WO2012101359A1 - Method for the heat treatment of wood using dust-free dehydrated gases - Google Patents
Method for the heat treatment of wood using dust-free dehydrated gases Download PDFInfo
- Publication number
- WO2012101359A1 WO2012101359A1 PCT/FR2012/050110 FR2012050110W WO2012101359A1 WO 2012101359 A1 WO2012101359 A1 WO 2012101359A1 FR 2012050110 W FR2012050110 W FR 2012050110W WO 2012101359 A1 WO2012101359 A1 WO 2012101359A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gases
- chamber
- collection chamber
- fumes
- collection
- Prior art date
Links
- 239000007789 gas Substances 0.000 title claims abstract description 96
- 238000000034 method Methods 0.000 title claims abstract description 41
- 239000002023 wood Substances 0.000 title claims abstract description 31
- 238000010438 heat treatment Methods 0.000 title claims abstract description 29
- 238000001816 cooling Methods 0.000 claims abstract description 46
- 239000003517 fume Substances 0.000 claims abstract description 36
- 239000000428 dust Substances 0.000 claims abstract description 24
- 230000018044 dehydration Effects 0.000 claims abstract description 15
- 238000006297 dehydration reaction Methods 0.000 claims abstract description 15
- 239000002028 Biomass Substances 0.000 claims abstract description 12
- 239000002245 particle Substances 0.000 claims description 13
- 239000007787 solid Substances 0.000 claims description 11
- 238000007599 discharging Methods 0.000 claims description 6
- 239000003546 flue gas Substances 0.000 claims description 5
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 4
- 238000004062 sedimentation Methods 0.000 claims description 3
- 239000000779 smoke Substances 0.000 claims description 3
- 238000000605 extraction Methods 0.000 abstract description 3
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 230000008569 process Effects 0.000 description 16
- 238000004140 cleaning Methods 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000010410 dusting Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 241000233866 Fungi Species 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000009432 framing Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D7/00—Forming, maintaining or circulating atmospheres in heating chambers
- F27D7/06—Forming or maintaining special atmospheres or vacuum within heating chambers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F26—DRYING
- F26B—DRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
- F26B21/00—Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
- F26B21/14—Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects using gases or vapours other than air or steam, e.g. inert gases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F26—DRYING
- F26B—DRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
- F26B25/00—Details of general application not covered by group F26B21/00 or F26B23/00
- F26B25/005—Treatment of dryer exhaust gases
- F26B25/006—Separating volatiles, e.g. recovering solvents from dryer exhaust gases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F26—DRYING
- F26B—DRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
- F26B25/00—Details of general application not covered by group F26B21/00 or F26B23/00
- F26B25/005—Treatment of dryer exhaust gases
- F26B25/007—Dust filtering; Exhaust dust filters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D17/00—Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
- F27D17/20—Arrangements for treatment or cleaning of waste gases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F26—DRYING
- F26B—DRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
- F26B2210/00—Drying processes and machines for solid objects characterised by the specific requirements of the drying good
- F26B2210/16—Wood, e.g. lumber, timber
Definitions
- the invention relates to a method of heat treatment of wood, the principle of which is based on the generation of hot gases from the combustion of biomass, said gases feeding an oven.
- Heat treatment of wood can improve its biological resistance to insects and xylophagous fungi, or increase its dimensional stability through a modification of the material and without the introduction of chemical.
- Hot air generators operate on the principle of pulsed air.
- Fans allow the introduction of air for combustion into the fireplace, the flow rates can be modulated through the addition of a dimmer.
- the flue gases from the furnace are sucked by means of a smoke extractor at the outlet of chimneys, and pass outside of a heat exchanger of variable geometry, which may for example be tubular or square. They then transmit their heat to fresh air drawn by another fan in the exchanger.
- the product resulting from these hot air generators is therefore an air with 20% oxygen, and whose temperature does not generally exceed 150 ° C due to the shape of the exchanger.
- the methods of heat treatment of the wood according to the invention, and using the biomass for the generation of hot gases include not only a specific step of dehydration and flue cleaning, specially designed to allow the cleaning of fumes, to achieve the heat treatment of the wood with clean and non-polluting gases, but also additional means for trapping the residual pollutant particles remaining in said fumes.
- the heat treatment processes of the wood according to the invention implement two cleaning steps to increase the quality of the gases in terms of cleanliness.
- the subject of the invention is a method for heat treatment of wood, comprising in order a step of producing hot gases and fumes by means of a gas generator using biomass, a fume treatment stage consisting of dehydrating and dusting the fumes by the implementation of specific means, a step of conveying gases to an oven, a step of heating the wood in the oven by means of said gases, and a step of extracting the vapors, said fumes treatment step being effected by means of a device comprising a gas cooling chamber for dehydrating said gases, said cooling chamber being extended by a first collection chamber of the condensates resulting from the dehydration of the fumes, said collection chamber being located below the cooling chamber, characterized in that the first collection chamber is surmounted by at least one tube outlet, whose diameter is sized to slow down the gases, and to allow the sedimentation of dust.
- the method of heat treatment of the wood according to the invention based on the generation of hot gases by means of a biomass boiler, devotes a full and complete step to the cleaning and dehydration of the harmful fumes resulting from the heat treatment.
- wood the use of biomass to generate gases, leads almost systematically, the emission of fumes heavily loaded with water and in dust, which has the effect of polluting the atmosphere and increasing the risks of adversely affecting the quality of the heat treatment of the wood.
- the treatment of these vapors could be carried out indirectly and partially, by playing, for example, on certain parameters of the wood treatment process, at the risk of affecting the quality of this treatment.
- the designers of the wood heat treatment process according to the invention attach great importance to the realization of heat treatment of wood at truly clean gas means, for an optimized and reliable result, without negative effects on the environment in terms of pollution.
- the method according to the invention is carried out continuously, in an isolated installation, without loss of gas, between the gas generator and the extraction of vapors, and operates at a low pressure. This process also relies on a final stage of extraction of the vapors, by means for example of pumps, which will influence the geometry, dimensioning and the functional characteristics of the device, developed to ensure this phase of dusting and dehydration of the fumes .
- the solid particles By the presence of outlet tubes, the solid particles, which are deposited on the inner wall of each of said outlet tubes, tend to migrate by inertia to the first collection chamber located below.
- This first collection chamber serves both as a receptacle for condensates from the cooling chamber, and for solid particles that have deposited in each outlet tube.
- the gases in each outlet tube are significantly slowed down.
- the condensates, which are deposited on the walls of the cooling chamber, and which migrate inertia to the first collection chamber, will also serve to trap the solid particles and dust fumes, retaining them in their passage.
- the collection chamber thus has a gas inlet from the cooling chamber and a gas outlet via each of the outlet tubes.
- the step of producing the gases by means of the gas generator is separated from the flue gas treatment step by a cooling step, making it possible to change the temperature of the gases from 900 ° C. to a temperature of less than 200 ° C. ° C. Indeed, dehydration and dust removal operations, are better controlled, and therefore easier to perform on cooled gases, rather than gas raised to very high temperatures, around 1000 ° C.
- the gases are cooled to a temperature of between 120 ° C. and 200 ° C. If this cooling step is included in the method of heat treatment of the wood according to the invention, a step of reheating of the cooled gases will have to be added in said process, in order to carry out the step of heat treatment of the wood in the oven with sufficiently hot gases.
- the fumes treatment step is performed by means of a device comprising a gas cooling chamber, for dehydrating said gases.
- a device comprising a gas cooling chamber, for dehydrating said gases.
- the wood heat treatment process is based on the aspiration of the fumes, one of the constraints to be respected for said method is to keep a low pressure at any point and at any time, in the installation provided for unfold this wood treatment process.
- An increase in the pressure drop at the passage of the flue gas treatment elements results in a loss of suction flow and thus power of the boiler.
- a functioning in depression and high overpressure of the system also means an increase of the electrical consumption which penalizes the energy balance of the treatment.
- the dehydration of the fumes is therefore achieved by a cooling of the fumes.
- the fumes are cooled to 30 ° C in this cooling chamber or dehydration.
- the cooling chamber is extended by a first collection chamber condensed from the dehydration of fumes, said collection chamber being located below the cooling chamber.
- the condensais that have been deposited on the walls of the cooling chamber will tend to flow by inertia, along these walls, to go to the first collection chamber. It is important to be able to concentrate these condensates in a very specific and unique place, not risking to foul the device of dehydration and dedusting.
- the first collection chamber is equipped with first condensate removal means.
- first condensate removal means can be activated manually, or trigger automatically once a threshold filling rate reached in the collection chamber.
- These first evacuation means could also be triggered automatically by preprogrammed time cycle.
- each outlet tube is provided with at least one electrostatic filter for fixing the dust.
- These filters are arranged transversely in each tube, and are intended to retain any solid particles or dust transported by the gas passing through said tubes. Said particles or dust agglutinate against the underside of each filter, and tend to fall into the first collection chamber. These filters allow the fixing of dust on each outlet tube, for a loss of almost zero load.
- the first collection chamber is equipped with second means for discharging the solid particles.
- second evacuation means can be activated manually, or trigger automatically once a threshold filling rate reached in the collection chamber. They could also be triggered automatically by preprogrammed time cycle.
- each outlet tube of the first collection chamber opens into a second collection chamber located above the first collection chamber, and provided with an outlet pipe connected to a gas suction system. These suction means make it possible to ensure the continuous circulation of the gases in the treatment device.
- each outlet tube (20,21) has a diameter greater than or equal to 200 mm.
- each outlet tube (20,21) is dimensioned to reduce the speed of the gas to a value less than or equal to 3m / s.
- the invention also relates to a device for carrying out the fumes treatment step of a method according to the invention.
- the main characteristic of a device according to the invention is that it comprises a cooling chamber having an orifice for the arrival of gases from the gas generator, said cooling chamber opening into a first collection chamber, equipped with first means for discharging the condensates and second means for discharging the solid particles, said first chamber being extended by two outlet tubes opening into a second collection chamber provided with an outlet pipe connected to a suction system; diameter of said tubes being dimensioned to reduce the speed of the gases.
- the cooling chamber is vertical, and the two collection chambers are horizontal, the second chamber being located above the first chamber, and the two outlet tubes connecting said collection chambers, are vertical and are each provided with an electrostatic dust filter.
- the device constitutes an insulated gas circuit, having a hot gas inlet orifice, and a treated gas outlet orifice. In this way it can be inserted easily, in a hot gas duct, for supplying a wood heat treatment furnace.
- the treatment processes according to the invention have the advantage of implementing a step of dehydration and dedusting fumes by means of a compact device, compact and efficient.
- the device is designed to perform these two operations almost simultaneously, allowing time savings in the treatment method according to the invention.
- the treatment device has the advantage of being equipped with condensate removal systems and / or solid particles recovered from the fumes, avoiding total or partial fouling, which can lead to an interruption of the treatment process according to the invention. invention.
- FIG. 1 is a schematic view of the various blocks embodying the various steps of a treatment method according to the invention
- FIG. 2 is a perspective view of a smoke treatment device according to the invention.
- a method of heat treatment of wood comprises various steps carried out continuously, the first step 1 consisting in producing hot gases, the temperature of which is close to 900 ° C., by the use of biomass.
- the emission of hot gases is accompanied by fumes also brought to temperatures close to 900 ° C, and which are charged with water vapor and dust, the diffusion of said vapors in the atmosphere being not wanted for pollution reasons.
- the second step 2 of a process according to the invention is to cool the gases emitted by means of a cooling exchanger to bring them to temperatures below 200 ° C, and more specifically at temperatures between 120 ° C and 200 ° C.
- a gas treatment device 10 comprises a base 11 multi-tubular feet, surmounted by a holding structure 12 also tubular.
- the device 10 comprises an inlet port 13 for receiving the gases from a gas generator using the biomass, and having already undergone a cooling phase by means of a cooling exchanger. In this way, the gases and fumes emitted at temperatures in the region of 900 ° C. are cooled to temperatures between 120 ° C. and 200 ° C. before entering the treatment device 10, said device 10 remaining fully effective for gas whose temperature is below 200 ° C.
- the inlet port is located at the top of the device 10, and is formed at the upper end 14 of a cylindrical cooling chamber 15, the axis of revolution is oriented vertically.
- This chamber 15 is constituted by a heat exchanger for cooling the fumes, allowing their temperature to be raised from 200 ° C. to 30 ° C. This cooling phase leading to the dehydration of fumes.
- the diameter of this cooling chamber 15 is substantially equal to 25 mm.
- the lower end 16 of this cooling chamber 15 opens into a first cylindrical collection chamber 17 whose axis of revolution is oriented horizontally. The junction between the cooling chamber 15 and the first collection chamber 17 is effected at the central portion of the wall 18 of said first collection chamber 17.
- This first collection chamber 17, which is placed under the chamber cooling 15 and which preferably has a diameter of the order of 700 mm, is intended in particular to recover the condensates deposited on the wall 19 of the cooling chamber 15, and which tend to flow by inertia, along said wall 19 to said first chamber 17.
- This first collection chamber 17 is surmounted by two cylindrical outlet tubes 20,21, originating at the wall 18 of this chamber 17 and ending in the wall 22 of a second collection chamber 23, whose axis of revolution is horizontal, and which is placed above the first collection chamber 17.
- This second collection chamber 23 has, preferably, a diameter of the order of 700 mm and is parallel to the first collection chamber 17.
- the two tubes 20,21 connecting the two collection chambers 17,23 are found in a vertical position and each have a diameter of the order of 300mm. They are therefore parallel to the vertical cylindrical cooling chamber, and are placed on either side of said chamber 15. They are thus implanted in the wall 18 of the first collection chamber 17, framing the cooling chamber 15.
- These two tubes 20,21 which are sized to slow down the gases at a speed of the order of 3m / s, each have, at their lower end 24,25, a horizontal electrostatic filter 26,27, crossing each of said 20,21 tubes, and for the purpose of trapping the dust or solid particles of the gases located in the first collection chamber 17, and which have a tendency to go up through the two tubes 20,21 to move towards the second collection chamber 23 superior.
- the first lower collection chamber 17 in addition to recovering the condensates from the vertical cooling chamber, also recovers the dusts. which have agglutinated at the bottom wall of each electrostatic filter 26,27 placed in each of the tubes 20,21. These two tubes 20,21 thus serve as a place of sedimentation of dust.
- the first collection chamber 17 is equipped with first condensate discharge means, in the form of a drawer system 28, placed under said first chamber 17, the operation of which has no influence on the pressure prevailing in the device. 10 of treatment.
- This first collection chamber is also provided with second means of evacuation of dust, in the form of a screw 29 without end, driven by a motor, said screw 29 being also placed under said first chamber 17.
- the second collection chamber 23 has a horizontal outlet pipe, for routing the clean gas from the processing device 10 to a suction system, said outlet pipe 30 having a diameter of 100mm.
- the gases At the input of device 10, the gases have a temperature of between 120 ° C. and 200 ° C., and at the output of device 10, their temperature is only 40 ° C.
- the treatment device 10 constitutes an insulated gas circuit, provided with an inlet 13 and an outlet 30, and makes it possible both to dehydrate the gases by cooling, and to clean them, by ridding them of their dust.
- the operating mode of this processing device 10 is as follows.
- the hot gases from the gas generator using the biomass are emitted at about 900 ° C. and are then cooled to a temperature of between 120 ° C. and 200 ° C. by means of a cooling exchanger placed upstream of the cooling device. treatment 10.
- the concept of "upstream" is to be considered in relation to the direction of propagation of gases.
- the gases which are cooled, but still remain warm with respect to the ambient temperature enter the treatment device 10 through the inlet orifice 13. They first pass through the cooling chamber 15, where they are cooled down to a temperature of 30.degree. temperature of the order of 30 ° C, and are therefore dehydrated, the condensate being deposited on the wall 19 of the chamber 15.
- the cooled gases then arrive in the first collection chamber 17. Under the effect of pressure, they go back to the second collection chamber 23, using the two tubes of output 20,21, whose large diameter will reduce their speed of progression to 3m / s. They then cross the electrostatic filters 26,27, which trap their dust.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Electrostatic Separation (AREA)
- Filtering Of Dispersed Particles In Gases (AREA)
- Treating Waste Gases (AREA)
Abstract
Description
PROCEDE DE TRAITEMENT THERMIQUE DU BOIS AVEC DES GAZ METHOD FOR THERMALLY TREATING WOOD WITH GAS
DESHYDRATES ET DEPOUSSIERES DESHYDRATES AND DEOUSES
L'invention se rapporte à un procédé de traitement thermique du bois, dont le principe repose sur la génération de gaz chauds issus de la combustion de biomasse, lesdits gaz alimentant un four. Les traitements thermiques du bois permettent d'améliorer sa résistance biologique vis-à-vis des insectes et des champignons xylophages, ou encore d'accroître sa stabilité dimensionnelle grâce à une modification du matériau et sans l'introduction de produit chimique. The invention relates to a method of heat treatment of wood, the principle of which is based on the generation of hot gases from the combustion of biomass, said gases feeding an oven. Heat treatment of wood can improve its biological resistance to insects and xylophagous fungi, or increase its dimensional stability through a modification of the material and without the introduction of chemical.
Les procédés présents sur le marché, et qui permettent le traitement thermique du bois, utilisent l'électricité ou le gaz. Dans ce deuxième cas, les systèmes intervenant dans ces procédés, sont regroupés sous l'appellation de « générateurs d'air chauds », et fonctionnent sur le principe de l'air puisé. Des ventilateurs permettent l'introduction de l'air servant à la combustion dans le foyer, les débits pouvant être modulés grâce à l'ajout d'un variateur. Les fumées issues du foyer sont aspirées au moyen d'un extracteur de fumées en sortie de cheminées, et passent à l'extérieur d'un échangeur de géométrie variable, pouvant par exemple être tubulaire ou carré. Ils transmettent alors leur chaleur à de l'air frais puisé par un autre ventilateur dans l'échangeur. Le produit issu de ces générateurs d'air chaud, est donc un air à 20% d'oxygène, et dont la température n'excède généralement pas 150°C du fait de la forme de l'échangeur. Processes on the market, which allow the heat treatment of wood, use electricity or gas. In this second case, the systems involved in these processes, are grouped under the name of "hot air generators", and operate on the principle of pulsed air. Fans allow the introduction of air for combustion into the fireplace, the flow rates can be modulated through the addition of a dimmer. The flue gases from the furnace are sucked by means of a smoke extractor at the outlet of chimneys, and pass outside of a heat exchanger of variable geometry, which may for example be tubular or square. They then transmit their heat to fresh air drawn by another fan in the exchanger. The product resulting from these hot air generators, is therefore an air with 20% oxygen, and whose temperature does not generally exceed 150 ° C due to the shape of the exchanger.
Les procédés de traitements thermiques à base de gaz issus de la combustion de biomasse, comme ils sont par exemple décrits dans la demande de brevet WO2007147961, font intervenir des gaz à 10% d'oxygène, et dont la température est supérieure à 300°C, le faible taux d'oxygène étant particulièrement recherché pour réduire les risques d'incendie. Les procédés actuellement utilisés sur le marché ne répondent donc pas à ces deux spécifications. The heat treatment processes based on gas resulting from the combustion of biomass, as they are for example described in the patent application WO2007147961, involve gases with 10% oxygen, and whose temperature is greater than 300 ° C. , the low oxygen level is particularly sought to reduce the risk of fire. The processes currently used on the market therefore do not meet these two specifications.
Seulement, l'utilisation de la biomasse crée des contraintes supplémentaires liées à la production de fumées, fortement chargées en eau et en poussières, et qui doivent donc être traitées, sous peine d'engendrer une pollution notable de l'environnement, et sous peine de nuire éventuellement à la qualité du traitement thermique du bois. However, the use of biomass creates additional constraints related to the production of fumes, heavily loaded with water and dust, and must therefore be treated, otherwise it will cause significant pollution of the environment, otherwise the quality of the thermal treatment of wood could be affected.
Les procédés de traitement thermique du bois selon l'invention, et utilisant la biomasse pour la génération de gaz chauds, incluent non seulement une étape spécifique de déshydratation et de nettoyage des fumées, spécialement conçue pour permettre le nettoyage des fumées, afin de réaliser le traitement thermique du bois au moyen de gaz propres et non polluants, mais également des moyens additionnels pour piéger les particules polluantes résiduelles demeurant dans lesdites fumées. De cette manière, les procédés de traitement thermique du bois selon l'invention, mettent en œuvre deux étapes de nettoyage pour accroître la qualité des gaz en matière de propreté. The methods of heat treatment of the wood according to the invention, and using the biomass for the generation of hot gases, include not only a specific step of dehydration and flue cleaning, specially designed to allow the cleaning of fumes, to achieve the heat treatment of the wood with clean and non-polluting gases, but also additional means for trapping the residual pollutant particles remaining in said fumes. In this way, the heat treatment processes of the wood according to the invention, implement two cleaning steps to increase the quality of the gases in terms of cleanliness.
L'invention a pour objet un procédé de traitement thermique du bois, comprenant dans l'ordre, une étape de production de gaz chauds et de fumées au moyen d'un générateur de gaz utilisant la biomasse, une étape de traitement des fumées consistant à déshydrater et à dépoussiérer les fumées par la mise en œuvre de moyens spécifiques, une étape d'acheminement des gaz vers un four, une étape de chauffage du bois dans le four au moyen desdits gaz, et une étape d'extraction des vapeurs, , ladite étape de traitement des fumées s'effectuant au moyen d'un dispositif comprenant une chambre de refroidissement des gaz permettant de déshydrater lesdits gaz, ladite chambre de refroidissement étant prolongée par une première chambre de collecte des condensais issus de la déshydratation des fumées, ladite chambre de collecte étant située en dessous de la chambre de refroidissement, caractérisé en ce que la première chambre de collecte est surmontée par au moins un tube de sortie, dont le diamètre est dimensionné pour ralentir les gaz, et pour permettre la sédimentation des poussières. Autrement dit, le procédé de traitement thermique du bois selon l'invention, reposant sur la génération de gaz chauds au moyen d'une chaudière à biomasse, consacre une étape pleine et entière au nettoyage et à la déshydratation des fumées nocives issues du traitement thermique du bois. En effet, l'utilisation de la biomasse pour engendrer des gaz, entraine de façon quasiment systématique, l'émission de fumées fortement chargées en eau et en poussières, ayant pour conséquence, de polluer l'atmosphère et d'accroître les risques de nuire à la qualité du traitement thermique du bois. Or, habituellement, le traitement de ces vapeurs pouvait s'effectuer de façon indirecte et partielle, en jouant, par exemple, sur certains paramètres du procédé de traitement du bois, au risque de nuire à la qualité de ce traitement. En instaurant une étape spécifique de déshydratation et de dépoussiérage des fumées avec des moyens spécialement conçus pour remplir ces deux fonctions, les concepteurs du procédé de traitement thermique du bois selon l'invention, accordent une importance capitale à la réalisation du traitement thermique du bois au moyens de gaz réellement propres, pour un résultat optimisé et fiable, sans retombées néfastes sur l'environnement en termes de pollution. Le procédé selon l'invention, s'effectue en continu, au sein d'une installation isolée, sans perte de gaz, entre le générateur de gaz et l'extraction des vapeurs, et fonctionne à une pression basse. Ce procédé s'appuie également sur une étape finale d'extraction des vapeurs, au moyen par exemple de pompes, qui va influencer la géométrie, le dimensionnement et les caractéristiques fonctionnelles du dispositif, développé pour assurer cette phase de dépoussiérage et de déshydratation des fumées. Par la présence de tubes de sortie, les particules solides, qui se sont déposées sur la paroi interne de chacun desdits tubes de sortie, ont tendance à migrer par inertie vers la première chambre de collecte située en dessous. Cette première chambre de collecte sert à la fois de réceptacle pour les condensais issus de la chambre de refroidissement, et pour les particules solides qui se sont déposées dans chaque tube de sortie. De façon préférentielle, les gaz dans chaque tube de sortie sont ralentis de façon significative. Les condensais, qui se sont déposés sur les parois de la chambre de refroidissement, et qui migrent par inertie vers la première chambre de collecte, vont également servir à piéger les particules solides et les poussières des fumées, en les retenant à leur passage. La chambre de collecte possède ainsi une arrivée des gaz, en provenance de la chambre de refroidissement, ainsi qu'une sortie des gaz par l'intermédiaire de chacun des tubes de sortie. vantageusement, l'étape de production des gaz au moyen du générateur de gaz est séparée de l'étape de traitement des fumées, par une étape de refroidissement, permettant de faire passer la température des gaz de 900°C à une température inférieure à 200°C. En effet, les opérations de déshydratation et de dépoussiérage des fumées, sont mieux maîtrisées, et donc plus faciles à réaliser sur des gaz refroidis, plutôt que sur des gaz portés à des températures très élevées, voisines de 1000°C. Préférentiellement, les gaz sont refroidis à une température comprise entre 120°C et 200°C. Si cette étape de refroidissement est incluse dans le procédé de traitement thermique du bois selon l'invention, une étape de réchauffage des gaz refroidis devra être ajoutée dans ledit procédé, afin de réaliser l'étape de traitement thermique du bois dans le four avec des gaz suffisamment chauds. The subject of the invention is a method for heat treatment of wood, comprising in order a step of producing hot gases and fumes by means of a gas generator using biomass, a fume treatment stage consisting of dehydrating and dusting the fumes by the implementation of specific means, a step of conveying gases to an oven, a step of heating the wood in the oven by means of said gases, and a step of extracting the vapors,, said fumes treatment step being effected by means of a device comprising a gas cooling chamber for dehydrating said gases, said cooling chamber being extended by a first collection chamber of the condensates resulting from the dehydration of the fumes, said collection chamber being located below the cooling chamber, characterized in that the first collection chamber is surmounted by at least one tube outlet, whose diameter is sized to slow down the gases, and to allow the sedimentation of dust. In other words, the method of heat treatment of the wood according to the invention, based on the generation of hot gases by means of a biomass boiler, devotes a full and complete step to the cleaning and dehydration of the harmful fumes resulting from the heat treatment. wood. Indeed, the use of biomass to generate gases, leads almost systematically, the emission of fumes heavily loaded with water and in dust, which has the effect of polluting the atmosphere and increasing the risks of adversely affecting the quality of the heat treatment of the wood. However, usually, the treatment of these vapors could be carried out indirectly and partially, by playing, for example, on certain parameters of the wood treatment process, at the risk of affecting the quality of this treatment. By instituting a specific step of dehydration and dedusting of fumes with means specially designed to fulfill these two functions, the designers of the wood heat treatment process according to the invention, attach great importance to the realization of heat treatment of wood at truly clean gas means, for an optimized and reliable result, without negative effects on the environment in terms of pollution. The method according to the invention is carried out continuously, in an isolated installation, without loss of gas, between the gas generator and the extraction of vapors, and operates at a low pressure. This process also relies on a final stage of extraction of the vapors, by means for example of pumps, which will influence the geometry, dimensioning and the functional characteristics of the device, developed to ensure this phase of dusting and dehydration of the fumes . By the presence of outlet tubes, the solid particles, which are deposited on the inner wall of each of said outlet tubes, tend to migrate by inertia to the first collection chamber located below. This first collection chamber serves both as a receptacle for condensates from the cooling chamber, and for solid particles that have deposited in each outlet tube. Preferably, the gases in each outlet tube are significantly slowed down. The condensates, which are deposited on the walls of the cooling chamber, and which migrate inertia to the first collection chamber, will also serve to trap the solid particles and dust fumes, retaining them in their passage. The collection chamber thus has a gas inlet from the cooling chamber and a gas outlet via each of the outlet tubes. advantageously, the step of producing the gases by means of the gas generator is separated from the flue gas treatment step by a cooling step, making it possible to change the temperature of the gases from 900 ° C. to a temperature of less than 200 ° C. ° C. Indeed, dehydration and dust removal operations, are better controlled, and therefore easier to perform on cooled gases, rather than gas raised to very high temperatures, around 1000 ° C. Preferentially, the gases are cooled to a temperature of between 120 ° C. and 200 ° C. If this cooling step is included in the method of heat treatment of the wood according to the invention, a step of reheating of the cooled gases will have to be added in said process, in order to carry out the step of heat treatment of the wood in the oven with sufficiently hot gases.
De façon préférentielle, l'étape de traitement des fumées s'effectue au moyen d'un dispositif comprenant une chambre de refroidissement des gaz, permettant de déshydrater lesdits gaz. En effet, puisque le procédé de traitement thermique du bois est basé sur l'aspiration des fumées, l'une des contraintes à respecter pour ledit procédé est de conserver une pression basse en tout point et à tout moment, dans l'installation prévue pour dérouler ce procédé de traitement du bois. Une augmentation de la perte de charge au passage des éléments de traitement des fumées, se traduit par une perte de débit d'aspiration et donc de puissance de la chaudière. De même, un fonctionnement en dépression et surpression élevée du système, signifie également une hausse de la consommation électrique qui pénalise le bilan énergétique du traitement. Pour toutes ces raisons, la déshydratation des fumées est donc réalisée par un refroidissement des fumées. De façon avantageuse, les fumées sont refroidies à 30°C dans cette chambre de refroidissement ou de déshydratation. Preferably, the fumes treatment step is performed by means of a device comprising a gas cooling chamber, for dehydrating said gases. Indeed, since the wood heat treatment process is based on the aspiration of the fumes, one of the constraints to be respected for said method is to keep a low pressure at any point and at any time, in the installation provided for unfold this wood treatment process. An increase in the pressure drop at the passage of the flue gas treatment elements, results in a loss of suction flow and thus power of the boiler. In the same way, a functioning in depression and high overpressure of the system, also means an increase of the electrical consumption which penalizes the energy balance of the treatment. For all these reasons, the dehydration of the fumes is therefore achieved by a cooling of the fumes. Advantageously, the fumes are cooled to 30 ° C in this cooling chamber or dehydration.
De façon avantageuse, la chambre de refroidissement est prolongée par une première chambre de collecte des condensais issus de la déshydratation des fumées, ladite chambre de collecte étant située en dessous de la chambre de refroidissement. En effet, les condensais qui se sont déposés sur les parois de la chambre de refroidissement, vont avoir tendance à ruisseler par inertie, le long de ces parois, pour se diriger vers la première chambre de collecte. Il est important de pouvoir concentrer ces condensais en un lieu bien spécifique et unique, ne risquant pas d'encrasser le dispositif de déshydratation et de dépoussiérage. Advantageously, the cooling chamber is extended by a first collection chamber condensed from the dehydration of fumes, said collection chamber being located below the cooling chamber. Indeed, the condensais that have been deposited on the walls of the cooling chamber, will tend to flow by inertia, along these walls, to go to the first collection chamber. It is important to be able to concentrate these condensates in a very specific and unique place, not risking to foul the device of dehydration and dedusting.
Préférentiellement, la première chambre de collecte est équipée de premiers moyens d'évacuation des condensais. En effet, une fois que les condensais se sont accumulés dans la première chambre de collecte, et afin de limiter les risques d'obturation totale ou partielle du circuit de circulation de gaz, il est souhaitable de pouvoir vider cette première chambre de collecte, au moyen d'une manipulation aisée et rapide, ne nécessitant pas l'interruption du procédé de traitement thermique du bois. Ces premiers moyens d'évacuation peuvent être activés manuellement, ou se déclencher automatiquement une fois un taux seuil de remplissage atteint dans la chambre de collecte. Ces premiers moyens d'évacuation pourraient également se déclencher automatiquement par cycle de temps préprogrammés. Preferably, the first collection chamber is equipped with first condensate removal means. Indeed, once the condensates have accumulated in the first collection chamber, and to limit the risk of total or partial closure of the gas circulation circuit, it is desirable to be able to empty this first collection chamber, at easy and fast handling, not requiring the interruption of the wood heat treatment process. These first evacuation means can be activated manually, or trigger automatically once a threshold filling rate reached in the collection chamber. These first evacuation means could also be triggered automatically by preprogrammed time cycle.
De façon préférentielle, chaque tube de sortie est muni d'au moins un filtre électrostatique destiné à fixer les poussières. Ces filtres sont disposés de façon transversale dans chaque tube, et ont pour but de retenir toutes les particules solides ou les poussières transportées par les gaz passant dans lesdits tubes. Lesdites particules ou poussières s'agglutinent contre la face inférieure de chaque filtre, et ont tendance à tomber dans la première chambre de collecte. Ces filtres permettent la fixation des poussières sur chaque tube de sortie, pour une perte de charge quasiment nulle. Preferably, each outlet tube is provided with at least one electrostatic filter for fixing the dust. These filters are arranged transversely in each tube, and are intended to retain any solid particles or dust transported by the gas passing through said tubes. Said particles or dust agglutinate against the underside of each filter, and tend to fall into the first collection chamber. These filters allow the fixing of dust on each outlet tube, for a loss of almost zero load.
De façon avantageuse, la première chambre de collecte est équipée de deuxièmes moyens d'évacuation des particules solides. En effet, pour les mêmes raisons que celles invoquées pour les condensais, il est souhaitable de pouvoir débarrasser la première chambre de collecte, des particules solides ou poussières qui se sont accumulées dans celle-ci, sans avoir à interrompre le procédé de traitement selon l'invention. Ces deuxièmes moyens d'évacuation peuvent être activés manuellement, ou se déclencher automatiquement une fois un taux seuil de remplissage atteint dans la chambre de collecte. Ils pourraient également se déclencher automatiquement par cycle de temps préprogrammés. De façon préférentielle, chaque tube de sortie de la première chambre de collecte, débouche dans une deuxième chambre de collecte située au dessus de la première chambre de collecte, et dotée d'une tubulure de sortie reliée à un système d'aspiration des gaz. Ces moyens d'aspiration permettent d'assurer la circulation continue des gaz dans le dispositif de traitement. Advantageously, the first collection chamber is equipped with second means for discharging the solid particles. Indeed, for the same reasons as those invoked for condensates, it is desirable to be able to rid the first collection chamber, solid particles or dust that have accumulated in it, without having to interrupt the treatment method according to the invention. These second evacuation means can be activated manually, or trigger automatically once a threshold filling rate reached in the collection chamber. They could also be triggered automatically by preprogrammed time cycle. Preferably, each outlet tube of the first collection chamber, opens into a second collection chamber located above the first collection chamber, and provided with an outlet pipe connected to a gas suction system. These suction means make it possible to ensure the continuous circulation of the gases in the treatment device.
Avantageusement, chaque tube de sortie (20,21) a un diamètre supérieur ou égal à 200mm. Advantageously, each outlet tube (20,21) has a diameter greater than or equal to 200 mm.
Préférentiellement, chaque tube de sortie (20,21) est dimensionné pour faire chuter la vitesse des gaz à une valeur inférieure ou égale à 3m/s. Preferably, each outlet tube (20,21) is dimensioned to reduce the speed of the gas to a value less than or equal to 3m / s.
L'invention se rapporte également à un dispositif pour réaliser l'étape de traitement des fumées d'un procédé selon l'invention. La principale caractéristique d'un dispositif selon l'invention est qu'il comprend une chambre de refroidissement présentant un orifice pour l'arrivée des gaz issus du générateur de gaz, ladite chambre de refroidissement débouchant dans une première chambre de collecte, équipée de premiers moyens d'évacuation des condensats et de deuxièmes moyens d'évacuation des particules solides, ladite première chambre étant prolongée par deux tubes de sortie débouchant dans une deuxième chambre de collecte dotée d'une tubulure de sortie reliée à un système d'aspiration, le diamètre desdits tubes étant dimensionné pour réduire la vitesse des gaz. The invention also relates to a device for carrying out the fumes treatment step of a method according to the invention. The main characteristic of a device according to the invention is that it comprises a cooling chamber having an orifice for the arrival of gases from the gas generator, said cooling chamber opening into a first collection chamber, equipped with first means for discharging the condensates and second means for discharging the solid particles, said first chamber being extended by two outlet tubes opening into a second collection chamber provided with an outlet pipe connected to a suction system; diameter of said tubes being dimensioned to reduce the speed of the gases.
Avantageusement, la chambre de refroidissement est verticale, et les deux chambres de collecte sont horizontales, la deuxième chambre étant située au dessus de la première chambre, et les deux tubes de sortie reliant lesdites chambres de collecte, sont verticaux et sont chacun dotés d'un filtre électrostatique de retenue des poussières. Préférentiellement, le dispositif constitue un circuit de gaz isolé, ayant un orifice d'entrée des gaz chauds, et un orifice de sortie des gaz traités. De cette manière il peut venir s'insérer facilement, dans un conduit de gaz chauds, destiné à alimenter un four de traitement thermique du bois. Advantageously, the cooling chamber is vertical, and the two collection chambers are horizontal, the second chamber being located above the first chamber, and the two outlet tubes connecting said collection chambers, are vertical and are each provided with an electrostatic dust filter. Preferably, the device constitutes an insulated gas circuit, having a hot gas inlet orifice, and a treated gas outlet orifice. In this way it can be inserted easily, in a hot gas duct, for supplying a wood heat treatment furnace.
Les procédés de traitement selon l'invention, présentent l'avantage de mettre en œuvre une étape de déshydratation et de dépoussiérage des fumées au moyen d'un dispositif compact, peu encombrant et performant. De plus, le dispositif est conçu pour réaliser ces deux opérations de façon quasi- simultanée, permettant un gain de temps au niveau du procédé de traitement selon l'invention. Enfin, le dispositif de traitement a l'avantage d'être doté de systèmes d'évacuation des condensats et/ou des particules solides récupérés des fumées, évitant un encrassement total ou partiel, pouvant conduire à une interruption du procédé de traitement selon l'invention. The treatment processes according to the invention have the advantage of implementing a step of dehydration and dedusting fumes by means of a compact device, compact and efficient. In addition, the device is designed to perform these two operations almost simultaneously, allowing time savings in the treatment method according to the invention. Finally, the treatment device has the advantage of being equipped with condensate removal systems and / or solid particles recovered from the fumes, avoiding total or partial fouling, which can lead to an interruption of the treatment process according to the invention. invention.
On donne ci-après une description détaillée d'un mode de réalisation préféré d'un procédé de traitement thermique du bois selon l'invention, ainsi que d'un dispositif de traitement des fumées selon l'invention, en se référant aux figures 1 à 2. The following is a detailed description of a preferred embodiment of a wood heat treatment process according to the invention, as well as a flue gas treatment device according to the invention, with reference to FIGS. to 2.
- La figure 1 est une vue schématisée des différents blocs matérialisant les différentes étapes d'un procédé de traitement selon l'invention, FIG. 1 is a schematic view of the various blocks embodying the various steps of a treatment method according to the invention,
- La figure 2, est une vue en perspective d'un dispositif de traitement des fumées selon l'invention. - Figure 2 is a perspective view of a smoke treatment device according to the invention.
En se référant à la figure 1, un procédé de traitement thermique du bois selon l'invention, comprend différentes étapes réalisées en continu, la première étape 1 consistant à produire des gaz chauds, dont la température avoisine 900°C, par l'utilisation de la biomasse. Dans cette configuration, l'émission de gaz chauds s'accompagne de fumées également portées à des températures voisines de 900°C, et qui sont chargées en vapeurs d'eau et en poussières, la diffusion desdites vapeurs dans l'atmosphère n'étant pas souhaitée pour des raisons de pollution. La deuxième étape 2 d'un procédé selon l'invention, consiste à refroidir les gaz émis au moyen d'un échangeur de refroidissement pour les amener à des températures inférieures à 200°C, et plus spécifiquement à des températures comprises entre 120°C et 200°C. Ces gaz refroidis, demeurant toutefois à des températures largement supérieures à la température ambiante, sont ensuite acheminés vers un dispositif de traitement 10, pour subir une troisième étape 3 de déshydratation et de dépoussiérage, de façon à les rendre propres vis-à-vis de l'atmosphère. Ces deux opérations de dépoussiérage et de déshydratation sont quasi- simultanées, et sont réalisées par le même dispositif de traitement 10. Une fois que les gaz ont été traités, ils ne sont plus qu'à 40°C à la sortie dudit dispositif 10, et doivent donc être soumis à une quatrième étape 4 de réchauffage pour être portés à des températures de l'ordre de 600°C pour assurer le traitement thermique du bois. Ces gaz très chauds et propres sont ensuite acheminés vers un four pour assurer la cinquième étape 5 de traitement thermique du bois à proprement parler. La dernière étape 6 consiste à récupérer les vapeurs de gaz, issues de la combustion dans le four, au moyen d'un système de pompes. Referring to FIG. 1, a method of heat treatment of wood according to the invention comprises various steps carried out continuously, the first step 1 consisting in producing hot gases, the temperature of which is close to 900 ° C., by the use of biomass. In this configuration, the emission of hot gases is accompanied by fumes also brought to temperatures close to 900 ° C, and which are charged with water vapor and dust, the diffusion of said vapors in the atmosphere being not wanted for pollution reasons. The second step 2 of a process according to the invention is to cool the gases emitted by means of a cooling exchanger to bring them to temperatures below 200 ° C, and more specifically at temperatures between 120 ° C and 200 ° C. These cooled gases, however, remain at temperatures well above ambient temperature, are then conveyed to a treatment device 10, to undergo a third step 3 dehydration and dedusting, so as to make them clean vis-à-vis the atmosphere. These two operations of dedusting and dewatering are almost simultaneous, and are carried out by the same processing device 10. Once the gases have been treated, they are no more than 40 ° C at the output of said device 10, and must therefore be subjected to a fourth heating step 4 to be heated to temperatures of the order of 600 ° C to ensure the heat treatment of wood. These very hot and clean gases are then fed to an oven to provide the fifth stage of heat treatment of the wood itself. The last step 6 consists in recovering the gas vapors resulting from combustion in the furnace by means of a pump system.
En se référant à la figure 2, un dispositif de traitement 10 des gaz selon l'invention, comprend un socle 11 multi-pieds tubulaire, surmonté d'une structure de maintien 12 également tubulaire. Le dispositif 10 comprend un orifice d'entrée 13 permettant de recevoir les gaz issus d'un générateur de gaz utilisant la biomasse, et ayant déjà subi une phase de refroidissement au moyen d'un échangeur de refroidissement. De cette manière, les gaz et fumées émis à des températures voisines de 900°C, sont refroidis à des températures comprises entre 120°C et 200°C avant de pénétrer dans le dispositif de traitement 10, ledit dispositif 10 demeurant pleinement efficace pour des gaz dont la température est inférieure à 200°C. L'orifice d'entrée est situé à la partie supérieure du dispositif 10, et est pratiqué au niveau de l'extrémité supérieure 14 d'une chambre de refroidissement 15 cylindrique, dont l'axe de révolution est orienté verticalement. Cette chambre 15 est constituée par un échangeur de refroidissement des fumées, permettant de faire passer leur température de 200°C à 30°C, cette phase de refroidissement conduisant à la déshydratation des fumées. Avantageusement, le diamètre de cette chambre de refroidissement 15 est sensiblement égal à 25mm. L'extrémité inférieure 16 de cette chambre de refroidissement 15 débouche dans une première chambre de collecte 17 cylindrique, dont l'axe de révolution est orienté horizontalement. La jonction entre la chambre de refroidissement 15 et la première chambre de collecte 17 s'effectue au niveau de la partie centrale de la paroi 18 de ladite première chambre de collecte 17. Cette première chambre de collecte 17, qui est placée sous la chambre de refroidissement 15 et qui a, préférentiellement, un diamètre de l'ordre de 700mm, est notamment destinée à récupérer les condensais déposés sur la paroi 19 de la chambre de refroidissement 15, et qui ont tendance à ruisseler par inertie, le long de ladite paroi 19 vers ladite première chambre 17. Cette première chambre 17 de collecte est surmontée de deux tubes 20,21 cylindriques de sortie, prenant naissance au niveau la paroi 18 de cette chambre 17 et se terminant dans la paroi 22 d'une deuxième chambre de collecte 23 cylindrique, dont l'axe de révolution est horizontal, et qui est placée au dessus de la première chambre de collecte 17. Cette deuxième chambre de collecte 23 a, de façon préférentielle, un diamètre de l'ordre de 700mm et est parallèle à la première chambre de collecte 17. Les deux tubes 20,21 reliant les deux chambres de collecte 17,23, se retrouvent en position verticale et ont chacun un diamètre de l'ordre de 300mm. Ils sont donc parallèles à la chambre de refroidissement 15 cylindrique verticale, et sont placés de par et d'autre de ladite chambre 15. Ils sont donc implantés dans la paroi 18 de la première chambre 17 de collecte, en encadrant la chambre de refroidissement 15. Ces deux tubes 20,21 qui sont dimensionnés pour ralentir les gaz à une vitesse de l'ordre de 3m/s, possèdent chacun, au niveau de leur extrémité 24,25 inférieure, un filtre électrostatique 26,27 horizontal, traversant chacun desdits tubes 20,21, et ayant pour but de piéger les poussières ou particules solides des gaz situés dans la première chambre de collecte 17, et qui ont tendance à remonter par les deux tubes 20,21 pour s'acheminer vers la deuxième chambre de collecte 23 supérieure. La première chambre de collecte 17 inférieure, outre le fait de récupérer les condensais de la chambre de refroidissement 15 verticale, récupère également les poussières qui se sont agglutinées au niveau de la paroi inférieure de chaque filtre électrostatique 26,27 placé dans chacun des tubes 20,21. Ces deux tubes 20,21vont donc servir de lieu de sédimentation des poussières. La première chambre 17 de collecte est équipé de premiers moyens d'évacuation des condensats, sous la forme d'un système de tiroirs 28, placé sous ladite première chambre 17, et dont l'actionnement est sans influence sur la pression régnant dans le dispositif 10 de traitement. Cette première chambre de collecte est également dotée de deuxièmes moyens d'évacuation des poussières, sous la forme d'une vis 29 sans fin, mue par un moteur, ladite vis 29 étant placée aussi sous ladite première chambre 17. La deuxième chambre de collecte 23 dispose d'une tubulure 30 horizontale de sortie, permettant d'acheminer les gaz propres, issus du dispositif de traitement 10, vers un système d'aspiration, ladite tubulure de sortie 30 ayant un diamètre voisin de 100mm. En entrée de dispositif 10, les gaz ont une température comprise entre 120°C et 200°C, et en sortie de dispositif 10, leur température n'est plus que de 40°C environ. Le dispositif de traitement 10 constitue un circuit de gaz isolé, doté d'une entrée 13 et d'une sortie 30, et permet à la fois de déshydrater les gaz par refroidissement, et de les nettoyer, en les débarrassant de leurs poussières. Referring to Figure 2, a gas treatment device 10 according to the invention comprises a base 11 multi-tubular feet, surmounted by a holding structure 12 also tubular. The device 10 comprises an inlet port 13 for receiving the gases from a gas generator using the biomass, and having already undergone a cooling phase by means of a cooling exchanger. In this way, the gases and fumes emitted at temperatures in the region of 900 ° C. are cooled to temperatures between 120 ° C. and 200 ° C. before entering the treatment device 10, said device 10 remaining fully effective for gas whose temperature is below 200 ° C. The inlet port is located at the top of the device 10, and is formed at the upper end 14 of a cylindrical cooling chamber 15, the axis of revolution is oriented vertically. This chamber 15 is constituted by a heat exchanger for cooling the fumes, allowing their temperature to be raised from 200 ° C. to 30 ° C. This cooling phase leading to the dehydration of fumes. Advantageously, the diameter of this cooling chamber 15 is substantially equal to 25 mm. The lower end 16 of this cooling chamber 15 opens into a first cylindrical collection chamber 17 whose axis of revolution is oriented horizontally. The junction between the cooling chamber 15 and the first collection chamber 17 is effected at the central portion of the wall 18 of said first collection chamber 17. This first collection chamber 17, which is placed under the chamber cooling 15 and which preferably has a diameter of the order of 700 mm, is intended in particular to recover the condensates deposited on the wall 19 of the cooling chamber 15, and which tend to flow by inertia, along said wall 19 to said first chamber 17. This first collection chamber 17 is surmounted by two cylindrical outlet tubes 20,21, originating at the wall 18 of this chamber 17 and ending in the wall 22 of a second collection chamber 23, whose axis of revolution is horizontal, and which is placed above the first collection chamber 17. This second collection chamber 23 has, preferably, a diameter of the order of 700 mm and is parallel to the first collection chamber 17. The two tubes 20,21 connecting the two collection chambers 17,23, are found in a vertical position and each have a diameter of the order of 300mm. They are therefore parallel to the vertical cylindrical cooling chamber, and are placed on either side of said chamber 15. They are thus implanted in the wall 18 of the first collection chamber 17, framing the cooling chamber 15. These two tubes 20,21, which are sized to slow down the gases at a speed of the order of 3m / s, each have, at their lower end 24,25, a horizontal electrostatic filter 26,27, crossing each of said 20,21 tubes, and for the purpose of trapping the dust or solid particles of the gases located in the first collection chamber 17, and which have a tendency to go up through the two tubes 20,21 to move towards the second collection chamber 23 superior. The first lower collection chamber 17, in addition to recovering the condensates from the vertical cooling chamber, also recovers the dusts. which have agglutinated at the bottom wall of each electrostatic filter 26,27 placed in each of the tubes 20,21. These two tubes 20,21 thus serve as a place of sedimentation of dust. The first collection chamber 17 is equipped with first condensate discharge means, in the form of a drawer system 28, placed under said first chamber 17, the operation of which has no influence on the pressure prevailing in the device. 10 of treatment. This first collection chamber is also provided with second means of evacuation of dust, in the form of a screw 29 without end, driven by a motor, said screw 29 being also placed under said first chamber 17. The second collection chamber 23 has a horizontal outlet pipe, for routing the clean gas from the processing device 10 to a suction system, said outlet pipe 30 having a diameter of 100mm. At the input of device 10, the gases have a temperature of between 120 ° C. and 200 ° C., and at the output of device 10, their temperature is only 40 ° C. The treatment device 10 constitutes an insulated gas circuit, provided with an inlet 13 and an outlet 30, and makes it possible both to dehydrate the gases by cooling, and to clean them, by ridding them of their dust.
Le mode de fonctionnement de ce dispositif de traitement 10 est le suivant. Les gaz chauds issus du générateur de gaz utilisant la biomasse, sont émis à 900°C environ, puis sont refroidis à une température comprise entre 120°C et 200°C, au moyen d'un échangeur de refroidissement placé en amont du dispositif de traitement 10. La notion d' « amont » est à considérer par rapport au sens de propagation des gaz. Les gaz refroidis, mais demeurant toujours chauds par rapport à la température ambiante, pénètrent dans le dispositif de traitement 10 par l'orifice d'entrée 13. Ils traversent d'abord la chambre de refroidissement 15, où ils sont refroidis jusqu'à une température de l'ordre de 30°C, et sont donc déshydratés, les condensats se déposant sur la paroi 19 de cette chambre 15. Les gaz refroidis arrivent ensuite dans la première chambre de collecte 17. Sous l'effet de la pression, ils remontent vers la deuxième chambre de collecte 23, en empruntant les deux tubes de sortie 20,21, dont le diamètre important va réduire leur vitesse de progression à 3m/s. Ils traversent alors les filtres électrostatiques 26,27, qui piègent leurs poussières. Les gaz propres et refroidis à environ 40°C, arrivent dans la deuxième chambre 23 de collecte supérieure, où ils sont alors acheminés, via la tubulure de sortie 30, vers un système d'aspiration. Les condensais déposés sur la paroi 19 de la chambre de refroidissement 15, et les poussières piégées par les deux filtres électrostatiques 26,27, migrent vers la première chambre de collecte 17, d'où ils peuvent être évacués avec les moyens 28,29 appropriés. The operating mode of this processing device 10 is as follows. The hot gases from the gas generator using the biomass are emitted at about 900 ° C. and are then cooled to a temperature of between 120 ° C. and 200 ° C. by means of a cooling exchanger placed upstream of the cooling device. treatment 10. The concept of "upstream" is to be considered in relation to the direction of propagation of gases. The gases which are cooled, but still remain warm with respect to the ambient temperature, enter the treatment device 10 through the inlet orifice 13. They first pass through the cooling chamber 15, where they are cooled down to a temperature of 30.degree. temperature of the order of 30 ° C, and are therefore dehydrated, the condensate being deposited on the wall 19 of the chamber 15. The cooled gases then arrive in the first collection chamber 17. Under the effect of pressure, they go back to the second collection chamber 23, using the two tubes of output 20,21, whose large diameter will reduce their speed of progression to 3m / s. They then cross the electrostatic filters 26,27, which trap their dust. The clean gases, cooled to about 40 ° C, arrive in the second upper collection chamber 23, where they are then conveyed via the outlet pipe 30 to a suction system. The condensates deposited on the wall 19 of the cooling chamber 15, and the dust trapped by the two electrostatic filters 26,27, migrate to the first collection chamber 17, from where they can be discharged with the appropriate means 28,29. .
Claims
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12704876.7A EP2668457B1 (en) | 2011-01-25 | 2012-01-19 | Method and device for the heat treatment of wood using dust-free dehydrated gases |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1150559A FR2970772B1 (en) | 2011-01-25 | 2011-01-25 | PROCESS FOR THE THERMAL TREATMENT OF WOOD WITH GASES DEHYDRATES AND DEOUSSIERS |
FR1150559 | 2011-01-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012101359A1 true WO2012101359A1 (en) | 2012-08-02 |
Family
ID=45688895
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2012/050110 WO2012101359A1 (en) | 2011-01-25 | 2012-01-19 | Method for the heat treatment of wood using dust-free dehydrated gases |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2668457B1 (en) |
FR (1) | FR2970772B1 (en) |
WO (1) | WO2012101359A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104110969A (en) * | 2014-07-11 | 2014-10-22 | 深圳市华星光电技术有限公司 | Gas cooling device and high-temperature operating system |
CN104501547A (en) * | 2014-12-17 | 2015-04-08 | 福建省永安林业(集团)股份有限公司 | Radiator and furnace gas hybrid application drying kiln system |
CN104501570A (en) * | 2014-12-17 | 2015-04-08 | 福建省永安林业(集团)股份有限公司 | Dry kiln device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005116551A1 (en) * | 2004-05-13 | 2005-12-08 | Bio 3D Applications | Bio-thermal method and system for stabilising timber |
WO2007147961A2 (en) | 2006-06-22 | 2007-12-27 | Nexter Munitions | Hot gas generator and drying or dehydratiion installation employing such a generator |
FR2907884A1 (en) * | 2006-10-25 | 2008-05-02 | Giat Ind Sa | Thermally treating organic material such as wood in furnace using combustion gas supplied by burner associated with hearth, comprises condensing combustion gas between exit of hearth and furnace for eliminating part of dust contained in gas |
-
2011
- 2011-01-25 FR FR1150559A patent/FR2970772B1/en not_active Expired - Fee Related
-
2012
- 2012-01-19 EP EP12704876.7A patent/EP2668457B1/en not_active Not-in-force
- 2012-01-19 WO PCT/FR2012/050110 patent/WO2012101359A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005116551A1 (en) * | 2004-05-13 | 2005-12-08 | Bio 3D Applications | Bio-thermal method and system for stabilising timber |
WO2007147961A2 (en) | 2006-06-22 | 2007-12-27 | Nexter Munitions | Hot gas generator and drying or dehydratiion installation employing such a generator |
FR2907884A1 (en) * | 2006-10-25 | 2008-05-02 | Giat Ind Sa | Thermally treating organic material such as wood in furnace using combustion gas supplied by burner associated with hearth, comprises condensing combustion gas between exit of hearth and furnace for eliminating part of dust contained in gas |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104110969A (en) * | 2014-07-11 | 2014-10-22 | 深圳市华星光电技术有限公司 | Gas cooling device and high-temperature operating system |
WO2016004659A1 (en) * | 2014-07-11 | 2016-01-14 | 深圳市华星光电技术有限公司 | Gas cooling apparatus and high-temperature operating system |
CN104110969B (en) * | 2014-07-11 | 2016-03-30 | 深圳市华星光电技术有限公司 | A kind of gas cooling device and high-temperature operation system |
US10295235B2 (en) | 2014-07-11 | 2019-05-21 | Shenzhen China Star Optoelectronics Technology Co., Ltd. | Gas cooling equipment and high temperature operating system |
CN104501547A (en) * | 2014-12-17 | 2015-04-08 | 福建省永安林业(集团)股份有限公司 | Radiator and furnace gas hybrid application drying kiln system |
CN104501570A (en) * | 2014-12-17 | 2015-04-08 | 福建省永安林业(集团)股份有限公司 | Dry kiln device |
Also Published As
Publication number | Publication date |
---|---|
EP2668457B1 (en) | 2018-03-07 |
FR2970772A1 (en) | 2012-07-27 |
FR2970772B1 (en) | 2017-06-23 |
EP2668457A1 (en) | 2013-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0337910B1 (en) | Process for reducing the content of non-condensables elements, which are present in fumes containing condensables and which are soluble in the condensable elements | |
EP3215794A2 (en) | Device for producing and treating a gas stream through a volume of liquid, and facility and method implementing said device | |
EP2668457B1 (en) | Method and device for the heat treatment of wood using dust-free dehydrated gases | |
WO2008056044A2 (en) | Process for the heat treatment of a material and heat treatment unit employing such a process | |
EP0214883A1 (en) | Condensing boiler with a reduced cloud of smoke | |
EP0485255B1 (en) | Process and apparatus for the production of a solid fuel from combustible wastes | |
WO2005116551A1 (en) | Bio-thermal method and system for stabilising timber | |
WO2010046546A1 (en) | Method and device for the thermolysis of industrial and/or domestic waste | |
FR2994101A1 (en) | Treating warm humid air discharged from grain dryer during process of drying e.g. corn grains, comprises transferring heat to hot air of coolant to condense moisture and/or volatile components, and collecting condensate and particles | |
FR2678047A1 (en) | Device for treating hot and polluted fumes, particularly acid ones, originating from the combustion of fuel in an industrial or urban-heating boiler | |
EP2636979A1 (en) | Enhanced cyclone-type air/liquid exchanger | |
FR2479956A1 (en) | Domestic water heater - boiler - has spiral flue tube in parallel sections passing downwards through water | |
WO2019224145A1 (en) | Method for treating fumes generated by combustion of wood and device for implementing said method | |
EP3118552B1 (en) | Thermal installation for drying pasty material | |
EP3816512A1 (en) | Module for producing heat including a high-temperature filtering system | |
EP3118551B1 (en) | Thermal installation for drying pasty material | |
EP0837920B1 (en) | Method and device for thermally processing hospital waste and the like | |
CN206504341U (en) | A kind of recyclable energy saving and environment friendly waste gas from incinerator processing unit of waste heat | |
EP3118550B1 (en) | Thermal installation for drying pasty material | |
FR2994102A1 (en) | Method for recycling and cleaning up of hot exhaust gases of volatile organic compounds rejected during coating process by dynamic fluidized bed, involves heating cleaned and dry gas, and reintroducing cleaned, hot and dry gas into device | |
FR2476817A2 (en) | Solids dryer fitted with heat economiser - has tower with water spray nozzles from heater spraying over cold air discharge | |
EP0011027A1 (en) | Process for treating an adsorbent material in the form of particles loaded with at least two volatile compounds of differing thermal stability | |
FR3028304B1 (en) | INSTALLATION AND METHOD FOR RECOVERING CALORIES IN GAS FLOW | |
CA3152668A1 (en) | Method for pyrolysis of woody biomass | |
FR2496685A1 (en) | PROCESS AND INSTALLATION FOR PRODUCING COLD AND CLEAN COMBUSTIBLE GAS USING A SOLID FUEL GASIFIER |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12704876 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012704876 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |