WO2012102372A1 - Plant cultivation method and plant cultivation device - Google Patents
Plant cultivation method and plant cultivation device Download PDFInfo
- Publication number
- WO2012102372A1 WO2012102372A1 PCT/JP2012/051784 JP2012051784W WO2012102372A1 WO 2012102372 A1 WO2012102372 A1 WO 2012102372A1 JP 2012051784 W JP2012051784 W JP 2012051784W WO 2012102372 A1 WO2012102372 A1 WO 2012102372A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- plant
- period
- cultivation
- dark
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G7/00—Botany in general
- A01G7/04—Electric or magnetic or acoustic treatment of plants for promoting growth
- A01G7/045—Electric or magnetic or acoustic treatment of plants for promoting growth with electric lighting
Definitions
- the present invention relates to a plant cultivation method and a plant cultivation apparatus.
- a plant cultivation apparatus for growing plants such as crops and agricultural products by artificially controlling elements necessary for plant cultivation such as light, temperature, humidity, water, and nutrients is known.
- This device is also known as a plant factory that efficiently industrializes from sowing for producing agricultural products to harvesting and shipping. Since this device is not affected by the natural environment, it enables stable crop production in barren areas such as cold regions and deserts. Moreover, it does not require farmland unlike conventional farming methods, and enables plant production in facilities such as buildings and large ships.
- Non-Patent Document 1 Since plant chloroplasts are excellent places for storing foreign proteins at high density, there are examples of cultivating leafy plants such as lettuce in which foreign protein genes are introduced into the chloroplast genome in a closed plant factory.
- Plant cultivation devices have the advantage that environmental control and cultivation process changes are relatively easy. Therefore, when growing edible vegetables and ornamental plants in plant cultivation equipment, observe the appearance of the shape and size of the leaves, stems, etc. Implement and cultivate in a cleaner shape and desired size.
- Patent Document 1 a projector that projects seedling light for raising a plurality of seedlings, a CCD camera that acquires a seedling image obtained by imaging a plurality of seedlings, A growth state determination unit that determines the growth state of each of the plurality of seedlings based on the seedling image, and a seedling that is suitable for the growth of each of the plurality of seedlings based on the growth state of each of the plurality of seedlings determined by the growth state determination unit
- a plant cultivating apparatus including a projection condition setting unit that sets a projection area and projection conditions of light is described.
- Patent Document 2 includes a light control unit, a temperature control unit, a humidity control unit, and the like configured by a plurality of light emitting elements that emit light having different wavelengths, and inputs the target plant growth conditions.
- a plant cultivation apparatus that controls the irradiation start time, irradiation amount, and irradiation time when irradiating light having a wavelength suitable for the plant has been proposed.
- Patent Literature 3 proposes a plant cultivation apparatus that irradiates far red light and controls the photoperiodic reaction so that the ratio of far red light and red light is equal to or greater than a predetermined value.
- the illumination lighting schedule is conventionally set to a light / dark cycle of 24 hours as described in Patent Document 2, or short-day cultivation as described in Patent Document 3
- the period of shortening the sunshine hours has been established.
- circadian rhythm a substance metabolism cycle in a plant including photosynthesis is regulated by a biological clock of the plant.
- the circadian rhythm has a period of about one day, and regularly operates a substance metabolism cycle in about 24 hours.
- the circadian rhythm (circadian rhythm) is designed so that the substance metabolism cycle works most efficiently under the day-night cycle.
- the circadian rhythm is influenced by light, and the circadian rhythm is influenced by stimulation of a dark pulse (dark pulse) or a light pulse (light pulse).
- dark pulse dark pulse
- light pulse light pulse
- This circadian circadian rhythm is generated spontaneously by the body clock even when the external environmental conditions are constant and there is no factor to inform the time.
- Non-Patent Document 2 As described in Non-Patent Document 2 and Non-Patent Document 3, the circadian rhythm mechanism is being elucidated from the individual level to the gene level from a more microscopic viewpoint. Is moving forward.
- Non-Patent Document 4 describes that a mutant strain with a short circadian rhythm (cycle: 20.7 hours), a mutant strain with a long cycle (cycle: 27.1-32.5 hours), a wild strain (cycle: about 24 hours). ) Under the light-dark cycle of 20 hours, 24 hours, and 28 hours, respectively (equal time of light and dark). Production and plant growth have been reported to be optimal. Therefore, it is expected that the plant can be cultivated under the optimum conditions for the plant by controlling the lighting with the light / dark cycle in accordance with the cycle of the circadian rhythm of the plant to be cultivated (the circadian resonance method).
- Patent Document 4 changes the flowering time of plants by binding to the promoter region of the Arabidopsis thaliana chlorophyll-binding protein gene (Lhcbl * 3) and regulating the expression of a phytochrome-regulated transcription factor named CCA1. A method is described.
- Non-Patent Document 1 discloses that the expression cycle of the clock gene ( CCA1 ), that is, the circadian rhythm is controlled by changing the light-dark cycle, and the light-dark cycle and the circadian rhythm can be completely synchronized. It has been simulated.
- Non-Patent Document 5 describes that circadian rhythm is controlled by the light-dark cycle using Arabidopsis thaliana introduced with a luciferase gene as a clock gene expression reporter. Further, Non-Patent Document 5 simulated that the circadian rhythm disappears under continuous irradiation light, and that the lost circadian rhythm regains the circadian rhythm by stimulation with a dark pulse.
- JP 2004-121033 A Japanese Patent Laid-Open No. 10-178899 JP 2009-136155 A Japanese translation of PCT publication No. 2002-501381
- the lighting control in the conventional cultivation method is a method in which the light / dark cycle is set to 24 hours as described in Patent Document 2, and the light period and dark period are adjusted within 24 hours.
- short-day cultivation as described in Patent Document 3 is a cultivation method in which a period of time for temporarily stimulating by shortening the sunshine time is provided, but this cultivation method is also controlled with a light / dark cycle of 24 hours.
- the circadian resonance method is known as a cultivation method that takes into account the circadian rhythm of the plant. This method is a cultivation method that matches the light-dark cycle with the circadian rhythm inherent in the plant. The light / dark cycle is determined so that the length and the length of the dark period are equal.
- the temperature difference between the light period and the dark period may increase with a change in the amount of heat generated from the light source. For this reason, it must be managed so as to reduce the temperature difference between the light and dark periods in the cultivation room, and there is a problem that high processing capacity of the air conditioner required for temperature management and excessive power consumption associated therewith are generated.
- the appearance of the plant is imaged with a camera, the growth state is diagnosed by image processing, etc., and environmental control is performed based on the information.
- appearance information such as whether the plant looks beautiful or whether the plant is large has an absolute meaning on the productivity of useful substances. Therefore, there has been a problem that optimization control and selection of the growth conditions of the plant body that produces useful substances cannot be performed.
- the present invention has been made based on the above-mentioned background art, and an object thereof is to provide a plant cultivation apparatus that enables more efficient cultivation based on research on circadian rhythms unique to plants.
- Another object of the present invention is to provide a technique that makes it possible to determine the growth state of a plant based on information other than the appearance information of the plant, and to perform plant selection and environmental control with high accuracy. To do.
- the inventors of the present application further researched based on the knowledge that a dark pulse due to a short dark period can adjust the circadian rhythm of the plant.
- the dark period or the light period is set according to a specific algorithm, the plant cultivation apparatus As a result, the present invention was completed.
- the present invention is a cultivation light control method for cultivating a plant by irradiating cultivation light under an artificially controlled light and dark cycle, wherein the light and dark cycle is a light period in which cultivation light is irradiated and The cultivation light having a light quantity less than the light quantity in the light period is irradiated or has a dark period without the light quantity, and the cycle of the light-dark cycle is a cycle different from the inherent free-run cycle of the plant.
- the cultivation light control method in which the dark period is set to a time zone with low photosynthetic activity or the light period is set to a time zone with high photosynthetic activity is provided.
- the present invention diagnoses the growth state of a plant based on the bioluminescence of a modified plant so that the expression level of an endogenous gene whose expression increases as the plant grows can be identified by bioluminescence.
- a molecular projection method for projecting light for cultivating a luminescent gene-introduced plant into which a luminescent gene has been introduced, and an expression of an endogenous gene that has increased with the growth of the luminescent gene-introduced plant A luminescence image acquisition step of capturing a luminescence image by imaging the amount as bioluminescence, and a growth state diagnosis step of diagnosing the growth state of the luminescent gene-introduced plant based on the luminescence amount of bioluminescence in the luminescence image
- a molecular diagnostic method is provided.
- the dark period is set in a time zone where photosynthesis activity is low, or the light period is set in a time zone where photosynthesis activity is high.
- the cycle of the light-dark cycle is shorter than the plant-specific free run cycle observed under continuous illumination, and the end of the dark cycle is set 1 to 3 hours before the dawn time in the circadian rhythm of the plant Can be achieved.
- the dark period can be set to a period with low photosynthetic activity, or the light period can be set to a period with high photosynthetic activity.
- the dark period is set to a period with low photosynthetic activity, not only the growth rate of plants per day under continuous lighting is increased, but also unnecessary lighting in a period when light utilization is poor is prevented. As a result, the power consumption is reduced as compared with the case of continuous lighting with the same brightness.
- the light period is set to a period when the photosynthetic activity is high, the amount of light can be suppressed when the photosynthetic activity is relatively low, and the amount of light can be increased per day by increasing the amount of light when the photosynthetic activity is high. Utilization efficiency of cultivation light can be increased. In any case, the loss of circadian rhythm due to continuous irradiation is prevented, and plant growth under continuous illumination is well maintained.
- diagnosis of the growth state of a plant body based on the expression level of the endogenous gene enables diagnosis with higher accuracy than when diagnosing the growth state of the plant body based on appearance information. can do. That is, since the endogenous gene expression in the plant body and the growth of the plant body are correlated, it becomes possible to diagnose the growth state of the plant body at the molecular level based on the strength of the expression of the endogenous gene, Even at an early stage such as the seedling raising period, it is possible to select excellent seedlings and estimate the expression level of useful proteins. Further, the metabolic cycle of a plant can be estimated from the expression level of the endogenous gene, and environmental control most suitable for the plant body can be achieved at the molecular level.
- FIG. 1 is a conceptual diagram showing a cultivation light control method according to one embodiment of the present invention.
- FIG. 2 is a diagram showing the phase shift of the circadian rhythm when a single dark pulse is given under continuous illumination.
- FIG. 3 is a diagram showing an example of a phase response curve when a dark pulse of 2 hours is given.
- FIG. 4 is a diagram illustrating an example of a phase response curve when a 2-hour write pulse is applied.
- FIG. 5 is a conceptual diagram showing a cultivation method provided with a light-dark cycle adjustment period.
- FIG. 6 is a schematic diagram of a plant cultivation apparatus according to an embodiment of the present invention.
- FIG. 7 is a schematic view of a plant cultivation apparatus according to another embodiment of the present invention.
- FIG. 8 is a graph showing the light quality dependence of the circadian rhythm.
- FIG. 9 is a diagram showing the influence of the difference in light and dark cycle on the growth of plants, and the influence on the growth rate r (raw weight increase rate per day) and cultivation efficiency q (fresh weight increase rate per lighting time). Show.
- FIG. 10 is a diagram showing the effect of light / dark cycle differences on plant growth, and shows the effect on the above-ground weight (mg) and root ratio (%).
- FIG. 11 is a diagram showing the effect of light / dark cycle differences on plant growth, and shows the effect on dry weight (mg) and moisture content (%).
- FIG. 10 is a diagram showing the effect of light / dark cycle differences on plant growth, and shows the effect on the above-ground weight (mg) and root ratio (%).
- FIG. 11 is a diagram showing the effect of light / dark cycle differences on plant growth, and shows the effect on dry weight (mg) and moisture content (%).
- FIG. 12 is a diagram showing the effect of light / dark cycle differences on plant growth, and shows the effect on the amount of chlorophyll ( ⁇ g Chl / raw weight mg).
- FIG. 13 is a diagram showing an outline of a molecular diagnostic plant cultivation apparatus equipped with a molecular diagnostic system.
- FIG. 14 is a diagram for explaining the configuration of the molecular diagnostic system in the early diagnosis stage B.
- FIG. 15 is a flowchart showing the molecular diagnosis process of the molecular diagnosis system in the early diagnosis stage B.
- FIG. 16 is a diagram illustrating an example of data in which the correction algorithm is set in the coordinate information (x n , y n ) of the nursery pallet.
- FIG. 17 is a diagram showing an example of a luminescent image of a seedling photographed by the luminescent image acquisition means and diagnostic result data of the growth state thereof.
- FIG. 18 is a correlation diagram between the dry weight after cultivation and the leaf area of the seedling, and the dry weight after cultivation and the amount of luminescence of the seedling.
- FIG. 19 is a diagram showing the correlation between the total amount of bioluminescence generated and the leaf area of seedlings, and the total amount of bioluminescence generated and the amount of luminescence of seedlings.
- FIG. 20 is a diagram for explaining the configuration of the molecular diagnostic system in the cultivation stage C.
- FIG. 21 is a flowchart showing the molecular diagnosis process of the molecular diagnosis system in the cultivation stage C.
- FIG. 22 is a diagram showing an example of circadian rhythm information created based on the measurement value of the light emission amount.
- FIG. 23 is an example of expression information of a photosynthesis-related gene (chlorophyll AB-binding protein gene CAB) created based on the measured value of luminescence.
- a photosynthesis-related gene chlororophyll AB-binding protein gene CAB
- the cultivation light control method of the present invention is a method for controlling cultivation light in a light / dark cycle in which the dark period is set to a time zone with low photosynthetic activity or the light period is set to a time zone with high photosynthesis activity.
- free-run cycle means a cycle in the circadian rhythm observed under continuous illumination conditions or continuous dark conditions.
- circadian rhythm also called circadian rhythm, means an increase or decrease in the expression level of a specific gene (group) in a plant that is observed in a cycle of approximately 24 hours, and various physiological phenomena that occur as a result. This physiological phenomenon is observed as a substance metabolism activity (indicator) in the plant body controlled by a clock gene.
- the metabolic activity of plants is metabolic activity such as sugar metabolism and cell proliferation, and is a result of enhancement / suppression of the expression of photosynthetic genes, sugar metabolism genes or cell proliferation genes.
- “Circadian rhythm” is the daily rhythm observed in any of these metabolic activities.
- the circadian rhythm used for optimizing plant growth is preferably a circadian rhythm with respect to metabolic activity that serves as an index of plant growth, and examples thereof include photosynthetic activity and sugar metabolism.
- the circadian rhythm may be based on one metabolic activity, or may be an index considering a plurality of metabolic activities.
- the optimization of plant growth means maximizing the production amount per dropped energy (cost performance) or the production amount per production period (production rate).
- the production amount here means the growth amount (raw weight or dry weight) or the production amount of useful substances such as nutritional components and pharmaceutical proteins.
- the circadian rhythm is obtained by incorporating a luciferase structural gene downstream of the promoter region of a gene encoding a gene involved in photosynthesis or growth or a useful protein.
- Known methods such as a method for determining the amount of luciferase luminescence by continuously measuring the amount of circadian rhythm by measuring a fixed amount of carbon dioxide gas as described in Non-Patent Document 4. It is calculated by.
- the calculated circadian rhythm is expressed as the time variation of metabolic activity. Moreover, it can also obtain
- free-run cycle means the time from peak to peak or from bottom to bottom, which is determined from the time fluctuation of metabolic activity showing circadian rhythm.
- the free run cycle is approximately 24 hours for most plants, but more precisely, the inherent free run cycle of a plant can be shorter than 24 hours or longer than 24 hours.
- the free-run cycle changes temporarily by providing a turn-off time of about several minutes to several hours called a so-called dark pulse (DP) under continuous illumination.
- DP dark pulse
- the plant-specific free-run cycle determined under continuous illumination conditions or continuous dark conditions is used as a reference.
- “light period” means a time zone in which the light source is turned on and the cultivation light is irradiated.
- “dark period” is used not only in the case where the light source is turned off and the cultivation light is not irradiated, but also in the meaning including the time period in which the light amount is lower than the light amount in the light period. That is, in the present invention, the control of cultivation light is mainly used in the sense of on / off control of the light source, but is also used in the sense of including increase / decrease control of the light amount.
- the light period and dark period may be a time period of about 1 to 3 hours.
- the “light / dark cycle” in the present specification refers to a pulsed dark period (DP: also referred to as a dark pulse) and a pulsed light period (LP: light) when the light period and the dark period are substantially equal or under so-called continuous illumination. (Also referred to as a pulse) is provided periodically. Further, when the light source is turned on in the dark period, the wavelength in the dark period and the wavelength in the light period may be different.
- the dark period is set to a time zone with low photosynthetic activity or the light period is set to a time zone with high photosynthesis activity.
- the low photosynthetic activity means that the average value of the photosynthetic activity is about ⁇ 10%, preferably ⁇ 15%, and more desirably ⁇ 20% or less.
- High photosynthetic activity means that the average value of photosynthetic activity is about + 10%, preferably + 15%, and more desirably + 20% or more.
- the time zone with low photosynthetic activity is determined from the circadian rhythm inherent in plants, but this time zone generally corresponds to 1 to 3 hours before dawn in the plant clock, that is, from 3 am to 5 am.
- the time zone with high photosynthetic activity is also determined from the circadian rhythm inherent in the plant, but this time zone roughly corresponds to 5 to 7 hours after dawn in the plant biological clock, that is, from 11 am to 1 pm.
- the method of the present invention includes (1) a method in which the end of the dark period is set to a time zone where the photosynthetic activity is low, that is, 1 to 3 hours before the dawn time in the biological clock of the plant, and (2) the dark period is photosynthetic activity
- the method includes setting a low time zone or light period of the photoperiod to a time zone with high photosynthetic activity.
- FIG. 1 is a conceptual diagram of the control method. It is known that the plant metabolism represented by photosynthetic activity fluctuates in a cycle of about 24 hours. As shown in FIG. 1 (a), in the light / dark cycle of 24 hours composed of the same period of light and dark periods.
- the end of the dark period coincides with the dawn time in the body clock.
- the photosynthetic activity is minimized at 1 to 3 hours before the dawn in the plant body clock, that is, the time from the dark period to the light period.
- the time 1 to 3 hours before dawn is a time zone in which the response to light is increasing, and the time of the biological clock is advanced by several hours by light irradiation. This is called phase advance or phase shift by light.
- the method (1) as shown in FIG. 1 (b), by providing the end of the dark period 1-3 hours before dawn, the body time of the plant is advanced several hours by phase advance, and the photosynthetic activity is low. , Preferably the lowest time zone is deleted.
- the time during which the end of the dark period can be advanced that is, the difference between the cycle of the light-dark cycle and the free run cycle specific to the plant is within the range of time in which the circadian rhythm of the plant can be synchronized. If this difference is large, the light-dark cycle and the circadian rhythm cannot be synchronized, and as a result, the circadian rhythm will behave irregularly. If the circadian rhythm becomes irregular, it will not be possible to expect sufficient growth.
- the difference between the light-dark cycle period and the plant-specific free run period is at most 4 hours, 1 hour, 2 hours, and can be 3 hours.
- the optimum time is experimentally determined depending on the plant or the same plant. It can be said that the method (1) is a method in which the length of the light-dark cycle is made shorter than the plant-specific free-run cycle.
- the proportion between the length of the light period and the length of the dark period in the light / dark cycle is appropriately determined.
- a light / dark cycle in which the length of the light period and the length of the dark period are the same or a light / dark cycle in which the length of the dark period is shorter than the length of the light period is preferable. This is because, by sufficiently shortening the dark period, it can be regarded as a continuous illumination condition, and the burden on the air conditioner and the like is reduced.
- the length of the light period is the same as the length of the dark period or the length of the light period is 11 hours or more.
- a light / dark cycle is desirable.
- the length of the light period and the length of the dark period are, for example, when the cycle of the light / dark cycle is 23 hours, the light period is about 11.5 hours, the dark period is about 11.5 hours, and the light period is about 12 hours.
- the dark period can be about 11 hours.
- the light period can be about 13 hours and the dark period can be about 10 hours.
- the cycle of the light-dark cycle is about 22 hours, the light period is about 11 hours, the dark period is about 11 hours, the light period is about 12 hours, the dark period is about 10 hours, the light period is about 13 hours,
- the dark period can be about 9 hours.
- the dark period is about 10.5 hours
- the light period is about 11 hours
- the dark period is about 10 hours
- the light period is about 12 hours
- the dark period can be about 9 hours.
- the light quantity in the dark period is about 1 ⁇ 2 or less, about 1/5 or less, and about 1/10 or less, preferably zero, that is, turning off the light source.
- This method maintains the advantage that the plant can be cultivated in a state close to the metabolic cycle inherent to the plant because the time when the plant subjectively feels dawn is advanced by several hours. In other words, since it is not a method of reversing the body time from night to day, the stress on the plant is small. If the stress on the plant is large, normal physiological metabolism cannot be maintained, and optimization of plant growth becomes difficult. In addition, according to this method, the plant growth apparatus is not significantly affected even though it is cultivated in a light / dark cycle having a cycle shorter than 24 hours within a range not destroying the circadian rhythm. ⁇ Cost is reduced.
- Non-Patent Document 5 Under continuous illumination, when a dark pulse of about 2 hours is given at a certain period, the circadian rhythm of the plant is synchronized with the period and a phenomenon (phase lock) is observed that converges to a specific phase relationship.
- a phenomenon phase lock
- the circadian rhythm of the plant is maintained, so that not only the promotion of cultivation by continuous lighting is expected, but also the power consumed by the light source is reduced as a result of a short turn-off, and the temperature changes rapidly. Therefore, the load on the air conditioner is also reduced.
- the period for providing the dark period is determined by the following method.
- a phase response curve (G ( ⁇ )) is obtained from (A) a free-run period ( ⁇ ) under continuous illumination conditions and a free-run period ( ⁇ ′) under continuous irradiation conditions with one dark period. And (B) an intersection of the dark phase and the phase response curve corresponding to a time zone with low photosynthetic activity within a time when phase synchronization of the circadian rhythm in the plant is possible (phase fixed point) )
- the phase response curve G ( ⁇ ) depends on the time length of the dark pulse (also referred to as “dark pulse intensity”), and the length of the dark period coincides with the dark pulse intensity.
- the length of the dark period is the length of the dark pulse ( ⁇ t)
- the length of the light period is the remaining time (T ⁇ t) of the cycle (T) of the light / dark cycle. Note that the sign of phase shift is represented by plus in the case of phase advance and minus in the case of phase backward.
- the circadian rhythm measurement method is already known as described above.
- a method for obtaining a phase response curve is also known.
- the phase response curve is a phase shift based on the circadian rhythm under continuous illumination, that is, the phase difference between the circadian rhythm under continuous illumination and the circadian rhythm when a single dark pulse is applied under continuous illumination
- FIG. 5 is a diagram showing a relationship between a free run cycle ( ⁇ ) ⁇ free run cycle ( ⁇ ′)) and a time (phase) at which a dark pulse is applied.
- FIG. 2 is a diagram showing the phase shift of circadian rhythm when a single dark pulse is given under continuous illumination, and this figure shows a state where a dark pulse is given 120 hours after the start of cultivation. ing. It can be seen that the application of dark pulses gives a phase lag to the circadian rhythm.
- FIG. 3 shows an example of a phase response curve G ( ⁇ ), which is a simulation of a plant having a free-run cycle of 23 hours.
- the vertical axis indicates the phase shift (rad / 2 ⁇ ) and the horizontal axis indicates the phase (rad / 2 ⁇ ) during dark pulse irradiation.
- the phase response curve is different depending on the intensity of the dark pulse.
- the phase response curve means that a circadian rhythm having a period different from the free-run period between the maximum value and the minimum value of the phase shift (rad / 2 ⁇ ) indicated by the phase response curve can occur in the plant. ing.
- the phase lock occurs between the maximum and minimum values of the phase shift, resulting in a natural circadian rhythm that is different from the plant specific circadian rhythm, despite the cycle rhythm of the metabolic activity of the plant. Growth is expected.
- the photosynthetic activity decreases 1 to 3 hours before the subjective dawn time of the plant, that is, in a time zone where the phase is 0.94 ⁇ 0.04 (rad / 2 ⁇ ). Therefore, when the dark period is set in this time zone, the light extinction time can be provided without greatly adversely affecting the growth of the plant. Therefore, the phase shift when the phase is 0.94 ⁇ 0.04 (rad / 2 ⁇ ), that is, the phase shift corresponding to the phase on the phase response curve of 0.94 (rad / 2 ⁇ ) is obtained.
- phase fixing point the phase of the circadian rhythm is fixed and a regular circadian rhythm is obtained.
- the phase shift at which the phase at which the dark pulse is applied becomes 0.94 (rad / 2 ⁇ ) is about ⁇ 0.15 (rad / 2 ⁇ ), that is, the phase fixing point is 0.15 (rad / 2 ⁇ ) phase. Is at a late point.
- the intensity of the dark pulse is a time within a range where the synchronization phenomenon occurs, and the intensity, that is, the length of the dark period is approximately 4 hours or less.
- the intensity of the dark pulse is arbitrary as long as it is within this range, and is, for example, 4 hours, 3 hours, 2 hours, or 1 hour. This strength is determined experimentally.
- the phase tends to be slow, and the period for applying the dark pulse tends to be longer than the plant-specific free run period.
- the period of applying the dark pulse is longer than 24 hours, and about 30 hours at the maximum. It is. Of course, depending on the varieties of plants or the same plant, the period for applying dark pulses may be 24 hours.
- the time for applying the light pulse is obtained from a phase response curve obtained when the light pulse is applied under continuous illumination.
- a light pulse When a light pulse is applied, a light period is provided in a time zone in which photosynthetic activity is high.
- the time length of the write pulse also referred to as “light pulse intensity”
- the length of the light period coincides with the intensity of the write pulse.
- the time period in which the light period is provided is obtained by the same procedure as that for applying the dark pulse.
- the photosynthetic activity becomes high 5 to 7 hours after the subjective dawn time of plants, that is, in the time zone where the phase is 0.25 ⁇ 0.04 (rad / 2 ⁇ ). Therefore, when a light period with a large amount of light is provided in this time zone, light with a high light amount is irradiated in a time zone with high photosynthetic activity, and the light amount in other time zones where the photosynthetic activity decreases can be set low. As a result, not only the utilization efficiency of cultivation light is improved, but also a high production rate by continuous illumination is expected. Therefore, a phase shift when the phase is 0.25 ⁇ 0.04 (rad / 2 ⁇ ), for example, a phase shift corresponding to 0.25 on the phase response curve is obtained. In the example shown in FIG.
- the phase shift at which the phase at which the write pulse is applied becomes 0.25, the phase shift is about 0.17 (rad / 2 ⁇ ), that is, the phase fixed point is 0.17 (rad / 2 ⁇ ) earlier.
- the period (T) of the light / dark cycle is 24 when the phase obtained by subtracting the phase shift ( ⁇ T) from the free run period ( ⁇ ) under continuous illumination, that is, when the inherent free run period of the plant is 24 hours.
- Time ⁇ (1 ⁇ 0.17) 19.09 hours light-dark cycle. Therefore, it is sufficient to control the light in a dark cycle of about 17.1 hours and a light cycle of 2 hours (light pulse length).
- the phase response curve in FIG. 4 shows the case where the length of the light pulse is 2 hours.
- the intensity of the light pulse becomes weak, the curves drawn by the phase response curve approach each other, and when the intensity of the light pulse becomes strong, the curve drawn by the phase response curve leaves.
- the phase response curve shows only a single response, and a continuous response curve as shown in the figure is not drawn. That is, the phase reset phenomenon occurs, the phase synchronization phenomenon does not occur, and the phase control necessary in this illumination method cannot be performed. Therefore, the intensity of the write pulse is a time within a range where phase synchronization occurs, and the intensity, that is, the length of the light period is approximately 4 hours or less. If the time is within this range, the length of the write pulse is arbitrary, for example, 4 hours, 3 hours, 2 hours, or 1 hour. This strength is determined experimentally.
- the phase tends to be earlier, and the period for applying the light pulse tends to be shorter than the plant-specific free run period. Further, as described above, if the intensity of the laut pulse is increased, the phase tends to be advanced, and if the intensity is increased too much, the synchronization phenomenon does not occur. Therefore, the period for applying the write pulse is shorter than 24 hours and is about 18 hours at the minimum. is there. However, depending on the plant or the same plant, the light pulse application cycle may be 24 hours.
- Plants are cultivated under the cultivation light of the light and dark cycle set as described above. Light is needed after germination. Therefore, cultivation can be started simultaneously with germination under the light of the light and dark cycle. In addition, the plant is grown for a few days to 1-2 weeks in the light of light or natural light of a 24-hour day / night cycle (12 hours of light period and 12 hours of dark period), and then cultivated under the light of the above light and dark cycle. You may start.
- the circadian rhythm of the plant gradually synchronizes and the plant's circadian rhythm gradually synchronizes with the light / dark cycle set, for example, the light / dark cycle of 22 hours.
- a metabolic cycle is formed.
- the harvesting time is appropriately determined according to the growth of the plant. It can also be cultivated in a 24-hour day / night cycle when the harvest time is approaching.
- the plant cultivation method of the present invention includes a first cultivation period that is cultivated with the cultivation light of the light and dark cycle set by the above method and the light and dark cycle in the first cultivation period before and after the first cultivation period or both. It is the cultivation method which provided the light-dark cycle adjustment period grown under the cultivation light of the light-dark cycle which has a period between a period and 24 hours.
- the light / dark cycle adjustment period is an adjustment period for shifting from the light / dark cycle in the first cultivation period to the light / dark cycle having a 24-hour period.
- the period of the light-dark cycle in the first cultivation period is a time shorter than 24 hours, a time longer than 24 hours, and may be 24 hours in some cases.
- the biological clock of the plant has a 24-hour period, so the human rhythm (24-hour social cycle) at the start of cultivation coincides with the circadian rhythm of the crop. For example, when the light period starts at 10:00 am, 10:00 am becomes the end time of the dark period, and there is no error between the human life rhythm and the plant circadian rhythm at the start of cultivation and at the time of harvest.
- the cycle of the light and dark cycle in the first cultivation period is not 24 hours, such as 22 hours, a deviation occurs between the human life rhythm and the plant circadian rhythm at the time of harvest. For this reason, when harvesting at an optimal harvest time in consideration of the circadian rhythm of the plant, for example, at 6 am in the body clock of the plant (the time when the light period switches to the dark period), the harvest time in the human life rhythm is May fall at midnight. In this case, an excessive burden is imposed on humans during harvesting. On the other hand, when it is attempted to start harvesting at 10:00 am with a 24-hour rhythm giving priority to human life rhythms, for example, the plant biological clock corresponds to, for example, around 12:00 am where photosynthesis activity is remarkably high, which is the best for harvesting.
- the light / dark cycle adjustment period is a cultivation period provided to eliminate such problems, and the biological clock of the plant is adjusted to a 24-hour cycle within this period.
- FIG. 5 is a conceptual diagram showing a cultivation method provided with a light-dark cycle adjustment period.
- This figure shows a case where cultivation is started at 10 am and harvesting is started at 10 am.
- the light source is turned on at 10 am, and the metabolic rhythm of the plant is given priority immediately after the start of cultivation.
- light is irradiated in a light / dark cycle of a period of 22 hours (light period 11 hours, dark period 11 hours).
- the cultivation is performed in the light-dark cycle for a while from the start of cultivation to the harvest time.
- the harvest time approaches, the light-dark cycle having a period of 22.5 hours, the light-dark cycle having a period of 23 hours, 23.
- Cultivation is performed in a light / dark cycle having a period of 5 hours and a light / dark cycle in which the period gradually increases.
- it is possible to give priority to the metabolic rhythm of plants during the period of large plant growth, and gradually give priority to the human rhythm as the harvest approaches.
- plant cultivation in consideration of human life rhythms can be achieved while reducing stress applied to the plant.
- the period of the light / dark cycle in the light / dark cycle adjustment period is between the period of the light / dark cycle in the first cultivation period and 24 hours, which is the period of one light / dark cycle, and may be the period of two or more light / dark cycles. .
- the adjustment period (cultivation period) is also appropriately determined, and may be one day, two days, three days, or more.
- the length of the dark period and the length of the light period in the light / dark cycle are also arbitrary. From the viewpoint of stress reduction and synchronous control, the light / dark cycle in the light / dark cycle adjustment period is preferably a light / dark cycle approximate to the light / dark cycle in the first cultivation period.
- the light / dark cycle in the first cultivation period is a light / dark cycle with a period of 22 hours (light period 11 hours, dark period 11 hours), the light period is 11 hours and the dark period is 11.5 hours.
- the light-dark cycle adjustment period is exemplified as a light-dark cycle having a cycle of 11.5 hours and a light cycle of 11.5 hours, a light cycle of 11.5 hours and a light cycle of 12 hours.
- the light-dark cycle in the first cultivation period is a light-dark cycle having a dark period of 2 hours and a light period of 22.15 hours, cultivation of continuous irradiation without the dark period after the end of the first cultivation period It is good also as a period.
- the light / dark cycle adjustment period is arbitrary, and may be harvested immediately without providing the light / dark cycle adjustment period after the end of the first cultivation period.
- the plant cultivation apparatus of the present invention includes a housing that accommodates a plant, a light source that emits light (cultivation light) for cultivating the plant, and a light source control unit that controls lighting of the light source. If the housing
- the plant cultivation apparatus includes an air conditioning facility that manages humidity and temperature in a space that accommodates plants, and a culture facility that supplies a plant cultivation medium.
- the light source is composed of LEDs, fluorescent lamps, etc., and irradiates light of a wavelength necessary for plant growth.
- the light source may be a light source that emits light of a fixed wavelength or a light source that emits light of a plurality of wavelengths.
- a light source capable of controlling the wavelength of light to be irradiated is preferably used. It is also known that plant growth is affected by the wavelength of light to be irradiated, and the wavelength of light is appropriately selected. For example, in a light period, a light source composed of a red LED may be turned on to emit red light, and in a dark period, a light source composed of a blue LED may be turned on to emit blue light.
- the light source consisting of red LED and blue LED In the light period, the light source consisting of red LED and blue LED is turned on, and the mixed light of red light and blue light is irradiated. In the dark period, only the light source consisting of blue LED or the light source consisting of red LED is turned on. Thus, there may be a method of irradiating either one of red light and blue light. In particular, when using light pulses, turn on the light source consisting of the red LED throughout the dark period and turn on the light source consisting of the blue LED during the light period and irradiate both red light and blue light. Is desired. Blue light has the effect of darkening the green color of the leaves and hardening the leaves. For this reason, simultaneous irradiation of red light and blue light not only prevents the disappearance of the circadian rhythm due to continuous irradiation of red light, but also contributes to the formation of leaves.
- the plant to be cultivated is not limited as long as it can grow in the housing.
- the plant can be an edible plant or an ornamental plant.
- the plant is preferably an edible plant and is an edible plant with a short growth period.
- Vegetables such as lettuce, Japanese mustard spinach, spinach, cucumber, tomato, pepper, sanchu, mizuna, spring chrysanthemum; fruits such as arugula and basil, fruits such as strawberry, mandarin, mango, grape, and pear Cereals such as rice, wheat, barley, rye, oat, corn, sorghum, millet, millet and millet are exemplified.
- Examples of ornamental plants include flower plants such as roses, carnations, orchids, gerberas, turkeys, and foliage plants such as pothos, serom, and Asiantum.
- the light source control means includes, for example, a storage device such as a RAM and a hard disk device, a timer, a switch device that turns on and off the light source and switches the light source, an input device such as a keyboard and a touch sensor, and a computer device that controls these devices. Appropriate combinations are configured.
- the light / dark cycle (the length of the light period and the length of the dark period), the length of the first cultivation period, the light / dark cycle adjustment period, and the light / dark cycle (the length of the light period and the dark period) according to the cultivation light control method.
- Information required for cultivation such as management temperature and management humidity during cultivation is input from the input device and stored in the storage device.
- the light source control means turns the light source on / off or adjusts the amount of light according to the inputted light / dark cycle, and switches the light source as necessary.
- the light source control means controls the lighting of the light source in the light / dark cycle according to the cultivation light control method until the first cultivation period ends, and in the light / dark cycle adjustment period.
- the light source is controlled to be turned on until it can be harvested by a predetermined light / dark cycle.
- the plant cultivation apparatus of the present invention may be further provided with a clock means for displaying the body time of the plant.
- the clock means includes a display means including a conversion means for converting the set light-dark cycle period (T) into a 24-hour display, a display for displaying the time converted by the conversion means, and the like.
- the conversion means is constituted by, for example, a computer device, and converts the set light / dark cycle period into a 24-hour display. For example, when the cycle of the light / dark cycle is set to 22 hours (light period 11 hours, dark period 11 hours), the plant advances the biological clock subjectively with 22 hours as one day.
- the conversion means converts the time in the biological clock of the plant into the time indicated in 24 hours, with 22 hours being 24 hours in order to match the biological clock with the human life rhythm (24-hour social system). That is, the conversion means calculates that the time when the light source is turned on is 6 am, which is the subjective dawn time of the plant, and the time after 11 hours when the light source is turned off is 6 pm.
- the time in the body clock is displayed on a display means including a display.
- the dark period start time is 3 am and the dark period end time is 5 pm, and the time is displayed on the display means.
- the worker senses the life rhythm of the plant with a rhythm similar to that of the human life, and performs various operations such as fertilization and harvesting operations according to the biological clock of the plant.
- a molecular diagnostic plant cultivation apparatus 101 shown in FIG. 13 is a plant cultivation apparatus provided with a molecular diagnostic system for diagnosing the growth state of a plant based on bioluminescence of luminescent molecules that increase with the growth of the plant.
- the molecular diagnostic system comprises a light projection means for projecting cultivated light for growing a luminescent gene-introduced plant into which a luminescent gene has been introduced, and an expression level of an endogenous gene increased with the growth of the luminescent gene-introduced plant.
- Luminescent image acquisition means for imaging as bioluminescence and acquiring a luminescent image
- growth state diagnosis means for diagnosing the growth state of the luminescent gene-introduced plant based on the amount of bioluminescence emitted from the luminescent image.
- various facilities for example, a light source such as lighting, an air conditioner such as an air conditioner, and a hydroponic cultivation facility
- a general plant cultivation apparatus are omitted for easy understanding. Unless otherwise specified, it is assumed that these various facilities are installed.
- three spaces of a seedling raising stage A, an early diagnosis stage B, and a cultivation stage C are formed in a space surrounded by the outer wall 150.
- the seedling raising stage A is an area for raising seedlings during the seedling raising period (about several weeks after sowing), and a plurality of seedlings 110 aseptically seeded and germinated in a medium are stored in a seedling shelf 112. .
- the seedling rack 112 is equipped with a light source for irradiating the seedlings 110 with cultivation light, that is, a light irradiation means 114.
- the light irradiation means 114 is not particularly limited as long as it is suitable as seedling cultivation light. For example, fluorescent lamps and LEDs are suitable.
- a luminescent gene encoding a protein that performs bioluminescence is introduced into a promoter portion of an arbitrary target substance gene in advance using a genetic engineering technique.
- the luminescent molecules increase with the growth of the luminescent gene-introduced plant, and the increased luminescent molecules react with the substrate to perform bioluminescence.
- Bioluminescence is the emission of visible light by living organisms, and means luminescence using the mechanism of luminescence by luciferase such as fireflies, click beetles, luminescent bacteria (Photobacterium terephthalum, Vibrio harveyi, etc.), Cypridina, Renilla, Yakouchu, etc. .
- the luminescent gene is preferably a gene encoding firefly-derived luciferase, and the luminescent molecule is preferably luciferase.
- the early diagnosis stage B is an area for diagnosing the growth status of seedlings when selecting excellent seedlings before planting the seedlings 110 grown in the seedling stage A to the cultivation stage C described later.
- a dark box 120 In the early diagnosis stage B, a dark box 120, a light emission image acquisition unit 122, a growth state diagnosis unit 124, and a selection unit 128 are installed.
- FIG. 14 is a diagram for explaining the configuration of the molecular diagnostic system in the early diagnosis stage B.
- FIG. 15 is a flowchart showing the molecular diagnosis process of the molecular diagnosis system in the early diagnosis stage B.
- the dark box 120 is capable of accommodating the seedling 110 and forming a dark space so that light from the outside does not enter.
- the structure is not particularly limited as long as it has such a function, and the size and shape can be arbitrarily designed.
- the luminescent image acquisition means 122 is for acquiring a luminescent image by imaging bioluminescence emitted from the seedling 110 in the dark box 120.
- the luminescent image acquisition unit 122 is not particularly limited as long as it is a unit that can capture weak bioluminescence, such as a high-sensitivity CCD camera or a photomultiplier tube.
- the luminescent image acquisition means 122 is installed above the young seedling 110 in FIGS. 13 and 14 so that the seedling can be photographed from above.
- the luminescent image acquisition means 122 may be installed on the side surface of the dark box 120 so that it can be photographed from the side surface of the seedling 110, and a plurality of luminescent image acquisition means 122 is installed so that it can be photographed from each direction of the seedling 110. You can also.
- the luminescent image of the seedling 110 acquired by the luminescent image acquisition unit 122 is transmitted to the growth state diagnosis unit 124, and the image is stored in the image storage unit 126 (S100).
- the growth state diagnosing means 124 diagnoses the growth state of the seedling 110 (luminescent gene-introduced plant body) based on the amount of bioluminescence emitted from the luminescent image acquired from the luminescent image acquiring means 122.
- the light emission image information acquired by the growth state diagnosis unit 124 includes coordinate information (x n , y n ) of the seedling pallet 116.
- the growth state diagnosis means 241 acquires this coordinate information (S110), extracts a growth region (shown as a cell) of the seedling 110 corresponding to the coordinate information based on this coordinate information, and emits light in the growth region. Is measured (S120).
- the diagnosis result data of the growing state can be created based on the actual measurement value obtained by measuring the light emission amount, but in which position the seedling 110 is placed in the seedling stage A, for example, above or below the seedling shelf 112 Depending on whether it is close to or far from the light irradiation means 114, environmental differences such as when the seedling 110 grows well or conversely difficult to grow can occur. Therefore, even when diagnosing the breeding state, just judging the amount of bioluminescence itself as an absolute value, whether the seedlings were excellent due to the quality of whether or not the seedling was excellent, It is unclear whether the environment of the place where it was placed was bad and the growth was unsatisfactory. As a result, it was unclear whether the absolute amount of bioluminescence was measured and there was a possibility of misjudgment in the essence of selecting excellent seedlings.
- This correction coefficient is a coefficient for considering the environmental difference from the past growth state, and correction by the correction coefficient is arbitrary.
- the growth state diagnosis means 124 calculates a correction coefficient for each position of the seedling 110 based on the position information of the seedling 110 (luminescent gene-introduced plant body) and the average light emission amount, and corrects the measured value of the light emission amount by the correction coefficient. It is preferable to provide an algorithm.
- the actual value of the average light emission amount for each position as a result of raising the seedlings a sufficiently large number of times is obtained, and the average value is obtained for the seedlings at positions that are less than the average value of the light emission amount obtained by adding all the positions.
- amend to raise to is obtained beforehand.
- a coefficient that lowers the average value is obtained.
- FIG. 16 shows an example of data in which the correction algorithm is set in the coordinate information (x n , y n ) of the nursery pallet 116. As shown in FIG. 16, the correction algorithm is performed in correspondence with the coordinate information of the nursery pallet 116.
- the reference value is compared with the actual measurement value (S140), and diagnostic result information on the growing state is created (S150).
- FIG. 17 is an example of a luminescent image of the seedling 110 taken by the luminescent image acquisition means 122 and diagnostic result data of its growth state.
- FIG. 17A when a 4 ⁇ 4 cell seedling pallet 116 is photographed from above the seedling 110 in the dark box 120, various luminescence image data of bioluminescence emitted from the two leaves of the seedling 110 can be acquired. .
- This bioluminescence is generated when a luminescent gene is expressed in a plant to produce a luminescent molecule, and luciferin contained in the substrate reacts with the luminescent molecule.
- the amount of bioluminescence emitted correlates with the quality of the growth state of the seedling 110, and it means that the seedling with a larger amount of light emission (110a in FIG. 17A) is more excellent.
- the seedling 110 has a defect in nature, poor growth, or the luminescent gene is not expressed for some reason, the amount of luminescence is small or bioluminescence does not occur at all and the photographed image Is not projected (110b, 110c, 110d in FIG. 17A).
- a reference value (threshold value) for the amount of luminescence serving as a reference for selection of the young seedlings 110 is set in advance in the growth state diagnosis unit 124, and a seedling (for example, 110a) exhibiting an amount of luminescence exceeding the reference value is set to the next cultivation stage
- the seedling pallet 116 of 4x4 cells can set an arbitrary number of cells, and the diagnosis of the growing state should be performed for every arbitrary number of cells. Can do.
- the sorting unit 128 acquires the diagnostic information created by the growth state diagnosing unit 124, and sorts out excellent seedlings and defective seedlings based on the diagnostic information.
- the configuration of the sorting means 128 is not shown, for example, a robot hand unit capable of holding a seedling together with the culture medium so as not to damage the plant, and the held seedling can be transferred from the raising seedling stage A to the cultivation stage C or a disposal box. It can be set as the structure by a simple conveyance part.
- Excellent seedlings for example, 110a
- a cultivation palette fixed planting palette 1444 used in the cultivation stage C
- defective seedlings for example, 110b, 110c, 110d
- FIG. 18 shows a correlation diagram between the dry weight after cultivation and the leaf area of the seedling, and the dry weight after cultivation and the luminescence amount of the seedling.
- the leaf area of the seedling and the amount of luminescence of the seedling can be used as an index for early diagnosis. They are also generally available under various light environments.
- FIG. 19 shows the correlation between the total amount of promoter activity (total photoprotein production amount: Net LUC production) and the leaf area of seedlings, and the total amount of promoter activity and the amount of luminescence of seedlings.
- total photoprotein production amount: Net LUC production total photoprotein production amount
- Cultivation stage C is an area where selected excellent seedlings (eg, 110a) are cultivated using a hydroponic cultivation system or the like.
- the cultivation stage C includes a cultivation apparatus 136 composed of a light irradiation means 130 for promoting the growth of the plant body, a hydroponic cultivation means 132, a temperature and humidity management means 134, and the like.
- a luminescent image acquisition unit 138 and a growth state diagnosis unit 140 are installed.
- FIG. 20 is a diagram for explaining the configuration of the molecular diagnostic system in the cultivation stage C.
- FIG. 21 is a flowchart showing the molecular diagnosis process of the molecular diagnosis system in the cultivation stage C.
- the cultivation apparatus 136 controls the light irradiation of the light irradiation means 130, irradiates the cultivation light suitable for the growth of the luminescent plant 100 into which the luminescent gene has been introduced, and temporarily performs the molecular diagnosis in a dark box state ( Non-irradiation state) or bright box state (continuous irradiation state) can be created.
- the luminescent image acquisition means 138 is for acquiring a luminescent image by imaging bioluminescence emitted from the luminescent plant 100 in the cultivation apparatus 136.
- the luminescent image acquisition unit 138 is not particularly limited as long as it is a unit that can capture weak bioluminescence, such as a high-sensitivity CCD camera or a photomultiplier tube.
- the luminescent image acquisition means 138 is installed above the plant body in FIGS. 13 and 20 so that the luminescent plant 100 can be photographed from above.
- the luminescent image acquisition means 138 may be installed on the side of the dark box 120 so that it can be photographed from the side of the seedling 110, and a plurality of luminescent image acquisition means 138 is installed so that it can be photographed from each direction of the seedling 110. You can also.
- the luminescent image of the luminescent plant 100 acquired by the luminescent image acquiring unit 138 is transmitted to the growth state diagnosing unit 140 and stored in the image storage unit 142 (S200).
- the growth state diagnosing unit 140 diagnoses the growth state of the luminescent plant 100 (luminescent gene-introduced plant body) based on the amount of bioluminescence emitted from the luminescent image acquired from the luminescent image acquiring unit 138, and environmental conditions such as cultivation light. It creates information to control.
- the light emission image information acquired by the growth state diagnosis unit 140 includes coordinate information (x n , y n ) of the planting pallet 144, and the growth state diagnosis unit 140 acquires this coordinate information (S210), Based on the coordinate information, the area of each luminescent plant 100 is extracted and the amount of luminescence is measured (S230).
- the diagnosis result data of the growing state can be created based on the actual measurement value obtained by measuring the light emission amount, but the correction algorithm implemented in the seedling raising stage A can also be executed.
- the growth state diagnosis means 140 creates molecular diagnostic information based on the obtained measurement value of luminescence (S240).
- molecular diagnostic information include useful gene expression information, photosynthetic gene expression information, circadian rhythm (circadian rhythm) information, and other gene expression information effective in the cultivation process.
- the molecular diagnostic information is circadian rhythm information
- the phase response curve of the circadian rhythm of the luminescent plant 100 with respect to extinction (dark pulse DP) of about 2 hours under continuous illumination conditions, and under continuous illumination conditions Measure the free duration period.
- the synchronization region and the phase fixed point of the dark period pulse are calculated.
- the growth state diagnosis means 140 Based on the synchronization region information and phase fixing point information that has been created, the growth state diagnosis means 140 realizes a phase fixing point in the time zone where the photosynthetic activity is lowest (in the state in which the body time is midnight, about 15% reduction of the average value).
- the period of the dark period pulse DP to be performed is determined (S250).
- FIG. 22 is an example of circadian rhythm information created based on the measured light emission amount. As shown in FIG. 22, the amount of light emission increases and decreases with a period of about one day. Although the period differs depending on the kind of plant and the cultivation condition, as shown in FIG. 22, the circadian rhythm period and amplitude, and the response to the dark period pulse (DP) can be diagnosed.
- DP dark period pulse
- FIG. 23 is an example of expression information of a photosynthesis-related gene (chlorophyll AB-binding protein gene CAB) created based on the measurement value of the luminescence amount of luciferase gene-introduced green wavelet LsCAB :: LUC.
- the photosynthetic genes are increased or decreased with a period of about one day.
- photosynthesis can be efficiently performed by applying a dark period pulse (DP) at the timing of the arrow shown in FIG.
- DP dark period pulse
- the growth state diagnosing means 140 that has acquired the determined period information of the dark period pulse DP controls the irradiation time of the cultivation light of the light irradiation means 130, for example, turns off for about 2 hours for each period of the dark period pulse DP ( S260).
- the example which cultivates the selected excellent seedling (110a) in the cultivation stage C was shown, it is not limited to this,
- transduced the luminescent gene is grown in the cultivation stage C In this case, it can be cultivated together with a luminescent gene-introduced plant body (young seedling) selected in the above manner.
- the luminescent gene may not be introduced into all plants, and if the luminescent gene is introduced into a part (for example, one individual), the molecular diagnosis described above for the individual is performed. And information for the dark period pulse and other environmental control can be obtained.
- the luminescent gene-introduced plant plays a role as a kind of biological sensor. As a result, the result of sensing a part of the luminescent gene-introduced plant can be applied to the plant of the entire cultivation stage C. Therefore, even when cultivating a non-recombinant, optimal cultivation using molecular diagnostic information Can be performed.
- the luminescent gene-introduced plant body can be discarded after its role is finished and handled so as not to be mixed with the non-recombinant to be shipped.
- Suitable plants that can be used in the molecular diagnostic plant include vegetables such as lettuce, Japanese mustard spinach, spinach, cucumber, tomato, green pepper, sanchu, mizuna, and spring chrysanthemum; herbs such as arugula and basil; strawberries, mandarin and mango Fruits such as grapes, pears; grains such as rice, wheat, barley, rye, oats, corn, sorghum, millet, millet, millet; Various agricultural products such as foliage plants such as cerome and Asian tam can be mentioned.
- the growth state diagnosis means 140 in the cultivation stage C measures a free continuous period from the measured light emission amount under continuous illumination conditions, and obtains a circadian rhythm peculiar to the luminescent plant 100. You can also. And from the circadian rhythm peculiar to the obtained luminescent plant 100, the growth state diagnosis means 140 determines the light / dark cycle of illumination based on said luminescence control method, and controls the irradiation time of the cultivation light by the light irradiation means 130 it can. According to this method, since the circadian rhythm by the excellent seedlings selected at the early diagnosis stage is measured, more appropriate molecular diagnosis information can be obtained for the determination of the light / dark cycle. Thereby, a plant can be raised more efficiently in an artificial environment.
- the growth state diagnosis means 124 in the cultivation stage B can also obtain the circadian rhythm peculiar to the luminescent plant 100, after measuring the circadian rhythm, the light / dark cycle is determined by the light emission control method, and the light irradiation means 130. It is also possible to control the irradiation time of the cultivation light.
- the cultivation light control method of the present invention is a method for controlling cultivation light based on an algorithm based on a circadian rhythm peculiar to plants.
- the dark period or the light period is set to a period that takes into account the activity of photosynthesis, so that not only can the power saving effect be achieved by turning off the cultivation light, but the circadian rhythm of the plant is destroyed. Plants can be cultivated without any problems. As a result, it is possible to perform cultivation with high cost performance in consideration of lighting costs, air conditioning maintenance costs, plant growth, and the like.
- a plant cultivation apparatus capable of controlling the environment most suitable for the plant body at the molecular level is provided.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Biodiversity & Conservation Biology (AREA)
- Botany (AREA)
- Ecology (AREA)
- Forests & Forestry (AREA)
- Environmental Sciences (AREA)
- Cultivation Of Plants (AREA)
Abstract
[Problem] To provide a plant cultivation device, by which a plant can be efficiently cultivated using the circadian rhythms of the plant inherent thereto, and a method therefor.
[Solution] A plant cultivation device comprising: a housing (11) having a cultivation space (13) in which a plant is to be enclosed; a light source (12) which is provided in the upper part of the housing (11) for emitting cultivation light required for the growth of the plant, said plant being enclosed in the cultivation space (13); a light source controller (21) for switching the light source (12); a computer (20) for controlling the light source controller (21); a keyboard (30) which is an input means for setting light-dark cycles; a memory unit (22) which is a storage means for storing the light-dark cycles having been set by using the keyboard (30); and a display (40) which is an indication means for indicating temperature and humidity in the cultivation space (13). In the aforesaid device, for example, the light period is set to 11 hours and the dark period is set to 11 hours. Then, the switching of the light source (12) is controlled so that the dark period is terminated 1 to 3 hours before the dawn in the circadian rhythms of the plant.
Description
本発明は、植物栽培方法及び植物栽培装置に関する。
The present invention relates to a plant cultivation method and a plant cultivation apparatus.
光、温度、湿度、水、養分など植物栽培に必要な要素を人工的にコントロールして作物や農産物などの植物を育成する植物栽培装置が知られている。この装置は、農産物を生産するための播種から、収穫、出荷までを効率よく工業的に行う植物工場としても知られる。この装置は自然環境の影響を受けることがないので、寒冷地や砂漠等の不毛地での安定した作物生産を可能にする。また、従来農法のように農地を必要とせず、建築物や大型船舶などの施設内での植物生産をも可能にする。
A plant cultivation apparatus for growing plants such as crops and agricultural products by artificially controlling elements necessary for plant cultivation such as light, temperature, humidity, water, and nutrients is known. This device is also known as a plant factory that efficiently industrializes from sowing for producing agricultural products to harvesting and shipping. Since this device is not affected by the natural environment, it enables stable crop production in barren areas such as cold regions and deserts. Moreover, it does not require farmland unlike conventional farming methods, and enables plant production in facilities such as buildings and large ships.
例えば、昨今の新しい植物活用として、医薬等に用いられる高付加価値タンパク質などの有用物質を植物体内で生産させ、そのまま家畜等の飼料としたり、抽出精製して利用することを目的とした技術開発が注目を集めている(非特許文献1参照)。植物葉緑体は高密度に外来タンパク質を貯蔵する場所として優れるため、外来タンパク質遺伝子を葉緑体ゲノムに導入したレタスのような葉菜植物等を閉鎖型植物工場で栽培する例がある。
For example, as a recent new plant utilization, technical development aimed at producing useful substances such as high-value-added proteins used in medicine etc. in plants and using them as feed for livestock, etc., or extraction and purification Has attracted attention (see Non-Patent Document 1). Since plant chloroplasts are excellent places for storing foreign proteins at high density, there are examples of cultivating leafy plants such as lettuce in which foreign protein genes are introduced into the chloroplast genome in a closed plant factory.
植物栽培装置は、環境制御や栽培工程の変更が比較的容易であるという利点を有する。そのため、植物栽培装置において食用の野菜や観賞用の植物を育成する場合、実際に育ちつつある植物の葉・茎その他植物の形や大きさの外観を観察しながら、経験則による環境制御等を実施し、よりきれいな形や望む大きさになるように栽培される。
Plant cultivation devices have the advantage that environmental control and cultivation process changes are relatively easy. Therefore, when growing edible vegetables and ornamental plants in plant cultivation equipment, observe the appearance of the shape and size of the leaves, stems, etc. Implement and cultivate in a cleaner shape and desired size.
先進的な植物栽培装置において、カメラによる植物体の撮像画像からコンピュータによる生育状態を診断した後、得られた診断情報からフィードバック等の制御を実現したり、選別等を行うような場合であっても、植物体の外観情報を用いて生育環境や工程の最適化制御をするという本質は同じであった。
In an advanced plant cultivation device, after diagnosing the growth state by a computer from a captured image of a plant body by a camera, control such as feedback from the obtained diagnostic information or selection etc. However, the essence of controlling the growth environment and process using the appearance information of the plant body was the same.
このような先進的な植物栽培装置として、例えば、特許文献1には、複数の苗を育苗するための育苗光を投射するプロジェクタと、複数の苗を撮像した苗画像を取得するCCDカメラと、苗画像に基づいて複数の苗それぞれの生育状態を判定する生育状態判定部と、生育状態判定部により判定された複数の苗それぞれの生育状態に基づいて、複数の苗それぞれの生育に適した育苗光の投射領域および投射条件を設定する投射条件設定部とを備えた植物体栽培装置が記載されている。
As such an advanced plant cultivation apparatus, for example, in Patent Document 1, a projector that projects seedling light for raising a plurality of seedlings, a CCD camera that acquires a seedling image obtained by imaging a plurality of seedlings, A growth state determination unit that determines the growth state of each of the plurality of seedlings based on the seedling image, and a seedling that is suitable for the growth of each of the plurality of seedlings based on the growth state of each of the plurality of seedlings determined by the growth state determination unit A plant cultivating apparatus including a projection condition setting unit that sets a projection area and projection conditions of light is described.
植物栽培装置においては、効率的な作物生産のために前記要素をどのようにコントロールするかは重要な課題である。その中でも、植物の環境応答、特に、光合成・光環境応答に対する最適化技術は、農林水産生物に飛躍的な機能向上をもたらす重要な技術的ニーズの一つである。例えば、特許文献2には、それぞれ波長が異なる光を発する複数の発光素子で構成される光制御手段、温度制御手段、湿度制御手段などを備え、目的とする植物の育成条件を入力することにより、当該植物に適した波長の光を照射するに際し、照射開始時期、照射量、照射時間を制御する植物栽培装置が提案されている。また、特許文献3には、遠赤色光と赤色光の比率が所定値以上となるように、遠赤色光を照射して光周性反応を制御した植物栽培装置が提案されている。これらの植物栽培装置では、照明点灯スケジュールは、例えば、特許文献2に記載されているように慣習上24時間の明暗周期に設定し、あるいは特許文献3に記載されているように、短日栽培として経験的に日照時間を短くした時期を設けている。
In plant cultivation equipment, how to control the above elements for efficient crop production is an important issue. Among them, optimization technology for plant environmental response, in particular, photosynthesis and photoenvironmental response, is one of the important technical needs to bring about dramatic improvement in functions of agricultural, forestry and fishery products. For example, Patent Document 2 includes a light control unit, a temperature control unit, a humidity control unit, and the like configured by a plurality of light emitting elements that emit light having different wavelengths, and inputs the target plant growth conditions. A plant cultivation apparatus that controls the irradiation start time, irradiation amount, and irradiation time when irradiating light having a wavelength suitable for the plant has been proposed. Further, Patent Literature 3 proposes a plant cultivation apparatus that irradiates far red light and controls the photoperiodic reaction so that the ratio of far red light and red light is equal to or greater than a predetermined value. In these plant cultivation apparatuses, for example, the illumination lighting schedule is conventionally set to a light / dark cycle of 24 hours as described in Patent Document 2, or short-day cultivation as described in Patent Document 3 As a matter of experience, the period of shortening the sunshine hours has been established.
ところで、多くの生物は概日リズム(サーカディアンリズム)を有し、光合成を始めとする植物内の物質代謝サイクルは該植物が持つ体内時計によって調節されている。概日リズムは約1日周期の周期を有し、ほぼ24時間で規則正しく物質代謝サイクルを営む。概日リズム(サーカディアンリズム)を刻むことで、一日の昼夜サイクルの下で最も効率良く物質代謝サイクルが働くよう設計されている。また、概日リズムは光の影響を受け、暗パルス(ダークパルス)や明パルス(ライトパルス)の刺激によって、概日リズムが影響を受けることはよく知られているところである。例えば、植物は朝方から昼間に光合成の効率が上昇し、夜間は糖輸送の代謝効率が上昇する。この日周性の概日リズムは、外部環境条件が一定で時刻を知らせる因子が一切存在しない場合でも、体内時計により自発的に生じる。
By the way, many organisms have a circadian rhythm (circadian rhythm), and a substance metabolism cycle in a plant including photosynthesis is regulated by a biological clock of the plant. The circadian rhythm has a period of about one day, and regularly operates a substance metabolism cycle in about 24 hours. The circadian rhythm (circadian rhythm) is designed so that the substance metabolism cycle works most efficiently under the day-night cycle. Further, it is well known that the circadian rhythm is influenced by light, and the circadian rhythm is influenced by stimulation of a dark pulse (dark pulse) or a light pulse (light pulse). For example, in plants, the efficiency of photosynthesis increases from morning to daytime, and the metabolic efficiency of sugar transport increases at night. This circadian circadian rhythm is generated spontaneously by the body clock even when the external environmental conditions are constant and there is no factor to inform the time.
概日リズムのメカニズムは、非特許文献2や非特許文献3に記載されたように、概日リズムは個体レベルから遺伝子レベルへとよりミクロな視点で解明されつつあり、そのメカニズムの解明は飛躍的に進んでいる。
As described in Non-Patent Document 2 and Non-Patent Document 3, the circadian rhythm mechanism is being elucidated from the individual level to the gene level from a more microscopic viewpoint. Is moving forward.
ところで、非特許文献4には、概日リズムの周期が短い変異株(周期20.7時間)と周期が長い変異株(周期27.1~32.5時間)、野生株(周期約24時間)を,それぞれ周期20時間または24時間、28時間の明暗周期(明暗それぞれ等時間)の下で栽培した結果,それぞれの株が持つリズムの固有周期に相当する周期の明暗周期の条件で、葉緑素生成や植物の生長が最適になることが報告されている。従って、栽培対象となる植物の概日リズムの周期に併せた明暗周期で、照明を制御すれば、該植物に最適な条件で栽培できることが期待される(サーカディアン共鳴法)。
By the way, Non-Patent Document 4 describes that a mutant strain with a short circadian rhythm (cycle: 20.7 hours), a mutant strain with a long cycle (cycle: 27.1-32.5 hours), a wild strain (cycle: about 24 hours). ) Under the light-dark cycle of 20 hours, 24 hours, and 28 hours, respectively (equal time of light and dark). Production and plant growth have been reported to be optimal. Therefore, it is expected that the plant can be cultivated under the optimum conditions for the plant by controlling the lighting with the light / dark cycle in accordance with the cycle of the circadian rhythm of the plant to be cultivated (the circadian resonance method).
また、体内時計は光合成遺伝子や細胞伸長遺伝子を含む全ゲノム中約10%程度の遺伝子群の発現タイミングを調節し、代謝のバランスを整えていることが知られている。そこで、体内時計の主要遺伝子である時計遺伝子の遺伝子工学的改変によって、植物の成長期間を延長し開花を遅延する効果が期待できる。例えば、特許文献4には、シロイヌナズナのクロロフィル結合タンパク質遺伝子(Lhcbl*3)のプロモーター領域に結合し、CCA1と命名されるフィトクローム調節転写因子の発現を調節して、植物の開花時期を変化させる方法が記載されている。
In addition, it is known that the biological clock regulates the expression timing of about 10% of genes in the entire genome including the photosynthetic genes and cell elongation genes, thereby adjusting the metabolic balance. Thus, genetic engineering modification of the clock gene, which is the main gene of the body clock, can be expected to extend the plant growth period and delay flowering. For example, Patent Document 4 changes the flowering time of plants by binding to the promoter region of the Arabidopsis thaliana chlorophyll-binding protein gene (Lhcbl * 3) and regulating the expression of a phytochrome-regulated transcription factor named CCA1. A method is described.
このような状況下において、非特許文献1には、明暗周期を変えることによって、時計遺伝子(CCA1)の発現周期、つまり概日リズムを制御し、明暗周期と概日リズムを完全に同期させられることがシミュレーションされている。また、非特許文献5には、時計遺伝子の発現レポーターとしてルシフェラーゼ遺伝子を導入したシロイヌナズナを用いて、明暗周期によって概日リズムを制御することが記載されている。また、非特許文献5には、連続照射光の下では概日リズムが消失し、失われた概日リズムがダークパルスによる刺激によって再び概日リズムを取り戻すことがシミュレーションされ、実際に時計遺伝子の発現レポーターとしてルシフェラーゼ遺伝子を導入したシロイヌナズナにおいて、この概日リズムが正しく再構築されることが記載されている。例えば連続照射によって概日リズムを失ったシロイヌナズナに対して、23時間周期で2時間の暗期(ダークパルス)を与えると23時間の概日リズムが観察されている(引き込み効果)。
Under such circumstances, Non-Patent Document 1 discloses that the expression cycle of the clock gene ( CCA1 ), that is, the circadian rhythm is controlled by changing the light-dark cycle, and the light-dark cycle and the circadian rhythm can be completely synchronized. It has been simulated. Non-Patent Document 5 describes that circadian rhythm is controlled by the light-dark cycle using Arabidopsis thaliana introduced with a luciferase gene as a clock gene expression reporter. Further, Non-Patent Document 5 simulated that the circadian rhythm disappears under continuous irradiation light, and that the lost circadian rhythm regains the circadian rhythm by stimulation with a dark pulse. It is described that this circadian rhythm is correctly reconstructed in Arabidopsis thaliana introduced with a luciferase gene as an expression reporter. For example, when Arabidopsis thaliana that has lost its circadian rhythm by continuous irradiation is given a 2-hour dark period (dark pulse) in a 23-hour cycle, a 23-hour circadian rhythm is observed (pulling effect).
体内時計の働きを無視して一定な連続明条件などで栽培すると、作物の成長や形態形成などに異常が生じる。このような理由から、体内時計に着目した代謝サイクルの最適化技術は、人工的な昼夜サイクルを生み出す閉鎖型植物工場においては特に重要な技術的ニーズの一つとなっている。
When cultivated under constant continuous light conditions, etc., ignoring the work of the body clock, abnormalities occur in crop growth and morphogenesis. For these reasons, metabolic cycle optimization technology focusing on biological clocks is one of the most important technical needs in closed plant factories that produce artificial day / night cycles.
これまでの栽培方法における点灯制御は特許文献2に記載されたように明暗周期を24時間とし、24時間の中で明期と暗期の期間を調整する方法である。また、特許文献3に記載されたような短日栽培は一時的に日照時間を短くして刺激を与える時期を設ける栽培方法であるが、この栽培方法においても24時間の明暗周期で制御している。また、植物の概日リズムを考慮した栽培方法としてサーカディアン共鳴法が知られているが、この方法は植物固有の概日リズムに明暗周期を一致させる栽培方法であって、この方法でも明期の長さと暗期の長さが等しくなるように明暗周期が定められている。
The lighting control in the conventional cultivation method is a method in which the light / dark cycle is set to 24 hours as described in Patent Document 2, and the light period and dark period are adjusted within 24 hours. In addition, short-day cultivation as described in Patent Document 3 is a cultivation method in which a period of time for temporarily stimulating by shortening the sunshine time is provided, but this cultivation method is also controlled with a light / dark cycle of 24 hours. Yes. In addition, the circadian resonance method is known as a cultivation method that takes into account the circadian rhythm of the plant. This method is a cultivation method that matches the light-dark cycle with the circadian rhythm inherent in the plant. The light / dark cycle is determined so that the length and the length of the dark period are equal.
しかしながら、栽培光を明期の長さと暗期の長さを等しくした明暗周期で制御した場合、光源からの発熱量の変化にともない明期と暗期における温度差が大きくなる場合がある。このため、栽培室内の明暗期の温度差を少なくするように管理しなければならず、温度管理に要する空調機の高い処理能力とそれに伴う余剰の消費電力が発生するという問題がある。
However, when the cultivating light is controlled with a light / dark cycle in which the length of the light period is equal to the length of the dark period, the temperature difference between the light period and the dark period may increase with a change in the amount of heat generated from the light source. For this reason, it must be managed so as to reduce the temperature difference between the light and dark periods in the cultivation room, and there is a problem that high processing capacity of the air conditioner required for temperature management and excessive power consumption associated therewith are generated.
一方、連続照明下で作物を栽培する場合、温度管理が単純化され、照明機器や空調機器の制御に対する負荷が少なくなる。また、作物が行なう光合成の総量は照射した光の総量にほぼ比例することから、連続照明によって栽培開始から収穫までの期間を短縮できる可能性がある。しかしながら、連続照明は概日リズムを減衰させ、生育不良を引き起こす。つまり、連続照明は明暗照明と比べ同じ栽培期間では通常2倍の光量を照射しているので、光合成量は同じ栽培期間であれば連続照明の方が2倍近く多いことになるが、光合成効率や形状や色などの品質が連続照明では低下する。このように、連続照明下においても、作物の品質や投下エネルギーあたりの成長量(コストパフォーマンス)を考慮すると最適であるとは言えない。
On the other hand, when cultivating crops under continuous lighting, temperature management is simplified, and the load on the control of lighting equipment and air conditioning equipment is reduced. In addition, since the total amount of photosynthesis performed by the crop is almost proportional to the total amount of light irradiated, there is a possibility that the period from the start of cultivation to the harvest can be shortened by continuous illumination. However, continuous lighting attenuates the circadian rhythm and causes poor growth. That is, since continuous illumination normally irradiates twice as much light in the same cultivation period as in bright and dark illumination, the amount of photosynthesis is nearly twice as much in continuous illumination in the same cultivation period. And quality such as shape and color are degraded by continuous lighting. Thus, even under continuous lighting, it cannot be said that it is optimal when considering the quality of crops and the growth amount (cost performance) per dropped energy.
上記のように、これまでの点灯制御は、空調機への負荷や投下エネルギーあたりの作物の成長量(コストパフォーマンス)において最適なものであるとは言えず、空調機器を含むシステム全体の消費電力や作物の生理代謝を考慮した効率的かつ最適な栽培方法が求められていた。
As mentioned above, conventional lighting control cannot be said to be optimal in terms of the load on the air conditioner and the amount of crop growth per unit of energy (cost performance). There is a need for an efficient and optimal cultivation method that takes into account the physiological metabolism of crops and crops.
また、植物体の外観をカメラで撮像し画像処理等により生育状態を診断してその情報に基づいて環境制御や植物体の選別等を行う方法は、植物体の葉、茎、つぼみ等を撮像して環境制御や選別等を行うため、育苗期(播種後約数週間)の苗では、判定材料となる植物体の外観情報量が乏しく、精密な判定は困難である。
In addition, the method of imaging the appearance of the plant with a camera, diagnosing the growth state by image processing, etc., and performing environmental control and selection of the plant based on the information, images the leaves, stems, buds, etc. of the plant Since environmental control, selection, and the like are performed, seedlings in the seedling raising period (about several weeks after sowing) have a small amount of appearance information of the plant body as a determination material, and precise determination is difficult.
さらに、医薬等に用いられる高付加価値タンパク質などの有用物質を植物体内で生産させる場合、植物体の外観をカメラで撮像し画像処理等により生育状態を診断してその情報に基づいて環境制御を行ったり、植物体の選別等を行う方法では、植物体の見た目がきれいか否か、植物体の大きさが大きいか否かといった外観情報は有用物質の生産性には絶対的な意味を持たないため、有用物質を生産させる植物体の育成条件の最適化制御や選別等が出来ないという問題があった。
Furthermore, when producing useful substances such as high-value-added proteins used in medicine in plants, the appearance of the plant is imaged with a camera, the growth state is diagnosed by image processing, etc., and environmental control is performed based on the information. In the method of performing or selecting plants, appearance information such as whether the plant looks beautiful or whether the plant is large has an absolute meaning on the productivity of useful substances. Therefore, there has been a problem that optimization control and selection of the growth conditions of the plant body that produces useful substances cannot be performed.
本発明は上記の背景技術に基づいてなされたものであって、植物固有の概日リズムの研究に基づき、さらに効率的な栽培を可能にした植物栽培装置を提供することを目的としている。
The present invention has been made based on the above-mentioned background art, and an object thereof is to provide a plant cultivation apparatus that enables more efficient cultivation based on research on circadian rhythms unique to plants.
また、本発明は、植物体の外観情報以外の情報に基づき植物体の生育状態を判定し、植物体の選別や環境制御を高精度に行うことを可能とする技術を提供することを目的とする。
Another object of the present invention is to provide a technique that makes it possible to determine the growth state of a plant based on information other than the appearance information of the plant, and to perform plant selection and environmental control with high accuracy. To do.
本願発明者らは、短時間の暗期間によるダークパルスが植物の概日リズムを調整できるという知見に基づきさらに研究を進めたところ、暗期若しくは明期を特定のアルゴリズムに従って設定すると、植物栽培装置におけるコストパフォーマンスを向上させることを見出し、本願発明を完成するに至った。
The inventors of the present application further researched based on the knowledge that a dark pulse due to a short dark period can adjust the circadian rhythm of the plant. When the dark period or the light period is set according to a specific algorithm, the plant cultivation apparatus As a result, the present invention was completed.
すなわち、本発明は、人工的に制御された明暗サイクル下で栽培光を照射して植物を栽培するための栽培光制御方法であって、前記明暗サイクルは、栽培光が照射される明期と、当該明期における光量よりも少ない光量の栽培光が照射されるか又は光量のない暗期を有し、前記明暗サイクルの周期は、前記植物が有する固有のフリーラン周期と異なる周期であって、前記暗期が光合成活性の低い時間帯に設定されるか又は前記明期が光合成活性の高い時間帯に設定された栽培光制御方法を提供する。
That is, the present invention is a cultivation light control method for cultivating a plant by irradiating cultivation light under an artificially controlled light and dark cycle, wherein the light and dark cycle is a light period in which cultivation light is irradiated and The cultivation light having a light quantity less than the light quantity in the light period is irradiated or has a dark period without the light quantity, and the cycle of the light-dark cycle is a cycle different from the inherent free-run cycle of the plant. The cultivation light control method in which the dark period is set to a time zone with low photosynthetic activity or the light period is set to a time zone with high photosynthetic activity is provided.
また、本発明は、植物の生育に伴い発現が増加する内在性遺伝子の発現量を生物発光で識別することができるように改変された植物体の生物発光に基づいて植物体の生育状態を診断する分子診断方法であって、発光遺伝子を導入した発光遺伝子導入植物体を生育するために栽培光を投射する光投射工程と、該発光遺伝子導入植物体の生育に伴い増加した内在性遺伝子の発現量を生物発光として撮像して発光画像を取得する発光画像取得工程と、該発光画像における生物発光の発光量に基づいて該発光遺伝子導入植物体の生育状態を診断する育成状態診断工程と、を有する、分子診断方法を提供する。
In addition, the present invention diagnoses the growth state of a plant based on the bioluminescence of a modified plant so that the expression level of an endogenous gene whose expression increases as the plant grows can be identified by bioluminescence. A molecular projection method for projecting light for cultivating a luminescent gene-introduced plant into which a luminescent gene has been introduced, and an expression of an endogenous gene that has increased with the growth of the luminescent gene-introduced plant A luminescence image acquisition step of capturing a luminescence image by imaging the amount as bioluminescence, and a growth state diagnosis step of diagnosing the growth state of the luminescent gene-introduced plant based on the luminescence amount of bioluminescence in the luminescence image A molecular diagnostic method is provided.
本発明によれば、光合成活性が低い時間帯に暗期が設定され、または光合成活性が高い時間帯に明期が設定される。例えば、明暗サイクルの周期を連続照明下において観察される植物固有のフリーラン周期よりも短くし、前記暗期の終期を前記植物の概日リズムにおける夜明け時刻から1~3時間前に設定することによって達成できる。光合成活性が低い時間帯に暗期が設定されることにより、同じ照射時間で栽培した場合に比べて光合成の総量が増大し、これによって出荷可能な大きさになるまでの栽培期間が短くなり、投下エネルギー当たりのコストパフォーマンスをあげることができる。
According to the present invention, the dark period is set in a time zone where photosynthesis activity is low, or the light period is set in a time zone where photosynthesis activity is high. For example, the cycle of the light-dark cycle is shorter than the plant-specific free run cycle observed under continuous illumination, and the end of the dark cycle is set 1 to 3 hours before the dawn time in the circadian rhythm of the plant Can be achieved. By setting the dark period in the time zone where photosynthesis activity is low, the total amount of photosynthesis increases compared to the case of cultivating at the same irradiation time, thereby shortening the cultivation period until it becomes a size that can be shipped, Cost performance per dropped energy can be increased.
また、ほぼ連続した照明下では、暗期を光合成活性の低い時期に設定、あるいは、明期を光合成活性の高い時期に設定することができる。暗期を光合成活性の低い時期に設定した場合では、連続した照明下で1日あたりの植物の成長度を高めるだけでなく、光の利用性が悪い時期における無駄な点灯が防止される。この結果、同じ明るさで連続点灯する場合に比べて消費電力が削減される。一方、明期を光合成活性の高い時期に設定した場合であれば、光合成活性が相対的に低くなる時期には光量を抑えることができ、光合成活性が高い時期に光量を高めることで1日当たりの栽培光の利用効率を高めることができる。また、いずれの場合においても、連続照射による概日リズムの消失を防止し、連続した照明下での植物成長が良好に維持される。
Also, under almost continuous illumination, the dark period can be set to a period with low photosynthetic activity, or the light period can be set to a period with high photosynthetic activity. When the dark period is set to a period with low photosynthetic activity, not only the growth rate of plants per day under continuous lighting is increased, but also unnecessary lighting in a period when light utilization is poor is prevented. As a result, the power consumption is reduced as compared with the case of continuous lighting with the same brightness. On the other hand, if the light period is set to a period when the photosynthetic activity is high, the amount of light can be suppressed when the photosynthetic activity is relatively low, and the amount of light can be increased per day by increasing the amount of light when the photosynthetic activity is high. Utilization efficiency of cultivation light can be increased. In any case, the loss of circadian rhythm due to continuous irradiation is prevented, and plant growth under continuous illumination is well maintained.
本発明の分子診断方法によれば、植物体の生育状態を内在性遺伝子の発現量に基づいて診断することで、外観情報に基づいて植物体の生育状態を診断する場合よりも高精度に診断することができる。すなわち、植物体内における内在性遺伝子の発現と植物体の成長が相関関係にあることから、内在性遺伝子の発現の強さに基づいて分子レベルで植物体の生育状態を診断することが可能となり、育苗期のような早い段階であっても優良苗の選別や有用タンパクの発現量の推定が可能となる。また、内在性遺伝子の発現量から植物の代謝サイクルを推定することができ、分子レベルでその植物体に最も適した環境制御が可能となる。
According to the molecular diagnostic method of the present invention, diagnosis of the growth state of a plant body based on the expression level of the endogenous gene enables diagnosis with higher accuracy than when diagnosing the growth state of the plant body based on appearance information. can do. That is, since the endogenous gene expression in the plant body and the growth of the plant body are correlated, it becomes possible to diagnose the growth state of the plant body at the molecular level based on the strength of the expression of the endogenous gene, Even at an early stage such as the seedling raising period, it is possible to select excellent seedlings and estimate the expression level of useful proteins. Further, the metabolic cycle of a plant can be estimated from the expression level of the endogenous gene, and environmental control most suitable for the plant body can be achieved at the molecular level.
本発明の栽培光制御方法は、暗期が光合成活性の低い時間帯に設定されるか又は明期が光合成活性の高い時間帯に設定された明暗サイクルにて栽培光を制御する方法である。
The cultivation light control method of the present invention is a method for controlling cultivation light in a light / dark cycle in which the dark period is set to a time zone with low photosynthetic activity or the light period is set to a time zone with high photosynthesis activity.
本明細書において「フリーラン周期」とは、連続照明条件または連続暗条件下において観察される概日リズムにおける周期を意味する。「概日リズム」はサーカディアンリズムとも呼ばれ、ほぼ24時間の周期で見られる植物の特定遺伝子(群)の発現量の増減、及びその結果として生起する様々な生理的な現象を意味する。この生理現象は時計遺伝子により制御される植物体内での物質代謝活性(指標)として観察される。植物の代謝活性は糖代謝及び細胞増殖等の代謝活性であって、光合成遺伝子、糖代謝遺伝子又は細胞増殖遺伝子の発現の亢進/抑制の結果である。「概日リズム」はこれらの代謝活性の何れかにおいて観察される1日のリズムである。植物生育最適化の為に利用する概日リズムは、植物の成長の指標となる代謝活性についての概日リズムが好適であり、例えば光合成活性や糖代謝などが挙げられる。概日リズムは1つの代謝活性を指標としてもよく、また、複数の代謝活性を勘案した指標でもよい。ここでの植物生育最適化とは、投下エネルギーあたりの生産量(コストパフォーマンス)、あるいは栽培期間あたりの生産量(生産速度)を最大にすることを意味する。またここでの生産量とは、成長量(生重量や乾重量)あるいは栄養成分や医薬用タンパク質などの有用物質の生産量を意味する。
In this specification, “free-run cycle” means a cycle in the circadian rhythm observed under continuous illumination conditions or continuous dark conditions. “Circadian rhythm”, also called circadian rhythm, means an increase or decrease in the expression level of a specific gene (group) in a plant that is observed in a cycle of approximately 24 hours, and various physiological phenomena that occur as a result. This physiological phenomenon is observed as a substance metabolism activity (indicator) in the plant body controlled by a clock gene. The metabolic activity of plants is metabolic activity such as sugar metabolism and cell proliferation, and is a result of enhancement / suppression of the expression of photosynthetic genes, sugar metabolism genes or cell proliferation genes. “Circadian rhythm” is the daily rhythm observed in any of these metabolic activities. The circadian rhythm used for optimizing plant growth is preferably a circadian rhythm with respect to metabolic activity that serves as an index of plant growth, and examples thereof include photosynthetic activity and sugar metabolism. The circadian rhythm may be based on one metabolic activity, or may be an index considering a plurality of metabolic activities. Here, the optimization of plant growth means maximizing the production amount per dropped energy (cost performance) or the production amount per production period (production rate). The production amount here means the growth amount (raw weight or dry weight) or the production amount of useful substances such as nutritional components and pharmaceutical proteins.
概日リズムは、例えば、非特許文献1に記載されているように、光合成や成長に関わる遺伝子や有用タンパク質などをコードする遺伝子のプロモーター領域の下流にルシフェラーゼ構造遺伝子を組み込み、育成過程で得られるルシフェラーゼ発光の発光量を連続的に測定することによって求める方法や、非特許文献4に記載されているように、炭酸ガス固定量を測定することによって概日リズムを測定する方法など、公知の方法により求められる。求められた概日リズムは代謝活性の時刻変動として表される。また、下記に説明する分子診断型植物栽培装置を用いて求めることもできる。
For example, as described in Non-Patent Document 1, the circadian rhythm is obtained by incorporating a luciferase structural gene downstream of the promoter region of a gene encoding a gene involved in photosynthesis or growth or a useful protein. Known methods such as a method for determining the amount of luciferase luminescence by continuously measuring the amount of circadian rhythm by measuring a fixed amount of carbon dioxide gas as described in Non-Patent Document 4. It is calculated by. The calculated circadian rhythm is expressed as the time variation of metabolic activity. Moreover, it can also obtain | require using the molecular diagnostic type plant cultivation apparatus demonstrated below.
本明細書において「フリーラン周期」は、概日リズムを示す代謝活性の時刻変動から求められるピークからピーク、又はボトムからボトムまでの時間を意味する。フリーラン周期はほとんどの植物ではほぼ24時間とされているが、より正確には植物が有する固有のフリーラン周期は24時間よりも短い時間であり得るし、24時間よりも長い時間でもあり得る。また、連続照明下においていわゆるダークパルス(DP)と呼ばれる数分~数時間程度の消灯時間を設けることによってフリーラン周期は一過的に変化する。本発明では、連続照明条件下又は連続暗条件下において求められる植物固有のフリーラン周期が基準とされる。
In this specification, “free-run cycle” means the time from peak to peak or from bottom to bottom, which is determined from the time fluctuation of metabolic activity showing circadian rhythm. The free run cycle is approximately 24 hours for most plants, but more precisely, the inherent free run cycle of a plant can be shorter than 24 hours or longer than 24 hours. . In addition, the free-run cycle changes temporarily by providing a turn-off time of about several minutes to several hours called a so-called dark pulse (DP) under continuous illumination. In the present invention, the plant-specific free-run cycle determined under continuous illumination conditions or continuous dark conditions is used as a reference.
本明細書において「明期」とは光源がオンとなり栽培光が照射される時間帯を意味する。本明細書において「暗期」とは光源がオフとなり栽培光が照射されない時間帯を意味する場合だけでなく、明期における光量よりも光量が低下した時間帯を含む意味で用いられる。すなわち、本発明において、栽培光の制御は主として光源のオン・オフ制御の意味で用いられるが、光量の増減制御を含む意味でも用いられる。また、本明細書において、明期や暗期は1~3時間程度の時間帯でもあり得る。従って、本明細書における「明暗サイクル」は、明期と暗期がほぼ等しい場合やいわゆる連続照明下においてパルス状の暗期(DP:ダークパルスとも言う)及びパルス状の明期(LP:ライトパルスとも言う)を周期的に設ける場合を含む。さらに、暗期において光源をオンとする場合、暗期における波長と明期における波長が異なる場合もあり得る。
In this specification, “light period” means a time zone in which the light source is turned on and the cultivation light is irradiated. In this specification, “dark period” is used not only in the case where the light source is turned off and the cultivation light is not irradiated, but also in the meaning including the time period in which the light amount is lower than the light amount in the light period. That is, in the present invention, the control of cultivation light is mainly used in the sense of on / off control of the light source, but is also used in the sense of including increase / decrease control of the light amount. In this specification, the light period and dark period may be a time period of about 1 to 3 hours. Therefore, the “light / dark cycle” in the present specification refers to a pulsed dark period (DP: also referred to as a dark pulse) and a pulsed light period (LP: light) when the light period and the dark period are substantially equal or under so-called continuous illumination. (Also referred to as a pulse) is provided periodically. Further, when the light source is turned on in the dark period, the wavelength in the dark period and the wavelength in the light period may be different.
本発明の栽培光制御方法では、暗期が光合成活性の低い時間帯又は明期が光合成活性の高い時間帯に設定される。ここで光合成活性が低いとは、光合成活性の平均値から約-10%、好ましくは-15%、さらに望ましくは-20%以下となることを意味する。光合成活性が高いとは、光合成活性の平均値から約+10%、好ましくは+15%、さらに望ましくは+20%以上であることを意味する。光合成活性が低い時間帯は植物固有の概日リズムから求められるが、この時間帯は植物の体内時計における夜明け前1~3時間、つまり午前3時~午前5時頃に概ね相当する。光合成活性が高い時間帯も植物固有の概日リズムから求められるが、この時間帯は植物の体内時計における夜明け後5~7時間、つまり午前11時~午後1時頃に概ね相当する。本発明の方法は、(1)暗期の終期を光合成活性が低い時間帯、すなわち、植物の体内時計における夜明け時刻から1~3時間前に設定する方法と、(2)暗期を光合成活性の低い時間帯又は明期を光合成活性の高い時間帯に設定する方法を含む。
In the cultivation light control method of the present invention, the dark period is set to a time zone with low photosynthetic activity or the light period is set to a time zone with high photosynthesis activity. Here, the low photosynthetic activity means that the average value of the photosynthetic activity is about −10%, preferably −15%, and more desirably −20% or less. High photosynthetic activity means that the average value of photosynthetic activity is about + 10%, preferably + 15%, and more desirably + 20% or more. The time zone with low photosynthetic activity is determined from the circadian rhythm inherent in plants, but this time zone generally corresponds to 1 to 3 hours before dawn in the plant clock, that is, from 3 am to 5 am. The time zone with high photosynthetic activity is also determined from the circadian rhythm inherent in the plant, but this time zone roughly corresponds to 5 to 7 hours after dawn in the plant biological clock, that is, from 11 am to 1 pm. The method of the present invention includes (1) a method in which the end of the dark period is set to a time zone where the photosynthetic activity is low, that is, 1 to 3 hours before the dawn time in the biological clock of the plant, and (2) the dark period is photosynthetic activity The method includes setting a low time zone or light period of the photoperiod to a time zone with high photosynthetic activity.
(1)暗期の終期を光合成活性が低い時間帯に設定する方法
この方法は、明暗サイクルにおける暗期の終期を、これまでの24時間の明暗サイクル(明期12時間、暗期12時間)における暗期の終期を早め、暗期の終期を光合成活性が低い時間帯、すなわち、植物の体内時計における夜明け時刻から約1~3時間前、位相で言えば0.92±0.04(rad/2π)の時間帯に設定する方法である。図1は当該制御方法の概念図である。光合成活性に代表される植物代謝はほぼ24時間周期で変動することは知られており、図1(a)に示されるように、明期と暗期が等しい時間からなる24時間の明暗サイクルでは、暗期の終期が体内時計における夜明け時刻に一致する。一方、光合成活性が最小となるのは植物の体内時計における夜明け、つまり暗期から明期に移行する時刻の1~3時間前であると言われている。この夜明け1~3時間前の時刻は、光に対する応答性が高まっている時間帯であり、光照射によって体内時計の時刻が数時間前進する時間帯となっている。このことを光による位相前進または位相シフトという。(1)の方法は、図1(b)に示されるように、暗期の終期を夜明け1~3時間前に設けることにより、植物の体内時刻を位相前進により数時間早め、光合成活性が低くなる時間帯、望ましくは最低となる時間帯を消去するものである。 (1) Method of setting the end of the dark period to a time zone with low photosynthetic activity This method uses the end of the dark period in the light-dark cycle as the previous 24-hour light-dark cycle (light period 12 hours, dark period 12 hours). The period of the dark period is advanced earlier, and the period of the dark period is decreased to a time zone with low photosynthetic activity, that is, about 1-3 hours before dawn time in the plant body clock, 0.92 ± 0.04 (rad / 2π) time zone. FIG. 1 is a conceptual diagram of the control method. It is known that the plant metabolism represented by photosynthetic activity fluctuates in a cycle of about 24 hours. As shown in FIG. 1 (a), in the light / dark cycle of 24 hours composed of the same period of light and dark periods. The end of the dark period coincides with the dawn time in the body clock. On the other hand, it is said that the photosynthetic activity is minimized at 1 to 3 hours before the dawn in the plant body clock, that is, the time from the dark period to the light period. The time 1 to 3 hours before dawn is a time zone in which the response to light is increasing, and the time of the biological clock is advanced by several hours by light irradiation. This is called phase advance or phase shift by light. In the method (1), as shown in FIG. 1 (b), by providing the end of the dark period 1-3 hours before dawn, the body time of the plant is advanced several hours by phase advance, and the photosynthetic activity is low. , Preferably the lowest time zone is deleted.
この方法は、明暗サイクルにおける暗期の終期を、これまでの24時間の明暗サイクル(明期12時間、暗期12時間)における暗期の終期を早め、暗期の終期を光合成活性が低い時間帯、すなわち、植物の体内時計における夜明け時刻から約1~3時間前、位相で言えば0.92±0.04(rad/2π)の時間帯に設定する方法である。図1は当該制御方法の概念図である。光合成活性に代表される植物代謝はほぼ24時間周期で変動することは知られており、図1(a)に示されるように、明期と暗期が等しい時間からなる24時間の明暗サイクルでは、暗期の終期が体内時計における夜明け時刻に一致する。一方、光合成活性が最小となるのは植物の体内時計における夜明け、つまり暗期から明期に移行する時刻の1~3時間前であると言われている。この夜明け1~3時間前の時刻は、光に対する応答性が高まっている時間帯であり、光照射によって体内時計の時刻が数時間前進する時間帯となっている。このことを光による位相前進または位相シフトという。(1)の方法は、図1(b)に示されるように、暗期の終期を夜明け1~3時間前に設けることにより、植物の体内時刻を位相前進により数時間早め、光合成活性が低くなる時間帯、望ましくは最低となる時間帯を消去するものである。 (1) Method of setting the end of the dark period to a time zone with low photosynthetic activity This method uses the end of the dark period in the light-dark cycle as the previous 24-hour light-dark cycle (
このとき、暗期の終期を早められる時間、つまり、明暗サイクルの周期と植物固有のフリーラン周期の差は、植物の概日リズムの同期が可能な時間の範囲内である。この差が大きいと、明暗サイクルと概日リズムが同期できなくなり、その結果、概日リズムは不規則な挙動を示すことになる。概日リズムが不規則となると、十分な成長を期待できなくなる。明暗サイクルの周期と植物固有のフリーラン周期の差は長くとも4時間であって、1時間であり、2時間であり、3時間であり得る。また、植物あるいは同一植物に於いては品種によっても異なり、最適な時間は実験的に求められる。(1)の方法は、明暗サイクルの長さを植物固有のフリーラン周期よりも短くする方法であるとも言える。
At this time, the time during which the end of the dark period can be advanced, that is, the difference between the cycle of the light-dark cycle and the free run cycle specific to the plant is within the range of time in which the circadian rhythm of the plant can be synchronized. If this difference is large, the light-dark cycle and the circadian rhythm cannot be synchronized, and as a result, the circadian rhythm will behave irregularly. If the circadian rhythm becomes irregular, it will not be possible to expect sufficient growth. The difference between the light-dark cycle period and the plant-specific free run period is at most 4 hours, 1 hour, 2 hours, and can be 3 hours. In addition, the optimum time is experimentally determined depending on the plant or the same plant. It can be said that the method (1) is a method in which the length of the light-dark cycle is made shorter than the plant-specific free-run cycle.
この方法において、明暗サイクルにおける明期の長さと暗期の長さの按分は適宜定められる。明期の長さと暗期の長さが同じである明暗サイクルか、暗期の長さが明期の長さよりも短い明暗サイクルが好ましい。暗期を十分短くすることにより、ほぼ連続照明条件とみなすことができ空調機器等への負担が軽減するからである。なお、明期の長さが短くなると植物の成長が低下するおそれがあるので、明期の長さと暗期の長さが同じである明暗サイクルか、明期の長さが11時間以上である明暗サイクルが望ましい。
In this method, the proportion between the length of the light period and the length of the dark period in the light / dark cycle is appropriately determined. A light / dark cycle in which the length of the light period and the length of the dark period are the same or a light / dark cycle in which the length of the dark period is shorter than the length of the light period is preferable. This is because, by sufficiently shortening the dark period, it can be regarded as a continuous illumination condition, and the burden on the air conditioner and the like is reduced. In addition, since there is a possibility that the growth of the plant may decrease when the length of the light period is shortened, the length of the light period is the same as the length of the dark period or the length of the light period is 11 hours or more. A light / dark cycle is desirable.
明期の長さと暗期の長さは、例えば、明暗サイクルの周期が23時間の場合、明期が約11.5時間、暗期が約11.5時間であり、明期が約12時間、暗期が約11時間であり得る。また、明期が約13時間、暗期が約10時間であり得る。また、明暗サイクルの周期が約22時間の場合、明期が約11時間、暗期が約11時間であり、明期が約12時間、暗期が約10時間、明期が約13時間、暗期が約9時間であり得る。明暗サイクルの周期が約21時間の場合、明期が約10.5時間、暗期が約10.5時間であり、明期が約11時間、暗期が約10時間であり、明期が約12時間、暗期が約9時間であり得る。
The length of the light period and the length of the dark period are, for example, when the cycle of the light / dark cycle is 23 hours, the light period is about 11.5 hours, the dark period is about 11.5 hours, and the light period is about 12 hours. The dark period can be about 11 hours. Also, the light period can be about 13 hours and the dark period can be about 10 hours. When the cycle of the light-dark cycle is about 22 hours, the light period is about 11 hours, the dark period is about 11 hours, the light period is about 12 hours, the dark period is about 10 hours, the light period is about 13 hours, The dark period can be about 9 hours. When the cycle of the light-dark cycle is about 21 hours, the light period is about 10.5 hours, the dark period is about 10.5 hours, the light period is about 11 hours, the dark period is about 10 hours, and the light period is About 12 hours, the dark period can be about 9 hours.
この方法は、明期開始の刺激がもたらす位相前進を利用する方法であるので、暗期における光量は明期に比べて少なくする必要がある。暗期における光量は明期における光量の約1/2以下であり、約1/5以下であり、約1/10以下であり、望ましくはゼロ、すなわち光源をオフにすることである。
Since this method uses the phase advance caused by the stimulus at the beginning of the light period, it is necessary to reduce the light amount in the dark period compared to the light period. The light quantity in the dark period is about ½ or less, about 1/5 or less, and about 1/10 or less, preferably zero, that is, turning off the light source.
この方法によると、植物が主観的に夜明けと感じる時刻が数時間早められる程度であるので、植物固有の代謝サイクルに近い状態で栽培できるという利点が維持される。つまり、体内時刻を夜から昼へと反転させるような手法ではないので、植物へのストレスは小さい。仮に、植物へのストレスが大きいものであれば、正常な生理代謝を維持できず、植物生育の最適化は困難になる。また、この方法によると、概日リズムを壊さない範囲内で24時間よりも短い周期を有する明暗サイクルで栽培するにもかかわらず、植物の成長にはそれほど影響がないので、植物栽培装置のランニング・コストが削減される。
This method maintains the advantage that the plant can be cultivated in a state close to the metabolic cycle inherent to the plant because the time when the plant subjectively feels dawn is advanced by several hours. In other words, since it is not a method of reversing the body time from night to day, the stress on the plant is small. If the stress on the plant is large, normal physiological metabolism cannot be maintained, and optimization of plant growth becomes difficult. In addition, according to this method, the plant growth apparatus is not significantly affected even though it is cultivated in a light / dark cycle having a cycle shorter than 24 hours within a range not destroying the circadian rhythm.・ Cost is reduced.
(2)暗期を光合成活性が低い時間帯又は明期を光合成活性が高い時間帯に設定する方法
この方法は、ほぼ連続照射下においてダークパルスと呼ばれる暗期を光合成活性が高い時間帯に設定する方法又はライトパルスと呼ばれる明期を光合成活性が高い時間帯に設定する方法である。この方法は、連続照明下において短時間の暗期又は明期を設定した制御方法であり、ダークパルス又はライトパルスによる引き込み現象を利用した制御方法である。連続照明下においては、2時間程度のダークパルスを一定の周期で与えると植物の概日リズムが当該周期に同調し、ある特定の位相関係に収束する現象(位相ロック)が観察されていることが報告されている(例えば、非特許文献5)。この方法によると、植物の概日リズムが維持されるので連続照明による栽培促進が期待されるだけでなく、短時間の消灯による結果、光源が消費する電力が削減され、さらに温度の急激な変化も少ないので空調機器に与える負荷も少なくなる。 (2) Method of setting the dark period as a time zone with low photosynthetic activity or the light period as a time zone with high photosynthetic activity This method sets the dark period called dark pulse to a time zone with high photosynthetic activity under almost continuous irradiation. Or a method of setting a light period called a light pulse in a time zone in which photosynthetic activity is high. This method is a control method in which a short dark period or light period is set under continuous illumination, and is a control method using a pull-in phenomenon caused by a dark pulse or a light pulse. Under continuous illumination, when a dark pulse of about 2 hours is given at a certain period, the circadian rhythm of the plant is synchronized with the period and a phenomenon (phase lock) is observed that converges to a specific phase relationship. Has been reported (for example, Non-Patent Document 5). According to this method, the circadian rhythm of the plant is maintained, so that not only the promotion of cultivation by continuous lighting is expected, but also the power consumed by the light source is reduced as a result of a short turn-off, and the temperature changes rapidly. Therefore, the load on the air conditioner is also reduced.
この方法は、ほぼ連続照射下においてダークパルスと呼ばれる暗期を光合成活性が高い時間帯に設定する方法又はライトパルスと呼ばれる明期を光合成活性が高い時間帯に設定する方法である。この方法は、連続照明下において短時間の暗期又は明期を設定した制御方法であり、ダークパルス又はライトパルスによる引き込み現象を利用した制御方法である。連続照明下においては、2時間程度のダークパルスを一定の周期で与えると植物の概日リズムが当該周期に同調し、ある特定の位相関係に収束する現象(位相ロック)が観察されていることが報告されている(例えば、非特許文献5)。この方法によると、植物の概日リズムが維持されるので連続照明による栽培促進が期待されるだけでなく、短時間の消灯による結果、光源が消費する電力が削減され、さらに温度の急激な変化も少ないので空調機器に与える負荷も少なくなる。 (2) Method of setting the dark period as a time zone with low photosynthetic activity or the light period as a time zone with high photosynthetic activity This method sets the dark period called dark pulse to a time zone with high photosynthetic activity under almost continuous irradiation. Or a method of setting a light period called a light pulse in a time zone in which photosynthetic activity is high. This method is a control method in which a short dark period or light period is set under continuous illumination, and is a control method using a pull-in phenomenon caused by a dark pulse or a light pulse. Under continuous illumination, when a dark pulse of about 2 hours is given at a certain period, the circadian rhythm of the plant is synchronized with the period and a phenomenon (phase lock) is observed that converges to a specific phase relationship. Has been reported (for example, Non-Patent Document 5). According to this method, the circadian rhythm of the plant is maintained, so that not only the promotion of cultivation by continuous lighting is expected, but also the power consumed by the light source is reduced as a result of a short turn-off, and the temperature changes rapidly. Therefore, the load on the air conditioner is also reduced.
暗期を付与する周期は次の方法により求められる。この方法は、(A)連続照明条件下におけるフリーラン周期(τ)と、1度の暗期を設けた連続照射条件下におけるフリーラン周期(τ´)とから位相応答曲線(G(φ))を求める工程と、(B)該植物における概日リズムの位相同期が可能な時刻内において、光合成活性が低い時間帯に相当する前記暗期の位相と位相応答曲線との交点(位相固定点)から、暗期を設ける位相シフトを求める工程からなる。位相応答曲線G(φ)はダークパルスの時間長さ(「ダークパルスの強度」とも言う)に依存し、暗期の長さはダークパルスの強度と一致する。明暗サイクルの周期(T)は、フリーラン周期(τ)に位相シフト(ΔT)を差し引いた時間(T=τ-ΔT)として示される。また、暗期の長さはダークパルス(Δt)の長さ、明期の長さは明暗サイクルの周期(T)の残余時間(T-Δt)となる。なお、位相シフトの符号は、位相前進の場合がプラス、位相後退の場合がマイナスで表される。
The period for providing the dark period is determined by the following method. In this method, a phase response curve (G (φ)) is obtained from (A) a free-run period (τ) under continuous illumination conditions and a free-run period (τ ′) under continuous irradiation conditions with one dark period. And (B) an intersection of the dark phase and the phase response curve corresponding to a time zone with low photosynthetic activity within a time when phase synchronization of the circadian rhythm in the plant is possible (phase fixed point) ) To obtain a phase shift for providing a dark period. The phase response curve G (φ) depends on the time length of the dark pulse (also referred to as “dark pulse intensity”), and the length of the dark period coincides with the dark pulse intensity. The period (T) of the light / dark cycle is shown as the time (T = τ−ΔT) obtained by subtracting the phase shift (ΔT) from the free-run period (τ). The length of the dark period is the length of the dark pulse (Δt), and the length of the light period is the remaining time (T−Δt) of the cycle (T) of the light / dark cycle. Note that the sign of phase shift is represented by plus in the case of phase advance and minus in the case of phase backward.
概日リズムの測定方法は上記のように既に公知である。また、位相応答曲線を求める方法も公知である。位相応答曲線は、連続照明下における概日リズムを基準とした位相シフト、すなわち、連続照明下における概日リズムと連続照明下において単回のダークパルスを付与した場合における概日リズムの位相差(フリーラン周期(τ)-フリーラン周期(τ´))と、ダークパルスを与える時刻(位相)との関係を示した図である。図2は、連続照明下において単回のダークパルスを与えた場合における概日リズムの位相シフトを表した図であって、この図では栽培開始後120時間経過後にダークパルスを与えた状態を示している。ダークパルスの付与が概日リズムに位相の遅れを与えていることが分かる。
The circadian rhythm measurement method is already known as described above. A method for obtaining a phase response curve is also known. The phase response curve is a phase shift based on the circadian rhythm under continuous illumination, that is, the phase difference between the circadian rhythm under continuous illumination and the circadian rhythm when a single dark pulse is applied under continuous illumination ( FIG. 5 is a diagram showing a relationship between a free run cycle (τ) −free run cycle (τ ′)) and a time (phase) at which a dark pulse is applied. FIG. 2 is a diagram showing the phase shift of circadian rhythm when a single dark pulse is given under continuous illumination, and this figure shows a state where a dark pulse is given 120 hours after the start of cultivation. ing. It can be seen that the application of dark pulses gives a phase lag to the circadian rhythm.
図3は位相応答曲線G(φ)の一例を示したものであって、フリーラン周期が23時間である植物についてシミュレーションしたものである。位相応答曲線は、縦軸に位相シフト(rad/2π)を、横軸にダークパルス照射時の位相(rad/2π)を示す点を結んだものである。位相応答曲線はダークパルスの強度によって異なる曲線を描く。図3は2時間(Δt=2hrs)のダークパルスを与えた場合の位相応答曲線である。単回のダークパルスの付与により位相がシフトし、ダークパルスを同じ周期で繰り返し与えると、規則正しい概日リズムが得られることは公知である(例えば非特許文献5参照)。すなわち、位相応答曲線は、位相応答曲線が示す位相シフト(rad/2π)の最大値と最小値の間で、フリーラン周期と異なる周期を有する概日リズムが植物に発生し得ることを意味している。つまり、位相シフトの最大値と最小値の間で位相ロックが生じる結果、植物固有の概日リズムとは異なる周期の概日リズムであるにもかかわらず、植物の代謝活性のリズムに則した自然な成長が期待される。
FIG. 3 shows an example of a phase response curve G (φ), which is a simulation of a plant having a free-run cycle of 23 hours. In the phase response curve, the vertical axis indicates the phase shift (rad / 2π) and the horizontal axis indicates the phase (rad / 2π) during dark pulse irradiation. The phase response curve is different depending on the intensity of the dark pulse. FIG. 3 is a phase response curve when a dark pulse of 2 hours (Δt = 2 hrs) is given. It is known that a regular circadian rhythm can be obtained when the phase is shifted by the application of a single dark pulse and the dark pulse is repeatedly applied in the same period (see, for example, Non-Patent Document 5). That is, the phase response curve means that a circadian rhythm having a period different from the free-run period between the maximum value and the minimum value of the phase shift (rad / 2π) indicated by the phase response curve can occur in the plant. ing. In other words, the phase lock occurs between the maximum and minimum values of the phase shift, resulting in a natural circadian rhythm that is different from the plant specific circadian rhythm, despite the cycle rhythm of the metabolic activity of the plant. Growth is expected.
ここで、光合成活性は、上記のように、植物の主観的な夜明け時刻の1~3時間前、すなわち位相が0.94±0.04(rad/2π)の時間帯に低下する。従って、この時間帯に暗期を設定すると、植物の成長に大きな悪影響を与えることなく、消灯時間を設けることができる。そこで、位相が0.94±0.04(rad/2π)である場合の位相シフト、すなわち、位相応答曲線上における位相が0.94(rad/2π)に相当する位相シフトを求める。この位相シフトが得られる時刻(位相固定点)に、ダークパルスを与えると概日リズムの位相が固定され、規則正しい概日リズムが得られる。
Here, as described above, the photosynthetic activity decreases 1 to 3 hours before the subjective dawn time of the plant, that is, in a time zone where the phase is 0.94 ± 0.04 (rad / 2π). Therefore, when the dark period is set in this time zone, the light extinction time can be provided without greatly adversely affecting the growth of the plant. Therefore, the phase shift when the phase is 0.94 ± 0.04 (rad / 2π), that is, the phase shift corresponding to the phase on the phase response curve of 0.94 (rad / 2π) is obtained. When a dark pulse is applied at the time when this phase shift is obtained (phase fixing point), the phase of the circadian rhythm is fixed and a regular circadian rhythm is obtained.
さらに図3に基づいて具体的に説明すると、図3に示す位相応答曲線から、位相シフトが-0.05(rad/2π)以上0.15(rad/2π)以下の範囲、つまり23時間-1.15時間(-0.05×23時間)=21.85時間から、23時間+3.45時間(0.15×23時間)=26.45時間の明暗周期では、位相がロックされ、植物固有の概日リズムとは異なる周期の概日リズムで植物が成長可能であることが理解される。次に、ダークパルスを与える時刻の位相が0.94(rad/2π)になる位相シフトは約-0.15(rad/2π)、つまり、位相固定点は0.15(rad/2π)位相が遅れたところにある。従って、明暗サイクルの周期(T)は、連続照明下におけるフリーラン周期(τ)に位相シフト(ΔT)を差し引いた時間、つまり23時間×(1-(-0.15))=26.45時間の明暗周期となる。従って、24.45時間の明期と2時間(ダークパルスの長さ)の暗期とからなる明暗サイクルで光を制御すればよいことになる。
More specifically, referring to FIG. 3, from the phase response curve shown in FIG. 3, the phase shift is in the range of −0.05 (rad / 2π) to 0.15 (rad / 2π), that is, 23 hours− From 1.15 hours (−0.05 × 23 hours) = 21.85 hours to 23 hours + 3.45 hours (0.15 × 23 hours) = 26.45 hours, the phase is locked and the plant It is understood that plants can grow with a circadian rhythm with a different period from the intrinsic circadian rhythm. Next, the phase shift at which the phase at which the dark pulse is applied becomes 0.94 (rad / 2π) is about −0.15 (rad / 2π), that is, the phase fixing point is 0.15 (rad / 2π) phase. Is at a late point. Therefore, the cycle (T) of the light / dark cycle is the time obtained by subtracting the phase shift (ΔT) from the free-run cycle (τ) under continuous illumination, that is, 23 hours × (1 − (− 0.15)) = 26.45. It becomes a light-dark cycle of time. Therefore, the light may be controlled by a light / dark cycle comprising a light period of 24.45 hours and a dark period of 2 hours (the length of the dark pulse).
図3の位相応答曲線はダークパルスの長さが2時間である場合を示す。ダークパルスの強度が弱くなると位相応答曲線のピークは低くなり、ダークパルスの強度が強くなると位相応答曲線の描く高さは高くなる。ダークパルスがある強度より強くなると、位相応答曲線は発散し、図に示すような連続性のある曲線を描かなくなり、同期現象とは異なる不連続点での位相リセット現象が生じる。従って、ダークパルスの強度は同期現象が生じる範囲内の時間であり、その強度、つまり暗期の長さは概ね4時間以下である。この範囲内の時間であればダークパルスの強度は任意であって、例えば4時間であり、3時間であり、2時間であり、1時間であり得る。この強度は実験的に求められる。
3 shows the case where the length of the dark pulse is 2 hours. The peak of the phase response curve decreases as the dark pulse intensity decreases, and the height drawn by the phase response curve increases as the dark pulse intensity increases. When the dark pulse becomes stronger than a certain intensity, the phase response curve diverges and does not draw a continuous curve as shown in the figure, and a phase reset phenomenon occurs at a discontinuous point different from the synchronization phenomenon. Therefore, the intensity of the dark pulse is a time within a range where the synchronization phenomenon occurs, and the intensity, that is, the length of the dark period is approximately 4 hours or less. The intensity of the dark pulse is arbitrary as long as it is within this range, and is, for example, 4 hours, 3 hours, 2 hours, or 1 hour. This strength is determined experimentally.
また、ダークパルスを与える場合には、位相が遅くなる傾向にあり、ダークパルスを与える周期は植物固有のフリーラン周期よりも長くなる傾向にある。また、上記したようにダークパルスの強度が強くなれば位相が遅れる傾向にあり、強度が強くなりすぎると同期現象が生じなくなるので、ダークパルスを与える周期は24時間より長く、最大約30時間程度である。もっとも、植物あるいは同一植物に於いては品種によっては、ダークパルスを与える周期が24時間となる場合もあり得る。
In addition, when a dark pulse is applied, the phase tends to be slow, and the period for applying the dark pulse tends to be longer than the plant-specific free run period. In addition, as described above, if the intensity of the dark pulse is increased, the phase tends to be delayed, and if the intensity is increased too much, the synchronization phenomenon does not occur. Therefore, the period of applying the dark pulse is longer than 24 hours, and about 30 hours at the maximum. It is. Of course, depending on the varieties of plants or the same plant, the period for applying dark pulses may be 24 hours.
この明暗サイクルによる点灯制御方法によると、連続照明下における栽培と同様な栽培が可能となり、(1)の方法に比べて栽培開始から収穫までの期間が短くなる。また、暗期が設けられるので連続照明下での栽培方法に比べて、暗期の分だけ消費電力が低減される。
点灯 According to the lighting control method based on this light / dark cycle, cultivation similar to cultivation under continuous illumination is possible, and the period from cultivation start to harvesting is shortened compared to the method (1). Moreover, since the dark period is provided, power consumption is reduced by the amount corresponding to the dark period as compared to the cultivation method under continuous illumination.
ライトパルスを与える場合も同様である。ライトパルスを与える時刻は、連続照明下においてライトパルスを与えた場合に得られる位相応答曲線から求められる。図4は2時間(Δt=2hrs)のライトパルスを与えた場合の位相応答曲線の一例である。ライトパルスを与える場合は、光合成活性が高い時間帯に明期が設けられる。ライトパルスの時間長さ(「ライトパルスの強度」とも言う)に依存し、明期の長さはライトパルスの強度と一致する。明期を設ける時間帯は、ダークパルスを与える場合と同様の手順で求められる。光合成活性は、植物の主観的な夜明け時刻の5~7時間後、すなわち位相が0.25±0.04(rad/2π)の時間帯に高くなる。従って、この時間帯に光量の多い明期を設けると、光合成活性の高い時間帯において光量の高い光が照射され、光合成活性が低下する他の時間帯における光量を低く設定できる。この結果、栽培光の利用効率が上がるだけでなく、連続照明による高い生産速度が期待される。そこで、位相が0.25±0.04(rad/2π)である場合の位相シフト、例えば、位相応答曲線上における位相が0.25に相当する位相シフトを求める。図4に示す例では、ライトパルスを与える時刻の位相が0.25になる位相シフトは、約0.17(rad/2π)、つまり位相固定点は0.17(rad/2π)位相が早まったところにある。従って、明暗サイクルの周期(T)は、連続照明下におけるフリーラン周期(τ)に位相シフト(ΔT)を差し引いた時間、つまり、植物の有する固有のフリーラン周期が24時間であれば、24時間×(1-0.17)=19.09時間の明暗周期となる。従って、約17.1時間の暗期と2時間(ライトパルスの長さ)の明期の明暗サイクルで光を制御すればよいことになる。
The same applies when a light pulse is applied. The time for applying the light pulse is obtained from a phase response curve obtained when the light pulse is applied under continuous illumination. FIG. 4 is an example of a phase response curve when a write pulse of 2 hours (Δt = 2 hrs) is given. When a light pulse is applied, a light period is provided in a time zone in which photosynthetic activity is high. Depending on the time length of the write pulse (also referred to as “light pulse intensity”), the length of the light period coincides with the intensity of the write pulse. The time period in which the light period is provided is obtained by the same procedure as that for applying the dark pulse. The photosynthetic activity becomes high 5 to 7 hours after the subjective dawn time of plants, that is, in the time zone where the phase is 0.25 ± 0.04 (rad / 2π). Therefore, when a light period with a large amount of light is provided in this time zone, light with a high light amount is irradiated in a time zone with high photosynthetic activity, and the light amount in other time zones where the photosynthetic activity decreases can be set low. As a result, not only the utilization efficiency of cultivation light is improved, but also a high production rate by continuous illumination is expected. Therefore, a phase shift when the phase is 0.25 ± 0.04 (rad / 2π), for example, a phase shift corresponding to 0.25 on the phase response curve is obtained. In the example shown in FIG. 4, the phase shift at which the phase at which the write pulse is applied becomes 0.25, the phase shift is about 0.17 (rad / 2π), that is, the phase fixed point is 0.17 (rad / 2π) earlier. There is. Therefore, the period (T) of the light / dark cycle is 24 when the phase obtained by subtracting the phase shift (ΔT) from the free run period (τ) under continuous illumination, that is, when the inherent free run period of the plant is 24 hours. Time × (1−0.17) = 19.09 hours light-dark cycle. Therefore, it is sufficient to control the light in a dark cycle of about 17.1 hours and a light cycle of 2 hours (light pulse length).
図4の位相応答曲線はライトパルスの長さが2時間である場合を示す。ライトパルスの強度が弱くなると位相応答曲線の描く曲線は互いに近づき、ライトパルスの強度が強くなると位相応答曲線の描く曲線は離れる。ライトパルスがある強度より強くなると、位相応答曲線は単一の応答だけを示すようになり、図に示すような連続応答性のある曲線が描かれない。つまり、位相リセット現象が発生し、位相の同期現象が生じなくなり、本照明法で必要な位相の制御ができなくなる。従って、ライトパルスの強度は位相同期が生じる範囲内の時間であり、その強度、つまり明期の長さは概ね4時間以下である。この範囲内の時間であればライトパルスの長さは任意であって、例えば4時間であり、3時間であり、2時間であり、1時間であり得る。この強度は実験的に求められる。
The phase response curve in FIG. 4 shows the case where the length of the light pulse is 2 hours. When the intensity of the light pulse becomes weak, the curves drawn by the phase response curve approach each other, and when the intensity of the light pulse becomes strong, the curve drawn by the phase response curve leaves. When the light pulse becomes stronger than a certain intensity, the phase response curve shows only a single response, and a continuous response curve as shown in the figure is not drawn. That is, the phase reset phenomenon occurs, the phase synchronization phenomenon does not occur, and the phase control necessary in this illumination method cannot be performed. Therefore, the intensity of the write pulse is a time within a range where phase synchronization occurs, and the intensity, that is, the length of the light period is approximately 4 hours or less. If the time is within this range, the length of the write pulse is arbitrary, for example, 4 hours, 3 hours, 2 hours, or 1 hour. This strength is determined experimentally.
また、ライトパルスを与える場合には、位相が早まる傾向にあり、ライトパルスを与える周期は植物固有のフリーラン周期よりも短くなる傾向にある。また、上記したようにラウトパルスの強度が強くなれば位相が早まる傾向にあり、強度が強くなりすぎると同期現象が生じなくなるので、ライトパルスを与える周期は24時間より短く、最小約18時間程度である。もっとも、植物あるいは同一植物に於いては品種によっては、ライトパルスを与える周期が24時間となる場合もあり得る。
In addition, when a light pulse is applied, the phase tends to be earlier, and the period for applying the light pulse tends to be shorter than the plant-specific free run period. Further, as described above, if the intensity of the laut pulse is increased, the phase tends to be advanced, and if the intensity is increased too much, the synchronization phenomenon does not occur. Therefore, the period for applying the write pulse is shorter than 24 hours and is about 18 hours at the minimum. is there. However, depending on the plant or the same plant, the light pulse application cycle may be 24 hours.
植物は、上記のようにして設定された明暗サイクルの栽培光の下で栽培される。光は発芽後に必要とされる。従って、発芽と同時に上記明暗サイクルの栽培光の下で栽培を開始できる。また、24時間の昼夜サイクル(12時間の明期と12時間の暗期)の栽培光下又は自然光下で、数日から1~2週間成長させた後、上記明暗サイクルの光下で栽培を開始してもよい。上記で設定された明暗サイクルで栽培を開始すると、植物の体内時計は設定された明暗サイクル、例えば22時間の明暗サイクルで光を照射すると、植物の概日リズムは次第に同期し、植物の自然な代謝サイクルが形成される。収穫時期は植物の成長に併せて適宜決められる。また、収穫時期に近づいた場合に24時間の昼夜サイクルで栽培することもできる。
Plants are cultivated under the cultivation light of the light and dark cycle set as described above. Light is needed after germination. Therefore, cultivation can be started simultaneously with germination under the light of the light and dark cycle. In addition, the plant is grown for a few days to 1-2 weeks in the light of light or natural light of a 24-hour day / night cycle (12 hours of light period and 12 hours of dark period), and then cultivated under the light of the above light and dark cycle. You may start. When cultivation is started with the light / dark cycle set above, the circadian rhythm of the plant gradually synchronizes and the plant's circadian rhythm gradually synchronizes with the light / dark cycle set, for example, the light / dark cycle of 22 hours. A metabolic cycle is formed. The harvesting time is appropriately determined according to the growth of the plant. It can also be cultivated in a 24-hour day / night cycle when the harvest time is approaching.
本発明の植物栽培方法は、上記の方法で設定された明暗サイクルの栽培光で栽培する第1の栽培期間と当該第1の栽培期間の前後又はその双方に第1の栽培期間における明暗サイクルの周期と24時間の間の周期を有する明暗サイクルの栽培光の下で栽培する明暗周期調整期間を設けた栽培方法である。明暗周期調整期間は、第1の栽培期間における明暗サイクルから24時間周期の明暗サイクルへの移行を行うための調整期間である。
The plant cultivation method of the present invention includes a first cultivation period that is cultivated with the cultivation light of the light and dark cycle set by the above method and the light and dark cycle in the first cultivation period before and after the first cultivation period or both. It is the cultivation method which provided the light-dark cycle adjustment period grown under the cultivation light of the light-dark cycle which has a period between a period and 24 hours. The light / dark cycle adjustment period is an adjustment period for shifting from the light / dark cycle in the first cultivation period to the light / dark cycle having a 24-hour period.
第1の栽培期間における明暗サイクルの周期は、24時間より短い時間であり、24時間よりも長い時間であり、場合によっては24時間でもあり得る。24時間周期の明暗サイクルで栽培する場合には、植物の体内時計は24時間周期となるために、栽培開始時期におけるヒトの生活リズム(24時間社会サイクル)と作物の概日リズムは一致する。例えば、午前10時に明期を開始すると、午前10時が暗期の終了時刻となり、栽培開始時と収穫時においてヒトの生活リズムと植物の概日リズムの間に狂いはない。ところが、第1の栽培期間における明暗サイクルの周期が、22時間などのように24時間でないと、収穫時においてヒトの生活リズムと植物の概日リズムの間に狂いが生じる。このために、植物の概日リズムから考えて最適な収穫時刻、例えば、植物の体内時計における午前6時(明期から暗期に切り替わる時刻)に収穫しようすると、ヒトの生活リズムでは収穫時刻が深夜に該当する場合がある。この場合では収穫に際してヒトに過大な負担を掛ける。一方、ヒトの生活リズムを優先して、24時間リズムで午前10時に収穫を開始しようとすると、植物の体内時計では、例えば、光合成活性が著しく高い午前12時頃に該当し、収穫にとって最良の時刻になるとは限らない。また、22時間周期からいきなり24時間周期に変更すると、過度なストレスが植物に加えられるおそれもある。明暗周期調整期間は、このような問題点を解消するために設けられた栽培期間であって、この期間内において植物の体内時計が24時間サイクルに調整される。
The period of the light-dark cycle in the first cultivation period is a time shorter than 24 hours, a time longer than 24 hours, and may be 24 hours in some cases. When cultivated in a light / dark cycle with a 24-hour period, the biological clock of the plant has a 24-hour period, so the human rhythm (24-hour social cycle) at the start of cultivation coincides with the circadian rhythm of the crop. For example, when the light period starts at 10:00 am, 10:00 am becomes the end time of the dark period, and there is no error between the human life rhythm and the plant circadian rhythm at the start of cultivation and at the time of harvest. However, if the cycle of the light and dark cycle in the first cultivation period is not 24 hours, such as 22 hours, a deviation occurs between the human life rhythm and the plant circadian rhythm at the time of harvest. For this reason, when harvesting at an optimal harvest time in consideration of the circadian rhythm of the plant, for example, at 6 am in the body clock of the plant (the time when the light period switches to the dark period), the harvest time in the human life rhythm is May fall at midnight. In this case, an excessive burden is imposed on humans during harvesting. On the other hand, when it is attempted to start harvesting at 10:00 am with a 24-hour rhythm giving priority to human life rhythms, for example, the plant biological clock corresponds to, for example, around 12:00 am where photosynthesis activity is remarkably high, which is the best for harvesting. It is not always time. Moreover, if it changes suddenly from a 22-hour period to a 24-hour period, there exists a possibility that an excessive stress may be added to a plant. The light / dark cycle adjustment period is a cultivation period provided to eliminate such problems, and the biological clock of the plant is adjusted to a 24-hour cycle within this period.
図5は明暗周期調整期間を設けた栽培方法を示す概念図である。この図は、午前10時に栽培を開始し、午前10時から収穫を開始する場合を示している。この場合では、午前10時に光源がオンにされ、栽培開始直後から植物の代謝リズムが優先される。例えば22時間の周期(明期11時間、暗期11時間)の明暗サイクルで光が照射される。栽培開始から収穫時期に近づくまでのしばらくの期間は当該明暗サイクルで栽培が行われ、収穫時期が近づくと、22.5時間の周期を有する明暗サイクル、23時間の周期を有する明暗サイクル、23.5時間の周期を有する明暗サイクルと、周期が漸次増加した明暗サイクルでの栽培が行われる。このように、植物を大きく成長させる時期には植物の代謝リズムを優先し、収穫が近づくと徐々にヒトの生活リズムを優先させることができる。この結果、効率のよい栽培が可能になるだけでなく、植物に負荷されるストレスを軽減しつつ、しかも、ヒトの生活リズムまでを考慮した植物栽培が可能となる。
FIG. 5 is a conceptual diagram showing a cultivation method provided with a light-dark cycle adjustment period. This figure shows a case where cultivation is started at 10 am and harvesting is started at 10 am. In this case, the light source is turned on at 10 am, and the metabolic rhythm of the plant is given priority immediately after the start of cultivation. For example, light is irradiated in a light / dark cycle of a period of 22 hours (light period 11 hours, dark period 11 hours). The cultivation is performed in the light-dark cycle for a while from the start of cultivation to the harvest time. When the harvest time approaches, the light-dark cycle having a period of 22.5 hours, the light-dark cycle having a period of 23 hours, 23. Cultivation is performed in a light / dark cycle having a period of 5 hours and a light / dark cycle in which the period gradually increases. In this way, it is possible to give priority to the metabolic rhythm of plants during the period of large plant growth, and gradually give priority to the human rhythm as the harvest approaches. As a result, not only efficient cultivation is possible, but also plant cultivation in consideration of human life rhythms can be achieved while reducing stress applied to the plant.
明暗周期調整期間のおける明暗サイクルの周期は、第1の栽培期間における明暗サイクルの周期と24時間の間であって、1の明暗サイクルの周期であり、2以上の明暗サイクルの周期でもあり得る。調整期間(栽培期間)も適宜定められ、1日であり、2日であり、3日であり、あるいはそれ以上であり得る。明暗サイクルにおける暗期の長さや明期の長さも任意である。ストレス軽減ならびに同期制御の観点からは、明暗周期調整期間における明暗サイクルは、第1の栽培期間における明暗サイクルと近似した明暗サイクルが好ましい。例えば、第1の栽培期間における明暗サイクルが、22時間の周期(明期11時間、暗期11時間)の明暗サイクルであれば、明期が11時間、暗期が11.5時間である明暗サイクル、明期が11.5時間、暗期が11.5時間である明暗サイクル、明期11.5時間、暗期が12時間である明暗サイクルとした明暗周期調整期間が例示される。また、第1の栽培期間における明暗サイクルが、2時間の暗期と22.15時間の明期を有する明暗サイクルであれば、第1の栽培期間終了後に、暗期をなくした連続照射の栽培期間としてもよい。明暗周期調整期間は任意的なものであり、第1の栽培期間の終了後に明暗周期調整期間を設けることなく直ちに収穫をしても差し支えない。
The period of the light / dark cycle in the light / dark cycle adjustment period is between the period of the light / dark cycle in the first cultivation period and 24 hours, which is the period of one light / dark cycle, and may be the period of two or more light / dark cycles. . The adjustment period (cultivation period) is also appropriately determined, and may be one day, two days, three days, or more. The length of the dark period and the length of the light period in the light / dark cycle are also arbitrary. From the viewpoint of stress reduction and synchronous control, the light / dark cycle in the light / dark cycle adjustment period is preferably a light / dark cycle approximate to the light / dark cycle in the first cultivation period. For example, if the light / dark cycle in the first cultivation period is a light / dark cycle with a period of 22 hours (light period 11 hours, dark period 11 hours), the light period is 11 hours and the dark period is 11.5 hours. The light-dark cycle adjustment period is exemplified as a light-dark cycle having a cycle of 11.5 hours and a light cycle of 11.5 hours, a light cycle of 11.5 hours and a light cycle of 12 hours. Moreover, if the light-dark cycle in the first cultivation period is a light-dark cycle having a dark period of 2 hours and a light period of 22.15 hours, cultivation of continuous irradiation without the dark period after the end of the first cultivation period It is good also as a period. The light / dark cycle adjustment period is arbitrary, and may be harvested immediately without providing the light / dark cycle adjustment period after the end of the first cultivation period.
本発明の植物栽培装置は、植物を収容する筐体と、植物を栽培するための光(栽培光)を照射する光源と、前記光源の点灯を制御する光源制御手段を備える。植物を収容する筐体は人工的に制御された栽培環境が維持可能であれば、その構造は問われない。また、植物栽培装置は、植物を収容する空間内の湿度や温度を管理する空調設備、植物栽培用の培地を供給する培養設備を備える。
The plant cultivation apparatus of the present invention includes a housing that accommodates a plant, a light source that emits light (cultivation light) for cultivating the plant, and a light source control unit that controls lighting of the light source. If the housing | casing which accommodates a plant can maintain the cultivation environment controlled artificially, the structure will not be ask | required. Moreover, the plant cultivation apparatus includes an air conditioning facility that manages humidity and temperature in a space that accommodates plants, and a culture facility that supplies a plant cultivation medium.
光源はLEDや蛍光灯などから構成され、植物の生育に必要な波長の光を照射する。光源は固定された波長の光を照射する光源や複数の波長の光を照射する光源であり得る。照射する光の波長を制御可能な光源が好ましく用いられる。植物の成長は照射される光の波長によって影響されることも知られており、光の波長は適宜選択される。例えば、明期には赤色LEDからなる光源をオンにして赤色光を照射し、暗期には青色LEDからなる光源をオンとして青色光を照射する方法であり得る。また、明期には赤色LEDと青色LEDからなる光源をオンにして、赤色光と青色光の混合光を照射し、暗期には青色LEDからなる光源又は赤色LEDからなる光源のみをオンにして、赤色光又は青色光の何れか一方の光を照射する方法もあり得る。特に、ライトパルスを用いる場合、暗期明期を通じて赤色LEDからなる光源をオンとした状態で、明期には青色LEDからなる光源をオンにして、赤色光と青色光の両者を照射することが望まれる。青色光は葉の緑色を濃くして、葉を硬くする効果を有している。このため、赤色光と青色光の同時照射は、赤色光の連続照射による概日リズムの消失を防止するだけでなく、葉の形態形成にも貢献する。
The light source is composed of LEDs, fluorescent lamps, etc., and irradiates light of a wavelength necessary for plant growth. The light source may be a light source that emits light of a fixed wavelength or a light source that emits light of a plurality of wavelengths. A light source capable of controlling the wavelength of light to be irradiated is preferably used. It is also known that plant growth is affected by the wavelength of light to be irradiated, and the wavelength of light is appropriately selected. For example, in a light period, a light source composed of a red LED may be turned on to emit red light, and in a dark period, a light source composed of a blue LED may be turned on to emit blue light. In the light period, the light source consisting of red LED and blue LED is turned on, and the mixed light of red light and blue light is irradiated. In the dark period, only the light source consisting of blue LED or the light source consisting of red LED is turned on. Thus, there may be a method of irradiating either one of red light and blue light. In particular, when using light pulses, turn on the light source consisting of the red LED throughout the dark period and turn on the light source consisting of the blue LED during the light period and irradiate both red light and blue light. Is desired. Blue light has the effect of darkening the green color of the leaves and hardening the leaves. For this reason, simultaneous irradiation of red light and blue light not only prevents the disappearance of the circadian rhythm due to continuous irradiation of red light, but also contributes to the formation of leaves.
栽培対象となる植物は筐体内で生育可能な植物であればその種類は問われない。その植物は、食用のための植物や観賞用の植物であり得る。その植物は好ましくは食用のための植物であり、生育期間が短い食用のための植物である。食用のための植物として、レタス、小松菜、ホウレンソウ、キュウリ、トマト、ピーマン、サンチュ、水菜、春菊等の野菜類;ルッコラ、バジル等のハーブ類、イチゴ、ミカン、マンゴー、ブドウ、ナシ等の果物類;コメ、コムギ、オオムギ、ライムギ、エンバク、トウモロコシ、モロコシ、アワ、ヒエ、キビ等の穀類が例示される。観賞用の植物として、バラ、カーネーション、洋ラン、ガーベラ、トルコキキョウ等の花卉類、ポトス、セローム、アジアンタム等の観葉植物等が例示される。
The plant to be cultivated is not limited as long as it can grow in the housing. The plant can be an edible plant or an ornamental plant. The plant is preferably an edible plant and is an edible plant with a short growth period. Vegetables such as lettuce, Japanese mustard spinach, spinach, cucumber, tomato, pepper, sanchu, mizuna, spring chrysanthemum; fruits such as arugula and basil, fruits such as strawberry, mandarin, mango, grape, and pear Cereals such as rice, wheat, barley, rye, oat, corn, sorghum, millet, millet and millet are exemplified. Examples of ornamental plants include flower plants such as roses, carnations, orchids, gerberas, turkeys, and foliage plants such as pothos, serom, and Asiantum.
光源制御手段は、例えばRAMやハードディスク装置などの記憶装置、タイマー、光源のオン・オフや光源の切り替えを行うスイッチ装置、キーボードやタッチセンサーなどの入力装置、これらを制御するためのコンピュータ装置などが適宜組み合わせて構成される。上記栽培光制御方法に従った明暗サイクル(明期の長さや暗期の長さ)、第1の栽培期間、明暗周期調整期間の長さ、当該期間における明暗サイクル(明期の長さや暗期の長さ)、栽培中の管理温度や管理湿度などの栽培に必要な情報(栽培情報)は入力装置から入力され、記憶装置に記憶される。光源制御手段は、入力された明暗サイクルに従って、光源のオン・オフないし光量調整を行い、必要により光源を切り替える。明暗周期調整期間が設定された場合には、光源制御手段は第1の栽培期間が終了するまでは、上記栽培光制御方法に従った明暗サイクルで光源を点灯制御し、明暗周期調整期間においては、予め定められた明暗サイクルによって収穫可能な時期まで光源を点灯制御する。
The light source control means includes, for example, a storage device such as a RAM and a hard disk device, a timer, a switch device that turns on and off the light source and switches the light source, an input device such as a keyboard and a touch sensor, and a computer device that controls these devices. Appropriate combinations are configured. The light / dark cycle (the length of the light period and the length of the dark period), the length of the first cultivation period, the light / dark cycle adjustment period, and the light / dark cycle (the length of the light period and the dark period) according to the cultivation light control method. Information required for cultivation (cultivation information) such as management temperature and management humidity during cultivation is input from the input device and stored in the storage device. The light source control means turns the light source on / off or adjusts the amount of light according to the inputted light / dark cycle, and switches the light source as necessary. When the light / dark cycle adjustment period is set, the light source control means controls the lighting of the light source in the light / dark cycle according to the cultivation light control method until the first cultivation period ends, and in the light / dark cycle adjustment period. The light source is controlled to be turned on until it can be harvested by a predetermined light / dark cycle.
本発明の植物栽培装置には、さらに植物の体内時刻を表示する時計手段が備えられる場合がある。時計手段は、設定された明暗サイクルの周期(T)を24時間表示に換算する換算手段と、換算手段が換算した時刻を表示するディスプレイなどから構成される表示手段を備える。換算手段は、例えばコンピュータ装置から構成され、設定された明暗サイクルの周期を24時間表示に換算する。例えば、明暗サイクルの周期が22時間(明期11時間、暗期11時間)に設定された場合、植物は22時間を1日として主観的に体内時計を進める。換算手段は、当該体内時計をヒトの生活リズム(24時間社会システム)に一致させるために、22時間を24時間として、植物の体内時計における時刻を24時間表示の時刻に換算する。すなわち、換算手段は、光源がオンされた時刻を植物の主観的な夜明け時刻である午前6時とし、光源がオフされる11時間後の時刻が午後6時となるように計算し、植物の体内時計における時刻を、ディスプレイなどから構成される表示手段に表示する。また、2時間のダークパルスと残余時間の明期からなる明暗サイクルの場合であれば、換算手段はダークパルス(Δt=2hrs)を与えた中心時刻を例えば光合成活性が低い時刻である午前4時として、暗期の開始時刻を午前3時、暗期の終了時刻を午後5時となるように計算し、当該時刻を表示手段に表示する。ライトパルスを与える場合も同様である。作業者は、表示手段に表示された時刻を見ることで、ヒトの生活リズムと同様なリズムで植物の生活リズムを感じ取り、植物の体内時計に従って各種の作業、例えば施肥や収穫作業を行う。
The plant cultivation apparatus of the present invention may be further provided with a clock means for displaying the body time of the plant. The clock means includes a display means including a conversion means for converting the set light-dark cycle period (T) into a 24-hour display, a display for displaying the time converted by the conversion means, and the like. The conversion means is constituted by, for example, a computer device, and converts the set light / dark cycle period into a 24-hour display. For example, when the cycle of the light / dark cycle is set to 22 hours (light period 11 hours, dark period 11 hours), the plant advances the biological clock subjectively with 22 hours as one day. The conversion means converts the time in the biological clock of the plant into the time indicated in 24 hours, with 22 hours being 24 hours in order to match the biological clock with the human life rhythm (24-hour social system). That is, the conversion means calculates that the time when the light source is turned on is 6 am, which is the subjective dawn time of the plant, and the time after 11 hours when the light source is turned off is 6 pm. The time in the body clock is displayed on a display means including a display. Further, in the case of a light / dark cycle consisting of a dark pulse of 2 hours and a light period of the remaining time, the conversion means uses the central time at which the dark pulse (Δt = 2hrs) is given, for example, 4 am The dark period start time is 3 am and the dark period end time is 5 pm, and the time is displayed on the display means. The same applies when a write pulse is applied. By looking at the time displayed on the display means, the worker senses the life rhythm of the plant with a rhythm similar to that of the human life, and performs various operations such as fertilization and harvesting operations according to the biological clock of the plant.
次に、概日リズム、すなわちフリーラン周期を求めることが可能な分子診断型植物栽培装置の一例を示す。この分子診断型植物栽培装置101の概要を図13に示す。図13に示す分子診断型植物栽培装置101は、植物の生育に伴い増加する発光分子の生物発光に基づいて植物体の生育状態を診断する分子診断システムを備えた植物栽培装置である。当該分子診断システムは、発光遺伝子を導入した発光遺伝子導入植物体を生育するための栽培光を投射する光投射手段と、該発光遺伝子導入植物体の生育に伴い増加した内在性遺伝子の発現量を生物発光として撮像して発光画像を取得する発光画像取得手段と、該発光画像における生物発光の発光量に基づいて該発光遺伝子導入植物体の生育状態を診断する生育状態診断手段とを備える。なお、図13では、理解を容易にするために、一般的な植物栽培装置に備えられている各種設備(例えば、照明などの光源、エアコンディショナーなどの空調設備、水耕栽培設備など)は省略しており、特に断りがない限り、これらの各種設備が設置されているものとする。この装置101では、外壁150で囲まれた空間内に、育苗ステージA、早期診断ステージB、栽培ステージCの3つの空間が形成されている。
Next, an example of a molecular diagnostic plant cultivation apparatus capable of obtaining a circadian rhythm, that is, a free-run cycle will be shown. An outline of the molecular diagnostic plant cultivation apparatus 101 is shown in FIG. A molecular diagnostic plant cultivation apparatus 101 shown in FIG. 13 is a plant cultivation apparatus provided with a molecular diagnostic system for diagnosing the growth state of a plant based on bioluminescence of luminescent molecules that increase with the growth of the plant. The molecular diagnostic system comprises a light projection means for projecting cultivated light for growing a luminescent gene-introduced plant into which a luminescent gene has been introduced, and an expression level of an endogenous gene increased with the growth of the luminescent gene-introduced plant. Luminescent image acquisition means for imaging as bioluminescence and acquiring a luminescent image; and growth state diagnosis means for diagnosing the growth state of the luminescent gene-introduced plant based on the amount of bioluminescence emitted from the luminescent image. In FIG. 13, various facilities (for example, a light source such as lighting, an air conditioner such as an air conditioner, and a hydroponic cultivation facility) provided in a general plant cultivation apparatus are omitted for easy understanding. Unless otherwise specified, it is assumed that these various facilities are installed. In this apparatus 101, three spaces of a seedling raising stage A, an early diagnosis stage B, and a cultivation stage C are formed in a space surrounded by the outer wall 150.
育苗ステージAは、育苗期(播種後約数週間)の期間中、苗を育苗するための領域であり、培地に無菌的に播種され発芽した複数の幼苗110が育苗棚112に格納されている。育苗棚112には、幼苗110に栽培光を照射するための光源、すなわち光照射手段114が装着されている。光照射手段114は、苗の栽培光として適しているものであれば特に限定はない。例えば、蛍光灯、LED等が好適である。
The seedling raising stage A is an area for raising seedlings during the seedling raising period (about several weeks after sowing), and a plurality of seedlings 110 aseptically seeded and germinated in a medium are stored in a seedling shelf 112. . The seedling rack 112 is equipped with a light source for irradiating the seedlings 110 with cultivation light, that is, a light irradiation means 114. The light irradiation means 114 is not particularly limited as long as it is suitable as seedling cultivation light. For example, fluorescent lamps and LEDs are suitable.
ここで、当該植物栽培装置101において使用される苗(植物体)は、遺伝子工学的手法を用いて予め生物発光を行うタンパク質をコードする発光遺伝子が任意の目的物質遺伝子のプロモーター部分に導入されており(以下、発光遺伝子導入植物体と言う)、この発光遺伝子導入植物体の生育に伴い発光分子が増加し、増加したこれら発光分子が基質と反応して生物発光を行う。
Here, in the seedling (plant) used in the plant cultivation apparatus 101, a luminescent gene encoding a protein that performs bioluminescence is introduced into a promoter portion of an arbitrary target substance gene in advance using a genetic engineering technique. (Hereinafter referred to as a luminescent gene-introduced plant), the luminescent molecules increase with the growth of the luminescent gene-introduced plant, and the increased luminescent molecules react with the substrate to perform bioluminescence.
「生物発光」とは、生物による可視光の放射であり、ホタル、コメツキムシ、発光細菌(Photobacterium photoreum、Vibrio harveyi等)、ウミホタル、ウミシイタケ、ヤコウチュウ等、ルシフェラーゼによる発光の仕組みを利用した発光を意味する。コスト又は材料の入手の容易性の観点からは、前記発光遺伝子はホタル由来のルシフェラーゼをコードする遺伝子であり、前記発光分子はルシフェラーゼであることが好ましい。
“Bioluminescence” is the emission of visible light by living organisms, and means luminescence using the mechanism of luminescence by luciferase such as fireflies, click beetles, luminescent bacteria (Photobacterium terephthalum, Vibrio harveyi, etc.), Cypridina, Renilla, Yakouchu, etc. . From the viewpoint of cost or availability of materials, the luminescent gene is preferably a gene encoding firefly-derived luciferase, and the luminescent molecule is preferably luciferase.
早期診断ステージBは、育苗ステージAで育苗された幼苗110を後述する栽培ステージCに定植する前に、優良苗の選別にあたって苗の生育状況を診断する領域である。早期診断ステージBには、暗箱120と、発光画像取得手段122と、生育状態診断手段124と、選別手段128が設置されている。
The early diagnosis stage B is an area for diagnosing the growth status of seedlings when selecting excellent seedlings before planting the seedlings 110 grown in the seedling stage A to the cultivation stage C described later. In the early diagnosis stage B, a dark box 120, a light emission image acquisition unit 122, a growth state diagnosis unit 124, and a selection unit 128 are installed.
図14は、早期診断ステージBにおける分子診断システムの構成を説明するための図である。また、図15は早期診断ステージBにおける分子診断システムの分子診断処理を示す流れ図である。
FIG. 14 is a diagram for explaining the configuration of the molecular diagnostic system in the early diagnosis stage B. FIG. 15 is a flowchart showing the molecular diagnosis process of the molecular diagnosis system in the early diagnosis stage B.
暗箱120は、幼苗110を収容可能であって、かつ、外部からの光が入射しないように暗空間を形成するためのものである。かかる機能を有するものであればその構成に特に限定はなく、大きさや形も任意に設計することができる。
The dark box 120 is capable of accommodating the seedling 110 and forming a dark space so that light from the outside does not enter. The structure is not particularly limited as long as it has such a function, and the size and shape can be arbitrarily designed.
発光画像取得手段122は、暗箱120内の幼苗110から発せられた生物発光を撮像して発光画像を取得するためのものである。発光画像取得手段122としては、例えば、高感度CCDカメラ、光電子倍増管など、微弱な生物発光を撮像し得る手段であれば特に限定はない。
The luminescent image acquisition means 122 is for acquiring a luminescent image by imaging bioluminescence emitted from the seedling 110 in the dark box 120. The luminescent image acquisition unit 122 is not particularly limited as long as it is a unit that can capture weak bioluminescence, such as a high-sensitivity CCD camera or a photomultiplier tube.
また、発光画像取得手段122は、図13及び図14においては幼苗110の上方に設置され、苗を上方から撮影できるようになっている。なお、幼苗110の側面から撮影できるように暗箱120の側面に発光画像取得手段122を設置してもよく、幼苗110の各方向から撮影できるように、複数の発光画像取得手段122を設置することもできる。発光画像取得手段122により取得された幼苗110の発光画像は、生育状態診断手段124へ送信され、画像記憶手段126に当該画像が記憶される(S100)。
Further, the luminescent image acquisition means 122 is installed above the young seedling 110 in FIGS. 13 and 14 so that the seedling can be photographed from above. In addition, the luminescent image acquisition means 122 may be installed on the side surface of the dark box 120 so that it can be photographed from the side surface of the seedling 110, and a plurality of luminescent image acquisition means 122 is installed so that it can be photographed from each direction of the seedling 110. You can also. The luminescent image of the seedling 110 acquired by the luminescent image acquisition unit 122 is transmitted to the growth state diagnosis unit 124, and the image is stored in the image storage unit 126 (S100).
生育状態診断手段124は、発光画像取得手段122から取得した発光画像における生物発光の発光量に基づいて、幼苗110(発光遺伝子導入植物体)の生育状態を診断する。
The growth state diagnosing means 124 diagnoses the growth state of the seedling 110 (luminescent gene-introduced plant body) based on the amount of bioluminescence emitted from the luminescent image acquired from the luminescent image acquiring means 122.
生育状態診断手段124が取得した発光画像情報には、育苗パレット116の座標情報(xn,yn)が含まれている。生育状態診断手段241はこの座標情報を取得して(S110)、この座標情報に基づいて、座標情報に対応する幼苗110の生育領域(セルとして示される)を抽出するとともに当該生育領域における発光量の測定を行う(S120)。
The light emission image information acquired by the growth state diagnosis unit 124 includes coordinate information (x n , y n ) of the seedling pallet 116. The growth state diagnosis means 241 acquires this coordinate information (S110), extracts a growth region (shown as a cell) of the seedling 110 corresponding to the coordinate information based on this coordinate information, and emits light in the growth region. Is measured (S120).
ここで、発光量を測定した実測値に基づいて育成状態の診断結果データを作成することもできるが、育苗ステージAにおいて幼苗110がどの位置に置かれるか、例えば、育苗棚112の上か下か、光照射手段114に近いか遠いか等によっては、幼苗110がよく育つ場合や逆に育ちにくいといった環境差が起こり得る。そのため、育成状態を診断する際にも、生物発光の発光量そのものを絶対値として判断するだけでは、苗が優良か否かという資質により発光が少なかったのか、育苗ステージAでのたまたまその個体が置かれた位置の環境が悪くて生育が思わしくなく、結果として生物発光の発光絶対量が少なく測定されたのかは不明であり、優良苗選別の本質において判断を誤る可能性がある。
Here, the diagnosis result data of the growing state can be created based on the actual measurement value obtained by measuring the light emission amount, but in which position the seedling 110 is placed in the seedling stage A, for example, above or below the seedling shelf 112 Depending on whether it is close to or far from the light irradiation means 114, environmental differences such as when the seedling 110 grows well or conversely difficult to grow can occur. Therefore, even when diagnosing the breeding state, just judging the amount of bioluminescence itself as an absolute value, whether the seedlings were excellent due to the quality of whether or not the seedling was excellent, It is unclear whether the environment of the place where it was placed was bad and the growth was unsatisfactory. As a result, it was unclear whether the absolute amount of bioluminescence was measured and there was a possibility of misjudgment in the essence of selecting excellent seedlings.
そこで、生物発光の発光量に対して、育苗ステージAでの各位置で予め求めておいた補正係数で補正してから、発光量が多いか少ないかの判断をすることが好ましい(S130)。この補正係数は過去の生育状態から上記環境差を考慮するための係数であって、当該補正係数による補正は任意である。
Therefore, it is preferable to determine whether the amount of luminescence is large or small after correcting the amount of bioluminescence with the correction coefficient obtained in advance at each position in the seedling stage A (S130). This correction coefficient is a coefficient for considering the environmental difference from the past growth state, and correction by the correction coefficient is arbitrary.
すなわち、生育状態診断手段124が、幼苗110(発光遺伝子導入植物体)の位置情報と平均発光量に基づき幼苗110の位置ごとの補正係数を算出し、発光量の実測値に補正係数を乗じる補正アルゴリズムを備えることが好ましい。
That is, the growth state diagnosis means 124 calculates a correction coefficient for each position of the seedling 110 based on the position information of the seedling 110 (luminescent gene-introduced plant body) and the average light emission amount, and corrects the measured value of the light emission amount by the correction coefficient. It is preferable to provide an algorithm.
具体的には、十分に多い回数の育苗をすれば、最終的にはどの位置の苗も発光量はほぼ同程度であることが期待できる。従って、実際に十分多い回数育苗した結果の位置毎の平均発光量の実測値を求め、全ての位置を合計して求めた発光量の平均値よりも少なかった位置の苗には、平均値にまで高める補正ができるような係数を求めておく。逆に、平均値より高かった位置の苗には、平均値にまで低くするような係数を求めておく。これら補正係数を、その後の育苗で計測された発光量の測定値に対して作用させることで、苗の位置にかかわらず、苗自体が優良か否かの本来の資質を推測・判断することが可能となる。
Specifically, if a sufficiently large number of seedlings are raised, it can be expected that the amount of emitted light will eventually be almost the same at any position. Therefore, the actual value of the average light emission amount for each position as a result of raising the seedlings a sufficiently large number of times is obtained, and the average value is obtained for the seedlings at positions that are less than the average value of the light emission amount obtained by adding all the positions. The coefficient which can correct | amend to raise to is obtained beforehand. Conversely, for the seedlings at a position higher than the average value, a coefficient that lowers the average value is obtained. By applying these correction factors to the measured value of the amount of luminescence measured in subsequent raising seedlings, it is possible to estimate and judge the original qualities of whether the seedlings themselves are excellent regardless of the position of the seedlings. It becomes possible.
図16に、補正アルゴリズムを育苗パレット116の座標情報(xn,yn)に設定したデータの一例を示す。図16に示すように、補正アルゴリズムは、育苗パレット116の座標情報に対応させて行う。
FIG. 16 shows an example of data in which the correction algorithm is set in the coordinate information (x n , y n ) of the nursery pallet 116. As shown in FIG. 16, the correction algorithm is performed in correspondence with the coordinate information of the nursery pallet 116.
実測値の補正を行った後、基準値と実測値との比較を行い(S140)、育成状態の診断結果情報を作成する(S150)。
After correcting the actual measurement value, the reference value is compared with the actual measurement value (S140), and diagnostic result information on the growing state is created (S150).
図17は、発光画像取得手段122が撮影した幼苗110の発光画像と、その生育状態の診断結果データの一例である。図17(A)に示すように、4×4セルの育苗パレット116を暗箱120内において幼苗110の上方から撮影すると、幼苗110の二葉から発せられた生物発光の種々の発光画像データが取得できる。この生物発光は、発光遺伝子が植物体内で発現して発光分子を生産し、基質に含まれているルシフェリンと発光分子が反応して発生したものである。
FIG. 17 is an example of a luminescent image of the seedling 110 taken by the luminescent image acquisition means 122 and diagnostic result data of its growth state. As shown in FIG. 17A, when a 4 × 4 cell seedling pallet 116 is photographed from above the seedling 110 in the dark box 120, various luminescence image data of bioluminescence emitted from the two leaves of the seedling 110 can be acquired. . This bioluminescence is generated when a luminescent gene is expressed in a plant to produce a luminescent molecule, and luciferin contained in the substrate reacts with the luminescent molecule.
また、この生物発光の発光量は幼苗110の生育状態の良否と相関関係を有し、発光量が多い苗(図17(A)の110a)ほど優良であることを意味する。一方、幼苗110が先天的に欠陥を有している、発育が悪い又は発光遺伝子が何らかの原因により発現していない等の場合には、発光量が少ないか、まったく生物発光が発生せず撮影画像には映し出されない(図17(A)の110b、110c、110d)。
Also, the amount of bioluminescence emitted correlates with the quality of the growth state of the seedling 110, and it means that the seedling with a larger amount of light emission (110a in FIG. 17A) is more excellent. On the other hand, when the seedling 110 has a defect in nature, poor growth, or the luminescent gene is not expressed for some reason, the amount of luminescence is small or bioluminescence does not occur at all and the photographed image Is not projected (110b, 110c, 110d in FIG. 17A).
生育状態診断手段124には予め幼苗110の選別の基準となる発光量の基準値(閾値)が設定されており、かかる基準値以上の発光量を示す苗(例えば110a)は、次の栽培ステージCへの定植を許可する「○」の診断情報が作成され、基準値未満の発光量しか示さなかった苗(例えば110b、110c、110d)は、次の栽培ステージCへの定植を許可しない「×」の診断情報が作成され、その診断情報が選別手段128へ送信される。
A reference value (threshold value) for the amount of luminescence serving as a reference for selection of the young seedlings 110 is set in advance in the growth state diagnosis unit 124, and a seedling (for example, 110a) exhibiting an amount of luminescence exceeding the reference value is set to the next cultivation stage The seedlings (for example, 110b, 110c, and 110d) for which the diagnosis information “◯” that permits the planting to C is created and shows only the light emission amount less than the reference value do not permit the planting to the next cultivation stage C “ “×” diagnostic information is created, and the diagnostic information is transmitted to the sorting means 128.
なお、図17(A)では4×4セルの育苗パレット116の例を説明したが、育苗パレットは任意のセル数を設定することができ、育成状態の診断も任意のセル数ごとに行うことができる。
In addition, although the example of the seedling pallet 116 of 4x4 cells was demonstrated in FIG. 17 (A), the seedling pallet can set an arbitrary number of cells, and the diagnosis of the growing state should be performed for every arbitrary number of cells. Can do.
選別手段128は、生育状態診断手段124が作成した診断情報を取得し、この診断情報に基づいて優良苗と不良苗を選別する。選別手段128の構成は、図示しないが、例えば、植物を傷つけないように培地ごと苗を把持可能なロボットハンド部と、把持した苗を育苗ステージAから栽培ステージCもしくは廃棄箱等に移載可能な搬送部による構成とすることができる。
The sorting unit 128 acquires the diagnostic information created by the growth state diagnosing unit 124, and sorts out excellent seedlings and defective seedlings based on the diagnostic information. Although the configuration of the sorting means 128 is not shown, for example, a robot hand unit capable of holding a seedling together with the culture medium so as not to damage the plant, and the held seedling can be transferred from the raising seedling stage A to the cultivation stage C or a disposal box. It can be set as the structure by a simple conveyance part.
優良苗(例えば110a)は栽培ステージCで使用される栽培用のパレット(定植パレット144)に移植され、不良苗(例えば110b、110c、110d)は廃棄処分される。
Excellent seedlings (for example, 110a) are transplanted to a cultivation palette (fixed planting palette 144) used in the cultivation stage C, and defective seedlings (for example, 110b, 110c, 110d) are discarded.
このように、早期診断ステージBでは、育苗期の段階で優良苗を高精度で選別することができるため、栽培ステージCにおける歩留まり率と平均生産量の向上によるコスト削減や生産性の増大が達成される。
In this way, in the early diagnosis stage B, excellent seedlings can be selected with high accuracy at the stage of the seedling raising stage, and therefore, cost reduction and productivity increase are achieved by improving the yield rate and average production amount in the cultivation stage C. Is done.
図18に、栽培後の乾重量と幼苗の葉面積、ならびに栽培後の乾重量と幼苗の発光量の相関図を示す。いずれの場合も正の相関があることが認められ、幼苗の葉面積および幼苗の発光量は早期診断の指標として利用可能であることが分かる。また、これらは様々な光環境下で一般に利用可能である。
FIG. 18 shows a correlation diagram between the dry weight after cultivation and the leaf area of the seedling, and the dry weight after cultivation and the luminescence amount of the seedling. In any case, it is recognized that there is a positive correlation, and it can be seen that the leaf area of the seedling and the amount of luminescence of the seedling can be used as an index for early diagnosis. They are also generally available under various light environments.
幼苗の葉面積と乾重量の相関係数RDVと、幼苗の発光量と乾重量の相関係数RDBを比較すると、全ての試験条件においてRDV<RDBであった。したがって、乾重量の早期診断の指標としては発光量が葉面積より優れている。
When comparing the correlation coefficient RDV between the leaf area of the seedling and the dry weight and the correlation coefficient RDB between the luminescence amount and the dry weight of the seedling, RDV <RDB in all test conditions. Therefore, the amount of luminescence is superior to the leaf area as an indicator for early diagnosis of dry weight.
さらに、図19に該プロモーター活性総量(発光タンパク質生成総量:Net LUC production)と幼苗の葉面積、ならびに該プロモーター活性総量と幼苗の発光量の相関を示す。いずれの場合も正の相関があることが認められ、幼苗の葉面積および幼苗の発光量は早期診断の指標として利用可能であることが分かる。また、これらは様々な光環境下で一般に利用可能である。
Furthermore, FIG. 19 shows the correlation between the total amount of promoter activity (total photoprotein production amount: Net LUC production) and the leaf area of seedlings, and the total amount of promoter activity and the amount of luminescence of seedlings. In any case, it is recognized that there is a positive correlation, and it can be seen that the leaf area of the seedling and the amount of luminescence of the seedling can be used as an index for early diagnosis. They are also generally available under various light environments.
また、幼苗の葉面積と該プロモーター活性総量の相関係数RLVと、幼苗の発光量と該プロモーター活性総量の相関係数RLBを比較すると、全ての試験条件においてRLV<RLBであった。したがって、該プロモーター活性総量に対する早期診断の指標としても発光量が葉面積より優れている。
Further, when the correlation coefficient RLV between the leaf area of the seedling and the total promoter activity was compared with the correlation coefficient RLB between the amount of luminescence of the seedling and the total promoter activity, RLV <RLB was found in all test conditions. Therefore, the amount of luminescence is superior to the leaf area as an index for early diagnosis of the total promoter activity.
栽培ステージCは、選別した優良苗(例えば110a)を、水耕栽培システム等を利用して栽培する領域である。図13に示すように、栽培ステージCは植物体の成長を促進させるための光照射手段130、水耕栽培手段132、温湿度管理手段134から構成される栽培装置136等を備え、栽培装置136に、発光画像取得手段138と、生育状態診断手段140が設置されている。
Cultivation stage C is an area where selected excellent seedlings (eg, 110a) are cultivated using a hydroponic cultivation system or the like. As shown in FIG. 13, the cultivation stage C includes a cultivation apparatus 136 composed of a light irradiation means 130 for promoting the growth of the plant body, a hydroponic cultivation means 132, a temperature and humidity management means 134, and the like. In addition, a luminescent image acquisition unit 138 and a growth state diagnosis unit 140 are installed.
図20は、栽培ステージCにおける分子診断システムの構成を説明するための図である。また、図21は栽培ステージCにおける分子診断システムの分子診断処理を示す流れ図である。
FIG. 20 is a diagram for explaining the configuration of the molecular diagnostic system in the cultivation stage C. FIG. 21 is a flowchart showing the molecular diagnosis process of the molecular diagnosis system in the cultivation stage C.
栽培装置136は、光照射手段130の光照射を制御し、発光遺伝子が導入された発光植物100の生育に適した栽培光を照射するとともに、分子診断を行う際は、一時的に暗箱状態(非照射状態)若しくは明箱状態(連続照射状態)を作り出すことができる。
The cultivation apparatus 136 controls the light irradiation of the light irradiation means 130, irradiates the cultivation light suitable for the growth of the luminescent plant 100 into which the luminescent gene has been introduced, and temporarily performs the molecular diagnosis in a dark box state ( Non-irradiation state) or bright box state (continuous irradiation state) can be created.
発光画像取得手段138は、栽培装置136内の発光植物100から発せられた生物発光を撮像して発光画像を取得するためのものである。発光画像取得手段138としては、例えば、高感度CCDカメラ、光電子倍増管など、微弱な生物発光を撮像し得る手段であれば特に限定はない。
The luminescent image acquisition means 138 is for acquiring a luminescent image by imaging bioluminescence emitted from the luminescent plant 100 in the cultivation apparatus 136. The luminescent image acquisition unit 138 is not particularly limited as long as it is a unit that can capture weak bioluminescence, such as a high-sensitivity CCD camera or a photomultiplier tube.
また、発光画像取得手段138は、図13及び図20においては植物体の上方に設置され、発光植物100を上方から撮影できるようになっている。なお、幼苗110の側面から撮影できるように暗箱120の側面に発光画像取得手段138を設置してもよく、幼苗110の各方向から撮影できるように、複数の発光画像取得手段138を設置することもできる。
Further, the luminescent image acquisition means 138 is installed above the plant body in FIGS. 13 and 20 so that the luminescent plant 100 can be photographed from above. In addition, the luminescent image acquisition means 138 may be installed on the side of the dark box 120 so that it can be photographed from the side of the seedling 110, and a plurality of luminescent image acquisition means 138 is installed so that it can be photographed from each direction of the seedling 110. You can also.
この発光画像取得手段138により取得された発光植物100の発光画像は、生育状態診断手段140へ送信され、画像記憶手段142に画像を記憶する(S200)。
The luminescent image of the luminescent plant 100 acquired by the luminescent image acquiring unit 138 is transmitted to the growth state diagnosing unit 140 and stored in the image storage unit 142 (S200).
生育状態診断手段140は、発光画像取得手段138から取得した発光画像における生物発光の発光量に基づいて、発光植物100(発光遺伝子導入植物体)の生育状態を診断し、栽培光などの環境条件を制御する情報を作成するものである。
The growth state diagnosing unit 140 diagnoses the growth state of the luminescent plant 100 (luminescent gene-introduced plant body) based on the amount of bioluminescence emitted from the luminescent image acquired from the luminescent image acquiring unit 138, and environmental conditions such as cultivation light. It creates information to control.
生育状態診断手段140が取得した発光画像情報には、定植パレット144の座標情報(xn,yn)が含まれており、生育状態診断手段140はこの座標情報を取得して(S210)、座標情報に基づき、各発光植物100の領域を抽出するとともに発光量の測定を行う(S230)。ここで、発光量を測定した実測値に基づいて育成状態の診断結果データを作成することもできるが、育苗ステージAにおいて実施した補正アルゴリズムを実行することもできる。
The light emission image information acquired by the growth state diagnosis unit 140 includes coordinate information (x n , y n ) of the planting pallet 144, and the growth state diagnosis unit 140 acquires this coordinate information (S210), Based on the coordinate information, the area of each luminescent plant 100 is extracted and the amount of luminescence is measured (S230). Here, the diagnosis result data of the growing state can be created based on the actual measurement value obtained by measuring the light emission amount, but the correction algorithm implemented in the seedling raising stage A can also be executed.
次いで得られた発光量の測定値に基づき、生育状態診断手段140は得られた発光量の測定値に基づき分子診断情報を作成する(S240)。分子診断情報としては、有用遺伝子発現情報や光合成遺伝子発現情報、概日リズム(サーカディアンリズム)情報など、栽培過程において有効な遺伝子の発現情報を挙げることができる。分子診断情報が例えば概日リズム情報の場合は、まず、連続照明条件下における2時間程度の消灯(暗期パルスDP)に対する発光植物100の概日リズムの位相応答曲線と、連続照明条件下における自由継続周期を計測する。次いで、この位相応答曲線を用いた位相振動子モデルに基づき、暗期パルスの同期領域及び位相固定点を算出する。
Next, based on the obtained measurement value of luminescence, the growth state diagnosis means 140 creates molecular diagnostic information based on the obtained measurement value of luminescence (S240). Examples of molecular diagnostic information include useful gene expression information, photosynthetic gene expression information, circadian rhythm (circadian rhythm) information, and other gene expression information effective in the cultivation process. For example, when the molecular diagnostic information is circadian rhythm information, first, the phase response curve of the circadian rhythm of the luminescent plant 100 with respect to extinction (dark pulse DP) of about 2 hours under continuous illumination conditions, and under continuous illumination conditions Measure the free duration period. Next, based on the phase oscillator model using this phase response curve, the synchronization region and the phase fixed point of the dark period pulse are calculated.
生育状態診断手段140は作成された同期領域情報及び位相固定点情報に基づき、光合成活性最低となる時間帯(体内時刻が深夜となる状態、平均値の約15%減)に位相固定点が実現される暗期パルスDPの周期を決定する(S250)。
Based on the synchronization region information and phase fixing point information that has been created, the growth state diagnosis means 140 realizes a phase fixing point in the time zone where the photosynthetic activity is lowest (in the state in which the body time is midnight, about 15% reduction of the average value). The period of the dark period pulse DP to be performed is determined (S250).
図22は、発光量の測定値に基づいて作成された概日リズム情報の一例である。図22に示すように、発光量は約1日の周期をもって増減している。その周期は植物の種類と栽培条件によってそれぞれ異なるが、図22に示すように概日リズムの周期や振幅、暗期パルス(DP)に対する応答を診断することができる。
FIG. 22 is an example of circadian rhythm information created based on the measured light emission amount. As shown in FIG. 22, the amount of light emission increases and decreases with a period of about one day. Although the period differs depending on the kind of plant and the cultivation condition, as shown in FIG. 22, the circadian rhythm period and amplitude, and the response to the dark period pulse (DP) can be diagnosed.
図23は、ルシフェラーゼ遺伝子導入グリーンウエーブレタスLsCAB::LUCの発光量の測定値に基づいて作成された光合成関連遺伝子(クロロフィルAB結合タンパク質遺伝子CAB)の発現情報の一例である。図23に示すように、光合成関連遺伝子は約1日の周期をもって増減している。グリーンウエーブレタスの場合は、図23に示す矢印のタイミングで暗期パルス(DP)を与えると、効率よく光合成を行わせることができる。
FIG. 23 is an example of expression information of a photosynthesis-related gene (chlorophyll AB-binding protein gene CAB) created based on the measurement value of the luminescence amount of luciferase gene-introduced green wavelet LsCAB :: LUC. As shown in FIG. 23, the photosynthetic genes are increased or decreased with a period of about one day. In the case of a green wave lettuce, photosynthesis can be efficiently performed by applying a dark period pulse (DP) at the timing of the arrow shown in FIG.
決定された暗期パルスDPの周期情報を取得した生育状態診断手段140は、光照射手段130の栽培光の照射時間を制御し、例えば、暗期パルスDPの周期ごとに2時間程度消灯する(S260)。
The growth state diagnosing means 140 that has acquired the determined period information of the dark period pulse DP controls the irradiation time of the cultivation light of the light irradiation means 130, for example, turns off for about 2 hours for each period of the dark period pulse DP ( S260).
このように、栽培ステージCでは、「最適な暗期パルスの周期」を算出しそれを実践することで、照明コストを節約するとともに、発光植物100の光合成を効率よく行うことができる。
Thus, in the cultivation stage C, by calculating the “optimum period of dark period pulse” and practicing it, it is possible to save lighting costs and to efficiently synthesize the luminescent plant 100.
なお、上記の実施形態では、選別した優良苗(110a)を栽培ステージCで栽培する例を示したが、これに限定されず、例えば、発光遺伝子を導入していない幼苗を栽培ステージCで栽培する際に、上記の要領で選別した発光遺伝子導入植物体(幼苗)と共に栽培することもできる。
In addition, in said embodiment, although the example which cultivates the selected excellent seedling (110a) in the cultivation stage C was shown, it is not limited to this, For example, the young seedling which has not introduce | transduced the luminescent gene is grown in the cultivation stage C In this case, it can be cultivated together with a luminescent gene-introduced plant body (young seedling) selected in the above manner.
すなわち、栽培ステージCにおいては、全ての植物体に発光遺伝子が導入されていなくてもよく、一部(例えば、1個体)に発光遺伝子が導入されていれば、その個体について上述した分子診断を行い、暗期パルスその他環境制御のための情報を得ることができる。その際、発光遺伝子導入植物体は一種の生体センサーとしての役割を果たすものである。これにより、一部の発光遺伝子導入植物体をセンシングした結果を、栽培ステージC全体の植物に対して適用することができるため、非組換え体を栽培する場合も分子診断情報を利用した最適栽培を行なうことができる。
That is, in the cultivation stage C, the luminescent gene may not be introduced into all plants, and if the luminescent gene is introduced into a part (for example, one individual), the molecular diagnosis described above for the individual is performed. And information for the dark period pulse and other environmental control can be obtained. At that time, the luminescent gene-introduced plant plays a role as a kind of biological sensor. As a result, the result of sensing a part of the luminescent gene-introduced plant can be applied to the plant of the entire cultivation stage C. Therefore, even when cultivating a non-recombinant, optimal cultivation using molecular diagnostic information Can be performed.
なお、発光遺伝子導入植物体はその役割が終われば廃棄し、出荷される非組換え体に混入しないように取り扱うこともできる。
It should be noted that the luminescent gene-introduced plant body can be discarded after its role is finished and handled so as not to be mixed with the non-recombinant to be shipped.
上記分子診断型植物工場で利用しうる好適な植物として、レタス、小松菜、ホウレンソウ、キュウリ、トマト、ピーマン、サンチュ、水菜、春菊等の野菜類;ルッコラ、バジル等のハーブ類;イチゴ、ミカン、マンゴー、ブドウ、ナシ等の果物類;コメ、コムギ、オオムギ、ライムギ、エンバク、トウモロコシ、モロコシ、アワ、ヒエ、キビ等の穀類;バラ、カーネーション、洋ラン、ガーベラ、トルコキキョウ等の花卉類;ポトス、セローム、アジアンタム等の観葉植物等、種々の農産物を挙げることができる。
Suitable plants that can be used in the molecular diagnostic plant include vegetables such as lettuce, Japanese mustard spinach, spinach, cucumber, tomato, green pepper, sanchu, mizuna, and spring chrysanthemum; herbs such as arugula and basil; strawberries, mandarin and mango Fruits such as grapes, pears; grains such as rice, wheat, barley, rye, oats, corn, sorghum, millet, millet, millet; Various agricultural products such as foliage plants such as cerome and Asian tam can be mentioned.
当該分子診断型植物栽培装置101では、栽培ステージCにおける生育状態診断手段140は、連続照明条件下において発光量の測定値から自由継続周期を計測して、発光植物100固有の概日リズムを求めることもできる。そして、得られた発光植物100固有の概日リズムから、生育状態診断手段140は、上記の発光制御方法に基づいて照明の明暗サイクルを決定し、光照射手段130による栽培光の照射時間を制御できる。この方法によると、早期診断ステージで選別された優良苗による概日リズムが測定されるので、明暗サイクルの決定に対してより適切な分子診断情報が得られる。これにより、さらに能率よく植物を人工的な環境下で育成できる。もっとも、栽培ステージBにおける成育状態診断手段124も発光植物100固有の概日リズムを求めることができるので、当該概日リズムを測定した後に上記発光制御方法により明暗サイクルを決定し、光照射手段130による栽培光の照射時間を制御することも可能である。
In the molecular diagnostic plant cultivation apparatus 101, the growth state diagnosis means 140 in the cultivation stage C measures a free continuous period from the measured light emission amount under continuous illumination conditions, and obtains a circadian rhythm peculiar to the luminescent plant 100. You can also. And from the circadian rhythm peculiar to the obtained luminescent plant 100, the growth state diagnosis means 140 determines the light / dark cycle of illumination based on said luminescence control method, and controls the irradiation time of the cultivation light by the light irradiation means 130 it can. According to this method, since the circadian rhythm by the excellent seedlings selected at the early diagnosis stage is measured, more appropriate molecular diagnosis information can be obtained for the determination of the light / dark cycle. Thereby, a plant can be raised more efficiently in an artificial environment. However, since the growth state diagnosis means 124 in the cultivation stage B can also obtain the circadian rhythm peculiar to the luminescent plant 100, after measuring the circadian rhythm, the light / dark cycle is determined by the light emission control method, and the light irradiation means 130. It is also possible to control the irradiation time of the cultivation light.
本発明の栽培光制御方法は植物固有の概日リズムを基礎としたアルゴリズムに基づいて栽培光の制御を行う方法である。本発明の栽培光制御方法によると、暗期又は明期は光合成の活性を考慮した時期に設定されているので、栽培光の消灯による節電効果が望めるだけでなく、植物の概日リズムを崩すことなく植物の栽培が可能になる。この結果、照明コスト、空調の維持費用、植物の成育度などが考慮されたコストパフォーマンスの高い栽培が可能となる。
The cultivation light control method of the present invention is a method for controlling cultivation light based on an algorithm based on a circadian rhythm peculiar to plants. According to the cultivation light control method of the present invention, the dark period or the light period is set to a period that takes into account the activity of photosynthesis, so that not only can the power saving effect be achieved by turning off the cultivation light, but the circadian rhythm of the plant is destroyed. Plants can be cultivated without any problems. As a result, it is possible to perform cultivation with high cost performance in consideration of lighting costs, air conditioning maintenance costs, plant growth, and the like.
また、本発明の分子診断方法を利用すれば、分子レベルでその植物体に最も適した環境制御が可能となる植物栽培装置が提供される。
Further, if the molecular diagnostic method of the present invention is used, a plant cultivation apparatus capable of controlling the environment most suitable for the plant body at the molecular level is provided.
11 筐体
12 光源
13 栽培空間
20 光源制御手段を構成するコンピュータ
40 ディスプレイ
100…発光植物
101…分子診断型植物栽培装置
110…幼苗
112…育苗棚
114…光照射手段
116…育苗パレット
120…暗箱
122…発光画像取得手段
124…生育状態診断手段
126…画像記憶手段
128…選別手段
130…光照射手段
132…水耕栽培手段
134…温湿度管理手段
136…栽培装置
138…発光画像取得手段
140…生育状態診断手段
142…画像記憶手段
144…定植パレット
150…外壁
A…育苗ステージ
B…早期診断ステージ
C…栽培ステージ DESCRIPTION OFSYMBOLS 11 Case 12 Light source 13 Cultivation space 20 Computer 40 which comprises a light source control means Display 100 ... Luminous plant 101 ... Molecular diagnostic type plant cultivation apparatus
DESCRIPTION OFSYMBOLS 110 ... Seedling 112 ... Raising shelf 114 ... Light irradiation means 116 ... Raising seedling pallet 120 ... Dark box 122 ... Luminous image acquisition means 124 ... Growth state diagnostic means 126 ... Image storage means 128 ... Sorting means 130 ... Light irradiation means 132 ... Hydroponics Means 134 ... Temperature and humidity management means 136 ... Cultivation device 138 ... Luminous image acquisition means 140 ... Growth state diagnosis means 142 ... Image storage means 144 ... Planting palette 150 ... Outer wall A ... Seedling stage B ... Early diagnosis stage C ... Cultivation stage
12 光源
13 栽培空間
20 光源制御手段を構成するコンピュータ
40 ディスプレイ
100…発光植物
101…分子診断型植物栽培装置
110…幼苗
112…育苗棚
114…光照射手段
116…育苗パレット
120…暗箱
122…発光画像取得手段
124…生育状態診断手段
126…画像記憶手段
128…選別手段
130…光照射手段
132…水耕栽培手段
134…温湿度管理手段
136…栽培装置
138…発光画像取得手段
140…生育状態診断手段
142…画像記憶手段
144…定植パレット
150…外壁
A…育苗ステージ
B…早期診断ステージ
C…栽培ステージ DESCRIPTION OF
DESCRIPTION OF
Claims (17)
- 人工的に制御された明暗サイクル下で栽培光を照射して植物を栽培するための栽培光制御方法であって、
前記明暗サイクルは、栽培光が照射される明期と、当該明期における光量よりも少ない光量が照射されるか又は光量のない暗期を有し、
前記明暗サイクルの周期は、前記植物が有する固有のフリーラン周期と異なる周期であり、
前記暗期が光合成活性の低い時間帯に設定されるか又は前記明期が光合成活性の高い時間帯に設定された栽培光制御方法。 A cultivation light control method for cultivating a plant by irradiating cultivation light under an artificially controlled light-dark cycle,
The light-dark cycle has a light period in which cultivation light is irradiated, and a dark period in which a light amount less than the light amount in the light period is irradiated or there is no light amount,
The cycle of the light-dark cycle is a cycle different from the inherent free run cycle of the plant,
A cultivation light control method in which the dark period is set to a time zone with low photosynthetic activity or the light period is set to a time zone with high photosynthetic activity. - 前記フリーラン周期は、下記方法により求められた請求項1に記載の栽培光制御方法。
植物の生育に伴い増加する内在性遺伝子の発現量を生物発光で識別することができるように改変された植物体の生物発光に基づいて植物体の生育状態を判定する方法であって、
発光遺伝子を導入した発光遺伝子導入植物体を生育するために栽培光を投射する光投射工程と、
該発光遺伝子導入植物体の生育に伴い増加した内在性遺伝子の発現量を生物発光として撮像して発光画像を取得する発光画像取得工程と、
該発光画像における生物発光の発光量に基づいて、前記発現量から明暗サイクルの周期を求める工程を有する方法 The cultivation light control method according to claim 1, wherein the free run cycle is obtained by the following method.
A method for determining the growth state of a plant body based on bioluminescence of the plant body modified so that the expression level of an endogenous gene that increases as the plant grows can be identified by bioluminescence,
A light projection step of projecting cultivating light to grow a luminescent gene-introduced plant into which the luminescent gene has been introduced;
A luminescence image acquisition step of capturing a luminescence image by imaging the expression level of an endogenous gene increased with the growth of the luminescence gene-introduced plant as bioluminescence; and
A method comprising a step of obtaining a cycle of a light / dark cycle from the expression level based on a light emission amount of bioluminescence in the luminescence image. - 前記明暗サイクルの周期と前記植物が有する固有のフリーラン周期の差が、該植物の概日リズムの位相同期が可能な時間の範囲内であって、
前記暗期の終期が、光合成活性が低い時間帯に設定された請求項1又は2に記載の栽培光制御方法。 The difference between the cycle of the light-dark cycle and the inherent free-run cycle of the plant is within a time range in which phase synchronization of the circadian rhythm of the plant is possible,
The cultivation light control method according to claim 1 or 2, wherein the end of the dark period is set to a time zone in which photosynthetic activity is low. - 前記暗期の終期が、前記植物の体内時計における夜明け時刻から1~3時間前に設定された請求項3に記載の栽培光制御方法。 The cultivation light control method according to claim 3, wherein the end of the dark period is set 1 to 3 hours before the dawn time in the biological clock of the plant.
- 前記明暗サイクルは、明期の長さと暗期の長さがほぼ等しい明暗サイクルであるか、暗期の長さが明期の長さよりも短い明暗サイクルである請求項3又は4に記載の栽培光制御方法。 The cultivation according to claim 3 or 4, wherein the light / dark cycle is a light / dark cycle in which the length of the light period is substantially equal to the length of the dark period, or the length of the dark period is shorter than the length of the light period. Light control method.
- 前記明暗サイクルの周期と前記植物が有する固有のフリーラン周期の差が、3時間以内である請求項3~5の何れか1項に記載の栽培光制御方法。 The cultivation light control method according to any one of claims 3 to 5, wherein a difference between the cycle of the light-dark cycle and the inherent free-run cycle of the plant is within 3 hours.
- 前記明暗サイクルは、約11時間明期と約11時間の暗期を有する請求項3~6の何れか1項に記載の栽培光制御方法。 The cultivation light control method according to any one of claims 3 to 6, wherein the light / dark cycle has a light period of about 11 hours and a dark period of about 11 hours.
- 前記暗期の長さが前記植物の概日リズムの位相同期が可能な時間であって、
前記暗期が次の(A)(B)の工程によって定められた請求項1に記載の栽培光制御方法。
(A)連続照明条件下におけるフリーラン周期と、単回の暗期を設けた連続照射条件下におけるフリーラン周期とから位相応答曲線を求める工程
(B)該植物における概日リズムの位相同期が可能な時刻内において、光合成活性が低い時間帯に相当する位相と位相応答曲線との交点から、暗期を設ける位相シフトを求める工程。 The length of the dark period is the time that allows phase synchronization of the circadian rhythm of the plant,
The cultivation light control method according to claim 1, wherein the dark period is determined by the following steps (A) and (B).
(A) A step of obtaining a phase response curve from a free run period under continuous illumination conditions and a free run period under continuous irradiation conditions with a single dark period (B) Phase synchronization of circadian rhythm in the plant A step of obtaining a phase shift for providing a dark period from an intersection of a phase corresponding to a time zone having low photosynthetic activity and a phase response curve within a possible time. - 前記フリーラン周期は、下記方法により求められた請求項8に記載の栽培光制御方法。
植物の生育に伴い増加する内在性遺伝子の発現量を生物発光で識別することができるように改変された植物体の生物発光に基づいて植物体の生育状態を判定する方法であって、
発光遺伝子を導入した発光遺伝子導入植物体を生育するために栽培光を投射する光投射工程と、
該発光遺伝子導入植物体の生育に伴い増加した内在性遺伝子の発現量を生物発光として撮像して発光画像を取得する発光画像取得工程と、
該発光画像における生物発光の発光量に基づいて、前記発現量からフリーラン周期を求める工程を有する方法 The cultivation light control method according to claim 8, wherein the free run cycle is obtained by the following method.
A method for determining the growth state of a plant based on the bioluminescence of the plant modified so that the expression level of an endogenous gene that increases with the growth of the plant can be identified by bioluminescence,
A light projection step of projecting cultivating light to grow a luminescent gene-introduced plant into which the luminescent gene has been introduced;
A luminescence image acquisition step of capturing a luminescence image by imaging the expression level of an endogenous gene increased with the growth of the luminescence gene-introduced plant as bioluminescence; and
A method comprising a step of obtaining a free-run cycle from the expression level based on a bioluminescence emission amount in the luminescence image. - 前記暗期の終期が、前記植物の体内時計における夜明け時刻から1~3時間前に設定された請求項8又は9に記載の栽培光制御方法。 The cultivation light control method according to claim 8 or 9, wherein the end of the dark period is set 1 to 3 hours before the dawn time in the plant biological clock.
- 前記暗期の長さが3時間以内である請求項8~10に何れか1項に記載の栽培光制御方法。 The cultivation light control method according to any one of claims 8 to 10, wherein the length of the dark period is within 3 hours.
- 植物の生育に伴い増加する内在性遺伝子の発現量を生物発光で識別することができるように改変された植物体の生物発光に基づいて植物体の生育状態を診断する分子診断方法であって、
発光遺伝子を導入した発光遺伝子導入植物体を生育するために栽培光を投射する光投射工程と、
該発光遺伝子導入植物体の生育に伴い増加した内在性遺伝子の発現量を生物発光として撮像して発光画像を取得する発光画像取得工程と、
該発光画像における生物発光の発光量に基づいて該発光遺伝子導入植物体の生育状態を診断する育成状態診断工程と、
を有する、分子診断方法。 A molecular diagnostic method for diagnosing the growth state of a plant based on the bioluminescence of the plant modified so that the expression level of an endogenous gene that increases with the growth of the plant can be identified by bioluminescence,
A light projection step of projecting cultivating light to grow a luminescent gene-introduced plant into which the luminescent gene has been introduced;
A luminescence image acquisition step of capturing a luminescence image by imaging the expression level of an endogenous gene increased with the growth of the luminescence gene-introduced plant as bioluminescence; and
A growth state diagnostic step of diagnosing the growth state of the luminescent gene-introduced plant based on the amount of bioluminescence emitted in the luminescent image;
A molecular diagnostic method. - 前記発光遺伝子がルシフェラーゼをコードする遺伝子であり、前記発光分子がルシフェラーゼである、請求項12に記載の分子診断方法。 The molecular diagnostic method according to claim 12, wherein the luminescent gene is a gene encoding luciferase, and the luminescent molecule is luciferase.
- 植物を収容する筐体と、
植物を栽培するための栽培光を照射する光源と、
前記光源の点灯を制御する光源制御手段を備えた植物栽培装置であって、
当該光源制御手段は、請求項1~8の何れか1項に記載の栽培光制御方法に従って栽培光を制御する植物栽培装置。 A housing for accommodating plants;
A light source that emits cultivation light for cultivating plants;
A plant cultivation apparatus comprising light source control means for controlling lighting of the light source,
9. A plant cultivation apparatus, wherein the light source control means controls cultivation light according to the cultivation light control method according to claim 1. - 明暗サイクルの周期(T)を24時間表示に換算して表示する時計手段を備えた請求項14に記載の植物栽培装置。 The plant cultivation apparatus according to claim 14, further comprising a clock unit that converts the period (T) of the light-dark cycle into a 24-hour display.
- 植物の生育に伴い増加する内在性遺伝子の発現量を生物発光で識別することができるように改変された植物体の生物発光に基づいて植物体の生育状態を診断する分子診断システムを備えた植物栽培装置であって、
該分子診断システムが、
発光遺伝子を導入した発光遺伝子導入植物体を生育するための栽培光を投射する光投射手段と、
該発光遺伝子導入植物体の生育に伴い増加した内在性遺伝子の発現量を生物発光として撮像して発光画像を取得する発光画像取得手段と、
該発光画像における生物発光の発光量に基づいて該発光遺伝子導入植物体の生育状態を診断する生育状態診断手段と、
を備えた、植物栽培装置。 A plant equipped with a molecular diagnostic system for diagnosing the growth state of a plant body based on the bioluminescence of the plant body modified so that the expression level of an endogenous gene that increases as the plant grows can be identified by bioluminescence A cultivation device,
The molecular diagnostic system comprises:
A light projection means for projecting cultivation light for growing a luminescent gene-introduced plant into which a luminescent gene has been introduced;
Luminescent image acquisition means for capturing the luminescence image by imaging the expression level of the endogenous gene increased with the growth of the luminescent gene-introduced plant as bioluminescence,
A growth state diagnostic means for diagnosing the growth state of the luminescent gene-introduced plant based on the amount of bioluminescence emitted from the luminescent image;
A plant cultivation apparatus comprising: - 前記発光遺伝子がルシフェラーゼをコードする遺伝子であり、前記発光分子がルシフェラーゼである、請求項16に記載の植物栽培装置。 The plant cultivation apparatus according to claim 16, wherein the luminescent gene is a gene encoding luciferase, and the luminescent molecule is luciferase.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011014721A JP2012152151A (en) | 2011-01-27 | 2011-01-27 | Plant factory for molecular diagnosis and molecular diagnostic method |
JP2011-014721 | 2011-01-27 | ||
JP2011-044317 | 2011-03-01 | ||
JP2011044317A JP6012928B2 (en) | 2011-03-01 | 2011-03-01 | Plant cultivation method and biological clock optimization plant cultivation device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012102372A1 true WO2012102372A1 (en) | 2012-08-02 |
Family
ID=46580935
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/051784 WO2012102372A1 (en) | 2011-01-27 | 2012-01-27 | Plant cultivation method and plant cultivation device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2012102372A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104898468A (en) * | 2015-03-31 | 2015-09-09 | 小米科技有限责任公司 | Plant growth control system and method |
WO2016044425A1 (en) * | 2014-09-16 | 2016-03-24 | Biological Illumination, Llc | Lighting system to control the circadian rhythm of agricultural products and associated methods |
CN107908198A (en) * | 2017-11-17 | 2018-04-13 | 福建农林大学 | A kind of moulding guiding system and method for plant bonsai illumination |
EP3476206A1 (en) * | 2013-03-14 | 2019-05-01 | Crop One Holdings, Inc. | Led light timing in a high growth, high density, closed environment system |
CN114051855A (en) * | 2021-11-24 | 2022-02-18 | 安徽农业大学 | A Field Test Method for Studying Stress Resistance of Different Wheat Lines at the Same Growth Stage |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5529991A (en) * | 1978-03-24 | 1980-03-03 | Gen Electric | Apparatus for promoting plant growth in enviroment controlled agriculture institution |
JP2005065559A (en) * | 2003-08-22 | 2005-03-17 | Matsushita Electric Works Ltd | Plant storage device, illumination device for plant storage, and illumination method for plant storage |
JP2005253456A (en) * | 2004-02-10 | 2005-09-22 | Osaka Industrial Promotion Organization | Moss seedling production method, moss mat production method and moss seedling |
JP2007082489A (en) * | 2005-09-22 | 2007-04-05 | Koki Kanehama | Plant cultivation method |
-
2012
- 2012-01-27 WO PCT/JP2012/051784 patent/WO2012102372A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5529991A (en) * | 1978-03-24 | 1980-03-03 | Gen Electric | Apparatus for promoting plant growth in enviroment controlled agriculture institution |
JP2005065559A (en) * | 2003-08-22 | 2005-03-17 | Matsushita Electric Works Ltd | Plant storage device, illumination device for plant storage, and illumination method for plant storage |
JP2005253456A (en) * | 2004-02-10 | 2005-09-22 | Osaka Industrial Promotion Organization | Moss seedling production method, moss mat production method and moss seedling |
JP2007082489A (en) * | 2005-09-22 | 2007-04-05 | Koki Kanehama | Plant cultivation method |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3476206A1 (en) * | 2013-03-14 | 2019-05-01 | Crop One Holdings, Inc. | Led light timing in a high growth, high density, closed environment system |
WO2016044425A1 (en) * | 2014-09-16 | 2016-03-24 | Biological Illumination, Llc | Lighting system to control the circadian rhythm of agricultural products and associated methods |
CN107079556A (en) * | 2014-09-16 | 2017-08-18 | 生物照明有限责任公司 | Method for the illuminator and association of the circadian rhythm that controls agricultural product |
CN109714863A (en) * | 2014-09-16 | 2019-05-03 | 生物照明有限责任公司 | Lighting system for agricultural product |
CN109714863B (en) * | 2014-09-16 | 2021-08-13 | 生物照明有限责任公司 | Illumination system for agricultural products |
CN104898468A (en) * | 2015-03-31 | 2015-09-09 | 小米科技有限责任公司 | Plant growth control system and method |
CN107908198A (en) * | 2017-11-17 | 2018-04-13 | 福建农林大学 | A kind of moulding guiding system and method for plant bonsai illumination |
CN114051855A (en) * | 2021-11-24 | 2022-02-18 | 安徽农业大学 | A Field Test Method for Studying Stress Resistance of Different Wheat Lines at the Same Growth Stage |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6012928B2 (en) | Plant cultivation method and biological clock optimization plant cultivation device | |
JP7541918B2 (en) | Dimming method for constant light intensity | |
US10806095B2 (en) | Horticultural lighting apparatus | |
Proietti et al. | Flowering mechanisms and environmental stimuli for flower transition: Bases for production scheduling in greenhouse floriculture | |
CN111988986B (en) | Bolting control using light with high levels of far red | |
JP2020528281A (en) | Optimization of awakening light for plant growth | |
WO2012102372A1 (en) | Plant cultivation method and plant cultivation device | |
JP2015033366A (en) | Tea tree growing method and tea tree growing apparatus | |
JP2010233509A (en) | A method for cultivating and harvesting rice at a low cost in a short period of time using a blue LED, and selection of a line suitable for this method | |
Kwon | Trait improvement of solanaceae fruit crops for vertical farming by genome editing | |
Giniger et al. | Computer simulation of a single truss tomato cropping system | |
US12185680B2 (en) | Red and far-red light ratio during growth of basil | |
Goto | Production of pharmaceuticals in a specially designed plant factory | |
JP2012152151A (en) | Plant factory for molecular diagnosis and molecular diagnostic method | |
CN114431026A (en) | Method and system for illuminating plants in an indoor farming environment | |
KR101979258B1 (en) | Growth environment control system of plant grower and Method thereof | |
US12108710B2 (en) | Method for cultivating strawberry | |
JPS6255025A (en) | Plant culture apparatus | |
JP2012065601A (en) | Method for making tomato fruit sugar content higher as tomato fruit weight become larger | |
Heuvelink et al. | Modelling visual product quality in cut chrysanthemum | |
Duisembekov et al. | Optimization of the technology of mass breeding of cereal aphids (Schizaphisgraminum) using an aeroponic cultivation and the breeding of the aphidiusbioagent (Aphidiusmatricariae) | |
JP7157489B1 (en) | Plant cultivation method and plant cultivation device | |
JP6541231B2 (en) | Method of suppressing dormancy of strawberry | |
JP7236186B1 (en) | Plant cultivation method and plant cultivation device | |
McAvoy | Development of a management strategy for a single truss tomato production system. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12739501 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12739501 Country of ref document: EP Kind code of ref document: A1 |