WO2012105016A1 - Control device for vehicular power transmission device - Google Patents
Control device for vehicular power transmission device Download PDFInfo
- Publication number
- WO2012105016A1 WO2012105016A1 PCT/JP2011/052183 JP2011052183W WO2012105016A1 WO 2012105016 A1 WO2012105016 A1 WO 2012105016A1 JP 2011052183 W JP2011052183 W JP 2011052183W WO 2012105016 A1 WO2012105016 A1 WO 2012105016A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- clutch
- control
- lock
- engagement
- neutral control
- Prior art date
Links
- 230000005540 biological transmission Effects 0.000 title claims description 119
- 230000007935 neutral effect Effects 0.000 claims description 147
- 239000010720 hydraulic oil Substances 0.000 claims description 79
- 239000012530 fluid Substances 0.000 claims description 20
- 230000001052 transient effect Effects 0.000 claims description 6
- 230000003247 decreasing effect Effects 0.000 claims description 2
- 239000003921 oil Substances 0.000 description 130
- 239000000446 fuel Substances 0.000 description 38
- 230000007423 decrease Effects 0.000 description 20
- 239000002783 friction material Substances 0.000 description 15
- 230000004043 responsiveness Effects 0.000 description 13
- 238000010586 diagram Methods 0.000 description 12
- 238000000034 method Methods 0.000 description 10
- 230000006872 improvement Effects 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 230000002441 reversible effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000000881 depressing effect Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/20—Preventing gear creeping ; Transmission control during standstill, e.g. hill hold control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/14—Control of torque converter lock-up clutches
- F16H61/143—Control of torque converter lock-up clutches using electric control means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/20—Preventing gear creeping ; Transmission control during standstill, e.g. hill hold control
- F16H2061/207—Preventing gear creeping ; Transmission control during standstill, e.g. hill hold control by neutral control
Definitions
- the present invention relates to a control device for a vehicle power transmission device having a neutral control function, and more particularly to a technique for improving the fuel efficiency of a vehicle.
- a vehicle power transmission device including a fluid transmission device that transmits engine power to drive wheels
- power transmission between the output member of the fluid transmission device and the drive wheels during vehicle stop is performed in order to improve fuel consumption.
- neutral control is executed to block or suppress the above.
- the control device for a vehicle power transmission device of Patent Document 1 can be cited as a control device that executes the neutral control.
- the control device of Patent Document 1 basically executes the neutral control when a predetermined neutral control condition is satisfied.
- the heater is in an on state. When the outside air temperature is equal to or lower than the predetermined temperature and the engine water temperature is equal to or lower than the predetermined temperature, the neutral control is not executed.
- the neutral control executed by the control device for a vehicle power transmission device disclosed in Patent Document 1 is such that, while the vehicle is stopped in the D range, the engine clutch is reduced by bringing the starting clutch in the transmission close to the released state, that is, the neutral state, and the vehicle is stopped. It is intended to improve the fuel efficiency.
- the shear resistance generated between the friction materials of the starting clutch is not completely zero. Torque capacity corresponding to The shear resistance acts to reduce the speed ratio of the fluid transmission device and increase the capacity coefficient of the fluid transmission device, so that the engine load during the neutral control is increased.
- the shear resistance increases the engine load, resulting in a poor fuel consumption. Further, the lower the hydraulic oil temperature of the starting clutch, the greater the shear resistance in the released state of the starting clutch, and the engine load tends to increase. On the other hand, the shear resistance of the starting clutch tends to decrease as the rotational speed difference between the friction materials of the starting clutch increases.
- the present invention has been made against the background of the above circumstances, and the object of the present invention is to control a vehicle power transmission device that can improve fuel efficiency by reducing the engine load during the neutral control. To provide an apparatus.
- the gist of the present invention is that: (a) a lockup clutch that mechanically directly connects between input and output members of a fluid transmission device that transmits engine power to drive wheels;
- a power transmission device for a vehicle comprising a power interrupting device for interrupting power transmission between an output member of a fluid transmission device and the drive wheel, wherein the power interrupting device is set to a neutral state in a slipping state or a releasing state when the vehicle is stopped.
- a control device for a vehicle power transmission device that executes control, wherein (b) an engagement force is generated in the lock-up clutch during execution of the neutral control.
- the rotational speed of the output member of the fluid transmission device is increased by the engagement force of the lockup clutch and the input side (engine) of the power interrupting device
- the rotation speed of the power interrupting device is also increased, thereby increasing the rotational speed difference between the input rotating element and the output rotating element of the power interrupting device, and the input rotating element and output side of the power interrupting device.
- the shear resistance generated between the rotating elements is reduced. That is, the drag torque of the power interrupting device due to the shear resistance decreases. As a result, the engine load during the neutral control is reduced, and the fuel efficiency of the vehicle can be improved.
- the fuel consumption is a travel distance per unit fuel consumption
- a reduction in fuel consumption means that the travel distance per unit fuel consumption is shortened, or the fuel consumption rate of the entire vehicle is increased.
- the lower the hydraulic oil temperature of the vehicular power transmission device the greater the number of execution opportunities for the control that generates the engagement force in the lock-up clutch during the execution of the neutral control.
- the drag torque of the power interrupting device is likely to be greater at low temperatures than at high temperatures, so that the advantage of improved fuel efficiency by the lockup clutch engagement control during stopping is effectively obtained. It is possible.
- the engagement force of the lockup clutch is reduced as the hydraulic oil temperature of the vehicle power transmission device is higher. To do. In this way, the influence of the engagement of the lock-up clutch on the responsiveness at the time of return from the neutral control can be suppressed at high temperatures when the responsiveness of the power interrupting device is good. On the other hand, since the responsiveness of the power interrupting device is originally not good at low temperatures, the engagement of the lockup clutch hardly affects the responsiveness at the time of return from the neutral control, and the lockup clutch engagement control during stopping It is possible to obtain a sufficient fuel efficiency improvement effect.
- the engine load temporarily varies when the engagement force is generated in the lockup clutch as compared with the case where the engagement force is generated in the lockup clutch before the release operation of the power interrupting device.
- the width can be suppressed, and deterioration in fuel consumption due to temporary fluctuations in the engine load can be suppressed.
- the engagement force of the lockup clutch is reduced as the engine speed increases.
- the rotational speed difference between the input-side rotating element and the output-side rotating element of the power interrupting device increases as the engine speed increases, and the drag torque of the power interrupting device increases. Tend to decline. Accordingly, in this way, by reducing the engagement force of the lockup clutch in consideration of the rotation speed of the engine, the fuel efficiency improvement effect of the lockup clutch engagement control during stopping is not reduced, It is possible to improve the responsiveness of releasing the lockup clutch when the lockup clutch engagement control during stop is finished.
- the power interrupting device is a wet friction clutch.
- the wet friction clutch is generally used as the power interrupting device in many cases, so that the present invention can be widely applied to specific vehicles.
- the lock-up clutch is released at the end of the neutral control.
- the power interrupting device is fully engaged after the lockup clutch is released.
- FIG. 1 is a skeleton diagram illustrating a configuration of a vehicle drive device to which the present invention is preferably applied.
- FIG. 2 is an operation table for explaining an operation state of engagement elements when a plurality of shift stages (gear stages) are established in the automatic transmission included in the vehicle drive device of FIG. 1.
- a first clutch differential rotation which is a rotational speed difference between the input side friction material and the output side friction material of the clutch C1, and the clutch C1. It is the figure which showed the relationship with the drag torque of this according to the oil temperature of the hydraulic fluid supplied to the clutch C1.
- FIG. 1 is a skeleton diagram illustrating a configuration of a vehicle drive device to which the present invention is preferably applied.
- FIG. 2 is an operation table for explaining an operation state of engagement elements when a plurality of shift stages (gear stages) are established in the automatic transmission included in the vehicle drive device of FIG. 1.
- a first clutch differential rotation which is a rotational speed difference between the input side friction material and the output side friction material of the clutch
- FIG. 2 is a diagram illustrating a relationship between a capacity coefficient and a speed ratio of a torque converter included in the vehicle drive device of FIG. 1.
- a limit speed ratio that is a speed ratio of the torque converter when the shift range of the automatic transmission included in the vehicle drive device of FIG. 1 is the neutral range (N range), that is, when the automatic transmission is in the neutral state, It is the figure which showed the relationship with the input rotational speed of a torque converter according to the hydraulic oil temperature of the clutch C1.
- FIG. 2 is a diagram illustrating various signals input to an electronic control device that controls the vehicle drive device of FIG. 1, and a functional block diagram for explaining a main part of a control function provided in the electronic control device. is there.
- FIG. 7 is a time chart for explaining the operation timing of the clutch C1 and the lockup clutch in the neutral control and the lockup clutch engagement control during stopping executed in parallel with each other by the electronic control unit of FIG.
- the lockup differential pressure that generates the engagement force in the lockup clutch and the hydraulic oil temperature of the automatic transmission that is, the hydraulic oil temperature of the clutch C1.
- FIG. 7 is a diagram illustrating an example of a relationship between a lockup differential pressure that causes an engagement force to be generated in the lockup clutch and an engine rotation speed in the lockup clutch engagement control that is executed by the electronic control device of FIG. 6.
- FIG. 7 is a diagram illustrating an example of a relationship between a lockup differential pressure that causes an engagement force to be generated in the lockup clutch and an engine rotation speed in the lockup clutch engagement control that is executed by the electronic control device of FIG. 6.
- FIG. 7 is a flowchart for explaining a first main part of the control operation of the electronic control device of FIG. 6, that is, a control operation for executing neutral control and switching a control execution flag.
- FIG. 7 is a flowchart for explaining a second main part of the control operation of the electronic control unit of FIG. 6, that is, a control operation for executing lock-up clutch engagement control during stopping in parallel with neutral control.
- FIG. 1 is a skeleton diagram illustrating a configuration of a vehicle drive device 8 (hereinafter referred to as “drive device 8”) to which the present invention is preferably applied.
- the drive device 8 includes a vehicle power transmission device 9 and an engine 10.
- the vehicle power transmission device 9 is connected to the automatic transmission 12 and the output shaft 13 of the engine 10 in a transmission case 30 that is a non-rotating member, and is interposed between the engine 10 and the automatic transmission 12.
- Torque converter 14 is provided.
- the drive device 8 is used suitably for FF vehicle mounted in the left-right direction (horizontal placement) of the vehicle 6 (refer FIG. 6).
- the automatic transmission 12 constitutes a part of a power transmission path between the torque converter 14 and the drive wheels 38 (see FIG. 6), and an output torque TE (hereinafter referred to as “engine torque TE”) of the engine 10 is input.
- the automatic transmission 12 includes a plurality of hydraulic friction engagement devices (clutch C, brake B), specifically five hydraulic friction engagement devices, and one of the plurality of hydraulic friction engagement devices.
- This is a transmission in which a plurality of shift stages (gear stages) are selectively established by re-holding. In short, it is a stepped transmission that performs a so-called clutch-to-clutch shift that is often used in general vehicles.
- the automatic transmission 12 includes a first transmission unit 18 mainly composed of a single pinion type first planetary gear unit 16, a double pinion type second planetary gear unit 20, and a single pinion type third planetary gear unit.
- a second transmission unit 24 having a Ravigneaux type configuration with the device 22 as a main body is provided on a coaxial line, and the rotation of the input shaft 26 is shifted and output from the transmission output rotation member 28.
- the input shaft 26 is a turbine shaft of the torque converter 14 that is rotationally driven by the engine 10 that is an internal combustion engine that supplies power for traveling in this embodiment.
- the transmission output rotating member 28 functions as an output gear, that is, a differential drive gear that meshes with a differential driven gear (large-diameter gear) 34 in order to transmit power to the differential gear device 32 (see FIG. 6). .
- the output of the engine 10 is transmitted to a pair of drive wheels (front wheels) 38 via the torque converter 14, the automatic transmission 12, the differential gear device 32, and a pair of axles 36 (FIG. 6). reference). Accordingly, the higher the output rotation speed Nout (rpm) of the automatic transmission 12 that is the rotation speed of the transmission output rotation member 28, the higher the vehicle speed V (km / h).
- the automatic transmission 12 is substantially symmetrical with respect to the center line, and the lower half of the center line is omitted in FIG.
- FIG. 2 is an operation table for explaining the operation states of the engagement elements when a plurality of shift stages (gear stages) are established in the automatic transmission 12.
- the automatic transmission 12 corresponds to the combination of any one of the rotational states (sun gears S1 to S3, carriers CA1 to CA3, ring gears R1 to R3) of the first transmission unit 18 and the second transmission unit 24.
- Six forward shift stages from the first shift stage “1st” to the sixth shift stage “6th” are established, and the reverse shift stage of the reverse shift stage “R” is established.
- the first speed gear stage is established by the engagement of the clutch C1 and the brake B2
- the second speed gear stage is established by the engagement of the clutch C1 and the brake B1.
- the third gear is set by engagement of the clutch C1 and the brake B3, (4)
- the fourth gear is set by engagement of the clutch C1 and the clutch C2, and (5) The engagement of the clutch C2 and the brake B3.
- the fifth gear is established
- (6) the sixth gear is established by engagement of the clutch C2 and the brake B1.
- the reverse gear is established by the engagement of the brake B2 and the brake B3, and the automatic transmission 12 is basically set to the neutral state by releasing any of the clutches C1, C2, and the brakes B1 to B3. It is configured.
- the forward travel range such as the D range is selected and the vehicle 6 is stopped
- the first shift stage “1st” that is the shift stage on the lowest vehicle speed side is basically established.
- a pair of hydraulic friction engagement devices are engaged in order to achieve a predetermined gear stage, and one of the pair of hydraulic friction engagement devices is When released, the predetermined gear stage is not established, and the power transmission path in the automatic transmission 12 is released to enter a neutral state.
- the clutches C1 and C2 and the brakes B1 to B3 are hydraulic friction members that are engaged and controlled by a hydraulic actuator such as a wet multi-plate clutch or a brake. Engagement and de-energization and current control of the linear solenoid valve provided in the hydraulic control circuit 40 (see FIG. 1) can be switched between engaged and disengaged states, as well as transient oil pressure during engagement and disengagement. Is controlled.
- the clutch C1 and the clutch C2 are always engaged with each other at any one of the forward gears. That is, the engagement of the clutch C1 or the clutch C2 is a requirement for achieving the forward gear stage. Therefore, in the present embodiment, the clutch C1 or the clutch C2 corresponds to a forward clutch (forward clutch).
- so-called neutral control hereinafter sometimes abbreviated as “N control”
- the forward clutch refers to the clutch C1.
- the first shift stage “1st” of the automatic transmission 12 is established except when the neutral control is being executed. It functions as a clutch that selectively cuts off power transmission between the turbine impeller 14b of the torque converter 14 and the drive wheel 38, and corresponds to the power interrupting device of the present invention.
- FIG. 3 shows a rotational speed difference ⁇ N C1 between the input friction material and the output friction material of the clutch C1, that is, a differential rotation ⁇ N C1 of the clutch C1 (hereinafter referred to as a first clutch difference) when the clutch C1 is released.
- the drag torque TD C1 of the clutch C1 in the disengaged state with one of the friction member and the other friction material relative rotation is not in direct contact, is transmitted from the one of the friction material to the other of the friction material Drag torque.
- a wet multi-plate friction clutch such as the clutch C1
- hydraulic oil is interposed between the friction materials in the non-engaged state, and the drag torque is generated by the viscosity of the hydraulic oil.
- the drag torque TD C1 of the clutch C1 increases as the hydraulic oil temperature TEMP OIL decreases. This is because the lower the hydraulic oil temperature TEMP OIL, the higher the viscosity of the hydraulic oil.
- the drag torque TD C1 of the clutch C1 decreases as the first clutch differential rotation ⁇ N C1 increases. This is because the larger the first clutch differential rotation ⁇ N C1 is, the more the hydraulic oil is stirred between the friction materials, and the influence of the hydraulic oil viscosity on the drag torque TD C1 is reduced.
- the clutch C1 is a wet multi-plate friction clutch generally used in a vehicle automatic transmission, and the characteristics shown in FIG. 3 are common to general wet multi-plate friction clutches. Further, the hydraulic oil of the clutch C1 is the hydraulic oil of the automatic transmission 12. For example, the hydraulic oil lubricates rotating members such as gears and bearings included in the automatic transmission 12, and the automatic transmission 12 includes the hydraulic oil.
- the clutch C and the brake B are supplied from the hydraulic control circuit 40 and are also supplied to the torque converter 14.
- the engine 10 is driven to open and close by the throttle actuator 42 based on the electric signal from the throttle actuator 42 and the electronic control unit 52 in the intake pipe that intakes the engine 10.
- the electronic throttle valve 44 is provided.
- the electronic throttle valve 44 is an intake air amount control valve for adjusting the engine torque TE by adjusting the intake air amount Q of the engine 10 while the engine is being driven.
- the engine torque TE increases as the "throttle opening TAP" increases. Therefore, the engine torque TE corresponds to the throttle opening TAP.
- the throttle opening Acc (%) which is the operation amount (depression amount) of the accelerator pedal 48 corresponding to the driver's output request amount, is larger.
- the opening degree TAP (%) is increased.
- the torque converter 14 transmits the driving force generated by the engine 10 to the automatic transmission 12 via the fluid. That is, the torque converter 14 is a fluid transmission device that transmits the power of the engine 10 to the drive wheels 38 via a fluid.
- the torque converter 14 includes a pump impeller 14a connected to an output shaft (crankshaft) 13 of the engine 10, a turbine impeller 14b connected to an input shaft 26 of the automatic transmission 12, and a one-way clutch. And a stator impeller 14 c connected to a housing (transmission case) 30 of the automatic transmission 12.
- the pump impeller 14a is equivalent to an input member of the torque converter 14 because the power of the engine 10 is input, and the turbine impeller 14b outputs the power toward the drive wheels 38, so the torque converter 14 Corresponds to the output member.
- the torque converter 14 includes a lockup clutch 46 that is a direct coupling clutch that mechanically directly connects the pump impeller 14a and the turbine impeller 14b between the pump impeller 14a and the turbine impeller 14b.
- the lock-up clutch 46 is brought into a fully engaged state, a slip state, or a released state by hydraulic control or the like, and in short, selectively connects the pump impeller 14a and the turbine impeller 14b directly.
- FIG. 4 is a diagram showing the relationship between the capacity coefficient C of the torque converter 14 and the speed ratio e.
- the capacity coefficient C of the torque converter 14 decreases as the speed ratio e increases.
- the capacity coefficient C becomes zero when the speed ratio e is 1. Therefore, the neutral control executed by the electronic control unit 52 is intended to improve the fuel consumption by reducing the engine load while the vehicle is stopped. Therefore, the speed ratio e of the torque converter 14 is close to 1 during the neutral control. It is desirable that the capacity coefficient C becomes smaller.
- the torque converter 14 of the present embodiment is a general torque converter connected to a vehicle automatic transmission, and the characteristics shown in FIG. 4 are generally common to vehicle torque converters. Further, in the characteristics shown in FIG. 4, the lockup clutch 46 is always completely released.
- FIG. 5 shows the limit speed ratio e0, which is the speed ratio e of the torque converter 14 when the shift range of the automatic transmission 12 is the neutral range (N range), that is, when the automatic transmission 12 is in the neutral state.
- 14 is a diagram showing a relationship with the input rotational speed Ntcin of 14 according to the hydraulic oil temperature TEMP OIL of the clutch C1.
- FIG. 6 is a diagram illustrating various signals input to the electronic control device 52 and a functional block diagram for explaining a main part of a control function provided in the electronic control device 52.
- the electronic control device 52 has a function as a control device of the driving device 8, and is a so-called microcomputer including, for example, a ROM, a RAM, a CPU, an input / output interface, etc., and the CPU has a temporary storage function of the RAM.
- the input signal is processed according to a program stored in advance in the ROM while being used, and automatic shift control for controlling the linear solenoid valve of the hydraulic control circuit 40, output control of the engine 10, neutral control, and the like are executed.
- the neutral control means that the clutch C1 is brought into a slip state or a disengaged state when a neutral control condition set in advance to reduce the engine load while the vehicle is stopped (stopped) and to improve fuel efficiency is satisfied. In this control, power transmission between the turbine impeller 14b of the torque converter 14 and the drive wheels 38 is suppressed.
- the electronic control unit 52 represents a signal indicating the accelerator opening Acc from the accelerator opening sensor 56, a foot brake operation for depressing the foot brake pedal 60 from the foot brake switch 58, that is, a brake on.
- a signal a signal from the shift position sensor 64 representing the shift position PSH of the shift operating device 62 operated by the driver to switch the traveling range, a signal representing the engine water temperature TEMP W from the engine water temperature sensor 66, a hydraulic oil temperature sensor 68, the signal representing the hydraulic oil temperature TEMP OIL of the automatic transmission 12 from 68, the signal from the engine speed sensor 70 representing the engine speed NE, which is the speed of the engine 10, and the turbine speed NT from the turbine speed sensor 72.
- An output rotational speed Nout of the automatic transmission 12 from the vehicle speed sensor 74 Such as a signal representative of the response to the vehicle speed V is supplied.
- the hydraulic oil of the automatic transmission 12 is also used in the torque converter 14 in common, so it can be said that it is the hydraulic oil of the vehicle power transmission device 9. Therefore, the hydraulic oil temperature TEMP OIL detected by the hydraulic oil temperature sensor 68 is a hydraulic oil temperature TEMP OIL such clutch C1 included in the automatic transmission 12, in other words, the working oil temperature of the vehicle power transmission device 9 TEMP OIL .
- the electronic control unit 52 includes a neutral control condition determination unit 80 as a neutral control condition determination unit, a neutral control execution unit 82 as a neutral control execution unit, and a control execution as a control execution flag switching unit. It includes a flag switching means 84, a control execution flag determining means 86 as a control execution flag determining section, and a stopping lockup clutch engaging control means 88 as a stopping lockup clutch engagement control section.
- the neutral control condition determining means 80 sequentially determines whether or not the neutral control condition is satisfied, that is, whether or not the neutral control condition is satisfied.
- the neutral control condition is (a) the forward travel range is selected by setting the shift position P SH of the shift operation device 62 for operating the shift range of the automatic transmission 12 to the D position or the like. (B) The vehicle is stopped, that is, the vehicle speed V is zero, (c) the accelerator opening Acc is zero, and (d) the vehicle 6 is being braked by the foot brake operation. (E) The fluctuation range of the engine rotation speed NE while the vehicle is stopped is within a predetermined range and is stable.
- the vehicle speed sensor 74 determines whether or not the vehicle is stopped.
- the condition (e) when the engine water temperature TEMP W is extremely low, the fluctuation range of the engine rotation speed NE may be increased due to a change in engine friction or the like. It is provided to prevent neutral control.
- the neutral control condition determining means 80 determines that the neutral control condition is satisfied when all of the above conditions (a) to (e) are satisfied. On the other hand, the neutral control condition determining means 80 determines that the neutral control condition is not satisfied when any one of the conditions (a) to (e) is not satisfied.
- the neutral control conditions shown in the above (a) to (e) are only examples, and are not limited to them. Some of the conditions may be changed or deleted, and other conditions may be added. It does not matter if it is done.
- the neutral control executing unit 82 executes the neutral control, while the neutral control condition is determined to be satisfied.
- the neutral control is continued.
- the neutral control condition determining unit 80 determines that the neutral control condition is not established, for example, when the neutral control condition is switched from established to not established, the neutral control executing unit 82 performs the neutral control. finish. Specifically, to end the neutral control that has been executed is to completely engage the clutch C1 that has been in the slipping state or the releasing state.
- the control execution flag switching means 84 is a lockup clutch engagement control execution flag FLG1act (hereinafter abbreviated as control execution flag FLG1act) that indicates whether or not a lockup clutch engagement control to be described later should be executed. Is switched based on the success or failure of the neutral control condition and the hydraulic oil temperature TEMP OIL of the automatic transmission 12. If the control execution flag FLG1act is ON (ON), it indicates that the lockup clutch engagement control is to be executed while the vehicle is stopped. If the control execution flag FLG1act is OFF (OFF), the vehicle is stopped. It indicates that lockup clutch engagement control should not be executed.
- control execution flag switching means 84 sets the control execution flag FLG1act so that the hydraulic oil temperature TEMP OIL of the automatic transmission 12 is higher than a predetermined oil temperature lower limit TEMP1 OIL and the hydraulic oil temperature thereof. It is sequentially determined whether or not TEMP OIL is lower than a predetermined oil temperature upper limit TEMP2 OIL .
- the oil temperature lower limit value TEMP1 OIL is a threshold value that the below-mentioned stop lock-up clutch engagement control is not executed at a hydraulic oil temperature TEMP OIL below this value, and the hydraulic pressure responsiveness of the lock-up clutch 46 and the like. It is experimentally set in advance in consideration of the market requirements. For example, it is set to about ⁇ 20 ° C.
- the oil temperature upper limit TEMP2 OIL is a threshold that does not run any more hydraulic oil temperature TEMP OIL in the stationary-state lockup clutch engagement control, the neutral control in long more of the hydraulic fluid in temperature TEMP OIL Even if the lock-up clutch 46 is released, the speed ratio e of the torque converter 14 is sufficiently high so that the engine load can be sufficiently reduced, for example, set to about 20 ° C. in advance. Yes.
- the fuel efficiency improvement effect by the lockup clutch engagement control during stopping tends to become higher as the hydraulic oil temperature TEMP OIL is lower, so the hydraulic oil temperature range from the oil temperature lower limit value TEMP1 OIL to the oil temperature upper limit value TEMP2 OIL Is provided close to the low temperature side in the change range of the hydraulic oil temperature TEMP OIL from the time when the automatic transmission 12 is cold to the time when the warm-up is completed.
- the control execution flag switching means 84 is when the hydraulic oil temperature TEMP OIL of the automatic transmission 12 is higher than the oil temperature lower limit value TEMP1 OIL and the hydraulic oil temperature TEMP OIL is lower than the oil temperature upper limit value TEMP2 OIL.
- the control execution flag FLG1act is set to ON.
- the hydraulic oil temperature TEMP OIL is equal to or lower than the oil temperature lower limit value TEMP1 OIL
- the hydraulic control temperature flag TEMP OIL is equal to or higher than the oil temperature upper limit value TEMP2 OIL.
- the control execution flag FLG1act is set to OFF.
- the oil temperature lower limit value TEMP1 OIL is a determination value that is provided in consideration of market demands, and therefore, the oil temperature lower limit value TEMP1 OIL may not be set, that is, the control execution flag switching means 84 may be set. May set the control execution flag FLG1act without determining the oil temperature lower limit value TEMP1 OIL .
- the control execution flag determination means 86 sequentially determines the set state of the control execution flag FLG1act. That is, it is sequentially determined whether the control execution flag FLG1act is ON or OFF.
- the stop lock-up clutch engagement control means 88 When the control execution flag FLG1act is ON, the stop lock-up clutch engagement control means 88 generates a lock-up clutch engagement control during stop so as to generate an engagement force in the lock-up clutch 46 during the neutral control. Execute. That is, if the lockup clutch engagement control during stop is executed, it is executed in parallel with the neutral control. Whether or not the control execution flag FLG1act is ON is based on the determination of the control execution flag determination means 86. For example, when the vehicle is stopped, the lockup clutch engagement control means 88 generates an engagement force on the lockup clutch 46 so that the lockup clutch 46 is completely engaged in the vehicle lockup clutch engagement control.
- first clutch differential rotation .DELTA.N C1 becomes larger than when 46 release.
- stop lock-up clutch engagement control means 88 continues to execute the stop lock-up clutch engagement control while the control execution flag FLG1act is ON. On the other hand, when the control execution flag FLG1act is switched from ON to OFF, the lockup clutch 46 is released and the stopping lockup clutch engagement control is ended.
- FIG. 7 is a time chart for explaining the operation timing of the clutch C1 and the lockup clutch 46 in the neutral control and the locked lockup clutch engagement control executed in parallel with each other.
- FIG. 7 shows a first clutch engagement oil pressure P C1 (hereinafter simply referred to as “C1 oil pressure”) that engages the engine rotation speed NE, the turbine rotation speed NT, and the clutch C1 from the start to the end of the neutral control.
- P C1 a lock-up differential pressure P LU that is a hydraulic pressure for engaging the lock-up clutch 46, and a lock-up control linear solenoid valve SLU included in the hydraulic control circuit 40 controls the lock-up differential pressure P LU .
- lockup clutch command hydraulic pressure P SLU The time chart of the lockup control linear solenoid output pressure P SLU (hereinafter simply referred to as “lockup clutch command hydraulic pressure P SLU ”), which is the command hydraulic pressure to be output, is shown.
- the C1 oil pressure P C1 shown in FIG. 7 corresponds to the engaging force of the clutch C1, and the higher the C1 oil pressure P C1 is, the larger the engaging force of the clutch C1 is.
- the lock-up differential pressure P LU corresponds to the engagement force of the lock-up clutch 46, the engagement force of the lock-up differential pressure P LU lockup clutch 46 is zero or less is a zero, the lock-up differential pressure P The larger the LU , the greater the engagement force of the lockup clutch 46.
- the neutral control execution means 82 starts the neutral control from the time point t1, and specifically, the clutch C1 that has been fully engaged is released from the time point t1. Being started.
- the transitional operation in the release direction of the clutch C1 in the neutral control that is, the release operation started from the time t1 of the clutch C1 is completed. Therefore, at time t2, the first clutch release determination (C1 release determination) that determines that the transient operation in the release direction of the clutch C1 is completed is established.
- the first clutch disengagement determination can determine success or failure from the rise of the turbine rotational speed NT, and FIG. 7 shows that the turbine rotational speed NT is blowing up slightly before time t2 until time t3. Yes. From time t2, the C1 hydraulic pressure P C1 can maintain the clutch C1 in the released state or substantially released state in the neutral control, and also responds when returning from the neutral control by reducing the play of the clutch piston of the clutch C1. The hydraulic pressure P C1N is maintained so that the clutch C1 can be engaged with good performance .
- stop in the lock-up clutch engagement control means 88 first the time t2 the clutch release decision is affirmative, the lockup clutch command oil pressure P the SLU, lock-up differential pressure P LU aim zero and lock-up clutch 46
- the state of the lockup clutch instruction hydraulic pressure P SLU is maintained from the time t2 until the time t3 when the predetermined waiting time TIME WT elapses.
- the waiting time TIME WT is experimentally obtained in advance for the time required for the blow-up of the turbine rotational speed NT accompanying the releasing operation of the clutch C1 at the start of the neutral control to be set to the required time. Yes.
- a lockup engagement start condition is established in which engagement of the lockup clutch 46 is started in the stopped lockup clutch engagement control.
- the lockup clutch engagement control means 88 increases the lockup clutch command hydraulic pressure P SLU with a sweep of a predetermined gradient from the time point t3. That is, the engagement force of the lockup clutch 46 starts to be generated from time t3.
- FIG. 7 also shows that the lockup differential pressure PLU also increases from the time t3 as the sweep of the lockup clutch command oil pressure P SLU increases from the time t3.
- the stop lock-up clutch engagement control means 88 is, in the stop lock-up clutch engagement control, after the time t2 when the transient operation in the release direction of the clutch C1 in the neutral control is completed.
- the lockup clutch 46 starts to generate an engagement force.
- the turbine rotational speed NT is increased from the time point t3 so as to coincide with the engine rotational speed NE by the engagement force of the lockup clutch 46.
- the engine load may temporarily increase due to the inertia of the turbine impeller 14b and the input shaft 26.
- the turbine rotational speed NT is increased from the time point t3 so as to coincide with the engine rotational speed NE by the engaging force of the lock-up clutch 46. If the combined control is not executed, the turbine rotational speed NT during the neutral control is maintained substantially the same as the rotational speed at time t3.
- the time point t4 indicates the time point when the lockup clutch command hydraulic pressure P SLU reaches the hydraulic pressure at which the lockup clutch 46 is completely engaged. That is, in FIG. 7, the turbine rotational speed NT that had been lower than the engine rotational speed NE until the time t4 coincides with the engine rotational speed NE at the time t4. Whether or not the lock-up clutch 46 has been completely engaged can be determined from the rotational speed difference between the engine rotational speed NE and the turbine rotational speed NT. At time t4, the lockup clutch 46 is in a fully engaged state, and therefore a lockup engagement end condition for ending the sweep-up of the lockup clutch command hydraulic pressure P SLU for fully engaging the lockup clutch 46 is established. To do.
- the locked-up clutch engagement control means 88 maintains the lock-up clutch command hydraulic pressure P SLU at the hydraulic pressure at the time point t4.
- the lockup differential pressure PLU is maintained at the oil pressure at the time t4, and the fully engaged state of the lockup clutch 46 is maintained.
- the first clutch differential rotation .DELTA.N C1 increases in response to an increase in the turbine speed NT Figure 3
- the drag torque TD C1 of the clutch C1 decreases, and the engine load decreases compared to before t2. Therefore, the fuel supply amount for maintaining the idling state of the engine 10 is reduced from the time point t4 to the time point t5 as compared with the time before the time point t2.
- the fuel supply amount may be reduced by switching a fuel supply amount reference map that experimentally determines the fuel supply amount at the time of idling of the engine 10, or the idle rotation speed of the engine 10 is maintained at a predetermined rotation speed.
- the fuel supply amount may be reduced by adjusting the fuel supply amount by feedback control.
- the neutral control condition is switched from established to not established because the braking operation of the vehicle 6 is released, for example.
- a neutral control return condition (N control return condition) for returning from the neutral control is satisfied at time t5.
- the neutral control execution means 82 starts to end the neutral control from time t5.
- the C1 oil pressure P C1 is slightly increased in a stepped manner from the oil pressure P C1N before time t5 so that the engagement operation of the clutch C1 can be started immediately.
- the clutch C1 is still released or substantially released.
- the C1 hydraulic pressure P C1 is swept at a predetermined gradient.
- the clutch C1 starts to increase and the engagement force of the clutch C1 begins to increase.
- the clutch C1 reaches the fully engaged state.
- the C1 hydraulic pressure P C1 steadily engages the clutch C1 completely.
- the oil pressure to be maintained, that is, the oil pressure before starting the neutral control is increased stepwise. This time t7 is the end point of the neutral control.
- the stopped lock-up clutch engagement control means 88 starts ending the stopped lock-up clutch engagement control from time t5.
- the locked lock-up clutch engagement control means 88 starts to decrease the lock-up clutch command hydraulic pressure P SLU at a predetermined gradient from time t5 in order to start the releasing operation of the lock-up clutch 46.
- the lockup differential pressure PLU also decreases from time t5.
- the lockup differential pressure PLU becomes zero and the lockup clutch 46 is completely released. ing.
- the lock-up clutch 46 is released, but the engaging force of the clutch C1 is zero or substantially zero. Therefore, the turbine rotational speed NT is once decreased, and from the time t6 until the engaging force of the clutch C1 starts increasing. It is constant. Then, the lockup clutch command hydraulic pressure P SLU reaches zero slightly after time t6. When the lock-up clutch command hydraulic pressure P SLU reaches zero, the lock-up clutch engagement control during stop is terminated. As shown after time t5 in FIG. 7, when the neutral control is finished, the lock-up clutch engagement control means 88 during stoppage reduces the lock-up clutch command hydraulic pressure P SLU by a predetermined gradient to lock up. The clutch 46 is released. Then, the neutral control execution means 82 brings the clutch C1 into a fully engaged state after the lockup clutch 46 is released, that is, after time t6.
- Figure 8 is a hydraulic oil temperature TEMP OIL of the stop in the lock-up clutch engagement lockup cause engagement force to the lock-up clutch 46 in the control differential pressure P LU and the automatic transmission 12 hydraulic oil temperature TEMP OIL i.e. the clutch C1 of It is a figure showing an example of the relationship. As shown in the time chart of FIG.
- a stop in the lock-up clutch engagement control means 88 maintains the lock-up clutch 46 at the time t4 ⁇ t5 fully engaged state, the lock-up differential pressure P LU or locked at that time the engagement force of the lock-up clutch 46 corresponding to the up differential pressure P LU is determined independent of the hydraulic oil temperature TEMP oIL, stop in the lock-up clutch engagement control means 88, in the stationary-state lockup clutch engagement control
- the hydraulic oil temperature TEMP OIL is higher, the engagement force of the lockup clutch 46 may be reduced.
- the higher the hydraulic oil temperature TEMP OIL is that it does not harm in reducing the lock-up differential pressure P LU in t4 ⁇ t5 point in FIG.
- the relationship shown in FIG. 8 is that the engagement of the lockup clutch 46 does not deteriorate the response at the time of return from the neutral control when the hydraulic oil temperature TEMP OIL is high, and the hydraulic oil temperature TEMP OIL is low. Sometimes it is experimentally set in advance so that the drag torque TD C1 of the clutch C1 can be sufficiently reduced. If the relationship shown in FIG. 8 is followed, in FIG.
- the lockup clutch command oil pressure P SLU is controlled so that the pressure P LU becomes a hydraulic pressure determined based on the hydraulic oil temperature TEMP OIL from the relationship shown in FIG. Incidentally, since the lockup clutch command hydraulic pressure P SLU is controlled according to the relationship shown in FIG. 8, for example, the lockup clutch 46 may slip at the time t4 to t5 in FIG.
- Figure 9 is a diagram showing an example of the relationship between the lock-up differential pressure causes the engaging force in the lock-up clutch 46 in the lock-up clutch engagement control during a stop P LU and the engine rotational speed NE.
- a stop in the lock-up clutch engagement control means 88 maintains the lock-up clutch 46 at the time t4 ⁇ t5 fully engaged state, the lock-up differential pressure P LU or locked at that time the engagement force of the lock-up clutch 46 corresponding to the up differential pressure P LU is determined independent of the hydraulic oil temperature TEMP oIL, stop in the lock-up clutch engagement control means 88, in the stationary-state lockup clutch engagement control
- the engine rotation speed NE during the neutral control that is, the idle rotation speed of the engine 10 is controlled so as to increase as the engine water temperature TEMP W decreases, so the engine rotation speed NE at the time t4 to t5 in FIG. It depends on the water temperature TEMP W.
- the relationship shown in FIG. 9 is such that the drag torque TD C1 of the clutch C1 can be sufficiently reduced, and the responsiveness of the lockup clutch 46 and the clutch C1 at the time of return from the neutral control is reduced.
- the lockup clutch instruction hydraulic pressure P SLU is controlled so that the hydraulic pressure is determined by the above.
- the lockup clutch command hydraulic pressure P SLU is controlled according to the relationship shown in FIG. 9, for example, the lockup clutch 46 may slip at the time t4 to t5 in FIG.
- the lockup differential pressure PLU may be controlled according to a relationship in which the relationship shown in FIG. 8 and the relationship shown in FIG. 9 are combined with each other.
- FIG. 10 is a flowchart for explaining a first main part of the control operation of the electronic control unit 52, that is, a control operation for executing the neutral control and switching the control execution flag FLG1act.
- the control operation shown in FIG. 10 is executed alone or in parallel with other control operations.
- step it is determined whether or not the neutral control condition is satisfied. If the determination of SA1 is affirmative, that is, if the neutral control condition is satisfied, the process proceeds to SA2. On the other hand, if the determination of SA1 is negative, that is, if the neutral control condition is not satisfied, the process proceeds to SA6.
- the neutral control is executed. If the neutral control is already being executed, the execution is continued. After SA2, the process proceeds to SA3.
- control execution flag FLG1act is set to ON.
- the stop lock-up clutch engagement control executed according to the control execution flag FLG1act has the drag torque TD C1 of the clutch C1 during the neutral control (N control), and the clutch C1 has details. Since this control is executed for the purpose of reducing the drag torque TD C1 of the friction material, it may be called friction control drag torque reduction control during N control. Further, the control execution flag FLG1act may be referred to as N-control friction material drag torque reduction control execution flag FLG1act.
- control execution flag FLG1act is set to OFF. Also in SA6, the control execution flag FLG1act is set to OFF. After SA6, the process proceeds to SA7.
- SA3 to SA6 correspond to the control execution flag switching means 84.
- the neutral control is terminated. In other words, the end of the neutral control is a return from the neutral control. If the neutral control has not been executed because it has already ended, the state in which the neutral control has not been executed is continued.
- FIG. 11 is a flowchart for explaining a second main part of the control operation of the electronic control unit 52, that is, a control operation for executing the vehicle stop lock-up clutch engagement control in parallel with the neutral control.
- the control operation shown in FIG. 11 is executed alone or in parallel with other control operations.
- SB1 it is determined whether or not the control execution flag FLG1act (the N-control friction material dragging torque reduction control execution flag FLG1act) that is set and changed in any of SA4 to SA6 in FIG. 10 is ON. . If the determination at SB1 is affirmative, that is, if the control execution flag FLG1act is ON, the process proceeds to SB2. On the other hand, when the determination of SB1 is negative, that is, when the control execution flag FLG1act is OFF, the determination of SB1 is made again. In short, SB1 continues until the control execution flag FLG1act is turned on.
- the control execution flag FLG1act the N-control friction material dragging torque reduction control execution flag FLG1act
- SB4 as in SB1, it is determined whether or not the control execution flag FLG1act is ON.
- SB4 determines whether or not the control execution flag FLG1act is ON.
- SB3 continues as long as the control execution flag FLG1act is ON.
- SB4 is negative, that is, when the control execution flag FLG1act is OFF, the process proceeds to SB5.
- SB1 and SB4 correspond to the control execution flag determination means 86.
- SB5 the above-described lock-up clutch engagement control is stopped.
- SB2, SB3, and SB5 correspond to the stop lock-up clutch engagement control means 88.
- the lock-up clutch engagement control means 88 during stopping generates the engagement force in the lock-up clutch 46 during the execution of the neutral control.
- Lock-up clutch engagement control is executed while the vehicle is stopped.
- the turbine rotational speed NT is increased by the engaging force of the lockup clutch 46 and the rotational speed on the input side (engine side) of the clutch C1 is also increased, thereby locking.
- the first clutch differential rotation ⁇ N C1 becomes larger than when the up clutch 46 is released, and the drag torque TD C1 of the clutch C1 decreases as shown in FIG.
- the engine load of the engine 10 in the idling state during the neutral control is reduced, and the fuel consumption of the vehicle 6 can be improved.
- control execution flag switching means 84 is configured such that the hydraulic oil temperature TEMP OIL of the automatic transmission 12 is higher than the oil temperature lower limit value TEMP1 OIL and the hydraulic oil temperature TEMP OIL is the oil temperature upper limit.
- the control execution flag that switches execution of the locked-up lock-up clutch engagement control when the neutral control condition determination means 80 determines that the neutral control condition is satisfied when the value is lower than the value TEMP2 OIL.
- the hydraulic oil temperature range from the oil temperature lower limit value TEMP1 OIL to the oil temperature upper limit value TEMP2 OIL is the change in the hydraulic oil temperature TEMP OIL from the cold state of the automatic transmission 12 to the steady state when the warm-up is completed.
- the control execution flag switching means 84 As the hydraulic oil temperature TEMP OIL of the automatic transmission 12 (hydraulic oil temperature TEMP OIL of vehicle power transmission device 9) is low, the stationary-state lockup clutch engagement control of the execution opportunities Will be increased.
- the responsiveness of the clutch C1 is lower when the hydraulic oil temperature TEMP OIL is low than when it is high, even when the lockup clutch 46 is engaged during the neutral control, The responsiveness hardly deteriorates due to the engagement of the lockup clutch 46. Since as drag torque TD C1 of the clutch C1 is liable person at a low temperature of the working oil temperature TEMP OIL becomes larger than at a high temperature is shown in FIG.
- the stationary-state lockup at low temperatures of the working oil temperature TEMP OIL The fuel efficiency improvement effect by clutch engagement control becomes large.
- the relationship between the fuel efficiency improvement effect and the hydraulic oil temperature TEMP OIL can also be understood from the fact that the limit speed ratio e0 becomes smaller as the hydraulic oil temperature TEMP OIL is lower in the range of the arrow AR01 in FIG.
- the hydraulic oil temperature TEMP OIL is high, if the lock-up clutch 46 is engaged during the neutral control, the influence on the responsiveness at the time of return from the neutral control is likely to increase, as can be seen from FIG.
- the hydraulic oil temperature TEMP OIL is high, the fuel efficiency improvement effect by the locked lockup clutch engagement control is low. Therefore, it is possible to effectively obtain the advantage that fuel efficiency is improved by the lock-up clutch engagement control during stopping.
- the stop-up lockup clutch engagement control means 88 locks up as the hydraulic oil temperature TEMP OIL of the vehicle power transmission device 9 is higher in the stop-up lockup clutch engagement control. Even if the engagement force of the clutch 46 is reduced, there is no problem. In other words, when the engagement force is generated in the lock-up clutch 46 during the neutral control, the engagement force of the lock-up clutch 46 is reduced as the hydraulic oil temperature TEMP OIL of the vehicle power transmission device 9 is higher. It does not matter. By doing so, it is possible to suppress the influence of the engagement of the lockup clutch 46 on the responsiveness at the time of return from the neutral control when the hydraulic oil temperature TEMP OIL has good responsiveness of the clutch C1. it can.
- the stop lock-up clutch engagement control means 88 is configured to release the clutch C ⁇ b> 1 in the neutral control in the stop lock-up clutch engagement control.
- the lockup clutch 46 starts to generate an engaging force from the time t3.
- the lock-up clutch 46 is engaged. Start to produce a resultant force.
- the fluctuation range of the temporary engine load when the engagement force is generated in the lockup clutch 46 can be suppressed. It is possible to suppress the deterioration of fuel consumption due to the temporary fluctuation of the engine load.
- the lock-up clutch engagement control means 88 during stopping is the engagement of the lock-up clutch 46 as the engine speed NE during the control increases in the lock-up clutch engagement control during stop.
- the resultant force can be reduced.
- the engagement force of the lock-up clutch 46 may be reduced as the engine speed NE is higher.
- the first clutch differential rotation ⁇ N C1 increases as the engine speed NE increases, and the drag torque TD C1 of the clutch C1 tends to decrease.
- the effect of improving the fuel efficiency by the lock-up clutch engagement control during stopping can be prevented by reducing the engagement force of the lock-up clutch 46 in consideration of the engine speed NE.
- the clutch C1 is a power interrupting device that is brought into a slipping state or a releasing state during execution of the neutral control and is engaged when returning from the neutral control. It is a friction clutch. Accordingly, since a wet friction clutch is often used as the power interrupting device, the present invention can be widely applied to specific vehicles.
- the C1 oil pressure P C1 is maintained at the oil pressure P C1N from the time t2 to the time t5, but may be zero.
- the turbine rotational speed NT matches the engine rotational speed NE from the time t4 to the time t5, and the lockup clutch 46 is in a fully engaged state.
- the lockup clutch 46 only needs to generate an engagement force between the time t4 and the time t5. For example, the lockup clutch 46 may be slipped without being completely engaged.
- the torque converter 14 is used as a fluid transmission device.
- the torque converter 14 may be replaced with a fluid coupling having no torque amplification action.
- the automatic transmission 12 is a stepped automatic transmission, but may be a CVT capable of continuously shifting.
- a friction clutch capable of interrupting power transmission is interposed between the turbine shaft of the torque converter 14 and the input shaft 26 of the automatic transmission 12.
- the friction clutch corresponds to the power interrupting device of the present invention.
- the automatic transmission 12 is interposed between the torque converter 14 and the drive wheel 38.
- the automatic transmission 12 is connected to the turbine impeller 14b of the torque converter 14 and the drive wheel. 38 may be replaced with a power interrupting device such as a clutch C1 that selectively cuts off power transmission to and from the power source 38.
- the turbine rotation speed NT is increased from the time t3 to the time t4 until it matches the engine rotation speed NE.
- the turbine rotation speed NT is increased from the rotation speed at time t3, and the turbine rotation speed NT at time t4 to t5 is increased. It does not matter if it is below the engine speed NE.
- the flowchart of FIG. 10 includes SA3 and SA5.
- the flowchart of FIG. 10 does not include SA3 and SA5, and may be shifted to SA4 after SA2. There is no problem.
- the control execution flag switching means 84 the lower the hydraulic oil temperature TEMP OIL of the working oil temperature TEMP OIL i.e. the clutch C1 of the automatic transmission 12, the stop in the lock-up clutch engagement control while increasing the execution opportunities, execution opportunities of the stop in the lock-up clutch engagement control, may be much lower the hydraulic oil temperature TEMP oIL throughout the range of variation of hydraulic oil temperature TEMP oIL, hydraulic oil temperature in a portion of the range of variation of TEMP oIL may be much lower the hydraulic oil temperature TEMP oIL.
- the engagement force of the lock-up clutch 46 corresponding to the P LU but decreases the engaging force of the lock-up clutch 46 be comprised small throughout the range of variation of the engine rotational speed NE as the engine rotational speed NE is higher Alternatively, the engine rotational speed NE may be smaller as the engine rotational speed NE is higher in a part of the change range of the engine rotational speed NE.
- Vehicle 9 Vehicle power transmission device 10: Engine 14: Torque converter (fluid transmission device) 14a: Pump impeller (input member) 14b: Turbine wheel (output member) 38: Drive wheel 46: Lock-up clutch 52: Electronic control device (control device) C1: Clutch (power interrupter)
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Control Of Transmission Device (AREA)
Abstract
Provided is a control device for a vehicular power transmission device, which may improve fuel efficiency by reducing engine load during neutral control. During implementation of the neutral control, parking-state lockup clutch engagement control is implemented to generate an engagement force at a lockup clutch (46). Accordingly, during the implementation of the neutral control, a turbine rotation speed (NT) is increased by the engagement force of the lockup clutch (46) and a rotation speed of an input side (engine side) of a clutch (C1) is increased at the same time, through which first differential clutch rotation (ΔNC1) becomes larger compared with when the lockup clutch (46) is released, and a drag torque (TDC1) of the clutch (C1) is reduced. As a result, engine load of an engine (10) remaining in an idling state during the neutral control is reduced and fuel efficiency of a vehicle (6) is improved.
Description
本発明は、ニュートラル制御機能を有する車両用動力伝達装置の制御装置に係り、特に、車両の燃費を向上させる技術に関するものである。
The present invention relates to a control device for a vehicle power transmission device having a neutral control function, and more particularly to a technique for improving the fuel efficiency of a vehicle.
エンジンの動力を駆動輪に向けて伝達する流体伝動装置を備えた車両用動力伝達装置において、燃費向上のため、車両停止中に前記流体伝動装置の出力部材と前記駆動輪との間の動力伝達を遮断又は抑制するニュートラル制御が実行されるということがよく知られている。そのニュートラル制御が実行されることにより、車両停止中においてアイドリング状態にあるエンジンのエンジン負荷が軽減され、車両の燃費向上が図られる。例えば、上記ニュートラル制御を実行する制御装置としては、特許文献1の車両用動力伝達装置の制御装置が挙げられる。その特許文献1の制御装置は、基本的には所定のニュートラル制御条件が成立した場合に前記ニュートラル制御を実行するが、空調装置であるヒーターの性能を確保するため、そのヒーターがオン状態であり、外気温が所定温度以下であり、且つ、エンジン水温が所定温度以下である場合には、上記ニュートラル制御を実行しない。
In a vehicle power transmission device including a fluid transmission device that transmits engine power to drive wheels, power transmission between the output member of the fluid transmission device and the drive wheels during vehicle stop is performed in order to improve fuel consumption. It is well known that neutral control is executed to block or suppress the above. By executing the neutral control, the engine load of the engine that is idling while the vehicle is stopped is reduced, and the fuel efficiency of the vehicle is improved. For example, as a control device that executes the neutral control, the control device for a vehicle power transmission device of Patent Document 1 can be cited. The control device of Patent Document 1 basically executes the neutral control when a predetermined neutral control condition is satisfied. However, in order to ensure the performance of the heater that is an air conditioner, the heater is in an on state. When the outside air temperature is equal to or lower than the predetermined temperature and the engine water temperature is equal to or lower than the predetermined temperature, the neutral control is not executed.
特許文献1の車両用動力伝達装置の制御装置が実行する前記ニュートラル制御は、Dレンジで停車中において、トランスミッション内の発進クラッチを解放状態すなわちニュートラル状態に近付けることでエンジン負荷を低減し、停車中の燃費向上を図るものである。しかし、前記ニュートラル制御において上記発進クラッチが解放状態又はそれに近い状態になっても、その発進クラッチの摩擦材相互間に生じるせん断抵抗は完全に零になるわけではなく、前記発進クラッチにそのせん断抵抗に応じたトルク容量が生じる。そのせん断抵抗は、前記流体伝動装置の速度比を小さくしその流体伝動装置の容量係数を大きくするように作用するので、前記ニュートラル制御中のエンジン負荷を大きくすることになる。従って、前記ニュートラル制御中において、前記発進クラッチに前記せん断抵抗が生じれば、そのせん断抵抗はエンジン負荷を増大し、燃費を悪化させるという未公知の課題があった。更にその発進クラッチの作動油温が低温であるほど、前記発進クラッチの解放状態におけるせん断抵抗は大きくなり、前記エンジン負荷は大きくなる傾向にある。一方、前記発進クラッチにおける前記せん断抵抗は、その発進クラッチの摩擦材相互間の回転速度差が大きくなるほど低下する傾向にある。
The neutral control executed by the control device for a vehicle power transmission device disclosed in Patent Document 1 is such that, while the vehicle is stopped in the D range, the engine clutch is reduced by bringing the starting clutch in the transmission close to the released state, that is, the neutral state, and the vehicle is stopped. It is intended to improve the fuel efficiency. However, even when the starting clutch is in a released state or a state close thereto in the neutral control, the shear resistance generated between the friction materials of the starting clutch is not completely zero. Torque capacity corresponding to The shear resistance acts to reduce the speed ratio of the fluid transmission device and increase the capacity coefficient of the fluid transmission device, so that the engine load during the neutral control is increased. Therefore, if the shear resistance is generated in the starting clutch during the neutral control, the shear resistance increases the engine load, resulting in a poor fuel consumption. Further, the lower the hydraulic oil temperature of the starting clutch, the greater the shear resistance in the released state of the starting clutch, and the engine load tends to increase. On the other hand, the shear resistance of the starting clutch tends to decrease as the rotational speed difference between the friction materials of the starting clutch increases.
本発明は、以上の事情を背景として為されたものであり、その目的とするところは、前記ニュートラル制御中におけるエンジン負荷を低下させることで燃費を向上させることができる車両用動力伝達装置の制御装置を提供することにある。
The present invention has been made against the background of the above circumstances, and the object of the present invention is to control a vehicle power transmission device that can improve fuel efficiency by reducing the engine load during the neutral control. To provide an apparatus.
前記目的を達成するための本発明の要旨とするところは、(a)エンジンの動力を駆動輪に向けて伝達する流体伝動装置の入出力部材間を機械的に直結するロックアップクラッチと、前記流体伝動装置の出力部材と前記駆動輪との間の動力伝達を遮断する動力断続装置とを備えた車両用動力伝達装置において、車両停止中に前記動力断続装置をスリップ状態乃至解放状態とするニュートラル制御を実行する車両用動力伝達装置の制御装置であって、(b)前記ニュートラル制御の実行中に、前記ロックアップクラッチに係合力を生じさせることにある。
In order to achieve the above object, the gist of the present invention is that: (a) a lockup clutch that mechanically directly connects between input and output members of a fluid transmission device that transmits engine power to drive wheels; A power transmission device for a vehicle comprising a power interrupting device for interrupting power transmission between an output member of a fluid transmission device and the drive wheel, wherein the power interrupting device is set to a neutral state in a slipping state or a releasing state when the vehicle is stopped. A control device for a vehicle power transmission device that executes control, wherein (b) an engagement force is generated in the lock-up clutch during execution of the neutral control.
このようにすれば、前記ニュートラル制御の実行中(ニュートラル制御中)において、前記流体伝動装置の出力部材の回転速度が前記ロックアップクラッチの係合力によって引き上げられると共に前記動力断続装置の入力側(エンジン側)の回転速度も引き上げられ、それにより、その動力断続装置の入力側回転要素と出力側回転要素との間の回転速度差が大きくなって、その動力断続装置の入力側回転要素と出力側回転要素との間に生じるせん断抵抗が低下する。すなわち、そのせん断抵抗に起因した動力断続装置の引摺りトルクが低下する。その結果として、前記ニュートラル制御中におけるエンジン負荷が低下し、車両の燃費を向上させることが可能である。
In this way, during the execution of the neutral control (during the neutral control), the rotational speed of the output member of the fluid transmission device is increased by the engagement force of the lockup clutch and the input side (engine) of the power interrupting device The rotation speed of the power interrupting device is also increased, thereby increasing the rotational speed difference between the input rotating element and the output rotating element of the power interrupting device, and the input rotating element and output side of the power interrupting device. The shear resistance generated between the rotating elements is reduced. That is, the drag torque of the power interrupting device due to the shear resistance decreases. As a result, the engine load during the neutral control is reduced, and the fuel efficiency of the vehicle can be improved.
なお、前記ニュートラル制御の実行中に前記ロックアップクラッチに係合力を生じさせる停車中ロックアップクラッチ係合制御では、前記ロックアップクラッチに係合力を生じさせていればよく、そのロックアップクラッチは完全係合状態にされる必要はなくスリップ状態であってもよい。また、前記ニュートラル制御では、前記出力部材と前記駆動輪との間の動力伝達が抑制されるが、その動力伝達の抑制には動力伝達の遮断も含まれる。また、例えば、燃費とは単位燃料消費量当たりの走行距離等であり、燃費の向上とはその単位燃料消費量当たりの走行距離が長くなることであり、或いは、車両全体としての燃料消費率(=燃料消費量/駆動輪出力)が小さくなることである。逆に、燃費の低下とはその単位燃料消費量当たりの走行距離が短くなることであり、或いは、車両全体としての燃料消費率が大きくなることである。
It should be noted that in stopping lock-up clutch engagement control in which engagement force is generated in the lock-up clutch during execution of the neutral control, it is only necessary to generate engagement force in the lock-up clutch. It is not necessary to be in an engaged state, and a slip state may be used. In the neutral control, power transmission between the output member and the driving wheel is suppressed, but suppression of power transmission includes interruption of power transmission. Further, for example, the fuel consumption is a travel distance per unit fuel consumption, and the improvement in fuel consumption is an increase in the travel distance per unit fuel consumption, or the fuel consumption rate ( = Fuel consumption / drive wheel output) is reduced. Conversely, a reduction in fuel consumption means that the travel distance per unit fuel consumption is shortened, or the fuel consumption rate of the entire vehicle is increased.
ここで、好適には、前記車両用動力伝達装置の作動油温が低いほど、前記ニュートラル制御の実行中に前記ロックアップクラッチに係合力を生じさせる制御の実行機会を多くする。このようにすれば、前記動力断続装置の引摺りトルクは低温時の方が高温時よりも大きくなり易いので、前記停車中ロックアップクラッチ係合制御により燃費が向上するという利点を効果的に得ることが可能である。
Here, preferably, the lower the hydraulic oil temperature of the vehicular power transmission device, the greater the number of execution opportunities for the control that generates the engagement force in the lock-up clutch during the execution of the neutral control. In this way, the drag torque of the power interrupting device is likely to be greater at low temperatures than at high temperatures, so that the advantage of improved fuel efficiency by the lockup clutch engagement control during stopping is effectively obtained. It is possible.
また、好適には、前記ニュートラル制御の実行中に前記ロックアップクラッチに係合力を生じさせる場合には、前記車両用動力伝達装置の作動油温が高いほど、そのロックアップクラッチの係合力を小さくする。このようにすれば、前記動力断続装置の応答性が良い高温時には、前記ロックアップクラッチの係合が前記ニュートラル制御からの復帰時の応答性に与える影響を抑制することができる。一方で、低温時には前記動力断続装置の応答性が元々良くないので前記ロックアップクラッチの係合が前記ニュートラル制御からの復帰時の応答性に殆ど影響せず、前記停車中ロックアップクラッチ係合制御による燃費向上効果を十分に得ることが可能である。
Preferably, when the engagement force is generated in the lockup clutch during the execution of the neutral control, the engagement force of the lockup clutch is reduced as the hydraulic oil temperature of the vehicle power transmission device is higher. To do. In this way, the influence of the engagement of the lock-up clutch on the responsiveness at the time of return from the neutral control can be suppressed at high temperatures when the responsiveness of the power interrupting device is good. On the other hand, since the responsiveness of the power interrupting device is originally not good at low temperatures, the engagement of the lockup clutch hardly affects the responsiveness at the time of return from the neutral control, and the lockup clutch engagement control during stopping It is possible to obtain a sufficient fuel efficiency improvement effect.
また、好適には、前記ニュートラル制御の実行中に前記ロックアップクラッチに係合力を生じさせる場合には、そのニュートラル制御における前記動力断続装置の解放方向への過渡的な動作が終了した後に、そのロックアップクラッチに係合力を生じさせ始める。このようにすれば、前記動力断続装置の解放動作前に前記ロックアップクラッチに係合力を生じさせる場合と比較して、前記ロックアップクラッチに係合力を生じさせる際の一時的なエンジン負荷の変動幅を抑制することができ、そのエンジン負荷の一時的な変動に起因した燃費悪化を抑制することが可能である。
Preferably, when an engagement force is generated in the lock-up clutch during the neutral control, after the transient operation in the release direction of the power interrupting device in the neutral control is completed, Begins to generate an engagement force in the lockup clutch. In this case, the engine load temporarily varies when the engagement force is generated in the lockup clutch as compared with the case where the engagement force is generated in the lockup clutch before the release operation of the power interrupting device. The width can be suppressed, and deterioration in fuel consumption due to temporary fluctuations in the engine load can be suppressed.
また、好適には、前記ニュートラル制御の実行中に前記ロックアップクラッチに係合力を生じさせる場合には、前記エンジンの回転速度が高いほど、そのロックアップクラッチの係合力を小さくする。ここで、前記ニュートラル制御中において、前記動力断続装置の入力側回転要素と出力側回転要素との間の回転速度差は前記エンジンの回転速度が高いほど大きくなり、前記動力断続装置の引摺りトルクは低下する傾向にある。従って、このようにすれば、上記エンジンの回転速度を加味して上記ロックアップクラッチの係合力を小さくすることで、前記停車中ロックアップクラッチ係合制御の燃費向上効果を低下させないようにしつつ、前記停車中ロックアップクラッチ係合制御の終了の際に前記ロックアップクラッチを解放させる応答性を向上させることが可能である。
Preferably, when the engagement force is generated in the lockup clutch during the execution of the neutral control, the engagement force of the lockup clutch is reduced as the engine speed increases. Here, during the neutral control, the rotational speed difference between the input-side rotating element and the output-side rotating element of the power interrupting device increases as the engine speed increases, and the drag torque of the power interrupting device increases. Tend to decline. Accordingly, in this way, by reducing the engagement force of the lockup clutch in consideration of the rotation speed of the engine, the fuel efficiency improvement effect of the lockup clutch engagement control during stopping is not reduced, It is possible to improve the responsiveness of releasing the lockup clutch when the lockup clutch engagement control during stop is finished.
また、好適には、前記動力断続装置は湿式の摩擦クラッチである。このようにすれば、上記動力断続装置として一般的に上記湿式の摩擦クラッチが用いられることが多いので、本発明を具体的な車両において広く適用することが可能である。
Also preferably, the power interrupting device is a wet friction clutch. In this case, the wet friction clutch is generally used as the power interrupting device in many cases, so that the present invention can be widely applied to specific vehicles.
また、好適には、前記ニュートラル制御の終了の際には前記ロックアップクラッチを解放させる。
Also preferably, the lock-up clutch is released at the end of the neutral control.
また、好適には、前記ニュートラル制御の終了の際には、前記ロックアップクラッチの解放後に前記動力断続装置を完全係合状態にする。
Also preferably, at the end of the neutral control, the power interrupting device is fully engaged after the lockup clutch is released.
以下、本発明の実施例を図面を参照しつつ詳細に説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
図1は、本発明が好適に適用される車両用駆動装置8(以下、「駆動装置8」という)の構成を説明する骨子図である。駆動装置8は、車両用動力伝達装置9とエンジン10とを備えている。その車両用動力伝達装置9は、非回転部材であるトランスミッションケース30内において、自動変速機12と、エンジン10の出力軸13に連結されてそのエンジン10と自動変速機12との間に介装されたトルクコンバータ14とを備えている。そして、駆動装置8は、車両6(図6参照)の左右方向(横置き)に搭載するFF車両に好適に用いられるものである。
FIG. 1 is a skeleton diagram illustrating a configuration of a vehicle drive device 8 (hereinafter referred to as “drive device 8”) to which the present invention is preferably applied. The drive device 8 includes a vehicle power transmission device 9 and an engine 10. The vehicle power transmission device 9 is connected to the automatic transmission 12 and the output shaft 13 of the engine 10 in a transmission case 30 that is a non-rotating member, and is interposed between the engine 10 and the automatic transmission 12. Torque converter 14 is provided. And the drive device 8 is used suitably for FF vehicle mounted in the left-right direction (horizontal placement) of the vehicle 6 (refer FIG. 6).
自動変速機12は、トルクコンバータ14と駆動輪38(図6参照)との間の動力伝達経路の一部を構成し、エンジン10の出力トルクTE(以下、「エンジントルクTE」という)が入力される変速機である。そして、自動変速機12は、複数の油圧式摩擦係合装置(クラッチC、ブレーキB)具体的には5つの油圧式摩擦係合装置を備え、その複数の油圧式摩擦係合装置の何れかの掴み替えにより複数の変速段(ギヤ段)が選択的に成立させられる変速機である。端的に言えば、一般的な車両によく用いられる所謂クラッチツゥクラッチ変速を行う有段変速機である。その自動変速機12は、シングルピニオン型の第1遊星歯車装置16を主体として構成されている第1変速部18と、ダブルピニオン型の第2遊星歯車装置20およびシングルピニオン型の第3遊星歯車装置22を主体としてラビニヨオ型に構成されている第2変速部24とを同軸線上に有し、入力軸26の回転を変速して変速機出力回転部材28から出力する。その入力軸26は、本実施例では走行用の動力を供給する内燃機関であるエンジン10によって回転駆動されるトルクコンバータ14のタービン軸である。また、上記変速機出力回転部材28は、差動歯車装置32(図6参照)に動力を伝達するためにそのデフドリブンギヤ(大径歯車)34と噛み合う出力歯車すなわちデフドライブギヤとして機能している。上記エンジン10の出力は、トルクコンバータ14、自動変速機12、差動歯車装置32、および一対の車軸36を介して一対の駆動輪(前輪)38へ伝達されるようになっている(図6参照)。従って、変速機出力回転部材28の回転速度である自動変速機12の出力回転速度Nout(rpm)が高いほど車速V(km/h)も高くなり、出力回転速度Noutは、車速Vと一対一で対応する。なお、この自動変速機12は中心線に対して略対称的に構成されており、図1ではその中心線の下半分が省略されている。
The automatic transmission 12 constitutes a part of a power transmission path between the torque converter 14 and the drive wheels 38 (see FIG. 6), and an output torque TE (hereinafter referred to as “engine torque TE”) of the engine 10 is input. Transmission. The automatic transmission 12 includes a plurality of hydraulic friction engagement devices (clutch C, brake B), specifically five hydraulic friction engagement devices, and one of the plurality of hydraulic friction engagement devices. This is a transmission in which a plurality of shift stages (gear stages) are selectively established by re-holding. In short, it is a stepped transmission that performs a so-called clutch-to-clutch shift that is often used in general vehicles. The automatic transmission 12 includes a first transmission unit 18 mainly composed of a single pinion type first planetary gear unit 16, a double pinion type second planetary gear unit 20, and a single pinion type third planetary gear unit. A second transmission unit 24 having a Ravigneaux type configuration with the device 22 as a main body is provided on a coaxial line, and the rotation of the input shaft 26 is shifted and output from the transmission output rotation member 28. The input shaft 26 is a turbine shaft of the torque converter 14 that is rotationally driven by the engine 10 that is an internal combustion engine that supplies power for traveling in this embodiment. The transmission output rotating member 28 functions as an output gear, that is, a differential drive gear that meshes with a differential driven gear (large-diameter gear) 34 in order to transmit power to the differential gear device 32 (see FIG. 6). . The output of the engine 10 is transmitted to a pair of drive wheels (front wheels) 38 via the torque converter 14, the automatic transmission 12, the differential gear device 32, and a pair of axles 36 (FIG. 6). reference). Accordingly, the higher the output rotation speed Nout (rpm) of the automatic transmission 12 that is the rotation speed of the transmission output rotation member 28, the higher the vehicle speed V (km / h). Correspond with. The automatic transmission 12 is substantially symmetrical with respect to the center line, and the lower half of the center line is omitted in FIG.
図2は、自動変速機12において複数の変速段(ギヤ段)を成立させる際の係合要素の作動状態を説明する作動表である。自動変速機12は、第1変速部18および第2変速部24の各回転要素(サンギヤS1~S3、キャリアCA1~CA3、リングギヤR1~R3)のうちのいずれかの連結状態の組み合わせに応じて第1変速段「1st」~第6変速段「6th」の6つの前進変速段が成立させられるとともに、後進変速段「R」の後進変速段が成立させられる。図2に示すように、たとえば前進ギヤ段では、(1)クラッチC1とブレーキB2の係合により第1速ギヤ段が、(2)クラッチC1とブレーキB1の係合により第2速ギヤ段が、(3)クラッチC1とブレーキB3の係合により第3速ギヤ段が、(4)クラッチC1とクラッチC2の係合により第4速ギヤ段が、(5)クラッチC2とブレーキB3の係合により第5速ギヤ段が、(6)クラッチC2とブレーキB1の係合により第6速ギヤ段が、それぞれ成立させられるようになっている。また、ブレーキB2とブレーキB3の係合により後進ギヤ段が成立させられ、クラッチC1、C2、ブレーキB1~B3のいずれも解放されることにより自動変速機12がニュートラル状態となるように基本的に構成されている。例えば、Dレンジ等の前進走行レンジが選択されて車両6が停止している場合には、基本的に、最も低車速側の変速段である第1変速段「1st」が成立させられる。本実施例の自動変速機12では、所定のギヤ段を達成させるために一対の油圧式摩擦係合装置が係合させられるようになっており、その一対の油圧式摩擦係合装置の一方が解放されるとその所定のギヤ段が不成立とされ、自動変速機12内の動力伝達経路が解放されてニュートラル状態となる。
FIG. 2 is an operation table for explaining the operation states of the engagement elements when a plurality of shift stages (gear stages) are established in the automatic transmission 12. The automatic transmission 12 corresponds to the combination of any one of the rotational states (sun gears S1 to S3, carriers CA1 to CA3, ring gears R1 to R3) of the first transmission unit 18 and the second transmission unit 24. Six forward shift stages from the first shift stage “1st” to the sixth shift stage “6th” are established, and the reverse shift stage of the reverse shift stage “R” is established. As shown in FIG. 2, for example, in the forward gear stage, (1) the first speed gear stage is established by the engagement of the clutch C1 and the brake B2, and (2) the second speed gear stage is established by the engagement of the clutch C1 and the brake B1. (3) The third gear is set by engagement of the clutch C1 and the brake B3, (4) The fourth gear is set by engagement of the clutch C1 and the clutch C2, and (5) The engagement of the clutch C2 and the brake B3. Thus, the fifth gear is established, and (6) the sixth gear is established by engagement of the clutch C2 and the brake B1. Further, the reverse gear is established by the engagement of the brake B2 and the brake B3, and the automatic transmission 12 is basically set to the neutral state by releasing any of the clutches C1, C2, and the brakes B1 to B3. It is configured. For example, when the forward travel range such as the D range is selected and the vehicle 6 is stopped, the first shift stage “1st” that is the shift stage on the lowest vehicle speed side is basically established. In the automatic transmission 12 of the present embodiment, a pair of hydraulic friction engagement devices are engaged in order to achieve a predetermined gear stage, and one of the pair of hydraulic friction engagement devices is When released, the predetermined gear stage is not established, and the power transmission path in the automatic transmission 12 is released to enter a neutral state.
図2の作動表は、上記各変速段とクラッチC1、C2、ブレーキB1~B3の作動状態との関係をまとめたものであり、「○」は係合、「◎」はエンジンブレーキ時のみ係合を表している。第1変速段「1st」を成立させるブレーキB2には並列に一方向クラッチF1が設けられているため、発進時(加速時)には必ずしもブレーキB2を係合させる必要は無いのである。また、各変速段の変速比は、第1遊星歯車装置16、第2遊星歯車装置20、および第3遊星歯車装置22の各ギヤ比(=サンギヤの歯数/リングギヤの歯数)ρ1、ρ2、ρ3によって適宜定められる。
The operation table in FIG. 2 summarizes the relationship between the above-mentioned shift speeds and the operation states of the clutches C1, C2 and the brakes B1 to B3. Represents the event. Since the one-way clutch F1 is provided in parallel to the brake B2 that establishes the first shift stage “1st”, it is not always necessary to engage the brake B2 at the time of start (acceleration). Further, the gear ratios of the respective gear stages are the gear ratios of the first planetary gear device 16, the second planetary gear device 20, and the third planetary gear device 22 (= number of teeth of the sun gear / number of teeth of the ring gear) ρ1, ρ2. , Ρ3 as appropriate.
上記クラッチC1、C2、およびブレーキB1~B3(以下、特に区別しない場合は単にクラッチC、ブレーキBという)は、湿式多板型のクラッチやブレーキなど油圧アクチュエータによって係合制御される油圧式摩擦係合装置であり、油圧制御回路40(図1参照)に設けられたリニアソレノイドバルブの励磁、非励磁や電流制御により、係合、解放状態が切り換えられるとともに、係合、解放時の過渡油圧などが制御される。
The clutches C1 and C2 and the brakes B1 to B3 (hereinafter simply referred to as the clutch C and the brake B unless otherwise distinguished) are hydraulic friction members that are engaged and controlled by a hydraulic actuator such as a wet multi-plate clutch or a brake. Engagement and de-energization and current control of the linear solenoid valve provided in the hydraulic control circuit 40 (see FIG. 1) can be switched between engaged and disengaged states, as well as transient oil pressure during engagement and disengagement. Is controlled.
上記クラッチC1およびクラッチC2は、図2に示されるように、前進ギヤ段のいずれにおいてもそれらのうちの一方或いは他方が必ず係合させられる。すなわち、上記クラッチC1またはクラッチC2の係合が前進ギヤ段の達成要件とされており、したがって、本実施例においては、クラッチC1またはクラッチC2がフォワードクラッチ(前進クラッチ)に相当する。なお、本実施例においてはよく知られた所謂ニュートラル制御(以下、「N制御」と略記する場合がある)が実行され、本発明はそのニュートラル制御に関するものであるので、以下の実施例においては、特に言及しない限り、フォワードクラッチ(前進用クラッチ)とはクラッチC1をいうものとする。また、停車中に前進走行レンジが選択されている場合には、上記ニュートラル制御が実行されている場合を除いて自動変速機12の第1変速段「1st」が成立させられるので、クラッチC1は、トルクコンバータ14のタービン翼車14bと駆動輪38との間の動力伝達を選択的に遮断するクラッチとして機能し、本発明の動力断続装置に対応する。
As shown in FIG. 2, the clutch C1 and the clutch C2 are always engaged with each other at any one of the forward gears. That is, the engagement of the clutch C1 or the clutch C2 is a requirement for achieving the forward gear stage. Therefore, in the present embodiment, the clutch C1 or the clutch C2 corresponds to a forward clutch (forward clutch). In this embodiment, so-called neutral control (hereinafter sometimes abbreviated as “N control”) is executed, and the present invention relates to the neutral control. In this embodiment, Unless otherwise specified, the forward clutch (forward clutch) refers to the clutch C1. When the forward travel range is selected while the vehicle is stopped, the first shift stage “1st” of the automatic transmission 12 is established except when the neutral control is being executed. It functions as a clutch that selectively cuts off power transmission between the turbine impeller 14b of the torque converter 14 and the drive wheel 38, and corresponds to the power interrupting device of the present invention.
図3は、クラッチC1の解放時において、クラッチC1が有する入力側の摩擦材と出力側の摩擦材との間の回転速度差ΔNC1すなわちクラッチC1の差回転ΔNC1(以下、第1クラッチ差回転ΔNC1という)と、そのクラッチC1の引摺りトルクTDC1との関係を、クラッチC1に供給される作動油の温度(作動油温)TEMPOILに応じて示した図である。そのクラッチC1の引摺りトルクTDC1とは、相対回転する一方の摩擦材と他方の摩擦材とが直接接触していない非係合状態において、その一方の摩擦材から他方の摩擦材に伝達される引摺りトルク(ドラグトルク)である。クラッチC1など湿式多板型の摩擦クラッチでは、上記非係合状態においてそれらの摩擦材の間に作動油が介在しておりその作動油の粘性によって上記引摺りトルクが発生する。図3に示すように、クラッチC1の引摺りトルクTDC1は作動油温TEMPOILが低いほど大きくなる。これは、作動油温TEMPOILが低いほど上記作動油の粘度が高くなるからである。また、クラッチC1の引摺りトルクTDC1は第1クラッチ差回転ΔNC1が大きいほど小さくなる。これは、第1クラッチ差回転ΔNC1が大きいほど上記摩擦材の間で作動油が攪拌され、上記引摺りトルクTDC1に対する作動油の粘性の影響が軽減されるからである。なお、クラッチC1は車両用自動変速機に一般的に用いられる湿式多板型の摩擦クラッチであり、図3に示す特性は一般的な湿式多板型の摩擦クラッチにおいて共通するものである。また、前記クラッチC1の作動油とは自動変速機12の作動油であり、例えば、その作動油は、自動変速機12が含むギヤやベアリング等の回転部材を潤滑し、自動変速機12が含むクラッチCおよびブレーキBのそれぞれに油圧制御回路40から供給されており、トルクコンバータ14にも供給されている。
FIG. 3 shows a rotational speed difference ΔN C1 between the input friction material and the output friction material of the clutch C1, that is, a differential rotation ΔN C1 of the clutch C1 (hereinafter referred to as a first clutch difference) when the clutch C1 is released. a) that the rotational .DELTA.N C1, the relationship between the drag torque TD C1 of the clutch C1, the temporal changes being shown according to the temperature (hydraulic fluid temperature) TEMP oIL of the hydraulic fluid supplied to the clutch C1. The drag torque TD C1 of the clutch C1, in the disengaged state with one of the friction member and the other friction material relative rotation is not in direct contact, is transmitted from the one of the friction material to the other of the friction material Drag torque. In a wet multi-plate friction clutch such as the clutch C1, hydraulic oil is interposed between the friction materials in the non-engaged state, and the drag torque is generated by the viscosity of the hydraulic oil. As shown in FIG. 3, the drag torque TD C1 of the clutch C1 increases as the hydraulic oil temperature TEMP OIL decreases. This is because the lower the hydraulic oil temperature TEMP OIL, the higher the viscosity of the hydraulic oil. Further, the drag torque TD C1 of the clutch C1 decreases as the first clutch differential rotation ΔN C1 increases. This is because the larger the first clutch differential rotation ΔN C1 is, the more the hydraulic oil is stirred between the friction materials, and the influence of the hydraulic oil viscosity on the drag torque TD C1 is reduced. The clutch C1 is a wet multi-plate friction clutch generally used in a vehicle automatic transmission, and the characteristics shown in FIG. 3 are common to general wet multi-plate friction clutches. Further, the hydraulic oil of the clutch C1 is the hydraulic oil of the automatic transmission 12. For example, the hydraulic oil lubricates rotating members such as gears and bearings included in the automatic transmission 12, and the automatic transmission 12 includes the hydraulic oil. The clutch C and the brake B are supplied from the hydraulic control circuit 40 and are also supplied to the torque converter 14.
図1に戻り、その図1に示すように、エンジン10は、そのエンジン10に吸気を行う吸気管に、スロットルアクチュエータ42と、電子制御装置52からの電気信号に基づきスロットルアクチュエータ42によって開閉駆動される電子スロットル弁44とを備えている。その電子スロットル弁44は、エンジン駆動中においてエンジン10の吸入空気量Qを調節することによりエンジントルクTEを調節するための吸入空気量制御弁であり、電子スロットル弁44の開度TAP(以下、「スロットル開度TAP」という)が大きいほどエンジントルクTEは大きくなる。従って、エンジントルクTEはスロットル開度TAPに対応する。なお、基本的には、予め定められた関係に基づいて、運転者の出力要求量に対応するアクセルペダル48の操作量(踏込量)であるアクセル開度Acc(%)が大きいほど、上記スロットル開度TAP(%)は大きくされる。
Returning to FIG. 1, as shown in FIG. 1, the engine 10 is driven to open and close by the throttle actuator 42 based on the electric signal from the throttle actuator 42 and the electronic control unit 52 in the intake pipe that intakes the engine 10. The electronic throttle valve 44 is provided. The electronic throttle valve 44 is an intake air amount control valve for adjusting the engine torque TE by adjusting the intake air amount Q of the engine 10 while the engine is being driven. The engine torque TE increases as the "throttle opening TAP" increases. Therefore, the engine torque TE corresponds to the throttle opening TAP. Basically, based on a predetermined relationship, the throttle opening Acc (%), which is the operation amount (depression amount) of the accelerator pedal 48 corresponding to the driver's output request amount, is larger. The opening degree TAP (%) is increased.
トルクコンバータ14は、エンジン10により発生させられた駆動力を流体を介して自動変速機12へ伝達する。すなわち、トルクコンバータ14は、エンジン10の動力を駆動輪38に向けて流体を介して伝達する流体伝動装置である。そのトルクコンバータ14は、エンジン10の出力軸(クランク軸)13に連結されたポンプ翼車14aと、自動変速機12の入力軸26に連結されたタービン翼車14bと、一方向クラッチを介して自動変速機12のハウジング(トランスミッションケース)30に連結されたステータ翼車14cとを備えている。このような構成から、ポンプ翼車14aはエンジン10の動力が入力されるのでトルクコンバータ14の入力部材に相当し、タービン翼車14bは駆動輪38に向けて上記動力を出力するのでトルクコンバータ14の出力部材に相当する。また、トルクコンバータ14は、上記ポンプ翼車14a及びタービン翼車14bの間に、それらポンプ翼車14a及びタービン翼車14bを機械的に直結する直結クラッチであるロックアップクラッチ46を備えている。そのロックアップクラッチ46は油圧制御等により、完全係合状態、スリップ状態、或いは解放状態とされるようになっており、要するに、ポンプ翼車14a及びタービン翼車14bを選択的に直結する。このロックアップクラッチ46が完全係合状態とされることにより、上記ポンプ翼車14a及びタービン翼車14bが機械的に直結され一体回転させられる。すなわち、エンジン10のクランク軸13及び自動変速機12の入力軸26が一体回転させられる。
The torque converter 14 transmits the driving force generated by the engine 10 to the automatic transmission 12 via the fluid. That is, the torque converter 14 is a fluid transmission device that transmits the power of the engine 10 to the drive wheels 38 via a fluid. The torque converter 14 includes a pump impeller 14a connected to an output shaft (crankshaft) 13 of the engine 10, a turbine impeller 14b connected to an input shaft 26 of the automatic transmission 12, and a one-way clutch. And a stator impeller 14 c connected to a housing (transmission case) 30 of the automatic transmission 12. With such a configuration, the pump impeller 14a is equivalent to an input member of the torque converter 14 because the power of the engine 10 is input, and the turbine impeller 14b outputs the power toward the drive wheels 38, so the torque converter 14 Corresponds to the output member. The torque converter 14 includes a lockup clutch 46 that is a direct coupling clutch that mechanically directly connects the pump impeller 14a and the turbine impeller 14b between the pump impeller 14a and the turbine impeller 14b. The lock-up clutch 46 is brought into a fully engaged state, a slip state, or a released state by hydraulic control or the like, and in short, selectively connects the pump impeller 14a and the turbine impeller 14b directly. When the lock-up clutch 46 is brought into a completely engaged state, the pump impeller 14a and the turbine impeller 14b are mechanically directly connected and integrally rotated. That is, the crankshaft 13 of the engine 10 and the input shaft 26 of the automatic transmission 12 are rotated together.
図4は、トルクコンバータ14の容量係数Cと速度比eとの関係を表した図である。トルクコンバータ14の速度比eは、ポンプ翼車14aの回転速度NPであるポンプ回転速度NPに対する、タービン翼車14bの回転速度NTであるタービン回転速度NTの比率(e=NT/NP)である。また、トルクコンバータ14の容量係数Cは、ポンプ翼車14aのトルクをTpとすれば「C=Tp/NP2」で算出されるので、同一のポンプ回転速度NP(=エンジン回転速度NE)で比較すれば、容量係数Cが大きいほどエンジン負荷が大きいと言える。図4に示す関係では全体的な傾向として、トルクコンバータ14の容量係数Cは速度比eが高いほど小さくなる。そして、その容量係数Cは速度比eが1であれば零になる。従って、電子制御装置52が実行するニュートラル制御では、停車中のエンジン負荷を低減して燃費向上を図ることを目的としているので、そのニュートラル制御中にはトルクコンバータ14の速度比eが1に近くなり容量係数Cが小さくなることが望ましい。なお、本実施例のトルクコンバータ14は車両用自動変速機に連結される一般的なトルクコンバータであり、図4に示す特性は車両用のトルクコンバータにおいて一般的に共通するものである。また、図4の特性においてロックアップクラッチ46は常に完全に解放されている。
FIG. 4 is a diagram showing the relationship between the capacity coefficient C of the torque converter 14 and the speed ratio e. The speed ratio e of the torque converter 14 is a ratio (e = NT / NP) of the turbine rotational speed NT that is the rotational speed NT of the turbine impeller 14b to the pump rotational speed NP that is the rotational speed NP of the pump impeller 14a. . Further, the capacity coefficient C of the torque converter 14 is calculated as “C = Tp / NP 2 ” when the torque of the pump impeller 14a is Tp, and therefore, at the same pump rotational speed NP (= engine rotational speed NE). In comparison, it can be said that the larger the capacity coefficient C, the greater the engine load. In the relationship shown in FIG. 4, as a general trend, the capacity coefficient C of the torque converter 14 decreases as the speed ratio e increases. The capacity coefficient C becomes zero when the speed ratio e is 1. Therefore, the neutral control executed by the electronic control unit 52 is intended to improve the fuel consumption by reducing the engine load while the vehicle is stopped. Therefore, the speed ratio e of the torque converter 14 is close to 1 during the neutral control. It is desirable that the capacity coefficient C becomes smaller. The torque converter 14 of the present embodiment is a general torque converter connected to a vehicle automatic transmission, and the characteristics shown in FIG. 4 are generally common to vehicle torque converters. Further, in the characteristics shown in FIG. 4, the lockup clutch 46 is always completely released.
図5は、自動変速機12の変速レンジがニュートラルレンジ(Nレンジ)である場合すなわち自動変速機12がニュートラル状態である場合のトルクコンバータ14の速度比eである限界速度比e0と、トルクコンバータ14の入力回転速度Ntcinとの関係を、クラッチC1の作動油温TEMPOILに応じて示した図である。上記トルクコンバータ14の入力回転速度Ntcinは図1の骨子図から明らかなように、ポンプ回転速度NPであり且つエンジン回転速度NEと同一である(Ntcin=NP=NE)。図5に示すように、入力回転速度Ntcinと限界速度比e0との関係は、入力回転速度Ntcinが低いほど限界速度比e0が小さくなる傾向にあり、更に、その傾向は前記作動油温TEMPOILが低いほど顕著なものとなる。これは、図3で説明したように、クラッチC1の引摺りトルクTDC1が、作動油温TEMPOILが低いほど大きくなり、第1クラッチ差回転ΔNC1が小さいほど大きくなるからであると考えられる。また、図5において限界速度比e0が顕著に低下すれば、図4に示すように限界速度比e0が低いほどクラッチC1の解放時の容量係数Cは大きくなるので、そのときのエンジン負荷が増大する。従って、図5に示す関係からすると、停車中などでエンジン10がアイドリングしているような場合には、エンジン10は例えば図5の矢印AR01範囲で示すような低回転速度域で回転しているので、作動油温TEMPOILが低ければ自動変速機12をニュートラル状態にしたとしても、トルクコンバータ14の速度比e0はあまり上がらず、エンジン負荷があまり下がらないと考えられる。本実施例の電子制御装置52は、このようなトルクコンバータ14およびクラッチC1の特性の基でニュートラル制御中にエンジン負荷を低減することができるように、ロックアップクラッチ46の係合制御を行うので、これについて図6および図7を用いて後述する。なお、図5に示す特性は未公知であるが、一般的なトルクコンバータとクラッチ等を含む自動変速機とがエンジン側から直列に連結された車両において共通するものである。また、図5の特性においてロックアップクラッチ46は常に完全に解放されている。
FIG. 5 shows the limit speed ratio e0, which is the speed ratio e of the torque converter 14 when the shift range of the automatic transmission 12 is the neutral range (N range), that is, when the automatic transmission 12 is in the neutral state. 14 is a diagram showing a relationship with the input rotational speed Ntcin of 14 according to the hydraulic oil temperature TEMP OIL of the clutch C1. As is apparent from the skeleton diagram of FIG. 1, the input rotational speed Ntcin of the torque converter 14 is the pump rotational speed NP and is the same as the engine rotational speed NE (Ntcin = NP = NE). As shown in FIG. 5, the relationship between the input rotation speed Ntcin and the limit speed ratio e0 tends to be smaller as the input rotation speed Ntcin is lower, and this tendency is further related to the hydraulic oil temperature TEMP OIL. The lower the value, the more prominent. This is considered because the drag torque TD C1 of the clutch C1 increases as the hydraulic oil temperature TEMP OIL decreases and increases as the first clutch differential rotation ΔN C1 decreases, as described in FIG. . In addition, if the speed limit ratio e0 significantly decreases in FIG. 5, the capacity coefficient C at the time of releasing the clutch C1 increases as the speed limit ratio e0 decreases as shown in FIG. 4, and the engine load at that time increases. To do. Therefore, according to the relationship shown in FIG. 5, when the engine 10 is idling, for example, when the vehicle is stopped, the engine 10 is rotating in a low rotation speed range as indicated by the arrow AR01 range of FIG. Therefore, if the hydraulic oil temperature TEMP OIL is low, even if the automatic transmission 12 is set to the neutral state, the speed ratio e0 of the torque converter 14 does not increase so much and the engine load does not decrease so much. Since the electronic control unit 52 of this embodiment controls the engagement of the lockup clutch 46 so that the engine load can be reduced during the neutral control based on the characteristics of the torque converter 14 and the clutch C1. This will be described later with reference to FIGS. Although the characteristics shown in FIG. 5 are unknown, they are common in a vehicle in which a general torque converter and an automatic transmission including a clutch and the like are connected in series from the engine side. Further, in the characteristics shown in FIG. 5, the lockup clutch 46 is always completely released.
図6は、電子制御装置52に入力される各種信号を例示した図であると共に、電子制御装置52に備えられた制御機能の要部を説明するための機能ブロック線図である。その電子制御装置52は、駆動装置8の制御装置としての機能を有しており、たとえばROM、RAM、CPU、入出力インターフェースなどを含む所謂マイクロコンピュータであって、CPUはRAMの一時記憶機能を利用しつつROMに予め記憶されたプログラムに従って入力信号を処理して、油圧制御回路40のリニアソレノイドバルブを制御する自動変速制御、エンジン10の出力制御、前記ニュートラル制御などを実行する。
FIG. 6 is a diagram illustrating various signals input to the electronic control device 52 and a functional block diagram for explaining a main part of a control function provided in the electronic control device 52. The electronic control device 52 has a function as a control device of the driving device 8, and is a so-called microcomputer including, for example, a ROM, a RAM, a CPU, an input / output interface, etc., and the CPU has a temporary storage function of the RAM. The input signal is processed according to a program stored in advance in the ROM while being used, and automatic shift control for controlling the linear solenoid valve of the hydraulic control circuit 40, output control of the engine 10, neutral control, and the like are executed.
そのニュートラル制御とは、車両停止中(停車中)のエンジン負荷を低減して燃費の向上を図るために予め設定されたニュートラル制御条件が満たされた場合に、クラッチC1をスリップ状態乃至解放状態としてトルクコンバータ14のタービン翼車14bと駆動輪38との間の動力伝達を抑制する制御である。
The neutral control means that the clutch C1 is brought into a slip state or a disengaged state when a neutral control condition set in advance to reduce the engine load while the vehicle is stopped (stopped) and to improve fuel efficiency is satisfied. In this control, power transmission between the turbine impeller 14b of the torque converter 14 and the drive wheels 38 is suppressed.
電子制御装置52には、図6に示すように、アクセル開度センサ56からのアクセル開度Accを表す信号、フットブレーキスイッチ58からのフットブレーキペダル60を踏込むフットブレーキ操作すなわちブレーキオンを表す信号、運転者が走行レンジを切り替えるために操作するシフト操作装置62のシフトポジションPSHを表すシフトポジションセンサ64からの信号、エンジン水温センサ66からのエンジン水温TEMPWを表す信号、作動油温センサ68からの自動変速機12の作動油温TEMPOILを表す信号、エンジン10の回転速度であるエンジン回転速度NEを表すエンジン回転速度センサ70からの信号、タービン回転速度センサ72からのタービン回転速度NTを表す信号、車速センサ74からの自動変速機12の出力回転速度Noutに対応する車速Vを表す信号などが、それぞれ供給される。なお、自動変速機12の作動油はトルクコンバータ14でも共通して用いられているので、車両用動力伝達装置9の作動油であると言える。従って、作動油温センサ68によって検出される作動油温TEMPOILは、自動変速機12に含まれるクラッチC1等の作動油温TEMPOILであり、言い換えれば、車両用動力伝達装置9の作動油温TEMPOILである。
As shown in FIG. 6, the electronic control unit 52 represents a signal indicating the accelerator opening Acc from the accelerator opening sensor 56, a foot brake operation for depressing the foot brake pedal 60 from the foot brake switch 58, that is, a brake on. A signal, a signal from the shift position sensor 64 representing the shift position PSH of the shift operating device 62 operated by the driver to switch the traveling range, a signal representing the engine water temperature TEMP W from the engine water temperature sensor 66, a hydraulic oil temperature sensor 68, the signal representing the hydraulic oil temperature TEMP OIL of the automatic transmission 12 from 68, the signal from the engine speed sensor 70 representing the engine speed NE, which is the speed of the engine 10, and the turbine speed NT from the turbine speed sensor 72. , An output rotational speed Nout of the automatic transmission 12 from the vehicle speed sensor 74 Such as a signal representative of the response to the vehicle speed V is supplied. Note that the hydraulic oil of the automatic transmission 12 is also used in the torque converter 14 in common, so it can be said that it is the hydraulic oil of the vehicle power transmission device 9. Therefore, the hydraulic oil temperature TEMP OIL detected by the hydraulic oil temperature sensor 68 is a hydraulic oil temperature TEMP OIL such clutch C1 included in the automatic transmission 12, in other words, the working oil temperature of the vehicle power transmission device 9 TEMP OIL .
図6に示すように、電子制御装置52は、ニュートラル制御条件判断部としてのニュートラル制御条件判断手段80と、ニュートラル制御実行部としてのニュートラル制御実行手段82と、制御実行フラグ切換部としての制御実行フラグ切換手段84と、制御実行フラグ判断部としての制御実行フラグ判断手段86と、停車中ロックアップクラッチ係合制御部としての停車中ロックアップクラッチ係合制御手段88とを備えている。
As shown in FIG. 6, the electronic control unit 52 includes a neutral control condition determination unit 80 as a neutral control condition determination unit, a neutral control execution unit 82 as a neutral control execution unit, and a control execution as a control execution flag switching unit. It includes a flag switching means 84, a control execution flag determining means 86 as a control execution flag determining section, and a stopping lockup clutch engaging control means 88 as a stopping lockup clutch engagement control section.
ニュートラル制御条件判断手段80は、前記ニュートラル制御条件が満たされたか否か、すなわちそのニュートラル制御条件が成立したか否かを逐次判断する。例えば、そのニュートラル制御条件とは、(a)自動変速機12の変速レンジを操作するためのシフト操作装置62のシフトポジションPSHがDポジション等とされることにより前進走行レンジが選択されていること、(b)停車中すなわち車速Vが零であること、(c)アクセル開度Accが零であること、(d)前記フットブレーキ操作により車両6が制動されている制動操作中であること、(e)停車中におけるエンジン回転速度NEの変動幅は所定範囲内であり安定していること、である。上記(b)の条件である上記停車中か否かの判定では、例えば、所定の判定時間内において車速センサ74が車速パルスを発進しなければ停車中であるものと判断される。また、上記(e)の条件は、エンジン水温TEMPWが極めて低い場合にはエンジンフリクションの変化などに起因してエンジン回転速度NEの変動幅が大きくなることがあり、そのような場合には前記ニュートラル制御を行わないようにするために設けられている。
The neutral control condition determining means 80 sequentially determines whether or not the neutral control condition is satisfied, that is, whether or not the neutral control condition is satisfied. For example, the neutral control condition is (a) the forward travel range is selected by setting the shift position P SH of the shift operation device 62 for operating the shift range of the automatic transmission 12 to the D position or the like. (B) The vehicle is stopped, that is, the vehicle speed V is zero, (c) the accelerator opening Acc is zero, and (d) the vehicle 6 is being braked by the foot brake operation. (E) The fluctuation range of the engine rotation speed NE while the vehicle is stopped is within a predetermined range and is stable. In the determination of whether or not the vehicle is stopped, which is the condition (b), for example, if the vehicle speed sensor 74 does not start a vehicle speed pulse within a predetermined determination time, it is determined that the vehicle is stopped. In the condition (e), when the engine water temperature TEMP W is extremely low, the fluctuation range of the engine rotation speed NE may be increased due to a change in engine friction or the like. It is provided to prevent neutral control.
そして、ニュートラル制御条件判断手段80は、上記(a)~(e)の条件の全てが満たされた場合に、前記ニュートラル制御条件が成立したと判断する。その一方で、ニュートラル制御条件判断手段80は、それら(a)~(e)の条件の何れか1条件が満たされていない場合には、上記ニュートラル制御条件が不成立であると判断する。なお、上記(a)~(e)に示したニュートラル制御条件は一例であってそれらに限定されるものではなく、それらの一部の条件が変更または削除されてもよく、その他の条件が追加されても差し支えない。
The neutral control condition determining means 80 determines that the neutral control condition is satisfied when all of the above conditions (a) to (e) are satisfied. On the other hand, the neutral control condition determining means 80 determines that the neutral control condition is not satisfied when any one of the conditions (a) to (e) is not satisfied. The neutral control conditions shown in the above (a) to (e) are only examples, and are not limited to them. Some of the conditions may be changed or deleted, and other conditions may be added. It does not matter if it is done.
ニュートラル制御実行手段82は、ニュートラル制御条件判断手段80により前記ニュートラル制御条件が成立したと判断された場合には、前記ニュートラル制御を実行し、そのニュートラル制御条件が成立したと判断されている間は、そのニュートラル制御を継続する。そして、ニュートラル制御実行手段82は、ニュートラル制御条件判断手段80により上記ニュートラル制御条件が不成立であると判断された場合、例えばそのニュートラル制御条件が成立から不成立に切り替わった場合には、前記ニュートラル制御を終了する。具体的に、実行していた前記ニュートラル制御を終了することとは、スリップ状態乃至解放状態としていたクラッチC1を完全に係合させることである。
When the neutral control condition determining unit 80 determines that the neutral control condition is satisfied, the neutral control executing unit 82 executes the neutral control, while the neutral control condition is determined to be satisfied. The neutral control is continued. When the neutral control condition determining unit 80 determines that the neutral control condition is not established, for example, when the neutral control condition is switched from established to not established, the neutral control executing unit 82 performs the neutral control. finish. Specifically, to end the neutral control that has been executed is to completely engage the clutch C1 that has been in the slipping state or the releasing state.
制御実行フラグ切換手段84は、後述の停車中ロックアップクラッチ係合制御が実行されるべきか否かを示す停車中ロックアップクラッチ係合制御実行フラグFLG1act(以下、制御実行フラグFLG1actと略することがある)を、前記ニュートラル制御条件の成否と自動変速機12の作動油温TEMPOILとに基づいて切り換える。その制御実行フラグFLG1actがON(オン)であれば上記停車中ロックアップクラッチ係合制御が実行されるべきということを示しており、その制御実行フラグFLG1actがOFF(オフ)であれば上記停車中ロックアップクラッチ係合制御が実行されるべきではないということを示している。
The control execution flag switching means 84 is a lockup clutch engagement control execution flag FLG1act (hereinafter abbreviated as control execution flag FLG1act) that indicates whether or not a lockup clutch engagement control to be described later should be executed. Is switched based on the success or failure of the neutral control condition and the hydraulic oil temperature TEMP OIL of the automatic transmission 12. If the control execution flag FLG1act is ON (ON), it indicates that the lockup clutch engagement control is to be executed while the vehicle is stopped. If the control execution flag FLG1act is OFF (OFF), the vehicle is stopped. It indicates that lockup clutch engagement control should not be executed.
具体的に、制御実行フラグ切換手段84は、前記制御実行フラグFLG1actを設定するために、自動変速機12の作動油温TEMPOILが所定の油温下限値TEMP1OILよりも高く且つその作動油温TEMPOILが所定の油温上限値TEMP2OILよりも低いか否かを逐次判断する。上記油温下限値TEMP1OILは、これ以下の作動油温TEMPOILでは後述の停車中ロックアップクラッチ係合制御を実行しないという閾値であって、ロックアップクラッチ46の油圧応答性等の機能面と市場要求面とを加味して予め実験的に設定されており、例えば車両6の実用的な使用の下での作動油温TEMPOILの最低温度程度である-20℃または-5℃程度に設定されている。上記油温上限値TEMP2OILは、これ以上の作動油温TEMPOILでは上記停車中ロックアップクラッチ係合制御を実行しないという閾値であって、これ以上の作動油温TEMPOILであればニュートラル制御中にロックアップクラッチ46が解放されていてもトルクコンバータ14の速度比eが十分に高くなってエンジン負荷を十分に低減できるように予め実験的に設定されており、例えば20℃程度に設定されている。また、上記停車中ロックアップクラッチ係合制御による燃費向上効果は作動油温TEMPOILが低いほど高くなる傾向にあるので、油温下限値TEMP1OILから油温上限値TEMP2OILまでの作動油温範囲は、自動変速機12の冷間時から暖機が完了した定常時に至るまでの作動油温TEMPOILの変化範囲の中で低温側に寄って設けられている。
Specifically, the control execution flag switching means 84 sets the control execution flag FLG1act so that the hydraulic oil temperature TEMP OIL of the automatic transmission 12 is higher than a predetermined oil temperature lower limit TEMP1 OIL and the hydraulic oil temperature thereof. It is sequentially determined whether or not TEMP OIL is lower than a predetermined oil temperature upper limit TEMP2 OIL . The oil temperature lower limit value TEMP1 OIL is a threshold value that the below-mentioned stop lock-up clutch engagement control is not executed at a hydraulic oil temperature TEMP OIL below this value, and the hydraulic pressure responsiveness of the lock-up clutch 46 and the like. It is experimentally set in advance in consideration of the market requirements. For example, it is set to about −20 ° C. or −5 ° C. which is the minimum temperature of the hydraulic oil temperature TEMP OIL under practical use of the vehicle 6. Has been. The oil temperature upper limit TEMP2 OIL is a threshold that does not run any more hydraulic oil temperature TEMP OIL in the stationary-state lockup clutch engagement control, the neutral control in long more of the hydraulic fluid in temperature TEMP OIL Even if the lock-up clutch 46 is released, the speed ratio e of the torque converter 14 is sufficiently high so that the engine load can be sufficiently reduced, for example, set to about 20 ° C. in advance. Yes. In addition, the fuel efficiency improvement effect by the lockup clutch engagement control during stopping tends to become higher as the hydraulic oil temperature TEMP OIL is lower, so the hydraulic oil temperature range from the oil temperature lower limit value TEMP1 OIL to the oil temperature upper limit value TEMP2 OIL Is provided close to the low temperature side in the change range of the hydraulic oil temperature TEMP OIL from the time when the automatic transmission 12 is cold to the time when the warm-up is completed.
そして、制御実行フラグ切換手段84は、自動変速機12の作動油温TEMPOILが油温下限値TEMP1OILよりも高く且つその作動油温TEMPOILが油温上限値TEMP2OILよりも低い場合であって、ニュートラル制御条件判断手段80により前記ニュートラル制御条件が成立したと判断された場合には、前記制御実行フラグFLG1actをONに設定する。一方で、制御実行フラグ切換手段84は、上記作動油温TEMPOILが油温下限値TEMP1OIL以下である場合、その作動油温TEMPOILが油温上限値TEMP2OIL以上である場合、または、上記ニュートラル制御条件が不成立であると判断された場合には、前記制御実行フラグFLG1actをOFFに設定する。なお、油温下限値TEMP1OILは市場要求面を加味して設けられた判定値であるので、この油温下限値TEMP1OILが設定されていなくても差し支えなく、すなわち、制御実行フラグ切換手段84は、油温下限値TEMP1OILに関する判断をせずに前記制御実行フラグFLG1actを設定してもよい。
The control execution flag switching means 84 is when the hydraulic oil temperature TEMP OIL of the automatic transmission 12 is higher than the oil temperature lower limit value TEMP1 OIL and the hydraulic oil temperature TEMP OIL is lower than the oil temperature upper limit value TEMP2 OIL. When the neutral control condition determining means 80 determines that the neutral control condition is satisfied, the control execution flag FLG1act is set to ON. On the other hand, when the hydraulic oil temperature TEMP OIL is equal to or lower than the oil temperature lower limit value TEMP1 OIL , the hydraulic control temperature flag TEMP OIL is equal to or higher than the oil temperature upper limit value TEMP2 OIL. When it is determined that the neutral control condition is not satisfied, the control execution flag FLG1act is set to OFF. Note that the oil temperature lower limit value TEMP1 OIL is a determination value that is provided in consideration of market demands, and therefore, the oil temperature lower limit value TEMP1 OIL may not be set, that is, the control execution flag switching means 84 may be set. May set the control execution flag FLG1act without determining the oil temperature lower limit value TEMP1 OIL .
制御実行フラグ判断手段86は、前記制御実行フラグFLG1actの設定状態を逐次判断する。すなわち、その制御実行フラグFLG1actがONであるのかOFFであるのかを逐次判断する。
The control execution flag determination means 86 sequentially determines the set state of the control execution flag FLG1act. That is, it is sequentially determined whether the control execution flag FLG1act is ON or OFF.
停車中ロックアップクラッチ係合制御手段88は、上記制御実行フラグFLG1actがONである場合には、前記ニュートラル制御の実行中にロックアップクラッチ46に係合力を生じさせる停車中ロックアップクラッチ係合制御を実行する。すなわち、上記停車中ロックアップクラッチ係合制御は実行されるとすれば上記ニュートラル制御と並行して実行される。上記制御実行フラグFLG1actがONであるか否かは制御実行フラグ判断手段86の判断に基づく。例えば、停車中ロックアップクラッチ係合制御手段88は、上記停車中ロックアップクラッチ係合制御では、ロックアップクラッチ46を完全係合させるようにロックアップクラッチ46に係合力を生じさせる。これにより、トルクコンバータ14のポンプ翼車14aとタービン翼車14bとが一体回転してタービン回転速度NT(=入力軸26の回転速度NIN)がエンジン回転速度NEにまで引き上げられ、ロックアップクラッチ46の解放時よりも第1クラッチ差回転ΔNC1が大きくなる。
When the control execution flag FLG1act is ON, the stop lock-up clutch engagement control means 88 generates a lock-up clutch engagement control during stop so as to generate an engagement force in the lock-up clutch 46 during the neutral control. Execute. That is, if the lockup clutch engagement control during stop is executed, it is executed in parallel with the neutral control. Whether or not the control execution flag FLG1act is ON is based on the determination of the control execution flag determination means 86. For example, when the vehicle is stopped, the lockup clutch engagement control means 88 generates an engagement force on the lockup clutch 46 so that the lockup clutch 46 is completely engaged in the vehicle lockup clutch engagement control. As a result, the pump impeller 14a and the turbine impeller 14b of the torque converter 14 rotate integrally, and the turbine rotational speed NT (= the rotational speed N IN of the input shaft 26) is increased to the engine rotational speed NE. first clutch differential rotation .DELTA.N C1 becomes larger than when 46 release.
また、停車中ロックアップクラッチ係合制御手段88は、上記制御実行フラグFLG1actがONである間は、上記停車中ロックアップクラッチ係合制御を継続して実行する。一方で、上記制御実行フラグFLG1actがONからOFFに切り換えられた場合には、ロックアップクラッチ46を解放して上記停車中ロックアップクラッチ係合制御を終了する。
Further, the stop lock-up clutch engagement control means 88 continues to execute the stop lock-up clutch engagement control while the control execution flag FLG1act is ON. On the other hand, when the control execution flag FLG1act is switched from ON to OFF, the lockup clutch 46 is released and the stopping lockup clutch engagement control is ended.
図7は、互いに並行して実行される前記ニュートラル制御と前記停車中ロックアップクラッチ係合制御とにおいて、クラッチC1及びロックアップクラッチ46の作動タイミングなどを説明するためのタイムチャートである。具体的に図7には、前記ニュートラル制御の開始前から終了後にわたって、エンジン回転速度NE、タービン回転速度NT、クラッチC1を係合させる第1クラッチ係合油圧PC1(以下、単に「C1油圧PC1」という)、ロックアップクラッチ46を係合させる油圧であるロックアップ差圧PLU、及び、油圧制御回路40に含まれるロックアップ制御用リニアソレノイドバルブSLUがロックアップ差圧PLUを制御するために出力する指示油圧であるロックアップ制御用リニアソレノイド出力圧PSLU(以下、単に「ロックアップクラッチ指示油圧PSLU」という)のタイムチャートがそれぞれ表されている。図7に示すC1油圧PC1はクラッチC1の係合力に対応しており、C1油圧PC1が高いほどクラッチC1の係合力は大きくなる。また、ロックアップ差圧PLUはロックアップクラッチ46の係合力に対応しており、ロックアップ差圧PLUが零以下ではロックアップクラッチ46の係合力は零であって、ロックアップ差圧PLUが大きいほどロックアップクラッチ46の係合力は大きくなる。
FIG. 7 is a time chart for explaining the operation timing of the clutch C1 and the lockup clutch 46 in the neutral control and the locked lockup clutch engagement control executed in parallel with each other. Specifically, FIG. 7 shows a first clutch engagement oil pressure P C1 (hereinafter simply referred to as “C1 oil pressure”) that engages the engine rotation speed NE, the turbine rotation speed NT, and the clutch C1 from the start to the end of the neutral control. P C1 ”), a lock-up differential pressure P LU that is a hydraulic pressure for engaging the lock-up clutch 46, and a lock-up control linear solenoid valve SLU included in the hydraulic control circuit 40 controls the lock-up differential pressure P LU . The time chart of the lockup control linear solenoid output pressure P SLU (hereinafter simply referred to as “lockup clutch command hydraulic pressure P SLU ”), which is the command hydraulic pressure to be output, is shown. The C1 oil pressure P C1 shown in FIG. 7 corresponds to the engaging force of the clutch C1, and the higher the C1 oil pressure P C1 is, the larger the engaging force of the clutch C1 is. The lock-up differential pressure P LU corresponds to the engagement force of the lock-up clutch 46, the engagement force of the lock-up differential pressure P LU lockup clutch 46 is zero or less is a zero, the lock-up differential pressure P The larger the LU , the greater the engagement force of the lockup clutch 46.
図7ではt1時点前において、既に前記ニュートラル制御条件が成立し、且つ、前記制御実行フラグFLG1actがONに切り換わっている。そのため、C1油圧PC1のタイムチャートから判るように、ニュートラル制御実行手段82がt1時点から前記ニュートラル制御を開始しており、具体的には、完全係合されていたクラッチC1がt1時点から解放され始めている。そして、t2時点で、前記ニュートラル制御におけるクラッチC1の解放方向への過渡的な動作、すなわちクラッチC1のt1時点から開始された解放動作が終了している。従って、t2時点では、上記クラッチC1の解放方向への過渡的な動作が完了したと判定する第1クラッチ解放判定(C1解放判定)が成立する。その第1クラッチ解放判定はタービン回転速度NTの吹上がりから成否を判定でき、図7にはt2時点の少し前からt3時点までの間でタービン回転速度NTが吹上がっていることが示されている。t2時点からは、前記ニュートラル制御においてC1油圧PC1が、クラッチC1を解放状態乃至は略解放状態に維持できると共にクラッチC1のクラッチピストンの遊びを詰めて上記ニュートラル制御からの復帰の際には応答性良くクラッチC1を係合することができる油圧PC1Nに維持される。
In FIG. 7, before the time t1, the neutral control condition is already satisfied, and the control execution flag FLG1act is switched to ON. Therefore, as can be seen from the time chart of the C1 oil pressure P C1 , the neutral control execution means 82 starts the neutral control from the time point t1, and specifically, the clutch C1 that has been fully engaged is released from the time point t1. Being started. At time t2, the transitional operation in the release direction of the clutch C1 in the neutral control, that is, the release operation started from the time t1 of the clutch C1 is completed. Therefore, at time t2, the first clutch release determination (C1 release determination) that determines that the transient operation in the release direction of the clutch C1 is completed is established. The first clutch disengagement determination can determine success or failure from the rise of the turbine rotational speed NT, and FIG. 7 shows that the turbine rotational speed NT is blowing up slightly before time t2 until time t3. Yes. From time t2, the C1 hydraulic pressure P C1 can maintain the clutch C1 in the released state or substantially released state in the neutral control, and also responds when returning from the neutral control by reducing the play of the clutch piston of the clutch C1. The hydraulic pressure P C1N is maintained so that the clutch C1 can be engaged with good performance .
また、停車中ロックアップクラッチ係合制御手段88は、第1クラッチ解放判定が成立したt2時点から、ロックアップクラッチ指示油圧PSLUを、ロックアップ差圧PLUの零を狙い且つロックアップクラッチ46に係合力を生じさせないように例えばステップ状に引き上げており、そのt2時点から所定の待機時間TIMEWTが経過するt3時点までそのロックアップクラッチ指示油圧PSLUの状態を維持している。その待機時間TIMEWTは、前記ニュートラル制御開始の際のクラッチC1の解放動作に伴うタービン回転速度NTの吹上がりが収まるのに要する所要時間が予め実験的に求められ、その所要時間に設定されている。t3時点では、t2時点から上記待機時間TIMEWTが経過したので、前記停車中ロックアップクラッチ係合制御においてロックアップクラッチ46の係合が開始されるロックアップ係合開始条件が成立する。そして、停車中ロックアップクラッチ係合制御手段88は、ロックアップクラッチ指示油圧PSLUを、t3時点から所定勾配のスイープで上昇させる。すなわち、t3時点からロックアップクラッチ46の係合力を生じさせ始める。また、図7には、t3時点からのロックアップクラッチ指示油圧PSLUのスイープ上昇に伴い、ロックアップ差圧PLUもt3時点からスイープ上昇していることが示されている。このように、停車中ロックアップクラッチ係合制御手段88は、前記停車中ロックアップクラッチ係合制御では、前記ニュートラル制御におけるクラッチC1の解放方向への過渡的な動作が終了したt2時点の後に、t3時点からロックアップクラッチ46に係合力を生じさせ始める。ここで、図7にて破線A01で囲んで示すように、t3時点からタービン回転速度NTがロックアップクラッチ46の係合力によってエンジン回転速度NEに一致するように引き上げられているので、t3時点にて、エンジン負荷がタービン翼車14bや入力軸26のイナーシャにより一時的に大きくなる可能性がある。そこで、エンジン回転速度NEの変動を抑えるため、t3時点にてエンジン10への燃料供給量を一時的に増加させるのが好ましい。なお、タービン回転速度NTのタイムチャートでは、t3時点からタービン回転速度NTがロックアップクラッチ46の係合力によってエンジン回転速度NEに一致するように引き上げられているが、仮に前記停車中ロックアップクラッチ係合制御が実行されないとすれば、前記ニュートラル制御中のタービン回転速度NTはt3時点の回転速度と略同じに維持されることになる。
Also, stop in the lock-up clutch engagement control means 88, first the time t2 the clutch release decision is affirmative, the lockup clutch command oil pressure P the SLU, lock-up differential pressure P LU aim zero and lock-up clutch 46 In order to prevent the engagement force from being generated, for example, it is raised in a step shape, and the state of the lockup clutch instruction hydraulic pressure P SLU is maintained from the time t2 until the time t3 when the predetermined waiting time TIME WT elapses. The waiting time TIME WT is experimentally obtained in advance for the time required for the blow-up of the turbine rotational speed NT accompanying the releasing operation of the clutch C1 at the start of the neutral control to be set to the required time. Yes. At time t3, since the waiting time TIME WT has elapsed from time t2, a lockup engagement start condition is established in which engagement of the lockup clutch 46 is started in the stopped lockup clutch engagement control. Then, when the vehicle is stopped, the lockup clutch engagement control means 88 increases the lockup clutch command hydraulic pressure P SLU with a sweep of a predetermined gradient from the time point t3. That is, the engagement force of the lockup clutch 46 starts to be generated from time t3. FIG. 7 also shows that the lockup differential pressure PLU also increases from the time t3 as the sweep of the lockup clutch command oil pressure P SLU increases from the time t3. As described above, the stop lock-up clutch engagement control means 88 is, in the stop lock-up clutch engagement control, after the time t2 when the transient operation in the release direction of the clutch C1 in the neutral control is completed. At time t3, the lockup clutch 46 starts to generate an engagement force. Here, as indicated by a broken line A01 in FIG. 7, the turbine rotational speed NT is increased from the time point t3 so as to coincide with the engine rotational speed NE by the engagement force of the lockup clutch 46. Thus, the engine load may temporarily increase due to the inertia of the turbine impeller 14b and the input shaft 26. In view of this, it is preferable to temporarily increase the amount of fuel supplied to the engine 10 at time t3 in order to suppress fluctuations in the engine speed NE. In the time chart of the turbine rotational speed NT, the turbine rotational speed NT is increased from the time point t3 so as to coincide with the engine rotational speed NE by the engaging force of the lock-up clutch 46. If the combined control is not executed, the turbine rotational speed NT during the neutral control is maintained substantially the same as the rotational speed at time t3.
t4時点は、ロックアップクラッチ指示油圧PSLUがロックアップクラッチ46を完全係合させる油圧に到達した時点を示している。すなわち、図7では、t4時点まではエンジン回転速度NEを下回っていたタービン回転速度NTが、t4時点にてエンジン回転速度NEに一致している。ロックアップクラッチ46が完全係合状態になったか否かは、エンジン回転速度NEとタービン回転速度NTとの回転速度差から判断できる。t4時点では、ロックアップクラッチ46が完全係合状態になったので、ロックアップクラッチ46を完全係合させるためのロックアップクラッチ指示油圧PSLUのスイープ上昇を終了するロックアップ係合終了条件が成立する。そして、t4時点からは、ロックアップクラッチ46が完全係合状態になったので、停車中ロックアップクラッチ係合制御手段88はロックアップクラッチ指示油圧PSLUをt4時点の油圧に維持し、それにより、ロックアップ差圧PLUがt4時点の油圧に維持され、ロックアップクラッチ46の完全係合状態が維持される。
The time point t4 indicates the time point when the lockup clutch command hydraulic pressure P SLU reaches the hydraulic pressure at which the lockup clutch 46 is completely engaged. That is, in FIG. 7, the turbine rotational speed NT that had been lower than the engine rotational speed NE until the time t4 coincides with the engine rotational speed NE at the time t4. Whether or not the lock-up clutch 46 has been completely engaged can be determined from the rotational speed difference between the engine rotational speed NE and the turbine rotational speed NT. At time t4, the lockup clutch 46 is in a fully engaged state, and therefore a lockup engagement end condition for ending the sweep-up of the lockup clutch command hydraulic pressure P SLU for fully engaging the lockup clutch 46 is established. To do. Since the lock-up clutch 46 is completely engaged from the time point t4, the locked-up clutch engagement control means 88 during the stop maintains the lock-up clutch command hydraulic pressure P SLU at the hydraulic pressure at the time point t4. The lockup differential pressure PLU is maintained at the oil pressure at the time t4, and the fully engaged state of the lockup clutch 46 is maintained.
t4時点からt5時点までの間では、タービン回転速度NTはt2時点前と比較して高められているので、そのタービン回転速度NTの上昇に応じて第1クラッチ差回転ΔNC1が大きくなり図3に示すようにクラッチC1の引摺りトルクTDC1が低下し、エンジン負荷がt2時点前と比較して減少する。そのため、t4時点からt5時点までの間では、エンジン10のアイドリング状態を維持する燃料供給量が、t2時点前と比較して減らされる。例えば、エンジン10のアイドリング時の燃料供給量を実験的に定めた燃料供給量基準マップを切り換えることで燃料供給量が減らされてもよいし、エンジン10のアイドル回転速度を所定回転速度に維持するようにフィードバック制御により燃料供給量が調節されることで燃料供給量が減らされても差し支えない。
In the period from time t4 to time t5, since the turbine rotational speed NT is increased compared to the previous time t2, the first clutch differential rotation .DELTA.N C1 increases in response to an increase in the turbine speed NT Figure 3 As shown, the drag torque TD C1 of the clutch C1 decreases, and the engine load decreases compared to before t2. Therefore, the fuel supply amount for maintaining the idling state of the engine 10 is reduced from the time point t4 to the time point t5 as compared with the time before the time point t2. For example, the fuel supply amount may be reduced by switching a fuel supply amount reference map that experimentally determines the fuel supply amount at the time of idling of the engine 10, or the idle rotation speed of the engine 10 is maintained at a predetermined rotation speed. As described above, the fuel supply amount may be reduced by adjusting the fuel supply amount by feedback control.
t5時点では、例えば車両6の制動操作が解除される等して、前記ニュートラル制御条件が成立から不成立に切り換わっている。言い換えれば、t5時点にて、前記ニュートラル制御から復帰するニュートラル制御復帰条件(N制御復帰条件)が成立している。そうすると、t5時点からニュートラル制御実行手段82は前記ニュートラル制御を終了させ始める。具体的には、t5時点にて、C1油圧PC1が、t5時点前の油圧PC1Nから、クラッチC1の係合動作を直ちに開始できるようにステップ状に僅かに引き上げられる。この引き上げ後のC1油圧PC1ではクラッチC1は未だ解放又は略解放された状態である。そして、t5時点後における後述のロックアップクラッチ46の解放後、すなわち、ロックアップクラッチ指示油圧PSLUが零になりロックアップクラッチ46の解放動作が完了した後に、C1油圧PC1は所定勾配でスイープ上昇されてクラッチC1の係合力が増大され始め、t7時点でクラッチC1が完全係合状態に至ったので、そのt7時点にて、C1油圧PC1が、クラッチC1の完全係合を定常的に維持するための油圧、要するに、前記ニュートラル制御開始前の油圧にまでステップ状に上昇されている。このt7時点が前記ニュートラル制御の終了時点である。
At time t5, for example, the neutral control condition is switched from established to not established because the braking operation of the vehicle 6 is released, for example. In other words, a neutral control return condition (N control return condition) for returning from the neutral control is satisfied at time t5. Then, the neutral control execution means 82 starts to end the neutral control from time t5. Specifically, at time t5, the C1 oil pressure P C1 is slightly increased in a stepped manner from the oil pressure P C1N before time t5 so that the engagement operation of the clutch C1 can be started immediately. In the C1 oil pressure P C1 after the pulling up, the clutch C1 is still released or substantially released. After the release of the lockup clutch 46 described later at time t5, that is, after the lockup clutch command hydraulic pressure P SLU becomes zero and the release operation of the lockup clutch 46 is completed, the C1 hydraulic pressure P C1 is swept at a predetermined gradient. The clutch C1 starts to increase and the engagement force of the clutch C1 begins to increase. At time t7, the clutch C1 reaches the fully engaged state. At time t7, the C1 hydraulic pressure P C1 steadily engages the clutch C1 completely. The oil pressure to be maintained, that is, the oil pressure before starting the neutral control is increased stepwise. This time t7 is the end point of the neutral control.
また、t5時点では、前記ニュートラル制御条件が成立から不成立に切り換わっているので、制御実行フラグ切換手段84は制御実行フラグFLG1actをONからOFFに切り換えている。そのため、停車中ロックアップクラッチ係合制御手段88は、t5時点から前記停車中ロックアップクラッチ係合制御を終了させ始める。具体的には、停車中ロックアップクラッチ係合制御手段88は、ロックアップクラッチ46の解放動作を開始させるため、t5時点からロックアップクラッチ指示油圧PSLUを所定勾配で低下させ始めている。このロックアップクラッチ指示油圧PSLUの低下に伴いt5時点からロックアップ差圧PLUも低下しており、t6時点にてロックアップ差圧PLUは零になりロックアップクラッチ46は完全に解放されている。t6時点ではロックアップクラッチ46は解放されたがクラッチC1の係合力は零または略零であるので、タービン回転速度NTは一旦低下し、t6時点からクラッチC1の係合力が増大され始める時まで略一定になっている。そして、t6時点の少し後にロックアップクラッチ指示油圧PSLUが零に至っている。このロックアップクラッチ指示油圧PSLUが零に至った時点で前記停車中ロックアップクラッチ係合制御は終了する。この図7のt5時点以降に示すように、停車中ロックアップクラッチ係合制御手段88は、前記ニュートラル制御の終了の際には、ロックアップクラッチ指示油圧PSLUを所定勾配で低下させてロックアップクラッチ46を解放させる。そして、ニュートラル制御実行手段82は、ロックアップクラッチ46の開放後すなわちt6時点後に、クラッチC1を完全係合状態にする。
At the time t5, the neutral control condition is switched from established to not established, so that the control execution flag switching means 84 switches the control execution flag FLG1act from ON to OFF. Therefore, the stopped lock-up clutch engagement control means 88 starts ending the stopped lock-up clutch engagement control from time t5. Specifically, the locked lock-up clutch engagement control means 88 starts to decrease the lock-up clutch command hydraulic pressure P SLU at a predetermined gradient from time t5 in order to start the releasing operation of the lock-up clutch 46. As the lockup clutch command hydraulic pressure P SLU decreases, the lockup differential pressure PLU also decreases from time t5. At time t6, the lockup differential pressure PLU becomes zero and the lockup clutch 46 is completely released. ing. At time t6, the lock-up clutch 46 is released, but the engaging force of the clutch C1 is zero or substantially zero. Therefore, the turbine rotational speed NT is once decreased, and from the time t6 until the engaging force of the clutch C1 starts increasing. It is constant. Then, the lockup clutch command hydraulic pressure P SLU reaches zero slightly after time t6. When the lock-up clutch command hydraulic pressure P SLU reaches zero, the lock-up clutch engagement control during stop is terminated. As shown after time t5 in FIG. 7, when the neutral control is finished, the lock-up clutch engagement control means 88 during stoppage reduces the lock-up clutch command hydraulic pressure P SLU by a predetermined gradient to lock up. The clutch 46 is released. Then, the neutral control execution means 82 brings the clutch C1 into a fully engaged state after the lockup clutch 46 is released, that is, after time t6.
図8は、前記停車中ロックアップクラッチ係合制御においてロックアップクラッチ46に係合力を生じさせるロックアップ差圧PLUと自動変速機12の作動油温TEMPOILすなわちクラッチC1の作動油温TEMPOILとの関係の一例を表した図である。図7のタイムチャートに示すように、停車中ロックアップクラッチ係合制御手段88はt4~t5時点ではロックアップクラッチ46を完全係合状態に維持し、そのときのロックアップ差圧PLUすなわちロックアップ差圧PLUに対応したロックアップクラッチ46の係合力は作動油温TEMPOILとは無関係に定まるが、停車中ロックアップクラッチ係合制御手段88は、前記停車中ロックアップクラッチ係合制御では、作動油温TEMPOILが高いほど、ロックアップクラッチ46の係合力を小さくしても差し支えない。具体的には、図8に示すように、作動油温TEMPOILが高いほど、図7のt4~t5時点におけるロックアップ差圧PLUを小さくしても差し支えないということである。例えば、図8に示す関係は、作動油温TEMPOILの高温時にはロックアップクラッチ46の係合が前記ニュートラル制御からの復帰時の応答性を低下させないように、且つ、作動油温TEMPOILの低温時にはクラッチC1の引摺りトルクTDC1を十分に低下させることができるように予め実験的に設定されており、図8に示す関係に従うとすれば、図7では、t4~t5時点におけるロックアップ差圧PLUが図8に示す関係から作動油温TEMPOILに基づいて定まる油圧になるように、ロックアップクラッチ指示油圧PSLUが制御される。なお、この図8に示す関係に従ってロックアップクラッチ指示油圧PSLUが制御されたことで、例えば図7のt4~t5時点においてロックアップクラッチ46がスリップすることがあっても差し支えない。
Figure 8 is a hydraulic oil temperature TEMP OIL of the stop in the lock-up clutch engagement lockup cause engagement force to the lock-up clutch 46 in the control differential pressure P LU and the automatic transmission 12 hydraulic oil temperature TEMP OIL i.e. the clutch C1 of It is a figure showing an example of the relationship. As shown in the time chart of FIG. 7, a stop in the lock-up clutch engagement control means 88 maintains the lock-up clutch 46 at the time t4 ~ t5 fully engaged state, the lock-up differential pressure P LU or locked at that time the engagement force of the lock-up clutch 46 corresponding to the up differential pressure P LU is determined independent of the hydraulic oil temperature TEMP oIL, stop in the lock-up clutch engagement control means 88, in the stationary-state lockup clutch engagement control As the hydraulic oil temperature TEMP OIL is higher, the engagement force of the lockup clutch 46 may be reduced. Specifically, as shown in FIG. 8, the higher the hydraulic oil temperature TEMP OIL, is that it does not harm in reducing the lock-up differential pressure P LU in t4 ~ t5 point in FIG. For example, the relationship shown in FIG. 8 is that the engagement of the lockup clutch 46 does not deteriorate the response at the time of return from the neutral control when the hydraulic oil temperature TEMP OIL is high, and the hydraulic oil temperature TEMP OIL is low. Sometimes it is experimentally set in advance so that the drag torque TD C1 of the clutch C1 can be sufficiently reduced. If the relationship shown in FIG. 8 is followed, in FIG. The lockup clutch command oil pressure P SLU is controlled so that the pressure P LU becomes a hydraulic pressure determined based on the hydraulic oil temperature TEMP OIL from the relationship shown in FIG. Incidentally, since the lockup clutch command hydraulic pressure P SLU is controlled according to the relationship shown in FIG. 8, for example, the lockup clutch 46 may slip at the time t4 to t5 in FIG.
図9は、前記停車中ロックアップクラッチ係合制御においてロックアップクラッチ46に係合力を生じさせるロックアップ差圧PLUとエンジン回転速度NEとの関係の一例を表した図である。図7のタイムチャートに示すように、停車中ロックアップクラッチ係合制御手段88はt4~t5時点ではロックアップクラッチ46を完全係合状態に維持し、そのときのロックアップ差圧PLUすなわちロックアップ差圧PLUに対応したロックアップクラッチ46の係合力は作動油温TEMPOILとは無関係に定まるが、停車中ロックアップクラッチ係合制御手段88は、前記停車中ロックアップクラッチ係合制御では、その制御中のエンジン回転速度NEが高いほど、ロックアップクラッチ46の係合力を小さくしても差し支えない。具体的には、図9に示すように、エンジン回転速度NEが高いほど、図7のt4~t5時点におけるロックアップ差圧PLUを小さくしても差し支えないということである。例えば、前記ニュートラル制御中のエンジン回転速度NEすなわちエンジン10のアイドル回転速度はエンジン水温TEMPWが低いほど高くなるように制御されるので、図7のt4~t5時点でのエンジン回転速度NEはエンジン水温TEMPWに応じて異なる。例えば、図9に示す関係は、クラッチC1の引摺りトルクTDC1を十分に低下させることができるように、且つ、前記ニュートラル制御からの復帰時におけるロックアップクラッチ46及びクラッチC1の応答性が低下しないように予め実験的に設定されており、図9に示す関係に従うとすれば、図7では、t4~t5時点におけるロックアップ差圧PLUが図9に示す関係からエンジン回転速度NEに基づいて定まる油圧になるように、ロックアップクラッチ指示油圧PSLUが制御される。なお、この図9に示す関係に従ってロックアップクラッチ指示油圧PSLUが制御されたことで、例えば図7のt4~t5時点においてロックアップクラッチ46がスリップすることがあっても差し支えない。また、前記停車中ロックアップクラッチ係合制御においてロックアップ差圧PLUは、図8に示す関係と図9に示す関係とが相互に組み合わされた関係に従って制御されても差し支えない。
Figure 9 is a diagram showing an example of the relationship between the lock-up differential pressure causes the engaging force in the lock-up clutch 46 in the lock-up clutch engagement control during a stop P LU and the engine rotational speed NE. As shown in the time chart of FIG. 7, a stop in the lock-up clutch engagement control means 88 maintains the lock-up clutch 46 at the time t4 ~ t5 fully engaged state, the lock-up differential pressure P LU or locked at that time the engagement force of the lock-up clutch 46 corresponding to the up differential pressure P LU is determined independent of the hydraulic oil temperature TEMP oIL, stop in the lock-up clutch engagement control means 88, in the stationary-state lockup clutch engagement control The higher the engine speed NE during the control, the smaller the engagement force of the lockup clutch 46 may be. Specifically, as shown in FIG. 9, as the engine rotational speed NE is higher, it is that it does not harm in reducing the lock-up differential pressure P LU in t4 ~ t5 point in FIG. For example, the engine rotation speed NE during the neutral control, that is, the idle rotation speed of the engine 10 is controlled so as to increase as the engine water temperature TEMP W decreases, so the engine rotation speed NE at the time t4 to t5 in FIG. It depends on the water temperature TEMP W. For example, the relationship shown in FIG. 9 is such that the drag torque TD C1 of the clutch C1 can be sufficiently reduced, and the responsiveness of the lockup clutch 46 and the clutch C1 at the time of return from the neutral control is reduced. not is preset experimentally as, if according to the relationship shown in FIG. 9, FIG. 7, based on the relationship shown in the lock-up differential pressure P LU is 9 at time t4 ~ t5 the engine rotational speed NE The lockup clutch instruction hydraulic pressure P SLU is controlled so that the hydraulic pressure is determined by the above. Incidentally, since the lockup clutch command hydraulic pressure P SLU is controlled according to the relationship shown in FIG. 9, for example, the lockup clutch 46 may slip at the time t4 to t5 in FIG. In the lockup clutch engagement control during stopping, the lockup differential pressure PLU may be controlled according to a relationship in which the relationship shown in FIG. 8 and the relationship shown in FIG. 9 are combined with each other.
図10は、電子制御装置52の制御作動の第1の要部、すなわち、前記ニュートラル制御を実行すると共に制御実行フラグFLG1actを切り換える制御作動を説明するためのフローチャートである。この図10に示す制御作動は、単独で或いは他の制御作動と並列的に実行される。
FIG. 10 is a flowchart for explaining a first main part of the control operation of the electronic control unit 52, that is, a control operation for executing the neutral control and switching the control execution flag FLG1act. The control operation shown in FIG. 10 is executed alone or in parallel with other control operations.
先ず、ニュートラル制御条件判断手段80に対応するステップ(以下、「ステップ」を省略する)SA1においては、前記ニュートラル制御条件が成立したか否かが判断される。このSA1の判断が肯定された場合、すなわち、上記ニュートラル制御条件が成立した場合には、SA2に移る。一方、このSA1の判断が否定された場合、すなわち、上記ニュートラル制御条件が不成立である場合には、SA6に移る。
First, in a step (hereinafter, “step” is omitted) SA1 corresponding to the neutral control condition determining means 80, it is determined whether or not the neutral control condition is satisfied. If the determination of SA1 is affirmative, that is, if the neutral control condition is satisfied, the process proceeds to SA2. On the other hand, if the determination of SA1 is negative, that is, if the neutral control condition is not satisfied, the process proceeds to SA6.
ニュートラル制御実行手段82に対応するSA2においては、前記ニュートラル制御が実行される。そのニュートラル制御が既に実行中であればその実行が継続される。SA2の次はSA3に移る。
In the SA2 corresponding to the neutral control execution means 82, the neutral control is executed. If the neutral control is already being executed, the execution is continued. After SA2, the process proceeds to SA3.
SA3においては、自動変速機12の作動油温TEMPOILが所定の油温下限値TEMP1OILよりも高く且つその作動油温TEMPOILが所定の油温上限値TEMP2OILよりも低いか否かが判断される。このSA3の判断が肯定された場合、すなわち、上記作動油温TEMPOILが所定の油温下限値TEMP1OILよりも高く且つその作動油温TEMPOILが所定の油温上限値TEMP2OILよりも低い場合には、SA4に移る。一方、このSA3の判断が否定された場合には、SA5に移る。
In SA3, it is determined whether the hydraulic oil temperature TEMP OIL of the automatic transmission 12 is higher than a predetermined oil temperature lower limit value TEMP1 OIL and the hydraulic oil temperature TEMP OIL is lower than a predetermined oil temperature upper limit value TEMP2 OIL. Is done. When the determination of SA3 is affirmative, that is, when the hydraulic oil temperature TEMP OIL is higher than a predetermined oil temperature lower limit value TEMP1 OIL and the hydraulic oil temperature TEMP OIL is lower than a predetermined oil temperature upper limit value TEMP2 OIL. Move on to SA4. On the other hand, if the determination at SA3 is negative, the operation goes to SA5.
SA4においては、前記制御実行フラグFLG1actがONに設定される。ここで、この制御実行フラグFLG1actに応じて実行される前記停車中ロックアップクラッチ係合制御は、前記ニュートラル制御中(N制御中)におけるクラッチC1の引摺りトルクTDC1詳細にはクラッチC1が有する摩擦材の引摺りトルクTDC1を低減させる目的で実行される制御であるので、N制御時摩擦材引摺りトルク低減制御と呼んでもよい。また、上記制御実行フラグFLG1actはN制御時摩擦材引摺りトルク低減制御実行フラグFLG1actと呼んでもよい。
In SA4, the control execution flag FLG1act is set to ON. Here, the stop lock-up clutch engagement control executed according to the control execution flag FLG1act has the drag torque TD C1 of the clutch C1 during the neutral control (N control), and the clutch C1 has details. Since this control is executed for the purpose of reducing the drag torque TD C1 of the friction material, it may be called friction control drag torque reduction control during N control. Further, the control execution flag FLG1act may be referred to as N-control friction material drag torque reduction control execution flag FLG1act.
SA5においては、前記制御実行フラグFLG1actがOFFに設定される。また、SA6においても、前記制御実行フラグFLG1actがOFFに設定される。SA6の次はSA7に移る。なお、SA3~SA6は制御実行フラグ切換手段84に対応する。
In SA5, the control execution flag FLG1act is set to OFF. Also in SA6, the control execution flag FLG1act is set to OFF. After SA6, the process proceeds to SA7. SA3 to SA6 correspond to the control execution flag switching means 84.
ニュートラル制御実行手段82に対応するSA7においては、前記ニュートラル制御が終了させられる。そのニュートラル制御の終了とは、言い換えればニュートラル制御からの復帰である。そのニュートラル制御が既に終了している等して実行されていなければ、その実行されていない状態が継続される。
In SA7 corresponding to the neutral control execution means 82, the neutral control is terminated. In other words, the end of the neutral control is a return from the neutral control. If the neutral control has not been executed because it has already ended, the state in which the neutral control has not been executed is continued.
図11は、電子制御装置52の制御作動の第2の要部、すなわち、前記ニュートラル制御と並行して前記停車中ロックアップクラッチ係合制御を実行する制御作動を説明するためのフローチャートである。この図11に示す制御作動は、単独で或いは他の制御作動と並列的に実行される。
FIG. 11 is a flowchart for explaining a second main part of the control operation of the electronic control unit 52, that is, a control operation for executing the vehicle stop lock-up clutch engagement control in parallel with the neutral control. The control operation shown in FIG. 11 is executed alone or in parallel with other control operations.
先ず、SB1においては、図10のSA4~SA6の何れかで設定変更される制御実行フラグFLG1act(N制御時摩擦材引摺りトルク低減制御実行フラグFLG1act)がONであるか否かが判断される。このSB1の判断が肯定された場合、すなわち、上記制御実行フラグFLG1actがONである場合には、SB2に移る。一方、このSB1の判断が否定された場合、すなわち、制御実行フラグFLG1actがOFFである場合には再びSB1の判断がなされる。要するに、制御実行フラグFLG1actがONになるまでSB1が継続する。
First, in SB1, it is determined whether or not the control execution flag FLG1act (the N-control friction material dragging torque reduction control execution flag FLG1act) that is set and changed in any of SA4 to SA6 in FIG. 10 is ON. . If the determination at SB1 is affirmative, that is, if the control execution flag FLG1act is ON, the process proceeds to SB2. On the other hand, when the determination of SB1 is negative, that is, when the control execution flag FLG1act is OFF, the determination of SB1 is made again. In short, SB1 continues until the control execution flag FLG1act is turned on.
SB2においては、前記停車中ロックアップクラッチ係合制御(N制御時摩擦材引摺りトルク低減制御)の実施が開始される。SB2の次はSB3に移る。
In SB2, execution of the stop-time lockup clutch engagement control (friction material drag torque reduction control during N control) is started. After SB2, the process proceeds to SB3.
SB3においては、前記停車中ロックアップクラッチ係合制御の実施が継続される。SB3の次はSB4に移る。
In SB3, execution of the locked lock-up clutch engagement control is continued. After SB3, the process proceeds to SB4.
SB4においては、SB1と同様に、制御実行フラグFLG1actがONであるか否かが判断される。このSB4の判断が肯定された場合、すなわち、制御実行フラグFLG1actがONである場合には、SB3に移る。要するに、制御実行フラグFLG1actがONである限りSB3が継続する。一方、このSB4の判断が否定された場合、すなわち、制御実行フラグFLG1actがOFFである場合には、SB5に移る。なお、SB1及びSB4は制御実行フラグ判断手段86に対応する。
In SB4, as in SB1, it is determined whether or not the control execution flag FLG1act is ON. When the determination of SB4 is affirmed, that is, when the control execution flag FLG1act is ON, the process proceeds to SB3. In short, SB3 continues as long as the control execution flag FLG1act is ON. On the other hand, when the determination of SB4 is negative, that is, when the control execution flag FLG1act is OFF, the process proceeds to SB5. SB1 and SB4 correspond to the control execution flag determination means 86.
SB5においては、前記停車中ロックアップクラッチ係合制御が終了する。なお、SB2、SB3、及びSB5は停車中ロックアップクラッチ係合制御手段88に対応する。
In SB5, the above-described lock-up clutch engagement control is stopped. Note that SB2, SB3, and SB5 correspond to the stop lock-up clutch engagement control means 88.
本実施例によれば、停車中ロックアップクラッチ係合制御手段88は、前記制御実行フラグFLG1actがONである場合には、前記ニュートラル制御の実行中にロックアップクラッチ46に係合力を生じさせる前記停車中ロックアップクラッチ係合制御を実行する。このようにすることで、前記ニュートラル制御の実行中において、タービン回転速度NTがロックアップクラッチ46の係合力によって引き上げられると共にクラッチC1の入力側(エンジン側)の回転速度も引き上げられ、それによりロックアップクラッチ46の解放時よりも、第1クラッチ差回転ΔNC1が大きくなって、図3に示すようにクラッチC1の引摺りトルクTDC1が低下する。その結果として、前記ニュートラル制御中においてアイドリング状態にあるエンジン10のエンジン負荷が低下し、車両6の燃費を向上させることが可能である。
According to the present embodiment, when the control execution flag FLG1act is ON, the lock-up clutch engagement control means 88 during stopping generates the engagement force in the lock-up clutch 46 during the execution of the neutral control. Lock-up clutch engagement control is executed while the vehicle is stopped. In this way, during the execution of the neutral control, the turbine rotational speed NT is increased by the engaging force of the lockup clutch 46 and the rotational speed on the input side (engine side) of the clutch C1 is also increased, thereby locking. The first clutch differential rotation ΔN C1 becomes larger than when the up clutch 46 is released, and the drag torque TD C1 of the clutch C1 decreases as shown in FIG. As a result, the engine load of the engine 10 in the idling state during the neutral control is reduced, and the fuel consumption of the vehicle 6 can be improved.
また、本実施例によれば、制御実行フラグ切換手段84は、自動変速機12の作動油温TEMPOILが前記油温下限値TEMP1OILよりも高く且つその作動油温TEMPOILが前記油温上限値TEMP2OILよりも低い場合であって、ニュートラル制御条件判断手段80により前記ニュートラル制御条件が成立したと判断された場合には、前記停車中ロックアップクラッチ係合制御の実行を切り換える前記制御実行フラグFLG1actをONに設定する。そして、その油温下限値TEMP1OILから油温上限値TEMP2OILまでの作動油温範囲は、自動変速機12の冷間時から暖機が完了した定常時に至るまでの作動油温TEMPOILの変化範囲の中で低温側に寄って設けられている。すなわち、制御実行フラグ切換手段84は、自動変速機12の作動油温TEMPOIL(車両用動力伝達装置9の作動油温TEMPOIL)が低いほど、前記停車中ロックアップクラッチ係合制御の実行機会を多くすることになる。ここで、作動油温TEMPOILの低温時は高温時と比較してクラッチC1の応答性が低いので、前記ニュートラル制御中にロックアップクラッチ46を係合させてもそのニュートラル制御からの復帰時の応答性はそのロックアップクラッチ46の係合に起因しては殆ど低下しない。そして、図3に示すようにクラッチC1の引摺りトルクTDC1は作動油温TEMPOILの低温時の方が高温時よりも大きくなり易いので、作動油温TEMPOILの低温時には前記停車中ロックアップクラッチ係合制御による燃費向上効果が大きくなる。この燃費向上効果と作動油温TEMPOILとの関係は、前記限界速度比e0が図5の矢印AR01範囲において作動油温TEMPOILが低いほど小さくなることからも判る。逆に、作動油温TEMPOILの高温時はロックアップクラッチ46を上記ニュートラル制御中に係合させるとそのニュートラル制御からの復帰時の応答性への影響が大きくなり易く、図3から判るように、作動油温TEMPOILの高温時には上記停車中ロックアップクラッチ係合制御による燃費向上効果が低い。従って、前記停車中ロックアップクラッチ係合制御により燃費が向上するという利点を効果的に得ることが可能である。
Further, according to the present embodiment, the control execution flag switching means 84 is configured such that the hydraulic oil temperature TEMP OIL of the automatic transmission 12 is higher than the oil temperature lower limit value TEMP1 OIL and the hydraulic oil temperature TEMP OIL is the oil temperature upper limit. The control execution flag that switches execution of the locked-up lock-up clutch engagement control when the neutral control condition determination means 80 determines that the neutral control condition is satisfied when the value is lower than the value TEMP2 OIL. Set FLG1act to ON. The hydraulic oil temperature range from the oil temperature lower limit value TEMP1 OIL to the oil temperature upper limit value TEMP2 OIL is the change in the hydraulic oil temperature TEMP OIL from the cold state of the automatic transmission 12 to the steady state when the warm-up is completed. It is provided near the low temperature side in the range. That is, the control execution flag switching means 84, as the hydraulic oil temperature TEMP OIL of the automatic transmission 12 (hydraulic oil temperature TEMP OIL of vehicle power transmission device 9) is low, the stationary-state lockup clutch engagement control of the execution opportunities Will be increased. Here, since the responsiveness of the clutch C1 is lower when the hydraulic oil temperature TEMP OIL is low than when it is high, even when the lockup clutch 46 is engaged during the neutral control, The responsiveness hardly deteriorates due to the engagement of the lockup clutch 46. Since as drag torque TD C1 of the clutch C1 is liable person at a low temperature of the working oil temperature TEMP OIL becomes larger than at a high temperature is shown in FIG. 3, the stationary-state lockup at low temperatures of the working oil temperature TEMP OIL The fuel efficiency improvement effect by clutch engagement control becomes large. The relationship between the fuel efficiency improvement effect and the hydraulic oil temperature TEMP OIL can also be understood from the fact that the limit speed ratio e0 becomes smaller as the hydraulic oil temperature TEMP OIL is lower in the range of the arrow AR01 in FIG. On the contrary, when the hydraulic oil temperature TEMP OIL is high, if the lock-up clutch 46 is engaged during the neutral control, the influence on the responsiveness at the time of return from the neutral control is likely to increase, as can be seen from FIG. When the hydraulic oil temperature TEMP OIL is high, the fuel efficiency improvement effect by the locked lockup clutch engagement control is low. Therefore, it is possible to effectively obtain the advantage that fuel efficiency is improved by the lock-up clutch engagement control during stopping.
また、本実施例によれば、停車中ロックアップクラッチ係合制御手段88は、前記停車中ロックアップクラッチ係合制御では、車両用動力伝達装置9の作動油温TEMPOILが高いほど、ロックアップクラッチ46の係合力を小さくしても差し支えない。言い換えれば、前記ニュートラル制御の実行中にロックアップクラッチ46に係合力を生じさせる場合には、車両用動力伝達装置9の作動油温TEMPOILが高いほど、ロックアップクラッチ46の係合力を小さくしても差し支えないということである。そのようにしたとすれば、クラッチC1の応答性が良い作動油温TEMPOILの高温時には、ロックアップクラッチ46の係合が前記ニュートラル制御からの復帰時の応答性に与える影響を抑制することができる。一方で、作動油温TEMPOILの低温時にはクラッチC1のの応答性が元々良くないのでロックアップクラッチ46の係合が前記ニュートラル制御からの復帰時の応答性に殆ど影響せず、前記停車中ロックアップクラッチ係合制御による燃費向上効果を十分に得ることが可能である。
Further, according to the present embodiment, the stop-up lockup clutch engagement control means 88 locks up as the hydraulic oil temperature TEMP OIL of the vehicle power transmission device 9 is higher in the stop-up lockup clutch engagement control. Even if the engagement force of the clutch 46 is reduced, there is no problem. In other words, when the engagement force is generated in the lock-up clutch 46 during the neutral control, the engagement force of the lock-up clutch 46 is reduced as the hydraulic oil temperature TEMP OIL of the vehicle power transmission device 9 is higher. It does not matter. By doing so, it is possible to suppress the influence of the engagement of the lockup clutch 46 on the responsiveness at the time of return from the neutral control when the hydraulic oil temperature TEMP OIL has good responsiveness of the clutch C1. it can. On the other hand, since the response of the clutch C1 is originally not good when the hydraulic oil temperature TEMP OIL is low, the engagement of the lock-up clutch 46 hardly affects the response at the time of return from the neutral control, and the locked while stopped. It is possible to sufficiently obtain the fuel efficiency improvement effect by the up clutch engagement control.
また、本実施例によれば、図7のタイムチャートに示すように、停車中ロックアップクラッチ係合制御手段88は、前記停車中ロックアップクラッチ係合制御では、前記ニュートラル制御におけるクラッチC1の解放方向への過渡的な動作が終了したt2時点の後に、t3時点からロックアップクラッチ46に係合力を生じさせ始める。言い換えれば、前記ニュートラル制御の実行中にロックアップクラッチ46に係合力を生じさせる場合には、前記ニュートラル制御におけるクラッチC1の解放方向への過渡的な動作が終了した後に、ロックアップクラッチ46に係合力を生じさせ始める。従って、クラッチC1の解放動作前にロックアップクラッチ46に係合力を生じさせる場合と比較して、ロックアップクラッチ46に係合力を生じさせる際の一時的なエンジン負荷の変動幅を抑制することができ、そのエンジン負荷の一時的な変動に起因した燃費悪化を抑制することが可能である。
Further, according to this embodiment, as shown in the time chart of FIG. 7, the stop lock-up clutch engagement control means 88 is configured to release the clutch C <b> 1 in the neutral control in the stop lock-up clutch engagement control. After the time t2 when the transitional movement in the direction ends, the lockup clutch 46 starts to generate an engaging force from the time t3. In other words, when an engagement force is generated in the lock-up clutch 46 during the execution of the neutral control, after the transient operation in the release direction of the clutch C1 in the neutral control is completed, the lock-up clutch 46 is engaged. Start to produce a resultant force. Therefore, compared with the case where the engagement force is generated in the lockup clutch 46 before the release operation of the clutch C1, the fluctuation range of the temporary engine load when the engagement force is generated in the lockup clutch 46 can be suppressed. It is possible to suppress the deterioration of fuel consumption due to the temporary fluctuation of the engine load.
また、本実施例によれば、停車中ロックアップクラッチ係合制御手段88は、前記停車中ロックアップクラッチ係合制御では、その制御中のエンジン回転速度NEが高いほど、ロックアップクラッチ46の係合力を小さくしても差し支えない。言い換えれば、前記ニュートラル制御の実行中にロックアップクラッチ46に係合力を生じさせる場合には、エンジン回転速度NEが高いほど、ロックアップクラッチ46の係合力を小さくしても差し支えないということである。ここで、前記ニュートラル制御中において、第1クラッチ差回転ΔNC1はエンジン回転速度NEが高いほど大きくなり、クラッチC1の引摺りトルクTDC1は低下する傾向にある。従って、そのようにしたとすれば、エンジン回転速度NEを加味してロックアップクラッチ46の係合力を小さくすることで、上記停車中ロックアップクラッチ係合制御による燃費向上効果を低下させないようにしつつ、その停車中ロックアップクラッチ係合制御の終了の際にロックアップクラッチ46を解放させる応答性を向上させることが可能である。
In addition, according to the present embodiment, the lock-up clutch engagement control means 88 during stopping is the engagement of the lock-up clutch 46 as the engine speed NE during the control increases in the lock-up clutch engagement control during stop. The resultant force can be reduced. In other words, when the engagement force is generated in the lock-up clutch 46 during the neutral control, the engagement force of the lock-up clutch 46 may be reduced as the engine speed NE is higher. . Here, during the neutral control, the first clutch differential rotation ΔN C1 increases as the engine speed NE increases, and the drag torque TD C1 of the clutch C1 tends to decrease. Therefore, if this is done, the effect of improving the fuel efficiency by the lock-up clutch engagement control during stopping can be prevented by reducing the engagement force of the lock-up clutch 46 in consideration of the engine speed NE. In addition, it is possible to improve the responsiveness of releasing the lockup clutch 46 when the lockup clutch engagement control during the stop is finished.
また、本実施例によれば、クラッチC1は、前記ニュートラル制御の実行中においてスリップ状態乃至解放状態とされそのニュートラル制御からの復帰時に係合される動力断続装置であり、そのクラッチC1は湿式の摩擦クラッチである。従って、上記動力断続装置として一般的に湿式の摩擦クラッチが用いられることが多いので、本発明を具体的な車両において広く適用することが可能である。
Further, according to the present embodiment, the clutch C1 is a power interrupting device that is brought into a slipping state or a releasing state during execution of the neutral control and is engaged when returning from the neutral control. It is a friction clutch. Accordingly, since a wet friction clutch is often used as the power interrupting device, the present invention can be widely applied to specific vehicles.
以上、本発明の実施例を図面に基づいて詳細に説明したが、これはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。
As mentioned above, although the Example of this invention was described in detail based on drawing, this is an embodiment to the last, and this invention is implemented in the aspect which added various change and improvement based on the knowledge of those skilled in the art. Can do.
例えば、前述の本実施例の図7ではt2時点からt5時点まで、C1油圧PC1は前記油圧PC1Nに維持されているが、零にされていても差し支えない。
For example, in FIG. 7 of the above-described embodiment, the C1 oil pressure P C1 is maintained at the oil pressure P C1N from the time t2 to the time t5, but may be zero.
また、前述の本実施例の図7において、t4時点からt5時点までの間ではタービン回転速度NTはエンジン回転速度NEに一致しており、ロックアップクラッチ46は完全係合状態であるが、そのt4時点からt5時点までの間ではロックアップクラッチ46は係合力を生じていればよく、例えば、ロックアップクラッチ46は完全には係合されずにスリップさせられていても差し支えない。
In FIG. 7 of the above-described embodiment, the turbine rotational speed NT matches the engine rotational speed NE from the time t4 to the time t5, and the lockup clutch 46 is in a fully engaged state. The lockup clutch 46 only needs to generate an engagement force between the time t4 and the time t5. For example, the lockup clutch 46 may be slipped without being completely engaged.
また、前述の本実施例において、トルクコンバータ14が流体伝動装置として用いられているが、例えば、そのトルクコンバータ14は、トルク増幅作用のないフルードカップリングに置き換わっていても差し支えない。
In the above-described embodiment, the torque converter 14 is used as a fluid transmission device. For example, the torque converter 14 may be replaced with a fluid coupling having no torque amplification action.
また、前述の本実施例において、自動変速機12は有段の自動変速機であるが、無段変速できるCVTであっても差し支えない。自動変速機12がCVTである場合には、トルクコンバータ14のタービン軸と自動変速機12の入力軸26との間に、動力伝達を遮断できる摩擦クラッチが介装される。そして、その摩擦クラッチが本発明の動力断続装置に対応する。
In the above-described embodiment, the automatic transmission 12 is a stepped automatic transmission, but may be a CVT capable of continuously shifting. When the automatic transmission 12 is a CVT, a friction clutch capable of interrupting power transmission is interposed between the turbine shaft of the torque converter 14 and the input shaft 26 of the automatic transmission 12. The friction clutch corresponds to the power interrupting device of the present invention.
また、前述の本実施例において、自動変速機12がトルクコンバータ14と駆動輪38との間に介装されているが、その自動変速機12は、トルクコンバータ14のタービン翼車14bと駆動輪38との間の動力伝達を選択的に遮断するクラッチC1のような動力断続装置に置き換わっていても差し支えない。
In the above-described embodiment, the automatic transmission 12 is interposed between the torque converter 14 and the drive wheel 38. The automatic transmission 12 is connected to the turbine impeller 14b of the torque converter 14 and the drive wheel. 38 may be replaced with a power interrupting device such as a clutch C1 that selectively cuts off power transmission to and from the power source 38.
また、前述の本実施例において、図7のタイムチャートでは、ロックアップクラッチ46の係合により、タービン回転速度NTがt3時点からt4時点にかけてエンジン回転速度NEに一致するまで引き上げられているが、前記停車中ロックアップクラッチ係合制御ではロックアップクラッチ46に係合力が生じていればよく、例えば、タービン回転速度NTがt3時点の回転速度から引き上げられ、t4~t5時点のタービン回転速度NTがエンジン回転速度NEを下回っていても差し支えない。
Further, in the above-described embodiment, in the time chart of FIG. 7, due to the engagement of the lock-up clutch 46, the turbine rotation speed NT is increased from the time t3 to the time t4 until it matches the engine rotation speed NE. In the lock-up clutch engagement control during stopping, it is sufficient that an engagement force is generated in the lock-up clutch 46. For example, the turbine rotation speed NT is increased from the rotation speed at time t3, and the turbine rotation speed NT at time t4 to t5 is increased. It does not matter if it is below the engine speed NE.
また、前述の本実施例において、図10のフローチャートにはSA3およびSA5が含まれているが、図10のフローチャートは、それらSA3およびSA5を含まずSA2の次にSA4に移るものであっても差し支えない。
In the above-described embodiment, the flowchart of FIG. 10 includes SA3 and SA5. However, the flowchart of FIG. 10 does not include SA3 and SA5, and may be shifted to SA4 after SA2. There is no problem.
また、前述の本実施例において、制御実行フラグ切換手段84は、自動変速機12の作動油温TEMPOILすなわちクラッチC1の作動油温TEMPOILが低いほど、前記停車中ロックアップクラッチ係合制御の実行機会を多くするが、その停車中ロックアップクラッチ係合制御の実行機会は、作動油温TEMPOILの変化範囲の全体にわたって作動油温TEMPOILが低いほど多くされてもよいし、作動油温TEMPOILの変化範囲の一部分において作動油温TEMPOILが低いほど多くされてもよい。
Further, in the present embodiment described above, the control execution flag switching means 84, the lower the hydraulic oil temperature TEMP OIL of the working oil temperature TEMP OIL i.e. the clutch C1 of the automatic transmission 12, the stop in the lock-up clutch engagement control while increasing the execution opportunities, execution opportunities of the stop in the lock-up clutch engagement control, may be much lower the hydraulic oil temperature TEMP oIL throughout the range of variation of hydraulic oil temperature TEMP oIL, hydraulic oil temperature in a portion of the range of variation of TEMP oIL may be much lower the hydraulic oil temperature TEMP oIL.
また、前述の本実施例において、図8に例示したロックアップ差圧PLUとクラッチC1の作動油温TEMPOILとの関係では、その作動油温TEMPOILが高いほど、ロックアップ差圧PLUすなわちロックアップ差圧PLUに対応したロックアップクラッチ46の係合力が小さくなるが、そのロックアップクラッチ46の係合力は、作動油温TEMPOILの変化範囲の全体にわたって作動油温TEMPOILが高いほど小さくなるものであってもよいし、作動油温TEMPOILの変化範囲の一部分において作動油温TEMPOILが高いほど小さくなるものであってもよい。
Further, in the present embodiment described above, the relationship between the hydraulic oil temperature TEMP OIL lockup differential pressure P LU and clutch C1 illustrated in FIG. 8, the higher its hydraulic fluid temperature TEMP OIL, lock-up differential pressure P LU that is, the engagement force of the lock-up clutch 46 corresponding to the lock-up differential pressure P LU is reduced, the engagement force of the lock-up clutch 46, a high hydraulic oil temperature TEMP oIL throughout the range of variation of hydraulic oil temperature TEMP oIL more may be made of small, hydraulic oil temperature TEMP oIL in a portion of the variation range of the working oil temperature TEMP oIL may be made of higher smaller.
また、前述の本実施例において、図9に例示したロックアップ差圧PLUとエンジン回転速度NEとの関係では、そのエンジン回転速度NEが高いほど、ロックアップ差圧PLUすなわちロックアップ差圧PLUに対応したロックアップクラッチ46の係合力が小さくなるが、そのロックアップクラッチ46の係合力は、エンジン回転速度NEの変化範囲の全体にわたってエンジン回転速度NEが高いほど小さくなるものであってもよいし、エンジン回転速度NEの変化範囲の一部分においてエンジン回転速度NEが高いほど小さくなるものであってもよい。
Further, in the above-described embodiment, in the relationship between the lockup differential pressure PLU and the engine speed NE illustrated in FIG. 9, the higher the engine speed NE, the higher the lockup differential pressure PLU, that is, the lockup differential pressure. the engagement force of the lock-up clutch 46 corresponding to the P LU but decreases the engaging force of the lock-up clutch 46, be comprised small throughout the range of variation of the engine rotational speed NE as the engine rotational speed NE is higher Alternatively, the engine rotational speed NE may be smaller as the engine rotational speed NE is higher in a part of the change range of the engine rotational speed NE.
6:車両
9:車両用動力伝達装置
10:エンジン
14:トルクコンバータ(流体伝動装置)
14a:ポンプ翼車(入力部材)
14b:タービン翼車(出力部材)
38:駆動輪
46:ロックアップクラッチ
52:電子制御装置(制御装置)
C1:クラッチ(動力断続装置)
6: Vehicle 9: Vehicle power transmission device 10: Engine 14: Torque converter (fluid transmission device)
14a: Pump impeller (input member)
14b: Turbine wheel (output member)
38: Drive wheel 46: Lock-up clutch 52: Electronic control device (control device)
C1: Clutch (power interrupter)
9:車両用動力伝達装置
10:エンジン
14:トルクコンバータ(流体伝動装置)
14a:ポンプ翼車(入力部材)
14b:タービン翼車(出力部材)
38:駆動輪
46:ロックアップクラッチ
52:電子制御装置(制御装置)
C1:クラッチ(動力断続装置)
6: Vehicle 9: Vehicle power transmission device 10: Engine 14: Torque converter (fluid transmission device)
14a: Pump impeller (input member)
14b: Turbine wheel (output member)
38: Drive wheel 46: Lock-up clutch 52: Electronic control device (control device)
C1: Clutch (power interrupter)
Claims (6)
- エンジンの動力を駆動輪に向けて伝達する流体伝動装置の入出力部材間を機械的に直結するロックアップクラッチと、前記流体伝動装置の出力部材と前記駆動輪との間の動力伝達を遮断する動力断続装置とを備えた車両用動力伝達装置において、車両停止中に前記動力断続装置をスリップ状態乃至解放状態とするニュートラル制御を実行する車両用動力伝達装置の制御装置であって、
前記ニュートラル制御の実行中に、前記ロックアップクラッチに係合力を生じさせる
ことを特徴とする車両用動力伝達装置の制御装置。 A lockup clutch that mechanically directly connects the input and output members of the fluid transmission device that transmits engine power to the drive wheels, and the power transmission between the output member of the fluid transmission device and the drive wheels is interrupted. A vehicle power transmission device comprising a power interrupting device, wherein the vehicle power transmission device executes neutral control for setting the power interrupting device to a slipping state or a releasing state while the vehicle is stopped.
An engaging force is generated in the lock-up clutch during execution of the neutral control. A control device for a vehicle power transmission device, characterized in that: - 前記車両用動力伝達装置の作動油温が低いほど、前記ニュートラル制御の実行中に前記ロックアップクラッチに係合力を生じさせる制御の実行機会を多くする
ことを特徴とする請求項1に記載の車両用動力伝達装置の制御装置。 2. The vehicle according to claim 1, wherein the lower the hydraulic oil temperature of the vehicle power transmission device is, the greater the number of execution opportunities for the control that causes the lockup clutch to generate an engaging force during the execution of the neutral control. Power transmission device control device. - 前記ニュートラル制御の実行中に前記ロックアップクラッチに係合力を生じさせる場合には、前記車両用動力伝達装置の作動油温が高いほど、該ロックアップクラッチの係合力を小さくする
ことを特徴とする請求項1又は2に記載の車両用動力伝達装置の制御装置。 When the engagement force is generated in the lockup clutch during the neutral control, the engagement force of the lockup clutch is decreased as the hydraulic oil temperature of the vehicle power transmission device is higher. The control device for a vehicle power transmission device according to claim 1 or 2. - 前記ニュートラル制御の実行中に前記ロックアップクラッチに係合力を生じさせる場合には、該ニュートラル制御における前記動力断続装置の解放方向への過渡的な動作が終了した後に、該ロックアップクラッチに係合力を生じさせ始める
ことを特徴とする請求項1から3の何れか1項に記載の車両用動力伝達装置の制御装置。 When an engagement force is generated in the lock-up clutch during the neutral control, the engagement force is applied to the lock-up clutch after the transient operation in the release direction of the power interrupting device in the neutral control is completed. The control device for a vehicle power transmission device according to any one of claims 1 to 3, wherein the control device for the vehicle power transmission device is started. - 前記ニュートラル制御の実行中に前記ロックアップクラッチに係合力を生じさせる場合には、前記エンジンの回転速度が高いほど、該ロックアップクラッチの係合力を小さくする
ことを特徴とする請求項1から4の何れか1項に記載の車両用動力伝達装置の制御装置。 The engagement force of the lockup clutch is made smaller as the rotational speed of the engine is higher when the engagement force is generated in the lockup clutch during the execution of the neutral control. The control device for a vehicle power transmission device according to any one of the above. - 前記動力断続装置は湿式の摩擦クラッチである
ことを特徴とする請求項1から5の何れか1項に記載の車両用動力伝達装置の制御装置。
The control device for a vehicle power transmission device according to any one of claims 1 to 5, wherein the power interrupting device is a wet friction clutch.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/052183 WO2012105016A1 (en) | 2011-02-02 | 2011-02-02 | Control device for vehicular power transmission device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/052183 WO2012105016A1 (en) | 2011-02-02 | 2011-02-02 | Control device for vehicular power transmission device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012105016A1 true WO2012105016A1 (en) | 2012-08-09 |
Family
ID=46602257
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/052183 WO2012105016A1 (en) | 2011-02-02 | 2011-02-02 | Control device for vehicular power transmission device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2012105016A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3299679A1 (en) | 2016-09-27 | 2018-03-28 | KCM Corporation | Work vehicle |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003343718A (en) * | 2002-05-24 | 2003-12-03 | Toyota Motor Corp | Vehicle start control device |
JP2010132149A (en) * | 2008-12-04 | 2010-06-17 | Toyota Motor Corp | Control device for power transmission system for vehicle |
-
2011
- 2011-02-02 WO PCT/JP2011/052183 patent/WO2012105016A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003343718A (en) * | 2002-05-24 | 2003-12-03 | Toyota Motor Corp | Vehicle start control device |
JP2010132149A (en) * | 2008-12-04 | 2010-06-17 | Toyota Motor Corp | Control device for power transmission system for vehicle |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3299679A1 (en) | 2016-09-27 | 2018-03-28 | KCM Corporation | Work vehicle |
US10336338B2 (en) | 2016-09-27 | 2019-07-02 | Kcm Corporation | Work vehicle |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101668968B (en) | Control device for an automatic transmission | |
CN102947623B (en) | Control device of automatic transmission for vehicle | |
JP6176197B2 (en) | Vehicle control device | |
CN104136817B (en) | The control device of power transmission | |
JP2004278718A (en) | Control device for frictional engagement device for vehicle | |
CN102245942B (en) | Control device for vehicular power transmitting system and corresponding method | |
JP6350583B2 (en) | Vehicle control device | |
JP2010203590A (en) | Control device of driving device for vehicle | |
JP6233379B2 (en) | Control device for automatic transmission | |
JP2013119875A (en) | Control device of vehicle | |
WO2012105016A1 (en) | Control device for vehicular power transmission device | |
CN108944895B (en) | Control device for vehicle | |
JP4001146B2 (en) | Vehicle drive control device | |
JP6493326B2 (en) | Vehicle control device | |
JP6237438B2 (en) | Vehicle neutral control device | |
JP5299310B2 (en) | Control device for automatic transmission | |
JP5673004B2 (en) | Control device for vehicle drive device | |
JP5126130B2 (en) | Fuel cut control device | |
JP2009264481A (en) | Control device for vehicle drive mechanism | |
JP2016211686A (en) | Power transmission device for vehicle | |
JP5708035B2 (en) | Control device for vehicle power transmission device | |
JP5772200B2 (en) | Control device for vehicle power transmission device | |
JP2010216593A (en) | Control device of driving device for vehicle | |
JP2010175062A (en) | Control device of power transmission device for vehicle | |
JP2012096667A (en) | Vehicle drive control device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11857906 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11857906 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |