 発光装置 |
JP2022079746A (ja) * | 2014-12-16 | 2022-05-26 | シチズン電子株式会社 | 発光装置 |
WO2016096367A1 (en) * | 2014-12-16 | 2016-06-23 | Philips Lighting Holding B.V.. | Lighting device, lighting system and use thereof |
US11342312B2 (en) | 2014-12-16 | 2022-05-24 | Citizen Electronics Co., Ltd. | Light emitting element with particular phosphors |
JP2016115941A (ja) * | 2014-12-16 | 2016-06-23 | シチズン電子株式会社 | 発光装置 |
US11756939B2 (en) | 2014-12-16 | 2023-09-12 | Citizen Electronics Co., Ltd. | Light emitting element with particular phosphors |
US10378709B2 (en) | 2015-03-23 | 2019-08-13 | Kabushiki Kaisha Toshiba | Illumination system for reproducing the color temperature range of solar light for illuminating exhibits |
US11430771B2 (en) | 2015-06-24 | 2022-08-30 | Seoul Semiconductor Co., Ltd. | White light source system |
US11721675B2 (en) | 2015-06-24 | 2023-08-08 | Seoul Semiconductor Co., Ltd. | White light source system |
KR20200047795A (ko) | 2015-06-24 | 2020-05-07 | 가부시끼가이샤 도시바 | 백색 광원 시스템 |
US10674577B2 (en) | 2015-06-24 | 2020-06-02 | Kabushiki Kaisha Toshiba | White light source system |
US11978726B2 (en) | 2015-06-24 | 2024-05-07 | Seoul Semiconductor Co., Ltd. | White light source system |
US10375786B2 (en) | 2015-06-24 | 2019-08-06 | Kabushiki Kaisha Toshiba | White light source system |
KR20200105970A (ko) | 2015-06-24 | 2020-09-09 | 가부시끼가이샤 도시바 | 백색 광원 시스템 |
EP4243096A2 (en) | 2015-06-24 | 2023-09-13 | Seoul Semiconductor Co., Ltd. | White light source system |
KR20180011191A (ko) | 2015-06-24 | 2018-01-31 | 가부시끼가이샤 도시바 | 백색 광원 시스템 |
KR20200011588A (ko) | 2015-06-24 | 2020-02-03 | 가부시끼가이샤 도시바 | 백색 광원 시스템 |
KR20210025691A (ko) | 2015-06-24 | 2021-03-09 | 가부시끼가이샤 도시바 | 백색 광원 시스템 |
US10473274B2 (en) | 2015-06-24 | 2019-11-12 | Kabushiki Kaisha Toshiba | White light source system |
US11094679B2 (en) | 2015-06-24 | 2021-08-17 | Kabushiki Kaisha Toshiba | White light source system |
US10231305B2 (en) | 2015-06-24 | 2019-03-12 | Kabushiki Kaisha Toshiba | White light source system |
JP2018534751A (ja) * | 2015-11-10 | 2018-11-22 | フィリップス ライティング ホールディング ビー ヴィ | 可変uv成分を有する調整可能な白色光源 |
US10441809B2 (en) | 2015-11-10 | 2019-10-15 | Signify Holding B.V. | Tunable white light source with variable UV component |
US9825206B2 (en) | 2016-02-25 | 2017-11-21 | Toyoda Gosei, Co., Ltd. | Light-emitting device |
JPWO2018179105A1 (ja) * | 2017-03-28 | 2020-01-16 | 株式会社朝日ラバー | 照明装置の製造方法 |
JP2020532874A (ja) * | 2017-09-06 | 2020-11-12 | ジーエルビーテック カンパニー リミテッド | D50/d65高演色性標準led発光モジュールおよび照明装置 |
US11605761B2 (en) | 2017-09-28 | 2023-03-14 | Nichia Corporation | Light-emitting device |
US10818827B2 (en) | 2017-09-28 | 2020-10-27 | Nichia Corporation | Light-emitting device |
JP2019067808A (ja) * | 2017-09-28 | 2019-04-25 | 日亜化学工業株式会社 | 発光装置 |
EP3461873A1 (en) | 2017-09-28 | 2019-04-03 | Nichia Corporation | Light-emitting device |
JP2019207995A (ja) * | 2018-05-29 | 2019-12-05 | 日亜化学工業株式会社 | 発光装置 |
JP2020136619A (ja) * | 2019-02-25 | 2020-08-31 | パナソニックIpマネジメント株式会社 | 発光装置及び照明装置 |
JP2020136597A (ja) * | 2019-02-25 | 2020-08-31 | パナソニックIpマネジメント株式会社 | 発光装置及び照明装置 |
JP7311818B2 (ja) | 2019-03-29 | 2023-07-20 | 日亜化学工業株式会社 | 発光装置 |
JP2022163070A (ja) * | 2019-03-29 | 2022-10-25 | 日亜化学工業株式会社 | 発光装置 |
JP7125618B2 (ja) | 2019-03-29 | 2022-08-25 | 日亜化学工業株式会社 | 発光装置 |
JP2020167399A (ja) * | 2019-03-29 | 2020-10-08 | 日亜化学工業株式会社 | 発光装置 |
WO2021199752A1 (ja) | 2020-03-31 | 2021-10-07 | 日亜化学工業株式会社 | 発光装置及びそれを備えた灯具 |
US11598508B2 (en) | 2020-06-30 | 2023-03-07 | Nichia Corporation | Light emitting device |
US12287089B2 (en) | 2020-06-30 | 2025-04-29 | Nichia Corporation | Light emitting device |
WO2023276259A1 (ja) | 2021-07-01 | 2023-01-05 | 日亜化学工業株式会社 | 発光装置、灯具及び照明器具 |
Also Published As
Publication number | Publication date |
---|---|
EP3848985C0 (en) | 2023-06-07 |
EP2701213B1 (en) | 2020-05-27 |
EP3848985B1 (en) | 2023-06-07 |
EP2701213A1 (en) | 2014-02-26 |
EP4258819A2 (en) | 2023-10-11 |
EP3848985A1 (en) | 2021-07-14 |
CN103493226A (zh) | 2014-01-01 |
EP2701213B8 (en) | 2020-11-04 |
EP2701213A4 (en) | 2014-10-22 |
EP3270425A1 (en) | 2018-01-17 |
EP4258819A3 (en) | 2024-01-24 |
JP5770269B2 (ja) | 2015-08-26 |
EP3848985A8 (en) | 2021-08-25 |
CN103493226B (zh) | 2016-09-28 |
JPWO2012144087A1 (ja) | 2014-07-28 |
US9109762B2 (en) | 2015-08-18 |
US20140036499A1 (en) | 2014-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5770269B2 (ja) | 白色光源およびそれを用いた白色光源システム | |
JP5823416B2 (ja) | 白色光源およびそれを用いた白色光源システム | |
JP6081367B2 (ja) | 白色光源およびそれを用いた白色光源システム | |
JP6081368B2 (ja) | 白色光源およびそれを用いた白色光源システム | |
CN103339750B (zh) | 白色光源 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11863791 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14110830 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2013510842 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011863791 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |