[go: up one dir, main page]

WO2012114815A1 - Power tool - Google Patents

Power tool Download PDF

Info

Publication number
WO2012114815A1
WO2012114815A1 PCT/JP2012/051545 JP2012051545W WO2012114815A1 WO 2012114815 A1 WO2012114815 A1 WO 2012114815A1 JP 2012051545 W JP2012051545 W JP 2012051545W WO 2012114815 A1 WO2012114815 A1 WO 2012114815A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
actuator
unit
switching member
switching
Prior art date
Application number
PCT/JP2012/051545
Other languages
French (fr)
Japanese (ja)
Inventor
将利 渥美
賢一郎 稲垣
直 有村
博之 海藏
山田 穣
Original Assignee
パナソニックEsパワーツール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックEsパワーツール株式会社 filed Critical パナソニックEsパワーツール株式会社
Publication of WO2012114815A1 publication Critical patent/WO2012114815A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B21/00Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose
    • B25B21/008Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose with automatic change-over from high speed-low torque mode to low speed-high torque mode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F5/00Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for
    • B25F5/001Gearings, speed selectors, clutches or the like specially adapted for rotary tools

Definitions

  • the present invention relates to an electric tool provided with a changeable reduction ratio.
  • the switching operation of the ring gear is automatically performed using a solenoid.
  • the rotation of the motor is stopped or reduced when the solenoid is started.
  • the control unit that detects this changes the start of the solenoid and the rotation stop of the motor according to the set timing. Is running. Specifically, first, the rotation of the motor for suppressing the impact is reliably stopped, and then the solenoid is activated to take measures to suppress the impact at the time of engagement as much as possible.
  • the conventional electric tool as described above is insufficient to suppress the impact of engagement when changing the reduction ratio and to complete the reduction ratio change smoothly in a short time. Met.
  • the switching member slides, the changeover of the battery power source of the power tool, the wear of the gear member, the shaft misalignment, the increase of the clearance between the gear members, etc., before the switching member reaches the predetermined target position.
  • the slide may stop.
  • the switching member since the switching member is displaced from the predetermined target position, the engagement between the switching member and the gear member becomes insufficient, and unexpected shifts due to insufficient engagement, wear of the engagement parts, In some cases, it could cause damage.
  • control unit does not include control for avoiding insufficient engagement between the switching member and the gear member due to insufficient sliding amount of the switching member.
  • the present invention includes a motor (1) as a drive source, a speed reduction mechanism (2) configured to reduce the rotational power of the motor (1) and transmit the reduced rotational power, and the speed reduction
  • a reduction ratio switching means configured to switch the reduction ratio of the mechanism section (2).
  • the deceleration mechanism section (2) includes a switching member (7) that includes a shaft and is slidable in the axial direction, and the switching member (7) according to a sliding position of the switching member (7) in the axial direction.
  • a gear member (5) capable of switching between an engaged state and a non-engaged state, and configured to switch the reduction ratio through the switching member (7) and the gear member (5).
  • the reduction ratio switching means is configured to adjust the drive of the speed change actuator (6) and the speed change actuator (6) configured to slide the switch member (7) in the axial direction.
  • An actuator control unit (64) configured to control the shift actuator (6) at the time of switching.
  • the actuator control unit (64) is configured to control the drive adjustment unit (65) so as to keep the sliding amount per time of the switching member (7) by the speed change actuator (6) constant. .
  • the reduction ratio switching means further includes an information detection unit (67) configured to detect input / output information of the speed change actuator (6), and the actuator control unit (64) includes: The drive adjustment unit (65) is controlled according to the detection result of the information detection unit (67).
  • the actuator control section (64) causes the drive adjustment section (65) to maintain a constant supply voltage to the speed change actuator (64), thereby increasing the moving speed of the switching member (7). It is configured to be held constant.
  • the information detection unit (67) is configured to detect a voltage applied to the shift actuator (6) as the input / output information before the shift actuator (6) is activated.
  • the drive adjusting unit (65) is configured to adjust the power supplied to the speed change actuator (6) according to the detection result of the information detecting unit (67).
  • the information detection unit (67) is configured to detect a current value flowing through the shift actuator (6) when the shift actuator (6) is driven as the input / output information.
  • the drive adjusting unit (65) is configured to adjust the power supplied to the speed change actuator (6) according to the detection result of the information detecting unit (67).
  • the reduction ratio switching means further includes a slide position detection unit (68) configured to detect the slide position of the switching member (7).
  • the actuator control section (64) adjusts the power supplied to the speed change actuator (6) according to the detection result of the slide position detection section (68) and the detection result of the information detection section (67). Configured.
  • the information detection unit (67) is configured to detect a driving time and a current value of the shift actuator (6) as the input / output information.
  • the information detection unit (67) is configured to detect a voltage value and a current value of the shift actuator (6) as the input / output information.
  • the information detection unit (67) is configured to detect an operation speed and a current value of the shift actuator (6) as the input / output information.
  • the actuator control unit (64) is configured to control the sliding amount per time to be different for each sliding direction of the switching member (7).
  • the present invention suppresses the impact of engagement when changing the reduction ratio and can complete the reduction ratio change smoothly in a short time, and when the reduction ratio is changed, the sliding amount of the switching member is insufficient. There is an effect that it can be made difficult.
  • FIG. 6A is a side sectional view
  • FIG. 6B is a side view, showing a first speed state of the speed reduction mechanism portion.
  • FIG. 8A is a side sectional view
  • FIG. 8B is a side view, showing a second speed state of the speed reduction mechanism portion.
  • FIG. 10A is a side sectional view
  • FIG. 10B is a side view, showing a state of the third speed of the reduction mechanism unit. It is principal part explanatory drawing of the electric tool of Embodiment 2 of this invention.
  • Embodiment 1 of the electric power tool of the present invention includes a motor (main motor) 1 that is a drive source, a speed reduction mechanism unit 2, and a drive transmission unit 3.
  • the reduction mechanism unit 2 includes a switching member 7 and is configured to reduce the rotational power of the motor 1 and transmit the reduced rotational power.
  • the reduced rotational power is transmitted to the drive transmission unit 3.
  • the drive transmission unit 3 is configured to transmit the rotational power transmitted through the speed reduction mechanism unit 2 to the output shaft 4.
  • a bit is attached to the output shaft 4 via a chuck.
  • the switching member of the present invention has a shaft (hereinafter also referred to as “main shaft”) and is configured to slide in the direction of the main shaft.
  • the switching member 7 has one common axis and is configured to slide in the direction of the common axis.
  • the motor 1, the speed reduction mechanism unit 2, and the drive transmission unit 3 are accommodated in the body housing 101 such that their respective axes are arranged on an extension line of the output shaft 4.
  • each of the motor 1, the speed reduction mechanism unit 2, the drive transmission unit 3, and the output shaft 4 has one common axis CA (see FIG. 5) that is coaxial with its own axis.
  • a grip part housing (grip) 102 extends from the body housing 101, and the main body housing 100 of the electric tool is composed of the body housing 101 and the grip part housing 102.
  • a trigger switch 103 is retractably provided in the grip part housing 102.
  • a power cord connected to an external power source and a power source unit 70 such as a battery pack that can be detached from the grip unit housing 102 are provided at the extended distal end of the grip unit housing 102.
  • the speed change actuator 6 is disposed in the axial direction 6A of the speed change actuator 6 with respect to the main shaft (the common axis CA) such as the motor 1 and the speed reduction mechanism 2.
  • the speed change actuator 6 is a rotary actuator having a dedicated motor (sub motor) 50 as a drive source, and the switching member 7 included in the speed reduction mechanism 2 is moved in the axis (main axis) direction via the speed change cam plate 8. It is configured to slide and switch the reduction ratio. This will be described in detail later.
  • the speed reduction mechanism unit 2 of the present embodiment accommodates a three-stage planetary speed reduction mechanism in the gear case 9, and the speed reduction mechanism part 2 is switched by switching between the deceleration state and the non-deceleration state of the planetary speed reduction mechanism of each stage. Change the overall reduction ratio.
  • the first, second, and third stage planetary speed reducing mechanisms will be described in order from the side closer to the motor 1.
  • the first stage (first) planetary reduction mechanism 2 1, the sun gear 10 which is rotationally driven around the axis by the rotation power from the motor 1 (see FIG. 6A), the sun gear 10 And a plurality of planetary gears 11 that mesh with each other, and a ring gear 12 that meshes with each planetary gear 11.
  • the planetary gear 11 is positioned so as to surround the sun gear 10.
  • the ring gear 12 is positioned so as to surround the plurality of planetary gears 11.
  • Planetary reduction mechanism 2 1 of the first stage further comprises a carrier 14 and a plurality of carrier pins 13.
  • the plurality of planetary gears 11 are rotatably connected to the carrier 14 via a plurality of carrier pins 13 respectively.
  • the second stage (second) planetary reduction mechanism 2 2 the second-stage sun gear 20 that is coupled to the sun gear 10 of the first stage (see FIG. 6A), a plurality of planetary gears meshing with the sun gear 20 21.
  • the first-stage ring gear 12 is arranged to mesh with the plurality of planetary gears 21 and is shared with the second-stage planetary reduction mechanism 22.
  • the planetary gear 21 is positioned so as to surround the sun gear 20.
  • Planetary reduction mechanism 2 2 of the second stage further comprises a carrier 24 and a plurality of carrier pins 23.
  • the plurality of planetary gears 21 are rotatably connected to the carrier 24 via a plurality of carrier pins 23, respectively.
  • the tip of the carrier pin 23 is connected to the first stage carrier 14.
  • Ring gear 12 or functions as a member for forming the planetary reduction mechanism 2 1 of the first stage, it works as a member for forming a second-stage planetary reduction mechanism 2 2, depending on the slide position It is a structure that can be selected alternatively. That is, the ring gear 12 meshes with the first stage planetary gear 11 when in the sliding position on the motor 1 side, and meshes with the second stage planetary gear 21 when in the sliding position on the output shaft 4 side.
  • the motor 1 side is simply referred to as “input side” and the output shaft 4 side is simply referred to as “output side”.
  • a guide portion 15 (see FIG. 7) is provided on the inner peripheral surface of the gear case 9 so that the ring gear 12 is slidable and non-rotatable in the axial (main shaft) direction. While being guided by 15, the slide movement in the direction of the axis (main axis) is performed.
  • the third stage (third) planetary reduction mechanism 2 3 includes a sun gear 30 of the third stage is coupled to the carrier 24 of the second stage, a plurality of planetary gears 31 meshing with the sun gear 30, a plurality of these A ring gear 32 that meshes with the planetary gear 31 is provided.
  • the planetary gear 31 is positioned so as to surround the sun gear 30.
  • the third stage planetary reduction mechanism 2 3 further includes a carrier 34 and a plurality of carrier pins 33.
  • the plurality of planetary gears 31 are rotatably connected to the carrier 34 via a plurality of carrier pins 33, respectively.
  • the ring gear 32 is slidably and rotatably arranged in the axial direction with respect to the gear case 9.
  • the ring gear 32 meshes with the outer peripheral edge of the second stage carrier 24.
  • the ring gear 32 meshes with an engagement tooth portion 40 (see FIG. 6A) formed integrally with the gear case 9. Further, the ring gear 32 meshes with the planetary gear 31 at any sliding position.
  • Planetary reduction mechanism 2 3 of these three stages is connected to the shaft (main shaft) direction. That is, the first to third sun gears 10, 20, and 30 are arranged side by side in a straight line in the axial direction (main axis), and the two ring gears 12 and 32 positioned so as to surround them are also in the axial (main axis) direction. Are arranged side by side.
  • the ring gears 12 and 32 are independently slidable in the axial direction, and the reduction ratio is switched corresponding to the sliding position, and the rotation output of the output shaft 4 is changed to the first speed, the second speed, and the third speed.
  • the ring gears 12 and 32 form the switching member 7 that is slidable in the axial (main axis) direction.
  • the first speed is the state with the smallest reduction ratio
  • the second speed is the state with the larger reduction ratio than the first speed
  • the third speed is the state with the larger reduction ratio than the first and second speeds (that is, the smallest reduction ratio). Big state).
  • the switching member of the present invention is not limited to the ring gears 12 and 32.
  • the switching member of the present invention may be configured to include at least one ring gear (for example, ring gear 12).
  • FIG. 6 shows the state of the first speed
  • FIG. 7 shows the state during the switching between the first speed and the second speed
  • FIG. 8 shows the state of the second speed
  • FIG. 9 shows the state during the switching between the second speed and the third speed
  • one ring gear 12 forming the switching member 7 is in the input side position, and the other ring gear 32 forming the switching member 7 is also in the input side position. Therefore, only the planetary reduction mechanism 2 1 of the first stage is the deceleration state.
  • one ring gear 12 forming the switching member 7 is at the output side position, and the other ring gear 32 forming the switching member 7 is also at the input side position. Therefore, only the second stage planetary speed reduction mechanism 2 2 is in a deceleration state.
  • first-stage planetary reduction mechanism 2 1 and second-stage planetary speed reduction mechanism 2 2 2/5 stage is made different for dimensions of each member so that ratio speed reduction becomes large. Therefore, in the case of the second speed, the reduction ratio is larger than that of the first speed, and the rotation speed of the output shaft 4 is reduced.
  • both the second-stage planetary speed reduction mechanism 2 2 and the third-stage planetary speed reduction mechanism 2 3 are in a decelerating state.
  • Both the sliding positions of the two ring gears 12 and 32 forming the switching member 7 are determined according to the rotational position of the transmission cam plate 8.
  • the transmission cam plate 8 is a plate having an arcuate cross section along the outer peripheral surface of the cylindrical gear case 9, and is mounted so as to be rotatable around the central axis of the gear case 9.
  • the transmission cam plate 8 has two cam grooves 41 and 42 arranged side by side in the axial direction (main axis).
  • the input side cam groove 41 is a through groove having a polygonal line shape corresponding to the sliding movement of the ring gear 12.
  • the tip of the speed change pin 45 inserted through the cam groove 41 is inserted into the gear case 9 through a guide groove 48 (see FIG. 5) penetrating the gear case 9 and is engaged with the concave groove on the outer peripheral surface of the ring gear 12.
  • the guide groove 48 is formed in parallel with the axis (main axis) direction of the speed reduction mechanism unit 2.
  • the output side cam groove 42 is a through groove having a polygonal line shape corresponding to the sliding movement of the ring gear 32.
  • the tip of the speed change pin 46 inserted into the cam groove 42 is inserted into the gear case 9 through a guide groove 49 (see FIG. 5) penetrating the gear case 9, and is engaged with the concave groove on the outer peripheral surface of the ring gear 32.
  • the guide groove 49 is formed in parallel with the axis (main axis) direction of the speed reduction mechanism portion 2 and is formed in a straight line with the other guide groove 48.
  • the speed change cam plate 8 has a gear portion 47 that meshes with the rotary speed change actuator 6 at its circumferential end.
  • the speed change actuator 6 has a dedicated motor 50, a speed reduction mechanism portion 51 that reduces and transmits the rotational power of the motor 50, and an output portion 52 that is rotationally driven by the rotational power transmitted through the speed reduction mechanism portion 51. . That is, the speed change actuator 6 is configured to slide the switching member 7 in the axial direction via the speed change cam plate 8.
  • the speed reduction mechanism unit 2 includes the switching member 7 that is slidable in the axial (main axis) direction, and the switching member 7 according to the sliding position of the switching member 7 in the axial direction.
  • the gear member 5 that can be switched between the engaged state and the non-engaged state is formed.
  • the switching member 7 is the ring gears 12 and 32 as described above.
  • the gear member 5 here is the first stage planetary gear 11 and the second stage planetary gear 21 for the ring gear 12, and the second stage carrier 24 for the ring gear 32. It is the denture part 40.
  • FIG. The speed reduction ratio of the entire speed reduction mechanism 2 is switched according to the engagement state and the non-engagement state of the switching member 7 and the gear member 5.
  • the first planetary reduction mechanism 2 1 a ring gear 12 that is shared by the second planetary reduction mechanism 2 2 (first switching member) is provided so as to slide along the main axis direction, the first speed position (FIG. 6 in), while meshing with the first planetary reduction mechanism 2 1 of the first gear set (planet gear 11), the second speed position (FIG. 8), a second planetary reduction mechanism 2 2 of the second gear set (planetary gears 21).
  • the ring gear 32 (second switching member) is provided so as to slide along the main axis direction, the first speed position and a second speed position, the carrier 24 and the third planetary reduction mechanism 2 3 of the third gear set ( While rotating in mesh with the planetary gear 31), at the third speed position (FIG. 8), rotation is prohibited by meshing with the third gear set and the engaging tooth portion 40.
  • the rotation of the sun gear 10 is decelerated by the planetary gear 11 and the ring gear 12, and the carrier 14 rotates through the planetary gear 11 that rotates in the ring gear 12 that is prohibited from rotating in the gear case 9. Since the carrier 24 is connected to the carrier 14 via the carrier pin 23, and the ring gear 32 that meshes with the planetary gear 31 meshes with the carrier 24, the rotation of the sun gear 10 decelerated with the smallest reduction ratio is 14 and 24 are transmitted to the sun gear 30 and the ring gear 32. As a result, the entire 3-stage planetary reduction mechanism 2 3 rotates the smallest reduction ratio in synchronism with the carrier 14 (24 well).
  • the rotation of the sun gear 20 is decelerated by the planetary gear 21 and the ring gear 12, and the carrier 24 (also 14) is transmitted through the planetary gear 21 that rotates in the ring gear 12 that is prohibited from rotating in the gear case 9. Rotate.
  • rotation of the decelerated sun gear 20 with a small reduction ratio for the second is transmitted to the sun gear 30 and ring gear 32 via the carrier 24, (also carrier 14) planetary reduction mechanism 2 3 entire third stage However, it rotates at the second smallest reduction ratio in synchronization with the carrier 24.
  • the rotation of the sun gear 20 is decelerated by the planetary gear 21 and the ring gear 12, the carrier 24 (also 14) rotates, and the sun gear 30 rotates in synchronization with the carrier 24.
  • the rotation of the sun gear 30 is decelerated by the planetary gear 31 and the ring gear 32, and the carrier 34 rotates through the planetary gear 31 that rotates in the ring gear 32 that is prohibited from rotating in the gear case 9. That is, the rotation of the carrier 34 is decelerated at the largest reduction ratio.
  • the electric tool of the present embodiment includes a control unit 62 configured to control the motor 1 and the actuator 6, and a motor drive configured to drive the motor 1. And an actuator driving unit 66 configured to drive the speed change actuator 6. Power is supplied from the power supply unit 70 to the control unit 62, the motor drive unit 65, and the actuator drive unit 66.
  • the motor drive unit 65 is configured to drive the motor 1 and change the rotational power of the motor 1 under the control of the control unit 62, and to be configured to adjust the rotational power of the motor 1. Also serves as a drive adjustment unit.
  • the actuator drive unit 66 is configured to drive the speed change actuator 6 (motor 50) and adjust the drive of the speed change actuator 6 under the control of the control unit 62, and to drive the speed change actuator 6 side.
  • the function as 61 is included.
  • the electric power tool of the present embodiment includes an information detection unit 67 configured to detect input / output information of the speed change actuator 6 and a drive state detection unit 60 configured to detect the drive state of the motor 1. And a slide position detector 68 configured to detect the slide position of the switching member 7.
  • the driving state detection unit 60 detects the driving state of the motor 1 by detecting at least one of the current value flowing through the motor 1 and the rotation speed of the motor 1, and inputs the detection result to the control unit 62.
  • the information detection unit 67 detects the value of the supply voltage applied to the actuator driving unit 66 (voltage value of the supply power), thereby moving the switching member 7 (that is, the sliding speed of each of the ring gears 12 and 32). And the detection result is input to the control unit 62.
  • the slide position detection unit 68 detects the rotational position of the speed change cam plate 8 linked to the switching member 7 with respect to the gear case 9 to indirectly detect the position of the switching member 7 (that is, the sliding position of each of the ring gears 12 and 32). ) And the detection result is input to the control unit 62.
  • the slide position detection unit 68 may be a non-contact type displacement detection sensor, or may be a contact type that directly contacts the speed change cam plate 8.
  • the control unit 62 activates the speed change actuator 6 in the actuator driving unit 66 and slides the switching member 7 in accordance with the driving state (load) of the motor 1 detected by the driving state detection unit 60, thereby reducing the speed reduction mechanism. It is comprised so that the reduction ratio of the part 2 may be changed.
  • the actuator driving unit 66 the driving state detecting unit 60, the slide position detecting unit 68, the information detecting unit 67, and the control unit 62, It constitutes a reduction ratio switching means.
  • control unit 62 when the speed change actuator 6 (that is, the motor 50) is started, control is performed so that the rotational power of the motor 1 is temporarily reduced or increased according to the detection result of the slide position detection unit 68.
  • This also serves as the function of the switching control unit 63 configured to do so.
  • the rotational power of the motor 1 is reduced or increased because the relative rotational speed at the time of engagement is reduced as much as possible between the switching member 7 that is slid and the gear member 5 that is engaged after sliding (preferably Because it is zero).
  • the control unit 62 (switching control unit 63) automatically shifts when the driving state detection unit 60 detects that the load applied to the motor 1 has reached a predetermined level during work with the electric tool.
  • the automatic shift from the first speed to the second speed is performed when the current value flowing through the motor 1 becomes a predetermined value or more, when the rotational speed of the motor 1 becomes a predetermined value or less, or when the current value and the rotational speed are When the predetermined relationship is satisfied, it is detected that the load applied to the motor 1 has reached a predetermined level.
  • the switching control unit 63 activates the motor 50 of the speed change actuator 6, and the speed change pins 45 and 46 move from the low speed end to the high speed end side of the cam grooves 41 and 42, respectively.
  • the shift cam plate 8 is rotationally moved so as to move to.
  • the speed change pin 45 inserted into the input side cam groove 41 of the speed change cam plate 8 is slidably driven to the output side according to the cam groove 41 while being guided by the guide groove 48 provided in the gear case 9.
  • the transmission pin 45 slides the ring gear 12 that is the switching member 7 to the output side.
  • the ring gear 12 that has been slid is first disengaged from the first stage planetary gear 11 and is in the middle of switching shown in FIG. At this time, the ring gear 12 is rotationally fixed with respect to the gear case 9.
  • the second stage planetary gear 21, which is the gear member 5 to be engaged next, is driven to rotate about the axis with respect to the gear case 9 in a form depending on the rotational power of the motor 1.
  • the control unit 62 temporarily reduces the rotational power of the motor 1 at that time. (Including zero (stop)).
  • the relative rotational speed between the two gears 12 and 21 is reduced (preferably zero), and the impact during engagement is reduced. Suppress. Therefore, automatic shift from the first speed to the second speed is realized smoothly and stably, and gear wear and damage due to a collision are also suppressed.
  • the automatic shift from 2nd gear to 3rd gear is controlled as follows. That is, when the motor 1 is rotationally driven in the second speed state shown in FIG. 8, when the driving state detection unit 60 detects that the load applied to the motor 1 has reached a predetermined level, the third speed is set. Automatic shift. Specifically, when the current value flowing through the motor 1 becomes a predetermined value or more, when the rotation speed of the motor 1 becomes a predetermined value or less, or this current value and the rotation speed satisfy a predetermined relationship. Is detected, the load applied to the motor 1 has reached a predetermined level.
  • the control unit 62 to which the detection result is input starts the motor 50 of the speed change actuator 6 and rotates the speed change cam plate 8.
  • the speed change pin 46 inserted through the cam groove 42 on the output side of the speed change cam plate 8 is slid to the output side while being guided by a guide groove 49 provided in the gear case 9.
  • the transmission pin 46 slides the ring gear 32, which is another switching member 7, to the output side.
  • the ring gear 32 that has been slid is first disengaged from the carrier 24 at the second stage, and reaches a state during switching as shown in FIG. At this time, the ring gear 32 is engaged with the third planetary gear 31 and is not rotationally fixed to the gear case 9.
  • the ring gear 32 in the midway of switching in FIG. 9 continues to rotate with the rotational inertia when engaged with the carrier 24 at the second speed, but at the same time, the third stage planet driven by the motor 1.
  • the reaction force from the gear 31 receives a rotational force in the direction opposite to the rotational inertia.
  • the engaging tooth portion 40 which is the gear member 5 to which the ring gear 32 is engaged next is fixed to the gear case 9.
  • the control unit 62 actively utilizes the rotational force in the direction opposite to the rotational inertia to reduce the relative rotational speed between the ring gear 32 and the engaging tooth portion 40 (preferably zero). Yes. That is, when the slide position detecting unit 61 detects that the ring gear 32 has reached the predetermined switching state in FIG. 9, the control unit 62 temporarily stops the sliding movement of the ring gear 32. And the rotational power of the motor 1 is increased temporarily, and the rotational speed with respect to the gear case 9 of the ring gear 32 is reduced rapidly. After that, the sliding movement of the ring gear 32 is resumed, and when the engagement with the engagement tooth portion 40 is performed, the rotation speed of the ring gear 32 is adjusted to be as close to zero as possible.
  • the rotational speed may be adjusted by temporarily increasing the rotational power of the motor 1 without temporarily stopping the sliding movement of the ring gear 32. Further, the rotational speed may be adjusted only by temporarily stopping the ring gear 32. Further, as the control for gradually reducing the rotational power of the motor 1 in synchronization with the activation of the speed change actuator 6 and reducing the rotation due to the rotational inertia of the ring gear 32 when engaged with the carrier 24 at the second speed. Also good.
  • control unit 62 In the case of automatic transmission from the 3rd speed to the 2nd speed, or in the case of the automatic transmission from the 2nd speed to the 1st speed, the control unit 62 is in a state where the rotational power of the motor 1 is stopped or in the middle of switching. The rotational power is reduced or stopped to reduce the relative rotational speed of the switching member 7 and the gear member 5. As a result, smooth and stable automatic gear shifting is realized, and wear and damage of the gear due to a collision are also suppressed.
  • control unit 62 (switching control unit 63) may be a control that reduces the rotational power of the motor 1 to some extent from the time when the speed change actuator 6 is activated.
  • the control unit 62 gradually decreases the rotational power of the motor 1 in synchronization with the activation of the speed change actuator 6, and detects that the ring gear 12 has reached the predetermined switching state in FIG. When the result is input, the rotational power of the motor 1 is further reduced.
  • the control unit 62 of the present embodiment activates the speed change actuator 6 according to the driving state of the motor 1 and corresponds to the detected current position of the switching member 7 (ring gears 12 and 32). In this way, the rotational power of the motor 1 is temporarily reduced or increased. This reduction in rotational power includes a case where the motor 1 is stopped. As a result, smooth and stable automatic gear shifting is realized, and wear and damage of the gear due to a collision are also suppressed.
  • the control unit 62 may gradually decrease or increase the rotational power of the motor 1 in synchronization with the activation of the speed change actuator 6.
  • the automatic shift from the second speed to the first speed or the third speed to the second speed may be performed when the control unit 62 determines that the work is completed. Specifically, after the load of the motor 1 reaches a predetermined level, the motor 1 is stopped driving when the control unit 62 determines that the load is almost lost and the operation of the trigger switch 103 is released.
  • control unit 62 of the present embodiment corresponds to the position of the switching member 7 (ring gears 12 and 32) detected by the information detection unit 67 and the slide position detection unit 68 when the reduction ratio is switched (at the time of shifting). In this way, control is performed so as to adjust the drive of the speed change actuator 6. Thereby, the slide of the switching member 7 can be adjusted in response to a decrease in the slide amount or moving speed of the switching member 7 due to a decrease in the supply voltage due to the consumption of the battery pack, etc. Slide to a predetermined target position over time to achieve smooth automatic shifting.
  • the controller 62 also functions as an actuator controller 64 configured to control the actuator driver 66 so that the switching member 7 reaches the predetermined target position on time. That is, the moving speed of the switching member 7 may vary due to aged deterioration such as a change in supply voltage from the power supply unit 70, misalignment due to gear wear, and increased clearance between gears. In this case, since the sliding amount of the switching member 7 per time is reduced, the switching member 7 does not slide to the predetermined target position within a predetermined time, and not only the shifting does not work, but the operation becomes an obstacle. This also causes an increase in the time required for switching the reduction ratio (switching time).
  • the control unit 62 grasps the variation in the moving speed of the switching member 7 based on the detection result input from the information detecting unit 67, causes the actuator driving unit 66 to adjust the sliding movement of the switching member 7, and performs switching.
  • the shortage of the amount of slide per time of the member 7 is eliminated. That is, the control unit 62 adjusts the drive of the shift actuator 6 to the actuator drive unit 66 so that the switching member 7 is positioned at a predetermined target position when the drive of the shift actuator 6 has elapsed for a predetermined time.
  • the predetermined time is a switching time required for automatic shifting, and is substantially the same as the driving time of the shifting actuator 6.
  • the information detection unit 67 detects the value of the supply voltage applied from the power supply unit 70 to the actuator drive unit 66 as input / output information when the speed change actuator 6 is driven, and the detection result Is output to the control unit 62.
  • the control unit 62 controls the actuator driving unit 66 so that the sliding amount per time until the switching member 7 reaches a predetermined target position is kept constant according to the input detection result. That is, the control unit 62 causes the actuator driving unit 66 to change the rotational power of the motor 50 at any time according to the detection result of the information detection unit 67 so that the switching member 7 reaches a predetermined target position when a predetermined time elapses. Then, the shift actuator 6 is driven and adjusted. As a result, the shortage of the slide amount due to the variation in the moving speed of the switching member 7 can be suppressed, and the switching member 7 can reach a predetermined target position at a predetermined time, thereby realizing a smooth and stable automatic shift.
  • the drive of the speed change actuator 6 is adjusted so that the switching member 7 reaches the predetermined target position on time.
  • the shortage of the sliding amount of the switching member 7 is solved, and the switching time of the reduction ratio is prevented from increasing from a predetermined time, thereby realizing a smooth and stable automatic shift.
  • the configuration of the drive adjusting unit 61 and the method of adjusting the supply voltage to the speed change actuator 6 are different from those in the first embodiment.
  • the reduction ratio switching means includes a power adjustment unit 69 as shown in FIG.
  • the power adjustment unit 69 includes a step-up / step-down converter configured to step up / down the power supplied from the power supply unit 70, and a control circuit configured to perform PWM control on the converter.
  • the actuator drive unit 66 is configured to supply power so that the supply voltage to the actuator 6 is adjusted to a constant value. That is, the power adjustment unit 69 is configured to detect a supply voltage from the power supply unit 70 to the transmission actuator 6 and drive the transmission actuator 6 according to the detection result of the information detection unit 67.
  • a drive adjustment unit 61 configured to adjust.
  • the power adjustment unit 69 causes the step-up / down converter to supply the actuator drive unit 66 through PWM control of the control circuit in accordance with the supply voltage from the power supply unit 70. Configured to increase or decrease the supply voltage. For example, if the voltage to the speed change actuator 6 is smaller than a predetermined voltage, the power adjustment unit 69 boosts the voltage to the speed change actuator 6 to a predetermined voltage through the step-up / down converter. If the voltage to the speed change actuator 6 is larger than the predetermined voltage, the power adjustment unit 69 steps down the voltage to the speed change actuator 6 to the predetermined voltage through the step-up / down converter. Thus, the voltage to the speed change actuator 6 is maintained at a predetermined voltage regardless of the voltage change and the operation state of the speed change actuator 6.
  • the actuator driving unit 66 drives the speed change actuator 6 with a constant supply voltage (predetermined voltage), the switching member 7 is slid at a constant speed, and the switching member 7 is moved at a predetermined time. It reaches a predetermined target position and realizes a smooth and stable automatic shift.
  • the drive of the speed change actuator 6 is adjusted so that the switching member 7 reaches the predetermined target position on time.
  • the shortage of the sliding amount of the switching member 7 is solved, and the switching time of the reduction ratio is prevented from increasing from a predetermined time, thereby realizing a smooth and stable automatic shift.
  • the method of adjusting the supply voltage to the speed change actuator 6 is different from that in the first embodiment.
  • the point which adjusts the supply voltage to the actuator 6 for speed change uniformly is the same as that of Embodiment 2.
  • the input / output information detected by the information detection unit 67 is different from that of the second embodiment.
  • the information detection unit 67 is configured to detect a voltage value (voltage value V1) before starting the speed change actuator 6 as input / output information.
  • the power adjustment unit 69 is configured to adjust the supply voltage applied to the gear shift actuator 6 to a voltage value V2 determined according to the detection result (V1). That is, as shown in FIG. 12, the power adjustment unit 69 calculates a voltage value V2 for sliding the switching member 7 at a predetermined movement speed S1 from the detected voltage value V1, and drives according to the calculation result.
  • the adjustment unit 61 performs control to adjust the supply voltage.
  • the power adjustment unit 69 increases the voltage to the speed change actuator 6 to the predetermined voltage (V2) through the step-up / down converter. If the voltage to the shift actuator 6 is greater than the predetermined voltage (V2), the power adjustment unit 69 steps down the voltage to the shift actuator 6 to the predetermined voltage (V2) through the step-up / down converter.
  • the predetermined moving speed S1 is a speed that causes the switching member 7 to reach a predetermined target position when a predetermined time has elapsed during automatic shifting.
  • the switching member 7 can be slid at a constant moving speed (S1), the variation in the moving speed of the switching member 7 is eliminated, the switching member 7 reaches a predetermined target position at a predetermined time, and is smooth. In addition, stable automatic transmission is realized. In addition, you may reduce the structural member of an electric tool using what used the function of the electric power adjustment part 69 for the actuator drive part 66. FIG. Further, the function of the drive adjustment unit 61 may be performed by any of the control unit 62, the actuator drive unit 66, and the power adjustment unit 69.
  • the drive of the speed change actuator 6 is adjusted so that the switching member 7 reaches the predetermined target position on time.
  • the shortage of the sliding amount of the switching member 7 is solved, and the switching time of the reduction ratio is prevented from increasing from a predetermined time, thereby realizing a smooth and stable automatic shift.
  • the method of adjusting the supply voltage to the speed change actuator 6 is different from that in the first embodiment.
  • the point which adjusts the supply voltage to the actuator 6 for speed change uniformly is the same as that of Embodiment 3.
  • the input / output information detected by the information detection unit 61 is different from that of the third embodiment.
  • the information detection unit 67 is configured to detect the maximum value (maximum current value A1) of the drive current when starting the speed change actuator 6 as input / output information.
  • the power adjustment unit 69 is configured to adjust the supply voltage applied to the speed change actuator 6 to the voltage value estimated from the detection result (A1). That is, the power adjustment unit 69 is configured to estimate the stationary current (voltage) of the motor 50 from the detected maximum current value A1, as shown in FIG. In the example of FIG. 13, the stationary voltage V3 is estimated.
  • the power adjustment unit 69 holds in advance an equation corresponding to the characteristic diagram of the maximum current and the stationary current (voltage) in FIG. 13, and calculates the stationary current (voltage) from the equation and the detection result (A1). To do.
  • the power adjustment unit 69 calculates a voltage value V2 for sliding the switching member 7 at a predetermined moving speed S1 based on the estimation result (estimated voltage V3), and the calculation result (V2). Accordingly, the drive adjustment unit 61 adjusts the supply voltage. As a result, the voltage to the speed change actuator 6 is maintained at a predetermined voltage (V2) as in the third embodiment.
  • the switching member 7 can be slid at a constant moving speed (S1), variation in the moving speed of the switching member 7 is suppressed, the switching member 7 reaches a predetermined target position at a predetermined time, and is smooth. In addition, a stable automatic transmission is realized.
  • the function of the drive adjustment unit 61 may be any of the control unit 62, the actuator drive unit 66, and the power adjustment unit 69.
  • the drive of the speed change actuator 6 is adjusted, and the switching member 7 is provided so as to reach a predetermined target position in a predetermined time.
  • the shortage of the sliding amount of the switching member 7 is solved, and the switching time of the reduction ratio is prevented from increasing from a predetermined time, thereby realizing a smooth and stable automatic shift.
  • the present embodiment is the same as the first embodiment in that the moving speed is adjusted at any time while the speed change actuator 6 is being driven.
  • the method of adjusting the moving speed of the switching member 7 during driving of the speed change actuator 6 is different from that in the first embodiment.
  • control unit 62 adjusts the supply power (supply voltage) to the speed change actuator 6 according to the detection result of the information detection unit 67 and the detection result of the slide position detection unit 68. 61 is controlled.
  • the detection result of the information detection unit 67 is the voltage value (voltage value V1) in FIG. 12 or the maximum current value A1 in FIG. Thereby, the dispersion
  • the gears (the switching member 7 and the target gear member 5) collide with each other. Wear and damage may occur.
  • the switching time is prevented from being reduced from a predetermined time in accordance with the detection result of the slide position detection unit 68 and the detection result of the information detection unit 67, and the gear Suppresses gear wear and damage caused by collisions.
  • the function of the drive adjustment unit 61 may be any of the control unit 62, the actuator drive unit 66, and the power adjustment unit 69.
  • the drive of the shift actuator 6 is adjusted according to the detection results of both the information detection unit 67 and the slide position detection unit 68, and the switching member 7 is reached at a predetermined target position for a predetermined time. It is provided as follows. As a result, smooth and stable automatic gear shifting is realized, and gear wear and breakage due to a collision between gears is also suppressed. However, in the present embodiment, the detection result of the information detection unit 67 used for adjusting the moving speed is different from that of the fifth embodiment.
  • the information detection unit 67 detects the current value A2 and the drive time when the shift actuator 6 is driven as input / output information.
  • the control unit 62 calculates the load torque T ⁇ b> 1 of the speed change actuator 6 from the current value A ⁇ b> 2 detected by the information detection unit 67.
  • the control unit 62 holds in advance an equation corresponding to the current and load torque characteristic diagram of FIG. 15, and calculates the load torque T1 from the equation and the current value A2. Further, the control unit 62 obtains the rotation speed of the motor 50 at the time of detecting the current value A2 as an index of the moving speed of the switching member 7 from the calculated load torque T1.
  • the information detection unit 67 may detect the driving time, and the control unit 62 may obtain the rotation speed of the motor 50 from the load torque T1 and the driving time.
  • the control unit 62 holds in advance a formula corresponding to the characteristic diagram of the load torque and speed (rotation speed) in FIG. 16, and calculates the rotation speed R1 of the motor 50 from the formula and the load torque.
  • the control unit 62 supplies the switching member 7 to the drive adjustment unit 61 so as to reach the target position from the position detected by the slide position detection unit 68 from the position detected by the slide position detection unit 68 based on the obtained moving speed index (rotation speed). Adjust the power.
  • the control unit 62 obtains an index of the moving speed of the switching member 7 when the input / output information is detected based on the load torque T1 and the driving time of the speed change actuator 6, and the obtained moving speed index and the slide position detecting unit 68.
  • the drive of the shift actuator 6 is adjusted so that the moving speed of the switching member 7 becomes a predetermined speed.
  • the predetermined moving speed S2 is a moving speed that causes the switching member 7 to reach a predetermined target position from the position of the switching member 7 detected by the slide position detection unit 68 when the speed change actuator 6 is driven for a predetermined time. It has become.
  • the switching member 7 reaches a predetermined target position at a predetermined time, eliminates the shortage of the sliding amount of the switching member 7, realizes a smooth and stable automatic shift, and reduces the switching time from the predetermined time. This suppresses the wear and breakage of the gear caused by the collision.
  • the function of the drive adjustment unit 61 may be any of the control unit 62, the actuator drive unit 66, and the power adjustment unit 69. Further, instead of the current value A2, a load sensor T1 of the speed change actuator 6 may be directly detected using a torque sensor or the like, and the detected load torque T1 may be input to the control unit 62 as a detection result.
  • the drive of the shift actuator 6 is adjusted according to the detection results of both the information detection unit 67 and the slide position detection unit 68, and the switching member 7 is reached at a predetermined target position for a predetermined time. It is provided as follows. As a result, smooth and stable automatic gear shifting is realized, and gear wear and breakage due to a collision between gears is also suppressed. However, in the present embodiment, the detection result of the information detection unit 67 used for adjusting the moving speed is different from that of the fifth embodiment.
  • the information detection unit 67 is configured to detect the current value A2 and the voltage value V4 when the shift actuator 6 is driven as input / output information. Further, as shown in FIG. 15, the control unit 62 calculates the load torque T ⁇ b> 1 of the speed change actuator 6 from the current value A ⁇ b> 2 detected by the information detection unit 67. In one example, the control unit 62 holds in advance an equation corresponding to the current and load torque characteristic diagram of FIG. 15, and calculates the load torque T1 from the equation and the current value A2. Further, as shown in FIG.
  • the control unit 62 uses the calculated load torque T ⁇ b> 1 and the voltage value V ⁇ b> 4 detected by the information detection unit 67 to move the switching member 7 when the current value A ⁇ b> 2 is detected.
  • the number of rotations R1) is estimated, and the drive adjustment unit 61 adjusts the supply power according to the estimation result.
  • the control unit 62 holds, in advance, an expression corresponding to the characteristic diagram of the load torque and speed (rotation speed) in FIG. 16 for each voltage value V4 to be detected by the information detection unit 67.
  • the rotational speed R1 of the motor 50 is calculated from the expression corresponding to the detected voltage value V4 and the load torque.
  • the control section 62 Based on the movement speed index obtained from the load torque T1 of the speed change actuator 6 and the detection result of the slide position detection section 68, the control section 62 sets the movement speed of the switching member 7 to a predetermined movement speed S2.
  • the drive adjustment unit 61 adjusts the supply voltage.
  • the predetermined moving speed S2 is a moving speed that causes the switching member 7 to reach a predetermined target position from the position of the switching member 7 detected by the slide position detection unit 68 when the speed change actuator 6 is driven for a predetermined time. It has become.
  • the switching member 7 reaches a predetermined target position at a predetermined time, eliminates the shortage of the sliding amount of the switching member 7, realizes a smooth and stable automatic shift, and reduces the switching time from the predetermined time. This suppresses the wear and breakage of the gear caused by the collision.
  • the function of the drive adjustment unit 61 may be any of the control unit 62, the actuator drive unit 66, and the power adjustment unit 69.
  • the movement speed is not limited to the index of movement, and the movement speed at the time of detecting the current value A2 is obtained, and the drive of the shift actuator 6 is adjusted according to the obtained movement speed and the detection result of the slide position detection unit 68. It may be a thing.
  • a load sensor T1 of the speed change actuator 6 may be directly detected using a torque sensor or the like, and the detected load torque T1 may be input to the control unit 62 as a detection result.
  • the drive of the shift actuator 6 is adjusted according to the detection results of both the information detection unit 67 and the slide position detection unit 68, and the switching member 7 is reached at a predetermined target position for a predetermined time. It is provided as follows. As a result, smooth and stable automatic gear shifting is realized, and gear wear and breakage due to a collision between gears is also suppressed. However, in the present embodiment, the detection result of the information detection unit 67 used for adjusting the moving speed is different from that in the seventh embodiment.
  • the information detection unit 67 is configured to detect the current value A2 and the operation speed S3 when the shift actuator 6 is driven as input / output information. Further, as described above, the control unit 62 calculates the load torque T1 of the speed change actuator 6 from the current value A2 detected by the information detection unit 67 as shown in FIG. Further, as shown in FIG. 17, the control unit 62 estimates the voltage value V5 at the time of detection from the calculated load torque T1 and the operation speed S3 of the speed change actuator 6 detected by the information detection unit 67. Based on the estimated voltage value V5, the control unit 62 causes the drive adjustment unit 61 to adjust the supply voltage so that the moving speed S2 causes the switching member 7 to reach the target position for a predetermined time.
  • control unit 62 determines the switching member 7 based on the voltage value V5 applied to the transmission actuator 6 obtained from the load torque T1 and the operation speed S3 of the transmission actuator 6 and the detection result of the slide position detection unit 68.
  • the supply voltage is adjusted so that the moving speed becomes a predetermined moving speed S2.
  • the predetermined moving speed S2 is a moving speed that causes the switching member 7 to reach a predetermined target position from the position of the switching member 7 detected by the slide position detection unit 68 when the speed change actuator 6 is driven for a predetermined time. It has become.
  • the switching member 7 reaches a predetermined target position at a predetermined time, eliminates the shortage of the sliding amount of the switching member 7, realizes a smooth and stable automatic shift, and reduces the switching time from the predetermined time. This suppresses the wear and breakage of the gear caused by the collision.
  • the function of the drive adjustment unit 61 may be any of the control unit 62, the actuator drive unit 66, and the power adjustment unit 69.
  • an index of the moving speed at the time of detecting the current value A2 is determined, and the shift actuator 6 is driven according to the calculated moving speed index and the detection result of the slide position detecting unit 68. You may adjust.
  • a load sensor T1 of the speed change actuator 6 may be directly detected using a torque sensor or the like, and the detected load torque T1 may be input to the control unit 62 as a detection result.
  • the control unit 62 is provided so that the drive adjusting unit 61 adjusts the drive of the speed change actuator 6.
  • the moving speed of the switching member 7 is different from that of the first embodiment.
  • control unit 62 changes the moving speed of the switching member 7 between the control for switching from the first speed to the third speed via the second speed and the control for switching from the third speed to the first speed via the second speed. To control. That is, the control unit 62 increases the moving speed of the switching member 7 when switching from the third speed to the first speed compared to the moving speed of the switching member 7 when switching from the first speed to the third speed, and slides the switching member 7.
  • the switching time differs depending on the direction.
  • the function of the drive adjustment unit 61 may be any of the control unit 62, the actuator drive unit 66, and the power adjustment unit 69. Further, the moving speed may be different between the first speed and the second speed, the second speed and the third speed, or may be different for each reduction ratio switching operation. Further, the control unit 62 may change the moving speed of the switching member 7 at the time of the automatic shift according to the presence or absence of the operation load of the motor 1.
  • the reduction ratio switching means is configured to adjust the drive of the speed change actuator 6 and the speed change actuator 6 for sliding the switch member 7.
  • the adjustment unit 61 includes a switching control unit 63 configured to change the rotational power of the motor 1, and an actuator control unit 64 configured to control the speed change actuator 6.
  • the actuator control unit 64 controls the drive adjustment unit 61 so as to keep the amount of sliding of the switching member 7 by the speed change actuator 6 per time constant.
  • the switching member 7 when the reduction ratio is switched, the switching member 7 can be controlled to be positioned at a predetermined target position at a predetermined time, so that the automatic reduction ratio change can be performed smoothly and It can be completed stably at a predetermined time.
  • the reduction ratio switching means further includes an information detection unit 67 configured to detect input / output information of the speed change actuator 6, and the actuator control unit 64 includes:
  • the drive adjustment unit 61 is controlled according to the detection result of the information detection unit 67. In other words, it becomes possible to control the amount of slide per time of the switching member 7 in accordance with the input / output information of the speed change actuator 6, and the automatic reduction ratio change is completed more smoothly and stably. be able to.
  • the information detection unit 67 detects the supply voltage applied to the actuator drive unit 66 at any time while the shift actuator 6 is being driven, and the drive adjustment unit 61 uses the change gear at any time according to the detection result.
  • the drive of the actuator 6 is adjusted.
  • the moving speed of the switching member 7 is adjusted in response to a decrease in the supply voltage accompanying the work of the power tool such as wear of the power supply unit 70, and the switching is performed when the shifting actuator 6 is driven for a predetermined time.
  • the member 7 can reach a predetermined target position.
  • the drive adjustment unit 61 adjusts the power supplied to the speed change actuator 6 according to the detection result of the information detection unit 67. As a result, the variation in the voltage value of the supplied power due to the aging deterioration of the power supply unit 70 is eliminated, and when the speed change actuator 6 is driven for a predetermined time, the switching member 7 is positioned at a predetermined target position, and smooth In addition, stable automatic transmission can be completed.
  • the actuator control unit 64 causes the drive adjustment unit 61 to keep the supply voltage to the speed change actuator 6 constant so that the moving speed of the switching member 7 is kept constant. It is intended to control. As a result, the speed change actuator 6 can be driven with a constant supply voltage, and the speed reduction ratio can be changed more smoothly and stably. Control can be easily performed.
  • the information detection unit 67 detects the current value flowing through the speed change actuator 6 when the speed change actuator 6 is driven as input / output information.
  • the drive adjustment unit 61 adjusts the power supplied to the speed change actuator 6 according to the detection result of the information detection unit 67. Thereby, the supply voltage applied to the speed change actuator 6 can be adjusted to be constant, and the amount of slide per time when the predetermined target position is reached can be made constant.
  • the reduction ratio switching means further includes a slide position detection unit 68 configured to detect the slide position of the switching member 7.
  • the actuator control unit 64 adjusts the power supplied to the speed change actuator 6 according to the detection result of the slide position detection unit 68 and the detection result of the information detection unit 67. As a result, it is possible to control to adjust the moving speed according to the position of the switching member 7, reduce the collision between the switching member 7 and the gear member 5 when the moving speed becomes too fast, and wear or break the gear. Can be suppressed.
  • the information detection unit 67 detects input / output information that serves as an index of the load torque of the shift actuator 6, and the control unit 62 uses the detection result as a basis.
  • the drive of the shift actuator 6 is adjusted. As a result, it is possible to control the sliding amount per hour of the speed change actuator 6 according to the load torque, and a smoother and more stable automatic speed change can be completed.
  • the actuator control unit 64 controls the amount of sliding per time to be different for each sliding direction of the switching member 7. As a result, the switching time is shortened when the change of the output torque at the shift is not so important, or when the speed reduction ratio of the work in the next process is quickly handled (when returning to the first speed), the work efficiency is high. Become.
  • the control unit 62 may activate the speed change actuator 6 when the control unit 62 receives a reduction ratio switching command or the like by an operator's external operation or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Portable Power Tools In General (AREA)

Abstract

A power tool includes: a motor; a speed reduction mechanism (2) that reduces the speed of and transmits the rotative power of the motor (1); and a speed reduction ratio switching means that switches the speed reduction ratio of the mechanism (2). The mechanism (2) includes: a switching member (7) that is slidable in the axial direction of the mechanism; and a gear member (5) that is capable of engaging with the member (7). The switching means includes: a speed change actuator (6) that slides the member (7); a drive adjustment unit (61) that adjusts the driving of the actuator (6); a switch control unit (63) that reduces the relative rotation speeds of the members (7, 5) when the speed reduction ratio is switched; and an actuator control unit (64) that controls the actuator (6). The control unit (64) controls the adjustment unit (61) so that the slide amount per unit of time of the member (7) remains constant.

Description

電動工具Electric tool
 本発明は、減速比を切り替え自在に設けた電動工具に関する。 The present invention relates to an electric tool provided with a changeable reduction ratio.
 減速機構部を備える電動工具において、その減速機構部の減速比を切り替えるための構造として、遊星減速機構を構成するリングギア等の切替部材を軸方向にスライドさせ、係合状態を切り替えるものがある。 In a power tool provided with a speed reduction mechanism section, there is a structure for switching the engagement state by sliding a switching member such as a ring gear constituting the planetary speed reduction mechanism in the axial direction as a structure for switching the speed reduction ratio of the speed reduction mechanism section. .
 例えば日本国特許出願公開番号2009-56590及び2009-78349に記載された電動工具では、リングギアからなる切替部材のスライド操作が、ソレノイドを用いて自動的に行われる。この従来の電動工具では、切替部材が他のギア部材に係合する際の衝撃を抑えるため、ソレノイドを起動させる際には、あわせてモータの回転を停止または低減させている。 For example, in the electric tool described in Japanese Patent Application Publication Nos. 2009-56590 and 2009-78349, the switching operation of the ring gear is automatically performed using a solenoid. In this conventional electric tool, in order to suppress the impact when the switching member engages with another gear member, the rotation of the motor is stopped or reduced when the solenoid is started.
 そして、上述した従来の電動工具においては、駆動源となるモータの電流等に変化が生じると、これを検知した制御部が、設定されたタイミング通りに、ソレノイドの起動と、モータの回転停止とを実行させている。詳しくは、まず衝撃抑制用のモータの回転停止等を確実に実行しておき、そのうえでソレノイドを起動させており、係合時の衝撃を極力抑えようとする対策が採られている。 In the above-described conventional power tool, when a change occurs in the current of the motor serving as the drive source, the control unit that detects this changes the start of the solenoid and the rotation stop of the motor according to the set timing. Is running. Specifically, first, the rotation of the motor for suppressing the impact is reliably stopped, and then the solenoid is activated to take measures to suppress the impact at the time of engagement as much as possible.
 ところで、実際に切替部材が所定のギア部材に係合するタイミングと、モータが減速されてゆき実際にモータが狙い通りに回転停止等するタイミングとの間には、その機構上、或る程度のばらつきが存在する。そして、上述した従来の電動工具では、モータの回転停止等を確実に実行した上で、ソレノイドを起動させるため、減速比変更を短時間で完了することは困難である。 By the way, there is a certain amount of time between the timing at which the switching member is actually engaged with the predetermined gear member and the timing at which the motor is decelerated and the motor actually stops rotating as intended. There is variation. In the conventional electric tool described above, since the solenoid is started after the motor rotation is reliably stopped, it is difficult to complete the reduction ratio change in a short time.
 つまり、上述したような従来の電動工具は、減速比変更の際の係合の衝撃を抑制することと、減速比変更を短時間でスムーズに完了することを両立するには、不十分なものであった。 That is, the conventional electric tool as described above is insufficient to suppress the impact of engagement when changing the reduction ratio and to complete the reduction ratio change smoothly in a short time. Met.
 また、切替部材のスライド移動時に、電動工具の電池電源の消耗等の変化や、ギア部材の磨耗や軸ずれやギア部材間クリアランスの増大等に伴い、切替部材が所定の目標位置に至る前にスライドを停止することがある。この場合、切替部材が所定の目標位置からずれて位置したことで、切替部材とギア部材の係合が不十分なものとなり、不十分な係合に伴う不意の変速や係合部位の磨耗や破損等をまねくこともあった。 In addition, when the switching member slides, the changeover of the battery power source of the power tool, the wear of the gear member, the shaft misalignment, the increase of the clearance between the gear members, etc., before the switching member reaches the predetermined target position. The slide may stop. In this case, since the switching member is displaced from the predetermined target position, the engagement between the switching member and the gear member becomes insufficient, and unexpected shifts due to insufficient engagement, wear of the engagement parts, In some cases, it could cause damage.
 しかし、上述したような従来の電動工具では、制御部が、切替部材のスライド量不足に伴う切替部材とギア部材の不十分な係合を回避する制御を備えていない。 However, in the conventional electric tool as described above, the control unit does not include control for avoiding insufficient engagement between the switching member and the gear member due to insufficient sliding amount of the switching member.
 本発明の目的は、減速比変更の際の係合の衝撃を抑制して減速比変更を短時間でスムーズに完了し、しかも、減速比を変更させるときに、切替部材のスライド量不足を生じ難くすることにある。 It is an object of the present invention to suppress the impact of engagement when changing the reduction ratio, to complete the change of the reduction ratio smoothly in a short time, and when the reduction ratio is changed, the sliding amount of the switching member is insufficient. It is to make it difficult.
 本発明は、駆動源であるモータ(1)と、前記モータ(1)の回転動力を減速してその減速された回転動力を伝達するように構成される減速機構部(2)と、前記減速機構部(2)の減速比を切り替えるように構成される減速比切替手段と、を具備する電動工具である。前記減速機構部(2)は、軸を備えその軸方向にスライド自在な切替部材(7)と、前記切替部材(7)の前記軸方向のスライド位置に応じて前記切替部材(7)との係合状態と非係合状態が切り替えられるギア部材(5)とを備え、該切替部材(7)及びギア部材(5)を通じて、前記減速比を切り替えるように構成される。前記減速比切替手段は、前記切替部材(7)を前記軸方向にスライドさせるように構成される変速用アクチュエータ(6)と、前記変速用アクチュエータ(6)の駆動を調整するように構成される駆動調整部(65)と、前記減速比の切替時に前記切替部材(7)と前記ギア部材(5)の相対回転速度を低減させるように構成される切替制御部(63)と、前記減速比の切替時に前記変速用アクチュエータ(6)を制御するように構成されるアクチュエータ制御部(64)と、を備える。前記アクチュエータ制御部(64)は、前記変速用アクチュエータ(6)による前記切替部材(7)の時間あたりのスライド量を一定に保つように前記駆動調整部(65)を制御するように構成される。 The present invention includes a motor (1) as a drive source, a speed reduction mechanism (2) configured to reduce the rotational power of the motor (1) and transmit the reduced rotational power, and the speed reduction A reduction ratio switching means configured to switch the reduction ratio of the mechanism section (2). The deceleration mechanism section (2) includes a switching member (7) that includes a shaft and is slidable in the axial direction, and the switching member (7) according to a sliding position of the switching member (7) in the axial direction. A gear member (5) capable of switching between an engaged state and a non-engaged state, and configured to switch the reduction ratio through the switching member (7) and the gear member (5). The reduction ratio switching means is configured to adjust the drive of the speed change actuator (6) and the speed change actuator (6) configured to slide the switch member (7) in the axial direction. A drive adjustment unit (65), a switching control unit (63) configured to reduce a relative rotational speed of the switching member (7) and the gear member (5) when the reduction ratio is switched, and the reduction ratio An actuator control unit (64) configured to control the shift actuator (6) at the time of switching. The actuator control unit (64) is configured to control the drive adjustment unit (65) so as to keep the sliding amount per time of the switching member (7) by the speed change actuator (6) constant. .
 一実施形態において、前記減速比切替手段は、さらに、前記変速用アクチュエータ(6)の入出力情報を検知するように構成される情報検知部(67)を備え、前記アクチュエータ制御部(64)は、前記情報検知部(67)の検知結果に応じて前記駆動調整部(65)を制御するように構成される。 In one embodiment, the reduction ratio switching means further includes an information detection unit (67) configured to detect input / output information of the speed change actuator (6), and the actuator control unit (64) includes: The drive adjustment unit (65) is controlled according to the detection result of the information detection unit (67).
 一実施形態において、前記アクチュエータ制御部(64)は、前記駆動調整部(65)に前記変速用アクチュエータ(64)への供給電圧を一定に保持させて、前記切替部材(7)の移動速度を一定に保持させるように構成される。 In one embodiment, the actuator control section (64) causes the drive adjustment section (65) to maintain a constant supply voltage to the speed change actuator (64), thereby increasing the moving speed of the switching member (7). It is configured to be held constant.
 一実施形態において、前記情報検知部(67)は前記入出力情報として、前記変速用アクチュエータ(6)の起動前に、前記変速用アクチュエータ(6)に印加される電圧を検知するように構成される。また、前記駆動調整部(65)は、前記情報検知部(67)の検知結果に応じて、前記変速用アクチュエータ(6)への供給電力を調整するように構成される。 In one embodiment, the information detection unit (67) is configured to detect a voltage applied to the shift actuator (6) as the input / output information before the shift actuator (6) is activated. The The drive adjusting unit (65) is configured to adjust the power supplied to the speed change actuator (6) according to the detection result of the information detecting unit (67).
 一実施形態において、前記情報検知部(67)は前記入出力情報として、前記変速用アクチュエータ(6)の駆動時に前記変速用アクチュエータ(6)に流れる電流値を検知するように構成される。また、前記駆動調整部(65)は、前記情報検知部(67)の検知結果に応じて、前記変速用アクチュエータ(6)への供給電力を調整するように構成される。 In one embodiment, the information detection unit (67) is configured to detect a current value flowing through the shift actuator (6) when the shift actuator (6) is driven as the input / output information. The drive adjusting unit (65) is configured to adjust the power supplied to the speed change actuator (6) according to the detection result of the information detecting unit (67).
 一実施形態において、前記減速比切替手段は、さらに、前記切替部材(7)の前記スライド位置を検知するように構成されるスライド位置検知部(68)を備える。前記アクチュエータ制御部(64)は、前記スライド位置検知部(68)の検知結果と前記情報検知部(67)の検知結果に応じて、前記変速用アクチュエータ(6)への供給電力を調整するように構成される。 In one embodiment, the reduction ratio switching means further includes a slide position detection unit (68) configured to detect the slide position of the switching member (7). The actuator control section (64) adjusts the power supplied to the speed change actuator (6) according to the detection result of the slide position detection section (68) and the detection result of the information detection section (67). Configured.
 一実施形態において、前記情報検知部(67)は前記入出力情報として、前記変速用アクチュエータ(6)の駆動時間と電流値を検知するように構成される。 In one embodiment, the information detection unit (67) is configured to detect a driving time and a current value of the shift actuator (6) as the input / output information.
 一実施形態において、前記情報検知部(67)は前記入出力情報として、前記変速用アクチュエータ(6)の電圧値と電流値を検知するように構成される。 In one embodiment, the information detection unit (67) is configured to detect a voltage value and a current value of the shift actuator (6) as the input / output information.
 一実施形態において、前記情報検知部(67)は前記入出力情報として、前記変速用アクチュエータ(6)の動作速度と電流値を検知するように構成される。 In one embodiment, the information detection unit (67) is configured to detect an operation speed and a current value of the shift actuator (6) as the input / output information.
 一実施形態において、前記アクチュエータ制御部(64)は、前記切替部材(7)のスライド方向毎に前記時間あたりのスライド量を異なるように制御するように構成される。 In one embodiment, the actuator control unit (64) is configured to control the sliding amount per time to be different for each sliding direction of the switching member (7).
 本発明は、減速比変更の際の係合の衝撃を抑制して減速比変更を短時間でスムーズに完了することができ、且つ減速比を変更させるときに、切替部材のスライド量不足を生じ難くすることができるという効果を奏する。 The present invention suppresses the impact of engagement when changing the reduction ratio and can complete the reduction ratio change smoothly in a short time, and when the reduction ratio is changed, the sliding amount of the switching member is insufficient. There is an effect that it can be made difficult.
 本発明の好ましい実施形態をさらに詳細に記述する。本発明の他の特徴及び利点は、以下の詳細な記述及び添付図面に関連して一層良く理解されるものである。
本発明の実施形態1の電動工具の要部説明図である。 同上の電動工具の側断面図である。 同上の電動工具の内部側面図である。 同上の電動工具の背断面図である。 同上の電動工具の減速機構部の分解斜視図である。 同上の減速機構部の1速の状態を示し、図6Aは側断面図、図6Bは側面図である。 同上の減速機構部の1速と2速の切替途中の状態を示す側断面図である。 同上の減速機構部の2速の状態を示し、図8Aは側断面図、図8Bは側面図である。 同上の減速機構部の2速と3速の切替途中の状態を示す側断面図である。 同上の減速機構部の3速の状態を示し、図10Aは側断面図、図10Bは側面図である。 本発明の実施形態2の電動工具の要部説明図である。 本発明の実施形態3の電動工具の供給電圧の調整制御の説明図である。 本発明の実施形態4の電動工具の停動電流推定の説明図である。 同上の停動電流推定結果に応じた供給電圧の調整制御の説明図である。 本発明の実施形態6の電動工具の負荷トルク推定の説明図である。 本発明の実施形態7の電動工具の負荷トルクに応じた供給電圧の調整制御の説明図である。 本発明の実施形態8の電動工具の負荷トルクに応じた供給電圧の調整制御の説明図である。
Preferred embodiments of the invention are described in further detail. Other features and advantages of the present invention will be better understood with reference to the following detailed description and accompanying drawings.
It is principal part explanatory drawing of the electric tool of Embodiment 1 of this invention. It is a sectional side view of an electric tool same as the above. It is an internal side view of an electric tool same as the above. It is a back sectional view of an electric tool same as the above. It is a disassembled perspective view of the deceleration mechanism part of an electric tool same as the above. FIG. 6A is a side sectional view, and FIG. 6B is a side view, showing a first speed state of the speed reduction mechanism portion. It is a sectional side view which shows the state in the middle of switching of 1st speed and 2nd speed of the deceleration mechanism part same as the above. FIG. 8A is a side sectional view, and FIG. 8B is a side view, showing a second speed state of the speed reduction mechanism portion. It is a sectional side view which shows the state in the middle of the 2nd speed and 3rd speed switching of the deceleration mechanism part same as the above. FIG. 10A is a side sectional view, and FIG. 10B is a side view, showing a state of the third speed of the reduction mechanism unit. It is principal part explanatory drawing of the electric tool of Embodiment 2 of this invention. It is explanatory drawing of adjustment control of the supply voltage of the electric tool of Embodiment 3 of this invention. It is explanatory drawing of the stationary current estimation of the electric tool of Embodiment 4 of this invention. It is explanatory drawing of adjustment control of the supply voltage according to a stationary current estimation result same as the above. It is explanatory drawing of the load torque estimation of the electric tool of Embodiment 6 of this invention. It is explanatory drawing of adjustment control of the supply voltage according to the load torque of the electric tool of Embodiment 7 of this invention. It is explanatory drawing of adjustment control of the supply voltage according to the load torque of the electric tool of Embodiment 8 of this invention.
 (実施形態1)
 図2~図4には、本発明の電動工具の実施形態1を示している。本実施形態の電動工具は、駆動源であるモータ(メインモータ)1と、減速機構部2と、駆動伝達部3とを備えている。減速機構部2は、切替部材7を含み、モータ1の回転動力を減速してその減速された回転動力を伝達するように構成される。本実施形態では、その減速された回転動力は駆動伝達部3に伝達される。駆動伝達部3は、減速機構部2を介して伝達された回転動力を出力軸4にまで伝達するように構成される。図示の例では、出力軸4には、チャックを介してビットが取り付けられる。ここで、本発明の切替部材は、軸(以下「主軸」ともいう)を持ち、その主軸の方向にスライドするように構成される。本実施形態では、切替部材7は、1つの共通の軸を持ち、その共通の軸の方向にスライドするように構成される。詳しくは、モータ1と、減速機構部2と駆動伝達部3は、それらの各軸が出力軸4の延長線上に配列されるように、胴体ハウジング101内に収容されている。換言すると、モータ1、減速機構部2、駆動伝達部3及び出力軸4の各々は、それ自身の軸と同軸である1つの共通の軸CA(図5参照)を持つ。
(Embodiment 1)
2 to 4 show Embodiment 1 of the electric power tool of the present invention. The electric tool of the present embodiment includes a motor (main motor) 1 that is a drive source, a speed reduction mechanism unit 2, and a drive transmission unit 3. The reduction mechanism unit 2 includes a switching member 7 and is configured to reduce the rotational power of the motor 1 and transmit the reduced rotational power. In the present embodiment, the reduced rotational power is transmitted to the drive transmission unit 3. The drive transmission unit 3 is configured to transmit the rotational power transmitted through the speed reduction mechanism unit 2 to the output shaft 4. In the illustrated example, a bit is attached to the output shaft 4 via a chuck. Here, the switching member of the present invention has a shaft (hereinafter also referred to as “main shaft”) and is configured to slide in the direction of the main shaft. In the present embodiment, the switching member 7 has one common axis and is configured to slide in the direction of the common axis. Specifically, the motor 1, the speed reduction mechanism unit 2, and the drive transmission unit 3 are accommodated in the body housing 101 such that their respective axes are arranged on an extension line of the output shaft 4. In other words, each of the motor 1, the speed reduction mechanism unit 2, the drive transmission unit 3, and the output shaft 4 has one common axis CA (see FIG. 5) that is coaxial with its own axis.
 胴体ハウジング101からは把持部ハウジング(グリップ)102が延設され、電動工具の本体ハウジング100は、胴体ハウジング101と把持部ハウジング102とで構成される。把持部ハウジング102にはトリガスイッチ103を引き込み自在に設けている。さらに、把持部ハウジング102の延設先端部には、外部電源に接続される電源コードや把持部ハウジング102から着脱自在の電池パック等の電源部70(図1等参照)を備えている。 A grip part housing (grip) 102 extends from the body housing 101, and the main body housing 100 of the electric tool is composed of the body housing 101 and the grip part housing 102. A trigger switch 103 is retractably provided in the grip part housing 102. Furthermore, a power cord connected to an external power source and a power source unit 70 such as a battery pack that can be detached from the grip unit housing 102 (see FIG. 1 and the like) are provided at the extended distal end of the grip unit housing 102.
 また、胴体ハウジング101内には、図1に示すように、変速用アクチュエータ6を、モータ1や減速機構部2などの上記主軸(共通の軸CA)に対して変速用アクチュエータ6の軸方向6Aが平行となるように、収容している。この変速用アクチュエータ6は、専用のモータ(サブモータ)50を駆動源とした回転式のアクチュエータであり、減速機構部2が有する切替部材7を、変速カムプレート8を介して軸(主軸)方向にスライド移動させ、減速比の切替を行うように構成される。この点について詳しくは後述する。 Further, in the body housing 101, as shown in FIG. 1, the speed change actuator 6 is disposed in the axial direction 6A of the speed change actuator 6 with respect to the main shaft (the common axis CA) such as the motor 1 and the speed reduction mechanism 2. Are housed in parallel. The speed change actuator 6 is a rotary actuator having a dedicated motor (sub motor) 50 as a drive source, and the switching member 7 included in the speed reduction mechanism 2 is moved in the axis (main axis) direction via the speed change cam plate 8. It is configured to slide and switch the reduction ratio. This will be described in detail later.
 図5~図10には、減速機構部2等の構造をより詳細に示している。本実施形態の減速機構部2は、ギアケース9内に三段の遊星減速機構を収容したものであり、各段の遊星減速機構の減速状態と非減速状態を切り替えることによって、減速機構部2全体の減速比を切り替える。以下においては、モータ1に近い側から順に1、2、3段目の遊星減速機構として説明を行う。 5 to 10 show the structure of the speed reduction mechanism 2 and the like in more detail. The speed reduction mechanism unit 2 of the present embodiment accommodates a three-stage planetary speed reduction mechanism in the gear case 9, and the speed reduction mechanism part 2 is switched by switching between the deceleration state and the non-deceleration state of the planetary speed reduction mechanism of each stage. Change the overall reduction ratio. In the following description, the first, second, and third stage planetary speed reducing mechanisms will be described in order from the side closer to the motor 1.
 図5に示すように、1段目の(第1)遊星減速機構21は、モータ1からの回転動力によって軸中心に回転駆動される太陽ギア10(図6A参照)と、該太陽ギア10と噛み合う複数の遊星ギア11と、各遊星ギア11に噛み合うリングギア12とを備えている。遊星ギア11は太陽ギア10を囲むように位置する。リングギア12は、これら複数の遊星ギア11を囲むように位置する。1段目の遊星減速機構21は、キャリア14と複数のキャリアピン13とをさらに備えている。複数の遊星ギア11は、それぞれ複数のキャリアピン13を介して回動自在にキャリア14に連結される。 As shown in FIG. 5, the first stage (first) planetary reduction mechanism 2 1, the sun gear 10 which is rotationally driven around the axis by the rotation power from the motor 1 (see FIG. 6A), the sun gear 10 And a plurality of planetary gears 11 that mesh with each other, and a ring gear 12 that meshes with each planetary gear 11. The planetary gear 11 is positioned so as to surround the sun gear 10. The ring gear 12 is positioned so as to surround the plurality of planetary gears 11. Planetary reduction mechanism 2 1 of the first stage further comprises a carrier 14 and a plurality of carrier pins 13. The plurality of planetary gears 11 are rotatably connected to the carrier 14 via a plurality of carrier pins 13 respectively.
 2段目の(第2)遊星減速機構22は、1段目の太陽ギア10に結合される2段目の太陽ギア20(図6A参照)と、該太陽ギア20と噛み合う複数の遊星ギア21とを備えている。1段目のリングギア12は、これら複数の遊星ギア21とも噛み合うように配置され、2段目の遊星減速機構22と共有される。遊星ギア21は太陽ギア20を囲むように位置する。2段目の遊星減速機構22は、キャリア24と複数のキャリアピン23とをさらに備える。複数の遊星ギア21は、それぞれ複数のキャリアピン23を介して回動自在にキャリア24に連結される。キャリアピン23は、その先端部が1段目のキャリア14に連結される。 The second stage (second) planetary reduction mechanism 2 2, the second-stage sun gear 20 that is coupled to the sun gear 10 of the first stage (see FIG. 6A), a plurality of planetary gears meshing with the sun gear 20 21. The first-stage ring gear 12 is arranged to mesh with the plurality of planetary gears 21 and is shared with the second-stage planetary reduction mechanism 22. The planetary gear 21 is positioned so as to surround the sun gear 20. Planetary reduction mechanism 2 2 of the second stage further comprises a carrier 24 and a plurality of carrier pins 23. The plurality of planetary gears 21 are rotatably connected to the carrier 24 via a plurality of carrier pins 23, respectively. The tip of the carrier pin 23 is connected to the first stage carrier 14.
 リングギア12は、1段目の遊星減速機構21を形成するための部材として機能するか、2段目の遊星減速機構22を形成するための部材として機能するかが、そのスライド位置によって択一的に選択可能な構造である。つまり、リングギア12は、モータ1側のスライド位置にあるときには1段目の遊星ギア11に噛み合い、出力軸4側のスライド位置にあるときには2段目の遊星ギア21に噛み合う。 Ring gear 12, or functions as a member for forming the planetary reduction mechanism 2 1 of the first stage, it works as a member for forming a second-stage planetary reduction mechanism 2 2, depending on the slide position It is a structure that can be selected alternatively. That is, the ring gear 12 meshes with the first stage planetary gear 11 when in the sliding position on the motor 1 side, and meshes with the second stage planetary gear 21 when in the sliding position on the output shaft 4 side.
 以下の本文中において、モータ1側を単に「入力側」といい、出力軸4側を単に「出力側」という。 In the following text, the motor 1 side is simply referred to as “input side” and the output shaft 4 side is simply referred to as “output side”.
 ギアケース9の内周面には、リングギア12が軸(主軸)方向にスライド自在に且つ回転不能に係合するガイド部15(図7参照)を設けており、リングギア12はこのガイド部15により案内されながら軸(主軸)方向のスライド移動を行う。 A guide portion 15 (see FIG. 7) is provided on the inner peripheral surface of the gear case 9 so that the ring gear 12 is slidable and non-rotatable in the axial (main shaft) direction. While being guided by 15, the slide movement in the direction of the axis (main axis) is performed.
 3段目の(第3)遊星減速機構23は、2段目のキャリア24に結合される3段目の太陽ギア30と、該太陽ギア30と噛み合う複数の遊星ギア31と、これら複数の遊星ギア31と噛み合うリングギア32とを備える。遊星ギア31は太陽ギア30を囲むように位置する。3段目の遊星減速機構23は、キャリア34と複数のキャリアピン33とをさらに備えている。複数の遊星ギア31は、それぞれ複数のキャリアピン33を介して回動自在にキャリア34に連結される。 The third stage (third) planetary reduction mechanism 2 3 includes a sun gear 30 of the third stage is coupled to the carrier 24 of the second stage, a plurality of planetary gears 31 meshing with the sun gear 30, a plurality of these A ring gear 32 that meshes with the planetary gear 31 is provided. The planetary gear 31 is positioned so as to surround the sun gear 30. The third stage planetary reduction mechanism 2 3 further includes a carrier 34 and a plurality of carrier pins 33. The plurality of planetary gears 31 are rotatably connected to the carrier 34 via a plurality of carrier pins 33, respectively.
 リングギア32は、ギアケース9に対して軸方向にスライド自在に且つ回転自在に配されている。リングギア32が入力側のスライド位置にあるときには、リングギア32は、2段目のキャリア24の外周縁部に噛み合う。リングギア32が出力側のスライド位置にあるときには、リングギア32は、ギアケース9と一体に形成された係合歯部40(図6A参照)と噛み合う。また、リングギア32はいずれのスライド位置にあるときも、遊星ギア31とは噛み合う。 The ring gear 32 is slidably and rotatably arranged in the axial direction with respect to the gear case 9. When the ring gear 32 is in the input-side slide position, the ring gear 32 meshes with the outer peripheral edge of the second stage carrier 24. When the ring gear 32 is in the slide position on the output side, the ring gear 32 meshes with an engagement tooth portion 40 (see FIG. 6A) formed integrally with the gear case 9. Further, the ring gear 32 meshes with the planetary gear 31 at any sliding position.
 これら3段の遊星減速機構23は、軸(主軸)方向に連結されている。つまり、1~3段目の太陽ギア10,20,30が軸(主軸)方向の一直線上に並設され、これらを囲むように位置する二つのリングギア12,32もまた軸(主軸)方向の一直線上に並設されている。 Planetary reduction mechanism 2 3 of these three stages is connected to the shaft (main shaft) direction. That is, the first to third sun gears 10, 20, and 30 are arranged side by side in a straight line in the axial direction (main axis), and the two ring gears 12 and 32 positioned so as to surround them are also in the axial (main axis) direction. Are arranged side by side.
 各リングギア12,32は独立して軸方向にスライド自在であり、そのスライド位置に対応して減速比を切り替え、出力軸4の回転出力を1速、2速、3速に変更する。このように、本実施形態では、リングギア12,32が、軸(主軸)方向にスライド自在な切替部材7をなす。本実施形態では、1速は最も減速比の小さい状態であり、2速は1速よりも減速比の大きな状態、3速は1,2速よりも減速比の大きな状態(つまり、最も減速比の大きな状態)である。なお、本発明の切替部材は、リングギア12,32に限定されない。本発明の切替部材は、少なくとも1つのリングギア(例えばリングギア12)を含むように構成されてもよい。 The ring gears 12 and 32 are independently slidable in the axial direction, and the reduction ratio is switched corresponding to the sliding position, and the rotation output of the output shaft 4 is changed to the first speed, the second speed, and the third speed. Thus, in the present embodiment, the ring gears 12 and 32 form the switching member 7 that is slidable in the axial (main axis) direction. In this embodiment, the first speed is the state with the smallest reduction ratio, the second speed is the state with the larger reduction ratio than the first speed, the third speed is the state with the larger reduction ratio than the first and second speeds (that is, the smallest reduction ratio). Big state). The switching member of the present invention is not limited to the ring gears 12 and 32. The switching member of the present invention may be configured to include at least one ring gear (for example, ring gear 12).
 図6には1速の状態、図7には1速と2速の切替途中の状態、図8には2速の状態、図9には2速と3速の切替途中の状態、図10には3速の状態を示している。 6 shows the state of the first speed, FIG. 7 shows the state during the switching between the first speed and the second speed, FIG. 8 shows the state of the second speed, FIG. 9 shows the state during the switching between the second speed and the third speed, FIG. Shows the state of the third speed.
 図6の1速にある減速機構部2では、切替部材7をなす一方のリングギア12が入力側の位置にあり、同じく切替部材7をなす他方のリングギア32が入力側の位置にある。そのため、1段目の遊星減速機構21だけが減速状態となる。 In the speed reduction mechanism section 2 at the first speed in FIG. 6, one ring gear 12 forming the switching member 7 is in the input side position, and the other ring gear 32 forming the switching member 7 is also in the input side position. Therefore, only the planetary reduction mechanism 2 1 of the first stage is the deceleration state.
 図8の2速にある減速機構部2では、切替部材7をなす一方のリングギア12が出力側の位置にあり、同じく切替部材7をなす他方のリングギア32が入力側の位置にある。そのため、2段目の遊星減速機構22だけが減速状態となる。 In the second speed reduction mechanism portion 2 in FIG. 8, one ring gear 12 forming the switching member 7 is at the output side position, and the other ring gear 32 forming the switching member 7 is also at the input side position. Therefore, only the second stage planetary speed reduction mechanism 2 2 is in a deceleration state.
 ここで、1段目の遊星減速機構21と2段目の遊星減速機構22とでは、2段目の方が減速比が大きくなるように各部材の寸法形状を相違させている。したがって、2速の場合は1速よりも減速比が大きく、出力軸4の回転速度は小さくなる。 Here, in the first-stage planetary reduction mechanism 2 1 and second-stage planetary speed reduction mechanism 2 2 2/5 stage is made different for dimensions of each member so that ratio speed reduction becomes large. Therefore, in the case of the second speed, the reduction ratio is larger than that of the first speed, and the rotation speed of the output shaft 4 is reduced.
 図10の3速にある減速機構部2では、切替部材7をなす一方のリングギア12が出力側の位置にあり、同じく切替部材7をなす他方のリングギア32が出力側の位置にある。そのため、2段目の遊星減速機構22と3段目の遊星減速機構23が共に減速状態となる。 In the speed reduction mechanism portion 2 at the third speed in FIG. 10, one ring gear 12 forming the switching member 7 is at the output side position, and the other ring gear 32 forming the switching member 7 is also at the output side position. Therefore, both the second-stage planetary speed reduction mechanism 2 2 and the third-stage planetary speed reduction mechanism 2 3 are in a decelerating state.
 切替部材7をなす二つのリングギア12,32のスライド位置は共に、変速カムプレート8の回転位置に応じて決定される。変速カムプレート8は、筒状をなすギアケース9の外周面に沿う断面円弧状のプレートであり、ギアケース9の中心軸まわりに回転自在となるように装着される。 Both the sliding positions of the two ring gears 12 and 32 forming the switching member 7 are determined according to the rotational position of the transmission cam plate 8. The transmission cam plate 8 is a plate having an arcuate cross section along the outer peripheral surface of the cylindrical gear case 9, and is mounted so as to be rotatable around the central axis of the gear case 9.
 変速カムプレート8には、二つのカム溝41,42を軸(主軸)方向に並設している。入力側のカム溝41は、リングギア12のスライド移動に対応した折れ線形状を有する貫通溝である。カム溝41に挿通される変速ピン45の先端部が、ギアケース9に貫通形成したガイド溝48(図5参照)を通じてギアケース9内に挿入され、リングギア12の外周面の凹溝に係合する。ガイド溝48は、減速機構部2の軸(主軸)方向と平行に形成している。 The transmission cam plate 8 has two cam grooves 41 and 42 arranged side by side in the axial direction (main axis). The input side cam groove 41 is a through groove having a polygonal line shape corresponding to the sliding movement of the ring gear 12. The tip of the speed change pin 45 inserted through the cam groove 41 is inserted into the gear case 9 through a guide groove 48 (see FIG. 5) penetrating the gear case 9 and is engaged with the concave groove on the outer peripheral surface of the ring gear 12. Match. The guide groove 48 is formed in parallel with the axis (main axis) direction of the speed reduction mechanism unit 2.
 出力側のカム溝42は、リングギア32のスライド移動に対応した折れ線形状を有する貫通溝である。カム溝42に挿通される変速ピン46の先端部が、ギアケース9に貫通形成したガイド溝49(図5参照)を通じてギアケース9内に挿入され、リングギア32の外周面の凹溝に係合する。ガイド溝49は、減速機構部2の軸(主軸)方向と平行に形成したものであり、他方のガイド溝48と一直線上に形成している。 The output side cam groove 42 is a through groove having a polygonal line shape corresponding to the sliding movement of the ring gear 32. The tip of the speed change pin 46 inserted into the cam groove 42 is inserted into the gear case 9 through a guide groove 49 (see FIG. 5) penetrating the gear case 9, and is engaged with the concave groove on the outer peripheral surface of the ring gear 32. Match. The guide groove 49 is formed in parallel with the axis (main axis) direction of the speed reduction mechanism portion 2 and is formed in a straight line with the other guide groove 48.
 この変速カムプレート8は、その周方向端部に、回転式の変速用アクチュエータ6と噛み合うギア部47を有する。変速用アクチュエータ6は、専用のモータ50と、モータ50の回転動力を減速して伝達する減速機構部51と、減速機構部51を通じて伝達される回転動力により回転駆動される出力部52とを有する。つまり、変速用アクチュエータ6は変速カムプレート8を介して切替部材7を軸方向にスライドさせるように構成される。 The speed change cam plate 8 has a gear portion 47 that meshes with the rotary speed change actuator 6 at its circumferential end. The speed change actuator 6 has a dedicated motor 50, a speed reduction mechanism portion 51 that reduces and transmits the rotational power of the motor 50, and an output portion 52 that is rotationally driven by the rotational power transmitted through the speed reduction mechanism portion 51. . That is, the speed change actuator 6 is configured to slide the switching member 7 in the axial direction via the speed change cam plate 8.
 このように、本実施形態の電動工具では、減速機構部2は、軸(主軸)方向にスライド自在な切替部材7と、これら切替部材7の軸方向のスライド位置に応じて該切替部材7との係合状態と非係合状態が切り替えられるギア部材5と、を用いて形成している。 As described above, in the electric power tool of the present embodiment, the speed reduction mechanism unit 2 includes the switching member 7 that is slidable in the axial (main axis) direction, and the switching member 7 according to the sliding position of the switching member 7 in the axial direction. The gear member 5 that can be switched between the engaged state and the non-engaged state is formed.
 切替部材7は、上述のようにリングギア12,32である。また、ここでのギア部材5は、リングギア12に対しては1段目の遊星ギア11と2段目の遊星ギア21であり、リングギア32に対しては2段目のキャリア24と係合歯部40である。これら切替部材7とギア部材5の係合状態と非係合状態に応じて、減速機構部2全体の減速比が切り替わる。 The switching member 7 is the ring gears 12 and 32 as described above. The gear member 5 here is the first stage planetary gear 11 and the second stage planetary gear 21 for the ring gear 12, and the second stage carrier 24 for the ring gear 32. It is the denture part 40. FIG. The speed reduction ratio of the entire speed reduction mechanism 2 is switched according to the engagement state and the non-engagement state of the switching member 7 and the gear member 5.
 要するに、第1遊星減速機構21と第2遊星減速機構22で共有されるリングギア12(第1切替部材)は、主軸方向に沿ってスライドするように設けられ、1速位置(図6)では、第1遊星減速機構21の第1ギアセット(遊星ギア11)と歯合する一方、2速位置(図8)では、第2遊星減速機構22の第2ギアセット(遊星ギア21)と歯合する。他方、リングギア32(第2切替部材)は、主軸方向に沿ってスライドするように設けられ、1速位置及び2速位置では、キャリア24及び第3遊星減速機構23の第3ギアセット(遊星ギア31)と歯合して回転自在である一方、3速位置(図8)では、第3ギアセット及び係合歯部40と歯合して回転を禁止される。 In short, the first planetary reduction mechanism 2 1 a ring gear 12 that is shared by the second planetary reduction mechanism 2 2 (first switching member) is provided so as to slide along the main axis direction, the first speed position (FIG. 6 in), while meshing with the first planetary reduction mechanism 2 1 of the first gear set (planet gear 11), the second speed position (FIG. 8), a second planetary reduction mechanism 2 2 of the second gear set (planetary gears 21). On the other hand, the ring gear 32 (second switching member) is provided so as to slide along the main axis direction, the first speed position and a second speed position, the carrier 24 and the third planetary reduction mechanism 2 3 of the third gear set ( While rotating in mesh with the planetary gear 31), at the third speed position (FIG. 8), rotation is prohibited by meshing with the third gear set and the engaging tooth portion 40.
 1速位置では、太陽ギア10の回転は、遊星ギア11及びリングギア12で減速され、ギアケース9内で回転を禁止されたリングギア12内を回る遊星ギア11を通じてキャリア14が回転する。キャリア24はキャリアピン23を介してキャリア14に連結され、遊星ギア31と歯合するリングギア32がキャリア24と歯合するので、最も小さい減速比で減速された太陽ギア10の回転は、キャリア14及び24を介して太陽ギア30及びリングギア32に伝達される。その結果、3段目の遊星減速機構23全体が、キャリア14(24も)と同期して最も小さい減速比で回転する。 At the first speed position, the rotation of the sun gear 10 is decelerated by the planetary gear 11 and the ring gear 12, and the carrier 14 rotates through the planetary gear 11 that rotates in the ring gear 12 that is prohibited from rotating in the gear case 9. Since the carrier 24 is connected to the carrier 14 via the carrier pin 23, and the ring gear 32 that meshes with the planetary gear 31 meshes with the carrier 24, the rotation of the sun gear 10 decelerated with the smallest reduction ratio is 14 and 24 are transmitted to the sun gear 30 and the ring gear 32. As a result, the entire 3-stage planetary reduction mechanism 2 3 rotates the smallest reduction ratio in synchronism with the carrier 14 (24 well).
 2速位置では、太陽ギア20の回転は、遊星ギア21及びリングギア12で減速され、ギアケース9内で回転を禁止されたリングギア12内を回る遊星ギア21を通じてキャリア24(14も)が回転する。従って、2番目に小さい減速比で減速された太陽ギア20の回転は、キャリア24を介して太陽ギア30及びリングギア32に伝達され、3段目の遊星減速機構23全体(キャリア14も)が、キャリア24と同期して2番目に小さい減速比で回転する。 At the 2nd speed position, the rotation of the sun gear 20 is decelerated by the planetary gear 21 and the ring gear 12, and the carrier 24 (also 14) is transmitted through the planetary gear 21 that rotates in the ring gear 12 that is prohibited from rotating in the gear case 9. Rotate. Thus, rotation of the decelerated sun gear 20 with a small reduction ratio for the second is transmitted to the sun gear 30 and ring gear 32 via the carrier 24, (also carrier 14) planetary reduction mechanism 2 3 entire third stage However, it rotates at the second smallest reduction ratio in synchronization with the carrier 24.
 3速位置では、太陽ギア20の回転は、遊星ギア21及びリングギア12で減速され、キャリア24(14も)が回転し、太陽ギア30がキャリア24と同期して回転する。太陽ギア30の回転は、遊星ギア31及びリングギア32で減速され、ギアケース9内で回転を禁止されたリングギア32内を回る遊星ギア31を通じてキャリア34が回転する。つまり、キャリア34の回転は、最も大きな減速比で減速される。ところで、1速位置、2速位置及び3速位置の各々において、キャリア34の回転は、図5に示すキャリア34の出力側の面に形成されたギアから他の連結機構を通じて出力軸4に伝達される。 At the 3rd speed position, the rotation of the sun gear 20 is decelerated by the planetary gear 21 and the ring gear 12, the carrier 24 (also 14) rotates, and the sun gear 30 rotates in synchronization with the carrier 24. The rotation of the sun gear 30 is decelerated by the planetary gear 31 and the ring gear 32, and the carrier 34 rotates through the planetary gear 31 that rotates in the ring gear 32 that is prohibited from rotating in the gear case 9. That is, the rotation of the carrier 34 is decelerated at the largest reduction ratio. By the way, in each of the 1st speed position, the 2nd speed position, and the 3rd speed position, the rotation of the carrier 34 is transmitted to the output shaft 4 from the gear formed on the output side surface of the carrier 34 shown in FIG. Is done.
 さらに、本実施形態の電動工具は、図1に概略的に示すように、モータ1及びアクチュエータ6を制御するように構成される制御部62と、モータ1を駆動させるように構成されるモータ駆動部65と、変速用アクチュエータ6を駆動させるように構成されるアクチュエータ駆動部66とを備えている。これら、制御部62とモータ駆動部65とアクチュエータ駆動部66とには、電源部70から電力が供給されている。 Further, as schematically shown in FIG. 1, the electric tool of the present embodiment includes a control unit 62 configured to control the motor 1 and the actuator 6, and a motor drive configured to drive the motor 1. And an actuator driving unit 66 configured to drive the speed change actuator 6. Power is supplied from the power supply unit 70 to the control unit 62, the motor drive unit 65, and the actuator drive unit 66.
 モータ駆動部65は、制御部62の制御を受けて、モータ1を駆動させるとともにモータ1の回転動力を変更させるように構成され、モータ1の回転動力を調整するように構成されるモータ1側の駆動調整部を兼ねている。アクチュエータ駆動部66は、制御部62の制御を受けて、変速用アクチュエータ6(モータ50)を駆動させるとともに変速用アクチュエータ6の駆動を調整するように構成され、変速用アクチュエータ6側の駆動調整部61としての機能を含む。 The motor drive unit 65 is configured to drive the motor 1 and change the rotational power of the motor 1 under the control of the control unit 62, and to be configured to adjust the rotational power of the motor 1. Also serves as a drive adjustment unit. The actuator drive unit 66 is configured to drive the speed change actuator 6 (motor 50) and adjust the drive of the speed change actuator 6 under the control of the control unit 62, and to drive the speed change actuator 6 side. The function as 61 is included.
 また、本実施形態の電動工具は、変速用アクチュエータ6の入出力情報を検知するように構成される情報検知部67と、モータ1の駆動状態を検知するように構成される駆動状態検知部60と、切替部材7のスライド位置を検知するように構成されるスライド位置検知部68とをさらに備えている。 The electric power tool of the present embodiment includes an information detection unit 67 configured to detect input / output information of the speed change actuator 6 and a drive state detection unit 60 configured to detect the drive state of the motor 1. And a slide position detector 68 configured to detect the slide position of the switching member 7.
 駆動状態検知部60は、モータ1に流れる電流値とモータ1の回転数の少なくとも一方を検知することで、モータ1の駆動状態を検知し、その検知結果を制御部62に入力する。情報検知部67は、アクチュエータ駆動部66に印加された供給電圧の値(供給電力の電圧値)を検知することで、切替部材7の移動速度(つまりリングギア12,32のそれぞれのスライド速度)を検知し、その検知結果を制御部62に入力する。スライド位置検知部68は、切替部材7に連動する変速カムプレート8のギアケース9に対する回転位置を検知することで、間接的に切替部材7の位置(つまりリングギア12,32のそれぞれのスライド位置)を検知し、その検知結果を制御部62に入力する。スライド位置検知部68は、非接触式の変位検知センサであってもよいし、変速カムプレート8に直接接触する接触式のものであってもよい。 The driving state detection unit 60 detects the driving state of the motor 1 by detecting at least one of the current value flowing through the motor 1 and the rotation speed of the motor 1, and inputs the detection result to the control unit 62. The information detection unit 67 detects the value of the supply voltage applied to the actuator driving unit 66 (voltage value of the supply power), thereby moving the switching member 7 (that is, the sliding speed of each of the ring gears 12 and 32). And the detection result is input to the control unit 62. The slide position detection unit 68 detects the rotational position of the speed change cam plate 8 linked to the switching member 7 with respect to the gear case 9 to indirectly detect the position of the switching member 7 (that is, the sliding position of each of the ring gears 12 and 32). ) And the detection result is input to the control unit 62. The slide position detection unit 68 may be a non-contact type displacement detection sensor, or may be a contact type that directly contacts the speed change cam plate 8.
 制御部62は、駆動状態検知部60により検知されるモータ1の駆動状態(負荷)に応じて、アクチュエータ駆動部66に変速用アクチュエータ6を起動させ、切替部材7をスライド移動させることにより減速機構部2の減速比を変更するように構成される。 The control unit 62 activates the speed change actuator 6 in the actuator driving unit 66 and slides the switching member 7 in accordance with the driving state (load) of the motor 1 detected by the driving state detection unit 60, thereby reducing the speed reduction mechanism. It is comprised so that the reduction ratio of the part 2 may be changed.
 つまり、本実施形態の電動工具では、変速用アクチュエータ6と、アクチュエータ駆動部66と、駆動状態検知部60と、スライド位置検知部68と、情報検知部67と、制御部62とを用いて、減速比切替手段を構成している。 That is, in the electric tool of the present embodiment, using the speed change actuator 6, the actuator driving unit 66, the driving state detecting unit 60, the slide position detecting unit 68, the information detecting unit 67, and the control unit 62, It constitutes a reduction ratio switching means.
 そして、制御部62においては、変速用アクチュエータ6(つまりモータ50)を起動させるとき、スライド位置検知部68の検知結果に応じて、モータ1の回転動力を一時的に低下または増大させるように制御するように構成される切替用制御部63の機能を兼ねている。ここでモータ1の回転動力を低下または増大させるのは、スライド移動される切替部材7とこれがスライド後に係合するギア部材5との間において、係合時の相対回転速度を極力減じる(望ましくはゼロとする)ためである。 In the control unit 62, when the speed change actuator 6 (that is, the motor 50) is started, control is performed so that the rotational power of the motor 1 is temporarily reduced or increased according to the detection result of the slide position detection unit 68. This also serves as the function of the switching control unit 63 configured to do so. Here, the rotational power of the motor 1 is reduced or increased because the relative rotational speed at the time of engagement is reduced as much as possible between the switching member 7 that is slid and the gear member 5 that is engaged after sliding (preferably Because it is zero).
 制御部62(切替制御部63)は、電動工具での作業時に、駆動状態検知部60にてモータ1にかかる負荷が所定水準に到達したと検知されたときに、自動変速させる。 The control unit 62 (switching control unit 63) automatically shifts when the driving state detection unit 60 detects that the load applied to the motor 1 has reached a predetermined level during work with the electric tool.
 以下、1速→2速に自動変速される場合、2速→3速に自動変速される場合を例にとり、具体的に説明する。 Hereinafter, the case where the automatic transmission is changed from the first speed to the second speed and the case where the automatic transmission is changed from the second speed to the third speed will be described as an example.
 1速から2速への自動変速は、モータ1に流れる電流値が所定値以上になったとき、モータ1の回転数が所定値以下になったとき、または、この電流値と回転数とが所定の関係を満たすようになったときに、モータ1にかかる負荷が所定水準に到達したと検知する。 The automatic shift from the first speed to the second speed is performed when the current value flowing through the motor 1 becomes a predetermined value or more, when the rotational speed of the motor 1 becomes a predetermined value or less, or when the current value and the rotational speed are When the predetermined relationship is satisfied, it is detected that the load applied to the motor 1 has reached a predetermined level.
 図6Bに示すように、該検知結果を入力された切替制御部63は、変速用アクチュエータ6のモータ50を起動させ、変速ピン45及び46がそれぞれカム溝41及び42の低速端から高速端側に移動するように変速カムプレート8を回転移動させる。変速カムプレート8の入力側のカム溝41に挿通される変速ピン45は、ギアケース9に設けたガイド溝48にガイドされながら、カム溝41に従って出力側へとスライド駆動される。変速ピン45は、切替部材7であるリングギア12を出力側へとスライド移動させる。 As shown in FIG. 6B, the switching control unit 63, to which the detection result is input, activates the motor 50 of the speed change actuator 6, and the speed change pins 45 and 46 move from the low speed end to the high speed end side of the cam grooves 41 and 42, respectively. The shift cam plate 8 is rotationally moved so as to move to. The speed change pin 45 inserted into the input side cam groove 41 of the speed change cam plate 8 is slidably driven to the output side according to the cam groove 41 while being guided by the guide groove 48 provided in the gear case 9. The transmission pin 45 slides the ring gear 12 that is the switching member 7 to the output side.
 スライド移動したリングギア12は、まず1段目の遊星ギア11との係合が解除され、図7に示す切替途中の状態となる。このとき、リングギア12はギアケース9に対して回転固定の状態にある。一方、次期係合対象のギア部材5である2段目の遊星ギア21は、モータ1の回転動力に依存した形態で、ギアケース9に対して軸まわりに回転駆動される。 The ring gear 12 that has been slid is first disengaged from the first stage planetary gear 11 and is in the middle of switching shown in FIG. At this time, the ring gear 12 is rotationally fixed with respect to the gear case 9. On the other hand, the second stage planetary gear 21, which is the gear member 5 to be engaged next, is driven to rotate about the axis with respect to the gear case 9 in a form depending on the rotational power of the motor 1.
 制御部62は、リングギア12が図7の所定の切替途中状態に至ったという検知結果をスライド位置検知部68から入力されると、その時点で、モータ1の回転動力を一時的に低下させる(ゼロとする場合(停止)を含む)。これにより、図8のようにリングギア12が2段目の遊星ギア21と係合する際に両者12,21間の相対回転速度を低減させ(好ましくはゼロとし)、係合の際の衝撃を抑制する。したがって、1速から2速への自動変速が、スムーズ且つ安定的に実現され、衝突によるギアの磨耗や破損も抑制される。 When the detection result that the ring gear 12 has reached the predetermined switching state shown in FIG. 7 is input from the slide position detection unit 68, the control unit 62 temporarily reduces the rotational power of the motor 1 at that time. (Including zero (stop)). As a result, when the ring gear 12 is engaged with the second stage planetary gear 21 as shown in FIG. 8, the relative rotational speed between the two gears 12 and 21 is reduced (preferably zero), and the impact during engagement is reduced. Suppress. Therefore, automatic shift from the first speed to the second speed is realized smoothly and stably, and gear wear and damage due to a collision are also suppressed.
 2速→3速の自動変速は、次のとおりの制御となる。つまり、図8に示す2速の状態でモータ1を回転駆動させているときに、駆動状態検知部60にてモータ1にかかる負荷が所定水準に到達したと検知されたときに、3速に自動変速される。具体的には、モータ1に流れる電流値が所定値以上になったとき、モータ1の回転数が所定値以下になったとき、または、この電流値と回転数とが所定の関係を満たすようになったときに、モータ1にかかる負荷が所定水準に到達したと検知する。 The automatic shift from 2nd gear to 3rd gear is controlled as follows. That is, when the motor 1 is rotationally driven in the second speed state shown in FIG. 8, when the driving state detection unit 60 detects that the load applied to the motor 1 has reached a predetermined level, the third speed is set. Automatic shift. Specifically, when the current value flowing through the motor 1 becomes a predetermined value or more, when the rotation speed of the motor 1 becomes a predetermined value or less, or this current value and the rotation speed satisfy a predetermined relationship. Is detected, the load applied to the motor 1 has reached a predetermined level.
 該検知結果を入力された制御部62は、変速用アクチュエータ6のモータ50を起動させ、変速カムプレート8を回転移動させる。変速カムプレート8の出力側のカム溝42に挿通される変速ピン46は、ギアケース9に設けたガイド溝49にガイドされながら、出力側へとスライド駆動される。変速ピン46は、もう一つの切替部材7であるリングギア32を出力側へとスライド移動させる。 The control unit 62 to which the detection result is input starts the motor 50 of the speed change actuator 6 and rotates the speed change cam plate 8. The speed change pin 46 inserted through the cam groove 42 on the output side of the speed change cam plate 8 is slid to the output side while being guided by a guide groove 49 provided in the gear case 9. The transmission pin 46 slides the ring gear 32, which is another switching member 7, to the output side.
 スライド移動したリングギア32は、まず2段目のキャリア24との係合が解除され、図9に示す切替途中の状態に至る。このとき、リングギア32は、3段目の遊星ギア31に係合し、且つ、ギアケース9には回転固定されない状態にある。 The ring gear 32 that has been slid is first disengaged from the carrier 24 at the second stage, and reaches a state during switching as shown in FIG. At this time, the ring gear 32 is engaged with the third planetary gear 31 and is not rotationally fixed to the gear case 9.
 図9の切替途中状態にあるリングギア32は、2速にてキャリア24に係合していたときの回転慣性で回転を続けるが、これと同時に、モータ1により駆動される3段目の遊星ギア31からの反力によって、該回転慣性とは反対方向の回転力を受ける。一方、リングギア32が次に係合するギア部材5である係合歯部40は、ギアケース9に対して固定されている。 The ring gear 32 in the midway of switching in FIG. 9 continues to rotate with the rotational inertia when engaged with the carrier 24 at the second speed, but at the same time, the third stage planet driven by the motor 1. The reaction force from the gear 31 receives a rotational force in the direction opposite to the rotational inertia. On the other hand, the engaging tooth portion 40 which is the gear member 5 to which the ring gear 32 is engaged next is fixed to the gear case 9.
 制御部62は、この回転慣性と反対方向の回転力を積極的に利用して、リングギア32と係合歯部40との相対回転速度を低減させる(好ましくはゼロとする)ものとなっている。つまり、制御部62は、リングギア32が図9の所定の切替途中状態に至ったことをスライド位置検知部61により検知すると、その時点で、リングギア32のスライド移動を一旦停止させる。そして、モータ1の回転動力を一時的に増大させ、リングギア32のギアケース9に対する回転速度を速やかに低減させる。そのうえでリングギア32のスライド移動を再開し、係合歯部40と係合する際にはリングギア32の回転速度が極力ゼロに近づくように調整する。 The control unit 62 actively utilizes the rotational force in the direction opposite to the rotational inertia to reduce the relative rotational speed between the ring gear 32 and the engaging tooth portion 40 (preferably zero). Yes. That is, when the slide position detecting unit 61 detects that the ring gear 32 has reached the predetermined switching state in FIG. 9, the control unit 62 temporarily stops the sliding movement of the ring gear 32. And the rotational power of the motor 1 is increased temporarily, and the rotational speed with respect to the gear case 9 of the ring gear 32 is reduced rapidly. After that, the sliding movement of the ring gear 32 is resumed, and when the engagement with the engagement tooth portion 40 is performed, the rotation speed of the ring gear 32 is adjusted to be as close to zero as possible.
 これにより、図10のようにリングギア32が係合歯部40と係合する際の衝撃を抑制し、スムーズ且つ安定的な自動変速を実現するとともに、衝突によるギアの磨耗や破損も抑制することができる。 As a result, as shown in FIG. 10, the impact when the ring gear 32 engages with the engaging tooth portion 40 is suppressed, and a smooth and stable automatic transmission is realized, and the wear and damage of the gear due to the collision are also suppressed. be able to.
 なお、リングギア32のスライド移動の一旦停止は行わず、モータ1の回転動力を一時的に増大させるだけで回転速度を調整してもよい。また、リングギア32の一旦停止によってのみ、回転速度を調整してもよい。また、変速用アクチュエータ6の起動と同期してモータ1の回転動力を徐々に低下させ、2速にてキャリア24に係合していたときのリングギア32の回転慣性による回転を低下させる制御としてもよい。 Note that the rotational speed may be adjusted by temporarily increasing the rotational power of the motor 1 without temporarily stopping the sliding movement of the ring gear 32. Further, the rotational speed may be adjusted only by temporarily stopping the ring gear 32. Further, as the control for gradually reducing the rotational power of the motor 1 in synchronization with the activation of the speed change actuator 6 and reducing the rotation due to the rotational inertia of the ring gear 32 when engaged with the carrier 24 at the second speed. Also good.
 また、3速→2速の自動変速の場合や、2速→1速の自動変速の場合には、制御部62は、モータ1の回転動力が停止した状態、または切替途中状態に至ったときに回転動力を低下または停止させ、切替部材7とギア部材5の相対回転速度を低減する。これにより、スムーズ且つ安定的な自動変速が実現され、衝突によるギアの磨耗や破損も抑制される。 In the case of automatic transmission from the 3rd speed to the 2nd speed, or in the case of the automatic transmission from the 2nd speed to the 1st speed, the control unit 62 is in a state where the rotational power of the motor 1 is stopped or in the middle of switching. The rotational power is reduced or stopped to reduce the relative rotational speed of the switching member 7 and the gear member 5. As a result, smooth and stable automatic gear shifting is realized, and wear and damage of the gear due to a collision are also suppressed.
 また、制御部62(切替制御部63)は、変速用アクチュエータ6を起動させた時点からモータ1の回転動力をある程度低下させる制御であってもよい。この場合の制御部62は、例えば、変速用アクチュエータ6の起動と同期してモータ1の回転動力を徐々に低下させてゆき、リングギア12が図7の所定の切替途中状態に至ったという検知結果が入力された時点で、モータ1の回転動力をさらに低下させる。 Further, the control unit 62 (switching control unit 63) may be a control that reduces the rotational power of the motor 1 to some extent from the time when the speed change actuator 6 is activated. In this case, for example, the control unit 62 gradually decreases the rotational power of the motor 1 in synchronization with the activation of the speed change actuator 6, and detects that the ring gear 12 has reached the predetermined switching state in FIG. When the result is input, the rotational power of the motor 1 is further reduced.
 以上のように、本実施形態の制御部62は、モータ1の駆動状態に応じて変速用アクチュエータ6を起動させるとともに、検知された切替部材7(リングギア12,32)の現在位置に対応するかたちで、モータ1の回転動力を一時的に低下または増大させる。この回転動力の低下は、モータ1を停止させる場合も含む。これにより、スムーズ且つ安定的な自動変速が実現され、衝突によるギアの磨耗や破損も抑制される。なお、制御部62を、変速用アクチュエータ6の起動にも同期してモータ1の回転動力を徐々に低下または増大させるものとしてもよい。 As described above, the control unit 62 of the present embodiment activates the speed change actuator 6 according to the driving state of the motor 1 and corresponds to the detected current position of the switching member 7 (ring gears 12 and 32). In this way, the rotational power of the motor 1 is temporarily reduced or increased. This reduction in rotational power includes a case where the motor 1 is stopped. As a result, smooth and stable automatic gear shifting is realized, and wear and damage of the gear due to a collision are also suppressed. The control unit 62 may gradually decrease or increase the rotational power of the motor 1 in synchronization with the activation of the speed change actuator 6.
 また、2速から1速や3速から2速の自動変速は、制御部62が作業完了と判断した際に行われるものであってもよい。具体的には、モータ1の負荷が所定水準に達した後、該負荷が略無くなり制御部62が作業完了と判断した、またはトリガスイッチ103の操作が解除された等でモータ1を駆動停止させたときの自動変速である。つまり、該状態における自動変速は、所定の作業の完了に伴い次の作業に移行する準備のために、3速または2速から1速に戻す変速である。 Further, the automatic shift from the second speed to the first speed or the third speed to the second speed may be performed when the control unit 62 determines that the work is completed. Specifically, after the load of the motor 1 reaches a predetermined level, the motor 1 is stopped driving when the control unit 62 determines that the load is almost lost and the operation of the trigger switch 103 is released. This is an automatic shift when That is, the automatic shift in this state is a shift that returns from the third speed or the second speed to the first speed in preparation for shifting to the next work upon completion of a predetermined work.
 加えて、本実施形態の制御部62では、減速比の切替時(変速時)に、情報検知部67とスライド位置検知部68が検知する切替部材7(リングギア12,32)の位置に対応するかたちで、変速用アクチュエータ6の駆動を調整するように制御する。これにより、電池パックの消耗等による供給電圧の低下等に伴う切替部材7のスライド量または移動速度の低下に対応して、切替部材7のスライドを調整することができ、切替部材7を所定の時間で所定の目標位置にスライドさせ、スムーズな自動変速を実現する。 In addition, the control unit 62 of the present embodiment corresponds to the position of the switching member 7 (ring gears 12 and 32) detected by the information detection unit 67 and the slide position detection unit 68 when the reduction ratio is switched (at the time of shifting). In this way, control is performed so as to adjust the drive of the speed change actuator 6. Thereby, the slide of the switching member 7 can be adjusted in response to a decrease in the slide amount or moving speed of the switching member 7 due to a decrease in the supply voltage due to the consumption of the battery pack, etc. Slide to a predetermined target position over time to achieve smooth automatic shifting.
 以下、この変速用アクチュエータ6の制御について具体的に述べる。 Hereinafter, the control of the speed change actuator 6 will be described in detail.
 制御部62は、切替部材7を所定の目標位置に時間通りに到達させるようにアクチュエータ駆動部66を制御するように構成されるアクチュエータ制御部64の機能を兼ねている。つまり、電源部70からの供給電圧の変化や、ギア磨耗による芯ずれ、ギア間のクリアランス増大等の経年劣化によって、切替部材7の移動速度にばらつきを生じる場合がある。この場合、切替部材7の時間あたりのスライド量が低下するため、切替部材7が所定の時間内に所定の目標位置にまでスライド移動せず、変速がうまく行かず作業の障害になるだけでなく、減速比の切替に要する時間(切替時間)の増大の原因ともなる。 The controller 62 also functions as an actuator controller 64 configured to control the actuator driver 66 so that the switching member 7 reaches the predetermined target position on time. That is, the moving speed of the switching member 7 may vary due to aged deterioration such as a change in supply voltage from the power supply unit 70, misalignment due to gear wear, and increased clearance between gears. In this case, since the sliding amount of the switching member 7 per time is reduced, the switching member 7 does not slide to the predetermined target position within a predetermined time, and not only the shifting does not work, but the operation becomes an obstacle. This also causes an increase in the time required for switching the reduction ratio (switching time).
 これに対して、制御部62は、情報検知部67から入力される検知結果によって、切替部材7の移動速度のばらつきを把握し、アクチュエータ駆動部66に切替部材7のスライド移動を調整させ、切替部材7の時間あたりのスライド量不足を解消させる。つまり、制御部62は、変速用アクチュエータ6の駆動が所定の時間経過されたときに、切替部材7が所定の目標位置に位置するように、アクチュエータ駆動部66に変速用アクチュエータ6の駆動を調整させる。このとき、所定の時間とは、自動変速に要する切替時間であり、変速用アクチュエータ6の駆動時間と略同じ時間となっている。 On the other hand, the control unit 62 grasps the variation in the moving speed of the switching member 7 based on the detection result input from the information detecting unit 67, causes the actuator driving unit 66 to adjust the sliding movement of the switching member 7, and performs switching. The shortage of the amount of slide per time of the member 7 is eliminated. That is, the control unit 62 adjusts the drive of the shift actuator 6 to the actuator drive unit 66 so that the switching member 7 is positioned at a predetermined target position when the drive of the shift actuator 6 has elapsed for a predetermined time. Let At this time, the predetermined time is a switching time required for automatic shifting, and is substantially the same as the driving time of the shifting actuator 6.
 具体的には、情報検知部67は、変速用アクチュエータ6が駆動されるときに、入出力情報として、電源部70からアクチュエータ駆動部66に印加された供給電圧の値を随時検知し、検知結果を制御部62に出力する。制御部62は、入力された検知結果に応じて、切替部材7が所定の目標位置に至るまでの時間あたりのスライド量を一定に保つようにアクチュエータ駆動部66を制御する。つまり、制御部62は、情報検知部67の検知結果に応じてアクチュエータ駆動部66にモータ50の回転動力を随時変更させて、所定の時間経過時に切替部材7が所定の目標位置に至るように、変速用アクチュエータ6を駆動調整する。これにより、切替部材7の移動速度のばらつきに伴うスライド量不足を抑制し、切替部材7を所定の時間に所定の目標位置に到達させることができ、スムーズかつ安定な自動変速を実現する。 Specifically, the information detection unit 67 detects the value of the supply voltage applied from the power supply unit 70 to the actuator drive unit 66 as input / output information when the speed change actuator 6 is driven, and the detection result Is output to the control unit 62. The control unit 62 controls the actuator driving unit 66 so that the sliding amount per time until the switching member 7 reaches a predetermined target position is kept constant according to the input detection result. That is, the control unit 62 causes the actuator driving unit 66 to change the rotational power of the motor 50 at any time according to the detection result of the information detection unit 67 so that the switching member 7 reaches a predetermined target position when a predetermined time elapses. Then, the shift actuator 6 is driven and adjusted. As a result, the shortage of the slide amount due to the variation in the moving speed of the switching member 7 can be suppressed, and the switching member 7 can reach a predetermined target position at a predetermined time, thereby realizing a smooth and stable automatic shift.
 次に、本発明の電動工具の他の実施形態について順に述べる。なお、上述の実施形態1と同様の構成については詳しい説明を省略し、実施形態1とは相違する特徴的な構成について、主に詳述する。 Next, other embodiments of the electric tool of the present invention will be described in order. Detailed description of the same configuration as that of the first embodiment will be omitted, and a characteristic configuration different from that of the first embodiment will be mainly described in detail.
 (実施形態2)
 本実施形態の電動工具においても、変速用アクチュエータ6の駆動を調整し、切替部材7を所定の目標位置に時間通りに到達させるように設けている。これにより、切替部材7のスライド量不足を解消するとともに、減速比の切替時間が所定の時間から増大することを抑制し、スムーズかつ安定な自動変速を実現する。しかし、本実施形態においては、駆動調整部61の構成や、変速用アクチュエータ6への供給電圧の調整の仕方が実施形態1の場合と相違している。
(Embodiment 2)
Also in the electric power tool of the present embodiment, the drive of the speed change actuator 6 is adjusted so that the switching member 7 reaches the predetermined target position on time. Thus, the shortage of the sliding amount of the switching member 7 is solved, and the switching time of the reduction ratio is prevented from increasing from a predetermined time, thereby realizing a smooth and stable automatic shift. However, in the present embodiment, the configuration of the drive adjusting unit 61 and the method of adjusting the supply voltage to the speed change actuator 6 are different from those in the first embodiment.
 具体的には、減速比切替手段は、図11に示すように、電力調整部69を備えている。該電力調整部69は、電源部70からの供給電力を昇降圧するように構成される昇降圧コンバータと、該コンバータに対してPWM制御を行うように構成される制御回路とを有し、変速用アクチュエータ6への供給電圧を一定値に調整するように、アクチュエータ駆動部66に給電するように構成される。つまり、電力調整部69は、電源部70から変速用アクチュエータ6への供給電圧を検知するように構成される情報検知部67と、情報検知部67の検知結果に応じて変速用アクチュエータ6の駆動を調整するように構成される駆動調整部61とを含む。 Specifically, the reduction ratio switching means includes a power adjustment unit 69 as shown in FIG. The power adjustment unit 69 includes a step-up / step-down converter configured to step up / down the power supplied from the power supply unit 70, and a control circuit configured to perform PWM control on the converter. The actuator drive unit 66 is configured to supply power so that the supply voltage to the actuator 6 is adjusted to a constant value. That is, the power adjustment unit 69 is configured to detect a supply voltage from the power supply unit 70 to the transmission actuator 6 and drive the transmission actuator 6 according to the detection result of the information detection unit 67. And a drive adjustment unit 61 configured to adjust.
 電力調整部69は、変速用アクチュエータ6への供給電圧を一定値に調整するべく、電源部70からの供給電圧に応じて、制御回路のPWM制御を通じて、昇降圧コンバータがアクチュエータ駆動部66への供給電圧を上げるかまたは下げるように構成される。例えば、変速用アクチュエータ6への電圧が所定電圧より小さければ、電力調整部69は、昇降圧コンバータを通じて変速用アクチュエータ6への電圧を所定電圧に昇圧する。変速用アクチュエータ6への電圧が所定電圧より大きければ、電力調整部69は、昇降圧コンバータを通じて変速用アクチュエータ6への電圧を所定電圧に降圧する。このように、変速用アクチュエータ6への電圧は、電圧変化や変速用アクチュエータ6の動作状態にかかわらず、所定電圧に保持される。 In order to adjust the supply voltage to the shift actuator 6 to a constant value, the power adjustment unit 69 causes the step-up / down converter to supply the actuator drive unit 66 through PWM control of the control circuit in accordance with the supply voltage from the power supply unit 70. Configured to increase or decrease the supply voltage. For example, if the voltage to the speed change actuator 6 is smaller than a predetermined voltage, the power adjustment unit 69 boosts the voltage to the speed change actuator 6 to a predetermined voltage through the step-up / down converter. If the voltage to the speed change actuator 6 is larger than the predetermined voltage, the power adjustment unit 69 steps down the voltage to the speed change actuator 6 to the predetermined voltage through the step-up / down converter. Thus, the voltage to the speed change actuator 6 is maintained at a predetermined voltage regardless of the voltage change and the operation state of the speed change actuator 6.
 これにより、減速比の切替時に、アクチュエータ駆動部66は一定の供給電圧(所定電圧)で変速用アクチュエータ6を駆動させ、切替部材7が一定速度でスライド移動され、切替部材7が所定の時間に所定の目標位置に至り、スムーズかつ安定な自動変速を実現する。なお、制御部62やアクチュエータ駆動部66に、電力調整部69の機能を兼ねたものを用いて、電動工具の構成部材を削減してもよい。 Thereby, at the time of switching the reduction ratio, the actuator driving unit 66 drives the speed change actuator 6 with a constant supply voltage (predetermined voltage), the switching member 7 is slid at a constant speed, and the switching member 7 is moved at a predetermined time. It reaches a predetermined target position and realizes a smooth and stable automatic shift. In addition, you may reduce the structural member of an electric tool using what used the function of the electric power adjustment part 69 for the control part 62 or the actuator drive part 66. FIG.
 (実施形態3)
 本実施形態の電動工具においても、変速用アクチュエータ6の駆動を調整し、切替部材7を所定の目標位置に時間通りに到達させるように設けている。これにより、切替部材7のスライド量不足を解消するとともに、減速比の切替時間が所定の時間から増大することを抑制し、スムーズかつ安定な自動変速を実現する。しかし、本実施形態においては、変速用アクチュエータ6への供給電圧の調整の仕方が実施形態1の場合と相違している。そして、変速用アクチュエータ6への供給電圧を一定に調整させる点は、実施形態2と同様である。しかし、情報検知部67で検知する入出力情報において、実施形態2とは相違する。
(Embodiment 3)
Also in the electric power tool of the present embodiment, the drive of the speed change actuator 6 is adjusted so that the switching member 7 reaches the predetermined target position on time. Thus, the shortage of the sliding amount of the switching member 7 is solved, and the switching time of the reduction ratio is prevented from increasing from a predetermined time, thereby realizing a smooth and stable automatic shift. However, in the present embodiment, the method of adjusting the supply voltage to the speed change actuator 6 is different from that in the first embodiment. And the point which adjusts the supply voltage to the actuator 6 for speed change uniformly is the same as that of Embodiment 2. However, the input / output information detected by the information detection unit 67 is different from that of the second embodiment.
 具体的には、情報検知部67は入出力情報として変速用アクチュエータ6の起動前の電圧の値(電圧値V1)を検知するように構成される。電力調整部69は、変速用アクチュエータ6に印加する供給電圧を、該検知結果(V1)に応じて決定した電圧値V2に調整するように構成される。つまり、電力調整部69は、図12に示すように、検知された電圧値V1から、切替部材7を所定の移動速度S1でスライドさせるための電圧値V2を演算し、演算結果に応じて駆動調整部61に供給電圧を調整させる制御を行うものとなっている。例えば、変速用アクチュエータ6への電圧が所定電圧(V2)より小さければ、電力調整部69は、昇降圧コンバータを通じて変速用アクチュエータ6への電圧を所定電圧(V2)に昇圧する。変速用アクチュエータ6への電圧が所定電圧(V2)より大きければ、電力調整部69は、昇降圧コンバータを通じて変速用アクチュエータ6への電圧を所定電圧(V2)に降圧する。所定の移動速度S1は、自動変速時に、所定の時間経過した際に切替部材7を所定の目標位置に至らせる速度である。 Specifically, the information detection unit 67 is configured to detect a voltage value (voltage value V1) before starting the speed change actuator 6 as input / output information. The power adjustment unit 69 is configured to adjust the supply voltage applied to the gear shift actuator 6 to a voltage value V2 determined according to the detection result (V1). That is, as shown in FIG. 12, the power adjustment unit 69 calculates a voltage value V2 for sliding the switching member 7 at a predetermined movement speed S1 from the detected voltage value V1, and drives according to the calculation result. The adjustment unit 61 performs control to adjust the supply voltage. For example, if the voltage to the speed change actuator 6 is smaller than a predetermined voltage (V2), the power adjustment unit 69 increases the voltage to the speed change actuator 6 to the predetermined voltage (V2) through the step-up / down converter. If the voltage to the shift actuator 6 is greater than the predetermined voltage (V2), the power adjustment unit 69 steps down the voltage to the shift actuator 6 to the predetermined voltage (V2) through the step-up / down converter. The predetermined moving speed S1 is a speed that causes the switching member 7 to reach a predetermined target position when a predetermined time has elapsed during automatic shifting.
 これにより、切替部材7を一定の移動速度(S1)でスライド移動させることができ、切替部材7の移動速度のばらつきが解消され、切替部材7が所定の時間に所定の目標位置に至り、スムーズかつ安定な自動変速を実現する。なお、アクチュエータ駆動部66に、電力調整部69の機能を兼ねたものを用いて、電動工具の構成部材を削減してもよい。また、駆動調整部61の機能は、制御部62、アクチュエータ駆動部66、電力調整部69のいずれが兼ねたものであってもよい。 Thereby, the switching member 7 can be slid at a constant moving speed (S1), the variation in the moving speed of the switching member 7 is eliminated, the switching member 7 reaches a predetermined target position at a predetermined time, and is smooth. In addition, stable automatic transmission is realized. In addition, you may reduce the structural member of an electric tool using what used the function of the electric power adjustment part 69 for the actuator drive part 66. FIG. Further, the function of the drive adjustment unit 61 may be performed by any of the control unit 62, the actuator drive unit 66, and the power adjustment unit 69.
 (実施形態4)
 本実施形態の電動工具においても、変速用アクチュエータ6の駆動を調整し、切替部材7を所定の目標位置に時間通り到達させるように設けている。これにより、切替部材7のスライド量不足を解消するとともに、減速比の切替時間が所定の時間から増大することを抑制し、スムーズかつ安定な自動変速を実現する。しかし、本実施形態においては、変速用アクチュエータ6への供給電圧の調整の仕方が実施形態1の場合と相違している。そして、変速用アクチュエータ6への供給電圧を一定に調整させる点は、実施形態3と同様である。しかし、情報検知部61で検知する入出力情報において、実施形態3とは相違する。
(Embodiment 4)
Also in the electric tool of this embodiment, the drive of the speed change actuator 6 is adjusted so that the switching member 7 reaches the predetermined target position on time. Thus, the shortage of the sliding amount of the switching member 7 is solved, and the switching time of the reduction ratio is prevented from increasing from a predetermined time, thereby realizing a smooth and stable automatic shift. However, in the present embodiment, the method of adjusting the supply voltage to the speed change actuator 6 is different from that in the first embodiment. And the point which adjusts the supply voltage to the actuator 6 for speed change uniformly is the same as that of Embodiment 3. However, the input / output information detected by the information detection unit 61 is different from that of the third embodiment.
 具体的には、情報検知部67は入出力情報として変速用アクチュエータ6の起動時の駆動電流の最大値(最大電流値A1)を検知するように構成される。電力調整部69は、該検知結果(A1)から推定した電圧値に、変速用アクチュエータ6に印加する供給電圧を調整するように構成される。つまり、電力調整部69は、図13に示すように、検知された最大電流値A1から、モータ50の停動電流(電圧)を推定するように構成される。図13の例では、停動電圧V3が推定される。一例において、電力調整部69は、図13の最大電流と停動電流(電圧)の特性図に対応する式を予め保持し、その式と検知結果(A1)から停動電流(電圧)を演算する。そして、図14に示すように、電力調整部69は、推定結果(推定電圧V3)に基づき切替部材7を所定の移動速度S1でスライドさせるための電圧値V2を演算し、演算結果(V2)に応じて駆動調整部61に供給電圧を調整させるものとなっている。これにより、変速用アクチュエータ6への電圧は、実施形態3と同様に、所定電圧(V2)に保持される。 Specifically, the information detection unit 67 is configured to detect the maximum value (maximum current value A1) of the drive current when starting the speed change actuator 6 as input / output information. The power adjustment unit 69 is configured to adjust the supply voltage applied to the speed change actuator 6 to the voltage value estimated from the detection result (A1). That is, the power adjustment unit 69 is configured to estimate the stationary current (voltage) of the motor 50 from the detected maximum current value A1, as shown in FIG. In the example of FIG. 13, the stationary voltage V3 is estimated. In one example, the power adjustment unit 69 holds in advance an equation corresponding to the characteristic diagram of the maximum current and the stationary current (voltage) in FIG. 13, and calculates the stationary current (voltage) from the equation and the detection result (A1). To do. Then, as shown in FIG. 14, the power adjustment unit 69 calculates a voltage value V2 for sliding the switching member 7 at a predetermined moving speed S1 based on the estimation result (estimated voltage V3), and the calculation result (V2). Accordingly, the drive adjustment unit 61 adjusts the supply voltage. As a result, the voltage to the speed change actuator 6 is maintained at a predetermined voltage (V2) as in the third embodiment.
 これにより、切替部材7を一定の移動速度(S1)でスライド移動させることができ、切替部材7の移動速度のばらつきが抑制され、切替部材7が所定の時間に所定の目標位置に至り、スムーズ且つ安定な自動変速を実現する。なお、駆動調整部61の機能は、制御部62、アクチュエータ駆動部66、電力調整部69のいずれが兼ねたものであってもよい。 Accordingly, the switching member 7 can be slid at a constant moving speed (S1), variation in the moving speed of the switching member 7 is suppressed, the switching member 7 reaches a predetermined target position at a predetermined time, and is smooth. In addition, a stable automatic transmission is realized. It should be noted that the function of the drive adjustment unit 61 may be any of the control unit 62, the actuator drive unit 66, and the power adjustment unit 69.
 (実施形態5)
 本実施形態の電動工具においても、変速用アクチュエータ6の駆動を調整し、切替部材7を所定の目標位置に所定の時間で至るように設けている。これにより、切替部材7のスライド量不足を解消するとともに、減速比の切替時間が所定の時間から増大することを抑制し、スムーズかつ安定な自動変速を実現する。本実施形態においては、変速用アクチュエータ6の駆動中に随時移動速度を調整させる点は、実施形態1と同様である。しかし、変速用アクチュエータ6の駆動中の切替部材7の移動速度の調整の仕方が実施形態1の場合と相違する。
(Embodiment 5)
Also in the electric power tool of this embodiment, the drive of the speed change actuator 6 is adjusted, and the switching member 7 is provided so as to reach a predetermined target position in a predetermined time. Thus, the shortage of the sliding amount of the switching member 7 is solved, and the switching time of the reduction ratio is prevented from increasing from a predetermined time, thereby realizing a smooth and stable automatic shift. The present embodiment is the same as the first embodiment in that the moving speed is adjusted at any time while the speed change actuator 6 is being driven. However, the method of adjusting the moving speed of the switching member 7 during driving of the speed change actuator 6 is different from that in the first embodiment.
 具体的には、制御部62は、情報検知部67の検知結果とスライド位置検知部68の検知結果に応じて、変速用アクチュエータ6への供給電力(供給電圧)を調整させるように駆動調整部61を制御する。ここで、情報検知部67の検知結果は、図12の電圧の値(電圧値V1)又は図13の最大電流値A1などである。これにより、切替部材7の移動速度のばらつきを抑制することができ、スムーズ且つ安定な自動変速を実現する。 Specifically, the control unit 62 adjusts the supply power (supply voltage) to the speed change actuator 6 according to the detection result of the information detection unit 67 and the detection result of the slide position detection unit 68. 61 is controlled. Here, the detection result of the information detection unit 67 is the voltage value (voltage value V1) in FIG. 12 or the maximum current value A1 in FIG. Thereby, the dispersion | variation in the moving speed of the switching member 7 can be suppressed, and a smooth and stable automatic transmission is implement | achieved.
 さらに、クリアランスの変化やギアの軸ずれ等のギアの経年劣化に伴い所定の時間より早く目標位置に到る場合に、ギア同士(切替部材7と狙いのギア部材5)が衝突し、ギアに磨耗や破損を生じることがある。これに対して、本実施形態では、スライド位置検知部68の検知結果と情報検知部67の検知結果に応じて、切替時間が予め設定された所定の時間よりも減少することを抑制し、ギア同士の衝突に伴うギアの磨耗や破損を抑制する。なお、駆動調整部61の機能は、制御部62、アクチュエータ駆動部66、電力調整部69のいずれが兼ねたものであってもよい。 Further, when the target position is reached sooner than a predetermined time due to aged deterioration of the gear such as a change in clearance or gear shaft misalignment, the gears (the switching member 7 and the target gear member 5) collide with each other. Wear and damage may occur. On the other hand, in the present embodiment, the switching time is prevented from being reduced from a predetermined time in accordance with the detection result of the slide position detection unit 68 and the detection result of the information detection unit 67, and the gear Suppresses gear wear and damage caused by collisions. It should be noted that the function of the drive adjustment unit 61 may be any of the control unit 62, the actuator drive unit 66, and the power adjustment unit 69.
 (実施形態6)
 本実施形態の電動工具においても、情報検知部67とスライド位置検知部68の両検知結果に応じて変速用アクチュエータ6の駆動を調整し、切替部材7を所定の目標位置に所定の時間で至るように設けている。これにより、スムーズ且つ安定な自動変速を実現するとともに、ギア同士の衝突に伴うギアの磨耗や破損も抑制する。しかし、本実施形態においては、移動速度の調整に用いる情報検知部67の検知結果において、実施形態5とは相違する。
(Embodiment 6)
Also in the electric tool of the present embodiment, the drive of the shift actuator 6 is adjusted according to the detection results of both the information detection unit 67 and the slide position detection unit 68, and the switching member 7 is reached at a predetermined target position for a predetermined time. It is provided as follows. As a result, smooth and stable automatic gear shifting is realized, and gear wear and breakage due to a collision between gears is also suppressed. However, in the present embodiment, the detection result of the information detection unit 67 used for adjusting the moving speed is different from that of the fifth embodiment.
 具体的には、情報検知部67は入出力情報として、変速用アクチュエータ6の駆動時の電流値A2と駆動時間を検知する。制御部62は、図15に示すように、情報検知部67で検知された電流値A2から、変速用アクチュエータ6の負荷トルクT1を算出する。一例において、制御部62は、図15の電流と負荷トルクの特性図に対応する式を予め保持し、その式と電流値A2から負荷トルクT1を演算する。さらに、制御部62は、算出した負荷トルクT1から、該電流値A2検知時のモータ50の回転数を切替部材7の移動速度の指標として求める。この場合、情報検知部67で駆動時間を検知し、制御部62は、負荷トルクT1とその駆動時間からモータ50の回転数を求めてもよい。一例において、制御部62は、図16の負荷トルクと速度(回転数)の特性図に対応する式を予め保持し、その式と負荷トルクからモータ50の回転数R1を演算する。制御部62は、求めた移動速度の指標(回転数)から、切替部材7をスライド位置検知部68で検知された位置から目標位置へ所定の時間に到達させるように、駆動調整部61に供給電力を調整させる。つまり、制御部62は、変速用アクチュエータ6の負荷トルクT1と駆動時間によって、該入出力情報検知時の切替部材7の移動速度の指標を求め、求めた移動速度の指標とスライド位置検知部68の検知結果に応じて、切替部材7の移動速度が所定の速度になるように変速用アクチュエータ6の駆動を調整する。この所定の移動速度S2は、変速用アクチュエータ6を所定の時間駆動させたときに、切替部材7をスライド位置検知部68で検知された切替部材7の位置から所定の目標位置に到達させる移動速度となっている。 Specifically, the information detection unit 67 detects the current value A2 and the drive time when the shift actuator 6 is driven as input / output information. As shown in FIG. 15, the control unit 62 calculates the load torque T <b> 1 of the speed change actuator 6 from the current value A <b> 2 detected by the information detection unit 67. In one example, the control unit 62 holds in advance an equation corresponding to the current and load torque characteristic diagram of FIG. 15, and calculates the load torque T1 from the equation and the current value A2. Further, the control unit 62 obtains the rotation speed of the motor 50 at the time of detecting the current value A2 as an index of the moving speed of the switching member 7 from the calculated load torque T1. In this case, the information detection unit 67 may detect the driving time, and the control unit 62 may obtain the rotation speed of the motor 50 from the load torque T1 and the driving time. In one example, the control unit 62 holds in advance a formula corresponding to the characteristic diagram of the load torque and speed (rotation speed) in FIG. 16, and calculates the rotation speed R1 of the motor 50 from the formula and the load torque. The control unit 62 supplies the switching member 7 to the drive adjustment unit 61 so as to reach the target position from the position detected by the slide position detection unit 68 from the position detected by the slide position detection unit 68 based on the obtained moving speed index (rotation speed). Adjust the power. That is, the control unit 62 obtains an index of the moving speed of the switching member 7 when the input / output information is detected based on the load torque T1 and the driving time of the speed change actuator 6, and the obtained moving speed index and the slide position detecting unit 68. In accordance with this detection result, the drive of the shift actuator 6 is adjusted so that the moving speed of the switching member 7 becomes a predetermined speed. The predetermined moving speed S2 is a moving speed that causes the switching member 7 to reach a predetermined target position from the position of the switching member 7 detected by the slide position detection unit 68 when the speed change actuator 6 is driven for a predetermined time. It has become.
 これにより、切替部材7が所定の時間に所定の目標位置に到達し、切替部材7のスライド量不足を解消し、スムーズかつ安定な自動変速を実現するとともに、切替時間が所定の時間から減少することを抑制し、衝突に伴うギアの磨耗や破損を抑制する。 As a result, the switching member 7 reaches a predetermined target position at a predetermined time, eliminates the shortage of the sliding amount of the switching member 7, realizes a smooth and stable automatic shift, and reduces the switching time from the predetermined time. This suppresses the wear and breakage of the gear caused by the collision.
 なお、駆動調整部61の機能は、制御部62、アクチュエータ駆動部66、電力調整部69のいずれが兼ねたものであってもよい。また、電流値A2のかわりに、トルクセンサ等を用いて変速用アクチュエータ6の負荷トルクT1を直接検知し、検知した負荷トルクT1を検知結果として制御部62に入力するものであってもよい。 It should be noted that the function of the drive adjustment unit 61 may be any of the control unit 62, the actuator drive unit 66, and the power adjustment unit 69. Further, instead of the current value A2, a load sensor T1 of the speed change actuator 6 may be directly detected using a torque sensor or the like, and the detected load torque T1 may be input to the control unit 62 as a detection result.
 (実施形態7)
 本実施形態の電動工具においても、情報検知部67とスライド位置検知部68の両検知結果に応じて変速用アクチュエータ6の駆動を調整し、切替部材7を所定の目標位置に所定の時間で至るように設けている。これにより、スムーズ且つ安定な自動変速を実現するとともに、ギア同士の衝突に伴うギアの磨耗や破損も抑制する。しかし、本実施形態においては、移動速度の調整に用いる情報検知部67の検知結果において、実施形態5とは相違する。
(Embodiment 7)
Also in the electric tool of the present embodiment, the drive of the shift actuator 6 is adjusted according to the detection results of both the information detection unit 67 and the slide position detection unit 68, and the switching member 7 is reached at a predetermined target position for a predetermined time. It is provided as follows. As a result, smooth and stable automatic gear shifting is realized, and gear wear and breakage due to a collision between gears is also suppressed. However, in the present embodiment, the detection result of the information detection unit 67 used for adjusting the moving speed is different from that of the fifth embodiment.
 具体的には、情報検知部67は入出力情報として、変速用アクチュエータ6の駆動時の電流値A2と電圧値V4を検知するように構成される。また、制御部62は、図15に示すように、情報検知部67で検知された電流値A2から、変速用アクチュエータ6の負荷トルクT1を算出する。一例において、制御部62は、図15の電流と負荷トルクの特性図に対応する式を予め保持し、その式と電流値A2から負荷トルクT1を演算する。さらに、制御部62は、図16に示すように、算出した負荷トルクT1と、情報検知部67で検知された電圧値V4から、電流値A2検知時の切替部材7の移動速度(モータ50の回転数R1)を推定し、推定結果に応じて駆動調整部61に供給電力を調整させる。一例において、制御部62は、図16の負荷トルクと速度(回転数)の特性図に対応する式を、情報検知部67で検知されるべき電圧値V4別に予め保持し、情報検知部67で検知された電圧値V4に対応する式と負荷トルクからモータ50の回転数R1を演算する。制御部62は、変速用アクチュエータ6の負荷トルクT1によって求めた移動速度の指標と、スライド位置検知部68の検知結果とに基づき、切替部材7の移動速度が所定の移動速度S2となるように供給電圧を駆動調整部61に調整させる。この所定の移動速度S2は、変速用アクチュエータ6を所定の時間駆動させたときに、切替部材7をスライド位置検知部68で検知された切替部材7の位置から所定の目標位置に到達させる移動速度となっている。 Specifically, the information detection unit 67 is configured to detect the current value A2 and the voltage value V4 when the shift actuator 6 is driven as input / output information. Further, as shown in FIG. 15, the control unit 62 calculates the load torque T <b> 1 of the speed change actuator 6 from the current value A <b> 2 detected by the information detection unit 67. In one example, the control unit 62 holds in advance an equation corresponding to the current and load torque characteristic diagram of FIG. 15, and calculates the load torque T1 from the equation and the current value A2. Further, as shown in FIG. 16, the control unit 62 uses the calculated load torque T <b> 1 and the voltage value V <b> 4 detected by the information detection unit 67 to move the switching member 7 when the current value A <b> 2 is detected. The number of rotations R1) is estimated, and the drive adjustment unit 61 adjusts the supply power according to the estimation result. In one example, the control unit 62 holds, in advance, an expression corresponding to the characteristic diagram of the load torque and speed (rotation speed) in FIG. 16 for each voltage value V4 to be detected by the information detection unit 67. The rotational speed R1 of the motor 50 is calculated from the expression corresponding to the detected voltage value V4 and the load torque. Based on the movement speed index obtained from the load torque T1 of the speed change actuator 6 and the detection result of the slide position detection section 68, the control section 62 sets the movement speed of the switching member 7 to a predetermined movement speed S2. The drive adjustment unit 61 adjusts the supply voltage. The predetermined moving speed S2 is a moving speed that causes the switching member 7 to reach a predetermined target position from the position of the switching member 7 detected by the slide position detection unit 68 when the speed change actuator 6 is driven for a predetermined time. It has become.
 これにより、切替部材7が所定の時間に所定の目標位置に到達し、切替部材7のスライド量不足を解消し、スムーズかつ安定な自動変速を実現するとともに、切替時間が所定の時間から減少することを抑制し、衝突に伴うギアの磨耗や破損を抑制する。 As a result, the switching member 7 reaches a predetermined target position at a predetermined time, eliminates the shortage of the sliding amount of the switching member 7, realizes a smooth and stable automatic shift, and reduces the switching time from the predetermined time. This suppresses the wear and breakage of the gear caused by the collision.
 なお、駆動調整部61の機能は、制御部62、アクチュエータ駆動部66、電力調整部69のいずれが兼ねたものであってもよい。また、移動速度の指標を求めるものに限らず、電流値A2検知時の移動速度を求め、求めた移動速度とスライド位置検知部68の検知結果に応じて、変速用アクチュエータ6の駆動を調整するものであってもよい。また、電流値A2のかわりに、トルクセンサ等を用いて変速用アクチュエータ6の負荷トルクT1を直接検知し、検知した負荷トルクT1を検知結果として制御部62に入力するものであってもよい。 It should be noted that the function of the drive adjustment unit 61 may be any of the control unit 62, the actuator drive unit 66, and the power adjustment unit 69. In addition, the movement speed is not limited to the index of movement, and the movement speed at the time of detecting the current value A2 is obtained, and the drive of the shift actuator 6 is adjusted according to the obtained movement speed and the detection result of the slide position detection unit 68. It may be a thing. Further, instead of the current value A2, a load sensor T1 of the speed change actuator 6 may be directly detected using a torque sensor or the like, and the detected load torque T1 may be input to the control unit 62 as a detection result.
 (実施形態8)
 本実施形態の電動工具においても、情報検知部67とスライド位置検知部68の両検知結果に応じて変速用アクチュエータ6の駆動を調整し、切替部材7を所定の目標位置に所定の時間で至るように設けている。これにより、スムーズ且つ安定な自動変速を実現するとともに、ギア同士の衝突に伴うギアの磨耗や破損も抑制する。しかし、本実施形態においては、移動速度の調整に用いる情報検知部67の検知結果において、実施形態7とは相違する。
(Embodiment 8)
Also in the electric tool of the present embodiment, the drive of the shift actuator 6 is adjusted according to the detection results of both the information detection unit 67 and the slide position detection unit 68, and the switching member 7 is reached at a predetermined target position for a predetermined time. It is provided as follows. As a result, smooth and stable automatic gear shifting is realized, and gear wear and breakage due to a collision between gears is also suppressed. However, in the present embodiment, the detection result of the information detection unit 67 used for adjusting the moving speed is different from that in the seventh embodiment.
 具体的には、情報検知部67は入出力情報として、変速用アクチュエータ6の駆動時の電流値A2と動作速度S3を検知するように構成される。また、制御部62は、上述の如く、図15に示すように、情報検知部67で検知された電流値A2から、変速用アクチュエータ6の負荷トルクT1を算出する。さらに、制御部62は、図17に示すように、算出した負荷トルクT1と、情報検知部67で検知された変速用アクチュエータ6の動作速度S3から、該検知時の電圧値V5を推定する。制御部62は、推定した電圧値V5に基づき、駆動調整部61に切替部材7を目標位置へ所定の時間に到達させる移動速度S2になるように供給電圧を調整させる。つまり、制御部62は、変速用アクチュエータ6の負荷トルクT1と動作速度S3によって求めた変速用アクチュエータ6へ印加された電圧値V5と、スライド位置検知部68の検知結果に基づき、切替部材7の移動速度が所定の移動速度S2となるように供給電圧を調整させる。この所定の移動速度S2は、変速用アクチュエータ6を所定の時間駆動させたときに、切替部材7をスライド位置検知部68で検知された切替部材7の位置から所定の目標位置に到達させる移動速度となっている。 Specifically, the information detection unit 67 is configured to detect the current value A2 and the operation speed S3 when the shift actuator 6 is driven as input / output information. Further, as described above, the control unit 62 calculates the load torque T1 of the speed change actuator 6 from the current value A2 detected by the information detection unit 67 as shown in FIG. Further, as shown in FIG. 17, the control unit 62 estimates the voltage value V5 at the time of detection from the calculated load torque T1 and the operation speed S3 of the speed change actuator 6 detected by the information detection unit 67. Based on the estimated voltage value V5, the control unit 62 causes the drive adjustment unit 61 to adjust the supply voltage so that the moving speed S2 causes the switching member 7 to reach the target position for a predetermined time. That is, the control unit 62 determines the switching member 7 based on the voltage value V5 applied to the transmission actuator 6 obtained from the load torque T1 and the operation speed S3 of the transmission actuator 6 and the detection result of the slide position detection unit 68. The supply voltage is adjusted so that the moving speed becomes a predetermined moving speed S2. The predetermined moving speed S2 is a moving speed that causes the switching member 7 to reach a predetermined target position from the position of the switching member 7 detected by the slide position detection unit 68 when the speed change actuator 6 is driven for a predetermined time. It has become.
 これにより、切替部材7が所定の時間に所定の目標位置に到達し、切替部材7のスライド量不足を解消し、スムーズかつ安定な自動変速を実現するとともに、切替時間が所定の時間から減少することを抑制し、衝突に伴うギアの磨耗や破損を抑制する。 As a result, the switching member 7 reaches a predetermined target position at a predetermined time, eliminates the shortage of the sliding amount of the switching member 7, realizes a smooth and stable automatic shift, and reduces the switching time from the predetermined time. This suppresses the wear and breakage of the gear caused by the collision.
 なお、駆動調整部61の機能は、制御部62、アクチュエータ駆動部66、電力調整部69のいずれが兼ねたものであってもよい。また、移動速度S3を求めるものに限らず、電流値A2検知時の移動速度の指標を求め、求めた移動速度の指標とスライド位置検知部68の検知結果に応じて、変速用アクチュエータ6の駆動を調整するものであってもよい。また、電流値A2のかわりに、トルクセンサ等を用いて変速用アクチュエータ6の負荷トルクT1を直接検知し、検知した負荷トルクT1を検知結果として制御部62に入力するものであってもよい。 It should be noted that the function of the drive adjustment unit 61 may be any of the control unit 62, the actuator drive unit 66, and the power adjustment unit 69. In addition to determining the moving speed S3, an index of the moving speed at the time of detecting the current value A2 is determined, and the shift actuator 6 is driven according to the calculated moving speed index and the detection result of the slide position detecting unit 68. You may adjust. Further, instead of the current value A2, a load sensor T1 of the speed change actuator 6 may be directly detected using a torque sensor or the like, and the detected load torque T1 may be input to the control unit 62 as a detection result.
 (実施形態9)
 本実施形態の電動工具においても、制御部62は、駆動調整部61に変速用アクチュエータ6の駆動を調整させるように設けている。しかし、本実施形態においては、切替部材7の移動速度において、実施形態1とは相違する。
(Embodiment 9)
Also in the electric power tool of this embodiment, the control unit 62 is provided so that the drive adjusting unit 61 adjusts the drive of the speed change actuator 6. However, in the present embodiment, the moving speed of the switching member 7 is different from that of the first embodiment.
 具体的には、制御部62は、1速から2速を経由した3速に切り替える制御と、3速から2速を経由して1速に切り替える制御とで切替部材7の移動速度を異なるように制御する。つまり、制御部62は、1速から3速に切り替わる際の切替部材7の移動速度に比べて、3速から1速に切り替わる際の切替部材7の移動速度を速くし、切替部材7のスライド方向に応じて切替時間を異なるものとしている。 Specifically, the control unit 62 changes the moving speed of the switching member 7 between the control for switching from the first speed to the third speed via the second speed and the control for switching from the third speed to the first speed via the second speed. To control. That is, the control unit 62 increases the moving speed of the switching member 7 when switching from the third speed to the first speed compared to the moving speed of the switching member 7 when switching from the first speed to the third speed, and slides the switching member 7. The switching time differs depending on the direction.
 これにより、作業完了後に3速や2速から1速に戻す減速比のリセット動作や、ねじの緩め動作等の作業終期に大きな出力トルクが要求され難いとき等に、1速から2速や3速へ切り替える場合に比べて、自動変速の切替時間を短縮させ、作業効率が高くなる。 As a result, when it is difficult to request a large output torque at the end of the work, such as a reduction ratio reset operation for returning from the 3rd speed or the 2nd speed to the 1st speed after completion of the work, or a screw loosening operation, the 1st speed to the 2nd speed or 3rd speed Compared with the case of switching to high speed, the switching time of automatic shift is shortened, and the working efficiency is increased.
 なお、駆動調整部61の機能は、制御部62、アクチュエータ駆動部66、電力調整部69のいずれが兼ねたものであってもよい。また、1速と2速の間や2速と3速の間で移動速度が異なるものや、減速比の切替動作毎に夫々異なるものであってもよい。また、制御部62は、モータ1の動作負荷の有無等に応じて、自動変速時の切替部材7の移動速度を変更するものであってもよい。 It should be noted that the function of the drive adjustment unit 61 may be any of the control unit 62, the actuator drive unit 66, and the power adjustment unit 69. Further, the moving speed may be different between the first speed and the second speed, the second speed and the third speed, or may be different for each reduction ratio switching operation. Further, the control unit 62 may change the moving speed of the switching member 7 at the time of the automatic shift according to the presence or absence of the operation load of the motor 1.
 ここまで、実施形態1~9の電動工具の詳細な構成について説明した。 Up to this point, the detailed configuration of the power tools of Embodiments 1 to 9 has been described.
 上述のように、実施形態1~9の電動工具では、減速比切替手段は、切替部材7をスライドさせるための変速用アクチュエータ6と、変速用アクチュエータ6の駆動を調整するように構成される駆動調整部61と、モータ1の回転動力を変更するように構成される切替制御部63と、変速用アクチュエータ6を制御するように構成されるアクチュエータ制御部64と、を有するものである。該アクチュエータ制御部64は、変速用アクチュエータ6による切替部材7の時間あたりのスライド量を一定に保つように駆動調整部61を制御するものとなっている。 As described above, in the power tools of Embodiments 1 to 9, the reduction ratio switching means is configured to adjust the drive of the speed change actuator 6 and the speed change actuator 6 for sliding the switch member 7. The adjustment unit 61 includes a switching control unit 63 configured to change the rotational power of the motor 1, and an actuator control unit 64 configured to control the speed change actuator 6. The actuator control unit 64 controls the drive adjustment unit 61 so as to keep the amount of sliding of the switching member 7 by the speed change actuator 6 per time constant.
 該構成を具備する電動工具においては、減速比の切替時に、切替部材7を所定の時間に所定の目標位置に位置させるといった制御が可能となるため、自動的な減速比変更を、スムーズに且つ所定の時間に安定して完了することができる。 In the electric tool having the above configuration, when the reduction ratio is switched, the switching member 7 can be controlled to be positioned at a predetermined target position at a predetermined time, so that the automatic reduction ratio change can be performed smoothly and It can be completed stably at a predetermined time.
 また、実施形態1~9の電動工具において、減速比切替手段は、さらに、変速用アクチュエータ6の入出力情報を検知するように構成される情報検知部67を有し、アクチュエータ制御部64は、情報検知部67の検知結果に応じて駆動調整部61を制御するように構成されている。つまり、変速用アクチュエータ6の入出力情報に応じて、切替部材7の時間あたりのスライド量を調整するといった制御が可能になり、自動的な減速比変更を、よりスムーズに且つ安定して完了することができる。 In the power tools of Embodiments 1 to 9, the reduction ratio switching means further includes an information detection unit 67 configured to detect input / output information of the speed change actuator 6, and the actuator control unit 64 includes: The drive adjustment unit 61 is controlled according to the detection result of the information detection unit 67. In other words, it becomes possible to control the amount of slide per time of the switching member 7 in accordance with the input / output information of the speed change actuator 6, and the automatic reduction ratio change is completed more smoothly and stably. be able to.
 実施形態1の電動工具では、変速用アクチュエータ6の駆動中に、情報検知部67が随時アクチュエータ駆動部66に印加された供給電圧を検知し、駆動調整部61が検知結果に応じて随時変速用アクチュエータ6の駆動を調整するものとなっている。これにより、電源部70の消耗等の電動工具の作業に伴う供給電圧の低下に対応して、切替部材7の移動速度が調整され、変速用アクチュエータ6を所定の時間駆動させたときに、切替部材7を所定の目標位置に到達させることができる。 In the electric power tool of the first embodiment, the information detection unit 67 detects the supply voltage applied to the actuator drive unit 66 at any time while the shift actuator 6 is being driven, and the drive adjustment unit 61 uses the change gear at any time according to the detection result. The drive of the actuator 6 is adjusted. As a result, the moving speed of the switching member 7 is adjusted in response to a decrease in the supply voltage accompanying the work of the power tool such as wear of the power supply unit 70, and the switching is performed when the shifting actuator 6 is driven for a predetermined time. The member 7 can reach a predetermined target position.
 さらに、実施形態2~8の電動工具において、駆動調整部61は、情報検知部67の検知結果に応じて、変速用アクチュエータ6への供給電力を調整するものとなっている。これにより、電源部70の経年劣化等に伴う供給電力の電圧値のばらつきが解消され、変速用アクチュエータ6を所定の時間駆動させたときに、切替部材7を所定の目標位置に位置させ、スムーズ且つ安定的な自動変速を完了することができる。 Furthermore, in the power tools of Embodiments 2 to 8, the drive adjustment unit 61 adjusts the power supplied to the speed change actuator 6 according to the detection result of the information detection unit 67. As a result, the variation in the voltage value of the supplied power due to the aging deterioration of the power supply unit 70 is eliminated, and when the speed change actuator 6 is driven for a predetermined time, the switching member 7 is positioned at a predetermined target position, and smooth In addition, stable automatic transmission can be completed.
 また、実施形態2,3の電動工具において、アクチュエータ制御部64は、駆動調整部61に変速用アクチュエータ6への供給電圧を一定に保持させて、切替部材7の移動速度を一定に保持させるように制御するものとなっている。これにより、一定の供給電圧で変速用アクチュエータ6を駆動させることができ、よりスムーズ且つ安定な減速比変更をすることができるとともに、電圧を一定に保持して給電するため、変速用アクチュエータ6の制御を容易に行うことができる。 In the electric tools of the second and third embodiments, the actuator control unit 64 causes the drive adjustment unit 61 to keep the supply voltage to the speed change actuator 6 constant so that the moving speed of the switching member 7 is kept constant. It is intended to control. As a result, the speed change actuator 6 can be driven with a constant supply voltage, and the speed reduction ratio can be changed more smoothly and stably. Control can be easily performed.
 また、実施形態4の電動工具において、情報検知部67は入出力情報として、変速用アクチュエータ6の駆動時に変速用アクチュエータ6に流れる電流値を検知する。駆動調整部61は、該情報検知部67の検知結果に応じて、変速用アクチュエータ6への供給電力を調整するものとなっている。これにより、変速用アクチュエータ6に印加される供給電圧を一定に調整することができ、所定の目標位置に到達したときの時間あたりのスライド量を一定にすることができる。 In the power tool of the fourth embodiment, the information detection unit 67 detects the current value flowing through the speed change actuator 6 when the speed change actuator 6 is driven as input / output information. The drive adjustment unit 61 adjusts the power supplied to the speed change actuator 6 according to the detection result of the information detection unit 67. Thereby, the supply voltage applied to the speed change actuator 6 can be adjusted to be constant, and the amount of slide per time when the predetermined target position is reached can be made constant.
 また、実施形態5~8の電動工具において、減速比切替手段は、さらに、切替部材7のスライド位置を検知するように構成されるスライド位置検知部68を有する。アクチュエータ制御部64は、スライド位置検知部68の検知結果と情報検知部67の検知結果に応じて、変速用アクチュエータ6への供給電力を調整するものとなっている。これにより、切替部材7の位置に応じて移動速度を調整させる制御が可能となり、移動速度が速くなり過ぎた場合等での切替部材7とギア部材5の衝突を軽減し、ギアの磨耗や破損を抑制することができる。 In the electric tools of Embodiments 5 to 8, the reduction ratio switching means further includes a slide position detection unit 68 configured to detect the slide position of the switching member 7. The actuator control unit 64 adjusts the power supplied to the speed change actuator 6 according to the detection result of the slide position detection unit 68 and the detection result of the information detection unit 67. As a result, it is possible to control to adjust the moving speed according to the position of the switching member 7, reduce the collision between the switching member 7 and the gear member 5 when the moving speed becomes too fast, and wear or break the gear. Can be suppressed.
 さらに、実施形態6~8の電動工具において、情報検知部67は入出力情報として、変速用アクチュエータ6の負荷トルクの指標となるものを検知し、制御部62は、この検知結果を基にして変速用アクチュエータ6の駆動を調整するものとなっている。これにより、負荷トルクに応じて、変速用アクチュエータ6の時間あたりのスライド量を制御することが可能となり、よりスムーズ且つ安定的な自動変速を完了することができる。 Further, in the power tools of the sixth to eighth embodiments, the information detection unit 67 detects input / output information that serves as an index of the load torque of the shift actuator 6, and the control unit 62 uses the detection result as a basis. The drive of the shift actuator 6 is adjusted. As a result, it is possible to control the sliding amount per hour of the speed change actuator 6 according to the load torque, and a smoother and more stable automatic speed change can be completed.
 また、実施形態9の電動工具において、アクチュエータ制御部64は、切替部材7のスライド方向毎に時間あたりのスライド量を異なるように制御するものとなっている。これにより、変速における出力トルクの変更があまり重要にならない場合や、次工程の作業の減速比に迅速に対応させる場合(1速に戻す場合)等での切替時間が短縮され、作業効率が高くなる。 In the power tool of the ninth embodiment, the actuator control unit 64 controls the amount of sliding per time to be different for each sliding direction of the switching member 7. As a result, the switching time is shortened when the change of the output torque at the shift is not so important, or when the speed reduction ratio of the work in the next process is quickly handled (when returning to the first speed), the work efficiency is high. Become.
 以上、本発明を添付図面に示す実施形態に基づいて説明したが、本発明は各実施形態に限定されるものではなく、本発明の意図する範囲内であれば、各実施形態において適宜の設計変更を行うことや、各実施形態の構成を適宜組み合わせて適用することが可能である。 The present invention has been described above based on the embodiments shown in the accompanying drawings. However, the present invention is not limited to each embodiment, and within the intended scope of the present invention, an appropriate design can be used in each embodiment. It is possible to apply changes and to combine the configurations of the embodiments as appropriate.
 また、変速用アクチュエータ6を用いて減速比を切り替えるものであれば、本実施形態のような駆動状態検知部60の検知結果に応じて変速用アクチュエータ6を起動させる自動変速型の電動工具に限らない。例えば、制御部62が作業者の外部操作等による減速比切替指令等を受けることで、制御部62が変速用アクチュエータ6を起動させるものであってもよい。 In addition, as long as the reduction ratio is switched using the speed change actuator 6, it is not limited to the automatic speed change type electric tool that activates the speed change actuator 6 according to the detection result of the drive state detection unit 60 as in the present embodiment. Absent. For example, the control unit 62 may activate the speed change actuator 6 when the control unit 62 receives a reduction ratio switching command or the like by an operator's external operation or the like.

Claims (10)

  1.  駆動源であるモータと、
     前記モータの回転動力を減速してその減速された回転動力を伝達するように構成される減速機構部と、
     前記減速機構部の減速比を切り替えるように構成される減速比切替手段と、
    を具備する電動工具であって、
     前記減速機構部は、軸を備えその軸方向にスライド自在な切替部材と、前記切替部材の前記軸方向のスライド位置に応じて前記切替部材との係合状態と非係合状態が切り替えられるギア部材とを備え、該切替部材及びギア部材を通じて、前記減速比を切り替えるように構成され、
     前記減速比切替手段は、前記切替部材を前記軸方向にスライドさせるように構成される変速用アクチュエータと、前記変速用アクチュエータの駆動を調整するように構成される駆動調整部と、前記減速比の切替時に前記切替部材と前記ギア部材の相対回転速度を低減させるように構成される切替制御部と、前記減速比の切替時に前記変速用アクチュエータを制御するように構成されるアクチュエータ制御部と、を備え、
     前記アクチュエータ制御部は、前記変速用アクチュエータによる前記切替部材の時間あたりのスライド量を一定に保つように前記駆動調整部を制御するように構成される
    ことを特徴とする電動工具。
    A motor as a drive source;
    A speed reduction mechanism configured to decelerate the rotational power of the motor and transmit the reduced rotational power;
    Reduction ratio switching means configured to switch the reduction ratio of the reduction mechanism section;
    An electric tool comprising:
    The speed reduction mechanism includes a switching member that includes a shaft and is slidable in the axial direction, and a gear that is switched between an engagement state and a non-engagement state with the switching member according to a sliding position of the switching member in the axial direction. A member, and is configured to switch the reduction ratio through the switching member and the gear member,
    The reduction ratio switching means includes a speed change actuator configured to slide the switch member in the axial direction, a drive adjustment unit configured to adjust drive of the speed change actuator, and the speed reduction ratio. A switching control unit configured to reduce a relative rotational speed of the switching member and the gear member at the time of switching, and an actuator control unit configured to control the transmission actuator at the time of switching the reduction ratio. Prepared,
    The electric power control device, wherein the actuator control unit is configured to control the drive adjustment unit so as to keep a sliding amount of the switching member per time by the shift actuator constant.
  2.  前記減速比切替手段は、さらに、前記変速用アクチュエータの入出力情報を検知するように構成される情報検知部を備え、
     前記アクチュエータ制御部は、前記情報検知部の検知結果に応じて前記駆動調整部を制御するように構成される
     ことを特徴とする請求項1に記載の電動工具。
    The reduction ratio switching unit further includes an information detection unit configured to detect input / output information of the speed change actuator,
    The electric tool according to claim 1, wherein the actuator control unit is configured to control the drive adjustment unit according to a detection result of the information detection unit.
  3.  前記アクチュエータ制御部は、前記駆動調整部に前記変速用アクチュエータへの供給電圧を一定に保持させて、前記切替部材の移動速度を一定に保持させるように構成されることを特徴とする請求項1または請求項2に記載の電動工具。 2. The actuator control unit according to claim 1, wherein the drive adjustment unit is configured to keep a supply voltage to the shift actuator constant and to keep a moving speed of the switching member constant. Or the electric tool of Claim 2.
  4.  前記情報検知部は前記入出力情報として、前記変速用アクチュエータの起動前に、前記変速用アクチュエータに印加される電圧を検知するように構成され、
     前記駆動調整部は、前記情報検知部の検知結果に応じて、前記変速用アクチュエータへの供給電力を調整するように構成される
     ことを特徴とする請求項2に記載の電動工具。
    The information detection unit is configured to detect, as the input / output information, a voltage applied to the shift actuator before the shift actuator is activated,
    The electric power tool according to claim 2, wherein the drive adjustment unit is configured to adjust electric power supplied to the shift actuator according to a detection result of the information detection unit.
  5.  前記情報検知部は前記入出力情報として、前記変速用アクチュエータの駆動時に前記変速用アクチュエータに流れる電流値を検知するように構成され、
     前記駆動調整部は、前記情報検知部の検知結果に応じて、前記変速用アクチュエータへの供給電力を調整するように構成される
     ことを特徴とする請求項2に記載の電動工具。
    The information detection unit is configured to detect a current value flowing through the shift actuator when the shift actuator is driven as the input / output information.
    The electric power tool according to claim 2, wherein the drive adjustment unit is configured to adjust electric power supplied to the shift actuator according to a detection result of the information detection unit.
  6.  前記減速比切替手段は、さらに、前記切替部材の前記スライド位置を検知するように構成されるスライド位置検知部を備え、
     前記アクチュエータ制御部は、前記スライド位置検知部の検知結果と前記情報検知部の検知結果に応じて、前記変速用アクチュエータへの供給電力を調整するように構成される
     ことを特徴とする請求項2に記載の電動工具。
    The reduction ratio switching means further includes a slide position detector configured to detect the slide position of the switching member,
    The actuator control unit is configured to adjust power supplied to the gearshift actuator according to a detection result of the slide position detection unit and a detection result of the information detection unit. The electric tool as described in.
  7.  前記情報検知部は前記入出力情報として、前記変速用アクチュエータの駆動時間と電流値を検知するように構成されることを特徴とする請求項6に記載の電動工具。 The electric power tool according to claim 6, wherein the information detection unit is configured to detect a drive time and a current value of the shift actuator as the input / output information.
  8.  前記情報検知部は前記入出力情報として、前記変速用アクチュエータの電圧値と電流値を検知するように構成されることを特徴とする請求項6に記載の電動工具。 The electric power tool according to claim 6, wherein the information detection unit is configured to detect a voltage value and a current value of the shift actuator as the input / output information.
  9.  前記情報検知部は前記入出力情報として、前記変速用アクチュエータの動作速度と電流値を検知するように構成されることを特徴とする請求項6に記載の電動工具。 The electric power tool according to claim 6, wherein the information detection unit is configured to detect an operation speed and a current value of the shift actuator as the input / output information.
  10.  前記アクチュエータ制御部は、前記切替部材のスライド方向毎に前記時間あたりのスライド量を異なるように制御するように構成されることを特徴とする請求項1~9のいずれか一項に記載の電動工具。 The electric actuator according to any one of claims 1 to 9, wherein the actuator control unit is configured to control the sliding amount per time to be different for each sliding direction of the switching member. tool.
PCT/JP2012/051545 2011-02-22 2012-01-25 Power tool WO2012114815A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-035371 2011-02-22
JP2011035371A JP5662829B2 (en) 2011-02-22 2011-02-22 Electric tool

Publications (1)

Publication Number Publication Date
WO2012114815A1 true WO2012114815A1 (en) 2012-08-30

Family

ID=46720603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051545 WO2012114815A1 (en) 2011-02-22 2012-01-25 Power tool

Country Status (2)

Country Link
JP (1) JP5662829B2 (en)
WO (1) WO2012114815A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103659700A (en) * 2012-09-07 2014-03-26 松下电器产业株式会社 Power tool
CN103659749A (en) * 2012-09-13 2014-03-26 松下电器产业株式会社 Electric tool
EP2724822A1 (en) * 2012-09-07 2014-04-30 Panasonic Corporation Power tool

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06193699A (en) * 1992-12-25 1994-07-15 Nitto Seiko Co Ltd Automatic reduction mechanism
JPH0868446A (en) * 1994-08-26 1996-03-12 Matsushita Electric Works Ltd Epicyclic transmission gear
JP2009056590A (en) * 2007-08-29 2009-03-19 Positec Power Tools (Suzhou) Co Ltd Motor tool with signal generator
WO2009151059A1 (en) * 2008-06-10 2009-12-17 株式会社マキタ Power tool
WO2010041600A1 (en) * 2008-10-10 2010-04-15 株式会社マキタ Electric tool
WO2010119768A1 (en) * 2009-04-13 2010-10-21 株式会社マキタ Electric tool

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ590829A (en) * 2008-07-29 2013-11-29 Malcolm Glen Kertz Plant growing assembly

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06193699A (en) * 1992-12-25 1994-07-15 Nitto Seiko Co Ltd Automatic reduction mechanism
JPH0868446A (en) * 1994-08-26 1996-03-12 Matsushita Electric Works Ltd Epicyclic transmission gear
JP2009056590A (en) * 2007-08-29 2009-03-19 Positec Power Tools (Suzhou) Co Ltd Motor tool with signal generator
WO2009151059A1 (en) * 2008-06-10 2009-12-17 株式会社マキタ Power tool
WO2010041600A1 (en) * 2008-10-10 2010-04-15 株式会社マキタ Electric tool
WO2010119768A1 (en) * 2009-04-13 2010-10-21 株式会社マキタ Electric tool

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103659700A (en) * 2012-09-07 2014-03-26 松下电器产业株式会社 Power tool
EP2724822A1 (en) * 2012-09-07 2014-04-30 Panasonic Corporation Power tool
EP2724821A1 (en) * 2012-09-07 2014-04-30 Panasonic Corporation Power tool
CN103659749A (en) * 2012-09-13 2014-03-26 松下电器产业株式会社 Electric tool
EP2724823A1 (en) * 2012-09-13 2014-04-30 Panasonic Corporation Power tool

Also Published As

Publication number Publication date
JP5662829B2 (en) 2015-02-04
JP2012171047A (en) 2012-09-10

Similar Documents

Publication Publication Date Title
JP5760173B2 (en) Electric tool
JP5514139B2 (en) Electric tool
JP5357840B2 (en) Electric tool
JP2012135845A (en) Work tool
WO2012114815A1 (en) Power tool
JP2022110220A (en) Electric tool
CN103963029B (en) Power tool
JP5810312B2 (en) Electric tool
JP5963136B2 (en) Electric tool
JP5938628B2 (en) Electric tool
JP5314716B2 (en) Electric tool
JP5891431B2 (en) Transmission
JP5842122B2 (en) Electric tool
JP5842121B2 (en) Electric tool
JP5849222B2 (en) Electric tool
JP5821028B2 (en) Impact tools
WO2020188994A1 (en) Electric tool
JP2022027892A (en) Electric tool
JP2013066943A (en) Power tool
JP2012149756A (en) Multistage speed-change tool
JP2006326764A (en) Rotating tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12749958

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12749958

Country of ref document: EP

Kind code of ref document: A1