[go: up one dir, main page]

WO2012133710A1 - Power supply and vehicle comprising same - Google Patents

Power supply and vehicle comprising same Download PDF

Info

Publication number
WO2012133710A1
WO2012133710A1 PCT/JP2012/058484 JP2012058484W WO2012133710A1 WO 2012133710 A1 WO2012133710 A1 WO 2012133710A1 JP 2012058484 W JP2012058484 W JP 2012058484W WO 2012133710 A1 WO2012133710 A1 WO 2012133710A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
discharge
gas
battery
supply device
Prior art date
Application number
PCT/JP2012/058484
Other languages
French (fr)
Japanese (ja)
Inventor
高志 瀬戸
康広 浅井
橋本 裕之
土屋 正樹
貴英 籠谷
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2012133710A1 publication Critical patent/WO2012133710A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/308Detachable arrangements, e.g. detachable vent plugs or plug systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/317Re-sealable arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
    • B60K2001/005Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units the electric storage means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • B60K2001/0405Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion characterised by their position
    • B60K2001/0416Arrangement in the rear part of the vehicle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/284Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with incorporated circuit boards, e.g. printed circuit boards [PCB]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/293Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a power supply device that supplies electric power to a motor that drives a vehicle such as a hybrid vehicle or an electric vehicle, and a vehicle including the same, and in particular, a gas discharged from a gas discharge valve of a battery cell is externally provided by a discharge duct.
  • the present invention relates to a power supply device that discharges to a vehicle and a vehicle including the same.
  • a battery system including a large number of battery cells can be connected in series to increase the output voltage, it is used for applications that are charged and discharged with a large current, such as a hybrid car power supply device.
  • This battery system is discharged with a very large current when accelerating the vehicle, and is charged with a considerably large current in a state such as regenerative braking.
  • a gas discharge valve is provided in the battery cell in order to prevent destruction in an abnormal state in which the internal pressure increases due to overcharge or overdischarge and to ensure safety.
  • the gas discharge valve opens and exhausts gas when the internal pressure of the battery rises abnormally.
  • the battery system of Cited Document 1 has an exhaust tube connected to a gas discharge port of a rectangular battery.
  • the exhaust gas of the rectangular battery is exhausted to the outside through an exhaust tube.
  • a discharge duct 196 in which a metal plate is processed into a groove shape on a battery block 192 formed by stacking rectangular battery cells 191. Is fixed. Since the adjacent rectangular battery cells 191 have a potential difference in the outer can, an insulating separator 195 is sandwiched in order to insulate them. As shown in FIG. 19, the insulating separator 195 is integrally formed with an insulating plate portion 195a on the upper edge in order to insulate the metal discharge duct 196 and the rectangular battery cell 191.
  • a plurality of battery blocks provided with such a discharge duct may be connected.
  • a single power supply device is configured by connecting a plurality of battery blocks in series and / or in parallel.
  • the discharge ducts need to be piped for each battery block, and the arrangement of the discharge ducts becomes complicated.
  • downsizing of the battery system is also demanded.
  • the power supply device in an in-vehicle power supply device, the power supply device must be arranged in a limited space. Therefore, it is conceivable to use a common exhaust duct.
  • the discharge duct is shared, if any one of the battery blocks to which multiple units are connected has an abnormality and exhaust gas is generated, it will be connected to other normal battery blocks through the shared discharge duct. However, there was a possibility that the exhaust gas would flow in and have an adverse effect.
  • the present invention has been made to solve such problems, and its main purpose is to quickly discharge exhaust gas discharged from the battery cell through the discharge duct, Another object of the present invention is to provide a power supply device that can effectively prevent the exhaust gas discharged from the battery block from adversely affecting the battery block, and a vehicle including the same.
  • Another important object of the present invention is that exhaust gas generated in any one of the battery blocks is routed through the common duct while the exhaust ducts arranged in the plurality of battery blocks are commonly piped.
  • An object of the present invention is to provide a power supply device that can avoid adversely affecting the battery block of the vehicle and a vehicle including the same.
  • the power supply device includes an outer can, and includes a gas discharge valve 11 for discharging the gas generated inside the outer can. And stacking a plurality of battery cells 1 having gas discharge ports 12 for discharging gas from the gas discharge valve 11 on the surface of the outer can so that the gas discharge ports 12 are substantially flush with each other.
  • a plurality of battery blocks 2, 52, and the gas discharge ports 12 of the respective battery cells constituting the battery blocks 2, 52, and the gas discharged from the gas discharge ports 12 to the outside The hollow discharge ducts 6 and 56 to be exhausted and the discharge ducts 6 and 56 disposed in the battery blocks 2 and 52 are connected to discharge the gas flowing in from the discharge ducts 6 and 56 to the outside.
  • Connection ducts 7 and 57 are provided.
  • the discharge ducts 6 and 56 are connected to the connection ducts 7 and 57 via a discharge valve 8, and the discharge valve 8 is connected from the discharge ducts 6 and 56 to the connection ducts 7 and 57. It opens toward the discharge ducts 6 and 57 from the connection ducts 7 and 5.
  • the exhaust gas discharged from the plurality of battery blocks can be quickly discharged to the outside by flowing into the connection duct from each discharge duct, and the exhaust gas is discharged due to an abnormality in any of the battery blocks.
  • the exhaust valve surely prevents the exhaust gas from flowing into the discharge ducts of the other battery blocks, and can effectively prevent adverse effects on other normal battery blocks.
  • the exhaust ducts connected to the plurality of battery blocks are connected to the connection duct to discharge the exhaust gas to the outside. Therefore, the piping of the duct for exhausting the exhaust gas is simplified, and the entire power supply device is downsized. Can be arranged in a space-saving manner.
  • the plurality of battery blocks 2 and 52 are disposed on both sides of the connection ducts 6 and 56, and the discharge ducts are disposed in the respective battery blocks 2 and 52. 6 and 56 can be connected such that the gas flow path direction is substantially perpendicular to the gas flow path direction of the connecting ducts 7 and 57.
  • the plurality of battery blocks are arranged on one side of the connection duct, and the gas flow path direction of the discharge duct arranged in each battery block is the connection duct. It can connect so that it may become an attitude
  • the power supply device has an outer can, and is provided with a gas discharge valve for discharging the gas generated inside the outer can, and the gas is discharged from the gas discharge valve.
  • a battery block 2 in which a plurality of battery cells provided with gas discharge ports on the surface of the outer can are stacked in a posture in which the gas discharge ports are substantially flush with each other, and each of the battery blocks 2 And a hollow discharge duct 6 that is disposed to face the gas discharge port 12 of the battery cell 1 and exhausts the gas discharged from the gas discharge port 12 to the outside.
  • the discharge duct 6 is provided with a discharge valve 8 in the discharge portion 26, and the discharge valve 8 opens from the inside of the discharge duct 6 to the outside and closes from the outside to the inside. I have to.
  • the exhaust gas discharged from the battery block can be quickly discharged to the outside, and it is possible to reliably prevent unwanted materials from entering the inside from the outside.
  • the discharge valve 8 opens when the internal pressure in the discharge ducts 6 and 56 rises above a predetermined pressure, and closes when the internal pressure falls below the predetermined internal pressure.
  • the on-off valve can be used. As a result, when the exhaust gas is discharged from the battery cell and the internal pressure in the discharge duct increases, the exhaust valve is opened to quickly discharge the exhaust gas to the outside, and after the exhaust gas is discharged, the exhaust valve is closed. Can be used repeatedly.
  • the upper surface of the battery block 2 is covered with the upper surface plate 20, and the upper surface plate 20 has a plurality of gas exhausts arranged at the center of the battery block 2.
  • a central recess 21 facing the outlet 12 is provided on the inner surface, and a space can be formed between the upper surface of the battery block and the central recess of the upper surface plate to form the discharge duct 6.
  • a hollow duct can be formed without piping a cylindrical duct on the upper surface of the battery block.
  • the discharge duct can be arranged easily and at low cost by reducing the number of components while reducing the overall outer shape of the power supply device.
  • the resin 22 can be filled between the upper surface of the said battery block 2, and the said upper surface plate 20, and the discharge duct 6 of a sealed structure can be formed.
  • the discharge duct of a sealed structure can be provided between the upper surface of the battery block and the upper surface plate easily and reliably.
  • the resin 22 can be filled around. Thereby, it can prevent effectively that resin with which the upper surface of a battery block is filled flows into the gas exhaust port of a battery cell, and plugs up this gas exhaust port. Accordingly, each battery cell can reliably open the gas discharge valve and discharge the internal exhaust gas when the internal pressure rises to a predetermined pressure. Further, since a wide portion on the upper surface of the battery block except the gas discharge port can be reliably covered with the resin, it is possible to effectively prevent a short circuit between the battery cells and improve safety.
  • the lateral width (W) of the central recess 21 provided on the inner surface of the upper surface plate 20 is 1.5 times or more the lateral width (d) of the partition wall 23. be able to.
  • the hollow discharge duct is formed in an inner shape that extends to the outside of the partition wall, so that foreign matter such as an electrolyte discharged from the gas discharge valve remains in the discharge duct.
  • the outside of the partition wall is coated with resin, so that it can be reliably prevented from coming into contact with the outer can of the battery cell, and safety can be improved. .
  • the discharge duct 6 having a sealed structure can be formed by sealing the space between the upper surface of the battery block 2 and the upper surface plate 20 with the sealing material 27.
  • the said battery cell 1 is equipped with the electrode terminal 13 in the both ends of the outer peripheral surface 10 which has provided the gas exhaust port 12, and several battery cells laminated
  • One electrode terminal 13 is connected in series or / and in parallel via a plurality of bus bars 19, and the top plate 20 is made of resin, and the plurality of bus bars 19 are insert-molded on both sides of the central recess 21. can do.
  • the power supply device may fix the bus bar 19 embedded in the upper surface plate 20 to the output terminal 13 of the battery cell 1 and fix the upper surface plate 20 at a fixed position on the upper surface of the battery block 2. it can. This allows the top plate forming the discharge duct to be placed in a fixed position on the battery block and easily fixed
  • any one of the power supply devices described above can be provided.
  • FIG. 4 is an exploded perspective view of the battery block of FIG. 3.
  • FIG. 4 is a cross-sectional view of the battery block of FIG. 3 taken along the line VV.
  • FIG. 4 is a cross-sectional view taken along line VI-VI of the power supply device of FIG. 3.
  • FIG. 8 is a bottom perspective view of the top plate shown in FIG. 7. It is a disassembled perspective view which shows another example of a partition wall.
  • the embodiment described below exemplifies a power supply device for embodying the technical idea of the present invention and a vehicle including the power supply device
  • the present invention includes the following power supply device and a vehicle including the power supply device.
  • the member shown by the claim is not what specifies the member of embodiment.
  • the dimensions, materials, shapes, relative arrangements, and the like of the constituent members described in the embodiments are not intended to limit the scope of the present invention only to the description unless otherwise specified. It's just an example. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation.
  • each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing.
  • the contents described in some examples and embodiments may be used in other examples and embodiments.
  • the power supply apparatus shown below is most suitable for the power source of an electric vehicle such as a hybrid car that runs with both an engine and a motor and an electric vehicle that runs with only a motor.
  • the power supply device of the present invention can be used for vehicles other than hybrid cars and electric vehicles, and can also be used for applications requiring high output other than electric vehicles.
  • the power supply device shown in FIGS. 1 and 2 includes a battery block 2 in which a plurality of rectangular battery cells 1 having gas discharge valves 11 are stacked and connected, and each of the rectangular battery cells 1 constituting the battery block 2.
  • a hollow discharge duct 6 that is connected to the gas discharge port 12 of the gas discharge valve 11 and exhausts the gas discharged from the gas discharge port 12 to the outside and the discharge duct 6 disposed in the battery block 2 are connected.
  • a connecting duct 7 for discharging the gas flowing in from the discharge duct 6 to the outside.
  • the plurality of battery blocks 2 are housed in an outer case 30.
  • the battery block 2 in FIGS. 3 to 6 has a plurality of prismatic battery cells 1 having a rectangular outer shape.
  • the rectangular battery cell 1 has a rectangular outer can and is provided with a gas discharge valve 11 for discharging gas generated inside the outer can.
  • the prismatic battery cell 1 has a gas discharge port 12 for discharging gas from the gas discharge valve 11 on the surface of the outer can.
  • the battery block 2 is fixed on the outside by a battery holder 3.
  • a plurality of battery blocks 2 are arranged, and in FIG. 1, four sets of battery blocks 2 are arranged vertically and horizontally on the same surface. As shown in FIGS.
  • the rectangular battery cell 1 has a posture in which the outer peripheral surface 10 provided with the gas discharge port 12 is disposed on the same surface, and is stacked through the separator 15 to form the battery block 2. .
  • the rectangular battery cells 1 of FIGS. 4 to 6 are stacked in a posture with the outer peripheral surface 10 provided with the gas discharge valve 11 as the upper surface.
  • a hollow discharge duct 6 for exhausting the gas discharged from the gas discharge port 12 to the outside is provided on the upper surface of the battery block 2 so as to be connected to the gas discharge port 12 of the rectangular battery cell 1 constituting the battery block 2. ing.
  • the rectangular battery cell 1 is a rectangular battery having a width wider than the thickness, in other words, a rectangular battery thinner than the width, and is stacked in the thickness direction to form a battery block 2.
  • the rectangular battery cell 1 is a lithium ion secondary battery.
  • the square battery cell may be a secondary battery such as a nickel metal hydride battery or a nickel cadmium battery.
  • the square battery cell 1 in FIG. 4 is a battery having a rectangular shape with both wide surfaces, and the battery blocks 2 are laminated so that both surfaces face each other.
  • the rectangular battery cell 1 is provided with a gas discharge port 12 of the gas discharge valve 11 at the center of the upper surface, and positive and negative electrode terminals 13 projecting from both ends of the upper surface. Yes.
  • the gas discharge valve 11 is opened when the internal pressure of the rectangular battery cell 1 becomes higher than the set pressure, thereby preventing the internal pressure from increasing.
  • the gas discharge valve 11 incorporates a valve body (not shown) that closes the gas discharge port 12.
  • the valve body is a thin film that is destroyed at a set pressure, or a valve that is pressed against the valve seat by an elastic body so as to open at the set pressure.
  • Adjacent square battery cells 1 are connected in series and / or in parallel with each other by connecting positive and negative electrode terminals 13.
  • the positive and negative electrode terminals 13 of the adjacent rectangular battery cells 1 are connected in series and / or in parallel with each other through a bus bar 19.
  • a power supply device that connects adjacent prismatic battery cells in series can increase the output voltage by increasing the output voltage, and can connect adjacent prismatic battery cells in parallel to increase the charge / discharge current.
  • the battery block 2 shown in the figure has twelve prismatic battery cells 1 stacked on each other, and these prismatic battery cells 1 are connected in series and in parallel.
  • the battery block 2 shown in the figure has twelve rectangular battery cells 1 connected in parallel in 6 series.
  • the battery block 2 shown in the figure arranges two adjacent rectangular battery cells 1 in the same direction, and arranges these two rectangular battery cells 1 in the opposite direction, and the adjacent output terminals 13 on both sides thereof.
  • the bus bar 19 connects four adjacent rectangular battery cells 1 in two lines and two lines. That is, one bus bar 19 connects two prismatic battery cells 1 arranged in the same direction among the four adjacent prismatic battery cells 1 in parallel, and 2 arranged in the opposite direction adjacent thereto.
  • the individual rectangular battery cells 1 are connected in series with each other.
  • the present invention does not specify the number of rectangular battery cells constituting the battery block and the connection state thereof.
  • the battery block can also connect all the stacked rectangular battery cells in series. Three or more can be connected in parallel.
  • the battery block 2 has a separator 15 sandwiched between stacked rectangular battery cells 1.
  • the separator 15 insulates the adjacent rectangular battery cells 1.
  • the separator 15 can be stacked so that the adjacent rectangular battery cells 1 are not displaced as a shape in which the rectangular battery cells 1 are fitted on both sides and arranged in a fixed position.
  • the prismatic battery cell 1 insulated and stacked by the separator 15 can have an outer can made of metal such as aluminum.
  • the structure in which the separator 15 is sandwiched between the prismatic battery cells 1 has an effect that the separator 15 is made of a material having a low thermal conductivity such as plastic, and the thermal runaway of the adjacent prismatic battery cells 1 can be effectively prevented. is there.
  • a battery holder 3 that fixes the rectangular battery cell 1 in a stacked state to form a battery block 2 includes a pair of end plates 4 formed by sandwiching the battery block 2 from both end surfaces, and both ends connected to the pair of end plates 4. And a connecting fixture 5 formed as described above.
  • the end plate 4 is a quadrangle having the same shape and dimensions as the outer shape of the rectangular battery cell 1, and the stacked battery blocks 2 are sandwiched and fixed from both end surfaces.
  • the end plate 4 shown in the figure is made of plastic, and reinforcing ribs extending vertically and horizontally are integrally formed on the outer surface.
  • the end plate can be reinforced by fixing a reinforcing metal fitting.
  • the connecting fixture can be fixed to the reinforcing metal fitting.
  • This structure is characterized in that the end plate can be reinforced with a reinforcing metal fitting to be a strong structure, and the connection fixture can be firmly connected.
  • this structure is characterized in that the end plate can be molded from plastic to make itself strong.
  • the end plate is made of metal, and the connecting fixture can be directly fixed without providing the reinforcing metal fitting.
  • connection fixture 5 is made of metal such as iron, and both ends thereof are bent, and the bent portion is fixed to the end plate 4 with a set screw 18.
  • the connecting fixture 5 shown in the figure has a plate shape along the side surface of the battery block 2. Although the plate-like connecting fixture is not shown, the opening can also be opened. However, the connection fixture may be another structure for connecting the end plates at both ends, for example, a plurality of bars.
  • the battery block 2 shown in the drawing is provided with a hollow discharge duct 6 on the upper surface thereof.
  • the discharge duct 6 is provided to face the gas discharge ports 12 of the plurality of rectangular battery cells 1 stacked on each other.
  • the battery block 2 shown in FIGS. 3 to 6 has an upper surface covered with an upper surface plate 20, and a discharge duct 6 is provided between the upper surface plate 20 and the upper surface of the battery block 2.
  • the top plate 20 is formed of insulating plastic.
  • the insulating plastic is a plastic such as nylon resin or epoxy resin.
  • the plastic top plate is provided with a central recess 21 facing the plurality of gas discharge ports 12 disposed in the center of the battery block 2 on the inner surface thereof. Yes.
  • the central concave portion 21 is a groove shape extending in the stacking direction of the rectangular battery cells 1 and is sized to cover the gas discharge ports 12 of all the rectangular battery cells 1 constituting the battery block 2.
  • the upper surface plate 20 is fixed to the upper surface of the battery block 2, and a discharge duct 6 is provided in a space formed between the upper surface of the battery block 2 and the central recess 21.
  • the top plate 20 is provided with a discharge portion 26 that discharges the gas inside the discharge duct 6 to one end of the discharge duct 6.
  • the discharge portion 26 shown in the figure is a cylindrical body that penetrates through the upper surface plate 20 and is inserted into the discharge duct 6 from the outside of the upper surface plate, and communicates the inside of the discharge duct 6 with the outside.
  • the power supply device of FIGS. 5 and 6 has the upper surface of the battery block 2 and the lower surface of the upper surface plate 20 in order to make the discharge duct 6 formed by the upper surface of the battery block 2 and the central recess 21 sealed.
  • the resin 22 is filled in between.
  • This power supply device fills a molten resin between the upper surface of the battery block 2 and the upper surface plate 20, cures the resin, and forms a discharge duct 6 formed by the upper surface of the battery block 2 and the central recess 21.
  • the upper surface plate 20 shown in FIGS. 5 and 8 has a filling hole 25 for filling the inside of the central recess 21 with molten resin at one end of the central recess 21. The filling hole 25 is closed after filling with resin.
  • a frame-shaped partition wall 23 is fixed around the plurality of gas discharge ports 12 arranged at the center of the battery block 2.
  • the rectangular partition wall 23 is a rectangular battery having an elongated rectangular shape having a lateral width (d) and a length (L) in which the gas discharge ports 12 of all the rectangular battery cells 1 constituting the battery block 2 can be disposed.
  • the cell 1 extends in the stacking direction. In order to insulate the partition wall 23 from the outer can of the rectangular battery cell 1, it is formed of an insulating plastic.
  • a frame-shaped partition wall 23 is bonded and fixed around a plurality of gas discharge ports 12 located at the center of the battery block 2, and a molten resin is filled around the partition wall 23.
  • the region outside the partition wall 23 is resin-molded.
  • the lateral width (W) of the central recess 21 provided on the inner surface of the top plate 20 is made wider than the lateral width (d) of the partition wall 23.
  • a resin-molded insulating coating portion 24 is formed in a region outside the partition wall 23, and the insulating coating portion 24 insulates the surface of the outer can of the rectangular battery cell 1.
  • This discharge duct 6 is located outside the partition wall 23 even when foreign matter such as electrolyte solution is discharged from the gas discharge valve 11 together with the exhaust gas due to abnormality of the rectangular battery cell 1 and is scattered in the discharge duct 6.
  • the provided insulating coating portion 24 can effectively prevent these discharged substances from coming into contact with the outer can of the rectangular battery cell 1 and improve safety.
  • the insulating cover 24 provided outside the partition wall 23 can be widened by making the width (W) of the central recess 21 wider than the width (d) of the partition wall 23. Accordingly, in the power supply device, the lateral width (W) of the central recess 21 is wider than the lateral width (d) of the partition wall 23, preferably 1.5 times or more, and more preferably about 2 times.
  • this power supply device increases the width (W) of the discharge duct 6 formed by the upper surface of the battery block 2 and the central recess 21, thereby reducing the height (H) of the discharge duct 6.
  • the volume of 6 can be increased.
  • the volume of the discharge duct 6 can be increased while the depth of the central recess 21 forming the discharge duct 6 is reduced to make the upper surface plate 20 thinner.
  • the power supply device that can reduce the height (H) of the discharge duct 6 and can make the top plate 20 thin can reduce the overall height by reducing the height of the entire device.
  • the partition wall 23 has a frame shape that guides all the gas discharge ports 12 arranged in the center of the battery block 2 to the inside.
  • the partition walls can be provided separately for each gas discharge port 12 of the rectangular battery cells 1 connected in parallel to each other.
  • the partition walls divided into a plurality are not shown, they can be connected to each other to form an integral structure. With this structure, a plurality of partition walls can be easily arranged at fixed positions on the upper surface of the battery block.
  • the structure in which the partition wall 23 is divided into a plurality of portions is between the adjacent partition walls 23 and can be insulated by filling the boundary portion of the rectangular battery cell 1 having a potential difference with the resin 22. There is a feature that can improve safety.
  • the partition wall can be divided for each rectangular battery cell and arranged around each gas discharge port.
  • the power supply device can also provide a sealed discharge duct 6 by sealing the space between the upper surface of the battery block 2 and the upper surface plate 20 with a sealing material 27.
  • the top plate 20 shown in the figure has a ring-shaped packing 27 ⁇ / b> A as a sealing material 27 around the central recess 21.
  • the ring-shaped packing 27 ⁇ / b> A can be sandwiched between the upper plate 20 and the upper surface of the battery block 2 so that the discharge duct 6 does not leak gas.
  • a packing groove 28 for arranging the packing 27A at the stop position is provided on the lower surface of the upper surface plate 20, that is, the surface facing the upper surface of the battery block 2.
  • the packing 27 ⁇ / b> A is guided by the packing groove 28 and is in close contact with the upper surface of the battery block 2. This structure can be exhausted from the discharge duct 6 to the outside without leaking the exhaust gas ejected from the gas discharge port 12 of the rectangular battery cell 1.
  • the structure in which the space between the upper surface of the battery block and the upper surface plate is closed with a sealing material does not necessarily require the packing, and the sealing material can be used as an adhesive.
  • the peripheral portion of the central recess is brought into close contact with the upper surface of the battery block, and the close contact portion is adhered with an adhesive so as to prevent gas leakage.
  • the structure in which the upper plate 20 disposed on the upper surface of the battery block 2 is used in combination with the discharge duct 6 is simple and low-cost by reducing the number of components while reducing the overall outer shape of the power supply device.
  • a duct 6 can be disposed.
  • the power supply device of the present invention can also be used as a discharge duct by piping a cylindrical duct on the upper surface of the battery block.
  • the plastic top plate 20 has output terminals 13 arranged at both ends of each rectangular battery cell 1 in series or in parallel along both sides of the battery block 2.
  • a plurality of bus bars 19 to be connected to are embedded.
  • the upper surface plate 20 in the figure is located on both sides of the central recess 21, and a plurality of bus bars 19 are embedded on opposite side portions. These bus bars 19 are inserted and embedded in the process of molding the top plate 20 with plastic.
  • the top plate 20 shown in the figure has opening windows 20 ⁇ / b> A that expose the central portion of the bus bar 19, which is a connection portion with the output terminal 13, on the upper and lower surfaces.
  • the upper surface plate 20 has a plurality of bus bars 19 arranged at fixed positions in a state where the outer peripheral portion of the bus bar 19 is inserted and the central portion is exposed.
  • the bus bar 19 exposed from the opening window 20A of the top plate 20 connects the exposed portion to the output terminal 13 and connects the plurality of prismatic battery cells 1 to a predetermined connection state.
  • the bus bar 19 embedded in the upper surface plate 20 is firmly fixed to a fixed position of the upper surface plate 20 to reinforce the upper surface plate 20.
  • the top plate 20 in which the bus bar 19 is insert-molded is fixed to the battery block 2 via the bus bar 19 by fixing the bus bar 19 to the output terminal 13 of the rectangular battery cell 1 by welding such as laser welding. Fixed in place on the top surface.
  • the top plate can be fixed to the top surface of the battery block after connecting a plurality of battery cells constituting the battery block to a predetermined state with the bus bar, or the bus bar is placed at a position facing the output terminal of the battery cell. After fixing the upper surface plate provided with the positioned through hole to the upper surface of the battery block, the bus bar is connected by welding or the like. The above upper surface plate is fixed to the upper surface of the battery block via a connector.
  • the power supply device shown in the cross-sectional view of FIG. 12 includes a circuit board 17 connected to the battery block 2, and the circuit board 17 is disposed on the top plate 20.
  • the upper surface plate 20 shown in the figure is provided with a housing recess 29 for housing the circuit board 17 on the upper surface side, and the circuit board 17 is housed in the housing recess 29.
  • the circuit board 17 is mounted with an electronic component (not shown) that realizes a protection circuit for the prismatic battery cell 1.
  • the circuit board 17 is mounted with a voltage detection circuit that detects the cell voltage connected to each square battery cell 1, a temperature detection circuit that detects the temperature of the square battery cell 1, etc., and detects the cell voltage.
  • Control is performed so as to prevent overcharge and overdischarge of the prismatic battery cell 1, or charge / discharge is controlled so as to prevent abnormal temperature rise of the prismatic battery cell 1.
  • Electronic components that realize these circuits are disposed on the inner surface of the circuit board 17 and are accommodated in the accommodating recess 29.
  • the power supply device is provided with a discharge valve 8 in the discharge portion 26 of the discharge duct 6 as shown in FIG.
  • the discharge valve 8 is opened when the internal pressure of the rectangular battery cell 1 is increased and the gas is discharged from the gas discharge valve 11 and the pressure in the discharge duct 6 is increased, so that the gas in the discharge duct 6 is discharged to the outside.
  • Discharge is a check valve that opens from the inside of the discharge duct 6 to the outside and allows gas to pass therethrough, but closes from the outside to the inside.
  • the discharge valve 8 which is a check valve is provided with connecting portions 49 at both ends, and is connected to the discharge portion 26 of the discharge duct 6 via the connecting portions 49.
  • the power supply device has a plurality of battery blocks 2 arranged on both sides of the connection duct 7 and connects the discharge ducts 6 arranged in each battery block 2 to the connection ducts 7 in a substantially vertical posture.
  • the power supply device shown in the figure connects the discharge ducts 6 and the connection ducts 7 arranged in the four battery blocks 2 in an H shape.
  • Each discharge duct 6 connects a discharge portion 26 provided at one end to a connection duct 7 via a discharge valve 8.
  • the discharge valve 8 is disposed so as to open from the discharge duct 6 toward the connection duct 7 and allow gas to pass therethrough, but close from the connection duct 7 toward the discharge duct 8 and prevent gas from passing therethrough.
  • the discharge valve 8 allows the gas discharged from the gas discharge valve 11 to pass through and flows into the connection duct 7 from the discharge duct 6.
  • the connecting duct 7 exhausts the exhaust gas flowing in from the respective exhaust ducts 6 to the outside. Therefore, an external duct (not shown) that exhausts to the outside is connected to one end of the connection duct 7.
  • the discharge duct 6 connected to the connection duct 7 through the discharge valve 8 smoothly exhausts the gas discharged from the discharge duct 6 to the connection duct 7, while the gas flowing into the connection duct 7 is discharged. It is possible to reliably prevent backflow into the discharge duct 6. Therefore, the exhaust gas discharged from the rectangular battery cell 1 whose internal pressure has increased is smoothly exhausted from the discharge duct 6 disposed in the battery block 2 to the connection duct 7, and the gas flowing into the connection duct 7 is discharged. Inflow from the connecting duct 7 to the discharge duct 6 can be prevented. For this reason, the gas discharged from the discharge duct of a certain battery block is reliably prevented from flowing into the discharge duct of another battery block after flowing into the connection duct.
  • a plurality of battery blocks 2 are arranged on both sides of the connection duct 7 and a plurality of discharge ducts 6 are connected to both sides of the connection duct 7.
  • the power supply device has a plurality of batteries on one side of the connection duct 7. It is also possible to arrange the blocks and connect the discharge ducts arranged in the respective battery blocks in a substantially vertical posture to the connection ducts.
  • FIG. 8 An example of the discharge valve 8 is shown in the sectional view of FIG.
  • the discharge valve 8 shown in this figure is provided inside a cylinder body 40 as a main body, and closes a valve seat 41 that closes the inside of the cylinder body 40 and a valve hole 42 that is opened in the valve seat 41. And a resilient body 44 that presses the valve body 43 toward the valve seat 41.
  • the valve seat 41 is provided inside the cylinder body 40 as a partition wall that closes the inside of the cylinder body 40.
  • the valve seat 41 which is a partition wall, has a valve hole 42 through which the gas in the discharge duct 6 passes outside.
  • a valve hole 42 opened in the valve seat 41 is closed by a valve body 43.
  • the valve body 43 is shaped along the peripheral edge of the valve hole 42 and has a size capable of closing the valve hole 42.
  • the valve body 43 is disposed on the gas discharge side of the valve seat 41 and closes the valve hole 42 in a sealed state.
  • the valve body 43 is pressed by the elastic body 44 to close the valve hole 42.
  • the elastic body 44 shown in the figure is a coil spring 44 ⁇ / b> A, one end of which is fixed to the valve body 43 and the other end is fixed to a support member 45 fixed inside the cylinder body 40.
  • the elastic body 44 can specify the elastic force with which the valve body 43 presses the valve seat 41 by the spring constant of the coil spring 44 ⁇ / b> A, the total length of the spring, and the distance between the support member 45 and the valve seat 41.
  • the coil spring 44A shown in the figure has a conical shape, and has a structure in which the valve body 43 can reciprocate in a predetermined direction.
  • the valve opening pressure of the above-described discharge valve 8 is specified by the opening area of the valve hole 42 opened in the valve seat 41 and the elastic force of the elastic body 44.
  • the discharge valve 8 is preferably an open / close valve that opens when the pressure in the discharge duct 6 becomes higher than a predetermined pressure and closes when the pressure in the discharge duct 6 becomes lower than the predetermined pressure.
  • the discharge valve 8 moves the valve body 43 in a direction away from the valve hole 42 as shown in FIG. Open and exhaust the gas in the exhaust duct as shown by the arrows in the figure.
  • the discharge valve 8 of FIG. 12 is a modification in which the elastic body 44 is a leaf spring 44B.
  • the elastic body 44 which is a leaf spring 44 ⁇ / b> B, has one end fixed to the valve body and the other end fixed to the outer periphery of the valve seat 41.
  • the discharge valve 8 also moves the valve element 43 in a direction away from the valve hole 42 as shown in FIG. Open and exhaust the gas in the exhaust duct as shown by the arrows in the figure.
  • the leaf spring 44B returns to its original shape as shown in FIG.
  • the valve hole 42 is closed to prevent gas from flowing into the discharge duct 6 from the outside.
  • the discharge valve is not specified in the above structure.
  • the valve body may be a sphere and the valve seat may be a cylindrical open end.
  • the discharge valve is opened by moving the sphere when the pressure in the discharge duct increases.
  • the exhaust valve can be any other check valve that has already been developed or that will be developed in the future.
  • a plurality of rectangular battery cells 1 whose outer cans are made of metal are fixed to the surface of the cooling plate 35 in a thermally conductive state. This power supply device forcibly cools the cooling plate 35 and dissipates heat generated by each battery cell 1.
  • the cooling plate 35 is provided with a refrigerant passage 36 therein, supplies liquefied refrigerant to the refrigerant passage 36, vaporizes the refrigerant in the refrigerant passage 36, and is forced by the heat of vaporization of the refrigerant. To cool the rectangular battery cell 1.
  • the cooling mechanism that forcibly cools the cooling plate 35 with the heat of vaporization of the refrigerant is not shown, a compressor that pressurizes the refrigerant in a gaseous state, a condenser that cools and liquefies the gas pressurized by the compressor, And an expansion valve that supplies the refrigerant liquefied by the condenser to the refrigerant passage 36 of the cooling plate 35.
  • This cooling mechanism supplies the liquefied refrigerant to the cooling plate 35 via the expansion valve, vaporizes the supplied refrigerant inside the cooling plate 35, and cools the cooling plate 35 with heat of vaporization.
  • the vaporized refrigerant is pressurized by the compressor, supplied to the condenser, liquefied by the condenser, and circulated to the refrigerant passage 36 of the cooling plate 35 via the expansion valve to refrigerate the cooling plate 35.
  • the cooling plate is not necessarily cooled by the heat of vaporization of the refrigerant, and can be cooled by circulating a cooled liquid inside, for example. Further, the cooling plate can be cooled by providing a cooling gas passage inside and forcibly blowing the gas cooled in this passage.
  • the battery cells are cooled by the cooling plate disposed on the lower surface of the rectangular battery cells.
  • an air cooling system in which cooling air is blown into the gaps between the battery cells to cool them may be employed.
  • FIGS. 13 and 14 show an example in which the discharge duct 56 disposed on the upper surface of the battery block 52 is cylindrical.
  • the cylindrical discharge duct 56 is provided with a connection opening 54 connected to the gas discharge port 12 of each rectangular battery cell 1, and the connection opening 54 is connected to the gas discharge port 12.
  • packing (not shown) is arranged around the connection opening 54.
  • the packing is an O-ring that is sandwiched between the discharge duct 56 and the opposing surface of the rectangular battery cell 1 and connects the connection opening 54 and the gas discharge port 12 with a structure that does not cause gas leakage.
  • a packing groove (not shown) for arranging the packing at a stop position is provided on the lower surface of the discharge duct 56, that is, the surface facing the rectangular battery cell 1.
  • the O-ring which is a packing, is guided by the packing groove and is brought into close contact with the opposing surface of the rectangular battery cell 1.
  • four sets of battery blocks 2 are arranged in two rows, and two rows of discharge ducts 56 are arranged on the upper surface.
  • Two rows of discharge ducts 56 are connected to a connection duct 57 at the center of the power supply device, and the discharge duct 56 and the connection duct 57 are connected in an H shape.
  • the connecting duct 57 located in the center exhausts the exhaust gas flowing in from the respective exhaust ducts 56 to the outside. Therefore, an external duct (not shown) that exhausts to the outside is connected to one end of the connection duct 57.
  • the discharge duct 56 is open at one end and connected to the connection duct 57 and closes the other end.
  • the discharge duct 56 flows the gas discharged from the gas discharge port 12 into the discharge duct 56 through the connection opening 54 and discharges the gas from the connection duct 57 to the outside.
  • the power supply device is provided with a discharge valve 8 at a discharge portion of a discharge duct 56 disposed in each battery block 2.
  • the discharge valve 8 opens in the direction in which the gas in the discharge duct 56 is discharged and allows the gas to pass therethrough, but closes toward the inside of the discharge duct 56.
  • the discharge valve 8 is provided on the discharge side of the discharge duct 56 and at a connection portion with the connection duct 57. Also in this power supply device, the gas discharged from the discharge duct 56 is smoothly exhausted to the connection duct 57 via the discharge valve 8, while the gas flowing into the connection duct 57 flows back into the discharge duct 56. Can be surely prevented. Therefore, the gas discharged from the discharge duct of a certain battery block is reliably prevented from flowing into the discharge duct of another battery block after flowing into the connection duct.
  • the above power supply devices can be used as in-vehicle power supplies.
  • a vehicle equipped with a power supply device an electric vehicle such as a hybrid vehicle or a plug-in hybrid vehicle that runs with both an engine and a motor, or an electric vehicle that runs only with a motor can be used, and it is used as a power source for these vehicles. .
  • FIG. 15 shows an example in which a power supply device is mounted on a hybrid vehicle that runs with both an engine and a motor.
  • a vehicle HV equipped with the power supply device shown in this figure includes an engine 96 and a travel motor 93 that travel the vehicle HV, a power supply device 100 that supplies power to the motor 93, and a generator that charges a battery of the power supply device 100.
  • the power supply apparatus 100 is connected to a motor 93 and a generator 94 via a DC / AC inverter 95.
  • the vehicle HV travels by both the motor 93 and the engine 96 while charging / discharging the battery of the power supply device 100.
  • the motor 93 is driven to drive the vehicle when the engine efficiency is low, for example, during acceleration or low-speed driving.
  • the motor 93 is driven by power supplied from the power supply device 100.
  • the generator 94 is driven by the engine 96 or is driven by regenerative braking when the vehicle is braked to charge the battery of the power supply device 100.
  • FIG. 16 shows an example in which a power supply device is mounted on an electric vehicle that runs only with a motor.
  • a vehicle EV equipped with the power supply device shown in FIG. 1 is a motor 93 for running the vehicle EV, a power supply device 100 that supplies power to the motor 93, and a generator 94 that charges a battery of the power supply device 100.
  • the motor 93 is driven by power supplied from the power supply device 100.
  • the generator 94 is driven by energy when regeneratively braking the vehicle EV and charges the battery of the power supply device 100.
  • this power supply apparatus can be used not only as a power source for a moving body but also as a stationary power storage facility.
  • a power supply system that is charged with sunlight or midnight power and discharged when necessary, or a streetlight power supply that charges sunlight during the day and discharges at night, or during a power outage It can also be used as a backup power source for driving signals.
  • FIG. The power supply apparatus 100 shown in this figure forms a battery unit 82 by connecting a plurality of battery packs 81 in a unit shape. Each battery pack 81 has a plurality of battery cells connected in series and / or in parallel. Each battery pack 81 is controlled by a power controller 84.
  • the power supply apparatus 100 drives the load LD after charging the battery unit 82 with the charging power supply CP. For this reason, the power supply apparatus 100 includes a charging mode and a discharging mode.
  • the load LD and the charging power source CP are connected to the power supply device 100 via the discharging switch DS and the charging switch CS, respectively.
  • ON / OFF of the discharge switch DS and the charge switch CS is switched by the power supply controller 84 of the power supply apparatus 100.
  • the power controller 84 switches the charging switch CS to ON and the discharging switch DS to OFF to allow charging from the charging power supply CP to the power supply apparatus 100.
  • the power supply controller 84 turns off the charge switch CS and turns on the discharge switch DS to discharge.
  • the mode is switched to permit discharge from the power supply apparatus 100 to the load LD.
  • the charge switch CS can be turned on and the discharge switch DS can be turned on to supply power to the load LD and charge the power supply device 100 at the same time.
  • the load LD driven by the power supply device 100 is connected to the power supply device 100 via the discharge switch DS.
  • the power supply controller 84 switches the discharge switch DS to ON, connects to the load LD, and drives the load LD with the power from the power supply apparatus 100.
  • the discharge switch DS a switching element such as an FET can be used. ON / OFF of the discharge switch DS is controlled by the power supply controller 84 of the power supply apparatus 100.
  • the power controller 84 also includes a communication interface for communicating with external devices. In the example of FIG. 17, it is connected to the host device HT according to an existing communication protocol such as UART or RS-232C. Further, if necessary, a user interface for the user to operate the power supply system can be provided.
  • Each battery pack 81 includes a signal terminal and a power supply terminal.
  • the signal terminals include a pack input / output terminal DI, a pack abnormality output terminal DA, and a pack connection terminal DO.
  • the pack input / output terminal DI is a terminal for inputting / outputting signals from other pack batteries and the power supply controller 84
  • the pack connection terminal DO is for inputting / outputting signals to / from other pack batteries which are child packs.
  • the pack abnormality output terminal DA is a terminal for outputting the abnormality of the battery pack to the outside.
  • the power supply terminal is a terminal for connecting the battery packs 81 in series and in parallel.
  • the power supply device according to the present invention and a vehicle including the power supply device can be suitably used as a power supply device for a plug-in hybrid electric vehicle, a hybrid electric vehicle, an electric vehicle, or the like that can switch between the EV traveling mode and the HEV traveling mode.
  • a backup power supply device that can be mounted on a rack of a computer server, a backup power supply device for a wireless base station such as a mobile phone, a power storage device for home use and a factory, a power supply for a street light, etc. Also, it can be used as appropriate for applications such as a backup power source such as a traffic light.
  • Cooling plate 36 Refrigerant passage 40 ... Cylindrical body 41 ... Valve seat 42 ... Valve hole 43 ... Valve body 44 ... Elastic body 44A ... Coil spring 44B ... leaf spring 45 ... support member 49 ... connection portion 52 ... battery block 54 ... connection opening 56 ... discharge duct 57 ... connection Duct 81 ... Battery pack 82 ... Battery unit 84 ... Power supply controller 85 ... Parallel connection switch 93 ... Motor 94 ... Generator 95 ... DC / AC inverter 96 ... Engine 191 ... Square battery cell 192 ... Battery block 195 ... Insulating separator 195a ... Insulating Plate portion 196 ... discharge duct EV, HV ... vehicle LD ... load CP ... charging power supply DS ... discharge switch CS ... charge switch OL ... output line HT ... host device DI ... pack input / output terminal DA ... pack abnormal output terminal DO ... pack Connecting terminal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

[Problem] To rapidly discharge gas from battery cells through discharge ducts while preventing the discharged gas from having a bad effect on battery blocks. [Solution] A power supply comprises: a plurality of battery blocks (2) each including a plurality of battery cells (1), the battery cells (1) having gas discharge holes (12) in surfaces of outer package cans and being stacked in a manner such that the gas discharge holes (12) are placed on the same plane; hollow discharge ducts (6) facing the gas discharge holes (12) of the battery cells to guide gas discharged through the gas discharge holes (12) to the outside; and a connection duct (7) to which the discharge ducts (6) disposed on the battery blocks (2) are connected so as to discharge gas from the discharge ducts (6) to the outside. In the power supply, the discharge ducts (6) are connected to the connection duct (7) through discharge valves (8), and the discharge valves (8) are opened in directions from the discharge ducts (6) to the connection duct (7) but closed in directions from the connection duct (7) to the discharge ducts (6).

Description

電源装置及びこれを備える車両Power supply device and vehicle equipped with the same
 本発明は、例えば、ハイブリッド自動車や電気自動車等の自動車を駆動するモータに電力を供給する電源装置と、これを備える車両に関し、特に電池セルのガス排出弁から排出されるガスを排出ダクトで外部に排出する電源装置及びこれを備える車両に関する。 The present invention relates to a power supply device that supplies electric power to a motor that drives a vehicle such as a hybrid vehicle or an electric vehicle, and a vehicle including the same, and in particular, a gas discharged from a gas discharge valve of a battery cell is externally provided by a discharge duct. The present invention relates to a power supply device that discharges to a vehicle and a vehicle including the same.
 多数の電池セルを備えるバッテリシステムは、電池セルを直列に接続して出力電圧を高くできることから、ハイブリッドカーの電源装置のように、大電流で充放電される用途に使用される。このバッテリシステムは、車両を加速するときに極めて大きな電流で放電され、また、回生制動等の状態では、相当に大きな電流で充電される。このバッテリシステムは、過充電や過放電で内圧が上昇する異常な状態での破壊を防止して安全性を確保するために、電池セルにガス排出弁を設けている。ガス排出弁は、電池の内圧が異常に上昇すると開弁してガスを排気する。多数の電池セルを備えるバッテリシステムは、電池セルから排出されるガスを速やかに外部に排気することが大切である。とくに、リチウムイオン電池のように非水系の電解液を使用する角形電池セルにあっては、排出ガスを速やかに排気することが大切である。このことを実現するために、電池セルのガス排出弁の排出口に排気チューブを連結するバッテリシステムが開発されている(特許文献1参照)。 Since a battery system including a large number of battery cells can be connected in series to increase the output voltage, it is used for applications that are charged and discharged with a large current, such as a hybrid car power supply device. This battery system is discharged with a very large current when accelerating the vehicle, and is charged with a considerably large current in a state such as regenerative braking. In this battery system, a gas discharge valve is provided in the battery cell in order to prevent destruction in an abnormal state in which the internal pressure increases due to overcharge or overdischarge and to ensure safety. The gas discharge valve opens and exhausts gas when the internal pressure of the battery rises abnormally. In a battery system including a large number of battery cells, it is important to quickly exhaust the gas discharged from the battery cells to the outside. In particular, in a rectangular battery cell using a non-aqueous electrolyte solution such as a lithium ion battery, it is important to exhaust the exhaust gas promptly. In order to realize this, a battery system in which an exhaust tube is connected to an exhaust port of a gas exhaust valve of a battery cell has been developed (see Patent Document 1).
特開2007-157633号公報JP 2007-157633 A
 引用文献1のバッテリシステムは、角形電池のガス排出口に排気チューブを連結している。このバッテリシステムは、角形電池の排出ガスを排気チューブで外部に排気する。しかしながら、この構造のバッテリシステムは、ガス排出弁から排出される高温・高圧のガスを安全かつ確実に外部に排出するのが難しい。それは、高温・高圧の排出ガスによって排気チューブが変形し、あるいは損傷されてガスを外部に漏らすからである。 The battery system of Cited Document 1 has an exhaust tube connected to a gas discharge port of a rectangular battery. In this battery system, the exhaust gas of the rectangular battery is exhausted to the outside through an exhaust tube. However, it is difficult for the battery system having this structure to discharge the high-temperature and high-pressure gas discharged from the gas discharge valve to the outside safely and reliably. This is because the exhaust tube is deformed or damaged by the high-temperature and high-pressure exhaust gas, and the gas is leaked to the outside.
 本出願人等は、この高温・高圧の排出ガスを安全かつ確実に排出するために、金属製の排出ダクトからなるバッテリシステムを出願した。このバッテリシステムは、図18の斜視図と図19の断面図に示すように、角形電池セル191を積層してなる電池ブロック192の上に、金属板を溝型に加工している排出ダクト196を固定している。隣接する角形電池セル191は外装缶に電位差があるので、これらを絶縁するために、絶縁セパレータ195を挟着している。この絶縁セパレータ195は、金属製の排出ダクト196と角形電池セル191も絶縁するために、図19に示すように、上縁に絶縁プレート部195aを一体的に成形して設けている。 The present applicants applied for a battery system comprising a metal discharge duct in order to discharge the high-temperature and high-pressure exhaust gas safely and reliably. In this battery system, as shown in the perspective view of FIG. 18 and the cross-sectional view of FIG. 19, a discharge duct 196 in which a metal plate is processed into a groove shape on a battery block 192 formed by stacking rectangular battery cells 191. Is fixed. Since the adjacent rectangular battery cells 191 have a potential difference in the outer can, an insulating separator 195 is sandwiched in order to insulate them. As shown in FIG. 19, the insulating separator 195 is integrally formed with an insulating plate portion 195a on the upper edge in order to insulate the metal discharge duct 196 and the rectangular battery cell 191.
 一方で、バッテリシステムにおいては、このような排出ダクトを設けた電池ブロックを複数連結することがある。特に、大容量が求められる車載用の電源装置等においては、図示しないが、複数の電池ブロックを直列及び/又は並列に接続して、一の電源装置を構成している。このような構成においては、各電池ブロック毎に排出ダクトの配管を行う必要があり、排出ダクトの配置が複雑になるという問題があった。また、バッテリシステムの小型化も求められているところであり、例えば車載用の電源装置においては、限られたスペース内に電源装置を配置しなければならない。そこで、排出ダクトを共通化して配管することが考えられる。
 しかしながら、排出ダクトを共通化すると、複数台が接続された電池ブロックのいずれか一で異常が発生して排出ガスが生じると、共通化された排出ダクトを通じて、他の正常な電池ブロックに対しても排出ガスが流入されることとなって、悪影響を与える可能性があった。
On the other hand, in a battery system, a plurality of battery blocks provided with such a discharge duct may be connected. In particular, in a vehicle-mounted power supply device or the like that requires a large capacity, a single power supply device is configured by connecting a plurality of battery blocks in series and / or in parallel. In such a configuration, there is a problem in that the discharge ducts need to be piped for each battery block, and the arrangement of the discharge ducts becomes complicated. Further, downsizing of the battery system is also demanded. For example, in an in-vehicle power supply device, the power supply device must be arranged in a limited space. Therefore, it is conceivable to use a common exhaust duct.
However, if the discharge duct is shared, if any one of the battery blocks to which multiple units are connected has an abnormality and exhaust gas is generated, it will be connected to other normal battery blocks through the shared discharge duct. However, there was a possibility that the exhaust gas would flow in and have an adverse effect.
 本発明は、このような問題点を解決することを目的になされたものであり、その主な目的は、電池セルから排出される排出ガスを排出ダクトを介して速やかに排出しながら、排出ダクトから排出された排出ガスが電池ブロックに悪影響を与えるのを有効に防止できる電源装置及びこれを備える車両を提供することにある。
 さらに、本発明の他の大切な目的は、複数の電池ブロックに配置される排出ダクトを共通化して配管しながら、いずれかの電池ブロックで発生する排出ガスが、共通化されたダクトを通じて、他の電池ブロックに悪影響を与えるのを回避できる電源装置及びこれを備える車両を提供することにある。
The present invention has been made to solve such problems, and its main purpose is to quickly discharge exhaust gas discharged from the battery cell through the discharge duct, Another object of the present invention is to provide a power supply device that can effectively prevent the exhaust gas discharged from the battery block from adversely affecting the battery block, and a vehicle including the same.
In addition, another important object of the present invention is that exhaust gas generated in any one of the battery blocks is routed through the common duct while the exhaust ducts arranged in the plurality of battery blocks are commonly piped. An object of the present invention is to provide a power supply device that can avoid adversely affecting the battery block of the vehicle and a vehicle including the same.
課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention
 上記の目的を達成するために、本発明の第1の側面に係る電源装置によれば、外装缶を有し、該外装缶の内部で発生したガスを排出するためのガス排出弁11を備えており、該ガス排出弁11からガスを排出するためのガス排出口12を外装缶の表面に設けている複数の電池セル1を、前記ガス排出口12が略同一面となる姿勢に積層してなる複数の電池ブロック2、52と、前記電池ブロック2、52を構成する各々の電池セルのガス排出口12に対向して配設されて、ガス排出口12から排出されるガスを外部に排気する中空状の排出ダクト6、56と、前記電池ブロック2、52に配設された前記排出ダクト6、56が連結されて、前記排出ダクト6、56から流入されるガスを外部に排出する連結ダクト7、57とを備えている。電源装置は、前記排出ダクト6、56が、排出弁8を介して前記連結ダクト7、57に連結されており、前記排出弁8が、前記排出ダクト6、56から前記連結ダクト7、57に向かって開き、前記連結ダクト7、5から前記排出ダクト6、57に向かって閉じるようにしている。
 これにより、複数の電池ブロックから排出される排出ガスを、各排出ダクトから連結ダクトに流入させて速やかに外部に排出できると共に、いずれかの電池ブロックで異常が発生して排出ガスが排出される状態においても、この排出ガスが他の電池ブロックの排出ダクトに流入するのを排出弁で確実に阻止して、他の正常な電池ブロックに悪影響を与えるのを有効に防止できる。
 また、複数の電池ブロックに配置された排出ダクトを連結ダクトに連結して排出ガスを外部に排出するので、排出ガスを排出するためのダクトの配管を簡単にして、電源装置全体を小型化して省スペースに配置できる。
In order to achieve the above object, the power supply device according to the first aspect of the present invention includes an outer can, and includes a gas discharge valve 11 for discharging the gas generated inside the outer can. And stacking a plurality of battery cells 1 having gas discharge ports 12 for discharging gas from the gas discharge valve 11 on the surface of the outer can so that the gas discharge ports 12 are substantially flush with each other. A plurality of battery blocks 2, 52, and the gas discharge ports 12 of the respective battery cells constituting the battery blocks 2, 52, and the gas discharged from the gas discharge ports 12 to the outside The hollow discharge ducts 6 and 56 to be exhausted and the discharge ducts 6 and 56 disposed in the battery blocks 2 and 52 are connected to discharge the gas flowing in from the discharge ducts 6 and 56 to the outside. Connection ducts 7 and 57 are provided. In the power supply device, the discharge ducts 6 and 56 are connected to the connection ducts 7 and 57 via a discharge valve 8, and the discharge valve 8 is connected from the discharge ducts 6 and 56 to the connection ducts 7 and 57. It opens toward the discharge ducts 6 and 57 from the connection ducts 7 and 5.
As a result, the exhaust gas discharged from the plurality of battery blocks can be quickly discharged to the outside by flowing into the connection duct from each discharge duct, and the exhaust gas is discharged due to an abnormality in any of the battery blocks. Even in the state, the exhaust valve surely prevents the exhaust gas from flowing into the discharge ducts of the other battery blocks, and can effectively prevent adverse effects on other normal battery blocks.
In addition, the exhaust ducts connected to the plurality of battery blocks are connected to the connection duct to discharge the exhaust gas to the outside. Therefore, the piping of the duct for exhausting the exhaust gas is simplified, and the entire power supply device is downsized. Can be arranged in a space-saving manner.
 また、第2の側面に係る電源装置によれば、前記複数の電池ブロック2、52を前記連結ダクト6、56の両側に配置すると共に、各々の電池ブロック2、52に配設される排出ダクト6、56のガス流路方向が連結ダクト7、57のガス流路方向に略直交な姿勢となるように連結することができる。
 これにより、複数の電池ブロックを省スペースに配置しながら、これらの電池ブロックに配設される複数の排出ダクトを単一の連結ダクトに連結して、排出ガスを効率よく排出できる。
Further, according to the power supply device according to the second aspect, the plurality of battery blocks 2 and 52 are disposed on both sides of the connection ducts 6 and 56, and the discharge ducts are disposed in the respective battery blocks 2 and 52. 6 and 56 can be connected such that the gas flow path direction is substantially perpendicular to the gas flow path direction of the connecting ducts 7 and 57.
Thereby, while arranging a plurality of battery blocks in a space-saving manner, it is possible to efficiently discharge exhaust gas by connecting a plurality of discharge ducts arranged in these battery blocks to a single connection duct.
 また、第3の側面に係る電源装置によれば、前記複数の電池ブロックを前記連結ダクトの片側に配置すると共に、各々の電池ブロックに配設される排出ダクトのガス流路方向が連結ダクトのガス流路方向に略直交な姿勢となるように連結することができる。
 これにより、複数の電池ブロックを省スペースに配置しながら、これらの電池ブロックに配設される複数の排出ダクトを単一の連結ダクトに連結して、排出ガスを効率よく排出できる。
Further, according to the power supply device according to the third aspect, the plurality of battery blocks are arranged on one side of the connection duct, and the gas flow path direction of the discharge duct arranged in each battery block is the connection duct. It can connect so that it may become an attitude | position substantially orthogonal to a gas flow path direction.
Thereby, while arranging a plurality of battery blocks in a space-saving manner, it is possible to efficiently discharge exhaust gas by connecting a plurality of discharge ducts arranged in these battery blocks to a single connection duct.
 さらに、第4の側面に係る電源装置によれば、外装缶を有し、該外装缶の内部で発生したガスを排出するためのガス排出弁を備えており、該ガス排出弁からガスを排出するためのガス排出口を外装缶の表面に設けている複数の電池セルを、前記ガス排出口が略同一面となる姿勢に積層してなる電池ブロック2と、前記電池ブロック2を構成する各々の電池セル1のガス排出口12に対向して配設されて、ガス排出口12から排出されるガスを外部に排気する中空状の排出ダクト6とを備えている。さらに、電源装置は、前記排出ダクト6が排出部26に排出弁8を設けており、この排出弁8が、前記排出ダクト6の内部から外部に向かって開き、外部から内部に向かって閉じるようにしている。
 これにより、電池ブロックから排出される排出ガスを速やかに外部に排出できると共に、不要物が外部から内部へ侵入するのを確実に防止できる。
Furthermore, the power supply device according to the fourth aspect has an outer can, and is provided with a gas discharge valve for discharging the gas generated inside the outer can, and the gas is discharged from the gas discharge valve. A battery block 2 in which a plurality of battery cells provided with gas discharge ports on the surface of the outer can are stacked in a posture in which the gas discharge ports are substantially flush with each other, and each of the battery blocks 2 And a hollow discharge duct 6 that is disposed to face the gas discharge port 12 of the battery cell 1 and exhausts the gas discharged from the gas discharge port 12 to the outside. Further, in the power supply device, the discharge duct 6 is provided with a discharge valve 8 in the discharge portion 26, and the discharge valve 8 opens from the inside of the discharge duct 6 to the outside and closes from the outside to the inside. I have to.
As a result, the exhaust gas discharged from the battery block can be quickly discharged to the outside, and it is possible to reliably prevent unwanted materials from entering the inside from the outside.
 また、第5の側面に係る電源装置によれば、前記排出弁8は、前記排出ダクト6、56内の内圧が所定の圧力以上に上昇すると開弁し、所定の内圧未満に低下すると閉弁する開閉弁とすることができる。
 これにより、電池セルから排出ガスが排出されて排出ダクト内の内圧が上昇すると、排出弁を開弁させて排出ガスを速やかに外部に排出しながら、排出ガスの排出後には、排出弁を閉弁させて繰り返し使用できる。
Further, according to the power supply device of the fifth aspect, the discharge valve 8 opens when the internal pressure in the discharge ducts 6 and 56 rises above a predetermined pressure, and closes when the internal pressure falls below the predetermined internal pressure. The on-off valve can be used.
As a result, when the exhaust gas is discharged from the battery cell and the internal pressure in the discharge duct increases, the exhaust valve is opened to quickly discharge the exhaust gas to the outside, and after the exhaust gas is discharged, the exhaust valve is closed. Can be used repeatedly.
 また、第6の側面に係る電源装置によれば、前記電池ブロック2の上面を上面プレート20でカバーして、この上面プレート20は、前記電池ブロック2の中央部に配置された複数のガス排出口12と対向する中央凹部21を内面に設け、前記電池ブロックの上面と前記上面プレートの中央凹部との間に空間を形成して排出ダクト6とすることができる。
 これにより、電池ブロックの上面に筒状のダクトを配管することなく中空のダクトを形成できる。とくに、電池ブロックの上面に配置される上面プレートを排出ダクトに併用するので、電源装置全体の外形を小さくしながら、しかも部品点数を低減して簡単かつ低コストに排出ダクトを配設できる。
Further, according to the power supply device of the sixth aspect, the upper surface of the battery block 2 is covered with the upper surface plate 20, and the upper surface plate 20 has a plurality of gas exhausts arranged at the center of the battery block 2. A central recess 21 facing the outlet 12 is provided on the inner surface, and a space can be formed between the upper surface of the battery block and the central recess of the upper surface plate to form the discharge duct 6.
Thereby, a hollow duct can be formed without piping a cylindrical duct on the upper surface of the battery block. In particular, since the upper surface plate disposed on the upper surface of the battery block is used together with the discharge duct, the discharge duct can be arranged easily and at low cost by reducing the number of components while reducing the overall outer shape of the power supply device.
 また、第7の側面に係る電源装置によれば、前記電池ブロック2の上面と前記上面プレート20との間に樹脂22を充填して密閉構造の排出ダクト6を形成することができる。
 これにより、簡単かつ確実に、電池ブロックの上面と上面プレートとの間に密閉構造の排出ダクトを設けることができる。
Moreover, according to the power supply device which concerns on a 7th side surface, the resin 22 can be filled between the upper surface of the said battery block 2, and the said upper surface plate 20, and the discharge duct 6 of a sealed structure can be formed.
Thereby, the discharge duct of a sealed structure can be provided between the upper surface of the battery block and the upper surface plate easily and reliably.
 また、第8の側面に係る電源装置によれば、前記電池ブロック2の中央部に配置された複数のガス排出口12の周囲に枠形状の区画壁23を固定すると共に、この区画壁23の周囲に樹脂22を充填することができる。
 これにより、電池ブロックの上面に充填される樹脂が電池セルのガス排出口に流れ込んで、このガス排出口を塞ぐのを有効に防止できる。したがって、各々の電池セルは、内圧が所定の圧力まで上昇すると確実にガス排出弁を開弁して内部の排出ガスを排出できる。
 さらに、電池ブロックの上面であって、ガス排出口を除く広い部分を樹脂で確実に被覆できるので、電池セル同士のショート等を有効に防止して安全性を向上できる。
Moreover, according to the power supply device which concerns on an 8th side surface, while fixing the frame-shaped division wall 23 around the several gas exhaust port 12 arrange | positioned in the center part of the said battery block 2, The resin 22 can be filled around.
Thereby, it can prevent effectively that resin with which the upper surface of a battery block is filled flows into the gas exhaust port of a battery cell, and plugs up this gas exhaust port. Accordingly, each battery cell can reliably open the gas discharge valve and discharge the internal exhaust gas when the internal pressure rises to a predetermined pressure.
Further, since a wide portion on the upper surface of the battery block except the gas discharge port can be reliably covered with the resin, it is possible to effectively prevent a short circuit between the battery cells and improve safety.
 また、第9の側面に係る電源装置によれば、前記上面プレート20の内面に設けられた中央凹部21の横幅(W)を前記区画壁23の横幅(d)の1.5倍以上とすることができる。
 これにより、中空状の排出ダクトは、区画壁の外側まで広がる内形に形成されるので、ガス排出弁から排出された電解液等の異物が、仮に排出ダクトの内部に残存する状態となっても、これらの異物が区画壁の外側に残存する状態においては、区画壁の外側が樹脂により被覆されているので、電池セルの外装缶に接触するのを確実に防止して安全性を向上できる。
In the power supply device according to the ninth aspect, the lateral width (W) of the central recess 21 provided on the inner surface of the upper surface plate 20 is 1.5 times or more the lateral width (d) of the partition wall 23. be able to.
As a result, the hollow discharge duct is formed in an inner shape that extends to the outside of the partition wall, so that foreign matter such as an electrolyte discharged from the gas discharge valve remains in the discharge duct. However, in the state where these foreign substances remain outside the partition wall, the outside of the partition wall is coated with resin, so that it can be reliably prevented from coming into contact with the outer can of the battery cell, and safety can be improved. .
 また、第10の側面に係る電源装置によれば、前記電池ブロック2の上面と前記上面プレート20との間をシール材27でシールして密閉構造の排出ダクト6を形成することができる。 Further, according to the power supply device according to the tenth aspect, the discharge duct 6 having a sealed structure can be formed by sealing the space between the upper surface of the battery block 2 and the upper surface plate 20 with the sealing material 27.
 また、第10の側面に係る電源装置によれば、前記電池セル1が、ガス排出口12を設けている外周面10の両端部に電極端子13を備えると共に、互いに積層される複数の電池セル1の電極端子13を、複数のバスバー19を介して直列又は/及び並列に接続し、さらに、前記上面プレート20が樹脂製で、前記複数のバスバー19を前記中央凹部21の両側部にインサート成形することができる。さらに、電源装置は、前記上面プレート20に埋設された前記バスバー19を前記電池セル1の出力端子13に固定して、前記上面プレート20を前記電池ブロック2の上面の定位置に固定することができる。
 これにより、排出ダクトを形成する上面プレートを電池ブロックの定位置に配置して、簡単に固定できる
Moreover, according to the power supply device which concerns on a 10th side surface, the said battery cell 1 is equipped with the electrode terminal 13 in the both ends of the outer peripheral surface 10 which has provided the gas exhaust port 12, and several battery cells laminated | stacked mutually One electrode terminal 13 is connected in series or / and in parallel via a plurality of bus bars 19, and the top plate 20 is made of resin, and the plurality of bus bars 19 are insert-molded on both sides of the central recess 21. can do. Further, the power supply device may fix the bus bar 19 embedded in the upper surface plate 20 to the output terminal 13 of the battery cell 1 and fix the upper surface plate 20 at a fixed position on the upper surface of the battery block 2. it can.
This allows the top plate forming the discharge duct to be placed in a fixed position on the battery block and easily fixed
 さらにまた、第11の側面に係る車両によれば、上記いずれかの電源装置を備えることができる。 Furthermore, according to the vehicle according to the eleventh aspect, any one of the power supply devices described above can be provided.
本発明の一実施例にかかる電源装置の斜視図である。It is a perspective view of the power supply device concerning one Example of this invention. 図1に示す電源装置の概略構成図である。It is a schematic block diagram of the power supply device shown in FIG. 図1に示す電源装置を構成する電池ブロックの斜視図である。It is a perspective view of the battery block which comprises the power supply device shown in FIG. 図3の電池ブロックの分解斜視図である。FIG. 4 is an exploded perspective view of the battery block of FIG. 3. 図3の電池ブロックのV-V線断面図である。FIG. 4 is a cross-sectional view of the battery block of FIG. 3 taken along the line VV. 図3の電源装置のVI-VI線断面図である。FIG. 4 is a cross-sectional view taken along line VI-VI of the power supply device of FIG. 3. 上面プレートの拡大斜視図である。It is an expansion perspective view of an upper surface plate. 図7に示す上面プレートの底面斜視図である。FIG. 8 is a bottom perspective view of the top plate shown in FIG. 7. 区画壁の他の一例を示す分解斜視図である。It is a disassembled perspective view which shows another example of a partition wall. 上面プレートを電池ブロックに密着させる他の一例を示す拡大断面図である。It is an expanded sectional view which shows another example which adheres an upper surface plate to a battery block. 排出弁の一例を示す拡大断面図である。It is an expanded sectional view showing an example of a discharge valve. 排出弁の他の一例を示す拡大断面図である。It is an expanded sectional view showing other examples of a discharge valve. 本発明の一実施例にかかる電源装置の分解斜視図である。It is a disassembled perspective view of the power supply device concerning one Example of this invention. 図13に示す電源装置の排出ダクトと連結ダクトを示す分解斜視図である。It is a disassembled perspective view which shows the discharge duct and connection duct of the power supply device shown in FIG. エンジンとモータの走行するハイブリッドカーに電源装置を搭載する例を示すブロック図である。It is a block diagram which shows the example which mounts a power supply device in the hybrid car which an engine and a motor drive | work. モータのみで走行する電気自動車に電源装置を搭載する例を示すブロック図である。It is a block diagram which shows the example which mounts a power supply device in the electric vehicle which drive | works only with a motor. 蓄電用の電源装置に適用する例を示すブロック図である。It is a block diagram which shows the example applied to the power supply device for electrical storage. 本発明者が先に開発したバッテリシステムの斜視図である。It is a perspective view of the battery system which this inventor developed previously. 図18に示すバッテリシステムの断面図である。It is sectional drawing of the battery system shown in FIG.
 以下、本発明の実施の形態を図面に基づいて説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するための電源装置及びこれを備える車両を例示するものであって、本発明は電源装置及びこれを備える車両を以下のものに特定しない。なお、特許請求の範囲に示される部材を、実施の形態の部材に特定するものでは決してない。特に実施の形態に記載されている構成部材の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。また、一部の実施例、実施形態において説明された内容は、他の実施例、実施形態等に利用可能なものもある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the embodiment described below exemplifies a power supply device for embodying the technical idea of the present invention and a vehicle including the power supply device, and the present invention includes the following power supply device and a vehicle including the power supply device. Not specified. In addition, the member shown by the claim is not what specifies the member of embodiment. In particular, the dimensions, materials, shapes, relative arrangements, and the like of the constituent members described in the embodiments are not intended to limit the scope of the present invention only to the description unless otherwise specified. It's just an example. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation. Furthermore, in the following description, the same name and symbol indicate the same or the same members, and detailed description thereof will be omitted as appropriate. Furthermore, each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing. In addition, the contents described in some examples and embodiments may be used in other examples and embodiments.
 以下に示す電源装置は、主として、エンジンとモータの両方で走行するハイブリッドカーや、モータのみで走行する電気自動車などの電動車両の電源に最適である。ただ、本発明の電源装置は、ハイブリッドカーや電気自動車以外の車両に使用し、また、電動車両以外の大出力が要求される用途にも使用できる。 The power supply apparatus shown below is most suitable for the power source of an electric vehicle such as a hybrid car that runs with both an engine and a motor and an electric vehicle that runs with only a motor. However, the power supply device of the present invention can be used for vehicles other than hybrid cars and electric vehicles, and can also be used for applications requiring high output other than electric vehicles.
 図1と図2に示す電源装置は、ガス排出弁11を有する複数の角形電池セル1を積層して接続している電池ブロック2と、この電池ブロック2を構成する各々の角形電池セル1のガス排出弁11のガス排出口12に連結されて、ガス排出口12から排出されるガスを外部に排気する中空状の排出ダクト6と、電池ブロック2に配設された排出ダクト6が連結されて、排出ダクト6から流入されるガスを外部に排出する連結ダクト7とを備える。図1において、複数の電池ブロック2は、外装ケース30に収納されている。 The power supply device shown in FIGS. 1 and 2 includes a battery block 2 in which a plurality of rectangular battery cells 1 having gas discharge valves 11 are stacked and connected, and each of the rectangular battery cells 1 constituting the battery block 2. A hollow discharge duct 6 that is connected to the gas discharge port 12 of the gas discharge valve 11 and exhausts the gas discharged from the gas discharge port 12 to the outside and the discharge duct 6 disposed in the battery block 2 are connected. And a connecting duct 7 for discharging the gas flowing in from the discharge duct 6 to the outside. In FIG. 1, the plurality of battery blocks 2 are housed in an outer case 30.
 図3ないし図6の電池ブロック2は、外形を角形とする複数の角形電池セル1を積層している。角形電池セル1は、角形の外装缶を有しており、この外装缶の内部で発生したガスを排出するためのガス排出弁11を備えている。角形電池セル1は、ガス排出弁11からガスを排出するためのガス排出口12を外装缶の表面に設けている。電池ブロック2は、外側において電池ホルダ3で固定している。電源装置は、複数の電池ブロック2を、図1では4組の電池ブロック2を同一面で縦横に配置している。角形電池セル1は、図4と図5に示すように、ガス排出口12を設けている外周面10を同一面に配置する姿勢とし、かつセパレータ15を介して積層して電池ブロック2としている。図4ないし図6の角形電池セル1は、ガス排出弁11を設けている外周面10を上面とする姿勢で積層されている。この電池ブロック2を構成する角形電池セル1のガス排出口12に連結するように、ガス排出口12から排出されるガスを外部に排気する中空状の排出ダクト6を電池ブロック2の上面に設けている。 The battery block 2 in FIGS. 3 to 6 has a plurality of prismatic battery cells 1 having a rectangular outer shape. The rectangular battery cell 1 has a rectangular outer can and is provided with a gas discharge valve 11 for discharging gas generated inside the outer can. The prismatic battery cell 1 has a gas discharge port 12 for discharging gas from the gas discharge valve 11 on the surface of the outer can. The battery block 2 is fixed on the outside by a battery holder 3. In the power supply device, a plurality of battery blocks 2 are arranged, and in FIG. 1, four sets of battery blocks 2 are arranged vertically and horizontally on the same surface. As shown in FIGS. 4 and 5, the rectangular battery cell 1 has a posture in which the outer peripheral surface 10 provided with the gas discharge port 12 is disposed on the same surface, and is stacked through the separator 15 to form the battery block 2. . The rectangular battery cells 1 of FIGS. 4 to 6 are stacked in a posture with the outer peripheral surface 10 provided with the gas discharge valve 11 as the upper surface. A hollow discharge duct 6 for exhausting the gas discharged from the gas discharge port 12 to the outside is provided on the upper surface of the battery block 2 so as to be connected to the gas discharge port 12 of the rectangular battery cell 1 constituting the battery block 2. ing.
 角形電池セル1は、図4等に示すように、厚さに比べて幅が広い、言い換えると幅よりも薄い角形の電池で、厚さ方向に積層されて電池ブロック2としている。この角形電池セル1は、リチウムイオン二次電池である。ただし、角形電池セルは、ニッケル水素電池やニッケルカドミウム電池等の二次電池とすることもできる。図4の角形電池セル1は、幅の広い両表面を四角形とする電池で、両表面を対向するように積層して電池ブロック2としている。また、角形電池セル1は、図4に示すように上面の中央部に、ガス排出弁11のガス排出口12を設けており、上面の両端部に、正負の電極端子13を突出して設けている。 As shown in FIG. 4 and the like, the rectangular battery cell 1 is a rectangular battery having a width wider than the thickness, in other words, a rectangular battery thinner than the width, and is stacked in the thickness direction to form a battery block 2. The rectangular battery cell 1 is a lithium ion secondary battery. However, the square battery cell may be a secondary battery such as a nickel metal hydride battery or a nickel cadmium battery. The square battery cell 1 in FIG. 4 is a battery having a rectangular shape with both wide surfaces, and the battery blocks 2 are laminated so that both surfaces face each other. Further, as shown in FIG. 4, the rectangular battery cell 1 is provided with a gas discharge port 12 of the gas discharge valve 11 at the center of the upper surface, and positive and negative electrode terminals 13 projecting from both ends of the upper surface. Yes.
 ガス排出弁11は、角形電池セル1の内圧が設定圧力よりも高くなると開弁して、内圧の上昇を防止する。このガス排出弁11は、ガス排出口12を閉塞する弁体(図示せず)を内蔵している。弁体は、設定圧力で破壊される薄膜、あるいは設定圧力で開弁するように弾性体で弁座に押圧されている弁である。ガス排出弁11が開弁されると、ガス排出口12を介して角形電池セル1の内部が外部に開放され、内部のガスを放出して内圧の上昇が防止される。 The gas discharge valve 11 is opened when the internal pressure of the rectangular battery cell 1 becomes higher than the set pressure, thereby preventing the internal pressure from increasing. The gas discharge valve 11 incorporates a valve body (not shown) that closes the gas discharge port 12. The valve body is a thin film that is destroyed at a set pressure, or a valve that is pressed against the valve seat by an elastic body so as to open at the set pressure. When the gas discharge valve 11 is opened, the inside of the rectangular battery cell 1 is opened to the outside through the gas discharge port 12, and the internal gas is discharged to prevent the internal pressure from increasing.
 隣接する角形電池セル1は、正負の電極端子13を接続して互いに直列及び/又は並列に接続される。電池ブロック2は、隣接する角形電池セル1の正負の電極端子13を、バスバー19を介して互いに直列及び/又は並列に接続する。隣接する角形電池セルを互いに直列に接続する電源装置は、出力電圧を高くして出力を大きくでき、隣接する角形電池セルを並列に接続して、充放電の電流を大きくできる。 Adjacent square battery cells 1 are connected in series and / or in parallel with each other by connecting positive and negative electrode terminals 13. In the battery block 2, the positive and negative electrode terminals 13 of the adjacent rectangular battery cells 1 are connected in series and / or in parallel with each other through a bus bar 19. A power supply device that connects adjacent prismatic battery cells in series can increase the output voltage by increasing the output voltage, and can connect adjacent prismatic battery cells in parallel to increase the charge / discharge current.
 図に示す電池ブロック2は、12個の角形電池セル1を互いに積層しており、これらの角形電池セル1を直列と並列に接続している。図の電池ブロック2は、12個の角形電池セル1を6直2並に接続している。図の電池ブロック2は、隣接する2個ずつの角形電池セル1を同方向に並べると共に、これらの2個ずつの角形電池セル1同士を逆向きに並べて、その両側において隣接する出力端子13同士をバスバー19で連結している。バスバー19は、隣接する4個の角形電池セル1を2直2並に接続している。すなわち、1つのバスバー19は、隣接する4個の角形電池セル1のうち、同方向に並べた2個の角形電池セル1を並列に接続すると共に、これに隣接して逆方向に並べた2個ずつの角形電池セル1同士を互いに直列に接続している。ただ、本発明は、電池ブロックを構成する角形電池セルの個数とその接続状態を特定しない。電池ブロックは、積層される全ての角形電池セルを直列に接続することもできる。3個以上を並列に接続することもできる。 The battery block 2 shown in the figure has twelve prismatic battery cells 1 stacked on each other, and these prismatic battery cells 1 are connected in series and in parallel. The battery block 2 shown in the figure has twelve rectangular battery cells 1 connected in parallel in 6 series. The battery block 2 shown in the figure arranges two adjacent rectangular battery cells 1 in the same direction, and arranges these two rectangular battery cells 1 in the opposite direction, and the adjacent output terminals 13 on both sides thereof. Are connected by a bus bar 19. The bus bar 19 connects four adjacent rectangular battery cells 1 in two lines and two lines. That is, one bus bar 19 connects two prismatic battery cells 1 arranged in the same direction among the four adjacent prismatic battery cells 1 in parallel, and 2 arranged in the opposite direction adjacent thereto. The individual rectangular battery cells 1 are connected in series with each other. However, the present invention does not specify the number of rectangular battery cells constituting the battery block and the connection state thereof. The battery block can also connect all the stacked rectangular battery cells in series. Three or more can be connected in parallel.
 電池ブロック2は、図4と図5に示すように、積層している角形電池セル1の間にセパレータ15を挟着している。セパレータ15は、隣接する角形電池セル1を絶縁する。セパレータ15は、図に示すように、両面に角形電池セル1を嵌着して定位置に配置する形状として、隣接する角形電池セル1を位置ずれしないように積層できる。セパレータ15で絶縁して積層される角形電池セル1は、外装缶をアルミニウムなどの金属製にできる。角形電池セル1の間にセパレータ15を挟着する構造は、セパレータ15をプラスチック等の熱伝導率の小さい材質で製作して、隣接する角形電池セル1の熱暴走を効果的に防止できる効果もある。 As shown in FIGS. 4 and 5, the battery block 2 has a separator 15 sandwiched between stacked rectangular battery cells 1. The separator 15 insulates the adjacent rectangular battery cells 1. As shown in the drawing, the separator 15 can be stacked so that the adjacent rectangular battery cells 1 are not displaced as a shape in which the rectangular battery cells 1 are fitted on both sides and arranged in a fixed position. The prismatic battery cell 1 insulated and stacked by the separator 15 can have an outer can made of metal such as aluminum. The structure in which the separator 15 is sandwiched between the prismatic battery cells 1 has an effect that the separator 15 is made of a material having a low thermal conductivity such as plastic, and the thermal runaway of the adjacent prismatic battery cells 1 can be effectively prevented. is there.
 角形電池セル1を積層状態に固定して電池ブロック2とする電池ホルダ3は、電池ブロック2を両端面から挟着してなる一対のエンドプレート4と、一対のエンドプレート4に両端部を連結してなる連結固定具5とを備える。 A battery holder 3 that fixes the rectangular battery cell 1 in a stacked state to form a battery block 2 includes a pair of end plates 4 formed by sandwiching the battery block 2 from both end surfaces, and both ends connected to the pair of end plates 4. And a connecting fixture 5 formed as described above.
 エンドプレート4は、角形電池セル1の外形と同じ形状と寸法の四角形として、積層している電池ブロック2を両端面から挟着して固定している。図のエンドプレート4は、プラスチック製で、外側面には、縦横に伸びる補強リブを一体的に成形して設けている。エンドプレートは、補強金具を固定して補強することができる。さらに、この補強金具に連結固定具を固定することができる。この構造は、エンドプレートを補強金具で補強して強固な構造にでき、また、連結固定具を強固に連結できる特徴がある。とくに、この構造は、エンドプレートをプラスチックで成形して、それ自体を強固にできる特徴がある。ただ、エンドプレートは、必ずしも補強金具で補強する必要はなく、たとえばエンドプレートを金属製として、補強金具を設けることなく、連結固定具を直接に固定することもできる。 The end plate 4 is a quadrangle having the same shape and dimensions as the outer shape of the rectangular battery cell 1, and the stacked battery blocks 2 are sandwiched and fixed from both end surfaces. The end plate 4 shown in the figure is made of plastic, and reinforcing ribs extending vertically and horizontally are integrally formed on the outer surface. The end plate can be reinforced by fixing a reinforcing metal fitting. Further, the connecting fixture can be fixed to the reinforcing metal fitting. This structure is characterized in that the end plate can be reinforced with a reinforcing metal fitting to be a strong structure, and the connection fixture can be firmly connected. In particular, this structure is characterized in that the end plate can be molded from plastic to make itself strong. However, it is not always necessary to reinforce the end plate with the reinforcing metal fitting. For example, the end plate is made of metal, and the connecting fixture can be directly fixed without providing the reinforcing metal fitting.
 連結固定具5は、鉄などの金属製で、その両端を折曲すると共に、この折曲部を止ネジ18でエンドプレート4に固定している。図に示す連結固定具5は、電池ブロック2の側面に沿う板状としている。板状の連結固定具は、図示しないが、開口部を開口することもできる。ただ、連結固定具は、両端のエンドプレートを連結する他の構造、例えば、複数のバーとすることもできる。 The connection fixture 5 is made of metal such as iron, and both ends thereof are bent, and the bent portion is fixed to the end plate 4 with a set screw 18. The connecting fixture 5 shown in the figure has a plate shape along the side surface of the battery block 2. Although the plate-like connecting fixture is not shown, the opening can also be opened. However, the connection fixture may be another structure for connecting the end plates at both ends, for example, a plurality of bars.
 さらに、図の電池ブロック2は、その上面に、中空状の排出ダクト6を設けている。この排出ダクト6は、互いに積層された複数の角形電池セル1のガス排出口12に対向して設けている。図3ないし図6に示す電池ブロック2は、上面を上面プレート20でカバーしており、この上面プレート20と電池ブロック2上面との間に排出ダクト6を設けている。 Furthermore, the battery block 2 shown in the drawing is provided with a hollow discharge duct 6 on the upper surface thereof. The discharge duct 6 is provided to face the gas discharge ports 12 of the plurality of rectangular battery cells 1 stacked on each other. The battery block 2 shown in FIGS. 3 to 6 has an upper surface covered with an upper surface plate 20, and a discharge duct 6 is provided between the upper surface plate 20 and the upper surface of the battery block 2.
 上面プレート20は、絶縁性のプラスチックで成形している。絶縁性のプラスチックは、ナイロン樹脂、エポキシ樹脂などのプラスチックである。プラスチック製の上面プレートは、図5、図6、及び図8に示すように、その内面に、電池ブロック2の中央部に配置された複数のガス排出口12と対向する中央凹部21を設けている。この中央凹部21は、角形電池セル1の積層方向に延びる溝形で、電池ブロック2を構成する全ての角形電池セル1のガス排出口12をカバーできる大きさとしている。この上面プレート20は、電池ブロック2の上面に固定される状態で、電池ブロック2の上面と中央凹部21との間に形成される空間を排出ダクト6を設けている。 The top plate 20 is formed of insulating plastic. The insulating plastic is a plastic such as nylon resin or epoxy resin. As shown in FIGS. 5, 6, and 8, the plastic top plate is provided with a central recess 21 facing the plurality of gas discharge ports 12 disposed in the center of the battery block 2 on the inner surface thereof. Yes. The central concave portion 21 is a groove shape extending in the stacking direction of the rectangular battery cells 1 and is sized to cover the gas discharge ports 12 of all the rectangular battery cells 1 constituting the battery block 2. The upper surface plate 20 is fixed to the upper surface of the battery block 2, and a discharge duct 6 is provided in a space formed between the upper surface of the battery block 2 and the central recess 21.
 さらに、上面プレート20は、図5、図7、及び図8に示すように、排出ダクト6の一方の端部に、排出ダクト6の内部のガスを外部に排出する排出部26を設けている。図に示す排出部26は、上面プレート20を貫通する筒体で、上面プレートの外部から排出ダクト6の内部に挿通させて、排出ダクト6の内部を外部に連通している。 Furthermore, as shown in FIGS. 5, 7, and 8, the top plate 20 is provided with a discharge portion 26 that discharges the gas inside the discharge duct 6 to one end of the discharge duct 6. . The discharge portion 26 shown in the figure is a cylindrical body that penetrates through the upper surface plate 20 and is inserted into the discharge duct 6 from the outside of the upper surface plate, and communicates the inside of the discharge duct 6 with the outside.
 さらに、図5と図6の電源装置は、電池ブロック2の上面と中央凹部21とで形成される排出ダクト6を密閉された空間とするために、電池ブロック2の上面と上面プレート20の下面との間に樹脂22を充填している。この電源装置は、電池ブロック2の上面と上面プレート20との間に溶融された樹脂を充填し、この樹脂を硬化させて、電池ブロック2の上面と中央凹部21とで形成される排出ダクト6を密閉構造としている。図5と図8に示す上面プレート20は、中央凹部21の内部に溶融樹脂を充填するための充填孔25を中央凹部21の一端に開口している。この充填孔25は、樹脂を充填した後に閉塞される。 Further, the power supply device of FIGS. 5 and 6 has the upper surface of the battery block 2 and the lower surface of the upper surface plate 20 in order to make the discharge duct 6 formed by the upper surface of the battery block 2 and the central recess 21 sealed. The resin 22 is filled in between. This power supply device fills a molten resin between the upper surface of the battery block 2 and the upper surface plate 20, cures the resin, and forms a discharge duct 6 formed by the upper surface of the battery block 2 and the central recess 21. Has a sealed structure. The upper surface plate 20 shown in FIGS. 5 and 8 has a filling hole 25 for filling the inside of the central recess 21 with molten resin at one end of the central recess 21. The filling hole 25 is closed after filling with resin.
 さらに、図4ないし図6の電源装置は、電池ブロック2の上面に充填される溶融された樹脂が角形電池セル1のガス排出口12に流れ込んで、このガス排出口12を塞ぐのを防止するために、電池ブロック2の中央部に配置された複数のガス排出口12の周囲に枠形状の区画壁23を固定している。枠形状の区画壁23は、電池ブロック2を構成する全ての角形電池セル1のガス排出口12を内部に配置できる横幅(d)と長さ(L)を有する細長い略長方形状として、角形電池セル1の積層方向に延長している。この区画壁23は、角形電池セル1の外装缶から絶縁するために、絶縁性のプラスチックで成形している。この電源装置は、電池ブロック2の中央部に位置する複数のガス排出口12の周囲に枠形状の区画壁23を接着して固定すると共に、この区画壁23の周囲に溶融樹脂を充填して、区画壁23の外側の領域を樹脂モールドしている。この構造は、電池ブロック2の上面に充填される樹脂22が角形電池セル1のガス排出口12を塞ぐのを有効に防止しながら、電池ブロック2の上面であって、区画壁12の外側の広い領域を樹脂22で被覆して、角形電池セル1同士のショート等を有効に防止できる。 Furthermore, the power supply apparatus shown in FIGS. 4 to 6 prevents the molten resin filled in the upper surface of the battery block 2 from flowing into the gas discharge port 12 of the rectangular battery cell 1 and closing the gas discharge port 12. Therefore, a frame-shaped partition wall 23 is fixed around the plurality of gas discharge ports 12 arranged at the center of the battery block 2. The rectangular partition wall 23 is a rectangular battery having an elongated rectangular shape having a lateral width (d) and a length (L) in which the gas discharge ports 12 of all the rectangular battery cells 1 constituting the battery block 2 can be disposed. The cell 1 extends in the stacking direction. In order to insulate the partition wall 23 from the outer can of the rectangular battery cell 1, it is formed of an insulating plastic. In this power supply device, a frame-shaped partition wall 23 is bonded and fixed around a plurality of gas discharge ports 12 located at the center of the battery block 2, and a molten resin is filled around the partition wall 23. The region outside the partition wall 23 is resin-molded. This structure effectively prevents the resin 22 filled on the upper surface of the battery block 2 from blocking the gas discharge port 12 of the rectangular battery cell 1, while being on the upper surface of the battery block 2 and outside the partition wall 12. A wide area can be covered with the resin 22 to effectively prevent a short circuit between the rectangular battery cells 1.
 さらに、図6に示す電源装置は、上面プレート20の内面に設けた中央凹部21の横幅(W)を区画壁23の横幅(d)よりも広くしている。この排出ダクト6は、区画壁23の外側の領域において、樹脂モールドされた絶縁被覆部24が形成されており、この絶縁被覆部24で角形電池セル1の外装缶の表面を絶縁している。この排出ダクト6は、角形電池セル1の異常により、ガス排出弁11から排出ガスと共に電解液等の異物が排出されて排出ダクト6内に飛散する状態となっても、区画壁23の外側に設けられた絶縁被覆部24により、これらの排出物が角形電池セル1の外装缶に接触するのを有効に防止して安全性を向上できる。この排出ダクト6は、中央凹部21の横幅(W)を区画壁23の横幅(d)よりも広くすることで、区画壁23の外側に設けられる絶縁被覆部24を広くできる。したがって、電源装置は、中央凹部21の横幅(W)を区画壁23の横幅(d)よりも広く、好ましくは1.5倍以上、さらに好ましくは約2倍とする。 Furthermore, in the power supply device shown in FIG. 6, the lateral width (W) of the central recess 21 provided on the inner surface of the top plate 20 is made wider than the lateral width (d) of the partition wall 23. In the discharge duct 6, a resin-molded insulating coating portion 24 is formed in a region outside the partition wall 23, and the insulating coating portion 24 insulates the surface of the outer can of the rectangular battery cell 1. This discharge duct 6 is located outside the partition wall 23 even when foreign matter such as electrolyte solution is discharged from the gas discharge valve 11 together with the exhaust gas due to abnormality of the rectangular battery cell 1 and is scattered in the discharge duct 6. The provided insulating coating portion 24 can effectively prevent these discharged substances from coming into contact with the outer can of the rectangular battery cell 1 and improve safety. In this discharge duct 6, the insulating cover 24 provided outside the partition wall 23 can be widened by making the width (W) of the central recess 21 wider than the width (d) of the partition wall 23. Accordingly, in the power supply device, the lateral width (W) of the central recess 21 is wider than the lateral width (d) of the partition wall 23, preferably 1.5 times or more, and more preferably about 2 times.
 さらに、この電源装置は、電池ブロック2の上面と中央凹部21とで形成される排出ダクト6の横幅(W)を広くすることにより、排出ダクト6の高さ(H)を低くしながら排出ダクト6の容積を大きくできる。いいかえると、排出ダクト6を形成する中央凹部21の深さを浅くして上面プレート20を薄くしながら排出ダクト6の容積を大きくできる。このように、排出ダクト6の高さ(H)を低くし、また、上面プレート20を薄くできる電源装置は、装置全体の高さを低くして外形を小さくできる。 Furthermore, this power supply device increases the width (W) of the discharge duct 6 formed by the upper surface of the battery block 2 and the central recess 21, thereby reducing the height (H) of the discharge duct 6. The volume of 6 can be increased. In other words, the volume of the discharge duct 6 can be increased while the depth of the central recess 21 forming the discharge duct 6 is reduced to make the upper surface plate 20 thinner. As described above, the power supply device that can reduce the height (H) of the discharge duct 6 and can make the top plate 20 thin can reduce the overall height by reducing the height of the entire device.
 以上の区画壁23は、電池ブロック2の中央部に配置される全てのガス排出口12を内部に案内する枠形状としている。ただ、区画壁は、図9に示すように、互いに並列に接続される角形電池セル1のガス排出口12毎に分割して設けることもできる。複数に分割される区画壁は、図示しないが、互いに連結して一体構造とすることもできる。この構造は、複数の区画壁を簡単に電池ブロック上面の定位置に配置できる。以上のように、区画壁23を複数に分割する構造は、隣接する区画壁23の間であって、電位差がある角形電池セル1の境界部分にも樹脂22を充填させて絶縁できるので、さらに安全性を向上できる特徴がある。さらに、図示しないが、複数の角形電池セルを全て直列に接続する電池ブロックにおいては、区画壁を個々の角形電池セル毎に分割して、各々のガス排出口の周囲に配置することもできる。 The partition wall 23 has a frame shape that guides all the gas discharge ports 12 arranged in the center of the battery block 2 to the inside. However, as shown in FIG. 9, the partition walls can be provided separately for each gas discharge port 12 of the rectangular battery cells 1 connected in parallel to each other. Although the partition walls divided into a plurality are not shown, they can be connected to each other to form an integral structure. With this structure, a plurality of partition walls can be easily arranged at fixed positions on the upper surface of the battery block. As described above, the structure in which the partition wall 23 is divided into a plurality of portions is between the adjacent partition walls 23 and can be insulated by filling the boundary portion of the rectangular battery cell 1 having a potential difference with the resin 22. There is a feature that can improve safety. Furthermore, although not shown, in a battery block in which a plurality of rectangular battery cells are all connected in series, the partition wall can be divided for each rectangular battery cell and arranged around each gas discharge port.
 以上の構造は、充填される樹脂を介して、簡単に上面プレート20と電池ブロック2の上面とを密閉構造にできる。ただ、電源装置は、図10に示すように、電池ブロック2の上面と上面プレート20との間をシール材27でシールして密閉構造の排出ダクト6を設けることもできる。図に示す上面プレート20は、中央凹部21の周囲にシール材27としてリング状のパッキン27Aを配置している。リング状のパッキン27Aは、上面プレート20と電池ブロック2の上面とに挟着されて、排出ダクト6をガス漏れしない構造にできる。上面プレート20の下面、すなわち電池ブロック2の上面との対向面には、パッキン27Aを停止位置に配置するパッキン溝28を設けている。パッキン27Aは、パッキン溝28に案内されて、電池ブロック2の上面に密着される。この構造は、角形電池セル1のガス排出口12から噴き出される排出ガスを漏らすことなく、排出ダクト6から外部に排気できる。 With the above structure, the top plate 20 and the top surface of the battery block 2 can be easily sealed with a resin to be filled. However, as shown in FIG. 10, the power supply device can also provide a sealed discharge duct 6 by sealing the space between the upper surface of the battery block 2 and the upper surface plate 20 with a sealing material 27. The top plate 20 shown in the figure has a ring-shaped packing 27 </ b> A as a sealing material 27 around the central recess 21. The ring-shaped packing 27 </ b> A can be sandwiched between the upper plate 20 and the upper surface of the battery block 2 so that the discharge duct 6 does not leak gas. On the lower surface of the upper surface plate 20, that is, the surface facing the upper surface of the battery block 2, a packing groove 28 for arranging the packing 27A at the stop position is provided. The packing 27 </ b> A is guided by the packing groove 28 and is in close contact with the upper surface of the battery block 2. This structure can be exhausted from the discharge duct 6 to the outside without leaking the exhaust gas ejected from the gas discharge port 12 of the rectangular battery cell 1.
 さらに、電池ブロックの上面と上面プレートとの間をシール材で閉塞する構造は、必ずしもパッキンを挟着する必要はなく、シール材を接着剤とすることもできる。この構造は、図示しないが、中央凹部の周縁部を電池ブロックの上面に密着させると共に、この密着部を接着剤で接着してガス漏れしないようにシールする。 Furthermore, the structure in which the space between the upper surface of the battery block and the upper surface plate is closed with a sealing material does not necessarily require the packing, and the sealing material can be used as an adhesive. Although this structure is not shown, the peripheral portion of the central recess is brought into close contact with the upper surface of the battery block, and the close contact portion is adhered with an adhesive so as to prevent gas leakage.
 以上のように、電池ブロック2の上面に配置される上面プレート20を排出ダクト6に併用する構造は、電源装置全体の外形を小さくしながら、しかも部品点数を低減して簡単かつ低コストに排出ダクト6を配設できる。ただ、本発明の電源装置は、電池ブロックの上面に筒状のダクトを配管して排出ダクトとすることもできる。 As described above, the structure in which the upper plate 20 disposed on the upper surface of the battery block 2 is used in combination with the discharge duct 6 is simple and low-cost by reducing the number of components while reducing the overall outer shape of the power supply device. A duct 6 can be disposed. However, the power supply device of the present invention can also be used as a discharge duct by piping a cylindrical duct on the upper surface of the battery block.
 さらに、プラスチック製の上面プレート20は、図9の断面図に示すように、電池ブロック2の両側部に沿って、各々の角形電池セル1の両端部に配置される出力端子13を直列又は並列に接続する複数のバスバー19を埋設している。図の上面プレート20は、中央凹部21の両側に位置して、対向する両側部に複数のバスバー19を埋設している。これらのバスバー19は、上面プレート20をプラスチックで成形する工程でインサートして埋設される。図の上面プレート20は、出力端子13との接続部であるバスバー19の中央部分を表面に露出させる開口窓20Aを上下の両面に開口している。いいかえると、上面プレート20は、バスバー19の外周部をインサートして、中央部を表出させる状態で、複数のバスバー19を定位置に配置している。上面プレート20の開口窓20Aから表出するバスバー19は、露出部を出力端子13に接続して、複数の角形電池セル1を所定の接続状態に接続する。上面プレート20に埋設させるバスバー19は、上面プレート20の定位置に強固に固定されて、上面プレート20を補強する。このように、バスバー19をインサート成形している上面プレート20は、バスバー19が角形電池セル1の出力端子13にレーザー溶接等の溶着によって固定されることにより、バスバー19を介して電池ブロック2の上面の定位置に固定される。 Further, as shown in the cross-sectional view of FIG. 9, the plastic top plate 20 has output terminals 13 arranged at both ends of each rectangular battery cell 1 in series or in parallel along both sides of the battery block 2. A plurality of bus bars 19 to be connected to are embedded. The upper surface plate 20 in the figure is located on both sides of the central recess 21, and a plurality of bus bars 19 are embedded on opposite side portions. These bus bars 19 are inserted and embedded in the process of molding the top plate 20 with plastic. The top plate 20 shown in the figure has opening windows 20 </ b> A that expose the central portion of the bus bar 19, which is a connection portion with the output terminal 13, on the upper and lower surfaces. In other words, the upper surface plate 20 has a plurality of bus bars 19 arranged at fixed positions in a state where the outer peripheral portion of the bus bar 19 is inserted and the central portion is exposed. The bus bar 19 exposed from the opening window 20A of the top plate 20 connects the exposed portion to the output terminal 13 and connects the plurality of prismatic battery cells 1 to a predetermined connection state. The bus bar 19 embedded in the upper surface plate 20 is firmly fixed to a fixed position of the upper surface plate 20 to reinforce the upper surface plate 20. Thus, the top plate 20 in which the bus bar 19 is insert-molded is fixed to the battery block 2 via the bus bar 19 by fixing the bus bar 19 to the output terminal 13 of the rectangular battery cell 1 by welding such as laser welding. Fixed in place on the top surface.
 ただ、上面プレートは、必ずしもバスバーを埋設する必要はない。この上面プレートは、電池ブロックを構成する複数の電池セルをバスバーで所定の状態に接続した後、電池ブロックの上面に固定することができ、あるいは、電池セルの出力端子と対向する位置にバスバーを位置する貫通孔を設けた上面プレートを電池ブロックの上面に固定した後、バスバーを溶着等により接続する。以上の上面プレートは、連結具を介して電池ブロックの上面に固定される。 However, it is not always necessary to embed the bus bar in the top plate. The top plate can be fixed to the top surface of the battery block after connecting a plurality of battery cells constituting the battery block to a predetermined state with the bus bar, or the bus bar is placed at a position facing the output terminal of the battery cell. After fixing the upper surface plate provided with the positioned through hole to the upper surface of the battery block, the bus bar is connected by welding or the like. The above upper surface plate is fixed to the upper surface of the battery block via a connector.
 さらに、図12の断面図に示す電源装置は、電池ブロック2に接続している回路基板17を備えており、この回路基板17を上面プレート20に配置している。図に示す上面プレート20は、上面側に回路基板17を収納する収納凹部29を設けており、この収納凹部29に回路基板17を収納している。回路基板17は、角形電池セル1の保護回路を実現する電子部品(図示せず)を実装している。この回路基板17は、各々の角形電池セル1に接続されてセル電圧を検出する電圧検出回路、角形電池セル1の温度を検出する温度検出回路等を実装しており、セル電圧を検出して角形電池セル1の過充電や過放電を防止するように制御し、あるいは角形電池セル1の異常な温度上昇を防止するように充放電を制御する。これらの回路を実現する電子部品は、回路基板17の内側面に配置されて、収納凹部29に収納される。 Furthermore, the power supply device shown in the cross-sectional view of FIG. 12 includes a circuit board 17 connected to the battery block 2, and the circuit board 17 is disposed on the top plate 20. The upper surface plate 20 shown in the figure is provided with a housing recess 29 for housing the circuit board 17 on the upper surface side, and the circuit board 17 is housed in the housing recess 29. The circuit board 17 is mounted with an electronic component (not shown) that realizes a protection circuit for the prismatic battery cell 1. The circuit board 17 is mounted with a voltage detection circuit that detects the cell voltage connected to each square battery cell 1, a temperature detection circuit that detects the temperature of the square battery cell 1, etc., and detects the cell voltage. Control is performed so as to prevent overcharge and overdischarge of the prismatic battery cell 1, or charge / discharge is controlled so as to prevent abnormal temperature rise of the prismatic battery cell 1. Electronic components that realize these circuits are disposed on the inner surface of the circuit board 17 and are accommodated in the accommodating recess 29.
 さらに、電源装置は、図3に示すように、排出ダクト6の排出部26に排出弁8を設けている。この排出弁8は、角形電池セル1の内圧が上昇してガス排出弁11からガスが排出されて、排出ダクト6内の圧力が上昇すると開弁して、排出ダクト6内のガスを外部に排出する。この排出弁8は、排出ダクト6の内部から外部に向かって開いてガスを通過させるが、外部から内部に向かって閉じる逆止弁である。逆止弁である排出弁8は、両端に連結部49を設けており、この連結部49を介して排出ダクト6の排出部26に連結している。 Furthermore, the power supply device is provided with a discharge valve 8 in the discharge portion 26 of the discharge duct 6 as shown in FIG. The discharge valve 8 is opened when the internal pressure of the rectangular battery cell 1 is increased and the gas is discharged from the gas discharge valve 11 and the pressure in the discharge duct 6 is increased, so that the gas in the discharge duct 6 is discharged to the outside. Discharge. The discharge valve 8 is a check valve that opens from the inside of the discharge duct 6 to the outside and allows gas to pass therethrough, but closes from the outside to the inside. The discharge valve 8 which is a check valve is provided with connecting portions 49 at both ends, and is connected to the discharge portion 26 of the discharge duct 6 via the connecting portions 49.
 図1と図2の電源装置は、4組の電池ブロック2を2列に配置して、各電池ブロック2の上面に設けた排出ダクト6を電源装置の中央部において連結ダクト7に連結している。すなわち、電源装置は、連結ダクト7の両側に複数の電池ブロック2を配置すると共に、各々の電池ブロック2に配設される排出ダクト6を連結ダクト7に略垂直な姿勢で連結している。図に示す電源装置は、4組の電池ブロック2に配置された各々の排出ダクト6と連結ダクト7とをH字状に連結している。各々の排出ダクト6は、一端に設けた排出部26を、排出弁8を介して連結ダクト7に連結している。この排出弁8は、排出ダクト6から連結ダクト7に向かって開いてガスを通過させるが、連結ダクト7から排出ダクト8に向かって閉じてガスを通過させないように配設される。排出弁8は、ガス排出弁11から排出されるガスを通過させて、排出ダクト6から連結ダクト7に流入する。連結ダクト7は、各々の排出ダクト6から流入される排出ガスを外部に排気する。したがって、連結ダクト7の一端には、外部に排気する外部ダクト(図示せず)が連結される。 1 and 2 has four battery blocks 2 arranged in two rows, and a discharge duct 6 provided on the upper surface of each battery block 2 is connected to a connecting duct 7 at the center of the power supply device. Yes. That is, the power supply device has a plurality of battery blocks 2 arranged on both sides of the connection duct 7 and connects the discharge ducts 6 arranged in each battery block 2 to the connection ducts 7 in a substantially vertical posture. The power supply device shown in the figure connects the discharge ducts 6 and the connection ducts 7 arranged in the four battery blocks 2 in an H shape. Each discharge duct 6 connects a discharge portion 26 provided at one end to a connection duct 7 via a discharge valve 8. The discharge valve 8 is disposed so as to open from the discharge duct 6 toward the connection duct 7 and allow gas to pass therethrough, but close from the connection duct 7 toward the discharge duct 8 and prevent gas from passing therethrough. The discharge valve 8 allows the gas discharged from the gas discharge valve 11 to pass through and flows into the connection duct 7 from the discharge duct 6. The connecting duct 7 exhausts the exhaust gas flowing in from the respective exhaust ducts 6 to the outside. Therefore, an external duct (not shown) that exhausts to the outside is connected to one end of the connection duct 7.
 このように、排出弁8を介して連結ダクト7に連結される排出ダクト6は、排出ダクト6から排出されるガスをスムーズに連結ダクト7に排気しながら、連結ダクト7に流入されたガスが排出ダクト6に逆流して流入されるのを確実に防止できる。したがって、内圧力が上昇した角形電池セル1から排出される排出ガスを、この電池ブロック2に配置された排出ダクト6からスムーズに連結ダクト7に排気しながら、連結ダクト7に流入されたガスが、連結ダクト7から排出ダクト6に流入するのを防止できる。このため、ある電池ブロックの排出ダクトから排出されたガスが、連結ダクトに流入された後、他の電池ブロックの排出ダクトに流入されるのが確実に防止される。 As described above, the discharge duct 6 connected to the connection duct 7 through the discharge valve 8 smoothly exhausts the gas discharged from the discharge duct 6 to the connection duct 7, while the gas flowing into the connection duct 7 is discharged. It is possible to reliably prevent backflow into the discharge duct 6. Therefore, the exhaust gas discharged from the rectangular battery cell 1 whose internal pressure has increased is smoothly exhausted from the discharge duct 6 disposed in the battery block 2 to the connection duct 7, and the gas flowing into the connection duct 7 is discharged. Inflow from the connecting duct 7 to the discharge duct 6 can be prevented. For this reason, the gas discharged from the discharge duct of a certain battery block is reliably prevented from flowing into the discharge duct of another battery block after flowing into the connection duct.
 以上の電源装置は、連結ダクト7の両側に複数の電池ブロック2を配置して、連結ダクト7の両側に複数の排出ダクト6を連結するが、電源装置は、連結ダクトの片側に複数の電池ブロックを配置して、各々の電池ブロックに配設される排出ダクトを連結ダクトに略垂直な姿勢で連結することもできる。 In the above power supply device, a plurality of battery blocks 2 are arranged on both sides of the connection duct 7 and a plurality of discharge ducts 6 are connected to both sides of the connection duct 7. The power supply device has a plurality of batteries on one side of the connection duct 7. It is also possible to arrange the blocks and connect the discharge ducts arranged in the respective battery blocks in a substantially vertical posture to the connection ducts.
 排出弁8の一例を図11の断面図に示す。この図に示す排出弁8は、本体部である筒体40の内部に設けられて、この筒体40の内部を閉塞する弁座41と、この弁座41に開口された弁孔42を閉塞する弁体43と、この弁体43を弁座41に向かって押圧する弾性体44とを備えている。 An example of the discharge valve 8 is shown in the sectional view of FIG. The discharge valve 8 shown in this figure is provided inside a cylinder body 40 as a main body, and closes a valve seat 41 that closes the inside of the cylinder body 40 and a valve hole 42 that is opened in the valve seat 41. And a resilient body 44 that presses the valve body 43 toward the valve seat 41.
 弁座41は、筒体40の内部を閉塞する隔壁として、筒体40の内部に設けている。隔壁である弁座41は、排出ダクト6内のガスを外部に通過させる弁孔42を開口している。弁座41に開口された弁孔42は、弁体43で閉塞される。弁体43は、弁孔42の周縁部に沿う形状であって、弁孔42を閉塞できる大きさを有している。弁体43は、弁座41のガスの排出側に配置されて、弁孔42を密閉状態に閉塞する。弁体43は、弾性体44に押圧されて弁孔42を閉塞する。図に示す弾性体44はコイルスプリング44Aで、一端を弁体43に固定すると共に、他端を筒体40の内部に固定した支持部材45に固定している。この弾性体44は、弁体43が弁座41を押圧する弾性力を、コイルスプリング44Aのバネ定数、バネの全長及び支持部材45と弁座41との距離で特定できる。さらに、図に示すコイルスプリング44Aは円錐形状をしており、弁体43を所定の方向に往復運動できる構造としている。 The valve seat 41 is provided inside the cylinder body 40 as a partition wall that closes the inside of the cylinder body 40. The valve seat 41, which is a partition wall, has a valve hole 42 through which the gas in the discharge duct 6 passes outside. A valve hole 42 opened in the valve seat 41 is closed by a valve body 43. The valve body 43 is shaped along the peripheral edge of the valve hole 42 and has a size capable of closing the valve hole 42. The valve body 43 is disposed on the gas discharge side of the valve seat 41 and closes the valve hole 42 in a sealed state. The valve body 43 is pressed by the elastic body 44 to close the valve hole 42. The elastic body 44 shown in the figure is a coil spring 44 </ b> A, one end of which is fixed to the valve body 43 and the other end is fixed to a support member 45 fixed inside the cylinder body 40. The elastic body 44 can specify the elastic force with which the valve body 43 presses the valve seat 41 by the spring constant of the coil spring 44 </ b> A, the total length of the spring, and the distance between the support member 45 and the valve seat 41. Furthermore, the coil spring 44A shown in the figure has a conical shape, and has a structure in which the valve body 43 can reciprocate in a predetermined direction.
 以上の排出弁8は、弁座41に開口される弁孔42の開口面積と、弾性体44の弾性力とで開弁圧が特定される。排出弁8は、好ましくは、排出ダクト6内の圧力が所定の圧力よりも大きくなると開弁し、排出ダクト6内の圧力が所定の圧力よりも小さくなると閉弁する開閉弁とする。この排出弁8は、排出ダクト6内の圧力が所定の圧力よりも上昇すると、図11の(b)で示すように、弁体43が弁孔42から離れる方向に移動して弁孔42を開口し、図の矢印で示すように、排出ダクト内のガスを排出する。排出ダクト6内のガスが排出されて、排出ダクト6内の圧力が所定の圧力まで低下すると、図11の(a)で示すように、コイルスプリング44Aが元の形状に復元して弁体43で弁孔42を閉塞し、外部から排出ダクト6内にガスが流入するのを阻止する。 The valve opening pressure of the above-described discharge valve 8 is specified by the opening area of the valve hole 42 opened in the valve seat 41 and the elastic force of the elastic body 44. The discharge valve 8 is preferably an open / close valve that opens when the pressure in the discharge duct 6 becomes higher than a predetermined pressure and closes when the pressure in the discharge duct 6 becomes lower than the predetermined pressure. When the pressure in the discharge duct 6 rises above a predetermined pressure, the discharge valve 8 moves the valve body 43 in a direction away from the valve hole 42 as shown in FIG. Open and exhaust the gas in the exhaust duct as shown by the arrows in the figure. When the gas in the discharge duct 6 is discharged and the pressure in the discharge duct 6 is lowered to a predetermined pressure, the coil spring 44A is restored to its original shape as shown in FIG. Thus, the valve hole 42 is closed to prevent gas from flowing into the discharge duct 6 from the outside.
 さらに、図12の排出弁8は、弾性体44を板バネ44Bとする変形例をしている。板バネ44Bである弾性体44は、一端を弁体に固定すると共に、他端を弁座41の外周部に固定している。この排出弁8も、排出ダクト6内の圧力が所定の圧力よりも上昇すると、図12の(b)で示すように、弁体43が弁孔42から離れる方向に移動して弁孔42を開口し、図の矢印で示すように、排出ダクト内のガスを排出する。排出ダクト6内のガスが排出されて、排出ダクト6内の圧力が所定の圧力まで低下すると、図12の(a)で示すように、板バネ44Bが元の形状に復帰して弁体43で弁孔42を閉塞し、外部から排出ダクト6内にガスが流入するのを阻止する。 Furthermore, the discharge valve 8 of FIG. 12 is a modification in which the elastic body 44 is a leaf spring 44B. The elastic body 44, which is a leaf spring 44 </ b> B, has one end fixed to the valve body and the other end fixed to the outer periphery of the valve seat 41. When the pressure in the discharge duct 6 rises above a predetermined pressure, the discharge valve 8 also moves the valve element 43 in a direction away from the valve hole 42 as shown in FIG. Open and exhaust the gas in the exhaust duct as shown by the arrows in the figure. When the gas in the discharge duct 6 is discharged and the pressure in the discharge duct 6 decreases to a predetermined pressure, the leaf spring 44B returns to its original shape as shown in FIG. Thus, the valve hole 42 is closed to prevent gas from flowing into the discharge duct 6 from the outside.
 ただ、排出弁は、以上の構造には特定しない。排出弁は、弁体を球体とし、弁座を円筒の開口端部とすることもできる。この排出弁は、排出ダクト内の圧力が上昇するとこの球体を移動させて開弁する。さらに、排出弁は、現在既に開発され、あるいは、今後開発される他の全ての構造の逆止弁が使用できる。 However, the discharge valve is not specified in the above structure. In the discharge valve, the valve body may be a sphere and the valve seat may be a cylindrical open end. The discharge valve is opened by moving the sphere when the pressure in the discharge duct increases. Furthermore, the exhaust valve can be any other check valve that has already been developed or that will be developed in the future.
 図3ないし図5に示す電源装置は、外装缶を金属製とする複数の角形電池セル1を冷却プレート35の表面に熱伝導状態で固定している。この電源装置は、冷却プレート35を強制的に冷却して、各々の電池セル1の発熱を放熱する。 In the power supply device shown in FIGS. 3 to 5, a plurality of rectangular battery cells 1 whose outer cans are made of metal are fixed to the surface of the cooling plate 35 in a thermally conductive state. This power supply device forcibly cools the cooling plate 35 and dissipates heat generated by each battery cell 1.
 冷却プレート35は、図6に示すように、内部に冷媒通路36を設け、この冷媒通路36に液化された冷媒を供給し、冷媒を冷媒通路36で気化させて、冷媒の気化熱で強制的に冷却して、角形電池セル1を冷却する。冷却プレート35を冷媒の気化熱で強制冷却する冷却機構は、図示しないが、気体の状態にある冷媒を加圧するコンプレッサと、このコンプレッサで加圧された気体を冷却して液化させる凝縮器と、この凝縮器で液化された冷媒を冷却プレート35の冷媒通路36に供給する膨張弁とを備えている。この冷却機構は、膨張弁を介して液化された冷媒を冷却プレート35に供給し、供給された冷媒を冷却プレート35の内部で気化させて気化熱で冷却プレート35を冷媒する。気化された冷媒は、コンプレッサで加圧されて凝縮器に供給され、凝縮器で液化され、膨張弁を介して冷却プレート35の冷媒通路36に循環されて、冷却プレート35を冷媒する。 As shown in FIG. 6, the cooling plate 35 is provided with a refrigerant passage 36 therein, supplies liquefied refrigerant to the refrigerant passage 36, vaporizes the refrigerant in the refrigerant passage 36, and is forced by the heat of vaporization of the refrigerant. To cool the rectangular battery cell 1. Although not shown, the cooling mechanism that forcibly cools the cooling plate 35 with the heat of vaporization of the refrigerant is not shown, a compressor that pressurizes the refrigerant in a gaseous state, a condenser that cools and liquefies the gas pressurized by the compressor, And an expansion valve that supplies the refrigerant liquefied by the condenser to the refrigerant passage 36 of the cooling plate 35. This cooling mechanism supplies the liquefied refrigerant to the cooling plate 35 via the expansion valve, vaporizes the supplied refrigerant inside the cooling plate 35, and cools the cooling plate 35 with heat of vaporization. The vaporized refrigerant is pressurized by the compressor, supplied to the condenser, liquefied by the condenser, and circulated to the refrigerant passage 36 of the cooling plate 35 via the expansion valve to refrigerate the cooling plate 35.
 冷却プレートは、必ずしも冷媒の気化熱で冷却する必要はなく、たとえば、冷却された液体を内部に循環して冷却することができる。また、冷却プレートは、内部に冷却気体の通路を設けて、この通路に冷却された気体を強制送風して冷却することもできる。 The cooling plate is not necessarily cooled by the heat of vaporization of the refrigerant, and can be cooled by circulating a cooled liquid inside, for example. Further, the cooling plate can be cooled by providing a cooling gas passage inside and forcibly blowing the gas cooled in this passage.
 なお、上記の例では電池セルの冷却を、角形電池セルの下面に配置された冷却プレートで行うが、電池セル同士の隙間に冷却空気を送風して冷却する空冷方式を採用することもできる。 In the above example, the battery cells are cooled by the cooling plate disposed on the lower surface of the rectangular battery cells. However, an air cooling system in which cooling air is blown into the gaps between the battery cells to cool them may be employed.
 さらに、図13と図14には、電池ブロック52の上面に配置される排出ダクト56を筒状とする一例を示している。図に示すように筒状の排出ダクト56は、各々の角形電池セル1のガス排出口12に連結される連結開口54を設けて、この連結開口54をガス排出口12に連結している。図に示す電源装置は、連結開口54の周囲にパッキン(図示せず)を配置している。パッキンはOリングで、排出ダクト56と角形電池セル1の対向面とに挟着されて、連結開口54とガス排出口12とをガス漏れしない構造で連結する。排出ダクト56の下面、すなわち角形電池セル1との対向面には、パッキンを停止位置に配置するパッキン溝(図示せず)を設けている。パッキンであるOリングは、パッキン溝に案内されて、角形電池セル1の対向面に密着される。この構造は、角形電池セル1のガス排出口12から噴き出される排出ガスを漏らすことなく、排出ダクト56に流入して外部に排気できる。ただし、排出ダクトと角形電池セルとの間には、必ずしもパッキンを挟着する必要はない。排出ダクト54と角形電池セル1との対向面を互いに密着させることで、連結開口54をガス排出口12にガス漏れしないように連結できるからである。 Further, FIGS. 13 and 14 show an example in which the discharge duct 56 disposed on the upper surface of the battery block 52 is cylindrical. As shown in the figure, the cylindrical discharge duct 56 is provided with a connection opening 54 connected to the gas discharge port 12 of each rectangular battery cell 1, and the connection opening 54 is connected to the gas discharge port 12. In the power supply device shown in the figure, packing (not shown) is arranged around the connection opening 54. The packing is an O-ring that is sandwiched between the discharge duct 56 and the opposing surface of the rectangular battery cell 1 and connects the connection opening 54 and the gas discharge port 12 with a structure that does not cause gas leakage. On the lower surface of the discharge duct 56, that is, the surface facing the rectangular battery cell 1, a packing groove (not shown) for arranging the packing at a stop position is provided. The O-ring, which is a packing, is guided by the packing groove and is brought into close contact with the opposing surface of the rectangular battery cell 1. With this structure, the exhaust gas ejected from the gas exhaust port 12 of the rectangular battery cell 1 can flow into the exhaust duct 56 and be exhausted outside without leaking. However, it is not always necessary to sandwich packing between the discharge duct and the rectangular battery cell. This is because the connection opening 54 can be connected to the gas discharge port 12 so as not to leak gas by bringing the opposing surfaces of the discharge duct 54 and the rectangular battery cell 1 into close contact with each other.
 図13の電源装置は、4組の電池ブロック2を2列に配置して、2列の排出ダクト56を上面に配置している。2列の排出ダクト56は電源装置の中央部において連結ダクト57に連結しており、排出ダクト56と連結ダクト57とをH形に連結している。中央に位置する連結ダクト57は、各々の排出ダクト56から流入される排出ガスを外部に排気する。したがって、連結ダクト57の一端に外部に排気する外部ダクト(図示せず)が連結される。排出ダクト56は、一端を開口して連結ダクト57に連結して、他端を閉塞している。排出ダクト56は、ガス排出口12から排出されるガスを、連結開口54から排出ダクト56に流入して、連結ダクト57から外部に排出している。 In the power supply device of FIG. 13, four sets of battery blocks 2 are arranged in two rows, and two rows of discharge ducts 56 are arranged on the upper surface. Two rows of discharge ducts 56 are connected to a connection duct 57 at the center of the power supply device, and the discharge duct 56 and the connection duct 57 are connected in an H shape. The connecting duct 57 located in the center exhausts the exhaust gas flowing in from the respective exhaust ducts 56 to the outside. Therefore, an external duct (not shown) that exhausts to the outside is connected to one end of the connection duct 57. The discharge duct 56 is open at one end and connected to the connection duct 57 and closes the other end. The discharge duct 56 flows the gas discharged from the gas discharge port 12 into the discharge duct 56 through the connection opening 54 and discharges the gas from the connection duct 57 to the outside.
 さらに、電源装置は、図14に示すように、各電池ブロック2に配置される排出ダクト56の排出部に、排出弁8を設けている。この排出弁8は、排出ダクト56内のガスが排出される方向に開いてガスを通過させるが、排出ダクト56の内部に向かっては閉じる構造としている。この排出弁8は、排出ダクト56の排出側であって、連結ダクト57との連結部に設けている。この電源装置も、排出ダクト56から排出されるガスを、排出弁8を介してスムーズに連結ダクト57に排気しながら、連結ダクト57に流入されたガスが排出ダクト56に逆流して流入されるのを確実に防止できる。したがって、ある電池ブロックの排出ダクトから排出されたガスが、連結ダクトに流入された後、他の電池ブロックの排出ダクトに流入されるのが確実に防止される。 Furthermore, as shown in FIG. 14, the power supply device is provided with a discharge valve 8 at a discharge portion of a discharge duct 56 disposed in each battery block 2. The discharge valve 8 opens in the direction in which the gas in the discharge duct 56 is discharged and allows the gas to pass therethrough, but closes toward the inside of the discharge duct 56. The discharge valve 8 is provided on the discharge side of the discharge duct 56 and at a connection portion with the connection duct 57. Also in this power supply device, the gas discharged from the discharge duct 56 is smoothly exhausted to the connection duct 57 via the discharge valve 8, while the gas flowing into the connection duct 57 flows back into the discharge duct 56. Can be surely prevented. Therefore, the gas discharged from the discharge duct of a certain battery block is reliably prevented from flowing into the discharge duct of another battery block after flowing into the connection duct.
 以上の電源装置は、車載用の電源として利用できる。電源装置を搭載する車両としては、エンジンとモータの両方で走行するハイブリッド車やプラグインハイブリッド車、あるいはモータのみで走行する電気自動車等の電動車両が利用でき、これらの車両の電源として使用される。 The above power supply devices can be used as in-vehicle power supplies. As a vehicle equipped with a power supply device, an electric vehicle such as a hybrid vehicle or a plug-in hybrid vehicle that runs with both an engine and a motor, or an electric vehicle that runs only with a motor can be used, and it is used as a power source for these vehicles. .
(ハイブリッド車用電源装置)
 図15に、エンジンとモータの両方で走行するハイブリッド車に電源装置を搭載する例を示す。この図に示す電源装置を搭載した車両HVは、車両HVを走行させるエンジン96及び走行用のモータ93と、モータ93に電力を供給する電源装置100と、電源装置100の電池を充電する発電機94とを備えている。電源装置100は、DC/ACインバータ95を介してモータ93と発電機94に接続している。車両HVは、電源装置100の電池を充放電しながらモータ93とエンジン96の両方で走行する。モータ93は、エンジン効率の悪い領域、例えば加速時や低速走行時に駆動されて車両を走行させる。モータ93は、電源装置100から電力が供給されて駆動する。発電機94は、エンジン96で駆動され、あるいは車両にブレーキをかけるときの回生制動で駆動されて、電源装置100の電池を充電する。
(Power supply for hybrid vehicles)
FIG. 15 shows an example in which a power supply device is mounted on a hybrid vehicle that runs with both an engine and a motor. A vehicle HV equipped with the power supply device shown in this figure includes an engine 96 and a travel motor 93 that travel the vehicle HV, a power supply device 100 that supplies power to the motor 93, and a generator that charges a battery of the power supply device 100. 94. The power supply apparatus 100 is connected to a motor 93 and a generator 94 via a DC / AC inverter 95. The vehicle HV travels by both the motor 93 and the engine 96 while charging / discharging the battery of the power supply device 100. The motor 93 is driven to drive the vehicle when the engine efficiency is low, for example, during acceleration or low-speed driving. The motor 93 is driven by power supplied from the power supply device 100. The generator 94 is driven by the engine 96 or is driven by regenerative braking when the vehicle is braked to charge the battery of the power supply device 100.
(電気自動車用電源装置)
 また図16に、モータのみで走行する電気自動車に電源装置を搭載する例を示す。この図に示す電源装置を搭載した車両EVは、車両EVを走行させる走行用のモータ93と、このモータ93に電力を供給する電源装置100と、この電源装置100の電池を充電する発電機94とを備えている。モータ93は、電源装置100から電力が供給されて駆動する。発電機94は、車両EVを回生制動する時のエネルギーで駆動されて、電源装置100の電池を充電する。
(Power supply for electric vehicles)
FIG. 16 shows an example in which a power supply device is mounted on an electric vehicle that runs only with a motor. A vehicle EV equipped with the power supply device shown in FIG. 1 is a motor 93 for running the vehicle EV, a power supply device 100 that supplies power to the motor 93, and a generator 94 that charges a battery of the power supply device 100. And. The motor 93 is driven by power supplied from the power supply device 100. The generator 94 is driven by energy when regeneratively braking the vehicle EV and charges the battery of the power supply device 100.
(蓄電用電源装置)
 さらに、この電源装置は、移動体用の動力源としてのみならず、載置型の蓄電用設備としても利用できる。例えば家庭用、工場用の電源として、太陽光や深夜電力等で充電し、必要時に放電する電源システム、あるいは日中の太陽光を充電して夜間に放電する街路灯用の電源や、停電時に駆動する信号機用のバックアップ電源等にも利用できる。このような例を図17に示す。この図に示す電源装置100は、複数の電池パック81をユニット状に接続して電池ユニット82を構成している。各電池パック81は、複数の電池セルが直列及び/又は並列に接続されている。各電池パック81は、電源コントローラ84により制御される。この電源装置100は、電池ユニット82を充電用電源CPで充電した後、負荷LDを駆動する。このため電源装置100は、充電モードと放電モードを備える。負荷LDと充電用電源CPはそれぞれ、放電スイッチDS及び充電スイッチCSを介して電源装置100と接続されている。放電スイッチDS及び充電スイッチCSのON/OFFは、電源装置100の電源コントローラ84によって切り替えられる。充電モードにおいては、電源コントローラ84は充電スイッチCSをONに、放電スイッチDSをOFFに切り替えて、充電用電源CPから電源装置100への充電を許可する。また充電が完了し満充電になると、あるいは所定値以上の容量が充電された状態で負荷LDからの要求に応じて、電源コントローラ84は充電スイッチCSをOFFに、放電スイッチDSをONにして放電モードに切り替え、電源装置100から負荷LDへの放電を許可する。また、必要に応じて、充電スイッチCSをONに、放電スイッチDSをONにして、負荷LDの電力供給と、電源装置100への充電を同時に行うこともできる。
(Power storage device for power storage)
Furthermore, this power supply apparatus can be used not only as a power source for a moving body but also as a stationary power storage facility. For example, as a power source for home and factory use, a power supply system that is charged with sunlight or midnight power and discharged when necessary, or a streetlight power supply that charges sunlight during the day and discharges at night, or during a power outage It can also be used as a backup power source for driving signals. Such an example is shown in FIG. The power supply apparatus 100 shown in this figure forms a battery unit 82 by connecting a plurality of battery packs 81 in a unit shape. Each battery pack 81 has a plurality of battery cells connected in series and / or in parallel. Each battery pack 81 is controlled by a power controller 84. The power supply apparatus 100 drives the load LD after charging the battery unit 82 with the charging power supply CP. For this reason, the power supply apparatus 100 includes a charging mode and a discharging mode. The load LD and the charging power source CP are connected to the power supply device 100 via the discharging switch DS and the charging switch CS, respectively. ON / OFF of the discharge switch DS and the charge switch CS is switched by the power supply controller 84 of the power supply apparatus 100. In the charging mode, the power controller 84 switches the charging switch CS to ON and the discharging switch DS to OFF to allow charging from the charging power supply CP to the power supply apparatus 100. Further, when charging is completed and fully charged, or in response to a request from the load LD in a state where a capacity of a predetermined value or more is charged, the power supply controller 84 turns off the charge switch CS and turns on the discharge switch DS to discharge. The mode is switched to permit discharge from the power supply apparatus 100 to the load LD. Further, if necessary, the charge switch CS can be turned on and the discharge switch DS can be turned on to supply power to the load LD and charge the power supply device 100 at the same time.
 電源装置100で駆動される負荷LDは、放電スイッチDSを介して電源装置100と接続されている。電源装置100の放電モードにおいては、電源コントローラ84が放電スイッチDSをONに切り替えて、負荷LDに接続し、電源装置100からの電力で負荷LDを駆動する。放電スイッチDSはFET等のスイッチング素子が利用できる。放電スイッチDSのON/OFFは、電源装置100の電源コントローラ84によって制御される。また電源コントローラ84は、外部機器と通信するための通信インターフェースを備えている。図17の例では、UARTやRS-232C等の既存の通信プロトコルに従い、ホスト機器HTと接続されている。また必要に応じて、電源システムに対してユーザが操作を行うためのユーザインターフェースを設けることもできる。 The load LD driven by the power supply device 100 is connected to the power supply device 100 via the discharge switch DS. In the discharge mode of the power supply apparatus 100, the power supply controller 84 switches the discharge switch DS to ON, connects to the load LD, and drives the load LD with the power from the power supply apparatus 100. As the discharge switch DS, a switching element such as an FET can be used. ON / OFF of the discharge switch DS is controlled by the power supply controller 84 of the power supply apparatus 100. The power controller 84 also includes a communication interface for communicating with external devices. In the example of FIG. 17, it is connected to the host device HT according to an existing communication protocol such as UART or RS-232C. Further, if necessary, a user interface for the user to operate the power supply system can be provided.
 各電池パック81は、信号端子と電源端子を備える。信号端子は、パック入出力端子DIと、パック異常出力端子DAと、パック接続端子DOとを含む。パック入出力端子DIは、他のパック電池や電源コントローラ84からの信号を入出力するための端子であり、パック接続端子DOは子パックである他のパック電池に対して信号を入出力するための端子である。またパック異常出力端子DAは、パック電池の異常を外部に出力するための端子である。さらに電源端子は、電池パック81同士を直列、並列に接続するための端子である。 Each battery pack 81 includes a signal terminal and a power supply terminal. The signal terminals include a pack input / output terminal DI, a pack abnormality output terminal DA, and a pack connection terminal DO. The pack input / output terminal DI is a terminal for inputting / outputting signals from other pack batteries and the power supply controller 84, and the pack connection terminal DO is for inputting / outputting signals to / from other pack batteries which are child packs. Terminal. The pack abnormality output terminal DA is a terminal for outputting the abnormality of the battery pack to the outside. Furthermore, the power supply terminal is a terminal for connecting the battery packs 81 in series and in parallel.
 本発明に係る電源装置及びこれを備える車両は、EV走行モードとHEV走行モードとを切り替え可能なプラグイン式ハイブリッド電気自動車やハイブリッド式電気自動車、電気自動車等の電源装置として好適に利用できる。またコンピュータサーバのラックに搭載可能なバックアップ電源装置、携帯電話等の無線基地局用のバックアップ電源装置、家庭内用、工場用の蓄電用電源、街路灯の電源等、太陽電池と組み合わせた蓄電装置、信号機等のバックアップ電源用等の用途にも適宜利用できる。 The power supply device according to the present invention and a vehicle including the power supply device can be suitably used as a power supply device for a plug-in hybrid electric vehicle, a hybrid electric vehicle, an electric vehicle, or the like that can switch between the EV traveling mode and the HEV traveling mode. Also, a backup power supply device that can be mounted on a rack of a computer server, a backup power supply device for a wireless base station such as a mobile phone, a power storage device for home use and a factory, a power supply for a street light, etc. Also, it can be used as appropriate for applications such as a backup power source such as a traffic light.
100…電源装置
1…電池セル
2…電池ブロック
3…電池ホルダ
4…エンドプレート
5…連結固定具
6…排出ダクト
7…連結ダクト
8…排出弁
10…外周面
11…ガス排出弁
12…ガス排出口
13…電極端子
15…セパレータ
17…回路基板
18…止ネジ
19…バスバー
20…上面プレート          20A…開口窓
21…中央凹部
22…樹脂
23…区画壁
24…絶縁被覆部
25…充填孔
26…排出部
27…シール材            27A…パッキン
28…パッキン溝
29…収納凹部
30…外装ケース
35…冷却プレート
36…冷媒通路
40…筒体
41…弁座
42…弁孔
43…弁体
44…弾性体             44A…コイルスプリング
                   44B…板バネ
45…支持部材
49…連結部
52…電池ブロック
54…連結開口
56…排出ダクト
57…連結ダクト
81…電池パック
82…電池ユニット
84…電源コントローラ
85…並列接続スイッチ
93…モータ
94…発電機
95…DC/ACインバータ
96…エンジン
191…角形電池セル
192…電池ブロック
195…絶縁セパレータ       195a…絶縁プレート部
196…排出ダクト
EV、HV…車両
LD…負荷
CP…充電用電源
DS…放電スイッチ
CS…充電スイッチ
OL…出力ライン
HT…ホスト機器
DI…パック入出力端子
DA…パック異常出力端子
DO…パック接続端子
DESCRIPTION OF SYMBOLS 100 ... Power supply device 1 ... Battery cell 2 ... Battery block 3 ... Battery holder 4 ... End plate 5 ... Connection fixture 6 ... Exhaust duct 7 ... Connection duct 8 ... Discharge valve 10 ... Outer peripheral surface 11 ... Gas exhaust valve 12 ... Gas exhaust Exit 13 ... Electrode terminal 15 ... Separator 17 ... Circuit board 18 ... Set screw 19 ... Bus bar 20 ... Top plate 20A ... Opening window 21 ... Central recess 22 ... Resin 23 ... Partition wall 24 ... Insulation coating 25 ... Filling hole 26 ... Discharge Portion 27 ... Sealing material 27A ... Packing 28 ... Packing groove 29 ... Housing recess 30 ... Exterior case 35 ... Cooling plate 36 ... Refrigerant passage 40 ... Cylindrical body 41 ... Valve seat 42 ... Valve hole 43 ... Valve body 44 ... Elastic body 44A ... Coil spring 44B ... leaf spring 45 ... support member 49 ... connection portion 52 ... battery block 54 ... connection opening 56 ... discharge duct 57 ... connection Duct 81 ... Battery pack 82 ... Battery unit 84 ... Power supply controller 85 ... Parallel connection switch 93 ... Motor 94 ... Generator 95 ... DC / AC inverter 96 ... Engine 191 ... Square battery cell 192 ... Battery block 195 ... Insulating separator 195a ... Insulating Plate portion 196 ... discharge duct EV, HV ... vehicle LD ... load CP ... charging power supply DS ... discharge switch CS ... charge switch OL ... output line HT ... host device DI ... pack input / output terminal DA ... pack abnormal output terminal DO ... pack Connecting terminal

Claims (12)

  1.  外装缶を有し、該外装缶の内部で発生したガスを排出するためのガス排出弁を備えており、該ガス排出弁からガスを排出するためのガス排出口を外装缶の表面に設けている複数の電池セルを、前記ガス排出口が略同一面となる姿勢に積層してなる複数の電池ブロックと、
     前記電池ブロックを構成する各々の電池セルのガス排出口に対向して配設されて、ガス排出口から排出されるガスを外部に排気する中空状の排出ダクトと、
     前記電池ブロックに配設された前記排出ダクトが連結されて、前記排出ダクトから流入されるガスを外部に排出する連結ダクトとを備える電源装置であって、
     前記排出ダクトが排出弁を介して前記連結ダクトに連結されており、前記排出弁が、前記排出ダクトから前記連結ダクトに向かって開き、前記連結ダクトから前記排出ダクトに向かって閉じることを特徴とする電源装置。
    It has an outer can and is equipped with a gas discharge valve for discharging the gas generated inside the outer can, and a gas discharge port for discharging gas from the gas discharge valve is provided on the surface of the outer can A plurality of battery blocks formed by stacking a plurality of battery cells in a posture in which the gas discharge ports are substantially flush with each other;
    A hollow discharge duct disposed opposite to the gas discharge port of each battery cell constituting the battery block and exhausting the gas discharged from the gas discharge port to the outside,
    A power supply device comprising: a connecting duct connected to the discharge duct disposed in the battery block and discharging the gas flowing in from the discharge duct to the outside;
    The discharge duct is connected to the connection duct via a discharge valve, and the discharge valve opens from the discharge duct toward the connection duct and closes from the connection duct toward the discharge duct. Power supply.
  2.  請求項1に記載の電源装置であって、
     複数の電池ブロックを前記連結ダクトの両側に配置すると共に、各々の電池ブロックに配設される排出ダクトのガス流路方向が連結ダクトのガス流路方向に略直交な姿勢で連結してなることを特徴とする電源装置。
    The power supply device according to claim 1,
    A plurality of battery blocks are arranged on both sides of the connection duct, and the gas flow path direction of the discharge duct disposed in each battery block is connected in a posture substantially orthogonal to the gas flow path direction of the connection duct. A power supply characterized by.
  3.  請求項1に記載の電源装置であって、
     複数の電池ブロックを前記連結ダクトの片側に配置すると共に、各々の電池ブロックに配設される排出ダクトのガス流路方向が連結ダクトのガス流路方向に略直交な姿勢で連結してなることを特徴とする電源装置。
    The power supply device according to claim 1,
    A plurality of battery blocks are arranged on one side of the connection duct, and the gas flow path direction of the discharge duct disposed in each battery block is connected in a posture substantially orthogonal to the gas flow path direction of the connection duct. A power supply characterized by.
  4.  外装缶を有し、該外装缶の内部で発生したガスを排出するためのガス排出弁を備えており、該ガス排出弁からガスを排出するためのガス排出口を外装缶の表面に設けている複数の電池セルを、前記ガス排出口が略同一面となる姿勢に積層してなる電池ブロックと、
     前記電池ブロックを構成する各々の電池セルのガス排出口に対向して配設されて、ガス排出口から排出されるガスを外部に排気する中空状の排出ダクトとを備える電源装置であって、
     前記排出ダクトの排出部に排出弁を設けており、前記排出弁が、前記排出ダクトの内部から外部に向かって開き、外部から内部に向かって閉じることを特徴とする電源装置。
    It has an outer can and is equipped with a gas discharge valve for discharging the gas generated inside the outer can, and a gas discharge port for discharging gas from the gas discharge valve is provided on the surface of the outer can A battery block in which a plurality of battery cells are stacked in a posture in which the gas discharge ports are substantially flush with each other;
    A power supply device provided with a hollow discharge duct disposed opposite to a gas discharge port of each battery cell constituting the battery block and exhausting gas discharged from the gas discharge port to the outside,
    A power supply device, wherein a discharge valve is provided in a discharge portion of the discharge duct, and the discharge valve opens from the inside to the outside of the discharge duct and closes from the outside to the inside.
  5.  請求項1ないし4のいずれか一に記載の電源装置であって、
     前記排出弁が、前記排出ダクト内の内圧が所定の圧力以上に上昇すると開弁し、所定の圧力未満に低下すると閉弁する開閉弁であることを特徴とする電源装置。
    The power supply device according to any one of claims 1 to 4,
    The power supply apparatus according to claim 1, wherein the discharge valve is an on-off valve that opens when the internal pressure in the discharge duct rises above a predetermined pressure and closes when the internal pressure drops below a predetermined pressure.
  6.  請求項1ないし5のいずれか一に記載の電源装置であって、
     前記電池ブロックの上面を上面プレートでカバーしており、この上面プレートは、前記電池ブロックの中央部に配置された複数のガス排出口と対向する中央凹部を内面に設けており、
     前記電池ブロックの上面と前記上面プレートの中央凹部との間に空間を形成して排出ダクトとしてなることを特徴とする電源装置。
    The power supply device according to any one of claims 1 to 5,
    The upper surface of the battery block is covered with an upper surface plate, and the upper surface plate is provided with a central recess on the inner surface that faces a plurality of gas discharge ports arranged in the central portion of the battery block,
    A power supply device, wherein a space is formed between an upper surface of the battery block and a central recess of the upper surface plate to form a discharge duct.
  7.  請求項6に記載の電源装置であって、
     前記電池ブロックの上面と前記上面プレートとの間に樹脂を充填して密閉構造の排出ダクトを形成してなることを特徴とする電源装置。
    The power supply device according to claim 6,
    A power supply device, wherein a discharge duct having a sealed structure is formed by filling a resin between an upper surface of the battery block and the upper surface plate.
  8.  請求項7に記載の電源装置であって、
     前記電池ブロックの中央部に配置された複数のガス排出口の周囲に枠形状の区画壁を固定すると共に、この区画壁の周囲に樹脂を充填してなることを特徴とする電源装置。
    The power supply device according to claim 7,
    A power supply apparatus comprising: a frame-shaped partition wall fixed around a plurality of gas discharge ports arranged in a central portion of the battery block; and a resin filled around the partition wall.
  9.  請求項8に記載の電源装置であって、
     前記上面プレートの内面に設けられた中央凹部の横幅(W)が前記区画壁の横幅(d)の1.5倍以上であることを特徴とする電源装置。
    The power supply device according to claim 8, wherein
    The power supply apparatus according to claim 1, wherein a width (W) of a central recess provided on an inner surface of the upper surface plate is 1.5 times or more a width (d) of the partition wall.
  10.  請求項6に記載の電源装置であって、
     前記電池ブロックの上面と前記上面プレートとの間をシール材でシールして密閉構造の排出ダクトを形成してなることを特徴とする電源装置。
    The power supply device according to claim 6,
    A power supply apparatus comprising: a sealed duct formed by sealing a space between an upper surface of the battery block and the upper surface plate with a sealing material.
  11.  請求項6ないし10のいずれか一に記載の電源装置であって、
     前記電池セルが、ガス排出口を設けている外周面の両端部に電極端子を備えると共に、互いに積層される複数の電池セルの電極端子を、複数のバスバーを介して直列又は/及び並列に接続しており、
     前記上面プレートが樹脂製で、前記複数のバスバーを前記中央凹部の両側部にインサート成形しており、
     前記上面プレートに埋設された前記バスバーを前記電池セルの出力端子に固定して、前記上面プレートを前記電池ブロックの上面の定位置に固定してなることを特徴とする電源装置。
    The power supply device according to any one of claims 6 to 10,
    The battery cell is provided with electrode terminals at both ends of the outer peripheral surface provided with gas discharge ports, and electrode terminals of a plurality of battery cells stacked on each other are connected in series or / and in parallel via a plurality of bus bars. And
    The top plate is made of resin, and the plurality of bus bars are insert-molded on both sides of the central recess,
    The power supply device, wherein the bus bar embedded in the upper plate is fixed to an output terminal of the battery cell, and the upper plate is fixed at a fixed position on the upper surface of the battery block.
  12.  請求項1ないし11のいずれか一に記載の電源装置を搭載してなる車両。 A vehicle comprising the power supply device according to any one of claims 1 to 11.
PCT/JP2012/058484 2011-03-31 2012-03-29 Power supply and vehicle comprising same WO2012133710A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-081316 2011-03-31
JP2011081316 2011-03-31

Publications (1)

Publication Number Publication Date
WO2012133710A1 true WO2012133710A1 (en) 2012-10-04

Family

ID=46931412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/058484 WO2012133710A1 (en) 2011-03-31 2012-03-29 Power supply and vehicle comprising same

Country Status (1)

Country Link
WO (1) WO2012133710A1 (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012073438A1 (en) * 2010-11-30 2014-05-19 パナソニック株式会社 Battery pack
WO2014140060A1 (en) * 2013-03-12 2014-09-18 Robert Bosch Gmbh Housing consisting of a metal frame structure and a plastic component for receiving a cell stack
JP2015046354A (en) * 2013-08-29 2015-03-12 古河電気工業株式会社 Cover for battery module and battery module
JP2015097176A (en) * 2013-11-15 2015-05-21 株式会社デンソー Battery pack
EP2615664B1 (en) * 2012-01-16 2017-01-04 GS Yuasa International Ltd. Power source unit
US9614210B2 (en) 2014-09-30 2017-04-04 Johnson Controls Technology Company Battery module vent system and method
JP2017521830A (en) * 2014-07-09 2017-08-03 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Support structure for supporting and holding battery cell components of a battery module, especially for electric vehicles
DE102016225057A1 (en) * 2016-12-15 2018-06-21 Bayerische Motoren Werke Aktiengesellschaft Battery unit for a traction battery and traction battery
JP2018101618A (en) * 2016-12-19 2018-06-28 モレックス エルエルシー Battery connection module and battery device
JP2019003843A (en) * 2017-06-16 2019-01-10 株式会社Gsユアサ Power storage device
WO2019021881A1 (en) * 2017-07-25 2019-01-31 三洋電機株式会社 Power supply device
US20190198835A1 (en) * 2017-12-27 2019-06-27 Toyota Jidosha Kabushiki Kaisha Vehicle-mounted battery apparatus
CN112002846A (en) * 2020-09-08 2020-11-27 北京未来智酷汽车科技有限公司 Battery container, fire extinguishing method for battery of battery container, and vehicle
US10991928B2 (en) 2016-12-19 2021-04-27 Molex, Llc Battery connection module and battery device
CN113169400A (en) * 2018-11-28 2021-07-23 三洋电机株式会社 Battery pack
CN113273025A (en) * 2019-01-25 2021-08-17 三洋电机株式会社 Battery pack
CN113904526A (en) * 2021-08-30 2022-01-07 北京精密机电控制设备研究所 Small-sized pulse plasma space electric propulsion high-voltage power supply converter
CN114824608A (en) * 2016-11-30 2022-07-29 松下知识产权经营株式会社 Battery module
KR20220165596A (en) * 2021-06-08 2022-12-15 주식회사 엘지에너지솔루션 Battery Module, Battery Pack, And Vehicle Having the Same
KR20220168919A (en) * 2021-06-17 2022-12-26 주식회사 엘지에너지솔루션 Battery Module, Battery Pack, And Vehicle having the Same
JP2023527807A (en) * 2021-01-19 2023-06-30 エルジー エナジー ソリューション リミテッド Battery pack with improved fire protection
JP2023528518A (en) * 2021-02-22 2023-07-04 エルジー エナジー ソリューション リミテッド Battery module and battery pack containing same
US11715860B2 (en) 2021-03-24 2023-08-01 Ford Global Technologies, Llc Traction battery venting system and venting method
EP4270622A1 (en) * 2022-04-25 2023-11-01 Samsung SDI Co., Ltd. Battery pack and electric vehicle
JP2023175722A (en) * 2019-04-01 2023-12-12 スペア パワー システムズ,インコーポレイテッド Apparatus for mitigation of thermal event propagation for battery systems
JP2024503672A (en) * 2021-11-04 2024-01-26 寧徳時代新能源科技股▲分▼有限公司 Energy storage prefab room and energy storage system
EP4318767A4 (en) * 2021-08-25 2024-11-06 LG Energy Solution, Ltd. Battery module and battery pack comprising same
WO2024251068A1 (en) * 2023-06-06 2024-12-12 双澳储能科技(西安)有限公司 High-capacity battery and case thereof
EP4496074A4 (en) * 2022-03-14 2025-01-22 Panasonic Intellectual Property Management Co., Ltd. BATTERY PACK
EP4462558A4 (en) * 2022-02-22 2025-05-07 LG Energy Solution, Ltd. BATTERY PACK
EP4366063A4 (en) * 2022-05-27 2025-05-21 Lg Energy Solution, Ltd. BATTERY PACK AND DEVICE THEREOF

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007027011A (en) * 2005-07-20 2007-02-01 Sanyo Electric Co Ltd Power source device
JP2009170258A (en) * 2008-01-16 2009-07-30 Sanyo Electric Co Ltd Battery system
JP2010205509A (en) * 2009-03-02 2010-09-16 Sanyo Electric Co Ltd Battery system
JP2010277735A (en) * 2009-05-26 2010-12-09 Sanyo Electric Co Ltd Power supply device, and vehicle equipped with the same
WO2011007533A1 (en) * 2009-07-17 2011-01-20 パナソニック株式会社 Battery module and battery pack using the same
JP2011070871A (en) * 2009-09-25 2011-04-07 Panasonic Corp Battery module, and battery pack using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007027011A (en) * 2005-07-20 2007-02-01 Sanyo Electric Co Ltd Power source device
JP2009170258A (en) * 2008-01-16 2009-07-30 Sanyo Electric Co Ltd Battery system
JP2010205509A (en) * 2009-03-02 2010-09-16 Sanyo Electric Co Ltd Battery system
JP2010277735A (en) * 2009-05-26 2010-12-09 Sanyo Electric Co Ltd Power supply device, and vehicle equipped with the same
WO2011007533A1 (en) * 2009-07-17 2011-01-20 パナソニック株式会社 Battery module and battery pack using the same
JP2011070871A (en) * 2009-09-25 2011-04-07 Panasonic Corp Battery module, and battery pack using the same

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012073438A1 (en) * 2010-11-30 2014-05-19 パナソニック株式会社 Battery pack
EP2615664B1 (en) * 2012-01-16 2017-01-04 GS Yuasa International Ltd. Power source unit
US9947907B2 (en) 2013-03-12 2018-04-17 Robert Bosch Gmbh Housing composed of a metal frame structure and a plastic component for accommodating a cell stack
WO2014140060A1 (en) * 2013-03-12 2014-09-18 Robert Bosch Gmbh Housing consisting of a metal frame structure and a plastic component for receiving a cell stack
JP2015046354A (en) * 2013-08-29 2015-03-12 古河電気工業株式会社 Cover for battery module and battery module
JP2015097176A (en) * 2013-11-15 2015-05-21 株式会社デンソー Battery pack
JP2017521830A (en) * 2014-07-09 2017-08-03 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Support structure for supporting and holding battery cell components of a battery module, especially for electric vehicles
US10388924B2 (en) 2014-07-09 2019-08-20 Robert Bosch Gmbh Carrier assembly for carrying and holding components for battery cells of a battery module, in particular for an electric vehicle
US9614210B2 (en) 2014-09-30 2017-04-04 Johnson Controls Technology Company Battery module vent system and method
CN114824608A (en) * 2016-11-30 2022-07-29 松下知识产权经营株式会社 Battery module
DE102016225057A1 (en) * 2016-12-15 2018-06-21 Bayerische Motoren Werke Aktiengesellschaft Battery unit for a traction battery and traction battery
US11217849B2 (en) 2016-12-15 2022-01-04 Bayerische Motoren Werke Aktiengesellschaft Battery unit for a traction battery and traction battery
US10991928B2 (en) 2016-12-19 2021-04-27 Molex, Llc Battery connection module and battery device
JP2018101618A (en) * 2016-12-19 2018-06-28 モレックス エルエルシー Battery connection module and battery device
JP2019003843A (en) * 2017-06-16 2019-01-10 株式会社Gsユアサ Power storage device
WO2019021881A1 (en) * 2017-07-25 2019-01-31 三洋電機株式会社 Power supply device
CN109968999A (en) * 2017-12-27 2019-07-05 丰田自动车株式会社 Vehicle battery unit
US10826037B2 (en) * 2017-12-27 2020-11-03 Toyota Jidosha Kabushiki Kaisha Vehicle-mounted battery apparatus
US20190198835A1 (en) * 2017-12-27 2019-06-27 Toyota Jidosha Kabushiki Kaisha Vehicle-mounted battery apparatus
CN113169400A (en) * 2018-11-28 2021-07-23 三洋电机株式会社 Battery pack
CN113273025A (en) * 2019-01-25 2021-08-17 三洋电机株式会社 Battery pack
JP2023175722A (en) * 2019-04-01 2023-12-12 スペア パワー システムズ,インコーポレイテッド Apparatus for mitigation of thermal event propagation for battery systems
CN112002846A (en) * 2020-09-08 2020-11-27 北京未来智酷汽车科技有限公司 Battery container, fire extinguishing method for battery of battery container, and vehicle
JP7507889B2 (en) 2021-01-19 2024-06-28 エルジー エナジー ソリューション リミテッド Battery pack with improved fire protection
JP2023527807A (en) * 2021-01-19 2023-06-30 エルジー エナジー ソリューション リミテッド Battery pack with improved fire protection
EP4175044A4 (en) * 2021-01-19 2024-08-14 LG Energy Solution, Ltd. BATTERY PACK HAVING ENHANCED FIRE PREVENTION CAPACITY
JP7551210B2 (en) 2021-02-22 2024-09-17 エルジー エナジー ソリューション リミテッド Battery module and battery pack including same
JP2023528518A (en) * 2021-02-22 2023-07-04 エルジー エナジー ソリューション リミテッド Battery module and battery pack containing same
US11715860B2 (en) 2021-03-24 2023-08-01 Ford Global Technologies, Llc Traction battery venting system and venting method
KR102817823B1 (en) * 2021-06-08 2025-06-05 주식회사 엘지에너지솔루션 Battery Module, Battery Pack, And Vehicle Having the Same
KR20220165596A (en) * 2021-06-08 2022-12-15 주식회사 엘지에너지솔루션 Battery Module, Battery Pack, And Vehicle Having the Same
EP4199226A4 (en) * 2021-06-08 2024-03-27 LG Energy Solution, Ltd. Battery module, and battery pack and vehicle comprising same
KR20220168919A (en) * 2021-06-17 2022-12-26 주식회사 엘지에너지솔루션 Battery Module, Battery Pack, And Vehicle having the Same
KR102819175B1 (en) * 2021-06-17 2025-06-10 주식회사 엘지에너지솔루션 Battery Module, Battery Pack, And Vehicle having the Same
EP4318767A4 (en) * 2021-08-25 2024-11-06 LG Energy Solution, Ltd. Battery module and battery pack comprising same
CN113904526B (en) * 2021-08-30 2024-03-15 北京精密机电控制设备研究所 Small-sized pulse plasma space electric propulsion high-voltage power converter
CN113904526A (en) * 2021-08-30 2022-01-07 北京精密机电控制设备研究所 Small-sized pulse plasma space electric propulsion high-voltage power supply converter
EP4254631A4 (en) * 2021-11-04 2024-09-25 Contemporary Amperex Technology Co., Limited PREFABRICATED ENERGY STORAGE COMPARTMENT AND ENERGY STORAGE SYSTEM
JP2024503672A (en) * 2021-11-04 2024-01-26 寧徳時代新能源科技股▲分▼有限公司 Energy storage prefab room and energy storage system
JP7668362B2 (en) 2021-11-04 2025-04-24 香港時代新能源科技有限公司 Energy storage prefabricated rooms and energy storage systems
EP4462558A4 (en) * 2022-02-22 2025-05-07 LG Energy Solution, Ltd. BATTERY PACK
EP4496074A4 (en) * 2022-03-14 2025-01-22 Panasonic Intellectual Property Management Co., Ltd. BATTERY PACK
EP4270622A1 (en) * 2022-04-25 2023-11-01 Samsung SDI Co., Ltd. Battery pack and electric vehicle
EP4366063A4 (en) * 2022-05-27 2025-05-21 Lg Energy Solution, Ltd. BATTERY PACK AND DEVICE THEREOF
WO2024251068A1 (en) * 2023-06-06 2024-12-12 双澳储能科技(西安)有限公司 High-capacity battery and case thereof

Similar Documents

Publication Publication Date Title
WO2012133710A1 (en) Power supply and vehicle comprising same
JP6017539B2 (en) Power supply device, vehicle including the same, and power storage device
WO2013161655A1 (en) Power-supply device, vehicle provided therewith, and electricity-storage device
JP6744435B2 (en) Battery sub-module carrier, battery sub-module, battery system and automobile
JP6151254B2 (en) Power supply device, electric vehicle including the same, and power storage device
JP2013012441A (en) Electric power source device and vehicle including the same
JP2013171746A (en) Power supply device, and vehicle and power storage device having the same
WO2012165493A1 (en) Power source device for supplying power and vehicle provided with power source device
JP6189301B2 (en) Power supply device, electric vehicle including the same, and power storage device
WO2013161654A1 (en) Power-supply device, vehicle provided with power-supply device, and electricity-storage device
EP3745525A1 (en) Power supply device, vehicle provided with power supply device, and power storage device
WO2013146561A1 (en) Power supply device, and vehicle and power storage device equipped with same
JP6328842B2 (en) Power supply device and vehicle equipped with the same
WO2012133707A1 (en) Power source device and vehicle provided with power source device
WO2014010438A1 (en) Battery system, and vehicle and power storage device equipped with battery system
WO2013084756A1 (en) Power source device, vehicle equipped with same and electricity storage device
JP6223978B2 (en) Power supply device, electric vehicle including the same, and power storage device
WO2014024450A1 (en) Power source device, electric vehicle provided with same, and electricity storage device
WO2013002090A1 (en) Power supply device, vehicle including same, and method for manufacturing power supply device
WO2014024451A1 (en) Power source device, electric vehicle provided with same, and electricity storage device
JP2012181972A (en) Power supply device, and vehicle having power supply device
JP2013025983A (en) Power-supply unit, and vehicle equipped with the same
KR20190026237A (en) Battery Pack of coolant direct contact cooling type
JP2013114952A (en) Power supply unit and vehicle and power storage device incorporating the same
WO2012147801A1 (en) Power supply device and vehicle equipped with power supply device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12764082

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12764082

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP