[go: up one dir, main page]

WO2012118187A1 - Heat-resistant electrically insulating sheet material and method for producing same - Google Patents

Heat-resistant electrically insulating sheet material and method for producing same Download PDF

Info

Publication number
WO2012118187A1
WO2012118187A1 PCT/JP2012/055414 JP2012055414W WO2012118187A1 WO 2012118187 A1 WO2012118187 A1 WO 2012118187A1 JP 2012055414 W JP2012055414 W JP 2012055414W WO 2012118187 A1 WO2012118187 A1 WO 2012118187A1
Authority
WO
WIPO (PCT)
Prior art keywords
aramid
heat
paper
sheet material
fine particles
Prior art date
Application number
PCT/JP2012/055414
Other languages
French (fr)
Japanese (ja)
Inventor
成瀬 新二
竜士 藤森
Original Assignee
デュポン帝人アドバンスドペーパー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デュポン帝人アドバンスドペーパー株式会社 filed Critical デュポン帝人アドバンスドペーパー株式会社
Priority to KR1020137025544A priority Critical patent/KR101876601B1/en
Priority to CN201280011249.1A priority patent/CN103392038B/en
Publication of WO2012118187A1 publication Critical patent/WO2012118187A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/06Recovery or working-up of waste materials of polymers without chemical reactions
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/10Organic non-cellulose fibres
    • D21H13/20Organic non-cellulose fibres from macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H13/26Polyamides; Polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21JFIBREBOARD; MANUFACTURE OF ARTICLES FROM CELLULOSIC FIBROUS SUSPENSIONS OR FROM PAPIER-MACHE
    • D21J1/00Fibreboard
    • D21J1/16Special fibreboard
    • D21J1/20Insulating board
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/06Polyamides derived from polyamines and polycarboxylic acids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to a method for recycling calendered aramid paper and a heat-resistant electrical insulating sheet material. More particularly, the present invention relates to a method for recycling calendered aramid paper that enables reuse of calendered aramid paper that has been incinerated or disposed of without using chemicals, and a heat-resistant electrical insulating sheet material. Is.
  • Paper made from high performance materials has been developed to provide paper with improved strength and / or thermal stability.
  • aramid paper is a synthetic paper made of aromatic polyamide. Due to its heat and flame resistance, electrical insulation, toughness and flexibility, the paper has been used as an electrical insulation material and a base for aircraft honeycombs.
  • DuPont (USA) Nomex (R) fiber-containing paper mixes poly (metaphenylene isophthalamide) floc and fibrids in water and then mixes The slurry is made by paper making and calendering. This paper is known to still have high strength and toughness and excellent electrical insulation even at high temperatures.
  • Aramid paper scraps and damaged materials are subjected to high-temperature and high-pressure treatment by calendering, so they are not defibrated at all with water alone. Therefore, it is incinerated or disposed of. Also, after being dissolved in an organic solvent, chemical recycling is carried out again to form paper-making raw materials such as flock, fibrid, and pulp as well as virgin raw materials, but this method requires environmental considerations. Yes, and the cost tends to increase.
  • JP-A-4-228696 and JP-A-2003-290676 have been.
  • actual aramid paper is mostly used after being calendered, it is difficult to say that these methods are practical.
  • JP-A-7-243189 describes a porous aramid molded product using aramid paper pulp obtained by pulverizing aramid paper.
  • the molded product is considered to have insufficient electrical insulation due to its porosity.
  • An object of the present invention is to provide a heat-resistant electrical insulating sheet obtained by reusing calendered aramid paper without using a chemical solution or the like.
  • the present invention provides a fine particle having a length-weighted average fiber length of 1 mm or less obtained by pulverizing calendered aramid paper, which is a synthetic paper made of aromatic polyamide, and aramid fibrids.
  • a heat-resistant electrical insulating sheet material characterized by comprising:
  • the present invention provides a finely pulverized aramid paper, which is a synthetic paper made of an aromatic polyamide, prepared by dry pulverization, and the prepared fine particles, aramid fibrid, and water are combined.
  • a method for producing a heat-resistant electrical insulating sheet material characterized in that a mixed slurry is formed and paper is made using the formed slurry.
  • aramid means a linear polymer compound (aromatic polyamide) in which 60% or more of amide bonds are directly bonded to an aromatic ring.
  • aromatic polyamide examples include polymetaphenylene isophthalamide and copolymers thereof, polyparaphenylene terephthalamide and copolymers thereof, poly (paraphenylene) -copoly (3,4 diphenyl ether) terephthalamide, and the like.
  • These aramids are industrially produced by, for example, conventionally known interfacial polymerization methods, solution polymerization methods and the like using isophthalic acid chloride and metaphenylenediamine, and can be obtained as commercial products. Is not to be done.
  • polymetaphenylene isophthalamide is preferably used in that it has excellent molding processability, thermal adhesiveness, flame retardancy, heat resistance, and the like.
  • aramid fibrids are film-form aramid particles having paper-making properties and are also called aramid pulp (see Japanese Patent Publication No. 35-11851, Japanese Patent Publication No. 37-5732, etc.).
  • Aramid fibrids are widely known to be used as a papermaking raw material after being disaggregated and beaten in the same manner as ordinary wood pulp, and can be subjected to so-called beating treatment for the purpose of maintaining quality suitable for papermaking. This beating process can be performed by a paper refiner, a beater, or other papermaking raw material processing equipment that exerts a mechanical cutting action.
  • the shape change of the fibrid can be monitored by the freeness test method stipulated in Japanese Industrial Standard P8121.
  • the freeness of the aramid fibrid after the beating treatment is preferably in the range of 10 cm 3 to 300 cm 3 (Canadian Freeness).
  • the strength of the multi-thermal electrical insulation sheet material formed therefrom may be reduced.
  • the utilization efficiency of the mechanical power to be input becomes small, the processing amount per unit time is often reduced, and further, the fibrid is miniaturized. Since it proceeds too much, the so-called binder function is likely to be lowered. Therefore, even when trying to obtain a freeness smaller than 10 cm 3 in this way, no particular advantage is recognized.
  • the aramid short fiber is obtained by cutting a fiber made of aramid.
  • aramid a fiber made of aramid.
  • examples of such a fiber include “Teijin Conex (registered trademark)” by Teijin Limited and “Nomex (registered trademark)” by DuPont.
  • the length of the aramid short fibers can be selected from the range of generally 1 mm or more and less than 50 mm, preferably 2 to 10 mm. When the length of the short fiber is smaller than 1 mm, the mechanical properties of the sheet material are deteriorated. On the other hand, when the length is 50 mm or more, “entanglement”, “binding”, etc. are likely to occur in the production of aramid paper by the wet method. Prone to defects.
  • the aramid paper is a sheet-like material mainly composed of the aramid fibrids and short aramid fibers, and generally has a thickness in the range of 20 ⁇ m to 1000 ⁇ m. Further, aramid paper generally has a basis weight in the range of 10 g / m 2 to 1000 g / m 2 .
  • Aramid paper is generally produced by a method of mixing the above-mentioned aramid fibrid and aramid short fibers and then forming a sheet.
  • a method of forming a sheet using an air flow after dry blending the aramid fibrid and the aramid short fiber, a method of forming a sheet using an air flow, after the aramid fibrid and the aramid short fiber are dispersed and mixed in a liquid medium, the liquid permeation is performed.
  • a so-called wet papermaking method using water as a medium is preferably selected.
  • a single or mixed aqueous slurry containing at least aramid fibrids and short aramid fibers is fed to a paper machine and dispersed, and then dewatered, squeezed and dried to be wound up as a sheet. The method is common.
  • a long paper machine As the paper machine, a long paper machine, a circular paper machine, a slanted paper machine, and a combination paper machine combining these are used.
  • a composite sheet composed of a plurality of paper layers can be obtained by forming and combining slurry having different blending ratios.
  • Additives such as a dispersibility improver, an antifoaming agent, and a paper strength enhancer are used as necessary during papermaking.
  • the aramid paper obtained as described above can be improved in density and mechanical strength by hot pressing at high temperature and high pressure between a pair of rolls.
  • the hot pressure conditions include, but are not limited to, a temperature range of 100 to 350 ° C. and a linear pressure of 50 to 400 kg / cm when using a metal roll.
  • a plurality of aramid papers can be laminated during hot pressing. The above hot pressing can be performed a plurality of times in an arbitrary order.
  • the fine particles used in the present invention preferably have a length-weighted average fiber length of 1 mm or less as measured with an optical fiber length measuring device after pulverizing the calendared aramid paper.
  • an optical fiber length measuring device measuring equipment such as Fiber Quality Analyzer (manufactured by Op Test Equipment), Kayani type measuring device (manufactured by Kayani) can be used. In such an instrument, the fiber length and morphology of fine particles passing through a certain optical path are individually observed, and the measured fiber length is statistically processed.
  • a method of pulverizing the calendared aramid paper a method of pulverizing and finely pulverizing by a dry method, a wet method or both means is preferable.
  • the dry method is a method of using a shredder, a crusher, a kneader or the like, and impacting aramid paper without substantially interposing moisture to decompose it into fine particles.
  • the wet method is a method of reducing the particle size by applying an impact to aramid paper in an aqueous medium.
  • equipment for efficiently carrying out such wet pulverization include a high-speed disintegrator, a refiner, and a beater, but are not limited thereto.
  • the dry method is used for pulverization, and then the wet method is used for the pulverization.
  • Mixing with aramid fibrid facilitates homogenization of the liquid mixture and facilitates the production of homogeneous and fine particles, and at the same time, a single aramid fibrid that needs to be implemented for sheet manufacturing. It is also possible to omit the beating process.
  • the heat-resistant electrical insulating sheet material of the present invention is a sheet-like material mainly composed of the fine particles and aramid fibrids, and generally has a thickness in the range of 20 ⁇ m to 5 mm. Further, the heat-resistant electrical insulating sheet material generally has a basis weight in the range of 10 g / m 2 to 5000 g / m 2 .
  • the content of aramid fibrid in the heat-resistant electrical insulating sheet material is not particularly limited as long as the desired electrical insulation is achieved, but 5 to 80 in order to maintain the process strength during the production of the heat-resistant electrical insulating sheet material.
  • the content of fine particles in the heat-resistant electrical insulating sheet material is preferably in the range of 20 to 95% by weight, but is not limited to this range, and is preferably 30% by weight or more from the viewpoint of recycling, and maintains the process strength. Therefore, it is more preferably in the range of 30 to 85% by weight, particularly preferably in the range of 50 to 85% by weight.
  • the heat-resistant electrical insulating sheet material is generally produced by a method of mixing the above-described fine particles and aramid fibrid and then forming a sheet.
  • a method of forming a sheet using an air stream after dry blending the fine particles and the aramid fibrid, and dispersing and mixing the fine particles and the aramid fibrid in a liquid medium, and then supporting the liquid permeability a method of discharging onto a body, for example, a net or a belt, forming a sheet, and drying after removing the liquid can be applied.
  • a so-called wet papermaking method using water as a medium is preferably selected.
  • the wet papermaking method there is a method in which a single or mixture aqueous slurry containing at least fine particles and aramid fibrid is fed to a paper machine and dispersed, and then dewatered, squeezed, and dried to be wound up as a sheet. It is common.
  • a paper machine a long paper machine, a circular paper machine, a slanted paper machine, and a combination paper machine combining these are used.
  • a composite sheet composed of a plurality of paper layers can be obtained by forming and combining slurry having different blending ratios.
  • Additives such as a dispersibility improver, an antifoaming agent, and a paper strength enhancer are used as necessary during papermaking.
  • the tensile strength can be further increased by adding aramid short fibers to the heat-resistant electrical insulating sheet material.
  • the content of aramid short fibers in the heat-resistant electrical insulating sheet material is preferably in the range of 5 to 50% by weight, but is not limited to this range. In order to keep it, the range of 5 to 30% by weight is particularly preferred.
  • the heat-resistant electrical insulating sheet material thus obtained can be improved in density and mechanical strength by hot pressing at a high temperature and high pressure between a pair of flat plates or between metal rolls.
  • conditions for the hot pressure include, but are not limited to, a temperature of 100 to 350 ° C. and a linear pressure of 50 to 400 kg / cm when a metal roll is used. It is also possible to simply press at room temperature without adding a heating operation.
  • a plurality of heat-resistant electrical insulating sheet materials can be laminated during hot pressing. The above hot pressing can be performed a plurality of times in an arbitrary order.
  • Measurement of basic weight and thickness It implemented according to JIS C2111.
  • Calculation of density It calculated with basic weight ⁇ thickness.
  • Length Weighted Average Fiber Length Using a Fiber Quality Analyzer manufactured by Op Test Equipment, the length weighted average fiber length of about 4000 fine particles was measured.
  • Measurement of tensile strength A Tensilon tensile tester was carried out at a width of 15 mm, a chuck interval of 50 mm, and a tensile speed of 50 mm / min.
  • Dielectric breakdown voltage According to ASTM D149, an electrode diameter of 51 mm was used by a direct voltage boosting method using alternating current.
  • a polymetaphenylene isophthalamide fibrid was manufactured using a pulp particle manufacturing apparatus (wet precipitator) composed of a combination of a stator and a rotor described in JP-A-52-15621. This was processed with a disaggregator and a beater to adjust the length weighted average fiber length to 0.9 mm.
  • a meta-aramid fiber Nomex (registered trademark), single yarn fineness 2 denier) manufactured by DuPont was cut into a length of 6 mm (hereinafter referred to as “aramid short fiber”) to obtain a raw material for papermaking.
  • the prepared aramid fibrids and aramid short fibers were each dispersed in water to form a slurry. These slurries were mixed so that the fibrid and the aramid short fiber had a blending ratio (weight ratio) of 1/1, and a sheet-like material was produced with a tappy type hand machine (cross-sectional area 625 cm 2 ). . Next, this was hot-pressed with a metal calender roll at a temperature of 330 ° C. and a linear pressure of 300 kg / cm to obtain calendered aramid paper.
  • Examples 1 to 3 and a control example (Fine particle raw material preparation)
  • the calendared aramid paper was pulverized with a dry pulverizer.
  • a slurry mixed with water having passed through a sieve having an aperture diameter of 3 mm and water was prepared, and this slurry was treated with a disaggregator and a beater to adjust the length-weighted average fiber length to the size shown in Table 1.
  • the prepared fine particles, the prepared aramid fibrids, and the prepared aramid short fibers were each dispersed in water to prepare a slurry.
  • the heat-resistant electrical insulating sheet materials of Examples 1 to 3 have a sufficiently high dielectric breakdown voltage, and further, no change was observed in the appearance even after treatment at 250 ° C. for 10 minutes, so that they are useful as heat-resistant electrical insulating sheet materials .
  • Example 4 (Fine particle raw material preparation)
  • the calendared aramid paper was pulverized with a dry pulverizer. Prepare a mixed slurry of aramid fibrid and water that has passed through a sieve with an aperture diameter of 3 mm, and treat this slurry with a disaggregator and a beater so that the length-weighted average fiber length is the size shown in Table 2. Adjusted. (Manufacture of heat-resistant electrical insulation sheet material) Fine particles prepared by pulverizing a mixture of aramid paper and aramid fibrid and aramid short fibers were dispersed in each water to prepare a slurry.
  • the heat-resistant electrical insulating sheet material of Examples 4 to 6 was obtained by pulverizing a mixed slurry of fine particles and aramid fibrids, the raw material for fine particles and aramid fibrids were obtained in a shorter time than the heat-resistant electric insulating sheet materials of Examples 1 to 3. Has been prepared. Further, the characteristics were almost the same as or better than those of Examples 1 to 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Paper (AREA)
  • Organic Insulating Materials (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

Provided is a heat-resistant electrically insulating sheet material characterized by containing aramid fibrids and microparticles having a length-weighted average fiber length of no greater than 1 mm obtained by pulverizing calendered aramid paper, which is a synthetic paper comprising an aromatic polyamide.

Description

耐熱性電気絶縁シート材料及びその製造方法Heat resistant electrical insulating sheet material and method for producing the same
 本発明は、カレンダー加工されたアラミド紙のリサイクル方法、ならびに耐熱性電気絶縁シート材料に関するものである。さらに詳しくは、焼却または廃棄処分されているカレンダー加工されたアラミド紙の再利用を、薬液などを使用せずに可能にするカレンダー加工されたアラミド紙のリサイクル方法、ならびに耐熱性電気絶縁シート材料に関するものである。 The present invention relates to a method for recycling calendered aramid paper and a heat-resistant electrical insulating sheet material. More particularly, the present invention relates to a method for recycling calendered aramid paper that enables reuse of calendered aramid paper that has been incinerated or disposed of without using chemicals, and a heat-resistant electrical insulating sheet material. Is.
 高性能材料から製造された紙が、改善された強度および/または熱安定性を紙に与えるために開発されてきた。例えば、アラミド紙は、芳香族ポリアミドよりなる合成紙である。その耐熱性および耐燃性、電気絶縁性、強靱性および可撓性のために、該紙は、電気絶縁材料および航空機ハニカム用ベースとして使用されてきた。これらの材料のうち、デュポン(DuPont)(米国)のノーメックス(Nomex)(登録商標)繊維を含んでなる紙は、ポリ(メタフェニレンイソフタルアミド)フロックとフィブリドとを水中で混合し、次に混合したスラリーを抄紙した後、カレンダー加工することによって製造される。この紙は、高温のときでさえ、依然として高い強度および強靱性を有すると共に優れた電気絶縁性を有することが知られている。
 アラミド紙の端材や破損材などは、カレンダー加工による高温、高圧の処理を実施されているため、水だけでは全く解繊しない。そのため、焼却または廃棄処分がなされている。また、有機溶剤に溶解後、再度、バージンの原料と同様に抄紙原料であるフロックやファイブリッド、パルプなどに成形するケミカルリサイクルが実施されているが、この方法は、環境的な配慮が必要であり、かつ、コストが高くなる傾向にはある。
Paper made from high performance materials has been developed to provide paper with improved strength and / or thermal stability. For example, aramid paper is a synthetic paper made of aromatic polyamide. Due to its heat and flame resistance, electrical insulation, toughness and flexibility, the paper has been used as an electrical insulation material and a base for aircraft honeycombs. Of these materials, DuPont (USA) Nomex (R) fiber-containing paper mixes poly (metaphenylene isophthalamide) floc and fibrids in water and then mixes The slurry is made by paper making and calendering. This paper is known to still have high strength and toughness and excellent electrical insulation even at high temperatures.
Aramid paper scraps and damaged materials are subjected to high-temperature and high-pressure treatment by calendering, so they are not defibrated at all with water alone. Therefore, it is incinerated or disposed of. Also, after being dissolved in an organic solvent, chemical recycling is carried out again to form paper-making raw materials such as flock, fibrid, and pulp as well as virgin raw materials, but this method requires environmental considerations. Yes, and the cost tends to increase.
 また、カレンダー加工による高温、高圧の処理を実施されていない、乾燥されたアラミド紙あるいはアラミドボードのリサイクルに関しては、特開平4-228696号公報、特開2003-290676号公報にその処理方法が記載されている。しかしながら、実際のアラミド紙はカレンダー加工されて使用される場合がほとんどであるため、これらの方法は実用的であるとは言い難い。
 さらに、特開平7-243189号公報には、アラミド紙を粉砕したアラミド紙パルプを使用した多孔性アラミド成形物の記載がある。しかしながら、前記成形物は、多孔性のため、電気絶縁性が不十分であると考えられる。
Further, regarding the recycling of dried aramid paper or aramid board that has not been subjected to high-temperature and high-pressure treatment by calendering, the treatment method is described in JP-A-4-228696 and JP-A-2003-290676. Has been. However, since actual aramid paper is mostly used after being calendered, it is difficult to say that these methods are practical.
Further, JP-A-7-243189 describes a porous aramid molded product using aramid paper pulp obtained by pulverizing aramid paper. However, the molded product is considered to have insufficient electrical insulation due to its porosity.
 本発明の目的は、カレンダー加工されたアラミド紙を、薬液などを使用せずに、再利用した耐熱性電気絶縁シートを提供するものである。
 第一の態様において、本発明は、芳香族ポリアミドよりなる合成紙であるカレンダー加工されたアラミド紙を粉砕することによって得られる長さ加重平均繊維長が1mm以下である微粒子と、アラミドファイブリッドとを含有することを特徴とする耐熱性電気絶縁シート材料を提供する。
 第2の態様において、本発明は、芳香族ポリアミドよりなる合成紙であるカレンダー加工されたアラミド紙を乾式粉砕して微粒子を調製し、調製した微粒子と、アラミドファイブリッドと、水とを組み合わせて混合スラリーを形成し、形成したスラリーを使用して抄紙することを特徴とする耐熱性電気絶縁シート材料の製造方法を提供する。
An object of the present invention is to provide a heat-resistant electrical insulating sheet obtained by reusing calendered aramid paper without using a chemical solution or the like.
In the first aspect, the present invention provides a fine particle having a length-weighted average fiber length of 1 mm or less obtained by pulverizing calendered aramid paper, which is a synthetic paper made of aromatic polyamide, and aramid fibrids. A heat-resistant electrical insulating sheet material characterized by comprising:
In the second aspect, the present invention provides a finely pulverized aramid paper, which is a synthetic paper made of an aromatic polyamide, prepared by dry pulverization, and the prepared fine particles, aramid fibrid, and water are combined. There is provided a method for producing a heat-resistant electrical insulating sheet material, characterized in that a mixed slurry is formed and paper is made using the formed slurry.
(アラミド)
 本発明において、アラミドとは、アミド結合の60%以上が芳香環に直接結合した線状高分子化合物(芳香族ポリアミド)を意味する。このようなアラミドとしては、例えばポリメタフェニレンイソフタルアミドおよびその共重合体、ポリパラフェニレンテレフタルアミドおよびその共重合体、ポリ(パラフェニレン)-コポリ(3,4ジフェニルエーテル)テレフタールアミドなどが挙げられる。これらのアラミドは、例えばイソフタル酸塩化物およびメタフェニレンジアミンを用いた従来既知の界面重合法、溶液重合法等により工業的に製造されており、市販品として入手することができるが、これに限定されるものではない。これらのアラミドの中で、ポリメタフェニレンイソフタルアミドが、良好な成型加工性、熱接着性、難燃性、耐熱性などの特性を備えている点で好ましく用いられる。
(Aramid)
In the present invention, aramid means a linear polymer compound (aromatic polyamide) in which 60% or more of amide bonds are directly bonded to an aromatic ring. Examples of such aramids include polymetaphenylene isophthalamide and copolymers thereof, polyparaphenylene terephthalamide and copolymers thereof, poly (paraphenylene) -copoly (3,4 diphenyl ether) terephthalamide, and the like. . These aramids are industrially produced by, for example, conventionally known interfacial polymerization methods, solution polymerization methods and the like using isophthalic acid chloride and metaphenylenediamine, and can be obtained as commercial products. Is not to be done. Among these aramids, polymetaphenylene isophthalamide is preferably used in that it has excellent molding processability, thermal adhesiveness, flame retardancy, heat resistance, and the like.
(アラミドファイブリッド)
 本発明において、アラミドファイブリッドとは、抄紙性を有するフィルム状のアラミド粒子であり、アラミドパルプとも呼ばれる(特公昭35-11851号公報、特公昭37-5732号公報等参照)。
 アラミドファイブリッドは、通常の木材パルプと同様に、離解、叩解処理を施し抄紙原料として用いることが広く知られており、抄紙に適した品質を保つ目的でいわゆる叩解処理を施すことができる。この叩解処理は、デイスクリファイナー、ビーター、その他の機械的切断作用を及ぼす抄紙原料処理機器によって実施することが出来る。この操作において、ファイブリッドの形態変化は、日本工業規格P8121に規定の濾水度試験方法(フリーネス)でモニターすることができる。本発明において、叩解処理を施した後のアラミドファイブリッドの濾水度は、10cm3~300cm3(カナディアンフリーネス)の範囲内にあることが好ましい。この範囲より大きな濾水度のファイブリッドでは、それから成形される多熱性電気絶縁シート材料の強度が低下する可能性がある。一方、10cm3よりも小さな濾水度を得ようとすると、投入する機械動力の利用効率が小さくなり、また、単位時間当たりの処理量が少なくなることが多く、さらに、ファイブリッドの微細化が進行しすぎるためいわゆるバインダー機能の低下を招きやすい。したがって、このように10cm3よりも小さい濾水度を得ようとしても、格段の利点が認められない。
(Aramid Five Brid)
In the present invention, aramid fibrids are film-form aramid particles having paper-making properties and are also called aramid pulp (see Japanese Patent Publication No. 35-11851, Japanese Patent Publication No. 37-5732, etc.).
Aramid fibrids are widely known to be used as a papermaking raw material after being disaggregated and beaten in the same manner as ordinary wood pulp, and can be subjected to so-called beating treatment for the purpose of maintaining quality suitable for papermaking. This beating process can be performed by a paper refiner, a beater, or other papermaking raw material processing equipment that exerts a mechanical cutting action. In this operation, the shape change of the fibrid can be monitored by the freeness test method stipulated in Japanese Industrial Standard P8121. In the present invention, the freeness of the aramid fibrid after the beating treatment is preferably in the range of 10 cm 3 to 300 cm 3 (Canadian Freeness). For fibrids with a freeness greater than this range, the strength of the multi-thermal electrical insulation sheet material formed therefrom may be reduced. On the other hand, if it is desired to obtain a freeness smaller than 10 cm 3 , the utilization efficiency of the mechanical power to be input becomes small, the processing amount per unit time is often reduced, and further, the fibrid is miniaturized. Since it proceeds too much, the so-called binder function is likely to be lowered. Therefore, even when trying to obtain a freeness smaller than 10 cm 3 in this way, no particular advantage is recognized.
(アラミド短繊維)
 アラミド短繊維は、アラミドを材料とする繊維を切断したものであり、そのような繊維としては、例えば帝人(株)の「テイジンコーネックス(登録商標)」、デュポン社の「ノーメックス(登録商標)」などの商品名で入手することができるものが挙げられるが、これらに限定されるものではない。
 アラミド短繊維の長さは、一般に1mm以上50mm未満、好ましくは2~10mmの範囲内から選ぶことができる。短繊維の長さが1mmよりも小さいと、シート材料の力学特性が低下し、他方、50mm以上のものは、湿式法でのアラミド紙の製造にあたり「からみ」、「結束」などが発生しやすく欠陥の原因となりやすい。
(Aramid short fiber)
The aramid short fiber is obtained by cutting a fiber made of aramid. Examples of such a fiber include “Teijin Conex (registered trademark)” by Teijin Limited and “Nomex (registered trademark)” by DuPont. However, the present invention is not limited to these.
The length of the aramid short fibers can be selected from the range of generally 1 mm or more and less than 50 mm, preferably 2 to 10 mm. When the length of the short fiber is smaller than 1 mm, the mechanical properties of the sheet material are deteriorated. On the other hand, when the length is 50 mm or more, “entanglement”, “binding”, etc. are likely to occur in the production of aramid paper by the wet method. Prone to defects.
(アラミド紙)
 本発明において、アラミド紙とは、前記のアラミドファイブリッド及びアラミド短繊維から主として構成されるシート状物であり、一般に20μm~1000μmの範囲内の厚さを有している。さらに、アラミド紙は、一般に10g/m2~1000g/m2の範囲内の坪量を有している。
 アラミド紙は、一般に、前述したアラミドファイブリッドとアラミド短繊維とを混合した後シート化する方法により製造される。具体的には、例えば上記アラミドファイブリッド及びアラミド短繊維を乾式ブレンドした後に、気流を利用してシートを形成する方法、アラミドファイブリッド及びアラミド短繊維を液体媒体中で分散混合した後、液体透過性の支持体、例えば網またはベルト上に吐出してシート化し、液体を除いて乾燥する方法などが適用できるが、これらのなかでも水を媒体として使用する、いわゆる湿式抄造法が好ましく選択される。
 湿式抄造法では、少なくともアラミドファイブリッド、アラミド短繊維を含有する単一または混合物の水性スラリーを、抄紙機に送液し分散した後、脱水、搾水および乾燥操作することによって、シートとして巻き取る方法が一般的である。抄紙機としては長網抄紙機、円網抄紙機、傾斜型抄紙機およびこれらを組み合わせたコンビネーション抄紙機などが利用される。コンビネーション抄紙機での製造の場合、配合比率の異なるスラリーをシート成形し合一することで複数の紙層からなる複合体シートを得ることができる。抄造の際に必要に応じて分散性向上剤、消泡剤、紙力増強剤などの添加剤が使用される。
(Aramid paper)
In the present invention, the aramid paper is a sheet-like material mainly composed of the aramid fibrids and short aramid fibers, and generally has a thickness in the range of 20 μm to 1000 μm. Further, aramid paper generally has a basis weight in the range of 10 g / m 2 to 1000 g / m 2 .
Aramid paper is generally produced by a method of mixing the above-mentioned aramid fibrid and aramid short fibers and then forming a sheet. Specifically, for example, after dry blending the aramid fibrid and the aramid short fiber, a method of forming a sheet using an air flow, after the aramid fibrid and the aramid short fiber are dispersed and mixed in a liquid medium, the liquid permeation is performed. For example, a so-called wet papermaking method using water as a medium is preferably selected. .
In the wet papermaking method, a single or mixed aqueous slurry containing at least aramid fibrids and short aramid fibers is fed to a paper machine and dispersed, and then dewatered, squeezed and dried to be wound up as a sheet. The method is common. As the paper machine, a long paper machine, a circular paper machine, a slanted paper machine, and a combination paper machine combining these are used. In the case of production with a combination paper machine, a composite sheet composed of a plurality of paper layers can be obtained by forming and combining slurry having different blending ratios. Additives such as a dispersibility improver, an antifoaming agent, and a paper strength enhancer are used as necessary during papermaking.
(カレンダー加工)
 上記のようにして得られたアラミド紙は、一対のロール間にて高温高圧で熱圧することにより、密度、機械強度を向上することができる。熱圧の条件は、たとえば金属製ロール使用の場合、温度100~350℃、線圧50~400kg/cmの範囲内を例示することができるが、これらに限定されるものではない。熱圧の際に複数のアラミド紙を積層することもできる。上記の熱圧加工を任意の順に複数回行うこともできる。
(Calendar processing)
The aramid paper obtained as described above can be improved in density and mechanical strength by hot pressing at high temperature and high pressure between a pair of rolls. Examples of the hot pressure conditions include, but are not limited to, a temperature range of 100 to 350 ° C. and a linear pressure of 50 to 400 kg / cm when using a metal roll. A plurality of aramid papers can be laminated during hot pressing. The above hot pressing can be performed a plurality of times in an arbitrary order.
(カレンダー加工されたアラミド紙を粉砕した微粒子)
 本発明において使用する微粒子とは、上記のカレンダー加工されたアラミド紙を粉砕した後の、光学的繊維長測定装置で測定したときの長さ加重平均繊維長が1mm以下であることが好ましい。ここで、光学的繊維長測定装置としては、Fiber Quality Analyzer(Op Test Equipment社製)、カヤニー型測定装置(カヤニー社製)などの測定機器を用いることができる。このような機器においては、ある光路を通過する微粒子の繊維長さと形態が個別に観測され、測定された繊維長は統計的に処理される。長さ加重平均された繊維長が1mmを越える微粒子を用いた場合には、耐熱性電気絶縁シートの表面の凹凸が大きくなり、絶縁破壊電圧が局所的に低下する。さらに、シート製造中の微粒子の脱離によりシートに穴が発生して絶縁破壊電圧の低下などが起こりやすくなる。
 上記のカレンダー加工されたアラミド紙を粉砕する方法としては、乾式法、湿式法または両方の手段で粉砕し微粒子化する方法が好ましい。乾式法とは、シュレッダー、クラッシャー、ニーダー等を用い、実質的に水分を介在させずにアラミド紙に衝撃を与え微粒子に分解する方法である。また、湿式法とは、水媒体中でアラミド紙に衝撃を与えて粒度を小さくする方法である。そのような湿式粉砕を効率的に実施する設備としては、高速離解機、リファイナー、ビーター等が例示できるが、これらに限定されるわけではない。
 本発明では微粒子を製造する際、乾式法による粉砕を実施した後、湿式法による粉砕を実施し、さらに湿式法による粉砕の際、アラミドファイブリッドと混合した状態で、湿式法により粉砕する方法が好ましい。アラミドファイブリッドと混合することにより、混合液が均質化されやすく、均質で細かい微粒子が製造しやすくなり、さらには同時に湿式処理することにより、シート製造のために実施が必要なアラミドファイブリッド単体での叩解処理を省略することも可能となる。
(Fine particles obtained by grinding calendered aramid paper)
The fine particles used in the present invention preferably have a length-weighted average fiber length of 1 mm or less as measured with an optical fiber length measuring device after pulverizing the calendared aramid paper. Here, as the optical fiber length measuring device, measuring equipment such as Fiber Quality Analyzer (manufactured by Op Test Equipment), Kayani type measuring device (manufactured by Kayani) can be used. In such an instrument, the fiber length and morphology of fine particles passing through a certain optical path are individually observed, and the measured fiber length is statistically processed. When fine particles having a length-weighted average fiber length exceeding 1 mm are used, unevenness on the surface of the heat-resistant electrical insulating sheet is increased, and the dielectric breakdown voltage is locally reduced. Furthermore, holes are generated in the sheet due to the detachment of fine particles during sheet manufacture, and the breakdown voltage is likely to decrease.
As a method of pulverizing the calendared aramid paper, a method of pulverizing and finely pulverizing by a dry method, a wet method or both means is preferable. The dry method is a method of using a shredder, a crusher, a kneader or the like, and impacting aramid paper without substantially interposing moisture to decompose it into fine particles. The wet method is a method of reducing the particle size by applying an impact to aramid paper in an aqueous medium. Examples of equipment for efficiently carrying out such wet pulverization include a high-speed disintegrator, a refiner, and a beater, but are not limited thereto.
In the present invention, when the fine particles are produced, the dry method is used for pulverization, and then the wet method is used for the pulverization. preferable. Mixing with aramid fibrid facilitates homogenization of the liquid mixture and facilitates the production of homogeneous and fine particles, and at the same time, a single aramid fibrid that needs to be implemented for sheet manufacturing. It is also possible to omit the beating process.
(耐熱性電気絶縁シート材料)
 本発明の耐熱性電気絶縁シート材料とは、前記の微粒子とアラミドファイブリッドから主として構成されるシート状物であり、一般に20μm~5mmの範囲内の厚さを有している。さらに、耐熱性電気絶縁シート材料は、一般に10g/m2~5000g/m2の範囲内の坪量を有している。
 耐熱性電気絶縁シート材料におけるアラミドファイブリッドの含有量は所望の電気絶縁性を達成するのであれば特に制限はないが、耐熱性電気絶縁シート材料の製造中における工程強度を保つために5~80重量%が好ましく、さらに十分な電気絶縁性を得るために15~80重量%が好ましく、さらに十分な強度を発現するためには30~80重量%が特に好ましい。耐熱性電気絶縁シート材料における微粒子の含有量は、20~95重量%の範囲が好ましいが、この範囲に限定されるわけではなく、リサイクルの観点からは30重量%以上が好ましく、工程強度を保つためにはより好ましくは30~85重量%の範囲であり、特に好ましくは50~85重量%の範囲である。
 耐熱性電気絶縁シート材料は、一般に前述した微粒子とアラミドファイブリッドとを混合した後シート化する方法により製造される。具体的には、例えば上記微粒子とアラミドファイブリッドを乾式ブレンドした後に、気流を利用してシートを形成する方法、上記微粒子及びアラミドファイブリッドを液体媒体中で分散混合した後、液体透過性の支持体、例えば網またはベルト上に吐出してシート化し、液体を除いて乾燥する方法などを適用できるが、これらのなかでも水を媒体として使用する、いわゆる湿式抄造法が好ましく選択される。
 湿式抄造法では、少なくとも微粒子、アラミドファイブリッドを含有する単一または混合物の水性スラリーを、抄紙機に送液し分散した後、脱水、搾水および乾燥操作することによって、シートとして巻き取る方法が一般的である。抄紙機としては長網抄紙機、円網抄紙機、傾斜型抄紙機およびこれらを組み合わせたコンビネーション抄紙機などが利用される。コンビネーション抄紙機での製造の場合、配合比率の異なるスラリーをシート成形し合一することで複数の紙層からなる複合体シートを得ることができる。抄造の際に必要に応じて分散性向上剤、消泡剤、紙力増強剤などの添加剤が使用される。
 耐熱性電気絶縁シート材料にアラミド短繊維を添加することで、さらに引張強度を高めることができる。耐熱性電気絶縁シート材料におけるアラミド短繊維の含有量は、5~50重量%の範囲が好ましいが、この範囲に限定されるわけではなく、リサイクルの観点からは30重量%以下で、工程強度を保つために5~30重量%の範囲が特に好ましい。
 またこれ以外にその他の繊維状成分(例えばポリフェニレンスルフィド繊維、ポリエーテルエーテルケトン繊維、セルロース系繊維、PVA系繊維、ポリエステル繊維、アリレート繊維、液晶ポリエステル繊維、ポリエチレンナフタレート繊維などの有機繊維、ガラス繊維、ロックウール、アスベスト、ボロン繊維などの無機繊維ガラス繊維)を添加することが出来る。
 本発明の耐熱性電気絶縁シート材料において、アラミドファイブリッドは、バインダーとして優れた特性を有しているため微粒子および他の添加成分を効率的に補足でき、本発明の耐熱性電気絶縁シート材料製造において原料歩留まりが良好となると同時にシート内で層状に重なり、貫通孔を減少させることが可能で、電気絶縁性が向上する。
 このようにして得られた耐熱性電気絶縁シート材料は、一対の平板間または金属製ロール間にて高温高圧で熱圧することで密度、機械強度を向上することができる。熱圧の条件は、たとえば金属製ロール使用の場合、温度100~350℃、線圧50~400kg/cmが例示できるがこれらに限定されるものではない。加熱操作を加えずに常温で単にプレスだけを行うこともできる。熱圧の際に複数の耐熱性電気絶縁シート材料を積層することもできる。上記の熱圧加工を任意の順に複数回行うこともできる。
 以下、本発明について実施例を挙げて説明する。なお、これらの実施例は、本発明の内容を、例を挙げては説明するためのものであり、本発明の内容を何ら限定するものではない。
(Heat resistant electrical insulation sheet material)
The heat-resistant electrical insulating sheet material of the present invention is a sheet-like material mainly composed of the fine particles and aramid fibrids, and generally has a thickness in the range of 20 μm to 5 mm. Further, the heat-resistant electrical insulating sheet material generally has a basis weight in the range of 10 g / m 2 to 5000 g / m 2 .
The content of aramid fibrid in the heat-resistant electrical insulating sheet material is not particularly limited as long as the desired electrical insulation is achieved, but 5 to 80 in order to maintain the process strength during the production of the heat-resistant electrical insulating sheet material. % By weight is preferable, 15 to 80% by weight is preferable for obtaining sufficient electric insulation, and 30 to 80% by weight is particularly preferable for achieving sufficient strength. The content of fine particles in the heat-resistant electrical insulating sheet material is preferably in the range of 20 to 95% by weight, but is not limited to this range, and is preferably 30% by weight or more from the viewpoint of recycling, and maintains the process strength. Therefore, it is more preferably in the range of 30 to 85% by weight, particularly preferably in the range of 50 to 85% by weight.
The heat-resistant electrical insulating sheet material is generally produced by a method of mixing the above-described fine particles and aramid fibrid and then forming a sheet. Specifically, for example, a method of forming a sheet using an air stream after dry blending the fine particles and the aramid fibrid, and dispersing and mixing the fine particles and the aramid fibrid in a liquid medium, and then supporting the liquid permeability. A method of discharging onto a body, for example, a net or a belt, forming a sheet, and drying after removing the liquid can be applied. Among these, a so-called wet papermaking method using water as a medium is preferably selected.
In the wet papermaking method, there is a method in which a single or mixture aqueous slurry containing at least fine particles and aramid fibrid is fed to a paper machine and dispersed, and then dewatered, squeezed, and dried to be wound up as a sheet. It is common. As the paper machine, a long paper machine, a circular paper machine, a slanted paper machine, and a combination paper machine combining these are used. In the case of production with a combination paper machine, a composite sheet composed of a plurality of paper layers can be obtained by forming and combining slurry having different blending ratios. Additives such as a dispersibility improver, an antifoaming agent, and a paper strength enhancer are used as necessary during papermaking.
The tensile strength can be further increased by adding aramid short fibers to the heat-resistant electrical insulating sheet material. The content of aramid short fibers in the heat-resistant electrical insulating sheet material is preferably in the range of 5 to 50% by weight, but is not limited to this range. In order to keep it, the range of 5 to 30% by weight is particularly preferred.
In addition, other fibrous components (for example, polyphenylene sulfide fiber, polyether ether ketone fiber, cellulose fiber, PVA fiber, polyester fiber, arylate fiber, liquid crystal polyester fiber, polyethylene naphthalate fiber, and other organic fibers, glass fibers) Inorganic fiber glass fibers such as rock wool, asbestos and boron fiber) can be added.
In the heat-resistant electrical insulating sheet material of the present invention, since aramid fibrid has excellent properties as a binder, it can efficiently supplement fine particles and other additive components, and the heat-resistant electrical insulating sheet material of the present invention can be produced. In this case, the yield of the raw material is improved, and at the same time, it is possible to overlap the layers in the sheet and reduce the number of through-holes, thereby improving the electrical insulation.
The heat-resistant electrical insulating sheet material thus obtained can be improved in density and mechanical strength by hot pressing at a high temperature and high pressure between a pair of flat plates or between metal rolls. Examples of conditions for the hot pressure include, but are not limited to, a temperature of 100 to 350 ° C. and a linear pressure of 50 to 400 kg / cm when a metal roll is used. It is also possible to simply press at room temperature without adding a heating operation. A plurality of heat-resistant electrical insulating sheet materials can be laminated during hot pressing. The above hot pressing can be performed a plurality of times in an arbitrary order.
Hereinafter, the present invention will be described with reference to examples. These examples are for explaining the contents of the present invention by way of examples, and are not intended to limit the contents of the present invention.
(測定方法)
(1)坪量、厚みの測定
 JIS C2111に準じて実施した。
(2)密度の計算
 坪量÷厚みで計算した。
(3)長さ加重平均繊維長
 Op Test Equipment社製Fiber Quality Analyzerを用い、約4000個の微粒子についての長さ加重平均繊維長を測定した。
(4)引張強度の測定
 テンシロン引張試験機を幅15mm、チャック間隔50mm、引張速度50mm/分で実施した。
(5)絶縁破壊電圧
 ASTM D149にしたがって、電極径51mmで交流による直昇圧法により実施した。
(Measuring method)
(1) Measurement of basic weight and thickness It implemented according to JIS C2111.
(2) Calculation of density It calculated with basic weight ÷ thickness.
(3) Length Weighted Average Fiber Length Using a Fiber Quality Analyzer manufactured by Op Test Equipment, the length weighted average fiber length of about 4000 fine particles was measured.
(4) Measurement of tensile strength A Tensilon tensile tester was carried out at a width of 15 mm, a chuck interval of 50 mm, and a tensile speed of 50 mm / min.
(5) Dielectric breakdown voltage According to ASTM D149, an electrode diameter of 51 mm was used by a direct voltage boosting method using alternating current.
(原料調製)
 特開昭52-15621号公報に記載の、ステーターとローターの組み合わせで構成されるパルプ粒子の製造装置(湿式沈殿機)を用いて、ポリメタフェニレンイソフタルアミドのファイブリッドを製造した。これを、離解機、叩解機で処理し長さ加重平均繊維長を0.9mmに調節した。
 一方、デュポン社製メタアラミド繊維(ノーメックス(登録商標)、単糸繊度2デニール)を、長さ6mmに切断(以下「アラミド短繊維」と記載)し抄紙用原料とした。
(Raw material preparation)
A polymetaphenylene isophthalamide fibrid was manufactured using a pulp particle manufacturing apparatus (wet precipitator) composed of a combination of a stator and a rotor described in JP-A-52-15621. This was processed with a disaggregator and a beater to adjust the length weighted average fiber length to 0.9 mm.
On the other hand, a meta-aramid fiber (Nomex (registered trademark), single yarn fineness 2 denier) manufactured by DuPont was cut into a length of 6 mm (hereinafter referred to as “aramid short fiber”) to obtain a raw material for papermaking.
(カレンダー加工されたアラミド紙の製造)
 調製したアラミドファイブリッドとアラミド短繊維をおのおの水中で分散しスラリーを作成した。これらのスラリーを、ファイブリッドとアラミド短繊維とが1/1の配合比率(重量比)となるように混合し、タッピー式手抄き機(断面積625cm2)にてシート状物を作製した。次いで、これを金属製カレンダーロールにより温度330℃、線圧300kg/cmで熱圧加工し、カレンダー加工されたアラミド紙を得た。
(Manufacture of calendered aramid paper)
The prepared aramid fibrids and aramid short fibers were each dispersed in water to form a slurry. These slurries were mixed so that the fibrid and the aramid short fiber had a blending ratio (weight ratio) of 1/1, and a sheet-like material was produced with a tappy type hand machine (cross-sectional area 625 cm 2 ). . Next, this was hot-pressed with a metal calender roll at a temperature of 330 ° C. and a linear pressure of 300 kg / cm to obtain calendered aramid paper.
(実施例1~3及び対照例)
(微粒子原料調製)
 上記カレンダー加工されたアラミド紙を乾式粉砕機で粉砕した。開孔径3mmの篩を通過したものと水との混合スラリーを調製し、このスラリーを離解機、叩解機で処理して長さ加重平均繊維長が表1に示すサイズとなるように調節した。
(耐熱性電気絶縁シート材料の製造)
 調製した微粒子、調製したアラミドファイブリッド、および調製したアラミド短繊維を、おのおの水に分散してスラリーを作製した。これらのスラリーを、微粒子、ファイブリッドおよびアラミド短繊維が表1に示す配合比率(重量比)となるように混合し、タッピー式手抄き機(断面積625cm2)にてシート状物を作製した。次いで、これを金属製カレンダーロールにより温度330℃、線圧300kg/cmで熱圧加工し、耐熱性電気絶縁シート材料を得た。なお、対照例は、微粒子を含まないことを除いて、実施例1-4と同様に作製した。このようにして得られた耐熱性電気絶縁シート材料の主要特性値を表1に示す。
 実施例1~3の耐熱性電気絶縁シート材料は絶縁破壊電圧も十分に高く、さらに250℃10分間の処理でも外観に変化が見られなかったことから、耐熱性電気絶縁シート材料として有用である。
(Examples 1 to 3 and a control example)
(Fine particle raw material preparation)
The calendared aramid paper was pulverized with a dry pulverizer. A slurry mixed with water having passed through a sieve having an aperture diameter of 3 mm and water was prepared, and this slurry was treated with a disaggregator and a beater to adjust the length-weighted average fiber length to the size shown in Table 1.
(Manufacture of heat-resistant electrical insulation sheet material)
The prepared fine particles, the prepared aramid fibrids, and the prepared aramid short fibers were each dispersed in water to prepare a slurry. These slurries are mixed so that the fine particles, fibrids and aramid short fibers have the blending ratio (weight ratio) shown in Table 1, and a sheet-like material is produced with a tappy hand machine (cross-sectional area of 625 cm 2 ). did. Subsequently, this was hot-pressed with a metal calender roll at a temperature of 330 ° C. and a linear pressure of 300 kg / cm to obtain a heat-resistant electrical insulating sheet material. The control example was prepared in the same manner as in Example 1-4 except that it did not contain fine particles. Table 1 shows the main characteristic values of the heat-resistant electrical insulating sheet material thus obtained.
The heat-resistant electrical insulating sheet materials of Examples 1 to 3 have a sufficiently high dielectric breakdown voltage, and further, no change was observed in the appearance even after treatment at 250 ° C. for 10 minutes, so that they are useful as heat-resistant electrical insulating sheet materials .
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(実施例4~6)
(微粒子原料調製)
 上記カレンダー加工されたアラミド紙を乾式粉砕機で粉砕した。開孔径3mmの篩を通過したものとアラミドファイブリッドと水との混合スラリーを調製し、このスラリーを離解機、叩解機で処理して長さ加重平均繊維長が表2に示すサイズとなるように調節した。
(耐熱性電気絶縁シート材料の製造)
 アラミド紙とアラミドファイブリッドの混合物を粉砕して調製した微粒子、およびアラミド短繊維を、おのおの水に分散してスラリーを作製した。これらのスラリーを、微粒子、ファイブリッドおよびアラミド短繊維が表2に示すの配合比率(重量比)となるように混合し、タッピー式手抄き機(断面積625cm2)にてシート状物を作製した。次いで、これを金属製カレンダーロールにより温度330℃、線圧300kg/cmで熱圧加工し、耐熱性電気絶縁シート材料を得た。このようにして得られた耐熱性電気絶縁シート材料の主要特性値を表2に示す。実施例4~6の耐熱性電気絶縁シート材料は、微粒子とアラミドファイブリッドとの混合スラリーを粉砕したため、実施例1~3の耐熱性電気絶縁シート材料よりも短時間で微粒子原料とアラミドファイブリッドが調成できた。また、実施例1~3とほぼ同等かそれ以上の特性を示した。
(Examples 4 to 6)
(Fine particle raw material preparation)
The calendared aramid paper was pulverized with a dry pulverizer. Prepare a mixed slurry of aramid fibrid and water that has passed through a sieve with an aperture diameter of 3 mm, and treat this slurry with a disaggregator and a beater so that the length-weighted average fiber length is the size shown in Table 2. Adjusted.
(Manufacture of heat-resistant electrical insulation sheet material)
Fine particles prepared by pulverizing a mixture of aramid paper and aramid fibrid and aramid short fibers were dispersed in each water to prepare a slurry. These slurries are mixed so that the fine particles, fibrids and aramid short fibers have a blending ratio (weight ratio) shown in Table 2, and a sheet-like product is prepared with a tappy hand machine (cross-sectional area of 625 cm 2 ). Produced. Subsequently, this was hot-pressed with a metal calender roll at a temperature of 330 ° C. and a linear pressure of 300 kg / cm to obtain a heat-resistant electrical insulating sheet material. Table 2 shows the main characteristic values of the heat-resistant electrical insulating sheet material thus obtained. Since the heat-resistant electrical insulating sheet material of Examples 4 to 6 was obtained by pulverizing a mixed slurry of fine particles and aramid fibrids, the raw material for fine particles and aramid fibrids were obtained in a shorter time than the heat-resistant electric insulating sheet materials of Examples 1 to 3. Has been prepared. Further, the characteristics were almost the same as or better than those of Examples 1 to 3.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(比較例1~4)
(微粒子原料調製)
 上記カレンダー加工されたアラミド紙を乾式粉砕機で粉砕した。開孔径3mmの篩を通過したものと水との混合スラリーを調製し、このスラリーを離解機、叩解機で処理して長さ加重平均繊維長が表3に示すサイズとなるように調節した。
(耐熱性電気絶縁シート材料の製造)
 調製した微粒子、調製したアラミドファイブリッド、および調製したアラミド短繊維を、おのおの水中で分散しスラリーを作製した。これらのスラリーを、微粒子、ファイブリッドおよびアラミド短繊維が表3に示す配合比率(重量比)となるように混合し、タッピー式手抄き機(断面積625cm2)にてシート状物を作製した。次いで、これを金属製カレンダーロールにより温度330℃、線圧300kg/cmで熱圧加工し、耐熱性電気絶縁シート材料を得た。このようにして得られた耐熱性電気絶縁シート材料の主要特性値を表3に示す。比較例1~4の耐熱性電気絶縁シート材料は絶縁破壊電圧が低いため、耐熱性電気絶縁シート材料としては不十分であると考えられる。
(Comparative Examples 1 to 4)
(Fine particle raw material preparation)
The calendared aramid paper was pulverized with a dry pulverizer. A slurry mixed with water having passed through a sieve having an aperture diameter of 3 mm and water was prepared, and this slurry was treated with a disaggregator and a beater to adjust the length-weighted average fiber length to the size shown in Table 3.
(Manufacture of heat-resistant electrical insulation sheet material)
The prepared fine particles, the prepared aramid fibrids, and the prepared aramid short fibers were each dispersed in water to prepare a slurry. These slurries are mixed so that the fine particles, fibrids and aramid short fibers have the blending ratios (weight ratios) shown in Table 3, and a sheet-like material is produced with a tappy type hand machine (cross-sectional area of 625 cm 2 ). did. Subsequently, this was hot-pressed with a metal calender roll at a temperature of 330 ° C. and a linear pressure of 300 kg / cm to obtain a heat-resistant electrical insulating sheet material. Table 3 shows the main characteristic values of the heat-resistant electrical insulating sheet material thus obtained. Since the heat-resistant electrical insulating sheet materials of Comparative Examples 1 to 4 have a low dielectric breakdown voltage, they are considered to be insufficient as the heat-resistant electrical insulating sheet material.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003

Claims (4)

  1.  芳香族ポリアミドよりなる合成紙であるカレンダー加工されたアラミド紙を粉砕することによって得られる長さ加重平均繊維長が1mm以下である微粒子と、アラミドファイブリッドとを含有することを特徴とする耐熱性電気絶縁シート材料。 A heat resistance characterized by containing fine particles having a length-weighted average fiber length of 1 mm or less obtained by grinding calendered aramid paper, which is a synthetic paper made of aromatic polyamide, and aramid fibrids Electrical insulation sheet material.
  2.  芳香族ポリアミドよりなる合成紙であるカレンダー加工されたアラミド紙とアラミドファイブリッドの混合物を粉砕することによって得られる長さ加重平均繊維長が1mm以下である微粒子を含有することを特徴とする耐熱性電気絶縁シート材料。 Heat-resistant, characterized by containing fine particles having a length weighted average fiber length of 1 mm or less obtained by grinding a mixture of calendered aramid paper and aramid fibrid, which is a synthetic paper made of aromatic polyamide Electrical insulation sheet material.
  3.  電気絶縁破壊電圧が10kV/mm以上であることを特徴とする請求項1又は2に記載の耐熱性電気絶縁シート材料。 3. The heat-resistant electrical insulating sheet material according to claim 1 or 2, wherein the electrical breakdown voltage is 10 kV / mm or more.
  4.  芳香族ポリアミドよりなる合成紙であるカレンダー加工されたアラミド紙を粉砕して微粒子を調製し、
     調製した微粒子と、アラミドファイブリッドと、水とを組み合わせて混合スラリーを形成し、
     形成したスラリーをさらに湿式粉砕して微粒子とアラミドファイブリッドの混合物の長さ加重平均繊維長を1mm以下に調節したスラリーを使用して抄紙することを特徴とする耐熱性電気絶縁シート材料の製造方法。
    Fine particles are prepared by grinding calendered aramid paper, which is a synthetic paper made of aromatic polyamide,
    The prepared fine particles, aramid fibrid, and water are combined to form a mixed slurry,
    A method for producing a heat-resistant electrical insulating sheet material, characterized in that the formed slurry is further wet pulverized to make paper using a slurry in which the length weighted average fiber length of the mixture of fine particles and aramid fibrid is adjusted to 1 mm or less. .
PCT/JP2012/055414 2011-03-02 2012-03-02 Heat-resistant electrically insulating sheet material and method for producing same WO2012118187A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020137025544A KR101876601B1 (en) 2011-03-02 2012-03-02 Heat-resistant electrically insulating sheet material and method for producing same
CN201280011249.1A CN103392038B (en) 2011-03-02 2012-03-02 Thermostability electric insulation sheet material and manufacture method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011044821A JP5746519B2 (en) 2011-03-02 2011-03-02 Heat-resistant electrical insulating sheet material and method for producing the same
JP2011-044821 2011-03-02

Publications (1)

Publication Number Publication Date
WO2012118187A1 true WO2012118187A1 (en) 2012-09-07

Family

ID=46758113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055414 WO2012118187A1 (en) 2011-03-02 2012-03-02 Heat-resistant electrically insulating sheet material and method for producing same

Country Status (5)

Country Link
JP (1) JP5746519B2 (en)
KR (1) KR101876601B1 (en)
CN (1) CN103392038B (en)
TW (1) TWI556262B (en)
WO (1) WO2012118187A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015192641A1 (en) * 2014-06-18 2015-12-23 深圳昊天龙邦复合材料有限公司 Highly heat conductive boron nitride insulation material and preparation method therefor
WO2021166462A1 (en) * 2020-02-21 2021-08-26 デュポン帝人アドバンスドペーパー株式会社 Method for producing paper pulp and method for producing recycled aramid paper
WO2021166461A1 (en) * 2020-02-21 2021-08-26 デュポン帝人アドバンスドペーパー株式会社 Method for producing recycled aramid paper
CN115217000A (en) * 2022-06-28 2022-10-21 陈克复 High-performance aramid fiber paperboard and preparation method and application thereof
CN115216991A (en) * 2022-06-27 2022-10-21 超美斯新材料股份有限公司 Preparation method of aramid paper added with nanofibers

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6065315B2 (en) * 2013-01-09 2017-01-25 デュポン帝人アドバンスドペーパー株式会社 Papermaking raw material manufacturing method, obtained papermaking raw material, and heat-resistant electrical insulating sheet material using the raw material
JP6119076B2 (en) * 2013-01-24 2017-04-26 デュポン帝人アドバンスドペーパー株式会社 Bobbin for motor
JP6649701B2 (en) * 2015-05-28 2020-02-19 デュポン帝人アドバンスドペーパー株式会社 Aramid paper and method for producing the same
KR101895551B1 (en) * 2016-11-25 2018-09-06 주식회사 휴비스 Aramid Paper Having Excellent Withstand Voltage
KR101924037B1 (en) * 2018-08-01 2019-02-22 주식회사 휴비스 The Aramid Fibrids Manufacturing Device For Improving The Physical Properties Of The Aramid Paper And The Aramid Fibrids Made From The Manufacturing Device
JP7183073B2 (en) * 2019-02-22 2022-12-05 デュポン帝人アドバンスドペーパー株式会社 Aramid paper manufacturing method
US11509016B2 (en) * 2019-03-15 2022-11-22 Dupont Safety & Construction, Inc. Papers useful as thermal insulation and flame barriers for battery cells
KR102767058B1 (en) * 2022-10-12 2025-02-13 경북대학교 산학협력단 Waste paper recycling system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54106900A (en) * 1978-02-09 1979-08-22 Mitsubishi Paper Mills Ltd Thin paper for electrical insulation
JPS57172607A (en) * 1981-04-15 1982-10-23 Mitsubishi Electric Corp Method of producing interlayer insulating paper
JPH04228696A (en) * 1990-06-14 1992-08-18 E I Du Pont De Nemours & Co Aramide paper containing aramide paper pulp
JPH05272091A (en) * 1992-03-18 1993-10-19 New Oji Paper Co Ltd Heat-resistant insulating paper manufacturing method
JPH07507108A (en) * 1992-05-13 1995-08-03 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー Method for producing strong aromatic polyamide paper with high porosity
WO2005100688A1 (en) * 2004-04-16 2005-10-27 Dupont Teijin Advanced Papers, Ltd. Aramid tissue material and electric/electronic component employing it
WO2009051206A1 (en) * 2007-10-15 2009-04-23 Dupont Teijin Advanced Papers, Ltd. Heat-resistant sheet

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL246230A (en) * 1958-12-09
JP3340549B2 (en) * 1994-03-01 2002-11-05 帝人株式会社 Method for producing porous aramid molding
TW387958B (en) * 1997-06-10 2000-04-21 Teijin Ltd Heat-resistant fiber paper
FI113552B (en) * 1999-12-09 2004-05-14 Upm Kymmene Corp Process for the production of printing paper

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54106900A (en) * 1978-02-09 1979-08-22 Mitsubishi Paper Mills Ltd Thin paper for electrical insulation
JPS57172607A (en) * 1981-04-15 1982-10-23 Mitsubishi Electric Corp Method of producing interlayer insulating paper
JPH04228696A (en) * 1990-06-14 1992-08-18 E I Du Pont De Nemours & Co Aramide paper containing aramide paper pulp
JPH05272091A (en) * 1992-03-18 1993-10-19 New Oji Paper Co Ltd Heat-resistant insulating paper manufacturing method
JPH07507108A (en) * 1992-05-13 1995-08-03 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー Method for producing strong aromatic polyamide paper with high porosity
WO2005100688A1 (en) * 2004-04-16 2005-10-27 Dupont Teijin Advanced Papers, Ltd. Aramid tissue material and electric/electronic component employing it
WO2009051206A1 (en) * 2007-10-15 2009-04-23 Dupont Teijin Advanced Papers, Ltd. Heat-resistant sheet

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015192641A1 (en) * 2014-06-18 2015-12-23 深圳昊天龙邦复合材料有限公司 Highly heat conductive boron nitride insulation material and preparation method therefor
WO2021166462A1 (en) * 2020-02-21 2021-08-26 デュポン帝人アドバンスドペーパー株式会社 Method for producing paper pulp and method for producing recycled aramid paper
WO2021166461A1 (en) * 2020-02-21 2021-08-26 デュポン帝人アドバンスドペーパー株式会社 Method for producing recycled aramid paper
JP2021130892A (en) * 2020-02-21 2021-09-09 デュポン帝人アドバンスドペーパー株式会社 Method for producing paper pulp and method for producing regenerated aramid paper
JP2021130893A (en) * 2020-02-21 2021-09-09 デュポン帝人アドバンスドペーパー株式会社 Method for producing regenerated aramid paper
JP7373430B2 (en) 2020-02-21 2023-11-02 デュポン帝人アドバンスドペーパー株式会社 Manufacturing method of recycled aramid paper
CN115216991A (en) * 2022-06-27 2022-10-21 超美斯新材料股份有限公司 Preparation method of aramid paper added with nanofibers
CN115217000A (en) * 2022-06-28 2022-10-21 陈克复 High-performance aramid fiber paperboard and preparation method and application thereof
CN115217000B (en) * 2022-06-28 2023-11-07 陈克复 A high-performance aramid fiber paperboard and its preparation method and application

Also Published As

Publication number Publication date
KR101876601B1 (en) 2018-07-09
JP2012180619A (en) 2012-09-20
KR20140008420A (en) 2014-01-21
TW201237891A (en) 2012-09-16
TWI556262B (en) 2016-11-01
JP5746519B2 (en) 2015-07-08
CN103392038A (en) 2013-11-13
CN103392038B (en) 2016-06-22

Similar Documents

Publication Publication Date Title
JP5746519B2 (en) Heat-resistant electrical insulating sheet material and method for producing the same
JP6065315B2 (en) Papermaking raw material manufacturing method, obtained papermaking raw material, and heat-resistant electrical insulating sheet material using the raw material
JP5665690B2 (en) Papermaking raw material manufacturing method, obtained papermaking raw material, and heat-resistant electrical insulating sheet material using the raw material
TWI598226B (en) Aromatic polyamine resin film laminated body and its manufacturing method
JP6649701B2 (en) Aramid paper and method for producing the same
JP6405583B2 (en) Insulating paper
CN115087776A (en) Method for manufacturing regenerated aramid paper
JP7183073B2 (en) Aramid paper manufacturing method
KR102004582B1 (en) Aramid-polytetrafluoroethylene composite sheet, method for producing same, and high frequency device using same
JP2007109671A (en) Aramid thin-leaf material and manufacturing method of the same
CN115087777A (en) Method for producing pulp and method for producing recycled aramid paper

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12752030

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137025544

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12752030

Country of ref document: EP

Kind code of ref document: A1