WO2012117694A1 - 電力変換装置 - Google Patents
電力変換装置 Download PDFInfo
- Publication number
- WO2012117694A1 WO2012117694A1 PCT/JP2012/001173 JP2012001173W WO2012117694A1 WO 2012117694 A1 WO2012117694 A1 WO 2012117694A1 JP 2012001173 W JP2012001173 W JP 2012001173W WO 2012117694 A1 WO2012117694 A1 WO 2012117694A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- control circuit
- power converter
- circuit board
- power
- noise
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 claims description 14
- 230000004907 flux Effects 0.000 claims description 9
- 239000012212 insulator Substances 0.000 claims description 4
- 239000000696 magnetic material Substances 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 2
- 238000001514 detection method Methods 0.000 description 16
- 239000003990 capacitor Substances 0.000 description 14
- 230000017525 heat dissipation Effects 0.000 description 13
- 238000009499 grossing Methods 0.000 description 12
- 238000010586 diagram Methods 0.000 description 11
- 239000000758 substrate Substances 0.000 description 11
- 230000000694 effects Effects 0.000 description 7
- 230000005672 electromagnetic field Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 230000003071 parasitic effect Effects 0.000 description 5
- 238000001816 cooling Methods 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 230000007257 malfunction Effects 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000008054 signal transmission Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000012811 non-conductive material Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/003—Constructional details, e.g. physical layout, assembly, wiring or busbar connections
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/42—Conversion of DC power input into AC power output without possibility of reversal
- H02M7/44—Conversion of DC power input into AC power output without possibility of reversal by static converters
- H02M7/48—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
Definitions
- the present invention relates to a power conversion device, and relates to a structure for suppressing mutual interference of electromagnetic noise at a low cost and in a small size.
- a power storage device that supplies DC power includes a DC power holding device such as a battery or a capacitor, a control monitoring circuit that monitors a remaining power capacity or a supplied power value, and the like.
- a power conversion device such as an inverter that generates an AC voltage from a DC voltage supplied by the power storage device includes a main circuit (power module) including switching elements and a drive circuit (gate) that generates a signal for driving the switching elements.
- a driver a smoothing capacitor, and a control circuit for generating an operation signal to be sent to a drive circuit or the like.
- the power module becomes the main noise source by performing high-speed switching. Therefore, the control circuit board is not designed to receive the interference of noise generated by these power modules. Ingenuity is required.
- Patent Document 1 Japanese Patent Application Laid-Open No. 2005-235929
- Patent Document 2 Japanese Patent Laid-Open No. 2006-230064
- a casing having a power module and a smoothing capacitor, etc., and a casing having a gate driver and a control circuit board are separated from each other, and these are combined. Shows a structure for preventing noise generated by the power module from entering the gate driver.
- Patent Document 1 Japanese Patent Laid-Open No. 2005-235929
- Japanese Patent Laid-Open No. 2005-235929 Japanese Patent Laid-Open No. 2005-235929
- This noise propagation is suppressed by inserting an electromagnetic blocking member between the circuit board and the power module, but there is a wiring member for transmitting the gate signal between the gate driver and the power module, It is necessary to make a hole in the electromagnetic shielding member for penetrating it. If a hole exists in the electromagnetic shielding member, a noise current flows through the electromagnetic shielding member due to a noise magnetic field interlinking the hole. When the noise current flows, a potential fluctuation occurs in the electromagnetic shielding member, and there arises a problem that noise is conducted to the control circuit board.
- each is mounted in a separate shield housing to prevent noise generated by the power module from entering the gate driver.
- a wiring member for transmitting a gate signal is required between the gate driver and the power module, and each housing has a through hole for passing it.
- a noise magnetic field is linked to the through hole, so that a noise current is induced and a potential fluctuation occurs in the housing. Since the housing is normally the GND (reference potential) of the control circuit, the noise caused by the through hole becomes the noise of the control circuit board, which causes a malfunction and noise leakage to the outside of the power converter.
- an object of the present invention is to provide an in-vehicle power converter that can effectively block noise by devising a structure, and can be highly reliable and can be reduced in size and cost.
- a housing a power module including a switching element, a drive circuit that generates a signal for driving the switching element, a control circuit board that generates an operation signal to be sent to the drive circuit, and the control circuit board
- a power conversion device comprising a base plate to be mounted, and a connection component for connecting the housing and the control circuit board, wherein the housing includes two adjacent openings, and the connection component includes the base
- the power conversion device is provided in a plate or an opening of the casing.
- ⁇ Prevents noise generated by high-voltage power supply systems such as power modules and gate drivers from entering the control circuit board, and further prevents noise from leaking to the harness for connection to the outside of the power converter. Further, since noise propagation is structurally suppressed, noise countermeasure components are not required, and downsizing and cost reduction can be realized.
- the in-vehicle inverter device is provided in the in-vehicle electric system as a control device for controlling the driving of the in-vehicle electric motor (motor), converts the DC power supplied from the in-vehicle battery constituting the in-vehicle power source into predetermined AC power, By supplying the obtained AC power to the in-vehicle motor, the driving of the in-vehicle motor is controlled.
- the configuration described below is also applicable to a DC / DC power converter such as a DC / DC converter and a DC chopper, an AC / DC power converter, or a power storage device connected to these power converters.
- a DC / DC power converter such as a DC / DC converter and a DC chopper, an AC / DC power converter, or a power storage device connected to these power converters.
- the configuration described below is an industrial power conversion device used as a control device for an electric motor that drives factory equipment, or a control of an electric motor that is used in a household solar power generation system or that drives a household electrical appliance.
- the present invention can also be applied to a household power conversion device used in the device. In particular, it is desirable to apply to a power converter aiming at cost reduction and miniaturization.
- FIG 1 and 5 to 7 are views showing the minimum necessary components in the structure of the power converter according to the present invention.
- FIG. 1 is a structural diagram of a power converter according to the present invention.
- 1 is a cross-sectional view of the power converter according to the present invention
- the lower right diagram of FIG. 1 is a top view of the power converter according to the present invention
- the lower left diagram of FIG. 1 is a top view of the power converter according to the present invention.
- FIG. 5 is a top view of a power converter according to the present invention
- FIG. 6 is a side view
- FIG. 7 is a cross-sectional view.
- the housing 1113, the control circuit board 102 that generates an operation signal to be sent to the drive circuit, the base board 105 for mounting the control circuit board 102, and the connection for fixing the control circuit board 102 are fixed.
- the base plate 105 is made of a material having higher conductivity than that of the control circuit board 102 such as metal, and the housing 1113 and the base 105 are all physically and electrically connected.
- the housing (case) 1113 is connected to GND of a vehicle or the like. By connecting, the base 105 also becomes the GND potential.
- An external connection connector for connecting the control circuit board 102 and a device outside the power converter is mounted on the control circuit board 102 or a dedicated board for the connector, and is mounted in a space above the base in the same manner as the control circuit board.
- FIG. 2 is an explanatory diagram of the circuit operation of the power converter according to the present invention, and the noise generation mechanism will be described using this diagram.
- the voltage output from the high voltage battery 202 is applied to the smoothing capacitor 209 and the upper and lower arms of the power module 211.
- the switching element is assumed to be on the plus side and the minus side with respect to each phase, and an intermediate potential is connected to each phase of the motor 217 as a load.
- the gate of the switching element is connected to the gate driver 208, and a signal for controlling the gate driver 208 is input from the control circuit board 206. Since part of the control circuit board 206 and the gate driver 208 is operated by the low voltage battery 201, the low voltage battery 201 is connected to the control circuit board 206.
- the gate driver 208 When the gate driver 208 requires the low-voltage power source 201, it can be supplied via the control circuit board 206. Since the gate driver 208 also receives power from the high voltage battery 202, a low voltage can be generated from a high voltage using a DC-DC converter or the like. Since the control circuit board 206 controls the operation of the power converter and needs to exchange signals with the external equipment of the power converter, the control circuit board 206 is connected to the external equipment 216 using the harness 214 or the like. Yes.
- the GND of the control circuit board 206 is electrically connected to the case 205, and the case 205 is connected to the GND 212 outside the power converter.
- the motor 217, which is a load, and the power converter are connected using a shield cable 215, and the cable GND and the motor housing are connected to the GND 212.
- the GND of the high voltage battery casing and the high voltage DC cable 204 is also connected to the GND.
- the control circuit board 206 outputs a control signal such as a PWM signal to the gate driver 208 in order to operate the motor 217.
- the gate driver 208 repeatedly turns the switching element on and off.
- the positive side (upper arm) of a certain element is turned on, the charge supplied from the high-voltage battery to the smoothing capacitor flows to the motor 217 through the bus bar 210, the switching element 211, and the cable 215, and the other negative side 218. Flows as an electric current so as to return to the high voltage battery 202 through the element that is turned on.
- the switching frequency of these PWM signals is on the order of several tens of kHz or less, but since they are pulse waveforms, high frequency components are included at the time of pulse rise and pulse fall, and these high frequency current noises flow through the above path. .
- both ends of the shield of the shielded cable 215 that connects the power converter and the motor 217 are connected to GND, a current flows in a direction that cancels the magnetic field generated by the loop current of the motor signal. Further, since both ends are at the GND potential, it can be considered that the electromagnetic field radiated by the current in the shielded cable 215 is very small as long as the resonance at the cable length is taken into consideration. The same applies to the shielded cable 204 that connects the high voltage battery 202 and the power converter. However, since the bus bars 210 and 218 through which the switching noise current flows are not shielded inside the power converter, the magnetic field is not canceled and a strong noise magnetic field is generated inside the power converter.
- the motor 217 and the cable 215 actually have a parasitic capacitance with respect to the GND, and a part of the motor driving current passes through these parasitic capacitances.
- the flow After flowing out of the GND 213, the flow returns to the smoothing capacitor 209 and the high voltage battery 202.
- Such a leakage current flows through a location where the current path that flows to the motor 217 and the current that returns to the high-voltage battery 202 (return current) physically flow away.
- the bus bar 210 inside the power converter An unbalanced current flows through the positive side 210 and the negative side 218 in 218 to generate a strong magnetic field.
- FIG. 3 is an explanatory diagram of the circuit configuration inside the inverter and the position of the base.
- the circuit configuration inside the inverter and the position of the base used as an electromagnetic dividing function will be described in detail with reference to FIG. FIG. 3 expands the power converter (A in FIG. 2) and describes the configuration in detail.
- the control circuit board 301 (206) includes an angle detection circuit 302 for detecting the rotation angle of the motor 217, a current detection circuit 303 for detecting the current flowing to the motor 217, and communication with devices outside the power converter.
- a transceiver 304 for performing power supply, a power supply circuit 306 for supplying power to an IC on a control circuit board, a microcontroller 307 for controlling these, and the like are mounted. All of these operate with a weak voltage of about 1V to 15V.
- the gate driver substrate 318 (208) includes an insulating element 315 for electrically insulating the control circuit substrate 206, a driver circuit 314 for driving the power device 326, and a temperature and voltage for monitoring the power device 326.
- a temperature / voltage detection circuit 313, a power supply circuit 312 for supplying power to the circuits on these gate drivers, and the like are mounted.
- the circuit on the driver side from the insulating element 315 includes a circuit that operates at a high voltage of 15 V to several hundreds V, and the power module 320 has a number corresponding to the number of phases used by the power device 326 for driving the motor 217. They are mounted and switch high voltage of up to several hundred volts.
- the smoothing capacitor 324 is mounted inside the inverter in order to supply charges to each power device 326 at high speed, and a voltage of up to several hundred volts is applied in the same manner as the power device 326.
- the line to which the high voltage is applied is displayed thicker than the low voltage signal line on the control circuit board.
- the bus bar 321 connecting the smoothing capacitor 324 and the power device 326 needs to be shortened to reduce the inductance in order to supply charges to the power device 326 at high speed. If the parasitic inductance of the bus bar 321 is large, noise at the time of switching increases, and radiation noise increases due to a large voltage drop due to the inductance, deterioration of operation specifications, and the like occur. Therefore, the smoothing capacitor 324 and the power module 320 need to be close in terms of mounting arrangement via a cooling mechanism or the like as necessary.
- the gate signal line 322 connecting the driver circuit 314 and the power device 326 is a signal line for transmitting a rectangular signal for driving the power device 326.
- the driver circuit 314 and the power device 326 need to be connected short.
- the power supply circuit 312 for the gate driver is used in the driver circuit 314 and various detection circuits 313, and switching noise generated when the PWM gate switching signal of the driver circuit is switched to High / Low is caused by the power supply / It is easy to superimpose on GND. That is, the power supply path 317 for connecting the driver circuit 314, the temperature / voltage detection circuit 313, and the power supply circuit 312 is shortened for the purpose of suppressing noise emission from the power supply path and preventing noise from entering the path. There is a need.
- the power supply / GND supply path has a surface (land) shape from the viewpoint of reducing the inductance of the power supply path 317. From the above, it is desirable that the insulating element 315, the driver circuit 314, the temperature / voltage detection circuit 313, and the power supply circuit 312 to be disposed on the same substrate in order to mount them in close proximity.
- the angle detection circuit 302 and the current detection circuit 303 have a function of converting an analog value of voltage or current into a digital value and transmitting it to the microcontroller 307 via a signal line. These analog values are superimposed on noise. It is easy to cause performance degradation and malfunction due to.
- other microcontrollers 307, transceivers 304, and part of the power supply circuit 306 operate at a voltage lower than 5V compared to the driver circuit on the gate driver. In such a case, the SN ratio is more likely to decrease.
- the insulating element 315, the driver circuit 314, the temperature / voltage detection circuit 313, and the power supply circuit 312 to these, the microcontroller 307, the angle detection circuit 302, the current detection circuit 303, the transceiver 304, the power supply circuit 306 to these, and the filter By electromagnetically dividing 308 by the base 311, it is possible to prevent noise generated by the circuit on the gate driver from entering the control circuit, that is, it is possible to prevent performance degradation due to noise.
- the gate driver substrate 208 having the insulating element 315, the driver circuit 314, the temperature / voltage detection circuit 313, and the power supply circuit 312 to these, the microcontroller 307, the angle detection circuit 302, and the current detection circuit 303, the transceiver 304, and the control circuit board 206 having the power supply circuit 306 and the filter 308 are separate boards.
- the gate driver board 318 may be stacked with the power module 211. .
- Insulating element 315 included in the PWM signal transmission path from the microcontroller 307, this is because the microcontroller 307 etc. and the driver circuit etc. operate on different voltage systems, and the driver circuit side operates at a high voltage. Insulating element 315 is used to prevent the generated high-voltage surge voltage or the like from entering the microcontroller side. Therefore, since the signal line 316 connecting the insulating element 315 and the driver circuit 314 performs signal transmission with a higher voltage system on the driver circuit side than a microcontroller or the like, relatively large noise is likely to be generated compared to the control circuit.
- the signal line 309 connecting the insulating element 315 and the filter 308 is a low-voltage signal system supplied by the power supply circuit 306 via the microcontroller 307. Therefore, the signal line 309 is also used for the purpose of preventing noise from being superimposed thereon. It is desirable to shorten it.
- the signal line 310 connecting the filter 308 and the microcontroller 307 has lower noise than the signal line 309. For the above reasons, the distance from the connector for connecting to the control circuit board 301 (102 in FIG.
- the noise magnetic field generated by the motor drive current inside these power converters is shielded by the base 311 (105 in FIG. 1).
- a material having a relative permeability sufficiently higher than 1 such as iron is used for the base 105
- the magnetic flux is confined in the base, noise magnetic flux is not mixed into the space above the base, which is desirable.
- a material having a low relative permeability such as aluminum is used, if there is conductivity, a current that cancels the magnetic flux that attempts to link the base 105 flows, so that it has a magnetic field shielding effect.
- the base 105 is electrically connected to the GND of the control circuit board 102, it is desirable that the base 105 be conductive regardless of the relative permeability.
- the base 105 is assembled between the control circuit board 102, the cooling mechanism and power module 211, the gate driver 208, and the like, and the control circuit board 206 is mounted on the base 105 by screws or the like, so that a stack type high density A mounting structure is realized.
- the vibration resonance frequency of the base 105 is the vibration frequency of the power converter so that the vibration of the power converter does not increase and propagate to the control circuit board 206. It is important to set a value higher than the bandwidth. Specifically, it is important to increase the number of fixing points such as screws for assembling the base 105 to the case 1113 to increase the vibration resonance frequency.
- the protrusion provided on the base has a function of releasing heat generated by the high heat generation component to the base 105 by pressing against the back surface of the high heat generation component on the control circuit board.
- the base 105 is a part having a relatively low temperature such as the case 1113 or the cooling mechanism. It must be thermally coupled with. That is, it is desirable that each member is physically contact-fixed or the base 105 is assembled with other members using a heat transfer member such as a heat pipe. Further, when the base 105 is pressed against the back surface of the heat generating component on the control circuit board, a sheet-like heat transfer material with low rigidity is used as the base 105 and the control circuit for the purpose of preventing deterioration of thermal resistance reproducibility due to variations in contact. It is desirable to have it between the substrates 102. At this time, since the base 105 is at the GND potential, it is desirable to use a non-conductive material for the heat transfer material in order to prevent a short circuit failure due to electrical contact with the control circuit.
- the protrusion provided on the base functions as a support member that supports the control circuit board 102 by pressing against the back surface of the component on the control circuit board 102, and also has a role of improving vibration resistance. Therefore, when the heat dissipating protrusion is arranged on the back surface of the heat generating component, even if the screw in the vicinity of the heat dissipating protrusion is removed, the influence such as a decrease in vibration resistance is small. In other words, when the number of screwing points is reduced, the resonance frequency of the vibration of the substrate generally tends to be low, but by adding heat dissipation protrusions, the number of substrate support points increases, the resonance frequency increases, and the vibration resistance performance is improves.
- the height of the heat dissipation protrusion is higher than the height of the screw protrusion that fixes the board, and stress on the components and solder on the board is reduced. It is desirable to make it high as long as it does not cause a problem.
- it is possible to reduce the number of screws by optimizing the layout of the heat dissipation protrusions, that is, the heat generating components on the control circuit board 102. Since the antinode of vibration occurs at the midpoint connecting any two of the screws, the vibration proof performance can be improved by arranging the position of the heat dissipating protrusion, that is, the heat generating component, at the middle position of the board fixing screw.
- the structure of the power converter It is a value determined by a number of factors such as the size of the control circuit board and the like, and is preferably determined by performing a simulation or analysis of vibration in consideration of these factors.
- the size of the heat dissipation protrusion it is desirable to change the size in accordance with the size of the heat generating component that is the target of heat dissipation, and it is basically desirable that the size of the heat dissipation protrusion is larger than the size of the heat dissipation pad that the target heat generating component has.
- BGA parts such as microcontrollers and high power consumption parts such as power transistors are often provided with heat-dissipating GND pins and heat-dissipating fins, and these are provided with pads and lands for connection on the substrate side. By providing a plurality of through vias in the land, heat generated by the components can be drawn to the back surface of the board.
- a land is provided on the back surface of the substrate in the same manner as the front surface so that the land is larger than the contact area of the heat dissipation protrusion.
- the land is in intimate contact with the heat dissipation protrusion via the heat dissipation sheet 103 described above, and heat generated by the component can be transmitted to the back surface heat dissipation protrusion.
- a structure according to the present invention will be described with reference to FIG.
- a plurality of board fixing screws at least one of them is a conductive screw, and a pattern for connecting to the GND of the control circuit is provided on the board.
- the GND and base of the control circuit Ensure that the plates are electrically connected.
- the base plate 105 is conductive and is connected to the housing 1113 using a connection member such as a screw. Therefore, the GND of the control circuit is electrically connected to the housing potential via the base plate 105.
- the GND of the control circuit it is desirable to connect the GND of the control circuit to the GND of this chassis with the lowest possible impedance because the chassis is at the GND potential of the entire power converter. This is to reduce potential fluctuation due to the current flowing to GND. Therefore, it is common to use multiple electrical connection points between the control circuit and the base plate. It is desirable to provide a GND connection point. Similarly, it is desirable that the number of connection points between the base plate and the housing is also plural, and it is general. Since the base plate and the housing are connected in the shortest possible distance, it is desirable to provide them around the base plate.
- the base 105 is used for passing connection parts such as a cable or a harness for connecting the control circuit board 102 mounted in the space above the base 105 and the gate driver 208 mounted below the base 105.
- connection parts such as a cable or a harness for connecting the control circuit board 102 mounted in the space above the base 105 and the gate driver 208 mounted below the base 105.
- the opening 404 or a portion corresponding thereto is required.
- the opening 404 is disposed between the end of the base plate 105 and the housing 1113.
- the connector mounted on the control circuit board 102 can be mounted on the peripheral edge of the board, and there is no need to provide an opening in the board.
- the shape of the base plate 105 can be simplified. Furthermore, work such as connection of wiring members becomes easy.
- FIG. 1 a main circuit such as a power module is disposed in a space below the base plate, and a bus bar 210 electrically connected thereto is disposed.
- the bus bar 210 generates a noise electromagnetic field when a switching noise current flows.
- the lower diagram of FIG. 1 shows a top view of the power converter according to the present invention.
- the current value is small at the position where the induced currents cancel each other, the potential fluctuation is also small. Therefore, it is possible to suppress the propagation of noise as the potential fluctuation of GND.
- FIG. 4 shows, by electromagnetic field analysis, the effect of adjusting the position where the induced current cancels out by providing a groove in one corner of the opening.
- a frequency was set to 10 MHz, and a magnetic field was generated from below the base plate by arranging a square loop current source below the base plate model.
- the result shows the intensity distribution of the surface current.
- the surface current intensity at the connection point A which is the connection position of the circuit board, is about 0.13 A / m, whereas in the case of FIG. It can be seen that the surface current intensity at the connection point A is about 0.03 A / m or less, and the current value is 1 ⁇ 2 or less due to the cancellation effect of the induced current.
- the difference in surface current can be directly considered as the difference in surface potential fluctuation. That is, it is suggested that the potential variation of the GND of the circuit board can be suppressed to 1/2 or less by providing the groove and providing the connection point of the circuit board at the position where the induced current is canceled. Specifically, by providing a groove at a symmetrical position between two adjacent openings, the potential fluctuation of the GND of the circuit board can be suppressed to 1 ⁇ 2 or less.
- the current induced around the opening depends on the flux linkage strength and the opening area of the opening. That is, it is necessary to design the structure so that the induced current determined by the opening area and the linkage magnetic flux is equal in the two openings.
- the magnetic field strength linked to two openings can be obtained by electromagnetic field analysis using a bus bar, wiring, or module that generates a noise magnetic field.
- the two opening areas are determined so that the induced currents are equal in consideration of this.
- the noise magnetic field interlinking the openings increases, the effect of directly coupling to the control circuit board installed on the upper part of the base plate increases, so it is desirable to reduce the opening area as much as possible.
- the distance between the base body connection portion that is, the distance between the base plate and the housing increases, the parasitic inductance of the connection portion increases, and potential fluctuation due to a noise electric field occurs. Therefore, it is desirable to make it as short as possible. Specifically, it is desirable to set it to about 1/20 or less of the wavelength at the target maximum frequency.
- the frequency used in the vehicle is a frequency having an upper limit of about 320 MHz occupied by AM radio, FM radio, digital radio broadcasting (DAB: Digital Audio Broadcasting), TPMS (Tire Pressure Monitoring System) and the like.
- DAB Digital Audio Broadcasting
- TPMS Transmission Monitoring System
- the allowable connection length is obtained from 1/20 of the wavelength at the frequency upper limit value 320 MHz, it is 47 mm.
- the opening length in the longitudinal direction of the opening is not more than the same from the viewpoint of suppressing the flux linkage.
- the bus bar In order to reduce the influence of the induced current that cannot be neglected, it is desirable to reduce the magnetic field that links the opening, that is, the induced current value. For this reason, it is desirable to mount the bus bar so that the longitudinal direction of the bus bar is parallel to the central axis direction of the opening as a structure for reducing the magnetic field interlinking the opening.
- the power module and the smoothing capacitor are also part of the high-voltage / high-current transmission path, and in order to generate a noise electromagnetic field, it is desirable to be mounted as far as possible from the opening.
- a part of the periphery of the opening of the base plate may be an insulator so that the induced current does not flow in a loop shape.
- the magnitude of the induced current is reduced. Therefore, the potential fluctuation of the base plate and the case due to the induced current is reduced, and a low noise effect is obtained.
- the base plate may be divided into a plurality of parts, and the induced current path may be blocked by leaving a gap without connecting them.
- a housing a power module including a switching element, a drive circuit that generates a signal for driving the switching element, and an operation for sending to the drive circuit
- a power conversion device comprising a control circuit board that generates a signal, a base plate on which the control circuit board is mounted, and a connection component that connects the housing and the control circuit board, and is adjacent to the housing.
- the power conversion device includes two openings, and the connection component is provided in the opening of the base plate or the casing.
- a groove is provided at one corner of the opening of the base plate or the base plate and the housing. It is.
- the modification of this invention is a power converter device as described in (1) or (2).
- WHEREIN A part of periphery which surrounds the opening part of the said base plate or the said base plate and the said housing is an insulator. It is the power converter device characterized.
- the base plate or the base plate and the opening of the housing are made of a magnetic material. It is a power converter.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
Abstract
Description
この種の電力変換装置ではパワーモジュールが高速なスイッチングを行う事で主な雑音発生源となる為、制御回路基板はこれらパワーモジュールが発生する雑音の干渉を受けない為の回路的工夫及び構造的工夫が必要となってくる。
また、特許文献2(特開2006-230064号)には、パワーモジュールと平滑化コンデンサ等を有する筐体と、ゲートドライバ及び制御回路基板を有する筐体を別の筐体とし、これらを組み合わせる事によって、パワーモジュールが発生する雑音がゲートドライバへ混入する事を防ぐ構造が示されている。
本発明はこのような問題を解決するためになされたものである。即ち、本発明の目的は、構造の工夫によりノイズを効果的に遮断し、高信頼性且つ小型化・低コスト化が可能な車載用電力変換器を提供する事にある。
(1)筺体と、スイッチング素子を備えてなるパワーモジュールと、前記スイッチング素子を駆動する信号を生成する駆動回路と、前記駆動回路へ送る動作信号を生成する制御回路基板と、前記制御回路基板を実装するベース板と、前記筺体と前記制御回路基板とを接続する接続部品とを備える電力変換装置であって、前記筺体には、隣り合う2つの開口部を備え、前記接続部品は、前記ベース板または前記筐体の開口部に備えられていることを特徴とする電力変換装置である。
尚、以下に説明する構成は、DC/DCコンバータ、直流チョッパなどの直流-直流電力変換装置、交流-直流電力変換装置、或いはこれら電力変換装置に接続された蓄電装置にも適用可能である。また、以下に説明する構成は、工場の設備を駆動する電動機の制御装置として用いられる産業用電力変換装置、或いは家庭の太陽光発電システムに用いられる、或いは家庭の電化製品を駆動する電動機の制御装置に用いられる家庭電力変換装置に対しても適用可能である。特に低コスト化及び小型化を狙った電力変換装置への適用が望ましい。
図5は本発明に係る電力変換器の上面図、図6は側面図、図7は断面図である。本実施形態に係る電力変換器においては、筺体1113と、駆動回路へ送る動作信号を生成する制御回路基板102と、これを実装するためのベース板105、制御回路基板102を固定するための接続部品、高電圧及び高電流を伝送するためのバスバー210を有する。ベース板105は金属など制御回路基板102よりも高い導電性を有する材料とし、筺体1113及びベース105は全て物理的且つ電気的に接続されており、筐体(ケース)1113は車両等のGNDと接続する事によってベース105もGND電位となる。
制御回路基板102と電力変換器外部の機器を接続する為の外部接続用コネクタは制御回路基板102又はコネクタ専用の基板上に実装され、制御回路基板同様にベースより上方の空間に実装される。
高圧バッテリ202から出力される電圧は平滑化コンデンサ209及びパワーモジュール211の上下アームに印加されている。スイッチング素子は各々の相に対してプラス側とマイナス側にあるものとし、その中間の電位が負荷であるモータ217の各々の相につながっている。スイッチング素子のゲートはゲートドライバ208と接続されており、ゲートドライバ208を制御する為の信号は制御回路基板206から入力される。制御回路基板206及びゲートドライバ208の一部は低圧のバッテリ201により動作する為、制御回路基板206には低圧バッテリ201が接続されている。ゲートドライバ208が低圧の電源201を必要とする場合には制御回路基板206を経由して供給する事ができる。ゲートドライバ208には高圧バッテリ202の電源もきているため、DC-DCコンバータ等を用いて高圧から低圧を作り出しても良い。制御回路基板206は電力変換器の動作を制御すると共に、電力変換器の外部機器と信号のやり取りを行う必要がある為、制御回路基板206は外部機器216とハーネス214等を用いて接続されている。
しかし、電力変換器内部では、上記スイッチング雑音電流が流れるバスバー210、218がシールドされていない為、磁界は打ち消されず、強雑音磁界を電力変換器内部に発生させる。バスバー210、218をラミネートし、プラス側とマイナス側を近接させた状態で組み付ける事によって、上記スイッチング雑音電流により形成されるループを最小化し、放射雑音磁界を低減する事は可能であるが、外部ケーブルとの接続部等、構造的制約から離れてしまう箇所が発生し、雑音磁界の生成源となってしまう。バスバー210、218をシールド化する事で雑音磁界を抑制する事は可能であるが、平滑化コンデンサ209の接続部分における不平衡電流の発生や高コスト化といった問題に加え、シールド構造による寄生容量の増加によってPWM波形の劣化といった問題がある。
制御回路基板301(206)には、モータ217の回転角度を検知する為の角度検知回路302、モータ217へ流れている電流を検知する為の電流検知回路303、電力変換器外部の機器と通信を行うためのトランシーバ304、制御回路基板上のIC等へ電源を供給する為の電源回路306、これらを制御する為のマイクロコントローラ307、等が搭載される。これらは全て1V~15V程度の弱電圧によって動作する。
絶縁素子315からドライバ側の回路は15V~数百Vの高圧で動作する回路が含まれ、パワーモジュール320上にはモータ217を駆動する為のパワーデバイス326が使用する相数に対応する数が搭載されており、これらは~数百Vの高圧をスイッチングする。
図中では、高電圧が印加されるラインを、制御回路基板上の低電圧信号ラインに比較して太く表示している。
またドライバ回路314とパワーデバイス326を接続するゲート信号線322はパワーデバイス326を駆動する矩形信号を伝える為の信号線であり、この信号線を長くしてしまうと上記同様にインダクタンス増による信号波形の劣化や、信号線に重畳する雑音の増大による信号対雑音比(SN比:Signal to Noise ratio)の悪化が生じ、誤動作や性能劣化の原因となる。よってドライバ回路314とパワーデバイス326は短く接続する必要がある。
また、ゲートドライバ用の電源回路312について、これは上記ドライバ回路314や各種検知回路313に用いられており、ドライバ回路のPWMゲートスイッチング信号をHigh/Low切り替える際に発生する切り替え雑音等が電源・GNDに重畳し易い。即ち、電源供給経路からの雑音放射を抑え、且つ同経路への雑音の混入を防ぐという目的から、ドライバ回路314や温度・電圧検知回路313と電源回路312を接続する電源供給経路317は短くする必要がある。これらが同基板上である場合には、電源供給経路317のインダクタンスを低減するという観点から、電源/GNDの供給経路は面(ランド)形状とする事が望ましい。
以上より、絶縁素子315、ドライバ回路314、温度・電圧検知回路313及びこれらへの電源回路312はこれらを近接して実装する為にも同一基板上に配置する事が望ましい。
よって、絶縁素子315、ドライバ回路314、温度・電圧検知回路313及びこれらへの電源回路312と、マイクロコントローラ307、角度検知回路302、電流検知回路303、トランシーバ304、これらへの電源回路306及びフィルタ308を、ベース311によって電磁的に分断する事でゲートドライバ上の回路が発生する雑音が制御回路へ混入する事を防ぐ事ができ、即ち雑音による性能劣化を防ぐ事が可能となる。これを実現する形態為に、上記絶縁素子315、ドライバ回路314、温度・電圧検知回路313及びこれらへの電源回路312を有するゲートドライバ基板208と、マイクロコントローラ307、角度検知回路302、電流検知回路303、トランシーバ304、これらへの電源回路306及びフィルタ308を有する制御回路基板206は別基板とし、図1に示すようにゲートドライバ基板318はパワーモジュール211と積み重ね型実装構造とする等が考えられる。
ベース上に設けた突起は、制御回路基板上にある高発熱部品の裏面に押し当てる事によって、高発熱部品が発生する熱をベース105へ逃がす機能を有する。この時、高発熱部品からベース105へ伝わった熱をベース105から外気又は冷却水を有する冷却機構へ伝熱させる必要がある為、ベース105はケース1113若しくは冷却機構等の比較的温度の低い部位と熱的に結合している必要がある。即ち各々の部材が物理的に接触固定されているか、ヒートパイプ等の伝熱部材を用いてベース105はその他の部材と組み付けられている事が望ましい。更に、ベース105は制御回路基板上発熱部品の裏面に押し当てる際に、接触のばらつきによる熱抵抗再現性の劣化等を防ぐ事を目的として剛性の低いシート状伝熱材料をベース105と制御回路基板102の間に有する事が望ましい。この時、ベース105はGND電位である為、制御回路との電気的接触による短絡故障を防ぐ為、上記伝熱材料は導電性の無いものを用いる事が望ましい。
このように、放熱突起即ち発熱部品の制御回路基板102上レイアウトを最適化することによってネジの本数を削減する事が可能となるが、一般的に基板固有の最も低い振動共振時には基板固定用のネジいずれか2箇所を結ぶ中点に振動の腹が生じる為、放熱突起即ち発熱部品の位置は基板固定用のネジの中間位置に配置する事で耐振性能を向上できる。
放熱突起のサイズについては、放熱の対象である発熱部品のサイズに合わせて大きさを変更する事が望ましく、基本的に対象とする発熱部品が有する放熱用パッドのサイズよりも大きい事が望ましい。マイクロコントローラ等のBGA部品やパワートランジスタ等の高消費電力部品については放熱用のGNDピンや放熱用のフィンが設けられている事が多く、これらは基板側に接続用のパッド及びランドを設け、同ランド内に複数の貫通ビアを設ける事で部品が発生する熱を基板裏面へひく事が可能となる。基板裏面には表面同様にランドを設け、このランドが放熱突起の接触面積よりも大きくなるようにする。このランドは上述した放熱用シート103を介して放熱突起と密に接触しており、部品が発生した熱を裏面放熱突起へと伝える事が可能となる。
また、ベース板105は導電性であり、ネジ等の接続部材を用いて筺体1113と接続される。よって、制御回路のGNDはベース板105を介して筺体電位と電気的に接続される。
図1の下図は本発明に係る電力変換器の上面図を示したものであるが、バスバー210により発生した雑音磁界が開口部404を鎖交すると、雑音磁界による誘導電流が開口部404周辺を流れる。誘導電流の向きは開口部404を鎖交する磁束を打ち消す方向である。誘導電流が流れると、ベース板105及び筺体1113に電位変動が生じる。ベース板105及び筺体1113に電位変動が生じると、制御回路基板102のGNDはネジ等の接続部品でこれらと接続されている為、基準電位の変動として制御回路に雑音が伝播してしまう。
これを抑制するため、制御回路基板102の接続点をより電位変動の小さい点に設ける事が重要となる。具体的には、図1に示すように、二つの開口部の共通の一辺において、誘導電流が打ち消しあう位置に制御回路基板102の接続点を設けることで上記電位変動が制御回路基板102へ伝播する事を防ぐことができる。誘導電流が打ち消しあう位置では、電流値が小さい為、電位変動も小さい。よって、GNDの電位変動として雑音が伝播する事を抑制できる。基板固定用のネジの位置を電流が打ち消しあう位置に設ける事が難しい場合、ベースの筺体接続部位に、図1のように溝を設ける事で電流の打ち消しあう位置を調整する事が有効である。
開口部周辺に誘導される電流は、開口部の鎖交磁束強度及び開口面積に依存する。即ち、開口面積および鎖交磁束によって決まる誘導電流が二つの開口部で同等となるように構造を設計する必要がある。誘導電流が二つの開口部で同等でない場合、電流の打ち消し効果が得られない。具体的に、二つの開口部に鎖交する磁界強度は、雑音磁界を発生するバスバーや配線、モジュールを用いて電磁界解析によって求める事が可能である。二つの開口部を鎖交する磁界強度が異なる場合、これを考慮し、誘導電流が同等となるように二つの開口面積を決定する。
ベースの筺体接続部位、即ちベース板と筺体との距離が長くなると接続部位の寄生インダクタンスが大きくなり、雑音電界による電位変動が生じる為、出来るだけ短くする事が望ましい。具体的には、対象としている最大周波数における波長の1/20程度以下とする事が望ましい。車両内で用いられる周波数はAMラジオ、FMラジオ、デジタルラジオ放送(DAB:Digital Audio Broadcast)、TPMS(Tire Pressure Monitoring System)等が占有する320MHz程度を上限とする周波数である。この周波数上限値320MHzにおける波長の1/20から許容接続部長を求めると47mmとなる。また、開口部の長手方向の開口長さも、鎖交磁束抑制の観点から、同程度以下とすることが望ましい。
開口部の鎖交磁束による誘導電流の経路を遮断するために、ベース板の開口部周辺の一部を絶縁体とすることで、誘導電流がループ形状で流れないようにしてもよい。ループ形状の電流経路が存在しない場合、誘導電流の大きさは低減される。よって、誘導電流によるベース板及び筺体の電位変動も小さくなり、低雑音効果がある。ベース板の一部に絶縁体を搭載する事が難しい場合等、ベース板を複数の部品に分け、これらを接続せず、隙間を空ける事によって誘導電流の経路を遮断してもよい。
Claims (7)
- 筺体と、
スイッチング素子を備えてなるパワーモジュールと、
前記スイッチング素子を駆動する信号を生成する駆動回路と、
前記駆動回路へ送る動作信号を生成する制御回路基板と、
前記制御回路基板を実装するベース板と、
前記筺体と前記制御回路基板とを接続する接続部品とを備える電力変換装置であって、
前記ベース板と前記筐体との間に隣り合う2つの開口部を備え、
前記接続部品は、前記隣り合う2つの開口部に共通する前記ベース板の一辺に備えられていることを特徴とする電力変換装置。 - 請求項1に記載の電力変換装置において、
前記接続部品は、前記ベース板の誘導電流が打ち消しあう位置に備えられていることを特徴とする電力変換装置。 - 請求項1または2に記載の電力変換装置において、
前記隣り合う2つの開口部の対称的な位置に溝が設けられていることを特徴とする電力変換装置。 - 請求項1乃至3のいずれかに記載の電力変換装置において、
前記隣り合う2つの開口部を囲む周縁の一部が絶縁体であることを特徴とする電力変換装置。 - 請求項1乃至4のいずれかに記載の電力変換装置において、
前記隣り合う2つの開口部が磁性体により構成されていることを特徴とする電力変換装置。 - 請求項1乃至5のいずれかに記載の電力変換装置において、
前記隣り合う2つの開口部は、該2つの開口部を鎖交磁束が同等となるような構造であることを特徴とする電力変換装置。 - 請求項1乃至6のいずれかに記載の電力変換装置において、
前記隣り合う2つの開口部は、前記ベース板の端部と前記筐体との間に備えられていることを特徴とする電力変換装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/976,111 US9065356B2 (en) | 2011-02-28 | 2012-02-22 | Electric power converter |
JP2013502180A JP5686887B2 (ja) | 2011-02-28 | 2012-02-22 | 電力変換装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011041093 | 2011-02-28 | ||
JP2011-041093 | 2011-02-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012117694A1 true WO2012117694A1 (ja) | 2012-09-07 |
Family
ID=46757639
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/001173 WO2012117694A1 (ja) | 2011-02-28 | 2012-02-22 | 電力変換装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9065356B2 (ja) |
JP (1) | JP5686887B2 (ja) |
WO (1) | WO2012117694A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014087106A (ja) * | 2012-10-19 | 2014-05-12 | Nissan Motor Co Ltd | 電力変換装置 |
JP2014087107A (ja) * | 2012-10-19 | 2014-05-12 | Nissan Motor Co Ltd | 電力変換装置 |
JP2014176246A (ja) * | 2013-03-12 | 2014-09-22 | Denso Corp | 電力変換装置 |
JP2015053791A (ja) * | 2013-09-06 | 2015-03-19 | 株式会社デンソー | 変電回路 |
WO2016208074A1 (ja) * | 2015-06-26 | 2016-12-29 | 株式会社日立製作所 | 電力変換装置 |
JPWO2016017311A1 (ja) * | 2014-07-29 | 2017-04-27 | 日立オートモティブシステムズ株式会社 | 電力変換装置 |
JP6333503B1 (ja) * | 2017-06-16 | 2018-05-30 | 三菱電機株式会社 | 電力変換装置 |
WO2018230012A1 (ja) * | 2017-06-16 | 2018-12-20 | 三菱電機株式会社 | 電力変換装置 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102017116887A1 (de) * | 2017-07-26 | 2019-01-31 | Wobben Properties Gmbh | Ladestation mit dynamischer Ladestromverteilung |
DE102017116886A1 (de) | 2017-07-26 | 2019-01-31 | Wobben Properties Gmbh | Ladestation mit dynamischer Ladestromverteilung |
DE102018211007B3 (de) * | 2018-07-04 | 2019-08-22 | Bayerische Motoren Werke Aktiengesellschaft | Sicherheitsschaltvorrichtung für eine Hochvoltbatterie eines Kraftfahrzeugs, Hochvoltbatterie, Bordnetzsystem sowie Kraftfahrzeug |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09135565A (ja) * | 1995-09-08 | 1997-05-20 | Hitachi Ltd | 配線基板及びそれを用いてた電力変換装置 |
JPH1098887A (ja) * | 1996-09-20 | 1998-04-14 | Hitachi Ltd | 電力変換装置 |
US6459605B1 (en) * | 2000-08-11 | 2002-10-01 | American Superconductor Corp. | Low inductance transistor module with distributed bus |
JP2011135705A (ja) * | 2009-12-25 | 2011-07-07 | Hitachi Automotive Systems Ltd | 電力変換装置 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6678182B2 (en) * | 2000-11-07 | 2004-01-13 | United Defense Lp | Electrical bus with associated porous metal heat sink and method of manufacturing same |
JP3946018B2 (ja) * | 2001-09-18 | 2007-07-18 | 株式会社日立製作所 | 液冷却式回路装置 |
JP2005235929A (ja) | 2004-02-18 | 2005-09-02 | Mitsubishi Electric Corp | 電力変換器 |
JP2006230064A (ja) | 2005-02-16 | 2006-08-31 | Toyota Motor Corp | 電力変換ユニット |
-
2012
- 2012-02-22 JP JP2013502180A patent/JP5686887B2/ja active Active
- 2012-02-22 WO PCT/JP2012/001173 patent/WO2012117694A1/ja active Application Filing
- 2012-02-22 US US13/976,111 patent/US9065356B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09135565A (ja) * | 1995-09-08 | 1997-05-20 | Hitachi Ltd | 配線基板及びそれを用いてた電力変換装置 |
JPH1098887A (ja) * | 1996-09-20 | 1998-04-14 | Hitachi Ltd | 電力変換装置 |
US6459605B1 (en) * | 2000-08-11 | 2002-10-01 | American Superconductor Corp. | Low inductance transistor module with distributed bus |
JP2011135705A (ja) * | 2009-12-25 | 2011-07-07 | Hitachi Automotive Systems Ltd | 電力変換装置 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014087106A (ja) * | 2012-10-19 | 2014-05-12 | Nissan Motor Co Ltd | 電力変換装置 |
JP2014087107A (ja) * | 2012-10-19 | 2014-05-12 | Nissan Motor Co Ltd | 電力変換装置 |
JP2014176246A (ja) * | 2013-03-12 | 2014-09-22 | Denso Corp | 電力変換装置 |
JP2015053791A (ja) * | 2013-09-06 | 2015-03-19 | 株式会社デンソー | 変電回路 |
JPWO2016017311A1 (ja) * | 2014-07-29 | 2017-04-27 | 日立オートモティブシステムズ株式会社 | 電力変換装置 |
WO2016208074A1 (ja) * | 2015-06-26 | 2016-12-29 | 株式会社日立製作所 | 電力変換装置 |
JPWO2016208074A1 (ja) * | 2015-06-26 | 2017-06-22 | 株式会社日立製作所 | 電力変換装置 |
US9991815B2 (en) | 2015-06-26 | 2018-06-05 | Hitachi, Ltd. | Power conversion apparatus |
JP6333503B1 (ja) * | 2017-06-16 | 2018-05-30 | 三菱電機株式会社 | 電力変換装置 |
WO2018230012A1 (ja) * | 2017-06-16 | 2018-12-20 | 三菱電機株式会社 | 電力変換装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2012117694A1 (ja) | 2014-07-07 |
JP5686887B2 (ja) | 2015-03-18 |
US9065356B2 (en) | 2015-06-23 |
US20130322144A1 (en) | 2013-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5686887B2 (ja) | 電力変換装置 | |
EP3273585B1 (en) | Power circuit device | |
US11153966B2 (en) | Electronic circuit device | |
JP5743851B2 (ja) | 電子装置 | |
JP6104347B1 (ja) | 電力変換装置 | |
JP6101484B2 (ja) | Dc−dcコンバータ | |
US8362540B2 (en) | Integrated circuit package with reduced parasitic loop inductance | |
JP5845995B2 (ja) | 電力変換装置 | |
WO2019026339A1 (ja) | 電力変換装置および電力変換装置を搭載した車両 | |
JP6719021B2 (ja) | 電力変換装置 | |
US20200120789A1 (en) | Power conversion apparatus | |
WO2018116667A1 (ja) | 電力変換装置 | |
CN112840545A (zh) | 电源设备 | |
JP2020053491A (ja) | 電子制御装置 | |
JP2015154544A (ja) | 電力変換器用のコントローラ | |
JP2011130626A (ja) | 半導体スイッチ用モジュール | |
CN112313870B (zh) | 电力转换装置 | |
US9253872B2 (en) | Inductor assembly and circuit assembly | |
US12149171B2 (en) | Switching power supply including wiring layer | |
JP7259686B2 (ja) | 電力変換装置 | |
JP5972503B1 (ja) | 電力用回路装置 | |
JP7301600B2 (ja) | 電源装置及び画像形成装置 | |
WO2017126086A1 (ja) | 電力変換装置 | |
JP2023165273A (ja) | 電子機器 | |
JP2024129404A (ja) | スイッチング電源装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12752353 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013502180 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13976111 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12752353 Country of ref document: EP Kind code of ref document: A1 |