[go: up one dir, main page]

WO2012129791A1 - 一种柔性有机电致发光器件及其制备方法 - Google Patents

一种柔性有机电致发光器件及其制备方法 Download PDF

Info

Publication number
WO2012129791A1
WO2012129791A1 PCT/CN2011/072301 CN2011072301W WO2012129791A1 WO 2012129791 A1 WO2012129791 A1 WO 2012129791A1 CN 2011072301 W CN2011072301 W CN 2011072301W WO 2012129791 A1 WO2012129791 A1 WO 2012129791A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
thickness
substrate
organic electroluminescent
electroluminescent device
Prior art date
Application number
PCT/CN2011/072301
Other languages
English (en)
French (fr)
Inventor
周明杰
王平
冯小明
黄辉
Original Assignee
海洋王照明科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海洋王照明科技股份有限公司 filed Critical 海洋王照明科技股份有限公司
Priority to JP2014501391A priority Critical patent/JP5688182B2/ja
Priority to EP11862431.1A priority patent/EP2693507A4/en
Priority to CN2011800659511A priority patent/CN103370805A/zh
Priority to US13/983,293 priority patent/US20130306956A1/en
Priority to PCT/CN2011/072301 priority patent/WO2012129791A1/zh
Publication of WO2012129791A1 publication Critical patent/WO2012129791A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/816Multilayers, e.g. transparent multilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole

Definitions

  • the present invention relates to the field of optoelectronic devices, and more particularly to a flexible organic electroluminescent device.
  • the invention also relates to a method of making the flexible organic electroluminescent device.
  • OLED Organic Electroluminescence
  • OLEDs fabricated using glass substrates The device does not have the characteristics of bending, and the glass is fragile, which has an impact on the application of the light-emitting device.
  • An OLED device using a flexible material as a substrate, an OLED than a glass substrate It has the advantages of being lighter and thinner and more resistant to impact.
  • flexible OLED The preparation can be produced in a roll-to-roll manner, thereby greatly reducing manufacturing costs.
  • flexible display substrates mainly include ultra-thin glass, polymer films, metal foils and the like.
  • a polymer film is used as a substrate for the substrate, and a transparent conductive film such as ITO, IZO or the like is coated on the surface thereof by a sputtering process.
  • these conductive films also have many insurmountable problems in the application of the flexible OLED.
  • the doping ratio composition of various elements such as indium (In), (Sn) is difficult to control, resulting in the morphology of the ITO film, carrier and transmission properties are difficult to control, resulting in a light-emitting device. Unstable performance.
  • the conductive film is usually prepared by low-temperature sputtering because of the poor heat resistance of the polymer film.
  • the surface resistance of the prepared conductive film is high, and the film is bonded to the substrate.
  • the force is not strong, so that the flexible OLED is liable to fall off from the substrate during repeated bending, which affects the luminescent stability of the OLED light-emitting device.
  • a flexible organic electroluminescent device having a layered structure in which: a substrate/anode layer/hole injection layer/hole transport layer/light emitting layer/electron transport layer / an electron injecting layer / a cathode layer; wherein a buffer layer is further prepared between the substrate and the anode layer; the anode is a multilayer composite structure, and the multilayer composite structure is ZnS/Ag/MoO 3 Multi-layer structure.
  • the flexible organic electroluminescent device comprises a substrate material comprising polyethylene terephthalate (PET), polyethersulfone. (PES), polyethylene naphthalate (PEN), transparent polyimide (PI) cyclic olefin copolymer (COC), polycarbonate (PC), polyethylene (PE)
  • PET polyethylene terephthalate
  • PEN polyethersulfone
  • PEN polyethylene naphthalate
  • PI transparent polyimide
  • COC cyclic olefin copolymer
  • PC polycarbonate
  • PE polyethylene
  • the selected material has a transmittance of visible light of >80% and a thickness of 0.1-0.5 mm.
  • the buffer layer on the substrate is made of UV glue, and the buffer layer can be 0.5-10 ⁇ m thick.
  • the multilayer structure of the anode is all prepared by an evaporation process.
  • the thickness of the ZnS layer is selected from 35 to 80 nm
  • the thickness of the Ag layer is selected to be 18 to 30 nm.
  • the thickness of the MoO 3 layer is selected from 3-10 nm.
  • the multilayer anode structure utilizes the principle of anti-reflection in a heat mirror, so that the prepared anode layer has high visible light transmittance and low surface resistance.
  • MoO 3 having a hole injecting ability is employed as a part of the multilayer anode for reducing the injection barrier of holes.
  • the material of the hole injection layer is copper phthalocyanine (CuPc), 4, 4', 4'-three (N-3-methylphenyl-N-phenyl-amino)-triphenylamine (m-MTDATA), the hole injection layer has a thickness of 30-40 nm;
  • the material of the hole transport layer is phenylmorphine (NPB), N,N'-bis(3-methylphenyl)-N,N'-diphenyl -4,4'-biphenyldiamine (TPD), 1,3,5-triphenylbenzene (TDAPB), the hole transport layer has a thickness of 30-80 nm;
  • the material of the luminescent layer is 4,4'-bis(9-carbazole)biphenyl doped tris(2-phenylpyridine) ruthenium (ie Ir(ppy) 3 :CBP ), DCJTB:Alq 3 or ⁇ -NPD: Ir(MDQ) 2 (acac), the thickness of the luminescent layer is 15-40 nm;
  • the material of the electron transport layer is 4,7-diphenyl-1,10-phenanthroline (Bphen), 8-hydroxyquinoline aluminum (Alq 3 ), 2-(4-biphenyl)-5- (4-tert-butyl)phenyl-1,3,4-oxadiazole (PBD), 1,2,4-triazole derivatives (such as TAZ, etc.) or N-arylbenzimidazole (TPBi),
  • Bphen 4,7-diphenyl-1,10-phenanthroline
  • Alq 3 8-hydroxyquinoline aluminum
  • PBD 2-(4-biphenyl)-5- (4-tert-butyl)phenyl-1,3,4-oxadiazole
  • TAZ 1,2,4-triazole derivatives
  • TABi N-arylbenzimidazole
  • the material of the electron injecting layer is preferably lithium fluoride (LiF), cesium fluoride (CsF) or lithium octahydroxyquinolate (Liq)
  • the electron injecting layer has a thickness of 0.5 to 2 nm; the material of the cathode layer is preferably an Al, Ag or Mg-Ag alloy layer having a thickness of 100 to 200 nm.
  • the invention also provides a manufacturing method of a flexible organic electroluminescent device, comprising the following steps:
  • the substrate ie, the polymer film
  • the substrate is ultrasonically cleaned in deionized water containing detergent, washed with deionized water, then treated with isopropyl alcohol, acetone in ultrasonic, and then dried with nitrogen. ;
  • the UV glue on the surface of the polymer film, and then use UV.
  • the lamp or UV lamp is cured to form a buffer layer; wherein the speed of the homogenizer is 1000-5000 rpm, and the glue time is 30-120 seconds.
  • the ZnS layer, the Ag layer, and the MoO 3 layer are sequentially deposited on the surface of the buffer layer by vacuum coating to obtain a multilayer composite anode layer of ZnS/Ag/MoO 3 .
  • a hole injection layer, a hole transport layer, a light-emitting layer, an electron transport layer, an electron injection layer, and a cathode are sequentially deposited on the anode layer by vacuum evaporation; finally, a flexible organic electroluminescent device is obtained.
  • the invention adopts the vacuum coating technology, and the prepared ZnS/Ag/MoO 3 multi-layer composite structure is used as the anode layer, the preparation process is simple, the damage to the substrate is small, and the anode layer has good light transmission performance and low surface resistance; By inserting the buffer layer, the bonding force between the anode and the substrate is strengthened, so that the manufactured flexible organic electroluminescent device has good flexural performance, stable luminescent performance, and high luminous efficiency.
  • FIG. 1 is a schematic structural view of a flexible organic electroluminescent device of the present invention
  • FIG. 2 is a flow chart of a preparation process of a flexible organic electroluminescent device of the present invention
  • Example 3 is a transmittance curve of the ZnS/Ag/MoO 3 anode layer prepared in Example 2 and Comparative Example 1 for forming an ITO anode layer;
  • Example 4 is a comparison diagram of the luminance of the light-emitting device and the initial luminance after the plurality of bending of the light-emitting device fabricated in Example 2 and Comparative Example 1;
  • Fig. 5 is a graph showing current-voltage curves of the light-emitting devices fabricated in Example 2 and Comparative Example 1.
  • the present invention provides a flexible organic electroluminescent device.
  • the flexible organic electroluminescent device has a layered structure, which is sequentially: substrate 101 / buffer layer 102 / anode layer 103 / Hole injection layer 104 / hole transport layer 105 / light emitting layer 106 / electron transport layer 107 / electron injection layer 108 / cathode layer 109; wherein the anode layer is a multilayer composite structure, the multilayer composite structure is ZnS103a / Ag103b / Multilayer structure of MoO 3 103c.
  • the organic electroluminescent device provided by the present invention comprises a substrate material comprising polyethylene terephthalate (PET), polyethersulfone. (PES), polyethylene naphthalate (PEN), transparent polyimide (PI) cyclic olefin copolymer (COC), polycarbonate (PC), polyethylene (PE)
  • PET polyethylene terephthalate
  • PEN polyethersulfone
  • PEN polyethylene naphthalate
  • PI transparent polyimide
  • COC cyclic olefin copolymer
  • PC polycarbonate
  • PE polyethylene
  • the selected material has a transmittance of visible light of >80% and a thickness of 0.1-0.5 mm.
  • the buffer layer on the substrate is made of UV glue, and the buffer layer can be 0.5-10 ⁇ m thick.
  • the multilayer structure of the anode is all prepared by an evaporation process. Specifically, the thickness of the ZnS layer is selected from 35 to 80 nm, and the thickness of the Ag layer is selected from 18 to 30 nm. The thickness of the MoO 3 layer is selected from 3-10 nm.
  • the multilayer anode structure utilizes the principle of anti-reflection in a heat mirror, so that the prepared anode layer has high visible light transmittance and low surface resistance. In order to improve the hole injecting property of the anode layer, MoO 3 having a hole injecting ability is employed as a part of the multilayer anode for reducing the injection barrier of holes.
  • the flexible organic electroluminescent device provided by the invention has various functional layers, such as:
  • the material of the hole injection layer is copper phthalocyanine (CuPc), 4,4',4'-tris(N-3-methylphenyl-N-phenyl -Amino)-triphenylamine (m-MTDATA), the hole injection layer has a thickness of 30-40 nm;
  • the material of the hole transport layer is phenyl phenanthrene (NPB), N, N'-bis(3-methylphenyl)-N, N'- Diphenyl-4,4'-biphenyldiamine (TPD), 1,3,5-triphenylbenzene (TDAPB), the hole transport layer has a thickness of 30-80 nm;
  • the material of the luminescent layer is 4,4'-bis(9-carbazole)biphenyl doped tris(2-phenylpyridine) ruthenium (ie Ir(ppy) 3 :CBP ), DCJTB:Alq 3 or ⁇ -NPD: Ir(MDQ) 2 (acac), the thickness of the luminescent layer is 15-40 nm;
  • the material of the electron transport layer is 4,7-diphenyl-1,10-phenanthroline (Bphen), 8-hydroxyquinoline aluminum (Alq 3 ), 2-(4-biphenyl)-5- (4-tert-butyl)phenyl-1,3,4-oxadiazole (PBD), 1,2,4-triazole derivatives (such as TAZ, etc.) or N-arylbenzimidazole (TPBi),
  • Bphen 4,7-diphenyl-1,10-phenanthroline
  • Alq 3 8-hydroxyquinoline aluminum
  • PBD 2-(4-biphenyl)-5- (4-tert-butyl)phenyl-1,3,4-oxadiazole
  • TAZ 1,2,4-triazole derivatives
  • TABi N-arylbenzimidazole
  • the material of the electron injecting layer is preferably lithium fluoride (LiF), cesium fluoride (CsF) or lithium octahydroxyquinolate (Liq)
  • the thickness of the electron injecting layer is 0.5-2 nm;
  • the material of the cathode layer is preferably an Al, Ag or Mg-Ag alloy layer having a thickness of 100 - 200 nm. .
  • the invention also provides a manufacturing method of a flexible organic electroluminescent device, as shown in FIG. 2, which comprises the following steps:
  • the substrate ie, the polymer film
  • the substrate is ultrasonically cleaned in deionized water containing detergent, washed with deionized water, then treated with isopropyl alcohol, acetone in ultrasonic, and then dried with nitrogen. ;
  • S3, a ZnS layer, an Ag layer, and a MoO 3 layer are sequentially deposited on the surface of the buffer layer by a vacuum plating method to obtain a multilayer composite anode layer of ZnS/Ag/MoO 3 .
  • a hole injection layer, a hole transport layer, a light-emitting layer, an electron transport layer, an electron injection layer, and a cathode are sequentially deposited on the anode layer by vacuum evaporation; finally, a flexible organic electroluminescent device is obtained.
  • the invention adopts the vacuum coating technology, and the prepared ZnS/Ag/MoO 3 multi-layer composite structure is used as the anode layer, the preparation process is simple, the damage to the substrate is small, and the anode layer has good light transmission performance and low surface resistance; By inserting the buffer layer, the bonding force between the anode and the substrate is strengthened, so that the manufactured flexible organic electroluminescent device has good flexural performance, stable luminescent performance, and high luminous efficiency.
  • a flexible organic electroluminescent device is a layered structure, and the layered structure is in turn:
  • PET/UV adhesive / ZnS/Ag/MoO 3 /m-MTDATA/NPB/Ir(ppy) 3 CBP/TPBi/LiF/Mg-Ag.
  • the preparation process of the flexible organic electroluminescent device is as follows:
  • PEN with a thickness of 0.1 mm
  • the film is ultrasonically cleaned in deionized water containing detergent, washed with deionized water, then treated with isopropyl alcohol, acetone in ultrasonic, and then dried with nitrogen;
  • the speed of the homogenizer is 1000 rpm at PEN.
  • the surface of the film was spin-coated with a layer of 0.5 ⁇ m UV glue as a flat layer. After 120 seconds of homogenization, it was cured by UV lamp to form a buffer layer.
  • a ZnS layer having a thickness of 35 nm, an Ag layer having a thickness of 18 nm, and a MoO 3 layer having a thickness of 10 nm are sequentially deposited on the surface of the buffer layer.
  • a hole injection layer, a hole transporting layer, a light emitting layer, an electron transporting layer, an electron injecting layer, and a cathode layer were vapor-deposited on the MoO 3 layer in this order, and the thicknesses were 35 mm, 30 mm, 40 mm, 20 mm, 0.5 mm, and 150 mm in this order.
  • a flexible organic electroluminescent device is a layered structure, and the layered structure is: PET/UV glue/ZnS/Ag/MoO 3 / CuPc / TPD / DCJTB: Alq 3 / Bphen / CsF / Ag.
  • the preparation process of the flexible organic electroluminescent device is as follows:
  • PET with a thickness of 0.175 mm
  • the film is ultrasonically cleaned in deionized water containing detergent, washed with deionized water, then treated with isopropyl alcohol, acetone in ultrasonic, and then dried with nitrogen;
  • the PET film is placed on the homogenizer to start the homogenizer, and the speed of the homogenizer is 5000 rpm, at PEN.
  • the surface of the film is spin-coated with a layer of 5 ⁇ m UV glue as a flat layer. After 30 seconds of homogenization, it is cured by UV lamp to form a buffer layer.
  • a ZnS layer having a thickness of 45 nm, an Ag layer having a thickness of 20 nm, and a MoO 3 layer having a thickness of 5 nm were sequentially deposited on the surface of the buffer layer to form an anode layer. ;;
  • a hole injection layer (CuPc), a hole transport (TPD), a light-emitting layer (DCJTB: Alq 3 ), an electron transport layer (Bphen), an electron injection layer (CsF), and a cathode layer are sequentially deposited on the MoO 3 layer. (Ag), and the thickness is 30mm, 80mm, 15mm, 60mm, 1mm and 100mm in order.
  • a flexible organic electroluminescent device having a layered structure, the order of which is: PES/UV glue / ZnS/Ag/MoO 3 /m-MTDATA/ TDAPB / ⁇ -NPD:Ir(MDQ) 2 ( Acac) / Alq 3 /LiF/Al.
  • the preparation process of the flexible organic electroluminescent device is as follows:
  • a PES with a thickness of 0.2 mm The film is ultrasonically cleaned in deionized water containing detergent, washed with deionized water, then treated with isopropyl alcohol, acetone in ultrasonic, and then dried with nitrogen;
  • the speed of the homogenizer is 4000 rpm, at PEN.
  • the surface of the film is spin-coated with a layer of 1 ⁇ m UV glue as a flat layer. After 70 seconds of curing time, it is cured by UV lamp to form a buffer layer.
  • a ZnS layer having a thickness of 80 nm, an Ag layer having a thickness of 30 nm, and a MoO 3 layer having a thickness of 3 nm were sequentially deposited on the surface of the buffer layer to form an anode layer. ;
  • a hole injection layer (m-MTDATA), a hole transport (TDAPB), a light-emitting layer ( ⁇ -NPD: Ir(MDQ) 2 (acac)), and an electron transport layer (Alq 3 ) are sequentially deposited on the MoO 3 layer.
  • a hole injection layer (m-MTDATA), a hole transport (TDAPB), a light-emitting layer ( ⁇ -NPD: Ir(MDQ) 2 (acac)
  • an electron transport layer Alq 3
  • the thicknesses are 40 mm, 60 mm, 40 mm, 40 mm, 2 mm, and 200 mm, respectively.
  • a flexible organic electroluminescent device having a layered structure, the order of which is: COC/UV glue /ZnS/Ag/MoO 3 /m-MTDATA/NPB/Ir(ppy) 3 :CBP/ PBD / LiF/Mg-Ag.
  • the preparation process of the flexible organic electroluminescent device is as follows:
  • COC with a thickness of 0.5 mm
  • the film is ultrasonically cleaned in deionized water containing detergent, washed with deionized water, then treated with isopropyl alcohol, acetone in ultrasonic, and then dried with nitrogen;
  • the speed of the homogenizer is 3000 rpm, at PEN.
  • the surface of the film is spin-coated with a layer of 10 ⁇ m UV glue as a flat layer. After 80 seconds of curing time, it is cured by UV lamp to form a buffer layer.
  • a surface of a 60 nm ZnS layer, an Ag layer having a thickness of 25 nm, and a MoO 3 layer having a thickness of 6 nm are sequentially deposited on the surface thereof to form an anode layer;
  • a hole injection layer (m-MTDATA), a hole transport (NPB), a light-emitting layer (Ir(ppy) 3 : CBP ), an electron transport layer ( PBD ), and an electron injection layer are deposited on the MoO 3 layer in this order.
  • LiF and the cathode layer (Al), and the thicknesses are 38 mm, 70 mm, 25 mm, 50 mm, 1.5 mm, and 120 mm, respectively.
  • a flexible organic electroluminescent device having a layered structure, the order of which is: PC/UV glue / ZnS / Ag / MoO 3 / m-MTDATA / NPB / Ir (ppy) 3 : CBP / TAZ / LiF/Mg-Ag.
  • the preparation process of the flexible organic electroluminescent device is as follows:
  • a PC with a thickness of 0.4 mm The film is ultrasonically cleaned in deionized water containing detergent, washed with deionized water, then treated with isopropyl alcohol, acetone in ultrasonic, and then dried with nitrogen;
  • the speed of the homogenizer is 2000 rpm, at PEN.
  • the surface of the film is spin-coated with a layer of 7 ⁇ m UV glue as a flat layer. After 50 seconds of curing time, it is cured by UV lamp to form a buffer layer.
  • a thickness of 70 nm ZnS layer, a thickness of 20 nm, and a thickness of 8 nm of MoO 3 layer are sequentially deposited on the surface of the buffer layer;
  • a hole injection layer (m-MTDATA), a hole transport (NPB), a light-emitting layer (Ir(ppy) 3 : CBP ), an electron transport layer (TAZ ), and an electron injection layer are deposited on the MoO 3 layer in this order.
  • LiF and the cathode layer (Al), and the thicknesses are 30 mm, 50 mm, 25 mm, 30 mm, 1.5 mm, and 180 mm, respectively.
  • a flexible organic electroluminescent device is a layered structure, and the layered structure is in turn:
  • the preparation process of the flexible organic electroluminescent device is as follows:
  • a PE with a thickness of 0.3 mm The film is ultrasonically cleaned in deionized water containing detergent, washed with deionized water, then treated with isopropyl alcohol, acetone in ultrasonic, and then dried with nitrogen;
  • the speed of the homogenizer is 4000 rpm, at PEN.
  • the surface of the film is spin-coated with a layer of 3 ⁇ m UV glue as a flat layer. After 100 seconds of curing time, it is cured by UV lamp to form a buffer layer.
  • a 45 nm thick ZnS layer, a 22 nm thick Ag layer, and a 4 nm thick MoO 3 layer are sequentially deposited on the surface of the buffer layer;
  • a hole injection layer (m-MTDATA), a hole transport (NPB), a light-emitting layer ( ⁇ -NPD: Ir(MDQ) 2 (acac)), and an electron transport layer (TAZ) are deposited on the MoO 3 layer in this order.
  • the electron injecting layer (LiF) and the cathode layer (Al) are sequentially 30 mm, 50 mm, 25 mm, 30 mm, 1.5 mm, and 180 mm in thickness.
  • An organic electroluminescent device having a layered structure, the order of which is: PET/ITO/m-MTDATA/NPB/Ir(ppy) 3 : CBP/TPBi/LiF/Mg-Ag; wherein There is no buffer layer in the device, and the anode layer is an ITO (Indium Tin Oxide) conductive layer, and the other functional layers are the same as in Embodiment 2.
  • PET/ITO/m-MTDATA/NPB/Ir(ppy) 3 CBP/TPBi/LiF/Mg-Ag
  • ITO Indium Tin Oxide
  • the preparation process of the organic electroluminescent device is as follows:
  • a PET film having a thickness of 0.175 mm was ultrasonically washed in deionized water containing detergent, washed with deionized water, sequentially treated with isopropyl alcohol, acetone in ultrasonic waves, and then dried with nitrogen.
  • a ITO (Indium Tin Oxide) conductive film with a thickness of 120 nm was prepared by sputtering on the surface of PET film by magnetron sputtering system, and then steamed on the surface in a coating system with a vacuum of 5 ⁇ 10 -4 Pa.
  • a hole injection layer (m-MTDATA), hole transport (NPB), light-emitting layer (Ir(ppy) 3 :CBP), electron transport layer (TPBi), electron injection layer (LiF) and cathode layer (Mg-Ag) .
  • the ZnS/Ag/MoO 3 anode prepared in Example 2 had a good transmittance, and the anode prepared in Example 2 had a transmittance in visible light of 83.8%, and the ITO anode prepared in Comparative Example 1 The transmission rate of 84.2% is almost the same.
  • the ZnS/Ag/MoO 3 anode fabricated in Example 2 has a good bonding force with the substrate, and after repeated bending, the luminescent property is relatively stable, and the ITO anode is easily lining after repeated bending. The bottom falls off, resulting in a decrease in luminescent properties.
  • the ZnS/Ag/MoO 3 anode fabricated in Example 2 has good hole injecting properties, and the carrier injection performance of the fabricated device is similar to that of the device fabricated using ITO as an anode, so that it can be obtained. Good electroluminescence effect.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种柔性有机电致发光器件及其制备方法,包括依次层叠的如下结构:衬底(101)/阳极层(103)/空穴注入层(104)/空穴传输层(105)/发光层(106)/电子传输层(107)/电子注入层(108)/阴极层(109),其还具有在衬底(101)与阳极层(103)之间的缓冲层(102);阳极层(103)为多层复合结构,该多层复合结构为ZnS/Ag/MoO3的多层结构。通过插入缓冲层(102),加强了阳极层(103)与衬底(101)之间的结合力,使得柔性有机电致发光器件具有挠曲性能好,发光性能稳定,发光效率高。

Description

一种柔性有机电致发光器件及其制备方法
技术领域
本发明涉及光电子器件领域,尤其涉及一种柔性有机电致发光器件。本发明还涉及该柔性有机电致发光器件的制备方法。
背景技术
有机电致发光 (Organic Light Emission Diode),以下简称OLED,具有亮度高、材料选择范围宽、驱动电压低、全固化主动发光等特性,同时拥有高清晰、广视角,以及响应速度快等优势,符合信息时代移动通信和信息显示的发展趋势,以及绿色照明技术的要求,是目前国内外众多研究者的关注重点。
在现有技术的 OLED 器件中,使用玻璃衬底制作的 OLED 器件不具备弯曲的特点,而且玻璃易碎,对发光器件的应用造成了影响。采用柔性材料作为衬底的 OLED 器件,比玻璃衬底的 OLED 具有更轻薄、更耐冲击的优点。并且柔性 OLED 的制备可以采用卷对卷方式生产,从而大幅地降低制造成本。目前柔性显示衬底主要有超薄玻璃,聚合物薄膜、金属薄片等。
通常采用聚合物薄膜作为衬底制作的阳极,是在其表面通过溅射工艺覆盖一层透明导电薄膜如ITO,IZO等材料,然而这些导电薄膜在柔性OLED的应用上也存在诸多难以克服的问题。例如在制备ITO薄膜的过程中,各种元素如铟(In),(Sn)的掺杂比例组成不易控制,导致ITO薄膜的形貌,载流子和传输性能难以控制,从而导致发光器件的性能不稳定。其次,在柔性衬底上制备ITO等导电薄膜时,由于聚合物薄膜的耐热性能不佳,制备导电薄膜通常采用低温溅射技术,所制备的导电薄膜表面电阻高,薄膜与衬底的结合力不强,使得柔性OLED在反复弯曲的过程中容易发生导电薄膜从衬底脱落的情况,影响OLED发光装置的发光稳定性。
发明内容
本发明的目的在于提供一种挠曲性能好、发光性能稳定,且发光效率高的柔性有机电致发光器件。
本发明的技术方案:
一种柔性有机电致发光器件,该柔性有机电致发光器件为层状结构,该层状结构依次为:衬底/阳极层/空穴注入层/空穴传输层 /发光层/电子传输层/电子注入层/阴极层;其中,在所述衬底与阳极层之间,还制备有一层缓冲层;所述阳极为多层复合结构,该多层复合结构为ZnS/Ag/MoO3的多层结构。
本发明提供的 柔性 有机电致发光器件,其采用的衬底 材料 包括,聚对苯二甲酸乙二醇酯 (PET) ,聚醚砜 (PES) ,聚萘二甲酸乙二醇酯 (PEN) ,透明聚酰亚胺 (PI) 环烯烃共聚物 (COC) ,聚碳酸酯 (PC) ,聚乙烯 (PE) 等材料,所选材料在可见光的透过率 >80% ,厚度可选自 0.1-0.5mm 之间。
位于衬底上的缓冲层是采用 UV 胶制作而成,缓冲层的厚度可以为 0.5-10 μm 。
本发明提供的 柔性 有机电致发光器件,阳极的多层结构全部采用蒸镀工艺制备。具体地, ZnS 层 的厚度选自 35-80nm , Ag 层 的厚度选择 18-30nm 。 MoO3 层 的厚度选自 3-10nm 。 该 多层阳极结构,利用了热镜中的增透原理,因此制备的阳极 层 在可见光透过率高,同时表面电阻较低。为了提高阳极 层 的空穴注入性能,采用具有空穴注入能力的 MoO3 作为多层阳极的一部分,用于降低空穴的注入势垒。
本发明提供的柔性有机电致发光器件,空穴注入层的材料 为 酞菁铜 (CuPc) 、 4,4',4'- 三 (N-3- 甲基苯基 -N- 苯基 - 氨基 )- 三苯基胺 (m-MTDATA) ,该空穴注入层的厚度为 30-40nm ;
所述空穴传输层的材料为 苯基吗琳 (NPB) 、 N,N'- 二 (3- 甲基苯基 )-N,N'- 二苯基 -4,4'- 联苯二胺 (TPD) 、 1,3,5- 三苯基苯 (TDAPB) ,该空穴传输层的厚度为 30-80nm ;
所述发光层的材料为 4,4'- 二( 9- 咔唑)联苯掺杂三( 2- 苯基吡啶)合铱(即 Ir(ppy)3:CBP ), DCJTB:Alq3 或 α-NPD:Ir(MDQ)2(acac) ,该发光层的厚度为 15-40 nm ;
所述电子传输层的材料为 4,7- 二苯基 -1,10- 菲罗啉 (Bphen) 、 8- 羟基喹啉铝 (Alq3) 、 2-(4- 联苯基 )-5-(4- 叔丁基 ) 苯基 -1,3,4-恶二唑 (PBD) 、 1,2,4- 三唑衍生物(如 TAZ 等)或 N- 芳基苯并咪唑 (TPBi) ,该电子传输层的厚度为 20-60 nm ;
所述电子注入层的材料优选为氟化锂( LiF )、氟化铯( CsF )或八羟基喹啉锂( Liq ),该电子注入层的厚度为 0.5-2nm ; 所述阴极层的材料优选为Al、Ag或Mg-Ag合金层,该阴极层厚度为100 -200nm。
本发明还提供一种柔性有机电致发光器件的制作方法,其包括以下步骤:
1 、将衬底(即聚合物薄膜)放在含有洗涤剂的去离子水中进行超声清洗,用去离子水清洗干净后依次用异丙醇,丙酮在超声波中处理,然后在用氮气吹干,备用;
2 、将清洗干净的聚合物薄膜置入匀胶机上,将 UV 胶旋涂在聚合物薄膜表面,然后采用 UV 灯或紫外灯进行固化,形成一层缓冲层;其中,匀胶机的转速在 1000-5000 转 / 分,匀胶时间 30-120 秒。
3 、利用真空镀膜的方法,依次在缓冲层表面蒸镀 ZnS 层、 Ag 层、 MoO3 层,得到 ZnS/Ag/MoO3 的多层复合结构阳极层。
4 、利用真空蒸镀的方法在阳极层上依次蒸镀空穴注入层、空穴传输层、发光层、电子传输层、电子注入层和阴极;最后制得柔性有机电致发光器件。
本发明采用真空镀膜技术,制备的ZnS/Ag/MoO3多层复合结构作为阳极层,其制作过程简单,对衬底的破坏小,且该阳极层透光性能好,表面电阻低;同时,通过插入缓冲层,加强了阳极与衬底之间的结合力,使得制作的柔性有机电致发光器件,挠曲性能好,发光性能稳定,发光效率高。
附图说明
图 1 为本发明柔性有机电致发光器件的结构示意图;其中,
101 衬底、 102 缓冲层、 103 阳极、 104 空穴注入层、 105 空穴传输层、 106 发光层 、 107 电子传输层、 108 电子注入层、 109 阴极 ;
图 2 为本发明柔性有机电致发光器件的制备工艺流程图;
图 3 为 实施例 2 制作的 ZnS/Ag/MoO3 阳极层和对比例 1 制作 ITO 阳极层的透过率曲线 ;
图 4 为 实施例 2 和对比例1制作的发光装置在经过多次弯曲后,发光亮度与起始亮度的比较图;
图 5 为实施例 2 和对比例1制作的发光装置的电流-电压曲线。
具体实施方式
本发明提供的一种柔性有机电致发光器件,如图 1 所示,该柔性有机电致发光器件为层状结构,该层状结构依次为:衬底 101/ 缓冲层 102/ 阳极层 103/ 空穴注入层 104/ 空穴传输层 105/ 发光层 106/ 电子传输层 107/ 电子注入层 108/ 阴极层 109 ;其中,阳极层为多层复合结构,该多层复合结构为 ZnS103a/Ag103b/MoO3103c 的多层结构。
本发明提供的有机电致发光器件,其采用的衬底 材料 包括,聚对苯二甲酸乙二醇酯 (PET) ,聚醚砜 (PES) ,聚萘二甲酸乙二醇酯 (PEN) ,透明聚酰亚胺 (PI) 环烯烃共聚物 (COC) ,聚碳酸酯 (PC) ,聚乙烯 (PE) 等材料,所选材料在可见光的透过率 >80% ,厚度可选自 0.1-0.5mm 之间。
位于衬底上的缓冲层是采用 UV 胶制作而成,缓冲层的厚度可以为 0.5-10 μm 。
本发明提供的 柔性 有机电致发光器件,阳极的多层结构全部采用蒸镀工艺制备。具体地, ZnS 层 的厚度选自 35-80nm , Ag 层 的厚度选择 18-30nm 。 MoO3 层 的厚度选自 3-10nm 。 该 多层阳极结构,利用了热镜中的增透原理,因此制备的阳极 层 在可见光透过率高,同时表面电阻较低。为了提高阳极 层 的空穴注入性能,采用具有空穴注入能力的 MoO3 作为多层阳极的一部分,用于降低空穴的注入势垒。
本发明提供的柔性有机电致发光器件,其各功能层,如:
空穴注入层的材料 为 酞菁铜 (CuPc) 、 4,4',4'- 三 (N-3- 甲基苯基 -N- 苯基 - 氨基 )- 三苯基胺 (m-MTDATA) ,该空穴注入层的厚度为 30-40nm ;
所述空穴传输层的材料为 苯基吗琳 (NPB) 、 N,N'- 二 (3- 甲基苯基 )-N,N'- 二苯基 -4,4'- 联苯二胺 (TPD) 、 1,3,5- 三苯基苯 (TDAPB) ,该空穴传输层的厚度为 30-80nm ;
所述发光层的材料为 4,4'- 二( 9- 咔唑)联苯掺杂三( 2- 苯基吡啶)合铱(即 Ir(ppy)3:CBP ), DCJTB:Alq3 或 α-NPD:Ir(MDQ)2(acac) ,该发光层的厚度为 15-40 nm ;
所述电子传输层的材料为 4,7- 二苯基 -1,10- 菲罗啉 (Bphen) 、 8- 羟基喹啉铝 (Alq3) 、 2-(4- 联苯基 )-5-(4- 叔丁基 ) 苯基 -1,3,4- 恶二唑 (PBD) 、 1,2,4- 三唑衍生物(如 TAZ 等)或 N- 芳基苯并咪唑 (TPBi) ,该电子传输层的厚度为 20-60 nm ;
所述电子注入层的材料优选为氟化锂( LiF )、氟化铯( CsF )或八羟基喹啉锂( Liq ),该电子注入层的厚度为 0.5-2nm ;
所述阴极层的材料优选为 Al 、 Ag 或 Mg-Ag 合金层,该阴极层厚度为 100 -200nm 。
本发明还提供一种柔性有机电致发光器件的制作方法,如图 2 所示,其包括以下步骤:
S1 、将衬底(即聚合物薄膜)放在含有洗涤剂的去离子水中进行超声清洗,用去离子水清洗干净后依次用异丙醇,丙酮在超声波中处理,然后在用氮气吹干,备用;
S2 、将清洗干净的聚合物薄膜置入匀胶机上,将 UV 胶旋涂在聚合物薄膜表面,然后采用 UV 灯或紫外灯进行固化,形成一层缓冲层;其中,匀胶机的转速在 1000-5000 转 / 分,匀胶时间 30-120 秒。
S3 、利用真空镀膜的方法,依次在缓冲层表面蒸镀 ZnS 层、 Ag 层、 MoO3 层,得到 ZnS/Ag/MoO3 的多层复合结构阳极层。
S4 、利用真空蒸镀的方法在阳极层上依次蒸镀空穴注入层、空穴传输层、发光层、电子传输层、电子注入层和阴极;最后制得柔性有机电致发光器件。
本发明采用真空镀膜技术,制备的ZnS/Ag/MoO3多层复合结构作为阳极层,其制作过程简单,对衬底的破坏小,且该阳极层透光性能好,表面电阻低;同时,通过插入缓冲层,加强了阳极与衬底之间的结合力,使得制作的柔性有机电致发光器件,挠曲性能好,发光性能稳定,发光效率高。
下面结合附图,对本发明的较佳实施例作进一步详细说明。
实施例 1
一种柔性有机电致发光器件,为层状结构,该层状结构的依次为:
PET/UV 胶 / ZnS/Ag/MoO3/m-MTDATA/NPB/Ir(ppy)3:CBP/TPBi/LiF/Mg-Ag 。
该柔性有机电致发光器件的制备工艺如下:
首先,将厚度为 0.1 mm 的 PEN 薄膜放在含有洗涤剂的去离子水中进行超声清洗,用去离子水清洗干净后依次用异丙醇,丙酮在超声波中处理,然后在用氮气吹干;
接着,将 PEN 薄膜放置在匀胶机上,启动匀胶机,且该匀胶机的转速在 1000 转 / 分,在 PEN 薄膜表面旋涂一层厚度为 0.5 μm UV 胶作为平整层,匀胶时间 120 秒后,采用 UV 灯固化,形成缓冲层;
随后,在真空度为 5×10-4Pa 的镀膜系统中,在缓冲层表面依次蒸镀厚度为 35 nm 的 ZnS 层,厚度为 18 nm 的 Ag 层,厚度为 10 nm 的 MoO3 层,形成阳极层;
最后,依次在 MoO3 层上面蒸镀空穴注入层、空穴传输、发光层、电子传输层、电子注入层和阴极层,且厚度依次为 35mm 、 30mm 、 40mm 、 20mm 、 0.5mm 以及 150mm 。
实施例 2
一种柔性有机电致发光器件,为层状结构,该层状结构的依次为: PET/UV 胶 / ZnS/Ag/MoO3/ CuPc / TPD / DCJTB:Alq3/ Bphen / CsF / Ag 。
该柔性有机电致发光器件的制备工艺如下:
首先,将厚度为 0.175 mm 的 PET 薄膜放在含有洗涤剂的去离子水中进行超声清洗,用去离子水清洗干净后依次用异丙醇,丙酮在超声波中处理,然后在用氮气吹干;
其次,将 PET 薄膜放置在匀胶机上,启动匀胶机,且该匀胶机的转速在 5000 转 / 分,在 PEN 薄膜表面旋涂一层厚度为 5 μm UV 胶作为平整层,匀胶时间 30 秒后,采用 UV 灯固化,形成缓冲层;
随后,在真空度为 5×10-4Pa 的镀膜系统中,在缓冲层表面依次蒸镀厚度为 45nm 的 ZnS 层,厚度为 20 nm 的 Ag 层,厚度为 5nm 的 MoO3 层,形成阳极层;;
最后,依次在 MoO3 层上面蒸镀空穴注入层( CuPc ) 、空穴传输( TPD ) 、发光层( DCJTB:Alq3 )、电子传输层( Bphen )、电子注入层( CsF )和阴极层( Ag ),且厚度依次为 30mm 、 80mm 、 15mm 、 60mm 、 1mm 以及 100mm 。
实施例 3
一种柔性有机电致发光器件,为层状结构,该层状结构的依次为: PES/UV 胶 / ZnS/Ag/MoO3/m-MTDATA/ TDAPB /α-NPD:Ir(MDQ)2(acac)/ Alq3 /LiF/Al 。
该柔性有机电致发光器件的制备工艺如下:
首先,将厚度为 0.2 mm 的 PES 薄膜放在含有洗涤剂的去离子水中进行超声清洗,用去离子水清洗干净后依次用异丙醇,丙酮在超声波中处理,然后在用氮气吹干;
接着,将 PES 薄膜放置在匀胶机上,启动匀胶机,且该匀胶机的转速在 4000 转 / 分,在 PEN 薄膜表面旋涂一层厚度为 1 μm UV 胶作为平整层,匀胶时间 70 秒后,采用 UV 灯固化,形成缓冲层;
随后,在真空度为 5×10-4Pa 的镀膜系统中,在缓冲层表面依次蒸镀厚度为 80 nm ZnS 层,厚度为 30 nm 的 Ag 层,厚度为 3nm 的 MoO3 层,形成阳极层;
最后,依次在MoO3层上面蒸镀空穴注入层(m-MTDATA)、空穴传输(TDAPB)、发光层(α-NPD:Ir(MDQ)2(acac))、电子传输层(Alq3)、电子注入层(LiF)和阴极层(Al),且厚度依次为40mm、60mm、40mm、40mm、2mm以及200mm。
实施例 4
一种柔性有机电致发光器件,为层状结构,该层状结构的依次为: COC/UV 胶 /ZnS/Ag/MoO3/m-MTDATA/NPB/Ir(ppy)3:CBP/ PBD /LiF/Mg-Ag 。
该柔性有机电致发光器件的制备工艺如下:
首先,将厚度为 0.5 mm 的 COC 薄膜放在含有洗涤剂的去离子水中进行超声清洗,用去离子水清洗干净后依次用异丙醇,丙酮在超声波中处理,然后在用氮气吹干;
接着,将 COC 薄膜放置在匀胶机上,启动匀胶机,且该匀胶机的转速在 3000 转 / 分,在 PEN 薄膜表面旋涂一层厚度为 10 μm UV 胶作为平整层,匀胶时间 80 秒后,采用 UV 灯固化,形成缓冲层;
随后,在真空度为 5×10-4Pa 的镀膜系统中,在其表面依次蒸镀厚度为 60 nm ZnS 层,厚度为 25 nm 的 Ag 层,厚度为 6nm 的 MoO3 层,形成阳极层;
最后,依次在 MoO3 层上面蒸镀空穴注入层( m-MTDATA ) 、空穴传输( NPB ) 、发光层( Ir(ppy)3:CBP )、电子传输层( PBD )、电子注入层( LiF )和阴极层( Al ),且厚度依次为 38mm 、 70mm 、 25mm 、 50mm 、 1.5mm 以及 120mm 。
实施例 5
一种柔性有机电致发光器件,为层状结构,该层状结构的依次为: PC/UV 胶 / ZnS/Ag/MoO3/m-MTDATA/NPB/Ir(ppy)3:CBP/ TAZ /LiF/Mg-Ag 。
该柔性有机电致发光器件的制备工艺如下:
首先,将厚度为 0.4 mm 的 PC 薄膜放在含有洗涤剂的去离子水中进行超声清洗,用去离子水清洗干净后依次用异丙醇,丙酮在超声波中处理,然后在用氮气吹干;
接着,将 PC 薄膜放置在匀胶机上,启动匀胶机,且该匀胶机的转速在 2000 转 / 分,在 PEN 薄膜表面旋涂一层厚度为 7 μm UV 胶作为平整层,匀胶时间 50 秒后,采用 UV 灯固化,形成缓冲层;
随后,在真空度为 5×10-4Pa 的镀膜系统中,在缓冲层表面依次蒸镀厚度为 70 nm ZnS 层,厚度为 20 nm 的 Ag 层,厚度为 8nm 的 MoO3 层;
最后,依次在 MoO3 层上面蒸镀空穴注入层( m-MTDATA ) 、空穴传输( NPB ) 、发光层( Ir(ppy)3:CBP )、电子传输层( TAZ )、电子注入层( LiF )和阴极层( Al ),且厚度依次为 30mm 、 50mm 、 25mm 、 30mm 、 1.5mm 以及 180mm 。
实施例 6
一种柔性有机电致发光器件,为层状结构,该层状结构的依次为:
PE/UV 胶 / ZnS/Ag/MoO3/m-MTDATA/NPB/α-NPD:Ir(MDQ)2(acac)/TPBi/LiF/Mg-Ag 。
该柔性有机电致发光器件的制备工艺如下:
首先,将厚度为 0.3 mm 的 PE 薄膜放在含有洗涤剂的去离子水中进行超声清洗,用去离子水清洗干净后依次用异丙醇,丙酮在超声波中处理,然后在用氮气吹干;
接着,将 PE 薄膜放置在匀胶机上,启动匀胶机,且该匀胶机的转速在 4000 转 / 分,在 PEN 薄膜表面旋涂一层厚度为 3 μm UV 胶作为平整层,匀胶时间 100 秒后,采用 UV 灯固化,形成缓冲层;
随后,在真空度为 5×10-4Pa 的镀膜系统中,在缓冲层表面依次蒸镀厚度为 45 nm ZnS 层,厚度为 22 nm 的 Ag 层,厚度为 4nm 的 MoO3 层;
最后,依次在 MoO3 层上面蒸镀空穴注入层( m-MTDATA ) 、空穴传输( NPB ) 、发光层( α-NPD:Ir(MDQ)2(acac) )、电子传输层( TAZ )、电子注入层( LiF )和阴极层( Al ),且厚度依次为 30mm 、 50mm 、 25mm 、 30mm 、 1.5mm 以及 180mm 。
对比例 1
一种有机电致发光器件,为层状结构,该层状结构的依次为: PET/ ITO/m-MTDATA/NPB/Ir(ppy)3:CBP/TPBi/LiF/Mg-Ag ;其中,该器件中没有缓冲层,且阳极层为 ITO (氧化铟锡)导电层,其他各功能层与实施例 2 一样。
该有机电致发光器件的制备工艺如下:
将厚度为 0.175 mm 的 PET 薄膜放在含有洗涤剂的去离子水中进行超声清洗,用去离子水清洗干净后依次用异丙醇,丙酮在超声波中处理,然后在用氮气吹干。采用磁控溅射系统, PET 薄膜表面溅射制备一层厚度为 120 nm 的 ITO (氧化铟锡)导电薄膜,然后在真空度为 5×10-4Pa 的镀膜系统中,在其表面依次蒸镀穴注入层( m-MTDATA ),空穴传输( NPB ),发光层( Ir(ppy)3:CBP ),电子传输层( TPBi ),电子注入层( LiF ) 和阴极层( Mg-Ag )。
由图 3 可知,实施例 2 中制作的 ZnS/Ag/MoO3 阳极具有很好透过率,其中实施例 2 制作的阳极在可见光的透过率为 83.8% ,与对比例 1 制作的 ITO 阳极的透过率 84.2% 相差无几。
由图 4 可知,实施例 2 中制作的 ZnS/Ag/MoO3 阳极与衬底有很好的结合力,在经过反复弯折后,发光性能比较稳定,而 ITO 阳极在反复弯曲后容易从衬底脱落,导致发光性能下降。
由图 5 可知,实施例 2 中制作的 ZnS/Ag/MoO3 阳极具有良好的空穴注入性能,所制作的器件的载流子注入性能与以 ITO 作为阳极制作的器件相似,因此可以得到较好的电致发光效果。
应当理解的是,上述针对本发明较佳实施例的表述较为详细,并不能因此而认为是对本发明专利保护范围的限制,本发明的专利保护范围应以所附权利要求为准。

Claims (10)

  1. 一种柔性有机电致发光器件,该柔性有机电致发光器件为层状结构,该层状结构依次为:衬底/阳极层/空穴注入层/空穴传输层/发光层/电子传输层/电子注入层/阴极层;其特征在于,在所述衬底与阳极层之间,还制备有一层缓冲层;所述阳极层为多层复合结构,该多层复合结构依次为ZnS/Ag/MoO3的多层结构。
  2. 根据权利要求1所述的柔性有机电致发光器件,其特征在于,所述衬底的材料包括聚对苯二甲酸乙二醇酯、聚醚砜、聚萘二甲酸乙二醇酯、透明聚酰亚胺环烯烃共聚物、聚碳酸酯或聚乙烯中的任一种;该衬底的厚度为0.1-0.5mm。
  3. 根据权利要求1所述的柔性有机电致发光器件,其特征在于,所述阳极层中,ZnS层厚度为35-80nm、Ag层厚度为18-30nm、MoO3层厚度位3-10nm。
  4. 根据权利要求1所述的柔性有机电致发光器件,其特征在于,所述缓冲层采用UV胶制作而成,该缓冲层的厚度为0.5-10 μm。
  5. 根据权利要求 1 所述的柔性有机电致发光器件,其特征在于,所述空穴注入层的材料为 酞菁铜或 4,4',4'- 三 (N-3- 甲基苯基 -N- 苯基 - 氨基 )-三苯基胺 ,该空穴注入层的厚度为 30-40nm ;
    所述空穴传输层的材料为 苯基吗琳、 N,N'- 二 (3- 甲基苯基 )-N,N'- 二苯基 -4,4'- 联苯二胺 (TPD) 或 1,3,5- 三苯基苯 ,该空穴传输层的厚度为 30-80nm ;
    所述发光层的材料为 4,4'- 二(9-咔唑)联苯掺杂三(2-苯基吡啶)合铱 ,该发光层的厚度为15-40nm ;
    所述电子传输层的材料为 4,7- 二苯基 -1,10- 菲罗啉、 8- 羟基喹啉铝 、 2-(4- 联苯基 )-5-(4-叔丁基 ) 苯基 -1,3,4- 恶二唑、 1,2,4- 三唑衍生物或 N- 芳基苯并咪唑,该电子传输层的厚度为 20-60 nm ;
    所述电子注入层的材料为LiF、CsF 或八羟基喹啉锂,该电子注入层的厚度为1nm ;
    所述阴极层的材料为Al、Ag或Mg-Ag合金层,该阴极层厚度为100-200nm。
  6. 一种柔性有机电致发光器件的制备方法,包括如下步骤:
    首先,清洗、干燥衬底;
    其次,在衬底的表面制备一层缓冲层;
    接着,在所述缓冲层表面依次蒸镀 ZnS 层、 Ag 层、 MoO3 层,形成一阳极层;
    最后,在所述阳极层上依次蒸镀空穴注入层、空穴传输层、发光层、电子传输层、电子注入层和阴极层,制得柔性有机电致发光器件。
  7. 根据权利要求6所述的制备方法,其特征在于,所述衬底的材料包括聚对苯二甲酸乙二醇酯、聚醚砜、聚萘二甲酸乙二醇酯、透明聚酰亚胺环烯烃共聚物、聚碳酸酯或聚乙烯中的任一种;该衬底的厚度为0.1-0.5mm。
  8. 根据权利要求6所述的制备方法,其特征在于,所述阳极层中,ZnS层厚度为35-80nm、Ag层厚度为18-30nm、MoO3层厚度为3-10nm。
  9. 根据权利要求6所述的制备方法,其特征在于,所述缓冲层为UV胶,该UV胶的制作过程为:将衬底放置在匀胶机,将UV胶旋涂在衬底表面,厚度为0.5-10μm,然后采用UV灯进行固化。
  10. 根据权利要求 6 所述的制备方法,其特征在于,所述空穴注入层的材料为 酞菁铜或 4,4',4'- 三 (N-3- 甲基苯基 -N- 苯基 - 氨基 )- 三苯基胺 ,该空穴注入层的厚度为 30-40nm;
    所述空穴传输层的材料为 苯基吗琳、 N,N'- 二 (3- 甲基苯基 )-N,N'- 二苯基 -4,4'- 联苯二胺 (TPD) 或 1,3,5- 三苯基苯 ,该空穴传输层的厚度为 30-80nm;
    所述发光层的材料为 4,4'- 二( 9- 咔唑)联苯掺杂三( 2- 苯基吡啶)合铱 ,该发光层的厚度为 15-40 nm ;
    所述电子传输层的材料为 4,7- 二苯基 -1,10- 菲罗啉、 8- 羟基喹啉铝 、 2-(4- 联苯基 )-5-(4- 叔丁基 ) 苯基 -1,3,4- 恶二唑、 1,2,4- 三唑衍生物或 N- 芳基苯并咪唑 ,该电子传输层的厚度为 20-60 nm ;
    所述电子注入层的材料为 LiF 、 CsF或八羟基喹啉锂,该电子注入层的厚度为1nm ;
    所述阴极层的材料为Al、Ag或Mg-Ag合金层,该阴极层厚度为100-200nm。
PCT/CN2011/072301 2011-03-30 2011-03-30 一种柔性有机电致发光器件及其制备方法 WO2012129791A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014501391A JP5688182B2 (ja) 2011-03-30 2011-03-30 フレキシブル有機エレクトロルミネッセンスデバイス及びその製造方法
EP11862431.1A EP2693507A4 (en) 2011-03-30 2011-03-30 FLEXIBLE ORGANIC ELECTROLUMINESCENZING DEVICE AND METHOD OF MANUFACTURING THEREOF
CN2011800659511A CN103370805A (zh) 2011-03-30 2011-03-30 一种柔性有机电致发光器件及其制备方法
US13/983,293 US20130306956A1 (en) 2011-03-30 2011-03-30 Flexible organic electroluminescent device and manufacturing method thereof
PCT/CN2011/072301 WO2012129791A1 (zh) 2011-03-30 2011-03-30 一种柔性有机电致发光器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/072301 WO2012129791A1 (zh) 2011-03-30 2011-03-30 一种柔性有机电致发光器件及其制备方法

Publications (1)

Publication Number Publication Date
WO2012129791A1 true WO2012129791A1 (zh) 2012-10-04

Family

ID=46929335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/072301 WO2012129791A1 (zh) 2011-03-30 2011-03-30 一种柔性有机电致发光器件及其制备方法

Country Status (5)

Country Link
US (1) US20130306956A1 (zh)
EP (1) EP2693507A4 (zh)
JP (1) JP5688182B2 (zh)
CN (1) CN103370805A (zh)
WO (1) WO2012129791A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140070178A1 (en) * 2012-09-07 2014-03-13 Postech Academy-Industry Foundation Organic light-emitting device
JP2014182997A (ja) * 2013-03-21 2014-09-29 Konica Minolta Inc 透明電極、及び、電子デバイス
CN107546341A (zh) * 2017-09-06 2018-01-05 蚌埠玻璃工业设计研究院 一种柔性多层透明导电氧化物薄膜的制备方法
CN108878683A (zh) * 2018-06-29 2018-11-23 云南大学 一种金属氧化物叠层场效应电极
CN109545979A (zh) * 2018-10-19 2019-03-29 杭州电子科技大学 金属透明电极及制备方法和构成的有机太阳电池
CN110534659A (zh) * 2018-05-23 2019-12-03 杨明伦 顶发光oled的阳极结构、显示装置及其制造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103548169A (zh) * 2011-06-30 2014-01-29 海洋王照明科技股份有限公司 顶发射柔性有机电致发光器件及其制备方法
US20140332796A1 (en) * 2012-03-31 2014-11-13 Ocean's King Lighting Science & Technology Co.,Ltd Organic electroluminescence device and method for manufacture thereof
JPWO2015159606A1 (ja) * 2014-04-18 2017-04-13 コニカミノルタ株式会社 有機電界発光素子
CN110112302A (zh) * 2019-01-17 2019-08-09 华南理工大学 一种以Al2O3薄膜为缓冲层的量子点发光二极管及其制备方法
KR20220054498A (ko) * 2020-10-23 2022-05-03 삼성디스플레이 주식회사 발광 소자 및 이를 포함하는 전자 장치
KR20220108275A (ko) * 2021-01-26 2022-08-03 삼성디스플레이 주식회사 발광 소자 및 이를 포함한 전자 장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009022552A1 (ja) * 2007-08-10 2009-02-19 Sumitomo Chemical Company, Limited 金属ドープモリブデン酸化物層を含む有機エレクトロルミネッセンス素子及び製造方法
CN101459226A (zh) * 2008-12-26 2009-06-17 云南北方奥雷德光电科技股份有限公司 顶部发光有机显示器的阳极结构及其制造工艺

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2335884A (en) * 1998-04-02 1999-10-06 Cambridge Display Tech Ltd Flexible substrates for electronic or optoelectronic devices
US6593690B1 (en) * 1999-09-03 2003-07-15 3M Innovative Properties Company Large area organic electronic devices having conducting polymer buffer layers and methods of making same
JP2002313139A (ja) * 2001-04-12 2002-10-25 Mitsui Chemicals Inc 透明導電性薄膜積層体
JP2004095240A (ja) * 2002-08-30 2004-03-25 Mitsui Chemicals Inc 透明電極
US7268485B2 (en) * 2003-10-07 2007-09-11 Eastman Kodak Company White-emitting microcavity OLED device
US7049741B2 (en) * 2004-01-27 2006-05-23 Eastman Kodak Company Organic light emitting diode with improved light emission through substrate
US7151339B2 (en) * 2004-01-30 2006-12-19 Universal Display Corporation OLED efficiency by utilization of different doping concentrations within the device emissive layer
JP4899863B2 (ja) * 2004-05-28 2012-03-21 コニカミノルタホールディングス株式会社 薄膜形成装置及び薄膜形成方法
JP5116992B2 (ja) * 2005-05-27 2013-01-09 富士フイルム株式会社 有機el素子
FR2946799B1 (fr) * 2009-06-15 2012-03-02 Astron Fiamm Safety Diode et procede de realisation d'une diode electroluminescente organique incluant une couche de planarisation du substrat

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009022552A1 (ja) * 2007-08-10 2009-02-19 Sumitomo Chemical Company, Limited 金属ドープモリブデン酸化物層を含む有機エレクトロルミネッセンス素子及び製造方法
CN101459226A (zh) * 2008-12-26 2009-06-17 云南北方奥雷德光电科技股份有限公司 顶部发光有机显示器的阳极结构及其制造工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2693507A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140070178A1 (en) * 2012-09-07 2014-03-13 Postech Academy-Industry Foundation Organic light-emitting device
US8916860B2 (en) * 2012-09-07 2014-12-23 Samsung Display Co., Ltd. Organic light-emitting device comprising first electron transport layer comprising DMBI derivative
JP2014182997A (ja) * 2013-03-21 2014-09-29 Konica Minolta Inc 透明電極、及び、電子デバイス
CN107546341A (zh) * 2017-09-06 2018-01-05 蚌埠玻璃工业设计研究院 一种柔性多层透明导电氧化物薄膜的制备方法
CN107546341B (zh) * 2017-09-06 2019-07-26 蚌埠玻璃工业设计研究院 一种柔性多层透明导电氧化物薄膜的制备方法
CN110534659A (zh) * 2018-05-23 2019-12-03 杨明伦 顶发光oled的阳极结构、显示装置及其制造方法
CN110534659B (zh) * 2018-05-23 2022-09-27 昆明申北科技有限公司 顶发光oled的阳极结构、显示装置及其制造方法
CN108878683A (zh) * 2018-06-29 2018-11-23 云南大学 一种金属氧化物叠层场效应电极
CN109545979A (zh) * 2018-10-19 2019-03-29 杭州电子科技大学 金属透明电极及制备方法和构成的有机太阳电池

Also Published As

Publication number Publication date
EP2693507A1 (en) 2014-02-05
JP2014512642A (ja) 2014-05-22
US20130306956A1 (en) 2013-11-21
CN103370805A (zh) 2013-10-23
JP5688182B2 (ja) 2015-03-25
EP2693507A4 (en) 2014-10-08

Similar Documents

Publication Publication Date Title
WO2012129791A1 (zh) 一种柔性有机电致发光器件及其制备方法
JP4903234B2 (ja) 有機発光素子
WO2009091231A2 (ko) 유기발광소자 및 이의 제조 방법
US8187960B2 (en) Method of joining and method of fabricating an organic light emitting diode display device using the same
WO2013000162A1 (zh) 顶发射有机电致发光器件及其制备方法
US20090167159A1 (en) Organic light emitting device
US7994713B2 (en) Organic light emitting diode and method of fabricating the same
KR20150046900A (ko) 유기전계발광소자
JP2009212514A (ja) 有機発光素子
WO2013180540A1 (ko) 유기전계발광소자
WO2013180539A1 (ko) 유기전계발광소자
WO2021025519A1 (ko) 페로브스카이트 광전소자 및 이의 제조방법
WO2013000163A1 (zh) 顶发射柔性有机电致发光器件及其制备方法
WO2013176521A1 (ko) 유기발광소자 및 이의 제조방법
JP2011054668A (ja) 有機電界発光素子
WO2013000164A1 (zh) 顶发射有机电致发光二极管及其制备方法
JP2011119411A (ja) 有機電界発光素子および表示装置
WO2013078593A1 (zh) 掺杂有机电致发光器件及其制备方法
WO2013180542A1 (ko) 적층형 유기전계발광소자
CN102790183B (zh) 一种柔性有机发光二极管及其制备方法
WO2013078585A1 (zh) 聚合物电致发光器件及其制备方法
KR20120008359A (ko) 봉지 기판 및 유기 발광부 사이에 uv 차단 성능 등을 가지는 층을 포함하는 유기 발광 소자
KR20090092051A (ko) 유기전계발광소자 및 그의 제조방법
WO2013143146A1 (zh) 有机电致发光器件及其制备方法
WO2014082306A1 (zh) 一种有机电致发光器件及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11862431

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13983293

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011862431

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014501391

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE