[go: up one dir, main page]

WO2012135993A1 - 由合成气高选择性制备高品质汽油馏分的催化剂及其制备方法 - Google Patents

由合成气高选择性制备高品质汽油馏分的催化剂及其制备方法 Download PDF

Info

Publication number
WO2012135993A1
WO2012135993A1 PCT/CN2011/072422 CN2011072422W WO2012135993A1 WO 2012135993 A1 WO2012135993 A1 WO 2012135993A1 CN 2011072422 W CN2011072422 W CN 2011072422W WO 2012135993 A1 WO2012135993 A1 WO 2012135993A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular sieve
catalyst
solution
aluminum
cobalt
Prior art date
Application number
PCT/CN2011/072422
Other languages
English (en)
French (fr)
Inventor
王野
康金灿
张磊
张庆红
成康
翟庆阁
丁建生
华卫琦
楼银川
Original Assignee
万华实业集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 万华实业集团有限公司 filed Critical 万华实业集团有限公司
Priority to US13/321,056 priority Critical patent/US9168515B2/en
Priority to AU2011232735A priority patent/AU2011232735C1/en
Priority to CA2756795A priority patent/CA2756795C/en
Priority to RU2011141198/04A priority patent/RU2484897C1/ru
Priority to EP11772860.0A priority patent/EP2535107A4/en
Priority to PCT/CN2011/072422 priority patent/WO2012135993A1/zh
Publication of WO2012135993A1 publication Critical patent/WO2012135993A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/80Mixtures of different zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • B01J29/072Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/085Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • B01J29/088Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/14Iron group metals or copper
    • B01J29/146Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/16Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J29/166Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • B01J29/185Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • B01J29/20Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type containing iron group metals, noble metals or copper
    • B01J29/22Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • B01J29/20Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type containing iron group metals, noble metals or copper
    • B01J29/24Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • B01J29/26Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/405Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/44Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/46Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/48Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing arsenic, antimony, bismuth, vanadium, niobium tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7007Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7038MWW-type, e.g. MCM-22, ERB-1, ITQ-1, PSH-3 or SSZ-25
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7049Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • B01J29/7057Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7049Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • B01J29/7088MWW-type, e.g. MCM-22, ERB-1, ITQ-1, PSH-3 or SSZ-25
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/7615Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/7676MWW-type, e.g. MCM-22, ERB-1, ITQ-1, PSH-3 or SSZ-25
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/78Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J29/7815Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/78Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J29/7876MWW-type, e.g. MCM-22, ERB-1, ITQ-1, PSH-3 or SSZ-25
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/36Pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C01B39/38Type ZSM-5
    • C01B39/40Type ZSM-5 using at least one organic template directing agent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • C01B39/48Other types characterised by their X-ray diffraction pattern and their defined composition using at least one organic template directing agent
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • C10G2/332Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the iron-group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/334Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing molecular sieve catalysts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/38Base treatment
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline

Definitions

  • the present invention relates to a Fischer-Tropsch synthesis catalyst and a preparation method thereof, and more particularly to a Fischer-Tropsch synthesis catalyst of a high-quality gasoline-based high-quality gasoline fraction and a preparation method thereof
  • Fischer-Tropsch synthesis is the process by which a synthesis gas is converted to a hydrocarbon by a catalytic reaction.
  • Fischer-Tropsch synthesis involves the formation of alkanes and alkenes, accompanied by the formation of oxygenates and water gas shift reactions.
  • the reactants of the Fischer-Tropsch synthesis, syngas can be converted from coal, natural gas, coalbed methane, biomass, etc. through a gasification or reforming process.
  • Products produced via Fischer-Tropsch synthesis include cleaning liquid fuels such as gasoline, diesel, kerosene, basic chemical materials such as light olefins, and high value-added chemicals such as advanced waxes.
  • CN 101811050A discloses an organic hydrophobically modified cobalt-based Fischer-Tropsch synthesis catalyst comprising cobalt, a support, silica and a hydrophobic group, wherein the cobalt content is from 5.0% to 30.0%, the carrier 50%-80%, 5%-20% silica, 5%-40% hydrophobic groups.
  • the catalyst preparation is simple, costs for high CO conversion (60%) Tropsch synthesis reaction, middle distillate selectivity of C 5 -C n 50%, C 19 + is less than 2%.
  • CN 101804351 A discloses a core-shell cobalt-based catalyst for syngas preparation of middle distillate, mainly composed of 5%-30% cobalt and 70%-95% silica, wherein the cobalt tetraoxide nanoparticles are mesoporous silicon.
  • the shell is coated therein to form a core-shell structure.
  • CN 1418933 A discloses a catalyst for synthesizing a synthesis gas and a diesel fraction from a synthesis gas, which catalyst is composed of an active metal Fe and an auxiliary agent such as Cu, K, Co, Ru, etc., and the carrier is activated carbon.
  • the catalyst selectively produces C r C 2 .
  • the component, wherein the C 5 -C 2Q selectivity is up to 76.6%.
  • CN 101269328A discloses a cobalt-based catalyst for preparing steam and diesel fractions from syngas, mainly composed of Co and Ti0 2 , and CO conversion and Cs-Cu selectivity are 60% and 40%, respectively, in a fixed bed reactor. .
  • CN 101224430A discloses a hydrophobic organically modified cobalt-based Fischer-Tropsch synthesis catalyst, the catalyst mainly consists of metal cobalt, precious metal auxiliary agent and porous silica gel.
  • the CO conversion rate can reach 70%, C 5 - The C n selectivity is about 50%.
  • Martinez et al. (A. Martinez et al. J. Catal. 2007, 249, 162) found that a conventional Feto-Synthetic cobalt-based catalyst can be physically mixed with a zeolite molecular sieve (H-ZSM-5, etc.) to obtain a composite catalyst.
  • H-ZSM-5 zeolite molecular sieve
  • Higher gasoline fraction selectivity For example, the Co/Si0 2 + ZSM-5 composite catalyst has a syngas conversion of about 60°/.
  • the C 5 -C 12 selectivity is up to 62%.
  • the literature (Y. Li et al. Energy Fuel 2008, 22, 1897) reported that SiO 2 and ZSM-5 were mixed to form a composite oxide, which was then supported with cobalt. The catalyst obtained high catalytic performance and the CO conversion rate exceeded 80.
  • C 5 -C 12 has a selectivity of 55% and a heterogeneous smoldering ratio of more than 10%.
  • Tsubaki et al. N. Tsubaki et al. Angew. Chem. Int. Ed. 2008, 47, 353; J. Catal. 2009, 265, 26
  • using an in situ generated molecular sieve membrane H-beta to encapsulate a conventional Fischer-Tropsch synthesis catalyst Co/Al 2 0 3 prepared a novel Fischer-Tropsch synthesis catalyst with a core-shell structure.
  • C 5 -C 12 which is mainly composed of isoparaffins, can be obtained with a selectivity of up to 55%.
  • the catalyst consists of a metal ruthenium and a molecular sieve, and has a very high selectivity for a gasoline fraction such as a hydrocarbon having 5 to 11 carbon atoms.
  • the Applicant has further developed a novel Fischer-Tropsch synthesis catalyst which is highly selective in the preparation of high quality gasoline fraction by one-step synthesis gas provided by the present invention. Summary of the invention
  • the rhodium catalyst has a high C 5 -Cu hydrocarbon selectivity, which avoids or significantly reduces catalyst carbon deposits and low-cost preparation of high quality gasoline from syngas.
  • the Fischer-Tropsch synthesis catalyst for preparing high-quality gasoline fraction by synthesizing gas with high selectivity is composed of metal cobalt, auxiliary element and molecular sieve; the content of metal cobalt is 1%-30% based on the weight of the catalyst, The content of the auxiliary element is 0.01%-5%, and the amount of cerium is molecular sieve.
  • the content of the metal cobalt is 8% to 15%, and the content of the auxiliary element is 0.05% to 2%.
  • the auxiliary agent is one or more selected from the group consisting of IA, IIA metal elements, transition metal elements or rare earth elements, and further preferably Na, K, Mg, Mn, Ru, One or more of Zr, Ce, and La is still more preferably one or more of Mn, Na, and Ru.
  • the molecular sieve is one or more of Beta, ZSM-5, MOR, Y, MCM-22 molecular sieves having an acidic and special pore structure; the silica-alumina of the molecular sieve The ratio is 5-300, and further preferably, the molecular sieve is Beta and/or ZSM-5, and the Aluminium ratio is 20-100.
  • the molecular sieve represents the acid amount by the adsorption amount of N3 ⁇ 4, and the adsorption of NH 3 per gram of molecular sieve is 0.16-0.50 mmol; the molecular sieve has a microporous-mesoporous structure, the micropore diameter is 0.4-0.9 nm, and the mesoporous pore diameter It is 2-30 legs, the specific surface area is 100-900 m 2 g -1 , the pore volume is 0.1-0.6 cm 3 , and the mesoporous volume is 0.1-0.6 cm 3 g—
  • the molecular sieve adopts Beta, ZSM-5, MOR, Y, MCM-22
  • One or more of the molecular sieves are obtained by treatment with an alkaline solution.
  • the specific processing steps are as follows:
  • an alkaline solution having a concentration ranging from 0.005 mol l / 1 to saturation, wherein an aqueous solution containing an alkali metal or an alkaline earth metal ion is preferred; and the aqueous solution containing an alkali metal or alkaline earth metal ion is an alkali metal or One or more of alkaline earth metal nitrates, nitrites, carbonates, hydrogencarbonates, acid salts, oxalates, acetates, citrates, hydroxides, oxides The solution formed;
  • the molecular sieves Beta and ZSM-5 can also be prepared by hydrothermal synthesis, and include the following steps:
  • the aluminum-containing compound is aluminum nitrate or sodium aluminate.
  • the templating agent is an alkyl ammonium hydroxide or an alkyl ammonium bromide, and preferably, the templating agent is tetraethyl hydroxide Ammonium or tetrapropylammonium bromide; the molar ratio of the templating agent to the aluminum-containing compound is 3-15;
  • the obtained mixed liquid is transferred to the hydrothermal synthesis reactor, Treated at 100-170 ° C for 24-96 h; after cooling, the obtained suspension is added to 50-100 mL of an aqueous solution of cetyltridecyl ammonium bromide at a concentration of 1 wt% to 15 wt%; The pH was adjusted to 7.5-10.5 using 30 wt% to 70 wt% acid and then transferred to a hydrothermal synthesis reactor at 90-130 °. Reprocessing for 24-96 h;
  • the preparation method of the Fischer-Tropsch synthesis catalyst for preparing high-quality gasoline oxime by high selectivity from syngas comprises the following steps:
  • the group distribution ratio of the catalyst according to the present invention is weighed as a dry salt, and deionized water or an alcohol or a ketone solvent is added to prepare a cobalt salt solution having a concentration of 0.5 wt% to 20 wt%;
  • the dried solid is calcined in an air atmosphere, the calcination temperature is 300-550 e C, and the calcination time is 2-10 h;
  • the catalyst precursor is reduced under a hydrogen or hydrogen atmosphere and an inert gas atmosphere at a reduction temperature of 300-550 ° C and a reduction time of l-10 h.
  • the catalyst precursor reduction step may be carried out in the catalyst
  • the preparation process can be completed before the actual application of the catalyst, that is, before the Fischer-Tropsch synthesis reaction.
  • the cobalt salt is selected from the group consisting of cobalt chloride, cobalt nitrate, cobalt bromide, and cobalt acetylacetonate. Any one or more of cobalt acetate.
  • a cobalt salt solution is prepared by using deionized water; the concentration of the cobalt salt solution is 0.5 wt%- 20 wt%, preferably 3 wt% to 15 wt%.
  • a method for preparing a Fischer-Tropsch synthesis catalyst for preparing a high-quality gasoline fraction by a synthesis gas which is selected from one of IA, a lanthanum metal element, a transition metal element or a rare earth element or More preferably, one or more of Na, K, Mg, Mn, Ru, Zr, Ce, and La, and still more preferably one or more of Mn, Na, and Ru;
  • the class is selected from any one or more of the hydrochloride, nitrate, bromide, and acetate salts of the adjuvant.
  • the Fischer-Tropsch synthesis catalyst for preparing high-quality gasoline fractions by syngas with high selectivity by the present invention can be used in a fixed bed reaction process or in a slurry bed or fluidized bed reaction process.
  • the reaction conditions of the catalyst provided by the present invention for the Fischer-Tropsch synthesis reaction are: a reaction temperature of 180-300 ° C, a reaction pressure of 0.1-5 MPa, and a synthesis gas space velocity of 500-6000 ⁇ 1 .
  • the volume ratio of hydrogen to carbon monoxide in the syngas is 1-3.
  • the catalyst provided by the present invention is used in a Fischer-Tropsch synthesis reaction, and has a very high selectivity for a gasoline fraction such as a hydrocarbon having 5 to 11 carbon atoms, and is mainly composed of an isoparaffin, that is, a quality of gasoline. High; the selectivity for the plugged hydrocarbons with a carbon number higher than 20 is very low, the subsequent paraffin catalytic cracking and the like can be omitted, and the problems of catalyst bonding, pipeline blockage, etc. can be greatly reduced, thereby being effective Reduce the one-time investment cost of the device and the operating costs in production.
  • the molecular sieve having a specific pore structure used in the present invention is simple to prepare and uses cobalt
  • the catalyst cost is low, and the selectivity for C 5 -C u is improved, and the formation of low hydrocarbons is suppressed.
  • the Fischer-Tropsch synthesis catalyst provided by the invention can be applied to syngas of different sources, low H 2 /CO ratio obtained from coal as raw material or high H 2 /CO ratio syngas obtained from natural gas and coalbed methane as raw materials. Both can achieve high gasoline fraction selectivity, so the source of syngas required for the catalyst described herein is flexible and does not affect the availability of high quality gasoline fractions.
  • the Fischer-Tropsch synthesis catalyst carrier of the present invention has a dual function, and its acidity promotes cracking and isomerization of the product high carbon hydrocarbons, further producing a gasoline fraction, and its proper mesoporous structure is also advantageous for middle distillate oil.
  • the diffusion and the high carbon hydrocarbon cracking and isomerization process, the synergistic effect of the two can significantly improve the selectivity of gasoline components.
  • the Fischer-Tropsch synthesis catalyst provided by the invention has the dual effect, the lower cost, the high-shield gasoline fraction can be obtained, and the catalyst can effectively reduce the one-time construction cost and the production operation cost of the Fischer-Tropsch synthesis process.
  • a high quality gasoline fraction can be obtained using a flexible syngas source.
  • Example 1 The Fischer-Tropsch synthesis catalyst provided by the present invention and a method for producing the same are described in further detail below, but the present invention is not limited at all.
  • Example 1 The Fischer-Tropsch synthesis catalyst provided by the present invention and a method for producing the same are described in further detail below, but the present invention is not limited at all.
  • the calcined solid powder is tableted, and after crushing, 30 to 60 parts of the component are sieved as a precursor of the catalyst.
  • a precursor of 0.8 g of the catalyst was weighed and reduced in a hydrogen atmosphere at 400 ° C for 10 h to obtain a catalyst of 8 wt% Co-0.1 wt% Ru/MOR-0.01M.
  • reaction temperature was 25 CTC
  • reaction pressure was 2 MPa
  • synthesis gas space velocity was 1.5 Lf 1 . ⁇
  • the amount of catalyst is 0.8 g.
  • the reaction tail gas was analyzed by gas chromatography on-line (provided by Shanghai Sailu Xin Analysis Technology Co., Ltd.).
  • the reaction performance of the 8 wt% Co-0.1 wt% Ru /MOR-0.01M catalyst is shown in Table 1.
  • 0.085 g of NaN0 3 was weighed out and added to 100 ml of 3 ⁇ 40 to prepare a NaN0 3 aqueous solution having a concentration of 0.01 mol V 1 .
  • a 8.0 g Beta molecular sieve having a silica-alumina ratio of 25 (manufactured by Nankai University Catalyst Factory, NKF-6) was weighed and added to the above solution, and stirred at 30 ° C for 30 min. Filter, wash with deionized water and dry at 100 °C for 5 h.
  • the calcined solid powder is tableted, and after crushing, a component of 30 to 60 mesh is sieved as a precursor of the catalyst.
  • a precursor of 1.0 g of the catalyst was weighed and reduced in a hydrogen atmosphere of 450 C for 3 hours to obtain an 8 wt% Co-l wt% K/Beta-0.01 M catalyst.
  • the catalytic reaction was carried out in a fixed bed stainless steel high pressure micro fixed bed reactor.
  • the reaction conditions and product analysis were as in Example 1.
  • the reaction performance is shown in Table 2.
  • Table 2 Catalytic performance of 8 wt% Co-1 wt% / Beta-0.01M
  • the catalytic reaction was carried out in a stainless steel high pressure micro fixed bed reactor.
  • the reaction conditions and product analysis were as in Example 1.
  • the reaction performance is shown in Table 3.
  • the molecular sieve was added to an aqueous solution of ammonium nitrate at a concentration of 2.0 mol L, stirred at 50 ° C for 2 h, washed with deionized water, and the obtained filter cake was dried at 100 ° C for 15 h and calcined at 500 ° C in an air atmosphere. 5 h, the molecular sieve carrier was obtained, which was recorded as Y-0.02M.
  • the calcined solid powder is tableted, and after crushing, a component of 30 to 60 mesh is sieved as a precursor of the catalyst.
  • a precursor of 0.8 g of the catalyst was weighed and reduced in a hydrogen atmosphere at 450 ° C for 3 h to obtain a 28 wt% Co-5 wt% Zr/MCM-22-0.05 M catalyst.
  • the catalytic reaction was carried out in a stainless steel high pressure micro fixed bed reactor.
  • the reaction conditions and product analysis were the same as in Example 1, and the reaction performance is shown in Table 5.
  • the calcined solid powder is tableted, and after crushing, a component of 30 to 60 mesh is sieved as a precursor of the catalyst.
  • the precursor of 0.8 g of the catalyst was weighed and reduced in a hydrogen atmosphere at 450 ° C for 3 h to obtain a catalyst of 8 wt% Co-1 wt% K/(Beta-0.01M+ZSM- 5-0.01M).
  • the catalytic reaction was carried out in a stainless steel high-pressure micro-fixed bed reactor.
  • the reaction conditions and product analysis were the same as in Example 1, and the reaction performance is shown in Table 6.
  • the calcined solid powder is tableted, and after crushing, a component of 30 to 60 mesh is sieved as a precursor of the catalyst.
  • the precursor of 0,8 g of catalyst was weighed and reduced in a hydrogen atmosphere at 400 ° C for 5 h to obtain a catalyst of 8 wt% Co-1 wt% Mn/Beta-0.01M.
  • the catalytic reaction was carried out in a fixed bed stainless steel high pressure micro fixed bed reactor.
  • the reaction conditions and product analysis were the same as in Example 1.
  • the reaction performance is shown in Table 7.
  • the calcined solid powder is tableted, and after crushing, a component of 30 to 60 mesh is sieved as a precursor of the catalyst.
  • a precursor of 0.8 g of the catalyst was weighed and reduced in a hydrogen atmosphere at 400 ° C for 5 h to obtain an 8 wt% Co-0.1 wt% Na/Beta-0.1 M catalyst.
  • the catalytic reaction was carried out in a fixed-bed stainless steel high-pressure microreactor.
  • the reaction conditions were the same as the volume ratio of hydrogen to carbon monoxide in the synthesis gas.
  • the other components and products were analyzed in the same manner as in Example 1.
  • the reaction performance is shown in Table 8.
  • the calcined solid powder is tableted, crushed, and sieved to take a 30-60 target component as a precursor of the catalyst.
  • the precursor of 0.8 g of the catalyst was weighed and reduced in a hydrogen atmosphere at 450 ° C for 4 h to obtain a catalyst of 8 wt% Co-0.05 wt% Mn/ZSM-5-0.5M.
  • the catalytic reaction was carried out in a fixed bed stainless steel high pressure microreactor.
  • the reaction conditions and product analysis were as in Example 8.
  • the reaction performance is shown in Table 9.
  • the calcined solid powder is tableted, and after crushing, a component of 30 to 60 mesh is sieved as a precursor of the catalyst.
  • a precursor of 0.8 g of the catalyst was weighed and reduced in a hydrogen atmosphere at 400 ° C for 7 h to obtain an 8 wt% Co-0.05 wt% Mg/ZSM- 5-0.3 M catalyst.
  • the catalytic reaction was carried out in a fixed bed stainless steel high pressure microreactor.
  • the reaction conditions and product analysis were as in Example 8.
  • the reaction performance is shown in Table 10.
  • Table 10 Catalytic performance of 8 wt% Co-0.05 wt% Mg/ZSM-5-0.3M
  • the calcined solid powder is tableted, and after crushing, a component of 30 to 60 mesh is sieved as a precursor of the catalyst.
  • a precursor of 0.8 g of the catalyst was weighed and reduced in a hydrogen atmosphere at 450 ° C for 5 h to obtain an 8 wt% Co-0.05 wt% Ru/ZSM-5(30)-HT catalyst.
  • the catalytic reaction was carried out in a stainless steel high pressure microreactor.
  • the reaction conditions and product analysis were the same as in Example 8.
  • the reaction properties are shown in Table 11.
  • Table 11 Catalytic Performance of 8 wt% Co- 0.05 wt% R /ZS -5(30)-HT
  • 0.82 g of sodium aluminate was weighed and added to 30.0 g of a 20 wt% aqueous solution of tetraethylammonium hydroxide, and stirred for 2 hours. Based on a Si/Al molar ratio of 25, 15.0 g of fumed silica was added and stirring was continued for 1 h. The obtained turbid liquid was transferred to a hydrothermal synthesis reactor and treated at 140 ° C for 48 h. After the kettle was removed and cooled, the resulting suspension was added to 30.0 g of a 10% by weight aqueous solution of cetyltridecyl ammonium bromide.
  • the pH was adjusted to 9.0 with 50 1% acetic acid, then transferred to a hydrothermal synthesis reactor and hydrothermally treated at 11 CTC for 48 h. After the kettle was removed and cooled, it was filtered, washed with deionized water and dried at 100 ° C for 12 h. The obtained solid powder was sufficiently ground and calcined at 550 ° C for 8 hours in an air atmosphere to obtain a Beta(25)-HT molecular sieve.
  • the calcined solid powder is tableted, crushed and sieved
  • the 30-60 mesh component serves as a precursor to the catalyst.
  • 0.8 g of the catalyst precursor was weighed and reduced in a hydrogen atmosphere of 430 V for 5 h to obtain 8 wt% Co-0.05 wt% Mn/Beta(25)-HT catalyst.
  • the catalytic reaction was carried out in a stainless steel high-pressure microreactor.
  • the reaction conditions and product analysis were the same as in Example 1.
  • the reaction performance is shown in Table 12.
  • Table 12 Catalytic performance of 8 wt% Co- 0.05 wt% Mn/Beta(25)-HT
  • the pH was adjusted to 8.5 with 60 wt% acetic acid and then transferred to a hydrothermal synthesis reactor at 130 °C. C was hydrothermally treated for 72 h. After the kettle was removed and cooled, it was filtered, washed with deionized water and dried at 100 ° C for 12 h. The obtained solid powder was sufficiently ground and calcined at 530 Torr for 10 h in an air atmosphere to obtain a Beta(50)-HT molecular sieve.
  • the catalytic reaction was carried out in a stainless steel high pressure micro fixed bed reactor.
  • the reaction conditions and product analysis were the same as in Example 1, and the reaction performance is shown in Table 13.
  • the catalytic reaction was carried out in a fixed bed stainless steel high pressure micro fixed bed reactor, and the reaction conditions and analysis conditions were the same as in Example 1.
  • the reaction properties are shown in Table 14.
  • Table 14 Catalytic performance of 15 wt% Co- 1 wt% Na/ZSM-5
  • the catalytic reaction was carried out in a fixed bed stainless steel high pressure micro fixed bed reactor, and the reaction conditions and analysis conditions were the same as in Example 1.
  • the reaction properties are shown in Table 15.
  • Table 15 Catalytic performance of 8 wt% Co-0.05 wt% Mn/Beta
  • the catalytic reaction was carried out in a fixed bed stainless steel high pressure microreactor.
  • the reaction conditions and product analysis were as in Example 8.
  • the reaction performance is shown in Table 16.
  • Conv. is the conversion rate of CO
  • is CH 4 selectivity ( 3 ⁇ 4 )
  • S 2 - 4 is gaseous hydrocarbon (: 2 - 4 selectivity (1 ⁇ 2)
  • S 5 - n is gasoline fraction Cs-Cu Selectivity (%)
  • S 1 . is the selectivity of the diesel fraction C 12 - C 2 . (3 ⁇ 4)
  • S n+ is the selectivity of the wax phase C 21+ ( 3 ⁇ 4 )
  • Tables 14, 15 and 16 are comparative examples. result.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

由合成气高选择性制备高品质汽油馏分的催化剂及其制备方法 技术领域
本发明涉及一种费托合成催化剂及其制备方法, 更具体地说, 是一 种高产异构烷烃为主的高品质汽油馏分的费托合成催化剂及其制备方法 背景技术
费托合成是合成气经催化反应转化为碳氢化合物的过程。 费托合成 包括生成烷烃和烯烃的反应, 同时还伴随有含氧化合物的生成和水煤气 变换反应。 费托合成的反应物即合成气可由煤、 天然气、 煤层气、 生物 质等经气化或重整过程转化而来。 经由费托合成生产的产物包括清洁液 体燃料如汽油、 柴油、 煤油, 基础化工原料如低碳烯烃以及高附加值化 学品如高级蜡等。 近年来, 随着石油资源的不断消耗以及世界范围内对 能源和资源的需求不断增加 , 通过费托合成反庶制备液体燃料和高附加 值化学品的途径已获得广泛认可。 国际上 SasoI、 Shell等公司已有基于煤 制油 (CTL)及天然气制油 (GTL)的工业化生产装置, 此外, Exxon Mobil Syntroleum, BP等许多公司以及一些富气或富煤国家都在筹划实施基于 费托合成技术的工业过程。 国内神华、 中科合成油、 兖矿等公司也建立 了基于费托合成的煤间接制油工业示范装置。
尽管针对费托合成的研究已有近 90年历史, 但仍存在较多问题有待 解决, 其中产物选择性的有效调控是最为关键的问题之一。 由于费托合 成产物链增长遵循聚合机理,产物选择性一般遵循 Anderson-Schulz-Flory 分布, 根据该分布除甲烷和重碳烃 (C21+)可取得较高的选择性外, 其他产 物的选择性均不高, 如汽油馏分 (C5-Cu)的选择性最高约为 45%, 柴油馏 分 (C12-C2Q)的选择性最高约为 30%。 目前已工业化的费托合成制油过程产 物往往是几种油品的混合物。 因此开发新型的可有效调控目标产物选择 性的费托合成催化剂的研究已引起愈来愈多的关注。
CN 101811050A公开了一种有机疏水改性钴基费托合成催化剂, 包 括钴、 载体、 二氧化硅和疏水基团, 其中钴含量为 5.0%-30.0%, 载体 50%-80%, 二氧化硅 5%- 20%, 疏水基团 5%- 40%。 该催化剂制备简单, 用于费托合成反应时 CO转化率较高 (60%), 中间馏分油 C5-Cn选择性为 50%, C19+低于 2%。
CN 101804351 A公开了一种用于合成气制备中间馏分油的核壳结构 钴基催化剂, 主要为 5%-30%钴及 70%-95%二氧化硅组成, 其中四氧化 三钴纳米粒子被介孔硅壳包覆其中而形成核壳结构。 该催化剂用于费托 合成反应时, CO转化率高于 80%, C5-C18选择性可达 76.1%, 但其曱烷 选择性仍高于 10%, 且生成了较多的 C19+。
CN 1418933A公开了一种由合成气选择合成汽、 柴油馏分用的催化 剂, 该催化剂由活性金属 Fe和 Cu、 K、 Co、 Ru等助剂组成, 载体为活 性炭。 该催化剂可选择性生成 CrC2。组分, 其中 C5-C2Q选择性最高可达 76.6%。
CN 101269328A公开了一种由合成气制备汽、 柴油馏分的钴基催化 剂, 主要由 Co及 Ti02组成, 在固定床反应器上, CO转化率及 Cs-Cu 选择性分别为 60%和 40%。
CN 101224430A公开了一种疏水有机改性的钴基费托合成催化剂, 催化剂主要由金属钴、 贵金属助剂、 多孔硅胶组成, 在固定床反应器上, CO转化率可达 70%, C5-Cn选择性为 50%左右。
Martinez等 (A. Martinez et al. J. Catal. 2007, 249, 162)发现, 将传统的 费托合成钴基催化剂与沸石分子筛 (H- ZSM-5 等)进行物理混合制得复合 催化剂可以获得较高的汽油馏分选择性。 例如, Co/Si02 + ZSM- 5复合催 化剂在合成气转化率为约 60°/。时 C5-C12选择性最高达 62%。 文献 (Y. Li et al. Energy Fuel 2008, 22, 1897)报道了将 Si02和 ZSM-5混合制成复合氧化 物, 然后负载钴, 该催化剂可获得高的催化性能, CO转化率超过 80%, C5-C12选择性达 55%,且异构炕烧比例超过 10%。 Tsubaki等 (N. Tsubaki et al. Angew. Chem. Int. Ed. 2008, 47, 353; J. Catal. 2009, 265, 26)采用原位生 成的分子筛膜 H-beta包裹传统的费托合成催化剂 Co/Al203制备了具有核 壳结构的新型费托合成催化剂。 采用该催化剂可得到以异构烷烃为主的 C5-C12, 其选择性最高可达 55%, 然而该类催化剂的甲烷选择性大多超过 此外, 该申请的申请人近期在 CN 101890361A中披露了一种由合成 气高选择性制备汽油馏分的催化剂。 谅催化剂由金属钌和分子筛组成, 对于碳原子数为 5-11的烃类等汽油馏分的选择性非常高。 在此^ 上, 申请人进一步开发了本发明所提供的由合成气一步法高选择性制备高品 质汽油馏分的新型费托合成催化剂。 发明内容
本发明的目的旨在提供一种改进的费托合成催化剂及其制备方法。 谚催化剂具有高 C5-Cu烃选择性, 可避免或明显减少催化剂积碳, 低成 本的从合成气制备高品质汽油。
本发明所提供的由合成气高选择性制备高品质汽油馏分的费托合成 催化剂由金属钴、 助剂元素和分子筛组成; 以催化剂的重量为基准, 金 属钴的含量为 1%-30%, 助剂元素的含量为 0.01%-5%, 佘量为分子筛。
根据本发明所提供的费托合成催化剂, 优选地, 所述金属钴的含量 为 8%-15%, 助剂元素的含量为 0.05%-2%。
根据本发明所提供的费托合成催化剂, 所述助剂选自 IA、 IIA族金 属元素、 过渡金属元素或稀土元素中的一种或多种, 进一步优选 Na、 K、 Mg、 Mn、 Ru、 Zr、 Ce、 La中的一种或多种, 更进一步优选为 Mn、 Na、 Ru中的一种或多种。
根据本发明所提供的费托合成催化剂 , 所述分子筛为具有酸性及特 殊孔结构的 Beta、 ZSM-5、 MOR、 Y、 MCM-22分子筛中的一种或多种; 所述分子筛的硅铝比为 5-300, 进一步优选地, 所述分子筛为 Beta和 /或 ZSM-5, 石圭铝比为 20-100。
所述分子筛以 N¾的吸附量来表示其酸量, 每克分子筛上吸附 NH3 为 0.16-0.50 mmol; 所述分子筛具有微孔 -介孔结构, 微孔孔径为 0.4-0.9 nm,介孔孔径为 2-30腿, 比表面积为 100-900 m2 g-1, 孔孔容为 0.1-0.6 cm3 , 介孔孔容为 0.1-0.6 cm3 g—
在本发明中, 所述分子筛采用 Beta、 ZSM-5, MOR、 Y、 MCM-22 分子筛中的一种或多种, 经碱性溶液处理后得到。 具体处理步驟如下:
(1) 配制浓度范围在 0.005 mol l/1至饱和的碱性溶液, 其中, 优选为 含碱金属或碱土金属离子的水溶液; 所述含碱金属或碱土金属离子的水 溶液指的是碱金属或碱土金属的硝酸盐、 亚硝酸盐、 碳酸盐、 碳酸氢盐、 益酸盐、 草酸盐、 醋酸盐、 柠檬酸盐、 氢氧化物、 氧化物中的一种或多 种溶于水所形成的溶液;
(2) 按照分子筛的堆体积与碱性溶液的体积之比为 0.2-20 , 优选 0.5-5, 称取需要处理的分子筛, 量取上述碱性溶液, 并混合分子筛和碱 性溶液, 在室温至 150 °C的温度下搅拌 0.1-5 h;
(3)将得到的混合物过滤,并用去离子水洗涤至滤液中碱金属或碱土 金属的离子浓度不高于 1 wt%,将所得到的滤饼充分干燥至物理吸附的水 的重量含量不超过 5°/。, 优选不超过 1%;
(4)称取定量的处理后的分子筛加入到浓度为 0.05-3.0 mol L 1的铵 盐水溶 ^中, 其中, 铵盐为硝酸盐、 盐酸益、 碳酸盐、 碳酸氢盐、 醋酸 盐中的一种或多种, 于 30-100 °C下搅拌 0.1-3 h, 用去离子水洗涤至滤液 中铵离子及其它阴离子的浓度不高于 100 ppm, 得到的滤饼于 80-120 °C 下干燥 5-20 h, 并在空气气氛下于 400-600 °C焙烧 3-10 h, 即得到所述分 子筛。
在本发明中 , 所述分子筛 Beta和 ZSM- 5也可采用水热合成法制备, 包含以下步骤:
(1)称取一定量的含铝化合物, 加入到浓度为 5 wt%-20 wt%的模板 剂溶液中, 搅拌 0.5-2 h, 其中, 所述的含铝化合物为硝酸铝、 铝酸钠、 氯化铝、 乙酸铝、 异丙醇铝中的一种或多种; 所述模板剂为烷基氢氧化 铵或烷基溴化铵, 优选地, 所述模板剂为四乙基氢氧化铵或四丙基溴化 铵; 模板剂与含铝化合物的摩尔比为 3-15;
(2) 以所需的硅铝比为基准, 加入计量的硅源, 继续搅拌 0.5- 2 h; 其中, 所述的硅源为发烟二氧化硅, 硅胶, 水玻璃, 正硅酸四乙酯中的 一种或多种;
对于 Beta分子筛, 将得到的混合液体移入到水热合成反应釜中, 于 100-170°C下处理 24-96 h;冷却后将得到的悬浊物加入 50-100 mL浓度为 1 wt%-15 wt%的十六烷基三曱基溴化铵的水溶液中; 进一步采用 30 wt%-70 wt% 酸调节 pH值为 7.5-10.5,然后再移入到水热合成反应釜中, 于 90-130 °。下再处理 24-96 h;
对于 ZSM- 5分子筛, 添加硅源后再加入 30-50 mL浓度为 40-70%的 含 3-三甲基甲硅烷基丙基十六烷基二甲基氯化铵的甲醇溶液, 搅拌 0.5-2 h后移入反应釜, 于 120-170 °C下水热处理 24-72 h;
(3)将反应釜移出并冷却后, 过滤, 用去离子水洗涤, 于 80-120 V 下干燥 5- 20 h;
(4) 将得到的固体粉末充分研磨, 在空气气氛下于 400-600 。C焙烧 3-10 h, 即得到所述分子筛。 本发明所提供的由合成气高选择性制备高品质汽油镏分的费托合成 催化剂的制备方法包括以下步骤:
(1)按照本发明所述的催化剂的组分配比称取枯盐,加入去离子水或 醇、 酮类溶剂配置成浓度为 0.5 wt%-20 wt%的钴盐溶液;
(2)按照本发明所述的催化剂的組分配比称取助剂盐类,加入上述的 钴盐溶液, 并搅拌 0.5-3 h;
(3)按照本发明所述的催化剂的组分配比称取分子筛,加入到已配置 好的钴盐溶液中, 搅拌 0.1-15 h, 静止放置 0.1-24 h;
(4)将所得到的固液混合物于 40-100 °C蒸干, 然后在 30-100 C下真 空干燥 1-24 h;
(5)干燥后的固体在空气气氛下焙烧, 焙烧的温度为 300-550 eC , 焙 烧的时间为 2-10 h;
(6)将焙烧后的固体粉末成型作为催化剂前驱体;
(7)催化剂前驱体在氢气或氢气和惰性气体气氛下还原,还原温度为 300-550 °C , 还原时间为 l-10 h。
根据本发明所提供的由合成气高选择性制备高品质汽油馏分的费托 合成催化剂的制备方法, 所述催化剂前驱体的还原步骤可以在该催化剂 的制备过程中完成, 也可以在谅催化剂实际应用之前, 即进行费托合成 反应前完成。
根据本发明所提供的由合成气高选择性制备高品质汽油馏分的费托 合成催化剂的制备方法, 优选地, 所述钴盐选自: 氯化钴、 硝酸钴、 溴 化钴、 乙酰丙酮钴、 乙酸钴中的任意一种或多种。
根据本发明所提供的由合成气高选择性制备高品质汽油馏分的费托 合成催化剂的制备方法, 优选地, 采用去离子水制备钴盐溶液; 所述钴 盐溶液的浓度为 0.5 wt%-20 wt%, 优选为 3 wt%-15 wt%。
根据本发明所提供的由合成气高选择性制备高品质汽油馏分的费托 合成催化剂的制备方法, 所述助剂选自 IA、 ΠΑ族金属元素、 过渡金属 元素或稀土元素中的一种或多种, 进一步优选 Na、 K、 Mg、 Mn、 Ru、 Zr、 Ce、 La中的一种或多种, 更进一步优选为 Mn、 Na、 Ru中的一种或 多种; 所述助剂盐类选自所述助剂的盐酸盐、 硝酸盐、 溴化盐、 乙酸盐 中的任意一种或多种。
本发明所提供的由合成气高选择性制备高品质汽油馏分的费托合成 催化剂可用于固定床反应过程, 也可用于浆态床或流化床反应过程。 一 般情况下, 本发明所提供的催化剂用于费托合成反应的反应条件为: 反 应温度为 180-300 °C ,反应压力为 0.1-5 MPa,合成气空速为 500-6000 Ιι·1, 合成气中氢与一氧化碳的体积比为 1-3。 与现有技术相比, 本发明所提供的费托合成催化剂及其制备方法的 有益效果主要体现在以下方面:
(1) 本发明所提供的催化剂用于费托合成反应, 其对于碳原子数为 5-11 的烃类等汽油馏分的选择性非常高, 且主要以异构烷烃为主, 即汽 油的品质高; 对于碳原子数高于 20的堵质烃类的选择性非常低, 可省去 后续的石蜡催化裂解等装置, 还可以大幅度地降低催化剂粘结、 管道堵 塞等问题, 从而能够有效地降低装置的一次性投资成本以及生产中的运 行成本。
(2) 本发明中所采用的具有特定孔结构的分子筛制备简单,且采用钴 催化剂成本较低, 而对 C5-Cu选择性的提高效果显著, 且抑制了低碳烃 的生成。
(3)本发明所提供的费托合成催化剂可适用于不同来源的合成气,以 煤为原料获得的低 H2/CO比或天然气、 煤层气为原料获得的高 H2/CO比 合成气均能得到高的汽油馏分选择性, 因此采用本申请所述催化剂所需 合成气来源灵活, 且不影响高品质汽油馏分的获得。
(4)本发明所述的费托合成催化剂载体具有双功能作用,其酸性会促 进产物高碳烃裂解和异构化, 进一步生成汽油馏分, 而其适当的介孔结 构也有利于中间馏分油的扩散以及高碳烃的裂解和异构化过程, 二者的 协同作用可显著提高汽油组分的选择性。
综上, 本发明所提供的费托合成催化剂具有双重功效, 成本较低, 能获得高品盾的汽油馏分, 且采用该催化剂能有效地降低费托合成过程 的一次性建设成本和生产运行成本, 同时可以采用灵活的合成气来源以 此蔌得高品质汽油馏分。 具体实施方式
下面进一步详细说明本发明所提供的费托合成催化剂及其制备方 法, 但本发明并不因此而受到任何限制。 实施例 1
称取 0.085 g NaN03, 加入 100 ml ¾0中, 配制浓度为 0.01 mol L 的 NaN03水溶液。 称取 8.0 g硅铝比为 12的 MOR分子筛 (南开大学催 化剂厂生产, NKF-12 )加入到上述溶液中, 在 30 °C下搅拌 20 min。 过 滤, 用去离子水洗涤, 于 100 °C下干燥 5 h。 称取 5.0 g处理后的分子筛 加入到浓度为 1.0 mol L 1的硝酸按水溶液中, 于 50 °C下搅拌 1 h,用去离 子水洗涤, 得到的滤饼于 100 Ό下干燥 15 h, 并于空气气氛下 500 V焙 烧 5 h, 即得到分子筛载体, 记为 MOR-0.01M。
称取 0.8856 g Co(N03)2'6¾0用 25 ml去离子水溶解配成硝酸钴溶 液, 再加入 0.0165 g RuCl3-3H20, 搅拌溶解后, 称取 2.0 g MOR-0.01M 分子筛加入到上述溶液中。 室温下搅拌 10 h, 静置 15 h, 60 °C水浴蒸干。 40 °C真空干燥 15 h, 充分研磨后, 在空气气氛中以 1 °C/min的升温速度 升至 400 °C焙烧 8 h。 将焙烧后的固体粉末压片成型, 破碎后筛取 30~60 目的组分作为催化剂的前驱体。 称取 0.8 g催化剂的前驱体, 在 400 °C的 氢气气氛中还原 10 h, 得 8 wt% Co-0.1 wt% Ru/MOR- 0.01M催化剂。
催化反应在固定床不锈钢高压微型固定床反应器中进行, 反应条件 为: 反应温度为 25CTC , 反应压力为 2 MPa, 合成气空速为 1.5 Lf1.^, 合成气中氢与一氧化碳的体积比为 2, 催化剂用量为 0.8 g。 反应尾气用 气相色谱在线分析 (上海赛鹭鑫分析技术有限公司提供方法)。 8 wt% Co-0.1 wt% Ru /MOR-0.01M催化剂的反应性能列于表 1中。
8 wt% Co-0.1 wt% Ru/MOR-O.OIM的催化性能
Figure imgf000010_0001
实施例 2
称取 0.085 g NaN03, 加入 100 ml ¾0中, 配制浓度为 0.01 mol V1 的 NaN03水溶液。 称取 8.0 g硅铝比为 25的 Beta分子筛(南开大学催化 剂厂生产, NKF-6 )加入到上述溶液中, 在 30 °C下搅拌 30 min。 过滤, 用去离子水洗涤, 于 100 °C下干燥 5 h。 称取 5.0 g处理后的分子筛加入 到浓度为 1.0 mol I;1的硝酸铵水溶液中, 于 50 °C下搅拌 l h,用去离子水 洗涤,得到的滤饼于 100 °C下干燥 15 h,并于空气气氛下 500 Ό焙烧 5 h, 即得到分子筛载体, 记为 Beta- 0.01M。
称取 0.8856 g Co( 03)2+6H20用 20 ml去离子水溶解配成硝酸鈷溶 液, 再加入 0.0781 g N03, 搅拌溶解后, 称取 2.0 gBeta- 0.01M分子筛 加入到上述溶液中。 室温下搅拌 4 h, 静置 10h, 60 °C水浴蒸干。 50 Ό 真空干燥 10 h, 充分研磨后, 在空气气氛中以 5 °C/min的升温速度升至 450°C焙烧 8h。 将焙烧后的固体粉末压片成型, 破碎后筛取 30~60目的 组分作为催化剂的前驱体。 称取 1.0 g催化剂的前驱体, 在 450 C的氢气 气氛中还原 3h, 得 8wt%Co-l wt%K/Beta- 0.01M催化剂。
催化反应在固定床不锈钢高压微型固定床反应器中进行, 反应条件 及产物分析同实施例 1, 反应性能见表 2。 表 2 8 wt% Co-1 wt% /Beta-0.01M的催化性能
Figure imgf000011_0001
实施例 3
称取 0.085 gNaN03, 加入 100 ml ¾0中, 配制浓度为 0.01 mol I;1 的 NaN03水溶液。称取 8.0 g硅铝比为 38的 ZSM-5分子筛(南开大学催 化剂厂生产, NKF-5 )加入到上述溶液中, 在 30 °C下搅拌 30 min。 过滤, 用去离子水洗涤, 于 100 °C下干燥 5h。 称取 5.0 g处理后的分子筛加入 到浓度为 1.0 mol L—1的硝酸铵水溶液中, 于 50°C下搅拌 2h,用去离子水 洗涤,得到的滤饼于 100°C下千燥 15h,并于空气气氛下 500 °C焙烧 5h, 即得到分子筛载体, 记为 ZSM-5-0.01M。
称取 1.6605 g 0(Ν03)2·6¾0用 30 ml去离子水溶解配成硝酸鈷溶 液, 再加入 0.0674 gNaN03, 搅拌溶解后, 称取 2.0 g ZSM-5-0.01M分子 筛加入到上述溶液中。 室温下搅拌 4 h, 静置 10h, 60 °C水浴蒸千。 50 °C 真空干燥 10 h, 充分研磨后, 在空气气氛中以 5 Ό/min的升温速度升至 450 C焙烧 8 h。 将焙烧后的固体粉末压片成型, 破碎后筛取 30 60目的 組分作为催化剂的前驱体。 称取 0.8 g催化剂的前驱体, 在 450 °C的氢气 气氛中还原 3 h, 得 15 wt% Co-1 wt% Na/ZSM-5-0.01M催化剂。
催化反应在不锈钢高压微型固定床反应器中进行, 反应条件及产物 分析同实施例 1, 反应性能见表 3。
15 wt% Co- 1 wt% Na/ZSM-5-0.01M的催化性能
Figure imgf000012_0001
实施例 4
称取 0.5128 g Mg(N03)2-6H20,加入 100 ml H20中,配制浓度为 0.02 mol L"1的 Mg(N03)2水溶液。 称取 8.0 g硅铝比为 5的 Y分子筛 (南开大 学催化剂厂生产, 8 )加入到上述溶液中, 在 30 °C下搅拌 30 min。 过滤, 用去离子水洗涤, 于 100 °C下干燥 5 h。 称取 5.0 g处理后的分子 筛加入到浓度为 2.0 mol L 的硝酸銨水溶液中, 于 50 °C下搅拌 2 h,用去 离子水洗涤, 得到的滤饼于 100 °C下千燥 15 h, 并于空气气氛下 500 焙烧 5 h, 即得到分子筛载体, 记为 Y- 0.02M。
称取 0.4428 g Co(N03)2'6¾0用 30 ml去离子水溶解配成硝酸钴溶 液, 再加入 0.0104 g Ce(N03)3+6H20, 搅拌溶解后, 称取 4.0 g Y-0.02M分 子筛加入到上述溶液中。室温下搅拌 4 h,静置 10 h, 60 °C水浴蒸干。 50 V 真空干燥 10 h, 充分研磨后, 在空气气氛中以 5 °C/min的升温速度升至 450 °C焙烧 8 ho 将焙烧后的固体粉末压片成型 , 破碎后筛取 30〜60目的 组分作为催化剂的前驱体。 称取 0.8 g催化剂的前驱体, 在 45CTC的氢气 气氛中还原 3 h, 得 2 wt% Co-0.1 wt% Ce/Y-0.02M催化剂。 催化反应在不锈钢高压微型固定床反应器中进行, 反应条件及产物 分析同实施例 1 , 反应性能见表 4。
2 wt% Co-0.1 wt% Ce/Y-0.02M的催化性能
Figure imgf000013_0001
实施例 5
称取 0.425 g NaN03, 加入 100 ml H2O中, 配制浓度为 0.05 mol L 的 NaN03水溶液。 称取 8.0 g硅铝比为 30的 MCM-22分子筛(南开大学 催化剂厂生产, NKF-10 )加入到上述溶液中, 在 30 °C下搅拌 30 min。 过滤, 用去离子水洗涤, 于 100 °C下干燥 5 h。 称取 5.0 g处理后的分子 筛加入到浓度为 S.O mol i 1的硝酸铵水溶液中,于 50 °C下搅拌 2 h,用去 离子水洗涤, 得到的滤饼于 100 °C下干燥 15 h, 并于空气气氛下 500 °C 焙烧 5 h, 即得到分子筛载体, 记为 MCM-22-0.05M。
称取 6.1992 g Co(N03)2'6H20用 50 ml去离子水溶解配成硝酸钴溶 液, 再加入 0.7583 g Zr(N03)4-5H20 , 搅拌溶解后, 称取 4.0 g MCM-22-0.05M分子筛加入到上述溶液中。 室温下搅拌 4 h, 静置 10 h, 60 °C水浴蒸干。 50 真空干燥 10 h, 充分研磨后, 在空气气氛中以 5 °C/min的升温速度升至 450 C焙烧 8 h。将焙烧后的固体粉末压片成型, 破碎后筛取 30〜60目的组分作为催化剂的前驱体。称取 0.8 g催化剂的前 驱体, 在 450 °C的氢气气氛中还原 3 h , 得 28 wt% Co-5 wt% Zr/MCM-22- 0.05M催化剂。
催化反应在不锈钢高压微型固定床反应器中进行, 反应条件及产物 分析同实施例 1 , 反应性能见表 5。 28 wt% Co-5 wt% Zr/MCM-22-0.05M的催化性能
Figure imgf000014_0001
实施例 6
称取 1.7712 g Co(N03)2'6¾0用 30 ml去离子水溶解配成硝酸钴溶 液, 再加入 0.1562 g N03 , 搅拌溶解后, 分别称取 Beta-Ο.ΟΙΜ 和 ZSM-5-0.01M分子筛各 2.0 g加入到上述溶液中。 室温下搅拌 4 h, 静置 10 h, 60 °C水浴蒸干。 50 °C真空干燥 10 h, 充分研磨后, 在空气气氛中 以 5 °C/min的升温速度升至 450 °C焙烧 8 h。将焙烧后的固体粉末压片成 型, 破碎后筛取 30~60目的组分作为催化剂的前驱体。 称取 0.8 g催化剂 的前驱体, 在 450 °C的氢气气氛中还原 3 h , 得 8 wt% Co-1 wt% K/(Beta- 0.01M+ZSM- 5-0.01M)催化剂。
催化反应在不锈钢高压微型固定床反应器中进行, 反应条件及产物 分析同实施例 1 , 反应性能见表 6。
8 wt% Co-1 wt% K/(Beta-0.01M+ZSM-5-0.01M)的催化性能
CO转化率 (% ) 85.3
c¾选择性 ( % ) 14.3
气态烃 c2- c4的选择性( % ) 14.0
汽油馏分 C5- Cu的选择性(% ) 66.8
柴油馏分 c12-c2。的选择性(%) 4.9
蜡相 c21+的选择性 ( % ) 未检出 实施例 7
称取 0.8856 g Ο)(Ν03)2·6Η20用 30 ml去离子水溶解配成硝酸鈷溶 液, 再加入 0.1042 g Mn(CH3COO)2-4H20 , 搅拌溶解后, 称取 2.0 g Beta- 0.01M分子筛加入到上述溶液中。 室温下搅拌 8 h, 静置 15 h, 80 °C 水浴蒸干。 TC真空干燥 15 h, 充分研磨后, 在空气气氛中以 5 。C/min 的升温速度升至 450 C焙烧 10 h。 将焙烧后的固体粉末压片成型, 破碎 后筛取 30~60目的组分作为催化剂的前驱体。称取 0,8 g催化剂的前驱体, 在 400 °C的氢气气氛中还原 5 h,得 8 wt% Co-1 wt% Mn/Beta- 0.01M催化 剂。
催化反应在固定床不锈钢高压微型固定床反应器中进行, 反应条件 及产物分析同实施例 1 , 反应性能见表 7。
8 wt% Co-1 wt% Mn/Beta-0.01M的催化性能
Figure imgf000015_0001
实施例 8
称取 0.85 g NaN03, 加入 100 ml H20中, 配制浓度为 0.1 mol L 1的 NaN03水溶液。 称取 4.0 g硅铝比为 25的 Beta分子筛 (南开大学催化剂 厂生产, NKF-6 )加入到上述溶液中, 在 65 °C下搅拌 50 min。 过滤, 用 去离子水洗涤至滤液中的 Na+离子浓度不高于 90 ppm,于 100 °C下干燥 5 h. 称取 3.0 g处理后的分子筛加入到浓度为 1.0 mol L—1的硝酸镂水溶液 中, 于 70 C下搅拌 2 h, 用去离子水洗涤, 得到的滤饼于 100 °C下干燥 15 h, 并于空气气氛下 500 。C焙烧 5 h, 即得到分子筛载体, 记为 Beta-0.1M。
称取 0.8856 g Οο(Ν03)2·6Η20用 30 ml去离子水完全溶解配成硝酸钴 溶液, 再加入 0.0062 g NaN03 , f拌溶解后, 称取 2.0 g Beta-O.IM加入 上述溶液中。 室温下搅拌 10 h, 静置 12 h, 70。C水浴蒸干。 50 °C真空干 燥 12 h, 充分研磨后, 在空气气氛中以 2 °C/min的升温速度升至 450 °C 焙烧 3 h。 将焙烧后的固体粉末压片成型, 破碎后筛取 30 ~ 60目的组分 作为催化剂的前驱体。 称取 0.8 g催化剂的前驱体, 在 400 °C的氢气气氛 中还原 5 h, 得 8 wt% Co-0.1 wt% Na/Beta-0.1M催化剂。
催化反应在固定床不锈钢高压微型反应器中进行, 反应条件除合成 气中氢气与一氧化碳的体积比为 1夕卜, 其他奈件及产物分析同实施例 1 , 反应性能见表 8。
8 wt% Co-0.1 wt% Na/Beta-0.1M的催化性能
Figure imgf000016_0001
实施例 9
称取 4.25 g NaN03, 加入 100 ml H20中, 配制浓度为 0.5 mol V1的 NaN03水溶液。 称取 5.0 g硅铝比为 38的 ZSM- 5分子筛 (南开大学催化 剂厂生产, NKF-5 )加入到上述溶液中, 在 70 °C下搅拌 60 min。 过滤, 用去离子水洗涤至滤液中的 Na+离子浓度不高于 90 ppm, 于 100 °C下干 燥 5 h。称取 3.0 g处理后的分子筛加入到浓度为 2.0 mol V1的硝酸按 7j溶 液中, 于 70 °C下搅拌 3 h, 用去离子水洗涤, 得到的滤饼于 100 °C下干 燥 10 h, 并于空气气氛下 500 °C焙烧 8 h, 即得到分子筛载体, 记为 ZSM-5- 0.5M。 称取 0.8856 g Co(N03)2-6H20用 30 ml去离子水完全溶解配成硝酸钴 溶液, 再加入 0.005 g Mn(CH3COO)2-4H20, 搅拌溶解后, 称取 2.0 g ZSM- 5- 0.5M加入上述溶液中。 室温下搅拌 10 h, 静置 12 h, 70 °C水浴蒸 干。 50 °C真空干燥 12 h, 充分研磨后, 在空气气氛中以 2 °C/min的升温 速度升至 450 °C焙烧 3 h。 将焙烧后的固体粉末压片成型, 破碎后筛取 30 - 60 目的组分作为催化剂的前驱体。 称取 0.8 g催化剂的前驱体, 在 450 °C的氢气气氛中还原 4 h, 得 8 wt% Co-0.05 wt% Mn/ZSM-5-0.5M催 化剂。
催化反应在固定床不锈钢高压微型反应器中进行, 反应条件及产物 分析同实施例 8, 反应性能见表 9。
8 wt% Co-0.05 wt% Mn/ZSM- 5-0.5M的催化性能
Figure imgf000017_0001
实施例 10
称取 3.03 g N03, 加入 100 ml H20中, 配制浓度为 0.3 mol L"1的 N03水溶液。 称取 5.0 g硅铝比为 38的 ZSM-5分子筛 (南开大学催化 剂厂生产, NKF-5 )加入到上述溶液中, 在 65 °C下搅拌 50 min。 过滤, 用去离子水洗涤至滤液中的 K+离子浓度不高于 90 ppm, 于 120 °C下干燥 5 h„称取 3.0 g处理后的分子筛加入到浓度为 1.0 mol 1的硝酸铵水溶液 中, 于 70 °C下搅拌 2 h, 用去离子水洗涤, 得到的滤饼于 100 °C下干燥 10 , 并于空气气氛下于 550 Ό焙烧 6 h, 即得到分子筛载体, 记为 ZSM-5-0.3M。
称取 0.8856 g Co(N03)2-6H20用 30 ml去离子水完全溶解配成硝酸钴 溶液,再加入 0.005 g Mg(N03)2'2H20,搅拌溶解后,称取 2.0 g ZSM-5-0.3M 加入上述溶液中。 室温下搅拌 10 h, 静置 12 h, 70 °C水浴蒸干。 50 °C真 空干燥 12 h, 充分研磨后, 在空气气氛中以 1 °C/min 的升温速度升至 400 °C焙烧 5 h。将焙烧后的固体粉末压片成型,破碎后筛取 30 ~ 60目的 组分作为催化剂的前驱体。 称取 0.8 g催化剂的前驱体, 在 400 °C的氢气 气氛中还原 7 h, 得 8 wt% Co-0.05 wt% Mg/ZSM- 5- 0.3M催化剂。
催化反应在固定床不锈钢高压微型反应器中进行, 反应条件及产物 分析同实施例 8, 反应性能见表 10。 表 10 8 wt% Co-0.05 wt% Mg/ZSM-5-0.3M的催化性能
Figure imgf000018_0001
实施例 11
称取 0.44 g铝酸钠, 加入到 100 mL浓度为 10 wt%的四丙基溴化铵 水溶液中, 搅拌 2 h。 按 Si/Al摩尔比为 30为基准, 加入 33.12 g正硅酸 乙酯, 继续加入 30 mL的 3-三曱基甲硅坑基丙基十六烷基二甲基氯化铵 的曱醇溶液中( 64% ), 搅拌 2 h。将得到的混浊液体移入到水热合成反应 釜中, 于 170 °C下处理 48 h。 将反应釜移出并冷却后, 过滤, 用去离子 水洗涤, 于 100 DC下干燥 12 h。 将得到的固体粉末充分研磨, 在空气气 氛下于 550 V焙烧 8 h, 即得到 ZSM- 5(30)-HT分子筛。
称取 0.8856 g Co(N03)2-6H20用 25 ml去离子水完全溶解配成硝酸钴 溶液,再加入 0.008 g RuCl3'3H20,搅拌溶解后,称取 2.0 g ZSM-5(30)-HT 加入到上述溶液中。 室温下搅拌 8 h, 静置 15 h, 70 °C水浴蒸干。 60 °C 真空干燥 15 h, 充分研磨后, 在空气气氛中以 2 °C/min的升温速度升至 450 。C焙烧 5 h。 将焙烧后的固体粉末压片成型, 破碎后筛取 30〜60目的 組分作为催化剂的前驱体。 称取 0.8 g催化剂的前驱体, 在 450 °C的氢气 气氛中还原 5 h, 得 8 wt% Co-0.05 wt% Ru/ZSM-5(30)-HT催化剂。
催化反应在不锈钢高压微型反应器中进行, 反应条件及产物分析同 实施例 8, 反应性能见表 11。 表 11 8 wt% Co- 0.05 wt% R /ZS -5(30)-HT的催化性能
Figure imgf000019_0001
实施例 12
称取 0.82 g铝酸钠,加入到 30.0 g 浓度为 20 wt%的四乙基氢氧化铵 水溶液中, 搅拌 2 h。 按 Si/Al摩尔比为 25为基准, 加入 15.0 g发烟二氧 化硅, 继续搅拌 1 h。 将得到的混浊液体移入到水热合成反应釜中, 于 140 °C下处理 48 h。将釜移出并冷却后,将得到的悬浊物加入 30.0 g浓度 为 10 ^%的十六烷基三曱基溴化铵水溶液中。 采用 50 1%乙酸调节 pH 值为 9.0, 后再移入到水热合成反应釜中, 于 11CTC下水热处理 48 h。 将 釜移出并冷却后, 过滤, 用去离子水洗涤, 于 100 °C下干燥 12 h。 将得 到的固体粉末充分研磨, 在空气气氛下于 550 °C焙烧 8 h, 即得到 Beta(25)-HT分子筛。
称取 0.8856 g Co(N03)2-6H20用 25 ml去离子水完全溶解配成硝酸钴 溶液, 再加入 0.005 g Mn(CH3COO)2-4H20, 搅拌溶解后, 称取 2.0 g Beta(25)- HT加入到上述溶液中。 室温下搅拌 8 h, 静置 15 h, 70 °C水浴 蒸干。 50 °C真空千燥 12 h, 充分研磨后, 在空气气氛中以 2 °C/min的升 温速度升至 450 Ό焙烧 3 h。 将焙烧后的固体粉末压片成型, 破碎后筛取 30-60目的组分作为催化剂的前驱体。称取 0.8 g催化剂前驱体,在 430 V 的氢气气氛中还原 5 h, 得 8 wt% Co-0.05 wt% Mn/Beta(25)-HT催化剂。
催化反应在不锈钢高压微型反应器中进行, 反应条件及产物分析同 实施例 1 , 反应性能见表 12。 表 12 8 wt% Co- 0.05 wt% Mn/Beta(25)-HT的催化性能
Figure imgf000020_0001
实施例 13
称取 1.64 g铝酸钠,加入到 60.0 g 浓度为 15 wt°/0的四乙基氢氧化铵 水溶液中, 搅拌 2 h。 按 Si/Al摩尔比为 50为基准, 加入 60.0 g发烟二氧 化硅, 继续搅拌 2 h。 将得到的混浊液体移入到水热合成反应釜中, 于 130 °C下处理 72 h。将釜移出并冷却后,将得到的悬浊物加入 50.0 g浓度 为 10 wt°/c^十六烷基三甲基溴化铵水溶液中。 采用 60 wt%乙酸调节 pH 值为 8.5, 后再移入到水热合成反应釜中, 于 130 。C下水热处理 72 h。 将 釜移出并冷却后, 过滤, 用去离子水洗涤, 于 100 °C下干燥 12 h。 将得 到的固体粉末充分研磨, 在空气气氛下于 530 Ό焙烧 10 h, 即得到 Beta(50)-HT分子筛。
称取 1.3284 g Co(N03)2-6H20用 40 ml去离子水完全溶解配成硝酸钻 溶液,再加入 0.006 g Zr(N03)4'5H20,搅拌溶解后,称取 2.0 g Beta(50)-HT 加入上述溶液中。 室温下搅拌 10 h, 静置 12 h, 60 °C水浴蒸干。 50 °C真 空干燥 15 h, 充分研磨后, 在空气气氛中以 2 °C/min 的升温速度升至 450 V焙烧 5 ho 将焙烧后的固体粉末压片成型, 破碎后筛取 30〜60目的 组分作为催化剂的前驱体。 称取 0.8 g催化剂的前驱体, 在 400 °C的氢气 气氛中还原 8 h, 得 12 wt% Co-0.1 wt% Zr/Beta(50)-HT催化剂。
催化反应在不锈钢高压微型固定床反应器中进行, 反应条件及产物 分析同实施例 1 , 反应性能见表 13。
表 13 12 wt% Co-0.1 wt% Zr Beta(50)-HT的催化性能
Figure imgf000021_0001
对比例 1
称取 1.6605 g Co(N03)2*6¾0用 30 ml去离子水溶解配成硝酸钴溶 液,再加入 0.0674 g NaN03,搅拌溶解后,称取 2.0 g硅铝比为 38的 ZSM-5 分子筛(南开大学催化剂厂生产, N F-5 )加入到上述溶液中。 室温下搅 拌 4 h, 静置 10 h, 60 °C水浴蒸干。 50 °C真空干燥 10 h, 充分研磨后, 在空气气氛中以 5 °C/min的升温速度升至 450 V焙烧 8 h。将焙烧后的固 体粉末压片成型, 破碎后筛取 30~60 目的組分作为催化剂的前驱体。 称 取 0.8 g催化剂的前驱体,在 450。(的氢气气氛中还原 3 h,得 15 wt% Co-1 wt% Na/ZSM-5催化剂。
催化反应在固定床不锈钢高压微型固定床反应器中进行, 反应条件 和分析条件同实施例 1。 反应性能列于表 14中。 表 14 15 wt% Co- 1 wt% Na/ZSM-5的催化性能
Figure imgf000022_0001
对比例 2
称取 0.8856 g Co(N03)2-6H20用 20 ml去离子水溶解配成硝酸鈷溶 液, 再加入 0.005 g Mn(C¾COO)2'4H20, 搅拌溶解后, 称取 2.0 g硅铝比 为 25的 Beta分子筛(南开大学催化剂厂生产, NKF- 6 )加入到上述溶液 中。 室温下搅拌 4 h, 静置 10 h, 60 °C水浴蒸干。 50 °C真空干燥 10 h, 充分研磨后, 在空气气氛中以 5 V/min的升温速度升至 450 C焙烧 8 h。 将焙烧后的固体粉末压片成型, 破碎后筛取 30〜60 目的组分作为催化剂 的前驱体。 称取 1.0 g催化剂的前驱体, 在 450 C的氢气气氛中还原 3 h, 得 8 wt% Co- 0.05 wt% Mn/Beta催化剂。
催化反应在固定床不锈钢高压微型固定床反应器中进行, 反应条件 和分析条件同实施例 1。 反应性能列于表 15中。 表 15 8 wt% Co-0.05 wt% Mn/Beta的催化性能
Figure imgf000022_0002
对比例 3
称取 0.8856 g Co(N03)2-6H20用 30 ml去离子水完全溶解配成硝酸钴 溶液, 再加入 0.005 g Mg(N03)2'2H20, 搅拌溶解后, 称取 2.0 g硅铝比为 38的 ZSM-5分子筛(南开大学催化剂厂生产, NKF-5 )加入上述溶液中。 室温下搅拌 10 h, 静置 12 h, 70 °C水浴蒸干。 50 °C真空干燥 12 h, 充分 研磨后, 在空气气氛中以 1 C/min的升温速度升至 400 °C焙烧 5 h。 将焙 烧后的固体粉末压片成型 , 破碎后筛取 30 ~ 60目的组分作为催化剂的前 驱体。 称取 0.8 g催化剂的前驱体, 在 400 °C的氢气气氛中还原 7 h, 得 8 wt% Co-0.05 wt% Mg/ZSM- 5催化剂。
催化反应在固定床不锈钢高压微型反应器中进行, 反应条件及产物 分析同实施例 8, 反应性能见表 16。
表 16 8 wt% Co-0.05 wt% Mg/ZSM-5的催化性能
Figure imgf000023_0001
表 17: 实施例和对比例中催化剂性能数据总览
Figure imgf000024_0001
注: Conv.为 CO的转化率, ^为 CH4选择性(¾), S2-4为气态烃(:2- 4的选 择性(½), S5-n为汽油馏分 Cs-Cu的选择性(%), S1 。为柴油馏分 C12- C2。的选 择性(¾), Sn+为蜡相 C21+的选择性( ¾ ), 表中 14、 15和 16为对比例结果。

Claims

权 利 要 求
1、 一种由合成气高选择性制备高品质汽油馏分的催化剂, 所述催化 剂由金属钴、 助剂元素和分子筛组成; 以催化剂的重量为基准, 金属钴 的含量为 1%-30%, 助剂元素的含量为 0.01%-5%, 佘量为分子筛。
2、 根据权利要求 1所述的催化剂, 其特征在于: 所述金属钴占该催 ^剂重量的 8%-15%; 助剂元素的含量为 0.05%- 2%。
3、 根据权利要求 2所述的催化剂, 其特征在于: 所述分子筛选自: Beta, ZSM-5、 MOR、 Y、 MCM-22中的一种或多种; 进一步优选地, 所 述分子筛的硅铝比为 5-300; 更进一步优选地, 所述分子筛为 Beta和 /或 ZSM- 5, 硅铝比为 20-100。
4、 根据权利要求 3所述的催化剂, 其特征在于: 以 NH3的吸附量来 表示所述分子筛的酸量,每克分子筛上吸附 NH3为 0.16-0.50 mmol; 所述 分子筛具有 4敖孔 -介孔结构, 孔孔径为 0.4-0.9 nm,介孔孔径为 2-30 nm, 比表面积为 100-900 m2 g-1,微孔孔容为 0.1 -0.6 cm3 g 介孔孔容为 0.1-0.6
3 -1
cm g 。
5、 根据权利要求 4所述的催化剂, 其特征在于: 所述分子筛是经碱 性溶液处理后的分子筛, 具体包括以下处理步骤:
(1) 配制浓度范围在 0.005 mol l 1至饱和的碱性溶液, 其中, 优选为 含碱金属或碱土金属离子的水溶液; 所述含碱金属或碱土金属离子的水 溶液为硝酸盐、 亚硝酸盐、 碳酸盐、 碳酸氢盐、 盐酸盐、 草酸盐、 醋酸 盐、 柠檬酸盐、 氢氧化物、 氧化物中的一种或多种溶于水所形成的溶液;
(2)根据分子筛的堆体积与碱性溶液体积比例为 0.2- 20, 优选 0.5-5, 称取需要处理的分子筛, 量取上述碱性溶液, 并混合分子筛和碱性溶液, 在室温至 150!之间的温度下搅拌处理 0.1- 5 h;
(3)将得到的混合物过滤,并用去离子水洗涤至滤液中碱金属或碱土 金属离子浓度不高于 1 wt%,将得到的滤饼充分干燥至物理吸附的水的重 量含量不超过 5%, 优选不超过 1%;
(4)称取定量的处理后的分子筛加入到浓度为 0.05-3.0 mol L'1的铵 盐溶液中, 其中铵盐为硝酸盐、 盐酸盐、 碳酸盐、 碳酸氢盐、 醋酸盐中 的一种或多种, 于 30-100 °C下搅拌 0.1-3 h, 用去离子水洗涤至滤液中铵 离子及其它阴离子的浓度不高于 100 ppm, 得到的滤饼于 80-120 °C下干 燥 5-20 h, 空气中于 400-600 Ό下焙烧 3-10 h, 即得到所述的分子筛。
6、 根据权利要求 4所述的催化剂, 其特征在于: 所述分子筛为 Beta 和 /或 ZSM-5, 采用水热合成法制备, 包括以下制备步骤:
(1)按配比称取计量的含铝化合物, 加入到浓度为 5 wt%-20 wt%的 模板剂溶液中, 搅拌 0.5-2 h, 其中, 所述的含铝化合物为硝酸铝、 铝酸 钠、 氯化铝、 乙酸铝、 异丙醇铝中的一种或多种; 所述模板剂为烷基氢 氧化铵或烷基溴化桉, 优选为四乙基氢氧化铵或四丙基溴化铵; 模板剂 与含铝化合物的摩尔比为 3-15;
C2) 按所需的硅铝比为基准, 加入计量的硅源, 继续搅拌 0.5-2 h; 其中, 所述的硅源为发烟二氧化硅、 硅胶、 水玻璃、 正硅酸四乙酯中的 一种或多种;
对于 Beta分子筛, 将得到的混合液体移入到水热合成反应釜中, 于 100-170 °C下处理 24-96 h; 冷却后将得到的悬浊物加入 50-100 mL浓度 为 1 wt%-15 wt%的十六烷基三甲基溴化铵的水溶液中; 进一步采用 30 wt%- 70 wt%乙酸调节 pH值为 7.5 10.5, 然后再移入到水热合成反应釜 中, 于 90-130 °C下再处理 24-96 h;
对于 ZSM-5分子筛, 添加硅源后再加入 30-50 mL浓度为 40- 70°/。的 含 3-三甲基甲硅烷基丙基十六烷基二甲基氯化铵的甲醇溶液, 搅拌 0.5-2 h后移入反应釜, 于 120-170。C下水热处理 24-72 ;
(3)将反应釜移出并冷却后, 过滤, 用去离子水洗涤, 于 80-120 °C 下干燥 5-20 h;
(4) 将得到的固体粉末充分研磨, 在空气气氛下于 400-600 C焙烧 3-10 h, 即得到所述分子筛。
7、 根据权利要求 1-6任意一项所述的催化剂, 其特征在于: 所迷助 剂选自 ΙΑ、 ΠΑ族金属元素、 过渡金属元素或稀土元素中的一种或多种, 进一步优选 Na、 K:、 Mg、 Mn、 u> Zr、 Ce、 La中的一种或多种, 更进 一步优选为 Mn、 Na、 Ru中的一种或多种。
8> 一种由合成气高选择性制备高品质汽油馏分的费托合成催化剂的 制备方法, 其特征在于, 谚方法包括以下步驟:
(1)按照权利要求 1或 2所述催化剂的组分配比称取钴盐,加入去离 子水或醇类、 酮类溶剂配置成浓度为 0.5 wt%-20 wt%的钴盐溶液;
(2)按照权利要求 1或 2所述催化剂的组分配比称取助剂盐类,加入 上述的钴盐溶液, 并搅拌 0.5-3 h;
(3)按照权利要求 1或 2所述催化剂的组分配比称取分子筛,加入到 已配置好的钴盐溶液中, 搅拌 0.1-15 h, 静止放置 0.1- 24 h;
(4)将所得到的固液混合物于 40-100 Ό蒸干, 然后在 30-100 °C下真 空干燥 1-24 h;
(5)干燥后的固体在空气气氛下焙烧, 焙烧的温度为 300-550 Ό , 焙 烧的时间为 2- 10 h;
(6)将焙烧后的固体粉末成型作为催化剂前驱体;
(7)催化剂前驱体在氢气或氢气和惰性气体气氛下还原,还原温度为 300-550 °C , 还原时间为 l-10 h。
9、 根据权利要求 8所述的催化剂的制备方法, 其特征在于: 所述分 子筛选自: Beta、 ZSM-5、 MOR、 Y、 MCM-22中的一种或多种, 且所述 分子筛是经碱性溶液处理后的分子筛, 具体包括以下处理步驟:
(1) 配制浓度范围在 0.005 mol l/1至饱和的碱性溶液, 其中, 优选为 含碱金属或碱土金属离子的水溶液; 所述含碱金属或碱土金属离子的水 溶液为硝酸盐、 亚硝酸盐、 碳酸盐、 碳酸氢盐、 盐酸盐、 草酸盐、 醋酸 益、 柠檬酸盐、 氢氧化物、 氧化物中的一种或多种溶于水所形成的溶液;
(2)根据分子筛的堆体积与碱性溶液体积比例为 0.2-20, 优选 0.5-5, 称取需要处理的分子筛, 量取上述碱性溶液, 并混合分子 和碱性溶液, 在室温至 150 °(之间的温度下搅拌处理 0.1-5 h;
(3)将得到的混合物过滤,并用去离子水洗涤至滤液中碱金属或碱土 金属离子浓度不高于 1 wt%,将得到的滤饼充分干燥至物理吸附的水的重 量含量不超过 5%, 优选不超过 1%; (4)称取定量的处理后的分子筛加入到浓度为 0.05-3.0 mol L4的锭 盐溶液中, 其中铵盐为硝酸盐、 盐酸盐、 碳酸盐、 碳酸氢盐、 醋酸盐中 的一种或多种, 于 30-10(TC下搅拌 0.1-3 h, 用去离子水洗涤至滤液中铵 离子及其它阴离子的浓度不高于 100 ppm, 得到的滤饼于 80-120 °C下干 燥 5-20 h, 空气中于 400-600。C下焙烧 3-10 h, 即得到所述的分子筛。
10、 根据权利要求 8所述的催化剂的制备方法, 其特征在于: 所述 分子筛为 Beta.和 /或 ZSM-5, 采用水热合成法制备, 包括以下步骤:
(1)按配比称取计量的含铝化合物, 加入到浓度为 5 wt%-20 wt%的 模板剂溶液中, 搅拌 0.5- 2 h, 其中, 所述的含铝化合物为硝酸铝、 铝酸 钠、 氯化铝、 乙酸铝、 异丙醇铝中的一种或多种; 所述模板剂为烷基氢 氧化铵或烷基溴化铵, 优选为四乙基氢氧化铵或四丙基溴化铵; 模板剂 与含铝化合物的摩尔比为 3-15;
(2) 按所需的硅铝比为基准, 加入计量的硅源, 继续搅拌 0.5-2 h; 其中, 所述的硅源为发烟二氧化硅、 硅胶、 水玻璃、 正硅酸四乙酯中的 一种或多种;
对于 Beta分子筛, 将得到的混合液体移入到水热合成反应釜中, 于 100-170 °C下处理 24-% h; 冷却后将得到的悬浊物加入 50-100 mL浓度 为 1 wt%-15 wt%的十六烷基三甲基淡化铵的水溶液中; 进一步采用 30 wt%-70 \¥〖%乙酸调节 pH值为 7.5 10.5, 然后再移入到水热合成反应釜 中, 于 90-130 °〇下再处理 24-96 h;
对于 ZSM-5分子筛, 添加硅源后再加入 30-50 mL浓度为 40-70%的 含 3-三甲基甲硅烷基丙基十六烷基二甲基氯化铵的甲醇溶液, 搅拌 0.5-2 h后移入反应釜, 于 120-170 °C下水热处理 24-72 h;
(3)将反应釜移出并冷却后, 过滤, 用去离子水洗涤, 于 80-120 V 下干燥 5-20 h;
(4) 将得到的固体粉末充分研磨, 在空气气氛下于 400-600 °C焙烧 3-10 h, 即得到所述分子筛。
11、 根据权利要求 8-10中任意一项所述的催化剂的制备方法, 其特 征在于: 所述钴盐选自: 氯化钴、 硝酸钴、 溴化钴、 乙酰丙酮钴、 乙酸 钴中的任意一种或多种。
12、 根据权利要求 11所述的催化剂的制备方法, 其特征在于: 采用 去离子水制备钴盐溶液, 且所述钴盐溶液的浓度为 0.5 wt%-20 wt%, 优 选为 3 wt%-15 wt%。
13、 根据权利要求 12所述的催化剂的制备方法, 其特征在于: 所述 助剂选自 IA、 IIA族金属元素、 过渡金属元素或稀土元素中的一种或多 种, 进一步优选 Na、 K、 Mg、 Mn、 Ru、 Zr、 Ce、 La中的一种或多种, 更进一步优选为 Mn、 Na、 Ru中的一种或多种; 所述助剂盐类选自所述 助剂的盐酸盐、 硝酸盐、 溴化盐、 乙酸盐中的任意一种或多种。
14、根据权利要求 8-10、 12-13中任意一项所述的催化剂的制备方法, 其特征在于: 所述步骤 (7)在进行费托合成反 之前完成。
PCT/CN2011/072422 2011-04-02 2011-04-02 由合成气高选择性制备高品质汽油馏分的催化剂及其制备方法 WO2012135993A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US13/321,056 US9168515B2 (en) 2011-04-02 2011-04-02 High-selectivity catalyst for production of high-quality gasoline fractions from syngas and its preparation method
AU2011232735A AU2011232735C1 (en) 2011-04-02 2011-04-02 A high-selectivity catalyst for the production of high-quality gasoline fractions from syngas and its preparation method
CA2756795A CA2756795C (en) 2011-04-02 2011-04-02 A high-selectivity catalyst for production of high-quality gasoline fractions from syngas and its preparation method
RU2011141198/04A RU2484897C1 (ru) 2011-04-02 2011-04-02 Высокоселективный катализатор для производства фракций высококачественного бензина из синтез-газа и способ его изготовления
EP11772860.0A EP2535107A4 (en) 2011-04-02 2011-04-02 HIGHLY SELECTIVE CATALYST FOR THE PRODUCTION OF HIGH-QUALITY GASOLINE FRACTION FROM SYNGAS AND METHOD OF MANUFACTURING THEREOF
PCT/CN2011/072422 WO2012135993A1 (zh) 2011-04-02 2011-04-02 由合成气高选择性制备高品质汽油馏分的催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/072422 WO2012135993A1 (zh) 2011-04-02 2011-04-02 由合成气高选择性制备高品质汽油馏分的催化剂及其制备方法

Publications (1)

Publication Number Publication Date
WO2012135993A1 true WO2012135993A1 (zh) 2012-10-11

Family

ID=46964780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/072422 WO2012135993A1 (zh) 2011-04-02 2011-04-02 由合成气高选择性制备高品质汽油馏分的催化剂及其制备方法

Country Status (6)

Country Link
US (1) US9168515B2 (zh)
EP (1) EP2535107A4 (zh)
AU (1) AU2011232735C1 (zh)
CA (1) CA2756795C (zh)
RU (1) RU2484897C1 (zh)
WO (1) WO2012135993A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106795438A (zh) * 2014-09-23 2017-05-31 陶氏环球技术有限责任公司 形成轻烃

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103599812B (zh) * 2013-12-04 2016-02-24 淮南师范学院 一种复合孔沸石分子筛负载贵金属加氢脱硫催化剂及其制备方法
CN104258901B (zh) * 2014-08-27 2017-05-17 上海华谊(集团)公司 一种Cs负载型纯硅分子筛催化剂及其制备方法和应用
CN105749913B (zh) * 2014-12-15 2018-11-27 中国科学院大连化学物理研究所 醋酸酯加氢制备乙醇的催化剂及醋酸酯加氢制备乙醇方法
CN105289718B (zh) * 2015-11-02 2018-01-23 西安近代化学研究所 一种合成3,3,3‑三氟丙酸乙酯的催化剂及其制备方法
CN107519925B (zh) * 2016-06-21 2019-10-11 中国石油天然气股份有限公司 Y/Sm2O3/SBA-3/ASA复合材料及其制备方法
CN106563494A (zh) * 2016-09-30 2017-04-19 昆明理工大学 一种改性H‑Beta分子筛催化剂的制备方法与应用
GB201702251D0 (en) 2017-02-10 2017-03-29 Bp Plc Process for producting a fischer-tropsch synthesis catalyst
CN109794283B (zh) * 2017-11-15 2022-01-14 中国科学院大连化学物理研究所 一种由合成气直接制取芳烃的方法
CN110368983A (zh) * 2018-04-13 2019-10-25 株式会社模范 一种合成气合成航空煤油用催化剂的制备方法以及由此得到的催化剂和其应用
US10350585B1 (en) 2018-08-14 2019-07-16 Saudi Arabian Oil Company Methods for synthesizing hierarchical zeolites for catalytic cracking
RU2712543C1 (ru) * 2018-11-29 2020-01-29 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) Способ получения цеолита типа mww
CN109675566A (zh) * 2019-01-30 2019-04-26 兰州城市学院 一种Co-Ti双金属有序介孔催化剂及其制备方法和应用
CN112058303A (zh) * 2019-06-11 2020-12-11 中国石油天然气股份有限公司 用于加氢异构脱蜡反应的复合分子筛、催化剂及其制备方法和应用
RU2740381C1 (ru) * 2019-12-09 2021-01-13 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) Цеолит типа mww и способ его получения
CN112973775B (zh) * 2019-12-14 2023-03-21 中国科学院大连化学物理研究所 一种含mcm-22分子筛的催化剂及其在合成气一步法制液体燃料中的应用
CN113351239A (zh) * 2020-03-05 2021-09-07 华东理工大学 一种镍基纯硅型分子筛催化剂及其制备方法与应用
CN111215124B (zh) * 2020-03-12 2022-08-02 青岛理工大学 协同脱除垃圾气化污染物中硫化氢和单质汞的催化剂的制备方法
CN111437875B (zh) * 2020-03-24 2023-10-27 武汉科技大学 一种具有宽温度范围的铈铁分子筛基催化剂及其制备方法
JP2024502195A (ja) * 2021-01-11 2024-01-17 中国石油化工股▲ふん▼有限公司 リン改質モレキュラーシーブを含有する接触分解剤、その製造方法、製造システムおよびその使用
CN116060113B (zh) * 2021-10-29 2024-05-07 中国石油化工股份有限公司 一种直馏柴油加氢改质催化剂及其制备方法和应用
CN116062766B (zh) * 2021-10-29 2024-05-07 中国石油化工股份有限公司 一种改性zsm-5分子筛及其制备方法和应用
CN114160192B (zh) * 2021-12-08 2023-11-28 吉林化工学院 一种氢型ZSM-5@Beta复合型分子筛催化剂及其制备方法和应用
CN114797963B (zh) * 2022-04-14 2023-07-25 厦门大学 一种用于合成气一步法制乙酸的催化剂及其制备方法和应用
CN116020535B (zh) * 2023-01-15 2025-03-04 兰州大学 一种Fe/ZSM-5催化剂的制备方法及其应用
CN116462208A (zh) * 2023-03-29 2023-07-21 河北欣芮再生资源利用有限公司 一种使用催化裂化废催化剂制备zsm-5分子筛的方法
CN116463140B (zh) * 2023-05-12 2024-09-06 中国科学技术大学 一种利用低碳混合醇制取航空煤油的方法
CN117228687A (zh) * 2023-09-14 2023-12-15 中国科学院青岛生物能源与过程研究所 调控mcm-22分子筛孔结构和酸性分布的方法、mcm-22分子筛、应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1418933A (zh) 2001-11-14 2003-05-21 中国石油化工股份有限公司 一种由合成气选择合成汽、柴油馏分用的催化剂
CN101195490A (zh) * 2007-11-30 2008-06-11 华南理工大学 用纳米微晶与离子表面活性剂在微波辐射条件下制备中微双孔分子筛的方法
CN101224430A (zh) 2008-01-30 2008-07-23 中国科学院山西煤炭化学研究所 一种疏水有机改性钴基费托合成催化剂及制备和应用
CN101269328A (zh) 2008-05-19 2008-09-24 中国科学院山西煤炭化学研究所 一种合成汽柴油馏分的钴基催化剂及制法和应用
CN101811050A (zh) 2010-05-05 2010-08-25 中国科学院山西煤炭化学研究所 一种有机疏水改性钴基费托合成催化剂及制备和应用
CN101890361A (zh) 2010-07-27 2010-11-24 万华实业集团有限公司 由合成气高选择性制备汽油馏分的催化剂及其制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4659743A (en) * 1981-10-09 1987-04-21 The United States Of America As Represented By The United States Department Of Energy Process and catalyst for converting synthesis gas to liquid hydrocarbon mixture
US4617283A (en) * 1984-06-27 1986-10-14 Union Carbide Corporation Catalyst for converting synthesis gas to liquid motor fuels
CA2116558A1 (en) * 1991-08-28 1993-03-18 Sandra Bessell Fischer tropsch catalyst comprising cobalt and scandium
EP0583836B2 (en) * 1992-08-18 2002-02-13 Shell Internationale Researchmaatschappij B.V. Process for the preparation of hydrocarbon fuels
US6313062B1 (en) * 1999-10-29 2001-11-06 Exxon Reserach And Engineering Company Process for the preparation of high activity carbon monoxide hydrogenation catalysts; the catalyst composition, use of the catalysts for conducting such reactions, and the products of such reactions
BR0207894A (pt) * 2001-03-05 2004-06-22 Shell Int Research Processo para a preparação de um ou mais produtos combustìveis de hidrocarbonetos, e, produto hidrocarboneto
US7452844B2 (en) * 2001-05-08 2008-11-18 Süd-Chemie Inc High surface area, small crystallite size catalyst for Fischer-Tropsch synthesis
DE102005056784A1 (de) * 2005-11-28 2007-05-31 Basf Ag Verfahren zur Herstellung von Olefinen aus Synthesegas in einer Reaktionskolonne
RU2326101C1 (ru) * 2006-12-27 2008-06-10 ООО "Объединенный центр исследований и разработок" Синтетическая нефть, способ ее получения, катализатор для этого способа и способ получения катализатора
BRPI0704436A2 (pt) * 2007-11-30 2009-07-28 Petroleo Brasileiro Sa processo de produção de hidrocarbonetos
US20100160464A1 (en) * 2008-12-24 2010-06-24 Chevron U.S.A. Inc. Zeolite Supported Cobalt Hybrid Fischer-Tropsch Catalyst
ES2391700T3 (es) * 2009-07-03 2012-11-29 Bp Corporation North America Inc. Procedimiento de oligomerización de alquenos

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1418933A (zh) 2001-11-14 2003-05-21 中国石油化工股份有限公司 一种由合成气选择合成汽、柴油馏分用的催化剂
CN101195490A (zh) * 2007-11-30 2008-06-11 华南理工大学 用纳米微晶与离子表面活性剂在微波辐射条件下制备中微双孔分子筛的方法
CN101224430A (zh) 2008-01-30 2008-07-23 中国科学院山西煤炭化学研究所 一种疏水有机改性钴基费托合成催化剂及制备和应用
CN101269328A (zh) 2008-05-19 2008-09-24 中国科学院山西煤炭化学研究所 一种合成汽柴油馏分的钴基催化剂及制法和应用
CN101811050A (zh) 2010-05-05 2010-08-25 中国科学院山西煤炭化学研究所 一种有机疏水改性钴基费托合成催化剂及制备和应用
CN101890361A (zh) 2010-07-27 2010-11-24 万华实业集团有限公司 由合成气高选择性制备汽油馏分的催化剂及其制备方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
A. MARTINEZ ET AL., J. CATAL., vol. 249, 2007, pages 162
J. CATAL., vol. 265, 2009, pages 26
N. TSUBAKI ET AL., ANGEW CHEM. INT. ED., vol. 47, 2008, pages 353
See also references of EP2535107A4
V.U.S. RAO ET AL.: "Promotion and characterization of zeolitic catalysts used in the synthesis of hydrocarbons from syngas.", JOURNAL OF MOLECULAR CATALYSIS, vol. 29, no. 2, 1985, pages 271 - 283, XP055108422 *
Y. LI ET AL., ENERGY FUEL, vol. 22, 2008, pages 1897

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106795438A (zh) * 2014-09-23 2017-05-31 陶氏环球技术有限责任公司 形成轻烃
CN106795438B (zh) * 2014-09-23 2019-08-30 陶氏环球技术有限责任公司 形成轻烃

Also Published As

Publication number Publication date
CA2756795C (en) 2016-07-05
EP2535107A4 (en) 2015-03-11
AU2011232735C1 (en) 2015-10-08
RU2011141198A (ru) 2013-04-20
EP2535107A1 (en) 2012-12-19
AU2011232735B2 (en) 2015-04-02
RU2484897C1 (ru) 2013-06-20
US9168515B2 (en) 2015-10-27
US20140018232A1 (en) 2014-01-16
AU2011232735A1 (en) 2012-10-18
CA2756795A1 (en) 2012-10-02

Similar Documents

Publication Publication Date Title
WO2012135993A1 (zh) 由合成气高选择性制备高品质汽油馏分的催化剂及其制备方法
CN107837818B (zh) 一种二氧化碳加氢直接制取汽油馏分烃的方法
CN106540740B (zh) 由合成气高选择性制轻质芳烃的催化剂及其制备方法
CN106423263B (zh) 一种二氧化碳加氢制低碳烯烃的催化剂及低碳烯烃的合成
CN102211034B (zh) 由合成气高选择性制备高品质汽油馏分的催化剂及其制备方法
CN106215972B (zh) 一种合成气一步转化制芳烃的催化剂及其制备方法
AU2017201067A1 (en) Methods of preparation and forming supported active metal catalysts and precursors
CN104148107B (zh) 一种由合成气一步转化制柴油馏分的催化剂及其制备方法
CN101224425A (zh) 一种费托合成产物分布可控的钴催化剂及其制备和应用
EP4046710A1 (en) Core-shell iron-based catalyst used for direct production of aromatic hydrocarbons from syngas, and preparation method and application therefor
CN104874417B (zh) 复合载体负载的钴基费托合成催化剂及其制备方法和应用
CN111375444A (zh) 一种用于合成气直接生产芳烃的核壳铁基催化剂及其制备方法和应用
CN101596462A (zh) 一种加氢异构催化剂及其制备方法
CN106140273A (zh) 一种用于费-托合成的包覆型钴基催化剂及其制备和应用
JP4889307B2 (ja) カプセル触媒を用いた液体燃料の製造方法
WO2008071059A1 (fr) Catalyseur à suspension et son procédé de préparation
CN107661773B (zh) 一种催化剂及合成气直接转化制液体燃料联产低碳烯烃的方法
JP5795483B2 (ja) 活性化されたフィッシャー・トロプシュ合成反応用触媒および炭化水素の製造方法
KR100837377B1 (ko) 지르코니아와 알루미나의 혼합담체를 이용한 피셔-트롭쉬 반응용 촉매 및 이를 이용한 합성가스로부터 액체탄화수소의 제조방법
CN103143386A (zh) 一种用负载金的分子筛催化剂转化正构烷烃为异构烷烃的方法
US7056955B2 (en) Attrition resistant bulk metal catalysts and methods of making and using same
CN101190859B (zh) 一种合成气制备烃类的方法
CN106140197A (zh) 固体超强酸催化剂及其制备方法及轻质正构烷烃的异构化方法
CN112892567B (zh) 一种钴基费托合成催化剂及制备和应用
KR101970811B1 (ko) 메조기공 제올라이트에 담지된 피셔-트롭시 공정용 코발트 촉매 및 이를 이용한 합성액체연료 제조 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011232735

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2011141198

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2756795

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011772860

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13321056

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11772860

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE