WO2012126184A1 - 锭坯组合箱式水冷铸造装置 - Google Patents
锭坯组合箱式水冷铸造装置 Download PDFInfo
- Publication number
- WO2012126184A1 WO2012126184A1 PCT/CN2011/072120 CN2011072120W WO2012126184A1 WO 2012126184 A1 WO2012126184 A1 WO 2012126184A1 CN 2011072120 W CN2011072120 W CN 2011072120W WO 2012126184 A1 WO2012126184 A1 WO 2012126184A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- water
- tank
- box
- cooled
- cooling
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D7/00—Casting ingots, e.g. from ferrous metals
- B22D7/06—Ingot moulds or their manufacture
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/04—Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
- B22D11/0401—Moulds provided with a feed head
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D7/00—Casting ingots, e.g. from ferrous metals
- B22D7/06—Ingot moulds or their manufacture
- B22D7/10—Hot tops therefor
Definitions
- the present invention relates to an ingot manufacturing apparatus in the field of metallurgical and mechanical manufacturing forging, and more particularly to an ingot combined box type water-cooling casting apparatus.
- BACKGROUND OF THE INVENTION It is well known that the continuous casting method has the characteristics of high efficiency, good quality, high metal yield and the like, and has been widely used for slab manufacturing, and is particularly suitable for mass production of single varieties; however, due to the current technical level, The slab specifications can only be limited to products with thickness less than 380mm. For large ships, nuclear power equipment, chemical reaction vessels and marine structural panels, due to their small size, large size and special material requirements, they can only rely on casting. Ingot method manufacturing.
- Another method known in the art is to make a conventional metal ingot mold into a water-cooled metal mold, which can be regarded as a crystallizer with a zero speed, so that there is no need for a huge continuous casting equipment and there is no need to worry about its efficiency. At the same time, it also plays a role in refining the microstructure of the ingot.
- the method is difficult in that the water-cooled steel ingot mold is difficult to manufacture and the hot box is relatively difficult.
- Another method of the known technology is to use a combined crystallizer principle to combine water-cooled plates made of four crystallizers to form a steel ingot mold, which has the advantages of convenient assembly and unpacking, and convenient maintenance and replacement of the mold.
- the width or thickness can be adjusted to achieve a multi-standard mold production; the disadvantage is that the inner working surface of the mold is usually made of copper alloy material, the melting point is low, the working temperature is not easy to exceed 300 °C, and the cooling must be maintained at all times.
- the mold composed of the crystal plate is actually kept under relatively high cooling conditions from top to bottom. Therefore, the solidification of the ingot cannot achieve sequential cooling and sequential solidification, so it is difficult to solve and eliminate the looseness and shrinkage of the center. hole.
- An object of the present invention is to provide an ingot composite box type water-cooled casting device which utilizes conventional die casting
- the mold material has the characteristics of high working temperature and inherent cooling capacity.
- the combined mold working plate is made of Fe-based steel material with sufficient thickness, and the cooling strength of the mold can be realized by the auxiliary water-cooling structure. Adjusting the characteristics, the overall crystallizer in the height direction is changed into a structure capable of segmental independent water supply cooling, and the water cooling intensity of each independent section is adjusted from 0 to 100%, and then the advantages of the combined model are realized.
- the sequential cooling in the height direction of the mold and the sequential solidification achieve the purpose of eliminating looseness and shrinkage to improve the quality of the ingot.
- Another object of the present invention is to provide an ingot composite box type water-cooled casting apparatus which is provided with a steel structure which is arranged outside the combined crystallizer to support the combined crystallizer and supplies water to each box type water-cooled panel assembly.
- the steel structure frame adopts a hollow ring beam and a hollow vertical beam structure, and is reasonably connected with the water inlet and the water outlet of the independent water tank in each box type water-cooled plate assembly, so as to greatly reduce the number of pipes and the complexity of the structure, and the operation becomes It is more convenient.
- Another object of the present invention is to provide an ingot billet type box type water-cooled casting device, which uses an electro-hydraulic push rod pressing system to control each box type water-cooling plate assembly, so that the cold box and the hot state box are further opened. Convenience.
- an ingot composite box type water-cooled casting apparatus comprising a combined crystallizer comprising four vertically arranged box-type water-cooled plate assemblies, the bottom of the combined crystallizer a bottom plate, the top of the combined crystallizer is provided with a riser; the outer ring of the combined crystallizer is provided with a steel structure frame supporting the combined crystallizer and supplying water to the four box type water-cooled plate assemblies, the steel structure frame and corresponding a plurality of electro-hydraulic push rods are respectively connected between the box-type water-cooling plate assemblies; the box-type water-cooling plate assembly is made of Fe-based steel, and the box-type water-cooled plate assemblies are operated by contact with molten steel.
- the panel is composed of a water-cooling box located outside the working panel and in close contact with the working panel, and the water-cooling box is divided into two or more independent water tanks disposed adjacent to each other from top to bottom, and the independent water tanks are respectively arranged by the water tank and the water tank.
- each of the water-passing water tanks is formed by a plurality of tanks recessed in parallel along the longitudinal direction of the working panel; the water tanks of the independent water tanks are provided with corresponding passages on one side of the working panel a hot water collecting structure that is connected to the upper end of the tank body of the water tank group, the hot water collecting structure is connected to the water tank; the water tank of each independent water tank is disposed on a side of the working panel facing the lower end of the tank body corresponding to the water tank group
- the cold water distribution structure, the cold water distribution structure is electrically connected to the drain tank.
- the hot water collecting structure includes a horizontal sump disposed on a side of the upper water tank facing the working panel and electrically connected to an upper end of the plurality of troughs corresponding to the sump group, in the lateral direction a first water-permeable hole that is connected to the water tank in the middle of the water collecting tank;
- the cold water distribution structure includes a horizontal cloth tank that is disposed on a side of the water tank facing the working panel and is electrically connected to a lower end of the plurality of tanks corresponding to the water tank group
- a second water-permeable hole that is connected to the drain tank is disposed in a middle portion of the horizontal cloth tank.
- the water-cooling box body is a back board that is in contact with the work panel, an outer side board that is disposed in parallel with the back board, and left and right side boards that are disposed around the back board and the outer side board.
- the upper and lower side plates are sealed and fixedly connected
- the water-cooling box body is internally welded with a horizontal rib which divides the water-cooling box into a plurality of independent water tanks and divides the independent water tank into an upper box and a lower box; the water-cooled box body is also welded with longitudinal ribs inside.
- the longitudinal ribs are provided with through holes for communicating the inside of the same water tank.
- the working panel and the water-cooling box of each box-type water-cooling plate assembly are fixedly connected by a plurality of bolts; the working panel faces one side of the backing plate and corresponds to each of the independent water tanks.
- a plurality of spaced-apart circular bottom ⁇ -shaped grooves are arranged from top to bottom, and the back plate is provided with a plurality of bolt holes along a center line direction of each round bottom T-shaped groove, wherein the bolt holes are long axes An elliptical hole of a center line of a vertical round bottom ⁇ -shaped groove; the bolt head is clamped in a round bottom ⁇ -shaped groove, and the screw passes through a corresponding elliptical bolt hole and is fastened by a nut.
- an elliptical groove for placing a nut is further disposed outside the bolt hole.
- the four vertically arranged box-type water-cooling plate assemblies constituting the combined crystallizer comprise two wide-side assemblies arranged in parallel in front and rear and two parallel-arranged left and right. Narrow-edged components.
- the two wide side assemblies are tightly sandwiched between two narrow side assemblies.
- the two narrow side assemblies are tightly sandwiched between the two wide side assemblies.
- a sealing groove surrounding each of the independent water tanks is provided on a side of the backing plate between the work panel and the backing plate, and a sealing member is disposed in the sealing groove.
- the work panel and the backing plate are of non-tempered steel.
- the working surface of the work panel that is in contact with the molten steel is planar or curved.
- the surface of the curved working surface is provided with a longitudinal lace structure.
- each of the box-type water-cooled panel assemblies has a quarter-flange on the top of the working panel, and the four-box water-cooled panel assembly constitutes a combined crystallizer, and the top of the panel forms a connection.
- the flange of the mouth; the bottom of the riser is provided with a stop, and the stop is provided on the flange.
- the riser is a heat insulating riser or an electric heating heat insulating riser.
- the bottom plate disposed at the bottom of the combined crystallizer is a water-cooled bottom plate
- the middle portion of the water-cooled bottom plate in the longitudinal direction is a water inlet tank
- the water inlet tank is provided with a water outlet tank.
- the steel structure frame includes a standing beam spaced apart from each other outside the box-type water-cooling plate assembly of the combined crystallizer, and the upper end of the vertical beam is fixedly supported around the combination a first rectangular annular hollow water beam of the crystallizer, the lower end of the vertical beam is fixedly connected with a second rectangular annular hollow water beam surrounding the combined crystallizer; and the first rectangular annular hollow water beam is provided with a main inlet a water pipe, the second rectangular annular water beam is provided with a main return water pipe; the first rectangular annular water beam is electrically connected to the water inlet of the lower water tank of each independent water tank through the pipeline, and the second rectangular annular hollow water The beam is electrically connected to the water outlet of the upper water tank of each independent water tank through a pipeline; the electro-hydraulic push rod is fixedly connected at one end On the beam, the other end is hinged to the outer side of the corresponding box-type water-cooled plate assembly.
- two vertical beams are disposed on the outer side of each of the box-type water-cooling plate assemblies, and the vertical beam is a hollow tubular string, wherein an upper end of one of the vertical beams and the first rectangular annular hollow
- the water beam is connected to form a water supply pipe string, and the lower end of the other vertical beam is electrically connected with the second rectangular annular water beam to form a return pipe column;
- the water supply pipe column is provided separately from the opposite box type water cooling plate assembly a plurality of first tubes that are connected to the water inlet of the water tank of the water tank;
- the water return column is provided with a plurality of second tubes that are electrically connected to the water outlets of the upper tanks of the respective independent water tanks of the tank water-cooling plate assembly.
- the first pipe body is provided with an electric butterfly valve.
- the upper portion of the return pipe column is provided with a vapor discharge port.
- the ingot-combined box-type water-cooled casting device of the present invention has all of the box-type water-cooled plate assemblies made of Fe-based steel, which can greatly reduce the manufacturing cost of the casting device and improve the heat-resistant temperature of the working panel.
- the casting device can work under the condition of no water cooling, and overcomes the fatal defect that the copper plate crystallizer can not be cut off in the prior art; each box type water-cooling plate assembly has a plurality of independent water tanks distributed from bottom to top, so that the water supply is sequentially, Sequential cooling becomes possible, and it is possible to eliminate the looseness and shrinkage of the rectangular and flat steel ingots.
- FIG. 1A is a schematic structural view of a combined box type water-cooling casting device of the present invention.
- Figure 1B is a schematic plan view of the top view of Figure 1A.
- FIG. 2A is a schematic structural view of a box type water-cooled plate assembly according to the present invention.
- Figure 2B is a schematic side view of Figure 2A.
- Figure 3 is a schematic view showing the structure of a cross section of a working panel in the present invention.
- Fig. 4A is a schematic view showing the structure and distribution of a through-sink group and a round-bottom T-shaped groove in the working panel of the present invention.
- Figure 4B is a schematic side view of the structure of Figure 4A.
- Fig. 5 is a schematic view showing the working surface of the work panel of the present invention as a curved curved structure (for producing a flat steel ingot with convexity).
- Figure 6 is a schematic view showing the working face of the work panel of the present invention with a lace-up arch structure (for producing a convexity Polygonal flat steel ingot).
- Figure 7A is a schematic view showing the structure of the back sheet of the present invention.
- Figure 7B is a side elevational view of Figure 7A.
- Fig. 8A is a schematic view showing the structure of a water-cooled tank in the present invention.
- Figure 8B is a side elevational view of Figure 8A.
- Fig. 9A is a schematic view showing the combination of a combined crystallizer composed of a box type water-cooled plate assembly in the present invention.
- Fig. 9B is a schematic view showing the second embodiment of the combined crystallizer comprising the box type water-cooled plate assembly in the present invention.
- Figure 10 Schematic diagram of the corner sealing method of the combined water-cooling box in the present invention.
- Figure 11A is a schematic view showing a steel structure frame and a support structure in the present invention.
- Figure 11B is a top plan view of Figure 11A.
- Figure 12 Schematic diagram of the manufacturing process of the box-type water-cooled plate assembly of the present invention.
- FIG. 13A to 17B are schematic views showing the assembly process of the steel structural frame, the box type water-cooled plate assembly, and the support structure in the present invention.
- Fig. 18 to Fig. 21 are schematic views showing the process of casting a steel ingot in the ingot billet type box type water-cooling casting device of the present invention.
- DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In order to more clearly understand the technical features, objects and effects of the present invention, embodiments of the present invention will be described with reference to the accompanying drawings.
- the present invention provides an ingot composite box type water-cooling casting apparatus 100, which comprises a four vertically arranged box-type water-cooled panel assembly 10.
- a combined crystallizer 1 the bottom of the combined crystallizer 1 is provided with a bottom plate 2, and the top of the combined crystallizer 1 is provided with a riser 3;
- the outer ring of the combined crystallizer 1 is provided with a support combined crystallizer 1 and directed to four a steel structure frame 4 for water supply of the box type water-cooling plate assembly 10, and a plurality of electro-hydraulic push rods 5 respectively connected between the steel structure frame 4 and the corresponding box-type water-cooling plate assembly 10; as shown in FIG.
- the box-type water-cooling plate assembly 10 is made of Fe-based steel material, and the box-type water-cooling plate assembly 10 is a work panel 11 that is in contact with molten steel and is located outside the work panel 11 and is opposite to the work panel 11
- the water-cooled casing 12 is closely contacted, and the water-cooling tank 12 is divided into two or more independent water tanks 13 disposed immediately from top to bottom. In the present embodiment, three independent water tanks 13 are partitioned from top to bottom. For example, the separate water tanks 13 are respectively provided by the drain tank 131 and the position.
- the water tank 132 is formed on the upper side of the lower tank; the water tank 131 is provided with a water inlet 14 , and the water tank 132 is provided with a water outlet 15 ; the side surface of the working panel 11 that is in contact with the water-cooling tank 12 is provided with a separate water tank 13
- three sets of water-passing water tanks 111 shown in FIG. 3, FIG. 4A, FIG. 4B), the water-passing water tank groups 111 are not connected to each other;
- Each of the water channel sets 111 is formed by a plurality of grooves recessed in parallel along the longitudinal direction of the work panel 11.
- each of the water channel sets 111 is composed of a plurality of U-shaped grooves;
- the water tank 132 is disposed on a side of the working water tank 11 and is provided with a hot water collecting structure 16 that is electrically connected to the upper end of the tank body corresponding to the water tank group 111.
- the hot water collecting structure 16 is electrically connected to the water tank 132;
- the water tank 131 faces the work panel 11 and is provided with a cold water distribution structure 17 that is electrically connected to the lower end of the tank corresponding to the water channel group 111.
- the cold water distribution structure 17 is electrically connected to the water tank 131;
- the cooling water enters the independent water tank 13 from the water inlet 14 of the lower water tank 131, and passes through the cold water distribution structure 17 of the lower water tank 131 to enter the lower end of the corresponding water passage group 111, and the cooling water is U-shaped.
- the lower end flows to the upper end, enters the upper water tank 132 by the hot water collecting structure 16 of the upper water tank 132, and is led out by the water outlet 15 of the upper water tank 132 to form a cooling cycle.
- the ingot-combined box-type water-cooled casting device of the present invention has all of the box-type water-cooled plate assemblies made of Fe-based steel, which can greatly reduce the manufacturing cost of the casting device and improve the heat-resistant temperature of the working panel.
- the casting device can work under the condition of no water cooling, and overcomes the fatal defect that the copper plate crystallizer can not be cut off in the prior art; each box type water-cooling plate assembly has a plurality of independent water tanks distributed from bottom to top, so that the water supply is sequentially, Sequential cooling becomes possible, and it is possible to eliminate the looseness and shrinkage of the rectangular steel ingot.
- the use of the box-type water-cooled plate assembly of the present invention can greatly reduce the amount of steel plate used while ensuring the rigidity and structural strength of the water-cooled plate, and at the same time, the water-cooling box
- the water in the body can also increase the weight of the combined crystallizer to prevent the casting mold from being too light and cause the gun fire accident.
- the electro-hydraulic push rod is used to control each box type water-cooled plate assembly, which has small investment, simple structure and no hydraulic pressure. The advantages of piping, operation and control make it easier to open the box.
- the hot water collecting structure 16 includes a horizontal sump 161 that is disposed on a side of the upper water tank facing the work panel 11 and that is connected to the upper ends of the plurality of tanks corresponding to the water sump group 111, where A first water permeable hole 162 is formed in the middle of the horizontal sump 161.
- the cold water distribution structure 17 includes a plurality of tanks disposed on a side of the lower water tank 131 facing the working panel 11 and corresponding to the water sump group 111.
- the horizontal cloth tank 171 which is opened at the lower end is provided with a second water-permeable hole 172 which is opened to the drain tank 131 in the middle of the horizontal cloth tank 171.
- the width of the horizontal sump 161 and the horizontal sump 171 is about 25 to 40 mm, and the groove depth is about 8 to 30 mm; the width of the first water permeable hole 162 and the second water permeable hole 172 is about 30 ⁇ 50mm, the length is about 1/3 ⁇ 1/2 of the width of the water tank; the first water permeable hole 162 penetrates the upper water tank 132, and the second water permeable hole 172 penetrates the lower water tank 131; in this embodiment, Adjusting the shape and size of the cloth sink, etc., to change the cooling intensity distribution of the cooling water in the width direction of the working panel (for example, the cloth sink can be formed into a gradually narrowing shape from the middle to the both sides).
- the water-cooling case 12 is a back plate 121 that is in contact with the work panel 11, an outer plate 122 that is disposed in parallel with the back plate 121, and a rear plate 121.
- the left and right side plates 123 and 124 and the upper and lower side plates 125 and 126 are arranged in a sealed and fixed manner around the outer side plate 122, and the water-cooling case 12 is internally
- the welding has a horizontal rib 127 that divides the water-cooling tank 12 into a plurality of independent water tanks 13 and divides the independent water tanks 13 into an upper tank 132 and a lower tank 131; the water-cooling tank body 12 is also internally welded with longitudinal ribs 128.
- the longitudinal rib 128 is provided with a through hole 1281 (shown in FIGS. 8A and 8B) for communicating the inside of the same water tank.
- the transverse ribs 127 and the longitudinal ribs 128 are welded to form a rib frame, and the upper and lower side plates are welded to the left and right side plates to form a combined box frame, and the outer side plates 122 and the independent water tanks 13 are inserted and discharged.
- the quick joint of the nozzle is welded; then, the rib frame, the back plate and the combined box frame are welded, and the inner cavity surrounded by the left and right side plates and the upper and lower side plates is flush with the outer end surface of the rib plate and the sealing flange 129 is formed.
- the sealing box of the combination box, the sealing flange 129 and the transverse rib 127 are respectively provided with a sealing groove for sealing the gasket, so that different sets of independent water tanks and the upper and lower water tanks of the independent water tanks are sealed; finally, the outer side plate 122 is combined with The box is closed, and the outer side plate is tightly sealed with the sealing flange and the vertical rib standing end face, and is fastened by fastening bolts.
- a sealing groove 1213 surrounding each of the independent water tanks 13 is disposed on the side of the back plate between the working panel 11 and the backing plate 121, and a sealing member 1214 is disposed in the sealing groove 1213. .
- the seal 1214 can be made of a copper material.
- the work panel 11 and the back panel 121 are made of a non-tempered steel material.
- the working panel 11 and the water-cooling box 12 of each box-type water-cooling plate assembly 10 are fixedly connected by a plurality of bolts; as shown in FIG. 3, FIG. 4A, FIG. 4B, the working panel 11 a plurality of spaced-apart round bottom T-shaped grooves 112 are provided on one side of the back plate 121 and corresponding to the heights of the respective independent water tanks 13 (the round bottom T-shaped grooves corresponding to different independent water tanks are not connected to each other), As shown in FIG. 7A and FIG.
- the back plate 121 is provided with a plurality of bolt holes 1211 along the center line direction of each of the round bottom T-shaped grooves 112, and the bolt holes 1211 are long-axis vertical round bottoms T-shaped.
- an elliptical groove 1212 in which a nut is placed is further provided outside the bolt hole 1211.
- the plurality of round bottom T-shaped grooves 112 and the plurality of U-shaped grooves disposed in the longitudinal direction should be staggered to avoid interference; since the round bottom T-shaped groove 112 and the elliptical bolt hole 1211 are used in the present invention.
- the height direction of the working panel can be freely expanded along the round bottom T-shaped groove, and the width direction can freely expand and extend along the long axis direction of the elliptical bolt hole.
- the two rows of bolt holes near the central axis of symmetry of the back plate are ordinary circular holes, and have a positioning function;
- the round bottom T-shaped groove 112 is a T-shaped groove with a circular arc angle at the bottom of the groove, thereby solving the problem of stress concentration of the groove; since the outer side plate 122 of the water-cooling case 12 is fixed to each side plate and the rib by a fastening screw The outer panel 122 on the board can be easily removed, thus facilitating maintenance, adjustment and replacement of bolts, panels, etc. on the back panel.
- the box type water-cooled panel assembly 10 includes two wide-side assembly 101 disposed in parallel in front and rear, and two narrow-side assemblies 102 disposed in parallel left and right; when the two wide-side assemblies 101 are tightly sandwiched between two narrow sides When the components 102 are between (as shown in FIG. 9B), the width of the cast steel billet is not adjustable, and the adjustment of the thickness direction of the steel ingot can be achieved by adjusting the spacing of the two wide-side components 101; when the two narrow-side components are When tightly sandwiched between the two wide-side components (as shown in Fig. 9A), the thickness of the cast steel billet is not adjustable, and the width direction of the steel ingot can be adjusted by adjusting the pitch of the two narrow-side components 102.
- the working panel Since the high-temperature molten steel is injected into the mold composed of the combined crystallizer 1, the position where the high-temperature molten steel and the working panel 11 are successively contacted, the working panel may be unevenly deformed and expanded from the bottom to the top, and therefore, in the present invention
- the deformed work panel In addition to the back plate and bolt fastening as much as possible to reduce the amount of normal deformation, the deformed work panel can be freely extended upward along the round bottom T-shaped groove, and the width direction can be freely extended along the long axis of the elliptical bolt hole;
- the working panel of the water-cooled plate assembly 10 which can be adjusted in position is 5 to 15 shorter than the side plate end faces (reserved expansion joints), and the compressible fire-resistant is used before casting.
- the fiber material 6 plugs the gap and applies a refractory coating on the outside.
- the refractory fiber material will be pressed without causing uneven expansion of the entire mold. The accident caused by gunfire leakage occurred.
- the working surface of the working panel 11 that is in contact with the molten steel may be a flat structure according to the needs of use (the produced ingot is a rectangular ingot); as shown in FIG. 5 and FIG. Arched curved structure (for the production of flat steel ingots with convexity), the curved surface can also be a structure with lace (with longitudinal lace) (for the production of convex flat steel ingots).
- each box type water-cooling plate assembly 10 is respectively provided with a quarter flange 113, and four box-type water-cooling plate assemblies 10 are composed.
- a four-quarter flange 113 forms a complete flange connecting the riser; the bottom of the riser 3 is provided with a stop 31, and the stop 31 is provided in the method.
- the refractory material 7 is filled around the outside of the flange and between the riser 3 and each of the box-type water-cooling plate assemblies 10.
- the working panel 11 is thermally expanded and expanded freely through the round bottom T-shaped groove 112, and is supported with the riser flange as a whole with the riser 3; the riser 3 may be insulated and insulated.
- the riser can also be a riser of an existing structure such as an electrically heated insulating riser.
- the bottom plate 2 disposed at the bottom of the combined crystallizer 1 may adopt a conventional conventional bottom plate structure; or may be a water-cooled bottom plate structure.
- the water-cooled bottom plate may adopt a structure similar to that of the above-described box-type water-cooled plate assembly 10 (the specific structure will not be described again); the middle portion of the water-cooled bottom plate in the longitudinal direction is set as a water inlet tank, outside the water inlet tank A water outlet tank is provided, whereby sequential cooling from the intermediate position of the bottom of the billet to the outside can be achieved.
- the steel structure frame 4 includes phases. a vertical beam 41 spaced apart from the outside of each of the box-type water-cooling plate assemblies 10 of the combined crystallizer 1, the upper end of the vertical beam 41 is fixedly supported by a first toroidal hollow water beam 42 surrounding the combined crystallizer 1, a second rectangular annular water beam 43 surrounding the combined crystallizer 1 is fixedly connected to the lower end of the vertical beam 41, and a seat 44 is disposed below the second rectangular annular water beam 43; the first moment ring
- the hollow water beam 42 is provided with a main inlet pipe 421, and the second toroidal hollow water beam 43 is provided with a main return pipe 431; the first toroidal hollow water beam 42 passes through the pipeline and the respective independent water tanks 13
- the water inlet 131 of the water tank 131 is electrically connected, and the second rectangular hollow water beam 43 is electrically connected to the water outlet 15 of the upper water tank 132 of each of the independent water tanks 13;
- two vertical beams 41 are spaced apart from each other outside the box-type water-cooling plate assembly 10.
- the vertical beam 41 is a hollow tubular string, and the upper end of one of the vertical beams 41 and the first rectangular annular hollow
- the water beam 42 is electrically connected to form a water supply pipe 411 (as shown in FIG. 11A, a through hole 4111 is formed between the upper end of the water supply pipe 411 and the first rectangular annular water beam 42), and the lower end of the other vertical beam 41 is
- the second rectangular annular hollow water beam 43 is electrically connected to form a return pipe column 412 (as shown in FIG.
- a through hole 4121 is formed between the lower end of the return pipe column 412 and the second rectangular annular water beam 43); as shown in FIG. 1B
- the water supply pipe string 411 is provided with a plurality of first pipe bodies 4112 which are electrically connected to the water inlets 14 of the water tanks 131 of the respective independent water tanks 13 of the tank water-cooling plate assembly 10;
- the water return pipe column 412 is provided with A plurality of second tubes 4122 that are electrically connected to the water outlets 15 of the header tanks 132 of the respective independent water tanks 13 of the tank water-cooling plate assembly 10.
- the first tube body 4112 and the second tube body 4122 may be pressure resistant hoses.
- the first tube body 4112 is provided with an electric butterfly valve (not shown), so that the flow rate of the cooling water entering the water inlet port 14 of the lower tank 131 of each of the independent water tanks 13 can be automatically adjusted. control.
- the first toroidal annular water beam 42 is connected to the external main water supply system, and the water supply pressure is 4 to 8 kg/cm 2 ;
- the second toroidal hollow water beam 43 is connected to the external water return system, and can be automatically controlled according to the water level in the return pipe column 412.
- a return water pump (not shown) connected to the return pipe column 412; the return water pump heats the heated hot water to the external heat exchange system, recycles or dissipates the heat, and re-cools the cooled cold water.
- the circuit is injected into the cooling water supply system.
- the upper portion of the return pipe column 412 is provided with a vapor discharge port 4123, and the vapor can be recovered or discharged through the pipe.
- the middle injection pipe is placed on the riser, the top casting production can be realized, and if the lower bottom plate is provided with the casting passage and connected with the outer middle injection pipe, the bottom casting can be realized. Way to produce.
- the casting apparatus of the present invention can achieve forced sequential cooling by adjusting the water supply sequence and the water supply intensity of the bottom-up cooling tank system of each box type water-cooling plate assembly after pouring the molten steel into the mold.
- the sequential solidification can achieve the purpose of eliminating loose and shrinkage defects.
- the manufacturing process for manufacturing a rectangular ingot using the ingot-combined box-type water-cooling casting apparatus is carried out in accordance with the steps of production, assembly, casting, control, and unpacking of the mold.
- the specific steps are as follows:
- the working panel is welded with the quarter flange of the corresponding working panel, the transverse ribs are welded with the longitudinal ribs to form the rib frame, and the upper and lower side plates are welded with the left and right side plates to form a combined box frame, and the outer side plate and Welding the water pipe quick joint of the water inlet and the water outlet;
- the overall processing of the contact surface between the welding body back plate and the working panel includes the overall processing of the outer section of the rib plate (flattened with a flat surface);
- Two narrow-side box-type water-cooled plate assemblies and corresponding electro-hydraulic push rods are placed on the two end faces of the two wide-side box-type water-cooled plate assemblies on the bottom plate, and the electric screw is adjusted to pre-tighten the narrow-side box-type water-cooled plate assembly. 200 ⁇ 260t force (as shown in Figure 15A, Figure 15B);
- casting temperature using high temperature slow injection method, superheat degree 35 ⁇ 45 °C
- casting molten metal so that the molten steel slowly and smoothly spread the bottom plane of the cavity, after the liquid level reaches 200mm, into the cavity Adding liquid level slag
- Tube ready to demould unpacking
- the invention adopts four box-type water-cooled plate assemblies to form a combined crystallizer, two methods of adjustable width and thickness can be realized, and the mold manufacturing cycle required for steel ingots of different specifications can be greatly reduced. Cost
- each box-type water-cooled plate assembly has a plurality of independent water tanks distributed from bottom to top, it is possible to sequentially supply water and sequentially cool, so that it is possible to eliminate loose and shrinkage of rectangular steel ingots;
- the box type water-cooled plate assembly of the invention is all made of Fe-based steel; the manufacturing cost is greatly reduced;
- the working panel and the back plate are made of low-carbon and high-toughness non-hardened steel with sufficient thickness.
- the high working temperature can completely work under the condition of no water cooling, which solves the fatal defect that the copper plate crystallizer can not be cut off, and makes the time sharing. Sequential cooling become possible;
- the round bottom T-shaped groove opened in the vertical direction of the working panel solves the problem of slot stress concentration.
- the round bottom boring groove can make the lag bolt slide up and down in the round bottom boring groove when the mold working surface is heated; It avoids the problem that the bolt is cut off easily, and the overall deformation is reduced, the safety of the mold is improved, and the service life is improved;
- the U-shaped water tank in the vertical direction of the working panel can not only reduce the stress in the thickness direction of the working plate, but also improve the cooling heat exchange area of the working panel.
- the round bottom sill groove and the U-shaped water tank in the same box are connected up and down, and one box is different. If the gap is not achieved, the cooling at the height of the same work panel is achieved independently;
- the quarter riser flange connected to the riser set above the work panel enables the work panel to maintain a tight connection with the riser under the condition of cold and heat expansion and contraction;
- the horizontally arranged elliptical bolt holes on the back plate ensure that the fastening bolts can slide in the width direction after the working panel is heated, and the two rows of circular bolt holes on both sides of the center shaft simultaneously play a positioning role. ;
- the unique cloth tank structure in each independent water tank realizes the distribution control of the cooling strength of the cooling water in the width direction of the working panel, realizing the central strong cooling in the width direction of the steel ingot, and the requirement of weak cold corner;
- the outer side plate is fastened with bolts to facilitate maintenance, adjustment and replacement of bolts and panels on the back plate, which improves the maintainability of the system;
- the electro-hydraulic push rod pressing system has the advantages of simple structure, no need for hydraulic pipeline, low investment, convenient operation and control;
- the organic fusion of the steel frame with the rectangular annular water beam and the hollow vertical beam and the water-cooled supply and return water system not only reduces the strength of the steel structure, but also improves the overall weight of the steel structure and improves its stability. At the same time, the number of pipes and the complexity of the structure are greatly reduced, which makes the operation more convenient;
- the box type water-cooled plate assembly can greatly reduce the amount of steel plate used under the premise of ensuring the rigidity and strength of the water-cooled plate. At the same time, the water in the water-cooling box can also increase the weight of the box body, preventing the casting mold from being too light and causing the gun fire accident;
- the upper water supply and lower return water structure adopted by the annular water beam makes the water supply smoother.
- the return water is beneficial to the separation of water and steam.
- the hot water can be pumped away by the return water pump.
- the high temperature steam emerges or recovers from above, avoiding the return water. Inverting into a cooling tank that is not supplied with water;
- the water supply sequence of the bottom-up cooling tank system is adjusted. As well as the strength of the water supply, the effect of forced sequential cooling and sequential solidification can be achieved, and the purpose of eliminating loose and shrinkage defects can be achieved.
- the ingot composite box type water-cooled casting device of the present invention has all of the box-type water-cooled plate assemblies made of Fe-based steel, which can greatly reduce the manufacturing cost of the casting device and improve the heat-resistant temperature of the working panel.
- the casting device can work under the condition of no water cooling, and overcomes the fatal defect that the copper plate crystallizer can not be cut off in the prior art; each box type water-cooling plate assembly has a plurality of independent water tanks distributed from bottom to top, so that the water supply is sequentially, Sequential cooling becomes possible, and it is possible to eliminate the looseness and shrinkage of the rectangular steel ingot.
- the use of the box-type water-cooled plate assembly of the present invention can greatly reduce the amount of steel plate used while ensuring the rigidity and structural strength of the water-cooled plate, and at the same time, the water-cooling box
- the water in the body can also increase the weight of the combined crystallizer to prevent the casting mold from being too light and cause the gun fire accident.
- the electro-hydraulic push rod is used to control each box type water-cooled plate assembly, which has small investment, simple structure and no hydraulic pressure.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Continuous Casting (AREA)
Description
锭坯组合箱式水冷铸造装置 技术领域 本发明是关于冶金、机械制造锻造领域中的锭坯制造装置, 尤其涉及一种锭坯组合箱 式水冷铸造装置。 背景技术 众所周知,连铸法具有效率高、质量好、金属收得率高等特点已被广泛用于板坯制造, 特别适于单品种的大批量生产; 但是由于现阶段技术水平所限, 连铸坯规格还只能限定在 厚度在 380mm以下产品, 对于大型船舶、 核电设备、 化工反应容器以及海洋结构用板, 因 其批量小、 规格大、 材质要求特殊等原因, 目前还只能依靠铸锭方法制造。
传统铸锭方法, 有方形锭、 多棱圆形锭和扁钢铸锭等, 定型为带锥度的定型, 冷却方 法多为自然冷却。 其缺点是冒口切头量大, 成材率低。 目前现有技术只能生产 50吨以下, 厚度小于 1000讓, 宽度小于 2500讓的锭坯。
公知的技术当中还有一种方法, 是将传统金属型钢锭模制作成水冷金属模, 可将整个 金属模视为拉速为零的结晶器, 因此无需庞大的连铸设备且不用担心其效率问题, 同时还 起到了对铸锭的急冷组织细化等作用; 但该方法由于采用整体模铸造, 其美中不足的是水 冷钢锭模制造难度大、 热开箱也相对困难。
公知的技术当中另一种方法, 是采用组合式结晶器原理, 将四片结晶器制成的水冷板 组合起来构成钢锭铸模, 其优点是组型与开箱便捷, 铸型维护与更换方便, 此外, 宽度或 厚度可调,可实现一套模具多规格生产;其缺点是结晶器内表面工作板通常为铜合金材料, 熔点低, 工作温度不易超过 300 °C, 必须一直保持较好的冷却状态, 由结晶板组成的铸型 实际上从上到下都保持在相对高的冷却条件下, 因此, 钢锭的凝固无法实现顺序冷却与顺 序凝固, 所以也很难解决和消除中心的疏松与缩孔。
有鉴于此, 本发明人凭借多年的相关设计和制造经验, 提出一种锭坯组合箱式水冷铸 造装置, 以克服现有技术的缺陷。 发明内容 本发明的目的在于提供一种锭坯组合箱式水冷铸造装置,该铸造装置是利用传统模铸
铸型材料具有承受工作温度高、 自身具有一定固有冷却能力的特点, 将组合式结晶器工作 板采用足够厚度的 Fe基钢质材料制成, 再借助辅助水冷结构实现对铸型冷却强度的可调 整特性, 把高度方向的整体结晶器改为可分段独立供水冷却的结构, 实现了各独立段水冷 强度从 0〜100%范围内的调整, 进而在发挥组合式模型优点的基础上, 实现铸型高度方向 上的顺序冷却以及顺序凝固, 达到消除疏松、 缩孔提高锭坯质量目的。
本发明的另一目的在于提供一种锭坯组合箱式水冷铸造装置,该铸造装置设置了一环 设组合式结晶器外侧以支撑组合式结晶器并向各个箱式水冷板组件供水的钢结构框架;该 钢结构框架采用空心环梁和空心立梁结构,并与各个箱式水冷板组件中独立水箱的进水口 和出水口合理连接, 以大大降低管路数量和结构复杂程度, 使操作变得更加便捷。
本发明的又一目的在于提供一种锭坯组合箱式水冷铸造装置,该铸造装置采用电液推 杆压紧系统控制各箱式水冷板组件, 以使冷态合箱与热态开箱更加方便。
本发明的目的是这样实现的, 一种锭坯组合箱式水冷铸造装置, 该铸造装置包括由四 个竖直设置的箱式水冷板组件构成的组合式结晶器, 该组合式结晶器底部设有底板, 组合 式结晶器顶部设有冒口;所述组合式结晶器外侧环设有支撑组合式结晶器并向四个箱式水 冷板组件供水的钢结构框架,所述钢结构框架与对应的箱式水冷板组件之间分别连接设有 多个电液推杆; 所述箱式水冷板组件是由 Fe基钢材制成的, 所述各箱式水冷板组件由与 钢液接触的工作面板和位于工作面板外侧且与工作面板呈紧密接触式连接的水冷箱体构 成, 所述水冷箱体由上至下分隔成两个以上紧邻设置的独立水箱, 各独立水箱分别由下水 箱和位于下水箱上侧的上水箱构成; 下水箱设有进水口, 上水箱设有出水口; 在工作面板 上与所述水冷箱体接触的侧面设有与独立水箱对应设置的两组以上的通水槽组;各通水槽 组是由沿工作面板纵向平行凹设的多条槽体构成的;各独立水箱的上水箱朝向工作面板的 一侧设有与对应通水槽组的槽体上端导通的热水集合结构, 该热水集合结构导通于上水 箱;各独立水箱的下水箱朝向工作面板的一侧设有与对应通水槽组的槽体下端导通的冷水 分配结构, 该冷水分配结构导通于下水箱。
在本发明的一较佳实施方式中,所述热水集合结构包括上水箱朝向工作面板的一侧设 置的与对应通水槽组的多条槽体的上端导通的横向集水槽,在该横向集水槽中部设有导通 于上水箱的第一透水孔;所述冷水分配结构包括下水箱朝向工作面板的一侧设置的与对应 通水槽组的多条槽体的下端导通的横向布水槽,在该横向布水槽中部设有导通于下水箱的 第二透水孔。
在本发明的一较佳实施方式中, 所述水冷箱体是由与工作面板接触的背板、 与背板平 行设置的外侧板、 以及设置于背板和外侧板四周的左、 右侧板及上、 下侧板密封固定连接
构成的,该水冷箱体内部焊接有将水冷箱体分割为多个独立水箱以及将各独立水箱分割为 上箱体和下箱体的横向筋板; 该水冷箱体内部还焊接有纵向筋板, 纵向筋板上设有使同一 水箱内部连通的通孔。
在本发明的一较佳实施方式中,所述各箱式水冷板组件的工作面板与水冷箱体由多个 螺栓固定连接;所述工作面板面向背板的一侧面上且对应各独立水箱的高度由上至下设有 多个间隔平行的圆底 τ型槽,所述背板上沿着每个圆底 T型槽的中心线方向设有多个螺栓 孔,所述螺栓孔为长轴垂直圆底 τ型槽中心线的椭圆孔;所述螺栓头卡设在圆底 τ型槽内, 螺杆穿过对应的椭圆形螺栓孔并由螺母紧固连接。
在本发明的一较佳实施方式中, 在所述螺栓孔的外侧还设有放置螺母的椭圆形凹槽。 在本发明的一较佳实施方式中,所述构成组合式结晶器的四个竖直设置的箱式水冷板 组件包括有呈前后平行设置的两个宽边组件和呈左右平行设置的两个窄边组件。
在本发明的一较佳实施方式中, 所述两个宽边组件被紧密夹设在两个窄边组件之间。 在本发明的- 较佳实施方式中, 所述两个窄边组件被紧密夹设在两个宽边组件之间。 在本发明的- 较佳实施方式中,在所述工作面板与背板之间的背板一侧设有围绕各独 立水箱的密封槽, 密封槽内设有密封件。
在本发明的- 较佳实施方式中, 所述工作面板和背板采用非淬火钢。
在本发明的- 较佳实施方式中,所述工作面板上与钢液接触的工作面为平面或曲面形 状。
在本发明的- 较佳实施方式中, 曲面工作面的表面设有纵向花边结构。
在本发明的- 较佳实施方式中,各箱式水冷板组件的工作面板顶部分别设有四分之一 法兰, 四个箱式水冷板组件组成组合式结晶器后其顶部形成一连接冒口的法兰; 所述冒口 底部设有一止口, 该止口设于所述法兰上。
在本发明的一较佳实施方式中, 所述冒口为保温绝热冒口或电加热绝热冒口。
在本发明的一较佳实施方式中, 所述组合式结晶器底部设置的底板为水冷底板, 该水 冷底板长度方向的中部为进水箱, 进水箱外侧设有出水箱。
在本发明的一较佳实施方式中,所述钢结构框架包括相对组合式结晶器的各个箱式水 冷板组件外侧间隔设置的立梁,所述立梁的上端固定支撑有围绕所述组合式结晶器的第一 矩环形空心水梁,所述立梁的下端固定连接有围绕所述组合式结晶器的第二矩环形空心水 梁;所述第一矩环形空心水梁上设有主进水管,所述第二矩环形空心水梁上设有主回水管; 所述第一矩环形空心水梁通过管路与各个独立水箱的下水箱进水口导通,所述第二矩环形 空心水梁通过管路与各个独立水箱的上水箱出水口导通;所述电液推杆一端固定连接在立
梁上, 另一端铰接于对应的箱式水冷板组件的外侧面。
在本发明的一较佳实施方式中, 每个箱式水冷板组件外侧对应间隔设置两个立梁, 所 述立梁为空心管柱, 其中一个立梁的上端与所述第一矩环形空心水梁导通构成供水管柱, 另一个立梁的下端与所述第二矩环形空心水梁导通构成回水管柱;所述供水管柱上设有与 相对箱式水冷板组件中各个独立水箱的下水箱进水口导通的多个第一管体;所述回水管柱 上设有与相对箱式水冷板组件中各个独立水箱的上水箱出水口导通的多个第二管体。
在本发明的一较佳实施方式中, 所述第一管体上设有电动蝶阀。
在本发明的一较佳实施方式中, 所述回水管柱的上部设有蒸气放散口。
由上所述, 本发明的锭坯组合箱式水冷铸造装置, 其各箱式水冷板组件全部采用 Fe 基钢材制成, 可大大降低铸造装置的制作成本, 提高了工作面板的耐热温度, 铸造装置可 以在不通水冷却的条件下工作, 克服了现有技术中铜板结晶器不能断水的致命缺陷; 其每 个箱式水冷板组件自下而上分布有多个独立水箱, 使顺序供水、 顺序冷却成为可能, 并使 矩形、 扁钢锭消除疏松、 缩孔成为可能; 本发明中箱式水冷板组件的使用, 能够在保证水 冷板刚度、 结构强度的前提下, 大大降低钢板使用量, 同时水冷箱体内的水还可以增加组 合式结晶器的自重, 防止铸型过轻造成抬箱炮火事故发生; 再者, 采用电液推杆控制各箱 式水冷板组件, 具有投资小、 结构简单、 无需液压站及更多的管路、 操作和控制便捷等优 点, 使热开箱变得更加方便。 附图说明 以下附图仅旨在于对本发明做示意性说明和解释, 并不限定本发明的范围。 其中: 图 1A: 为本发明锭坯组合箱式水冷铸造装置结构示意图。
图 1B: 为图 1A俯视结构示意图。
图 2A: 为本发明中箱式水冷板组件结构示意图。
图 2B: 为图 2A侧视结构示意图。
图 3 : 为本发明中工作面板横截面部分结构示意图。
图 4A: 为本发明工作面板中通水槽组和圆底 T型槽的结构及分布示意图。
图 4B: 为图 4A的侧视结构示意图。
图 5 : 为本发明中工作面板的工作面设为带拱形的曲面结构的示意图(用于生产带凸 度的扁钢锭)。
图 6 : 为本发明中工作面板的工作面设有带花边起拱结构的示意图(用于生产带凸度
的多棱扁钢锭)。
图 7A: 为本发明中背板的结构示意图。
图 7B: 为图 7A的侧视示意图。
图 8A: 为本发明中水冷箱体的结构示意图。
图 8B: 为图 8A的侧视示意图。
图 9A: 为本发明中由箱式水冷板组件构成组合式结晶器的组合方式一示意图。
图 9B: 为本发明中由箱式水冷板组件构成组合式结晶器的组合方式二示意图。
图 10: 为本发明中组合式水冷箱角部密封方式示意图。
图 11A: 为本发明中钢结构框架与支撑结构示意图。
图 11B: 为图 11A的俯视结构示意图。
图 12: 为本发明中箱式水冷板组件、 制造加工流程示意图。
图 13A〜图 17B: 为本发明中钢结构框架、 箱式水冷板组件、 支撑结构组装流程示意 图。
图 18〜图 21 : 为本发明中锭坯组合箱式水冷铸造装置浇铸钢锭过程示意图。 具体实施方式 为了对本发明的技术特征、 目的和效果有更加清楚的理解, 现对照附图说明本发明的 具体实施方式。
如图 1A、 图 1B、 图 2A、 图 2B所示, 本发明提出一种锭坯组合箱式水冷铸造装置 100, 该铸造装置 100包括由四个竖直设置的箱式水冷板组件 10构成的组合式结晶器 1, 该组 合式结晶器 1底部设有底板 2, 组合式结晶器 1顶部设有冒口 3; 所述组合式结晶器 1外 侧环设有支撑组合式结晶器 1并向四个箱式水冷板组件 10供水的钢结构框架 4, 所述钢 结构框架 4与对应的箱式水冷板组件 10之间分别连接设有多个电液推杆 5; 如图 2A、 图 2B所示, 所述箱式水冷板组件 10是由 Fe基钢材制成的, 所述各箱式水冷板组件 10是由 与钢液接触的工作面板 11和位于工作面板 11外侧且与工作面板 11呈紧密接触式连接的 水冷箱体 12构成, 所述水冷箱体 12由上至下分隔成两个以上紧邻设置的独立水箱 13, 在本实施方式中以由上至下分隔成三个独立水箱 13为例进行说明;各独立水箱 13分别由 下水箱 131和位于下水箱上侧的上水箱 132构成; 下水箱 131设有进水口 14, 上水箱 132 设有出水口 15; 在工作面板 11上与所述水冷箱体 12接触的侧面设有与独立水箱 13对应 设置的三组通水槽组 111 (如图 3、 图 4A、 图 4B所示), 各通水槽组 111之间互不相通;
各通水槽组 111是由沿工作面板 11纵向平行凹设的多条槽体构成的, 在本实施方式中; 所述各通水槽组 111是由多个 U型槽构成的; 各独立水箱 13的上水箱 132朝向工作面板 11的一侧设有与对应通水槽组 111的槽体上端导通的热水集合结构 16, 该热水集合结构 16导通于上水箱 132;各独立水箱 13的下水箱 131朝向工作面板 11的一侧设有与对应通 水槽组 111的槽体下端导通的冷水分配结构 17, 该冷水分配结构 17导通于下水箱 131 ; 由此, 当需要向各独立水箱 13分别输入冷却水时, 冷却水由下水箱 131的进水口 14进入 该独立水箱 13中, 经过下水箱 131的冷水分配结构 17进入对应的通水槽组 111下端, 冷 却水由 U型槽的下端向上端流动, 由上水箱 132的热水集合结构 16进入上水箱 132, 再 由上水箱 132的出水口 15导出形成冷却循环。
由上所述, 本发明的锭坯组合箱式水冷铸造装置, 其各箱式水冷板组件全部采用 Fe 基钢材制成, 可大大降低铸造装置的制作成本, 提高了工作面板的耐热温度, 铸造装置可 以在不通水冷却的条件下工作, 克服了现有技术中铜板结晶器不能断水的致命缺陷; 其每 个箱式水冷板组件自下而上分布有多个独立水箱, 使顺序供水、 顺序冷却成为可能, 并使 矩形钢锭消除疏松、 缩孔成为可能; 本发明中箱式水冷板组件的使用, 能够在保证水冷板 刚度、 结构强度的前提下, 大大降低钢板使用量, 同时水冷箱体内的水还可以增加组合式 结晶器的自重, 防止铸型过轻造成抬箱炮火事故发生; 再者, 采用电液推杆控制各箱式水 冷板组件, 具有投资小、 结构简单、 无需液压管路、 操作和控制便捷等优点, 使热开箱变 得更加方便。
进一步, 在本实施方式中, 所述热水集合结构 16包括上水箱朝向工作面板 11的一侧 设置的与对应通水槽组 111的多条槽体的上端导通的横向集水槽 161,在该横向集水槽 161 中部设有导通于上水箱 132的第一透水孔 162; 所述冷水分配结构 17包括下水箱 131朝 向工作面板 11 的一侧设置的与对应通水槽组 111 的多条槽体的下端导通的横向布水槽 171, 在该横向布水槽 171中部设有导通于下水箱 131的第二透水孔 172。 在本实施方式 中, 所述横向集水槽 161和横向布水槽 171的宽度约为 25〜40mm, 槽深约为 8〜30mm; 所 述第一透水孔 162和第二透水孔 172的宽度约为 30〜50mm, 长度约为水箱宽度的 1/3〜 1/2; 第一透水孔 162穿透于上水箱 132, 第二透水孔 172穿透于下水箱 131 ; 在本实施方 式中, 可通过调整布水槽的形状和尺寸等, 达到改变冷却水在工作面板宽度方向上的冷却 强度分布 (例如: 可将布水槽设为由中间向两侧形成逐渐变窄的形状)。
在本实施方式中, 如图 1B、 图 2B所示, 所述水冷箱体 12是由与工作面板 11接触的 背板 121、 与背板 121平行设置的外侧板 122、 以及设置于背板 121和外侧板 122四周的 左、 右侧板 123、 124及上、 下侧板 125、 126密封固定连接构成的, 该水冷箱体 12内部
焊接有将水冷箱体 12分割为多个独立水箱 13以及将各独立水箱 13分割为上箱体 132和 下箱体 131的横向筋板 127; 该水冷箱体 12内部还焊接有纵向筋板 128, 纵向筋板 128上 设有使同一水箱内部连通的通孔 1281 (如图 8A、 图 8B所示)。 组装时, 将横向筋板 127 与纵向筋板 128进行焊接构成筋板架, 上、 下侧板与左、 右侧板进行焊接构成组合箱框, 外侧板 122与各独立水箱 13的进、 出水口的快速接头进行焊接; 然后, 将筋板架、 背板 与组合箱框进行焊接, 在左右侧板、 上下侧板围成的内腔与筋板外端面平齐焊一周密封法 兰 129构成组合箱,密封法兰 129及横向筋板 127立端面上均开设有安放密封垫的密封槽, 使不同组的独立水箱以及各独立水箱的上下水箱间得到密封; 最后, 将外侧板 122与组合 箱进行把合, 外侧板与密封法兰、 横向筋板立端面间为紧密接触式密封连接, 采用紧固螺 栓将其紧固。
在本实施方式中, 如图 2A所示, 在所述工作面板 11与背板 121之间的背板一侧设有 围绕各独立水箱 13的密封槽 1213, 密封槽 1213内设有密封件 1214。 由此保证各独立水 箱 13和与其对应的通水槽组 111一同构成独立的水循环通路。所述密封件 1214可由紫铜 材料制成。 所述工作面板 11和背板 121采用非淬火钢材料制成。
在本实施方式中, 所述各箱式水冷板组件 10的工作面板 11与水冷箱体 12是由多个 螺栓固定连接的; 如图 3、 图 4A、 图 4B所示,所述工作面板 11面向背板 121的一侧面上 且对应各独立水箱 13的高度由上至下设有多个间隔平行的圆底 T型槽 112 (不同的独立 水箱对应的圆底 T型槽互不相通), 如图 7A、 图 7B所示, 所述背板 121上沿着每个圆底 T 型槽 112的中心线方向设有多个螺栓孔 1211, 所述螺栓孔 1211为长轴垂直圆底 T型槽中 心线的椭圆孔; 如图 2B所示, 将所述螺栓头卡设在圆底 T型槽 112内, 螺杆穿过对应的 椭圆形螺栓孔 1211并由螺母紧固连接, 螺母下方可设置密封垫圈。 在本实施方式中, 在 所述螺栓孔 1211的外侧还设有放置螺母的椭圆形凹槽 1212。 在本实施方式中, 所述纵向 设置的多个圆底 T型槽 112和多个 U型槽应错开设置, 以免发生干涉; 由于本发明中采用 圆底 T型槽 112和椭圆形螺栓孔 1211, 在工作面板 11接触高温钢水时工作面板高度方向 可以沿圆底 T 型槽自由膨胀延伸, 宽度方向可以沿椭圆形螺栓孔的长轴方向自由膨胀延 伸。进一步, 在背板 121上沿着圆底 T型槽 112的中心线方向设置的多列螺栓孔 1211中, 靠近背板中心对称轴的两列螺栓孔为普通圆形孔, 具有定位作用; 所述圆底 T型槽 112为 槽底为圆弧角的 T型槽, 由此解决开槽的应力集中问题; 由于水冷箱体 12的外侧板 122 是由紧固螺钉固定在各侧板和筋板上的,外侧板 122可以很容易地拆卸, 因此,便于维护、 调整和更换背板上的螺栓、 面板等。
在本实施方式中, 如图 9A、 图 9B所示, 所述构成组合式结晶器 1的四个竖直设置的
箱式水冷板组件 10包括有呈前后平行设置的两个宽边组件 101和呈左右平行设置的两个 窄边组件 102; 当所述两个宽边组件 101被紧密夹设在两个窄边组件 102之间时(如图 9B 所示), 所铸钢坯的宽度不可调, 通过调整两个宽边组件 101 的间距, 可以实现钢锭规格 厚度方向的调整;当所述两个窄边组件被紧密夹设在两个宽边组件之间时(如图 9A所示), 所铸钢坯的厚度不可调, 通过调整两个窄边组件 102的间距, 可以实现钢锭规格宽度方向 的调整。
由于高温钢液在注入组合式结晶器 1组成的铸型时, 高温钢液与工作面板 11先后接 触到的位置不同, 工作面板会出现由下向上不均匀变形及膨胀, 因此, 在本发明中除了背 板与螺栓紧固尽可能减少法向变形量, 同时变形后的工作面板可以沿圆底 T型槽向上自由 伸展, 宽度方向可以沿椭圆形螺栓孔长轴方向自由伸展; 在两垂直相邻的两个箱式水冷板 组件 10接触面上,可以调整位置的水冷板组件 10的工作面板比其侧板端面短 5〜15讓 (预 留膨胀缝), 浇铸前事先用可压缩的耐火纤维材料 6 (如图 10所示) 将缝隙塞好, 并在外 面涂上耐火涂料, 当接触钢液的工作面板受热膨胀时将压挤耐火纤维材料, 不致使整个铸 型产生不均匀膨胀及导致炮火漏钢事故发生。
在本实施方式中, 所述工作面板 11上与钢液接触的工作面根据使用的需要可以是平 面结构 (生产的锭坯为矩形锭); 如图 5、 图 6所示, 也可以是带拱形的曲面结构 (用于 生产带凸度的扁钢锭), 曲面还可以是带花边 (设有纵向花边) 的结构 (用于生产带凸度 的多棱扁钢锭)。
在本实施方式中, 如图 1A、 图 2B、 图 4B所示, 各箱式水冷板组件 10的工作面板 11 顶部分别设有四分之一法兰 113, 四个箱式水冷板组件 10组成组合式结晶器 1后其顶部 由四个四分之一法兰 113形成一完整的连接冒口的法兰; 所述冒口 3底部设有一止口 31, 该止口 31设于所述法兰上; 围绕法兰的外侧且位于冒口 3与各箱式水冷板组件 10之间填 充有耐火材料 7。 当铸型内浇入钢液后, 工作面板 11受热膨胀通过圆底 T型槽 112 自由 向上伸展, 并与冒口法兰一起托着冒口 3整体向上; 所述冒口 3可为保温绝热冒口, 也可 为电加热绝热冒口等现有结构的冒口。
在本实施方式中, 如图 1A所示, 所述组合式结晶器 1底部设置的底板 2可采用现有 的传统底板结构; 也可为水冷底板结构。 当采用水冷底板结构时, 该水冷底板可采用与上 述箱式水冷板组件 10的结构相似的结构(具体结构不再赘述); 该水冷底板长度方向的中 部设置为进水箱, 进水箱外侧设有出水箱, 由此, 可实现由锭坯底部中间位置逐步向外侧 的顺序冷却。
在本实施方式中, 如图 1A、 图 1B、 图 11A和图 11B所示, 所述钢结构框架 4包括相
对组合式结晶器 1的各个箱式水冷板组件 10外侧间隔设置的立梁 41, 所述立梁 41的上 端固定支撑有围绕所述组合式结晶器 1的第一矩环形空心水梁 42, 所述立梁 41的下端固 定连接有围绕所述组合式结晶器 1的第二矩环形空心水梁 43, 第二矩环形空心水梁 43下 方可设置一支座 44; 所述第一矩环形空心水梁 42上设有主进水管 421, 所述第二矩环形 空心水梁 43上设有主回水管 431 ; 所述第一矩环形空心水梁 42通过管路与各个独立水箱 13的下水箱 131进水口 14导通, 所述第二矩环形空心水梁 43通过管路与各个独立水箱 13的上水箱 132出水口 15导通; 所述各电液推杆 5的一端固定连接在立梁 41上, 另一 端铰接于对应的箱式水冷板组件 10的外侧面。
进一步, 如图 11A所示, 每个箱式水冷板组件 10外侧间隔设置两个立梁 41, 所述立 梁 41为空心管柱, 其中一个立梁 41的上端与所述第一矩环形空心水梁 42导通构成供水 管柱 411(如图 11A所示,供水管柱 411上端与第一矩环形空心水梁 42之间设有透孔 4111 ), 另一个立梁 41的下端与所述第二矩环形空心水梁 43导通构成回水管柱 412 (如图 11A所 示, 回水管柱 412下端与第二矩环形空心水梁 43之间设有透孔 4121 ); 如图 1B所示, 所 述供水管柱 411上设有与相对箱式水冷板组件 10中各个独立水箱 13的下水箱 131进水口 14导通的多个第一管体 4112;所述回水管柱 412上设有与相对箱式水冷板组件 10中各个 独立水箱 13的上水箱 132出水口 15导通的多个第二管体 4122。 所述第一管体 4112和第 二管体 4122可为耐压软管。 在本实施方式中, 所述第一管体 4112上设有电动蝶阀 (图中 未示出), 以使进入各个独立水箱 13的下水箱 131进水口 14的冷却水的流量可进行自动 调节和控制。 第一矩环形空心水梁 42与外部主供水系统相连, 供水压力 4〜8kg/cm2; 第 二矩环形空心水梁 43与外部回水系统相连, 可根据回水管柱 412内的水位自动控制与回 水管柱 412连接的回水泵(图中未示出); 回水泵将被加热了的热水与外部换热系统换热, 将热量回收利用或放散, 将被冷却了的凉水重新由供水回路注入冷却供水系统。
在本实施方式中, 所述回水管柱 412 的上部设有蒸气放散口 4123, 可通过管路回收 或放散蒸气。
在本实施方式的锭坯组合箱式水冷铸造装置中,如果在冒口上安放中注管即可实现顶 铸生产, 如果将下底板设置上浇铸通道并与外中注管连接即可实现底铸方式生产。
由上所述, 本发明的铸造装置, 当铸型内浇入钢液后, 通过调整各个箱式水冷板组件 自下而上的冷却箱系统的给水顺序及给水强度, 能够实现强制顺序冷却、 顺序凝固, 能够 达到消除疏松、 缩孔缺陷的目的。
在本实施方式中, 采用该锭坯组合箱式水冷铸造装置制造矩形锭坯的制造过程按 模具的制作、 组装、 浇铸、 控制、 开箱的操作步骤而进行操作实施。
具体操作步骤如下:
一、 模具的制作 (组合箱式水冷板组件的组装流程如图 12所示):
1.组合箱式水冷板组件各零部件按照规格图纸设计要求进行加工、 检查;
2.将工作面板与对应工作面板的四分之一法兰进行焊接,横向筋板与纵向筋板进行焊 接构成筋板架, 上下侧板与左右侧板进行焊接构成组合箱框, 外侧板与进水口和出水口的 水管快速接头进行焊接;
3.将筋板架、 背板与组合箱框进行焊接;
4.将密封法兰与组合箱框、 筋板架焊接成组合箱;
5.将外侧板与组合箱进行把合;
6.整体进行去除应力退火;
7.对焊接体背板与工作面板接触面进行整体加工 (用平面磨磨平); 密封法兰面包括 筋板外断面整体加工 (用平面磨磨平);
8.加工出所有密封槽;
9.将所需方头螺栓安装到工作面板的圆底 T型槽内对应背板上椭圆形螺栓孔位置,安 放背板与工作面板间的密封件; 将工作面板与组合箱背板平面合到一起, 将各方头螺栓穿 入椭圆形螺栓孔内; 将螺栓用垫圈、 螺母预紧;
10.检查工作面板底面与下端面板平齐、 工作面板与左右侧板中心对中后, 上紧所述 方头螺栓螺母;
11.安放密封法兰垫, 组装外侧板, 把合上紧外侧板紧固螺栓;
12.分别对每一个水箱进行注水、 打压试验合格后, 将水放出即可具备使用。
二、 组合箱式水冷模具的组装 (以上注为例, 如图 13A〜图 17B所示):
1.首先将矩环形框架安放到作业场地;
2.在矩环形框架中心安放底板 (可为水冷底板), 测量各边距矩环形框架距离, 找正 放水平 (如图 13A、 图 13B所示);
3.在底板上分别安装两个宽边箱式水冷板组件, 安装电液推杆与框架固定、 与水冷板 组件绞接, 调整丝杆固定两个宽边箱式水冷板组件在底板上的位置 (如图 14A、 图 14B所 示);
4.在底板上两个宽边箱式水冷板组件的两个端面,安放两个窄边箱式水冷板组件及对 应电液推杆, 调整电动丝杆给窄边箱式水冷板组件预紧 200〜260t力 (如图 15A、 图 15B 所示);
5.填充箱式水冷板角部膨胀缝;
6.安放冒口 (如图 16A、 图 16B所示);
7.安装中注管及浇铸漏斗 (如图 17A、 图 17B所示);
8.连接水路用管件及软管;
9.打开总供水阀门, 将外部水源引入矩环形框架水梁中, 待浇铸。
三、 矩形组合箱式锭坯的铸造浇铸 (以顶注为例, 如图 18〜图 21所示):
1.浇铸前, 首先检查工装模具、 管路、 阀门, 是否组装、 连接完好, 无水渗漏;
2.打开所有回水阀门, 保证回水回路畅通, 打开水冷底板、 锭身下方第一段独立水箱 的供水阀 (如图 18所示);
3.启动回水泵, 使供、 回水回路正常运行;
4.按工艺要求浇铸温度 (采用高温慢注方法, 过热度 35〜45 °C ) 浇铸金属液, 使钢 液缓慢平稳铺满型腔底平面, 在液面高度达到 200mm以后, 向型腔内加入液面保护渣;
5.保持液面平稳、 均匀上升至冒口箱下沿以上 200mm (如图 19所示);
6.冒口加保温覆盖剂, 间断点浇金属液点补冒口, 保持冒口的补缩温度、 高度 (如图 20所示);
7.吊出冒口浇铸漏斗及中铸管, 补加冒口保温覆盖剂 (如图 21所示);
四、 启动铸型顺序冷却程序: 根据事先 CAE仿真计算结果确定的顺序冷却工艺, 按规 定时间顺序打开第二段 (如图 20所示)、 第三段 (如图 21所示) 冷却系统, 同时根据供 水流量变化控制回水流量, 致金属液凝固推进到冒口; 待铸锭整体温度达到工艺起模温度 后, 关闭供水阀门, 待回水管内冷却水基本蒸发后, 卸下管网软管, 准备脱模开箱; 五、 脱模开箱操作: 首先卸掉冒口, 启动电动丝杆电源, 依次拆除两端面箱式水冷板 组件、 两侧箱式水冷板组件, 吊出钢锭;
六、 检查清整铸型准备下一轮生产。
本发明具有如下有益的技术效果:
1.由于本发明采用四个箱式水冷板组件组合构成组合式结晶器,可以实现宽度固定厚 度可调或厚度固定宽度可调两种方式,大大降低了不同规格钢锭所需的模具制作周期及成 本;
2.由于每个箱式水冷板组件自下而上分布有多个独立水箱, 使顺序供水、顺序冷却成 为可能, 使矩形钢锭消除疏松、 缩孔成为可能;
3.本发明箱式水冷板组件全部采用 Fe基钢材制成; 使制造成本大大降低;
4.工作面板和背板采用足够厚度的低碳高韧性非淬火钢,其耐工作温度高完全可以在 不通水冷却的条件下工作, 解决了铜板结晶器不能断水的致命缺陷, 同时使分时顺序冷却
成为可能;
5.工作面板垂直方向开设的圆底 T型槽, 解决了开槽应力集中问题, 圆底 Τ型槽可以 使方头螺栓在铸型工作面受热时在圆底 Τ型槽内上下滑动;不仅避免了膨胀不一容易使螺 栓切断问题, 同时降低了整体变形、 提高铸型安全性、 提高了使用寿命;
6.工作面板垂直方向的 U型水槽, 不仅可降低工作板厚度方向应力, 同时提高了工作 面板冷却换热面积,同一箱体内的圆底 Τ型槽和 U型水槽上下贯通,不同一箱体间不贯通, 实现了同一块工作面板高度上的冷却是独立进行;
7.工作面板上方设置的与冒口相连接的四分之一冒口法兰,实现了工作面板冷热涨缩 状态下始终能保持与冒口的紧密连接;
8.在背板与工作面板接触面上设置密封槽和密封件,保证了背板与工作面板之间在可 滑动状态下的密闭;
9.背板上开设的呈水平设置的椭圆形螺栓孔,保证了工作面板受热后紧固螺栓能在宽 度方向上进行滑移, 中心轴两侧的两列圆形螺栓孔同时起到定位作用;
10.每个独立水箱内的独特的布水槽结构, 实现了冷却水在工作面板宽度方向上冷却 强度的分布控制, 实现了钢锭宽度方向的中心强冷, 边角弱冷的要求;
11.横向和纵向筋板的巧妙使用, 不仅起到了提高刚度、 强度作用, 同时实现了水箱 的分隔, 使独立供水得以实现;
12.外侧板采用螺栓紧固, 便于维护、 调整和更换背板上的螺栓、 面板等, 提高了系 统的可维护保养特性;
13.四个组合式水冷板组件围成的边角部位, 工作面板与侧板端间预留的膨胀缝, 避 免了工作面板受热膨胀时导致的变形、 炮火漏钢事故发生;
14.电液推杆压紧系统具有结构简单、 无需液压管路、 投资省、 操作控制便捷等优点;
15.组合式结构与电液推杆的使用, 使热开箱变得更加方便;
16.采用矩环形空心水梁和空心立梁的钢结构框架与水冷供、 回水系统的有机融合, 在不降低钢结构强度的基础上, 既提高了钢结构整体重量, 提高了自身稳定性, 同时大大 降低了管路数量和结构复杂程度, 使操作变得更加便捷;
17.箱式水冷板组件在保证水冷板刚度、 强度的前提下, 使钢板使用量大大降低, 同 时水冷箱内的水还可以增加箱体自重, 防止铸型过轻造成抬箱炮火事故发生;
18.环形水梁采取的上供水、 下回水结构, 使供水更加顺畅, 回水有利于水、 汽分离, 热水可由回水泵抽走,高温蒸汽从上方冒出或回收,避免了回水向未供水的冷却箱内倒灌;
19.通过该装置, 当铸型内浇入钢液后, 通过调整自下而上的冷却箱系统的给水顺序
以及给水强度, 能够达到强制顺序冷却、 顺序凝固的效果, 能够实现消除疏松、 缩孔缺陷 的目的。
综上所述, 本发明的锭坯组合箱式水冷铸造装置, 其各箱式水冷板组件全部采用 Fe 基钢材制成, 可大大降低铸造装置的制作成本, 提高了工作面板的耐热温度, 铸造装置可 以在不通水冷却的条件下工作, 克服了现有技术中铜板结晶器不能断水的致命缺陷; 其每 个箱式水冷板组件自下而上分布有多个独立水箱, 使顺序供水、 顺序冷却成为可能, 并使 矩形钢锭消除疏松、 缩孔成为可能; 本发明中箱式水冷板组件的使用, 能够在保证水冷板 刚度、 结构强度的前提下, 大大降低钢板使用量, 同时水冷箱体内的水还可以增加组合式 结晶器的自重, 防止铸型过轻造成抬箱炮火事故发生; 再者, 采用电液推杆控制各箱式水 冷板组件, 具有投资小、 结构简单、 无需液压管路、 操作和控制便捷等优点, 使热开箱变 得更加方便; 本发明的锭坯组合箱式水冷铸造装置使提高铸锭质量、提高铸锭金属利用率 成为可能。
以上所述仅为本发明示意性的具体实施方式, 并非用以限定本发明的范围。任何本领 域的技术人员, 在不脱离本发明的构思和原则的前提下所作出的等同变化与修改, 均应属 于本发明保护的范围。
Claims
1、 一种锭坯组合箱式水冷铸造装置, 其特征在于: 该铸造装置包括由四个竖直设置 的箱式水冷板组件构成的组合式结晶器, 该组合式结晶器底部设有底板, 组合式结晶器顶 部设有冒口;所述组合式结晶器外侧环设有支撑组合式结晶器并向四个箱式水冷板组件供 水的钢结构框架,所述钢结构框架与对应的箱式水冷板组件之间分别连接设有多个电液推 杆; 所述箱式水冷板组件是由 Fe基钢材制成的, 所述各箱式水冷板组件由与钢液接触的 工作面板和位于工作面板外侧且与工作面板呈紧密接触式连接的水冷箱体构成,所述水冷 箱体由上至下分隔成两个以上紧邻设置的独立水箱,各独立水箱分别由下水箱和位于下水 箱上侧的上水箱构成; 下水箱设有进水口, 上水箱设有出水口; 在工作面板上与所述水冷 箱体接触的侧面设有与独立水箱对应设置的两组以上的通水槽组;各通水槽组是由沿工作 面板纵向平行凹设的多条槽体构成的;各独立水箱的上水箱朝向工作面板的一侧设有与对 应通水槽组的槽体上端导通的热水集合结构, 该热水集合结构导通于上水箱; 各独立水箱 的下水箱朝向工作面板的一侧设有与对应通水槽组的槽体下端导通的冷水分配结构,该冷 水分配结构导通于下水箱。
2、 如权利要求 1所述的锭坯组合箱式水冷铸造装置, 其特征在于: 所述热水集合结 构包括上水箱朝向工作面板的一侧设置的与对应通水槽组的多条槽体的上端导通的横向 集水槽, 在该横向集水槽中部设有导通于上水箱的第一透水孔; 所述冷水分配结构包括下 水箱朝向工作面板的一侧设置的与对应通水槽组的多条槽体的下端导通的横向布水槽,在 该横向布水槽中部设有导通于下水箱的第二透水孔。
3、 如权利要求 1所述的锭坯组合箱式水冷铸造装置, 其特征在于: 所述水冷箱体是 由与工作面板接触的背板、与背板平行设置的外侧板、以及设置于背板和外侧板四周的左、 右侧板及上、 下侧板密封固定连接构成的, 该水冷箱体内部焊接有将水冷箱体分割为多个 独立水箱以及将各独立水箱分割为上箱体和下箱体的横向筋板;该水冷箱体内部还焊接有 纵向筋板, 纵向筋板上设有使同一水箱内部连通的通孔。
4、 如权利要求 3所述的锭坯组合箱式水冷铸造装置, 其特征在于: 所述各箱式水冷 板组件的工作面板与水冷箱体由多个螺栓固定连接;所述工作面板面向背板的一侧面上且 对应各独立水箱的高度由上至下设有多个间隔平行的圆底 T型槽,所述背板上沿着每个圆 底 T型槽的中心线方向设有多个螺栓孔,所述螺栓孔为长轴垂直圆底 T型槽中心线的椭圆 孔; 所述螺栓头卡设在圆底 T型槽内, 螺杆穿过对应的椭圆形螺栓孔并由螺母紧固连接。
5、 如权利要求 4所述的锭坯组合箱式水冷铸造装置, 其特征在于: 在所述螺栓孔的 外侧还设有放置螺母的椭圆形凹槽。
6、 如权利要求 1所述的锭坯组合箱式水冷铸造装置, 其特征在于: 所述构成组合式 结晶器的四个竖直设置的箱式水冷板组件包括有呈前后平行设置的两个宽边组件和呈左 右平行设置的两个窄边组件。
7、 如权利要求 6所述的锭坯组合箱式水冷铸造装置, 其特征在于: 所述两个宽边组 件被紧密夹设在两个窄边组件之间。
8、 如权利要求 6所述的锭坯组合箱式水冷铸造装置, 其特征在于: 所述两个窄边组 件被紧密夹设在两个宽边组件之间。
9、 如权利要求 3所述的锭坯组合箱式水冷铸造装置, 其特征在于: 在所述工作面板 与背板之间的背板一侧设有围绕各独立水箱的密封槽, 密封槽内设有密封件。
10、 如权利要求 3所述的锭坯组合箱式水冷铸造装置, 其特征在于: 所述工作面板和 背板采用非淬火钢。
11、 如权利要求 1所述的锭坯组合箱式水冷铸造装置, 其特征在于: 所述工作面板上 与钢液接触的工作面为平面或曲面形状。
12、 如权利要求 11所述的锭坯组合箱式水冷铸造装置, 其特征在于: 曲面工作面的 表面设有纵向花边结构。
13、 如权利要求 1所述的锭坯组合箱式水冷铸造装置, 其特征在于: 各箱式水冷板组 件的工作面板顶部分别设有四分之一法兰, 四个箱式水冷板组件组成组合式结晶器后其顶 部形成一连接冒口的法兰; 所述冒口底部设有一止口, 该止口设于所述法兰上。
14、 如权利要求 13所述的锭坯组合箱式水冷铸造装置, 其特征在于: 所述冒口为保 温绝热冒口或电加热绝热冒口。
15、 如权利要求 1所述的锭坯组合箱式水冷铸造装置, 其特征在于: 所述组合式结晶 器底部设置的底板为水冷底板, 该水冷底板长度方向的中部为进水箱, 进水箱外侧设有出 水箱。
16、 如权利要求 1所述的锭坯组合箱式水冷铸造装置, 其特征在于: 所述钢结构框架 包括相对组合式结晶器的各个箱式水冷板组件外侧间隔设置的立梁,所述立梁的上端固定 支撑有围绕所述组合式结晶器的第一矩环形空心水梁,所述立梁的下端固定连接有围绕所 述组合式结晶器的第二矩环形空心水梁; 所述第一矩环形空心水梁上设有主进水管, 所述 第二矩环形空心水梁上设有主回水管;所述第一矩环形空心水梁通过管路与各个独立水箱 的下水箱进水口导通,所述第二矩环形空心水梁通过管路与各个独立水箱的上水箱出水口 导通; 所述电液推杆一端固定连接在立梁上, 另一端铰接于对应的箱式水冷板组件的外侧 面。
17、 如权利要求 16所述的锭坯组合箱式水冷铸造装置, 其特征在于: 每个箱式水冷 板组件外侧对应间隔设置两个立梁, 所述立梁为空心管柱, 其中一个立梁的上端与所述第 一矩环形空心水梁导通构成供水管柱,另一个立梁的下端与所述第二矩环形空心水梁导通 构成回水管柱;所述供水管柱上设有与相对箱式水冷板组件中各个独立水箱的下水箱进水 口导通的多个第一管体;所述回水管柱上设有与相对箱式水冷板组件中各个独立水箱的上 水箱出水口导通的多个第二管体。
18、 如权利要求 17所述的锭坯组合箱式水冷铸造装置, 其特征在于: 所述第一管体 上设有电动蝶阀。
19、 如权利要求 17所述的锭坯组合箱式水冷铸造装置, 其特征在于: 所述回水管柱 的上部设有蒸气放散口。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2011/072120 WO2012126184A1 (zh) | 2011-03-24 | 2011-03-24 | 锭坯组合箱式水冷铸造装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2011/072120 WO2012126184A1 (zh) | 2011-03-24 | 2011-03-24 | 锭坯组合箱式水冷铸造装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012126184A1 true WO2012126184A1 (zh) | 2012-09-27 |
Family
ID=46878615
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2011/072120 WO2012126184A1 (zh) | 2011-03-24 | 2011-03-24 | 锭坯组合箱式水冷铸造装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2012126184A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104741534A (zh) * | 2015-04-06 | 2015-07-01 | 丹阳恒庆复合材料科技有限公司 | 一种可调式辊轴铸造成型模具及制造工艺 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61154736A (ja) * | 1984-12-27 | 1986-07-14 | Sumitomo Light Metal Ind Ltd | 水平連続鋳造装置 |
WO2002002260A1 (de) * | 2000-06-30 | 2002-01-10 | Sms Demag Aktiengesellschaft | Stranggiesskokille |
WO2002036291A1 (de) * | 2000-11-04 | 2002-05-10 | Sms Demag Aktiengesellschaft | Strangführung einer stranggiessanlage mit einer einrichtung zur sekundärkühlung |
CN101168186A (zh) * | 2007-11-26 | 2008-04-30 | 苏州有色金属研究院有限公司 | 铝合金半连续铸造用连续润滑结晶器 |
CN201524777U (zh) * | 2009-11-06 | 2010-07-14 | 中冶连铸技术工程股份有限公司 | 一种变水槽截面板坯结晶器铜板 |
-
2011
- 2011-03-24 WO PCT/CN2011/072120 patent/WO2012126184A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61154736A (ja) * | 1984-12-27 | 1986-07-14 | Sumitomo Light Metal Ind Ltd | 水平連続鋳造装置 |
WO2002002260A1 (de) * | 2000-06-30 | 2002-01-10 | Sms Demag Aktiengesellschaft | Stranggiesskokille |
WO2002036291A1 (de) * | 2000-11-04 | 2002-05-10 | Sms Demag Aktiengesellschaft | Strangführung einer stranggiessanlage mit einer einrichtung zur sekundärkühlung |
CN101168186A (zh) * | 2007-11-26 | 2008-04-30 | 苏州有色金属研究院有限公司 | 铝合金半连续铸造用连续润滑结晶器 |
CN201524777U (zh) * | 2009-11-06 | 2010-07-14 | 中冶连铸技术工程股份有限公司 | 一种变水槽截面板坯结晶器铜板 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104741534A (zh) * | 2015-04-06 | 2015-07-01 | 丹阳恒庆复合材料科技有限公司 | 一种可调式辊轴铸造成型模具及制造工艺 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102114525B (zh) | 锭坯组合箱式水冷铸造装置 | |
CN101791682B (zh) | 超大型特厚板矩形锭坯的制造装置 | |
CN102248138B (zh) | 一种实现周向均匀冷却的水平连铸结晶器 | |
CN201997677U (zh) | 锭坯组合箱式水冷铸造装置 | |
CN108637200B (zh) | 大规格镁合金长扁锭半连续铸造装置 | |
CN102848132A (zh) | 一种用于装配挤压筒外套与内衬的装置 | |
CN205296891U (zh) | 一种具有内降温功能的混凝土钢管骨架支撑系统 | |
WO2012126184A1 (zh) | 锭坯组合箱式水冷铸造装置 | |
CN102126002B (zh) | 用于锭坯组合箱式水冷铸造装置的箱式水冷板组件 | |
CN104493112A (zh) | 钢锭铸造模具和铸造方法 | |
CN208083396U (zh) | 一种抑制镁合金锭坯开裂的半连续铸造装置 | |
CN209550549U (zh) | 一种对角剖分式冷却水套 | |
CN108246991B (zh) | 一种抑制镁合金锭坯开裂的半连续铸造装置及方法 | |
CN107716869B (zh) | 一种组合式水冷模具 | |
CN203938714U (zh) | 电子束熔炼炉的结晶器 | |
CN206543871U (zh) | 一种间接水冷却接头 | |
CN105382218A (zh) | 强制冷却底盘及其方法 | |
CN201979048U (zh) | 用于锭坯组合式水冷铸造装置的钢结构水梁框架 | |
CN105328167B (zh) | 一种生产钢铝复合管材的dc铸造装置及方法 | |
CN203807500U (zh) | 防热风炉炉皮焊缝开裂结构 | |
CN201644709U (zh) | 超大型特厚板矩形锭坯的制造装置 | |
CN218668207U (zh) | 一种超厚大体积筏板马凳支撑与温控系统一体化装置 | |
CN215902691U (zh) | 一种制备铝合金圆铸锭的铸造装置 | |
CN214133888U (zh) | 一种用于铜及铜合金熔铸的浇注流管 | |
CN203572226U (zh) | 一种可在线安装的炉内水冷隔墙 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11861839 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11861839 Country of ref document: EP Kind code of ref document: A1 |