WO2012093888A2 - Device and method for selecting cell in wireless communication system - Google Patents
Device and method for selecting cell in wireless communication system Download PDFInfo
- Publication number
- WO2012093888A2 WO2012093888A2 PCT/KR2012/000152 KR2012000152W WO2012093888A2 WO 2012093888 A2 WO2012093888 A2 WO 2012093888A2 KR 2012000152 W KR2012000152 W KR 2012000152W WO 2012093888 A2 WO2012093888 A2 WO 2012093888A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cell
- terminal
- cre bias
- cre
- bias
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 76
- 238000004891 communication Methods 0.000 title claims abstract description 36
- 238000005259 measurement Methods 0.000 claims description 117
- 230000008569 process Effects 0.000 claims description 27
- 230000008859 change Effects 0.000 description 24
- 230000005540 biological transmission Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 230000004044 response Effects 0.000 description 5
- 230000006870 function Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 101150114331 MME1 gene Proteins 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000010295 mobile communication Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 230000002730 additional effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000012508 change request Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/04—Reselecting a cell layer in multi-layered cells
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/24—Reselection being triggered by specific parameters
- H04W36/30—Reselection being triggered by specific parameters by measured or perceived connection quality data
- H04W36/302—Reselection being triggered by specific parameters by measured or perceived connection quality data due to low signal strength
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/24—Reselection being triggered by specific parameters
- H04W36/30—Reselection being triggered by specific parameters by measured or perceived connection quality data
- H04W36/305—Handover due to radio link failure
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W48/00—Access restriction; Network selection; Access point selection
- H04W48/02—Access restriction performed under specific conditions
Definitions
- the present invention relates to wireless communication, and more particularly, to an apparatus and method for cell selection in a wireless communication system.
- Wireless communication systems are widely deployed to provide various kinds of communication services such as voice and data.
- a wireless communication system is a multiple access system that can support communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
- multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA). division multiple access) system.
- CDMA code division multiple access
- FDMA frequency division multiple access
- TDMA time division multiple access
- OFDMA orthogonal frequency division multiple access
- SC-FDMA single carrier frequency division multiple access
- a heterogeneous network environment in which various cells coexist in a short distance is being considered.
- a micro cell having relatively low power transmission power such as a pico cell and a femto cell
- the cell can be classified into an open access (OA) cell that can be serviced at any time if necessary without a separate access restriction, and a closed subscriber group (CSG) cell that allows access only to specific users.
- OA open access
- CSG closed subscriber group
- cell selection is a technique for the UE to select a specific cell to receive the service.
- the cell selection may include initial cell selection for selecting a cell to be initially connected after the terminal is powered on, and cell reselection for selecting a cell again while the terminal stays in the cell.
- cell selection includes initial cell selection and cell reselection.
- the terminal searches for a radio channel for cell selection. When the UE finds a suitable cell that satisfies the cell selection criteria, the UE selects the corresponding cell.
- the terminal having a high data traffic may select the pico cell.
- the quality of service may be deteriorated. Therefore, a load balancing technique for properly distributing terminals between the pico cell and the macro cell is needed.
- a cell selection method considering heterogeneous networks requires a method for satisfying load balancing without changing actual transmission power.
- offset values are used without actually controlling the transmission power to balance the load, a method of compensating for performance degradation caused by intercell interference power in an extended cell region is urgently needed.
- the present invention provides an apparatus and method for performing cell selection between a macro cell and a micro cell in a wireless communication system.
- the present invention provides an apparatus and method for performing handover between a macro cell and a micro cell in a wireless communication system.
- the present invention provides an apparatus and method for pre-detecting a closed user group (CSG) cell between a macro cell and a micro cell in a wireless communication system.
- CSG closed user group
- the present invention provides an apparatus and method for adjusting cell coverage in a wireless communication system.
- the present invention provides an apparatus and method capable of effectively adjusting the load between cells in a wireless communication system.
- the present invention provides an apparatus and method for preventing a terminal from detecting a CSG cell in advance and falling into a radio link failure state in a wireless communication system.
- a method in which a terminal performs detection / cell selection / handover of a CSG cell in advance may include receiving a first cell range expansion (CRE) bias through a first message; Receiving a second CRE bias with a modified 1 CRE bias via a second message and performing cell selection / handover based on the second CRE bias, wherein the first and second CRE bias are micro ( Macro) is an offset added to the signal strength of the cell, and the sum of the signal strength of the second CRE bias and the micro (macro) cell is greater than the signal strength of the macro (micro) cell and is allowed to the micro (macro) cell (allowed-UE ), The micro (macro) cell is selected / handed over.
- CRE cell range expansion
- the micro cell when the sum of the CRE bias of the second micro cell and the signal strength of the micro cell is greater than the signal strength of the macro cell for a predetermined time, the micro cell may be selected by the terminal.
- the first and second messages may be cell specific messages of the serving / neighbor cell, or may be terminal specific messages of the serving cell, and the first message is a cell specific message of the serving / neighbor cell and the second message. May be a terminal specific message of the serving cell.
- a method for adjusting cell coverage by a base station in a wireless communication system includes receiving a measurement result or terminal capability from at least one terminal or network in a cell, based on the measurement result Determining whether to adjust the coverage; correcting the CRE bias when the coverage of the cell is determined; and transmitting the modified CRE bias to the at least one terminal.
- a cell selection and handover method of a terminal in a wireless communication system includes the steps of: determining, by the terminal, whether the cell is a CSG cell to which the terminal cannot access; transmitting a CRE bias to the terminal; Receiving a measurement result reflecting the CRE bias from the terminal; And if it is determined that the measurement restriction is necessary based on the measurement result, transmitting a measurement limit setting command to the terminal.
- the at least one terminal performs cell selection / handover based on the modified CRE bias, wherein the modified CRE bias is an offset added to the signal strength of the micro cell, and the modified CRE bias and the signal strength of the micro cell are adjusted. If the sum is greater than the signal strength of the macro cell, the micro cell may be selected / handed over.
- the modified CRE bias may be transmitted through a cell specific message or may be transmitted through a terminal specific message.
- the CSG bias value of the CSG cell is given to an unauthorized terminal, thereby preventing the UE from entering the CSG cell and detecting the CSG cell in advance before falling into the RLF due to severe interference from the CSG base station. It may be.
- load balancing between cells in a wireless communication system can be made more efficient, and cell coverage can be effectively adjusted.
- the terminal can guarantee a higher quality of service (QoS), and in particular, the terminal that is not allowed to the closed subscriber group (CSG) cell detects the CSG cell in advance and falls into a radio link failure (RLF). It has the advantage of being preventable.
- QoS quality of service
- CSG closed subscriber group
- RLF radio link failure
- FIG. 1 is a diagram schematically illustrating the concept of a network consisting of a macro cell, a femto cell and a pico cell.
- FIG 2 illustrates cell selection or handover according to an embodiment of the present invention.
- FIG 3 illustrates cell selection or handover according to an embodiment of the present invention.
- FIG 4 illustrates cell selection or handover according to an embodiment of the present invention.
- FIG 5 illustrates cell selection or handover according to an embodiment of the present invention.
- FIG 6 illustrates cell selection or handover according to an embodiment of the present invention.
- FIG. 7 is a flowchart illustrating a general handover process.
- FIG. 8 is a flowchart illustrating a handover process according to an embodiment of the present invention.
- FIG 9 illustrates an example in which a CRE bias is not applied based on a terminal category according to an embodiment of the present invention.
- FIG. 10 illustrates an example of applying a CRE bias based on a terminal category according to an embodiment of the present invention.
- FIG. 11 is a flowchart illustrating an operation of a terminal in an RRC connected state for performing handover according to the present invention.
- FIG. 12 is a flowchart illustrating a process of reselecting a cell using a cell selection offset according to the present invention.
- FIG. 13 illustrates another example of a cell reselection process using a cell selection offset according to the present invention.
- FIG. 14 is a flowchart illustrating the operation of a base station according to an embodiment of the present invention.
- FIG. 15 is a flowchart schematically illustrating an embodiment in which a CSG cell is present in a system to which the present invention is applied.
- FIG. 16 is a diagram schematically illustrating an embodiment in which a CSG cell is present in a system to which the present invention is applied.
- 17 is a block diagram of a transmission and reception apparatus according to an embodiment of the present invention.
- the wireless communication system will be described as an example, and in particular, a next generation wireless communication system supporting a plurality of CCs will be described as an example.
- one embodiment of the present specification provides asynchronous wireless communication that evolves to Long Term Evolution (LTE) and LTE-advanced (LTE-A) through GSM, WCDMA, and HSPA, and synchronous evolution to CDMA, CDMA-2000, and UMB. It can be applied to a wireless communication system.
- LTE Long Term Evolution
- LTE-A LTE-advanced
- a wireless communication system includes a user equipment (UE) and a base station (evolved Node-B, eNB), and the terminal may be fixed or mobile, and may have a mobile station (MS) and a mobile terminal (MT). It may be called other terms such as a user terminal (UT), a subscriber station (SS), a wireless device, a personal digital assistant, a wireless modem, a handheld device, and the like. It may also be called a terminal, a user and a user device.
- a base station generally refers to a fixed station for communicating with a terminal, and may be referred to by other terms such as a base transceiver system (BTS) and an access point.
- the eNB may provide services for one or more cells. Meanwhile, a cell may be classified into a macro cell or a micro cell based on coverage (or maximum transmission power). Macro cells have wider coverage or greater transmit power than micro cells.
- the micro cell may be referred to in other terms, such as a pico cell, a femto cell.
- a heterogeneous network may be configured as a network in which a micro cell exists within the coverage of a macro cell.
- micro cells such as pico cells and femto cells is not particularly limited, but in general, pico cells are communication shadow areas that are not covered by macro cells alone, or areas where data service demands are high, so-called hot zones. It can be used to.
- pico cells are communication shadow areas that are not covered by macro cells alone, or areas where data service demands are high, so-called hot zones. It can be used to.
- femto cells may be generally used in indoor offices or homes.
- FIG. 1 is a diagram schematically illustrating a concept of a heterogeneous network including a macro cell, a femto cell, and a pico cell.
- FIG. 1 illustrates a heterogeneous network composed of a macro cell, a femto cell, and a pico cell for convenience of description, the heterogeneous network may include a relay or another type of cell.
- a macro cell 10, a femto cell 20, and a pico cell 30 are operated together in a heterogeneous network.
- the macro cell 10, femto cell 20, and pico cell 30 each have their own cell coverages 10, 20, 30.
- a femto cell is a low power wireless access point, which is a small base station for mobile communication used indoors such as a home or an office.
- a femto cell can access a mobile communication core network using DSL or cable broadband in a home or office.
- Cells may be classified into open access (OA) cells and closed subscriber group (CSG) cells according to user accessibility.
- the CSG cell basically aims to provide specialized services only to members belonging to the CSG.
- the micro cell may be an OA cell or a CSG cell.
- the terminal may be defined and used as a pico-cell user equipment (PUE) and a macro-cell user equipment (MUE).
- PUE is a terminal that uses a micro cell such as a pico cell as a serving cell.
- PUE the terminal including the micro cell as the serving cell.
- the MUE is a terminal having a macro cell as a serving cell.
- the state of the UE is divided into an RRC connected state and an RRC idle state according to whether the RRC is connected to the radio resource control (RRC).
- RRC radio resource control
- the UE operates as follows. At this time, one or several of the following operations may be performed simultaneously or sequentially. In each state, you can do the following, but that doesn't mean that they happen sequentially:
- the terminal is configured with UE-specific Discontinuous Reception (DRX) by non-access stratum (NAS).
- DRX is a function of controlling the terminal to stop the reception operation and sleep (sleep) in order to reduce the power consumption of the terminal.
- a cell selection and cell reselection process may be performed to find a suitable cell as a serving cell to a corresponding UE among neighbor cells.
- the cell reselection process refers to a process for moving to the best cell in the state of cell selection.
- the terminal monitors system information (SI) transmitted from a serving cell.
- SI system information
- the serving cell refers to a cell that has completed camp-on.
- the camp-on refers to a state in which the terminal completes a cell selection or reselection process and monitors system information and paging information.
- the terminal monitors a paging channel.
- the terminal operates as follows. At this time, one or several of the following operations may be performed simultaneously or sequentially. In each state, you can do the following, but that doesn't mean that they happen sequentially:
- the terminal may transmit / receive unicast data.
- the terminal may configure and operate a terminal specific DRX defined by a media access control (MAC) layer of the base station.
- MAC media access control
- the terminal monitors the paging channel, SIB1 (System Information Block Type 1), system information, control channel, and the like. At this time, the monitor is progressed at a different period from the RRC idle state (generally shorter than the cycle of the RRC idle state).
- the base station may transmit information constituting the operation of the terminal so that the terminal can obtain the channel information, the terminal transmits the channel quality information (CQI), measurement information and the like to the base station according to the configured information You can report.
- CQI channel quality information
- the base station may handover the terminal to the neighbor cell.
- the cell to be handed over may be another base station of the same frequency band (hereinafter, an intra-frequency base station), the same base station of another frequency band or another base station (hereinafter, an inter-frequency base station). Or an inter-RAT (inter-RAT (Radio Access Technologies)) base station using another radio transmission scheme.
- CRE Cell range expansion
- load balancing may be performed when traffic loads of several cells are unevenly distributed. For example, when over-traffic occurs in a cell, a user may be sent from the cell where the over-traffic occurs to another cell through a handover or a cell reselection method.
- CRE bias refers to an offset added to the signal strength of a cell to apply CRE.
- Smc the signal strength of the micro cell
- Smm the signal strength of the macro cell
- Sb the CRE bias
- Sb1 refers to the first CRE bias
- Sb2 refers to the second CRE bias
- Sb3 refers to the third CRE bias.
- the MUE may perform handover to the micro cell.
- Sb the higher the probability that the MUE is handed over to the micro cell, and serves to increase the coverage of the micro cell.
- a variable used in the handover process may be used.
- Variables used in the handover process include Ocn and Ocs.
- Ocn is a cell specific offset value added to the measured value of the adjacent cell
- Ocs is a cell specific offset value added to the measured value of the serving cell.
- Default values of the Ocn and the Ocs may be set to 0, and the Ocn and the Ocs are transmitted through an RRC message.
- the value of the Ocn and Ocs when the value of the Ocn and Ocs has the same value for a plurality of terminals, it may be transmitted through a cell specific message, when the different Ocn and Ocs is set for each terminal, the value of the Ocn and Ocs May be transmitted through a terminal specific message.
- the UE specific message is a message transmitted to a specific UE in a cell, and includes an RRC message and a MAC message, and the messages are transmitted through a physical downlink shared channel (PDSCH) or a physical downlink control channel (PDCCH). Can be sent through.
- PDSCH physical downlink shared channel
- PDCCH physical downlink control channel
- the cell specific message may include an RRC message including system information transmitted to all UEs in the cell, and the RRC message may be transmitted through a PDSCH or through a broadcasting channel (PBCH).
- RRC message including system information transmitted to all UEs in the cell
- PBCH broadcasting channel
- the signal strength is an index indicating power / quality of a corresponding cell, and parameters such as CQI (Channel Quality Indicator), RSRP (Reference Signal Received Power) and / or RSRQ (Reference Signal Received Quality) may be used.
- CQI Channel Quality Indicator
- RSRP Reference Signal Received Power
- RSRQ Reference Signal Received Quality
- the RSRP refers to a linear average of power of resource elements (REs) carrying a cell-specific reference signal (CRS) in a measurement frequency band.
- RSRQ may be expressed as N * RSRP / (E-UTRA carrier RSSI), where N denotes the number of RBs in the Evolved Universal Terrestrial Radio Access (E-UTRA) carrier RSSI measurement band, and the E-UTRA carrier RSSI (Received) Signal Strength Indicator) refers to a linear average value of a signal received in an entire OFDM symbol including RS of antenna port 0 at a measurement frequency.
- the RSSI is a value that includes both interference and thermal noise of adjacent channels.
- FIG 2 illustrates cell selection or handover according to an embodiment of the present invention.
- the PUE 300 is in the first coverage 210 of the micro cell 200 and uses the micro cell 200 as a serving cell. Assume that the CRE bias at this time is Sb1. That is, the first coverage 210 of the micro cell 200 is set to Sb1.
- the micro cell 200 adjusts the CRE bias Sb1 to inform the PUE 300 of the CRE bias Sb2 having a smaller value than before.
- the adjusted CRE bias Sb2 may inform the PUE 300 by the micro cell 200 through a terminal specific message.
- the second coverage 220 of the adjusted micro cell 200 is smaller than the first coverage 210 in the determination for cell selection or handover.
- the PUE 300 may select the macro cell 100 or perform a handover to the macro cell 100.
- FIG 3 illustrates cell selection or handover according to an embodiment of the present invention.
- the adjusted CRE bias Sb2 informs the PUE 300 through the cell specific message by the micro cell 200. All terminals in the micro cell 200 may receive the adjusted CRE bias Sb2.
- the PUE 300 may select the macro cell 100 or perform a handover to the macro cell 100.
- FIG 4 illustrates cell selection or handover according to an embodiment of the present invention.
- the MUE 300 is within the coverage of the macro cell 100 and uses the macro cell 100 as a serving cell.
- CRE bias be Sb1.
- the macro cell 100 adjusts the CRE bias Sb1 to inform the MUE 300 of the CRE bias Sb3 having a larger value than before.
- the adjusted CRE bias Sb3 may inform the MUE 300 through the UE-specific message by the macro cell 100.
- the second coverage 260 of the adjusted micro cell 200 is larger than the first coverage 250 in the determination for cell selection or handover.
- the MUE 300 may perform handover or cell selection to the micro cell 200.
- FIG 5 illustrates cell selection or handover according to an embodiment of the present invention.
- the adjusted CRE bias Sb3 (CRE bias with a larger value than before) is transmitted through a cell specific message of the micro cell 200, and the MUE 300 listens to the adjusted CRE bias Sb3 ( listen).
- the second coverage 260 of the adjusted micro cell 200 becomes larger than the first coverage 250 in the determination for cell selection or handover.
- the MUE 300 may perform cell selection or handover to the micro cell 200.
- the coverage boundary of the cell may be in various forms such as an actual circle or an ellipse.
- cell coverage may be applied in various forms.
- the MUE 310 belongs to the coverage of the macro cell in the determination of cell reselection even if it is separated by the same distance from the base station of the micro cell
- the MUE 300 may belong to the coverage of the micro cell. That is, it is conceivable to induce cell reselection or handover by adjusting the CRE bias only for the MUE 300.
- the adjusted CRE bias Sb3 that is, the CRE bias Sb3 having a larger value than before, is transmitted to the MUE 300 through a terminal specific message of the macro cell 100.
- the adjusted second coverage 260 of the micro cell 200 becomes larger than the first coverage 250.
- the MUE 300 may perform cell selection or handover to the micro cell 200.
- the micro cell becomes a hot spot zone.
- the hot spot area refers to a cell with a relatively high load. If the value of the CRE bias is fixed, a situation in which the micro cell cannot cover all the terminals may occur when the load of the micro cell is increased. On the contrary, consider the case where the number of terminals in the micro cell is small and the number of terminals in the macro cell is relatively large. If the bias value is fixed, it is difficult to balance the load because it is difficult to handover the terminal to the micro cell.
- a unique CRE bias can be designated for each UE. Even in a terminal located at the same location, link reliability (e.g., an error rate) varies depending on the capability of the terminal, so that a CRE bias can be specified for each terminal to provide an appropriate service to each terminal. have. The coverage of the micro cell may vary for each terminal.
- FIG. 7 is a flowchart illustrating a general handover process.
- the source base station prepares for handover with the target base station (S720).
- the source base station notifies the terminal of the RRC connection reconfiguration (S730), it performs a random access procedure (S740).
- the UE informs the target base station of the RRC connection reconfiguration complete (S750).
- a cell selection or handover method for balancing a load using a CRE bias will be described by dividing a case where the UE is in an RRC connected state and a case where the UE is in an RRC idle state.
- the UE may be a MUE or a PUE.
- the base station means a macro base station
- the base station means a pico base station (or femto base station).
- a UE in an RRC connection state reports a measurement result to a base station (S810).
- the measurement result may be a measurement result of reporting a measurement result measured periodically, or may be an event-triggering measurement result measured when an event occurs.
- Table 1 shows an example of an event that the terminal reports to the base station.
- Table 1 event Report purpose A1 The signal strength of the serving cell is greater than the threshold A2 The signal strength of the serving cell is less than the threshold A3 The signal strength of the neighboring cell is offset by more than the serving cell plus the additional margin A4 NAVER cell has signal strength above threshold A5 The signal strength of the serving cell is less than the first threshold and the signal strength of the neighbor cell is greater than the second threshold.
- B1 Signal strength of inter RAT neighbor cell is higher than threshold B2
- the signal strength of the serving cell is less than the first threshold, and the signal strength of the inter RAT navigator cell is greater than the second threshold.
- the terminal reports the events of A1 to B2 to the base station according to each purpose.
- the occurrence report of the event and the measurement result measured at this time may be the selection criteria of the handover.
- the base station requests a change of the CRE bias from the mobility management entity (MME) based on the measurement result or the performance of the terminal (S820).
- MME mobility management entity
- the base station may change the CRE bias value based on the measurement result.
- the MME informs the base station of the changed CRE bias in response to the request (S830). If the MME can command the change of the CRE bias value without the request of the base station, the base station may change the CRE bias value based on the CRE bias transmitted by the MME. In this case, step S810 or S820 may be omitted.
- MMEs managing cells affected by the changed CRE bias when MMEs managing cells affected by the changed CRE bias are different, information exchange between MMEs (loading of cells managed by MMEs, base station configuration information (paging configuration), and the number of antennas of a base station) , Frequency band to be used) and the like can be used to change the CRE bias value.
- MME1 MME managing the macro base station
- MME2 the MME managing the pico base station is called. Let's call it MME2. If the pico base station requests the MME2 to change the CRE bias, the MME2 may exchange this information with the MME1 and then inform each base station of the changed CRE bias.
- the information transmitted to the base station by the MME may be an RFSP index (RAT / Frequency Selection Priority Index) determined by the MME based on an operator's policy and context information of the terminal.
- the RFSP index is terminal specific and is a value received by the MME from a home subscriber server (HSS).
- HSS home subscriber server
- the base station can change the CRE bias without the response of the MME based on the measurement result or the performance of the terminal measured in step S810.
- steps S820 and S830 may be omitted.
- the base station itself may determine the load balance to change the CRE bias value.
- steps S810, S820, and S830 may be omitted.
- Step S840 determines whether it is necessary to balance the load based on information (eg, over-traffic or the like) for the neighbor cell, and changes the CRE bias value (S840).
- Step S840 does not change the CRE bias value when it is desired to change the CRE bias value for reasons other than load balancing or when it is not necessary to balance the load. That is, step S840 is optionally performed.
- the base station transmits a CRE bias to the terminal (S850).
- the modified CRE bias is transmitted through steps S810 to S840. If the CRE bias is not changed as all or part of steps S810 to S840 are omitted, the CRE bias is transmitted without changing the CRE bias.
- the CRE bias may be transmitted through a cell specific message or a terminal specific message.
- the CRE bias may be transmitted through a broadcast channel or a common channel, or may be transmitted through a dedicated channel.
- the terminal performs a handover process based on the received CRE bias (S860).
- the handover process is performed by applying the received CRE bias to the measurement result.
- the handover process may proceed simultaneously with the UE receiving the CRE bias from the base station in step S850.
- steps S810 to S860 described in FIG. 8 may also be applied to an example in which the UE hands over from a serving cell to a target cell.
- the terminal reports the measurement result to the serving cell.
- the measurement result may be a measurement result measured periodically or an event-triggered measurement result measured when an event occurs.
- the serving cell requests the target cell to change the CRE bias based on the measurement result or the performance of the UE.
- the serving cell may change the CRE bias value based on the measurement result.
- the target cell informs the serving cell of the changed CRE bias in response to the request. If the target cell can instruct the change of the CRE bias value without the request of the serving cell, the serving cell can change the CRE bias value based on the CRE bias transmitted to the target cell. On the other hand, the serving cell can change the CRE bias based on the measurement result or the performance of the UE measured without the response of the target cell. Alternatively, the serving cell may determine the load balance by itself and change the CRE bias value.
- the serving cell determines whether the load needs to be balanced based on information on the neighbor cell (for example, whether over traffic or the like), and changes the CRE bias value. If you want to change the CRE bias value for reasons other than load balancing, or if you do not need to balance the load, do not change the CRE bias value.
- the serving cell transmits a CRE bias to the terminal. If the CRE bias is changed in the previous procedure, the changed CRE bias is transmitted. If the CRE bias is not changed, the CRE bias is transmitted without changing the CRE bias.
- the CRE bias may be transmitted through a cell specific message or a terminal specific message.
- the CRE bias may be transmitted over a broadcast channel or a shared channel, or may be transmitted over a dedicated channel.
- the terminal performs handover based on the received CRE bias. Handover is performed by applying the received CRE bias to the measurement result. Handover may proceed simultaneously with the UE receiving the CRE bias from the serving cell.
- the CRE bias may be transmitted through a cell specific message or may be transmitted through a terminal specific message. That is, CRE bias can be applied cell-specifically, but UE-specific can also be applied. For example, cell selection or handover may be performed by applying a CRE bias based on a terminal category.
- the category of the terminal may be a category for distinguishing whether the terminal is a high-end terminal or a low-end terminal, and other types of categories may be possible.
- FIG 9 illustrates an example in which a CRE bias is not applied based on a terminal category.
- the CRE bias based on the category of the UE in order to balance the load effectively while maintaining the system throughput through the CRE bias. You can apply the value.
- FIG. 10 illustrates an example in which a CRE bias is applied based on a terminal category according to the present invention.
- a terminal-specific CRE bias value is applied.
- the CRE bias is applied to include the high-end terminal and not the low-end terminal based on the category of the terminal.
- the area of the pico cell is extended to the range including the high-end terminal.
- the low-end terminal is not included. Therefore, the number of UEs included in the region 930 of the extended pico cell is smaller than when the cell-specific CRE bias value is applied.
- it is more selective and effective to load balance while maintaining the gain (eg system gain) that can be gained by using CRE.
- FIG. 11 is a flowchart illustrating an operation of a terminal in an RRC connected state in performing a handover according to the present invention.
- the terminal receives a CRE bias (S1110).
- the measurement result is reported to the base station based on the received CRE bias value (S1120).
- the measurement result may include at least one of RSRP, RSRQ, CQI, and an event.
- the terminal reports the event A3 to the base station.
- the base station proceeds to handover according to the present invention from the serving cell to the neighbor cell (S1130). For example, the handover described with reference to FIGS. 8 to 10 may be performed.
- the cell selection criteria are as follows.
- S rxlev is a cell selection reception (RX) level value and a unit is decibel (dB).
- S qual is a cell selection quality value and the unit is decibels.
- Q rxlevmeas is the measured cell RX level value and Q qualmeas is the measured cell quality value.
- Q rxlevmin is the minimum value of the required RX level in the cell, and the unit is dBm. dBm is the actual power (milliwatt) converted to dB (decibels).
- Q qualmin is the minimum of the required quality level in the cell and is in dB.
- Q rxlevminoffset is an offset value used to determine the S rxlev value, and periodically searches for the original land network (PLNM) when camping on another site (VLMN). By performing a search, the offset value is given to the user's network so that the user's network can be accessed.
- Q qualminoffset is also an offset value used to determine S qual for the same purpose.
- P compensation is the larger value of PEMAX-P powerClass and 0
- PEMAX is the maximum value of the uplink Transmission (TX) power level used by the terminal allowed by the upper layer
- P PowerClass is the terminal The maximum value of the RF (Radio Frequency) output power of a terminal according to a power class.
- the cell reselection criteria are as follows.
- Q meas is the RSRP measurement value (quantity) to be used in the cell reselection
- Qoffset is intra- If a case that the frequency cell reselection, Qoffset s, n is present, and Qoffset s, n value, and if not 0 to be.
- the Qoffset value refers to an offset value additionally applied to the RSRP measurement value of the neighbor cell in the cell reselection process.
- Qoffset s, n is an offset between the serving cell and the neighbor cell.
- the Qoffset s, n value may have a value of ⁇ 24 dB to 24 dB and may be set in units of 2 dB.
- Q offsetfrequency can be used when inter-frequency cell reselection (because one base station operates differently for each frequency, there is a concept of handover and reselection).
- Offset which is a variable used to give priority to each frequency in the Evolved Universal Terrestrial Radio Access Network (E-UTRAN) of LTE. For example, this offset can be used to balance the load to prevent the user from being concentrated in the preferred frequency band. Therefore, the higher the R value including both the R value, that is, R s and R n values, the terminal preferentially selects the corresponding cell when the cell is reselected.
- RSRQ considered in the present invention is as follows.
- the RSRQ may be expressed as N * RSRP / (E-UTRA carrier RSSI), where N is an Evolved Universal Terrestrial Radio Access (E-UTRA) carrier RSSI measurement block in all RBs in a frequency band ) Means the number. In general, it may be the downlink frequency bandwidth of one cell.
- E-UTRA Evolved Universal Terrestrial Radio Access
- the E-UTRA carrier RSSI Received Signal Strength Indicator
- the RSSI is a linear average of signals received on all OFDM symbols with respect to OFDM symbols including RS among the signals transmitted through antenna port 0 at the RSSI measurement frequency. It means the value.
- the RSSI is a value that includes both interference and thermal noise of adjacent channels. If the UE receives an indication of the subframe for the RSRQ measurement from a higher layer (for example, when the UE receives information for distinguishing between the RSRQ measurable subframe and the RSRQ non-measurable subframe), the UE at the RSSI measurement All OFDM symbols of the indicated subframe are measured, not just the OFDM symbols including the RS.
- the measured RSRQ value may be applied to the RRC idle mode and the RRC connected mode, and may also be applied to the same frequency band and different frequency band as the current serving cell for each mode.
- the RSRQ value is measured at an antenna connector of the UE.
- the terminal in the macro cell or pico cell is determined from an upper layer. It is assumed that the subframe for the RSRQ measurement is received, and the idle mode UE starts measuring the RSSI in all OFDM symbols of the subframe in which the RSRQ measurement is indicated during the RSRQ measurement. If the UE does not have information for distinguishing between the RSRQ measurable subframe and the RSRQ non-measurable subframe from the eNB, the UE determines that RSRQ measurement has been indicated for all subframes.
- the terminal may activate a Time Divisino Multiplexing (TDM) enhanced Inter Cell Interference Coordination (eICIC) mode.
- TDM Time Divisino Multiplexing
- eICIC enhanced Inter Cell Interference Coordination
- an RRM measurement cycle that can be configured in the terminal may be changed. The measurement period is set in subframe units.
- the FDD is changed to a cycle other than a multiple of 40 ms
- the TDD is changed to a cycle that is not a multiple of 20 ms and 70 ms and 50 ms.
- the predetermined specific value may be set to a fixed value, and may be set to one of 5 dB or 10 dB or 15 dB or 20 dB.
- the threshold transmitted through the broadcasting channel may be transmitted through SIB4 and may be configured as shown in Table 2 below.
- a terminal configured to set a macro cell or a pico cell as a serving cell may operate as follows. First, the terminal checks the information of the broadcasting channel received from the serving cell. It is checked whether there is a Qoffset s, n value for a neighbor cell among the information transmitted through the broadcasting channel. If the value does not exist, the value of Qoffset s, n neighbor cells is set to zero. If at least one piece of information on a neighbor cell whose absolute value of Qoffset s, n for a particular neighbor cell is greater than or equal to a threshold value is identified, the UE regards the subframe for measuring the RSRQ from an upper layer and receives the RSRQ in the idle mode. In the measurement, an operation of measuring RSSI in all OFDM symbols of a subframe indicated by RSRQ measurement is started.
- the UE when the UE which sets the macro cell or the pico cell or the cell corresponding thereto as the serving cell confirms that the CSG cell such as the femto cell exists in the neighbor cell, the UE performs subframes for the RSRQ measurement from an upper layer. It is assumed that the indication is received, and when the RSRQ measurement is performed in the idle mode, the operation of measuring the RSSI in all OFDM symbols of the indicated subframe RSRQ measurement is started. If the UE does not have information for distinguishing between the RSRQ measurable subframe and the RSRQ non-measurable subframe from the eNB, the UE determines that RSRQ measurement has been indicated for all subframes.
- the terminal may activate the TDM eICIC mode for the idle mode.
- an RRM measurement cycle that can be configured in the terminal may be changed. The measurement period is set in subframe units.
- the FDD is changed to a cycle other than a multiple of 40 ms
- the TDD is changed to a cycle that is not a multiple of 20 ms and 70 ms and 50 ms.
- the idle mode terminal may check a range of physical cell ID (PCI) values of CSG cells among information currently provided through a broadcasting channel in a camp-on cell, that is, a serving cell.
- PCI physical cell ID
- the csg-PhysCellIdRange field may not always be present when the cell transmitting the broadcasting channel is not a CSG cell. For example, if a CSG cell does not exist in a corresponding range within the cell and around the cell, the field may not exist. However, in the case of CSG, the csg-PhysCellIdRange field should always be included in the broadcasting channel.
- the PhysCellIdRange field defining the range value of PCI may be defined as follows.
- PhysCellIdRange SEQUENCE ⁇ start PhysCellId, range ENUMERATED ⁇ n4, n8, n12, n16, n24, n32, n48, n64, n84, n96, n128, n168, n252, n504, spare2, spare1 ⁇ OPTIONAL-Need OP ⁇
- the meaning of a field value such as n4 indicates the number of consecutive PCI range values from the start value. For example, if the starting PCI value is 52 and the range value is n8, the PCI values that CSG cells may have are 52, 53,... , 59.
- the idle mode terminal measures RSRP of neighbor cells. At this time, in order to distinguish each adjacent cell, PCI information included in a synchronization channel is checked and RSRP is measured using the checked PCI information. At this time, it is checked whether the checked PCI information exists within a range of PCI values of CSG cells through the broadcasted information. If the PCI value is determined to be a PCI value that is determined to be a CSG cell, the idle mode UE considers that the subframe for the RSRQ measurement is received from a higher layer, and the RSRQ measurement is indicated when the RSRQ measurement is instructed in the idle mode. The operation of measuring RSSI in all OFDM symbols starts.
- the present invention intends to use the offset (Qoffsets, n) value as a CRE bias value.
- the CRE bias may be transmitted through system information.
- a variable for giving the CRE bias value to the UE for cell selection may additionally be included in the cell selection criteria. This variable may be transmitted through system information (for example, System Information Block 4 (SIB4)).
- SIB4 System Information Block 4
- a variable added to give a CRE bias value may be referred to as a cell selection offset (Offset_Cell_selection). That is, the variable called cell selection offset is an offset value used for the UE in the RRC idle state to apply the CRE bias.
- the cell selection offset may be defined as an offset value added to the Q rxlevmeas or Q qualmeas value described in Equation 1 above.
- the cell selection offset may have two values.
- the CRE bias value for the low-end terminal and the CRE bias value for the high-end terminal may be included and transmitted based on the category of the terminal.
- the terminal receiving the cell selection offset may select an offset value corresponding to its category and apply the CRE bias value to select the cell.
- the base station may change the CRE bias value of the terminal based on the RFSP index received from the MME.
- the RFSP index is UE-specific and is a value received by the MME from the HSS.
- the UE may perform cell reselection based on this value.
- FIG. 12 is a flowchart illustrating a process of reselecting a cell using a cell selection offset according to the present invention.
- the UE may be a MUE or a PUE.
- FIG. 12 is an embodiment when the UE is a MUE.
- the UE may perform cell reselection from a macro base station to a pico base station.
- SIB4 and SIB5 (System Information Block 5) of the system information can be received while the terminal is camped on, and includes information on neighbor cells.
- SIB4 includes information of an intra-frequency neighbor cell
- SIB5 includes information of an inter-frequency neighbor cell.
- the cell selection offset may be transmitted through system information such as SIB4 or SIB5.
- the Qoffset value described in Equation 2 may be used as a cell selection offset for applying a CRE bias value.
- Qoffest refers to an offset value additionally applied to RSRP measurement values of neighbor cells in a cell reselection process.
- the terminal UE camps on the macro base station (S1210).
- the camp-on terminal receives system information from the camp-on one serving cell (here, the macro cell) (S1220).
- the camp-on state is a cell selection state, and the selected cell becomes a serving cell.
- the terminal receives system information such as SIB4 or SIB5 from the serving cell.
- the base station (here, the macro base station) of the serving cell transmits a cell selection offset value through system information.
- the UE measures and compares the signal strengths of the serving cell and the neighbor cell by applying the cell selection offset value received through the system information (S1230).
- the cell is reselected based on the measurement result (S1240). For example, when the signal strength of a micro cell such as a pico cell is expressed as Smc, the signal intensity of a macro cell as Smm, and the cell selection offset is Qoffset, when "Smc + Qoffset> Smm" is maintained for a predetermined time, the macro cell
- the MUE that has been camped on may perform cell reselection with a micro cell such as a pico cell. As a result of comparing the measured values of the neighbor cell and the serving cell is different due to the received cell selection offset value, the cell reselection process may be performed when the most suitable cell becomes the neighbor cell.
- the terminal is a PUE
- the PUE is an embodiment for cell reselection from the macro base station to the pico base station.
- the terminal PUE camps on a pico cell (S1310).
- the camp-on terminal receives system information from the camp-on one serving cell (here, the pico cell) (S1320).
- the base station of the serving cell transmits a cell selection offset value through system information.
- the terminal measures and compares the signal strengths of the serving cell and the neighbor cell by applying the cell selection offset value received through the system information (S1330).
- the cell reselection process is performed based on the measurement result.
- the signal strength of a micro cell such as a pico cell
- the macro cell signal strength is Smm
- the cell selection offset value is Qoffset
- the PUE camping on the same micro cell as the cell may perform cell reselection to the macro cell.
- the cell reselection process may be performed when the most suitable cell becomes the neighbor cell.
- FIG. 14 is a flowchart illustrating the operation of a base station according to an embodiment of the present invention.
- the base station receives information of the terminal and the network, such as measurement results and terminal performance from the terminal and the network (S1410). In consideration of the load balance and / or the measurement result and / or the terminal performance of the terminal, the base station determines whether to modify the CRE bias value of the terminal (S1420).
- the CRE bias value is set to cell-specific or zero by default.
- the base station may determine to modify the CRE bias value when the number of terminals in the cell increases. Or, if the channel state of the terminal worsens, the base station may determine to modify the CRE bias value. Alternatively, the correction of the CRE bias value may be determined according to the terminal performance.
- the terminal performance may be, for example, a terminal category configured based on a transmit / receive capacity for the uplink / downlink of the terminal (for example, a memory size in the terminal), or a frequency supported by the corresponding terminal. It can be a band.
- the supportable frequency band may be set based on the sizes of uplink and downlink frequency bands within a single serving cell, or when a plurality of serving cells are configured, based on the number and combination of serving cells configurable by the corresponding UE. Can be set.
- the serving cell combination includes configurability for continuous serving cells and continuity for discontinuous serving cells.
- the serving cell may consist of only a downlink component carrier or may include both a downlink component carrier and an uplink component carrier.
- the terminal performance may be the maximum number of antenna ports that the terminal can support.
- the number of antenna ports is defined by dividing downlink and uplink and may be configured independently.
- the terminal performance may be defined as a combination of a frequency band that the terminal can support and the maximum number of antenna ports that can be supported.
- the frequency band that the terminal can support is 20 MHz per serving cell
- the maximum number of serving cells that can be supported is three
- the maximum number of antenna ports is eight for downlink and four for uplink.
- the combination of the possible frequency band and the maximum number of antenna ports that can be supported can be shown in Table 5.
- the base station corrects the CRE bias (S1430). For example, if the CRE bias value is set differently based on the terminal category, the terminal whose terminal category is higher than or equal to a certain level (high-end, 'high-end') and lower (low-end, 'low-end') Other CRE bias values can be set for the UE.
- the terminal category is composed of eight as shown in Table 6, when the terminal is defined as the performance between the terminal category step 4 to step 8, it is divided into high-end base station to the terminal for the high-end If the CRE bias value is set, and the UE is less than the UE category 4 step, it is divided into low-ends and the base station sets a CRE bias value for the low-end to the UE.
- Table 6 UE Category Max. Data rate (DL / UL) (Mbps) DL UL Max. num. of DL-SCH TB bits per TTI Max. num. of DL-SCH per TB per TTI Total num. of soft channel bits Max. num. of spatial layers Max. num of UL-SCH TB bits per TTI Max.
- the base station transmits the modified CRE bias to the terminal (S1440).
- the modified CRE bias may be transmitted through a cell specific message or a terminal specific message.
- the base station may adjust the CRE bias for the UE of the user so that the UE may respond to interference from the CSG cell in advance. .
- the serving cell checks whether the serving cell is a CSG cell which is a neighbor cell of the (not allowed) (S1510).
- the UE checks the PCI of the CSG cell and checks the CSG ID on its white list to inform the serving cell of whether the UE is allowed in the CSG cell or not.
- the white list is a set of cells that the terminal can enter, which is received from a higher layer.
- the serving cell transmits the CRE bias considering the CSG cell to the terminal (S1520).
- the serving cell transmits a CRE bias only to a terminal that is not allowed to access the CSG cell, thereby preventing the terminal receiving the CRE bias from receiving more interference from the CSG cell.
- the prevention is the introduction of eICIC technology, which deliberately feels that an unauthorized user is subjected to interference from the CSG cell before being severely interrupted by the CSG cell, thereby allowing the serving cell to measure eICIC technology early.
- the measurement of the serving cell may be applied only to the ABS (Almost Blank Subframe) of the CSG cell.
- ABS is used to protect a resource that is interfered with by an aggressive cell.
- the ABS reduces or does not transmit power such as control information, data information, and signaling (signals transmitted for channel measurement and synchronization) transmitted through the subframe.
- control information data information
- signaling signals transmitted for channel measurement and synchronization
- an ABS may use a multimedia broadcast single frequency network (MBSFN) subframe.
- MMSFN multimedia broadcast single frequency network
- the serving cell may transmit a CRE bias only to a terminal that is not allowed to access the CSG cell.
- the CRE bias is a value greater than zero.
- the serving cell may transmit different CRE biases to the UE that is allowed to access the CSG cell and the UE that is not allowed to access the CSG cell.
- the base station can apply the measurement limitation to the terminal early, thereby preventing unnecessary handover requests, RLF generation, and the like.
- the serving cell may determine whether the corresponding terminal is a terminal that can access the CSG cell in various ways.
- the CRE bias may be transmitted through a terminal specific message.
- the CRE bias can be transmitted through a broadcast channel or a common channel.
- the CRE bias may be sent over a dedicated channel.
- the CRE bias may be a variable used in the existing measurement process. This variable may be a cell specific message or a terminal specific message.
- the UE may perform measurement (hereinafter, referred to as 'measurement') related to channel state or communication quality and report this to the serving cell (S1530). At this time, the terminal reports the measured value reflecting the CRE bias to the serving cell.
- 'measurement' measurement related to channel state or communication quality
- the serving cell receiving the measured value reflecting the CRE bias may transmit a command for setting a limit to the measurement performed by the UE in advance before the UE is greatly influenced by the interference from the CSG cell (S1540).
- the serving cell determines that the measurement value needs to be limited by determining the measurement value with the CRE bias reflected. Restrictions necessary for the measurement of the terminal can be added. For example, the serving cell may limit the measurement to the UE to perform measurement on a subframe in which interference is low among the downlink subframe patterns used by the CSG cell.
- the serving cell may misrecognize a channel state or a communication state. Therefore, when the UE enters the CSG cell and already receives a large amount of interference from the CSG cell, in case of limiting the measurement or taking necessary measures, the UE may be in a RLF (Radio Link Failure) state due to interference from the CSG cell. have. Therefore, the serving cell may allow the UE to set measurement limits in consideration of interference from neighboring CSG cells before the UE is affected by the interference.
- RLF Radio Link Failure
- the UE may perform the measurement based on the restricted content and report it to the serving cell (S1550).
- the limitation of the measurement is that the measurement is performed on a subframe that can receive less interference from the CSG cell as described above, and thus, the measurement results on the subframe that is severely interfered with the CSG cell, thereby falling into an unnecessary RLF state. The phenomenon can be prevented. Therefore, the serving cell may perform appropriate inter-cell interference coordination so that the UE can avoid the interference of the CSG cell.
- the CRE bias is transmitted to the terminal and the measurement result reflecting the measurement result is confirmed, and then the measurement limit setting command is transmitted to the terminal.
- the CRE bias and the measurement limit setting command are transmitted together to the terminal. Can be. For example, if an Ocn variable value for an unacceptable cell is received above 0, the terminal may start measurement restriction.
- the UE may perform the measurement in which the measurement limit is reflected without performing an unnecessary operation (no longer) such as requesting a handover to the corresponding CSG cell.
- FIG. 16 is a diagram schematically illustrating an embodiment in which a CSG cell is present in a system to which the present invention is applied. 16, the embodiment described with reference to FIG. 15 may be specifically confirmed.
- UE 1 (UE 1; 1640) and UE 2 (UE 2; 1650) are terminals having a macro cell 1610 as a serving cell.
- the terminal 1 1640 is a terminal that is not allowed to access
- the terminal 2 1650 is a terminal that is allowed to access. Accordingly, in case of entering the CSG cell, UE 2 1650 does not need to take additional action by handing over to the CSG cell, but UE 1 1640 cannot handover to the CSG cell and is affected by interference by the CSG cell.
- the macro cell base station 1610 confirms that the terminal 1 1640 is adjacent to the CSG cell, and transmits a CRE bias to the terminal 1 1640, before the terminal 1 1640 enters the CSG cell and the RLF is removed
- the necessary measures can be performed in advance.
- the area of the CSG cell is the terminal 2 1650 that does not receive the CRE bias. It can be seen that can be determined differently. Accordingly, the UE 1640 may perform necessary measures such as setting a measurement limit in advance before entering the original CSG cell area.
- 17 is a block diagram illustrating a wireless communication system in which an embodiment of the present invention is implemented.
- the base station 50 includes a processor 51, a memory 52, and an RF unit 53.
- the RF unit 53 is connected to the processor 51 and transmits and / or receives a radio signal.
- the RF unit 53 may receive a measurement result report from the terminal, receive information related to an adjacent cell, for example, whether or not it can access a CSG cell, and transmit a CRE bias and a measurement limit command to the terminal. have.
- the RF unit 53 may transmit and receive necessary information between other cells.
- the base station may transmit and receive a CRE bias change request and a CRE bias change response between adjacent cells through the RF unit 53.
- the memory 52 is connected to the processor 51 and stores various information for driving the processor 51.
- the memory 52 may include information about a measurement report transmitted by a terminal, information about a CRE bias transmitted to a terminal, information about a CSE bias transmitted and received between neighboring cells, and / or a relationship between a terminal and a neighboring cell, such as
- the terminal may store information on whether the terminal is a member of a specific CSG cell.
- the processor 51 may be connected to the memory 52 and the RF unit 53 to control them.
- the processor 51 may determine the CRE bias based on the measurement report received from the terminal, and may perform a procedure regarding a CRE change among other cells in this regard. Meanwhile, the processor 51 may determine whether the cell adjacent to the terminal is a CSG cell, the terminal is a member of the corresponding CSG cell, and determine a CRE bias to be transmitted to the terminal. It may be determined whether to make a setting and delivered to the terminal.
- the terminal 60 includes a processor 61, a memory 62, and an RF unit 63.
- the RF unit 63 is connected to the processor 61 and transmits and / or receives a radio signal.
- the RF unit 63 may transmit a measurement result or information about a neighboring cell, such as whether the neighboring cell is a CSG cell or can be connected to the corresponding CSG cell, to the base station, and information on the CRE bias and / or measurement limitation from the base station.
- a setup command can be received.
- the memory 62 is connected to the processor 61 and stores various information for driving the processor 61.
- the memory 62 may store information on the CRE bias received from the base station, and may store the information about the CRE bias when the base station transmits a measurement limit setting command.
- the processor 61 is connected to the RF unit 63 and the memory 62 to control them. Processor 61 performs the measurements to report to the base station. In this case, the processor 61 may perform the measurement by reflecting the CRE bias received from the base station, and may perform the measurement by reflecting the measurement limit received from the base station. In addition, the processor 61 may transmit information about an adjacent cell to the base station through the RF unit 63. For example, if it is confirmed that the neighboring cell is a CSG cell to which it cannot connect, the processor 61 may transmit information related thereto to the base station.
- the processor may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processing devices.
- the memory may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium and / or other storage device.
- the RF unit may include a baseband circuit for processing a radio signal.
- the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
- the module may be stored in memory and executed by a processor.
- the memory may be internal or external to the processor and may be coupled to the processor by various well known means.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
The present invention relates to a device and a method for selecting a cell in a wireless communication system. The invention enables a terminal to receive a first cell range expansion (CRE) bias through a first message and to receive a second CRE bias, in which the first CRE bias is modified, through a second message such that a cell is selected on the basis of said second CRE bias. In this case, said first and second CRE biases are offsets which are added to the signal strength of a micro cell, and thus, said terminal selects the micro cell if a sum of the second CRE bias and the signal strength of the micro cell is larger than the signal strength of a macro cell. Since the present invention provides different CRE bias values to an unallowed user for a CSG cell and an allowed user therefor, the unallowed user for the CSG cell can confirm the CSG cell in advance, thereby preventing a radio link failure (RLF).
Description
본 발명은 무선 통신에 관한 것으로, 더 상세하게는 무선통신 시스템에서 셀 선택하는 장치 및 방법에 관한 것이다.The present invention relates to wireless communication, and more particularly, to an apparatus and method for cell selection in a wireless communication system.
무선 통신 시스템은 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 무선 통신 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자들과 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템 등이 있다.Wireless communication systems are widely deployed to provide various kinds of communication services such as voice and data. A wireless communication system is a multiple access system that can support communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.). Examples of multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA). division multiple access) system.
다양한 통신 시스템이 등장함에 따라, 다양한 셀(cell)이 근거리에서 공존하는 이종 네트워크(heterogeneous network) 환경이 고려되고 있다. 예를 들어, 하나의 매크로 셀(macro cell)의 커버리지(coverage)내에 피코 셀(pico cell), 펨토 셀(femto cell) 등 비교적 저전력 송신 파워를 갖는 마이크로 셀(micro cell)이 존재하는 것이다. 또한, 셀은 별도의 접근 제한 없이 필요한 경우 언제든지 서비스를 받을 수 있는 공개형 접근(open access, OA) 셀과, 특정 사용자에게만 접근을 허락하는 폐쇄형 사용자 그룹(closed subscriber group, CSG) 셀로 분류될 수 있다.As various communication systems emerge, a heterogeneous network environment in which various cells coexist in a short distance is being considered. For example, there is a micro cell having relatively low power transmission power, such as a pico cell and a femto cell, in the coverage of one macro cell. In addition, the cell can be classified into an open access (OA) cell that can be serviced at any time if necessary without a separate access restriction, and a closed subscriber group (CSG) cell that allows access only to specific users. Can be.
한편, 셀 선택은 단말이 서비스를 제공받기 위한 특정 셀을 선택하는 기법이다. 셀 선택은 단말의 전원이 켜진 후 초기에 접속할 셀을 선택하는 초기 셀 선택과, 단말이 셀에 머무른 상태에서 다시 셀을 선택하는 셀 재선택 등이 있다. 이하에서, 별도로 구분하지 않는 한, 셀 선택은 초기 셀 선택과 셀 재선택을 포함한다. 셀 선택을 위해 단말은 무선 채널을 검색한다. 단말이 셀 선택 기준을 만족하는 적절한(suitable) 셀을 찾으면 해당 셀을 선택하는 것이다.On the other hand, cell selection is a technique for the UE to select a specific cell to receive the service. The cell selection may include initial cell selection for selecting a cell to be initially connected after the terminal is powered on, and cell reselection for selecting a cell again while the terminal stays in the cell. Hereinafter, unless otherwise specified, cell selection includes initial cell selection and cell reselection. The terminal searches for a radio channel for cell selection. When the UE finds a suitable cell that satisfies the cell selection criteria, the UE selects the corresponding cell.
한편, 이종 네트워크에서 다양한 커버리지를 갖는 셀들이 등장함에 따라 셀 선택 및 핸드오버를 보다 효율적으로 수행하는 것이 요구되고 있다. Meanwhile, as cells having various coverages appear in heterogeneous networks, it is required to perform cell selection and handover more efficiently.
예를 들어, 매크로 기지국과 피코 기지국으로의 신호 세기가 비슷할 경우, 피코 셀은 매크로 셀보다 높은 데이터 레이트(rate)를 제공하기 때문에 데이터 트래픽이 많은 단말은 피코 셀을 선택하는 것이 좋다. 반면에, 피코 셀에 너무 많은 단말들이 집중되는 경우 오히려 서비스 품질이 떨어질 수 있으므로 피코 셀과 매크로 셀 간에 단말을 적절히 분배하는 부하 균형(load balancing) 기법이 필요하다. For example, when the signal strengths of the macro base station and the pico base station are similar, since the pico cell provides a higher data rate than the macro cell, the terminal having a high data traffic may select the pico cell. On the other hand, if too many terminals are concentrated in the pico cell, the quality of service may be deteriorated. Therefore, a load balancing technique for properly distributing terminals between the pico cell and the macro cell is needed.
이러한 네트워크 환경을 고려하여, 차세대 무선 통신시스템에서는 이종 네트워크를 고려한 셀 선택 방법에 있어서, 실제 송신전력을 변화시키지 않고 부하 균형을 충족시키기 위한 방안이 요구된다. 또한, 부하 균형을 맞추기 위하여 송신전력을 실제로 제어하지 않고 오프셋 값을 이용할 경우 확장된 셀 지역에서 셀간 간섭전력에 의하여 발생하는 성능열화를 보완하는 방안이 절실히 요구되는 실정이다.In consideration of such a network environment, in a next-generation wireless communication system, a cell selection method considering heterogeneous networks requires a method for satisfying load balancing without changing actual transmission power. In addition, when offset values are used without actually controlling the transmission power to balance the load, a method of compensating for performance degradation caused by intercell interference power in an extended cell region is urgently needed.
본 발명은 무선 통신 시스템에서 매크로 셀과 마이크로 셀 간에 셀 선택을 수행하는 장치 및 방법을 제공한다.The present invention provides an apparatus and method for performing cell selection between a macro cell and a micro cell in a wireless communication system.
본 발명은 무선 통신 시스템에서 매크로 셀과 마이크로 셀 간에 핸드오버를 수행하는 장치 및 방법을 제공한다.The present invention provides an apparatus and method for performing handover between a macro cell and a micro cell in a wireless communication system.
본 발명은 무선 통신 시스템에서 매크로 셀과 마이크로 셀 간에 폐쇄형 사용자 그룹(CSG) 셀을 미리 검출하는 장치 및 방법을 제공한다.The present invention provides an apparatus and method for pre-detecting a closed user group (CSG) cell between a macro cell and a micro cell in a wireless communication system.
본 발명은 무선 통신 시스템에서 셀 커버리지를 조정하는 장치 및 방법을 제공한다.The present invention provides an apparatus and method for adjusting cell coverage in a wireless communication system.
본 발명은 무선 통신 시스템에서 셀 간의 부하를 효과적으로 조정할 수 있는 장치 및 방법을 제공한다. The present invention provides an apparatus and method capable of effectively adjusting the load between cells in a wireless communication system.
본 발명은 무선 통신 시스템에서 단말이 CSG 셀을 미리 검출하여 무선 링크 실패 상태로 빠지는 것을 예방하는 장치 및 방법을 제공한다. The present invention provides an apparatus and method for preventing a terminal from detecting a CSG cell in advance and falling into a radio link failure state in a wireless communication system.
본 발명의 일 양태에 따르면, 무선 통신 시스템에서 단말이 CSG 셀을 미리 검출/셀 선택/핸드오버를 수행하는 방법은 제1 CRE(cell range expansion) 바이어스를 제1 메시지를 통해 수신하는 단계, 제1 CRE 바이어스가 수정된 제2 CRE 바이어스를 제2 메시지를 통해 수신하는 단계 및 제2 CRE 바이어스를 기반으로 셀 선택/핸드오버를 수행하는 단계를 포함하되, 제1 및 제2 CRE 바이어스는 마이크로(매크로) 셀의 신호 세기에 더해지는 오프셋이고, 제2 CRE 바이어스와 마이크로(매크로) 셀의 신호 세기의 합이 매크로(마이크로) 셀의 신호 세기보다 크고 마이크로(매크로) 셀에 허락된 단말(allowed-UE)이면 마이크로(매크로) 셀이 선택/핸드오버 되게 된다.According to an aspect of the present invention, in a wireless communication system, a method in which a terminal performs detection / cell selection / handover of a CSG cell in advance may include receiving a first cell range expansion (CRE) bias through a first message; Receiving a second CRE bias with a modified 1 CRE bias via a second message and performing cell selection / handover based on the second CRE bias, wherein the first and second CRE bias are micro ( Macro) is an offset added to the signal strength of the cell, and the sum of the signal strength of the second CRE bias and the micro (macro) cell is greater than the signal strength of the macro (micro) cell and is allowed to the micro (macro) cell (allowed-UE ), The micro (macro) cell is selected / handed over.
이때, 제2 마이크로 셀의 CRE 바이어스와 마이크로 셀의 신호 세기의 합이 매크로 셀의 신호 세기보다 큰 것이 소정 시간 동안 유지되면 마이크로 셀이 단말에 의해 선택될 수 있다.In this case, when the sum of the CRE bias of the second micro cell and the signal strength of the micro cell is greater than the signal strength of the macro cell for a predetermined time, the micro cell may be selected by the terminal.
여기서, 제1 및 제2 메시지는 서빙/네이버(neighbor) 셀의 셀 특정 메시지일 수도 있고, 서빙 셀의 단말 특정 메시지일 수도 있으며, 제1 메시지는 서빙/네이버 셀의 셀 특정 메시지이고 제2 메시지는 서빙 셀의 단말 특정 메시지일 수도 있다.Here, the first and second messages may be cell specific messages of the serving / neighbor cell, or may be terminal specific messages of the serving cell, and the first message is a cell specific message of the serving / neighbor cell and the second message. May be a terminal specific message of the serving cell.
본 발명의 다른 양태에 따르면, 무선 통신 시스템에서 기지국이 셀 커버리지를 조정하는 방법은 셀 내 적어도 하나의 단말 또는 네트워크로부터 측정 결과 또는 단말 성능(Capability)을 수신하는 단계, 측정 결과를 기반으로 셀의 커버리지를 조정할지 여부를 결정하는 단계, 셀의 커버리지의 조정이 결정되면 CRE 바이어스를 수정하는 단계 및 수정된 CRE 바이어스를 상기 적어도 하나의 단말에게 전송하는 단계를 포함한다. According to another aspect of the present invention, a method for adjusting cell coverage by a base station in a wireless communication system includes receiving a measurement result or terminal capability from at least one terminal or network in a cell, based on the measurement result Determining whether to adjust the coverage; correcting the CRE bias when the coverage of the cell is determined; and transmitting the modified CRE bias to the at least one terminal.
본 발명의 또 다른 양태에 따르면, 무선 통신 시스템에서 단말의 셀 선택 및 핸드오버 방법은 단말이 셀이 상기 단말이 접속할 수 없는 CSG 셀인지를 확인하는 단계, 상기 단말에 CRE 바이어스를 전송하는 단계, 상기 단말로부터 상기 CRE 바이어스가 반영된 측정 결과를 수신하는 단계; 및 상기 측정 결과에 근거하여 측정 제한이 필요하다고 판단한 경우에는 상기 단말에 측정 제한 설정 명령을 전송하는 단계를 포함하는 것을 특징으로 한다. According to another aspect of the present invention, a cell selection and handover method of a terminal in a wireless communication system includes the steps of: determining, by the terminal, whether the cell is a CSG cell to which the terminal cannot access; transmitting a CRE bias to the terminal; Receiving a measurement result reflecting the CRE bias from the terminal; And if it is determined that the measurement restriction is necessary based on the measurement result, transmitting a measurement limit setting command to the terminal.
이때, 상기 적어도 하나의 단말은 수정된 CRE 바이어스를 기반으로 셀 선택/핸드오버를 수행하되, 수정된 CRE 바이어스는 마이크로 셀의 신호 세기에 더해지는 오프셋이고, 수정된 CRE 바이어스와 마이크로 셀의 신호 세기의 합이 매크로 셀의 신호 세기보다 크면 마이크로 셀이 선택/핸드오버될 수 있다.In this case, the at least one terminal performs cell selection / handover based on the modified CRE bias, wherein the modified CRE bias is an offset added to the signal strength of the micro cell, and the modified CRE bias and the signal strength of the micro cell are adjusted. If the sum is greater than the signal strength of the macro cell, the micro cell may be selected / handed over.
수정된 CRE 바이어스는 셀 특정 메시지를 통해 전송될 수도 있고, 단말 특정 메시지를 통해 전송될 수도 있다.The modified CRE bias may be transmitted through a cell specific message or may be transmitted through a terminal specific message.
인접한 마이크로 셀이 CSG일 경우, 허락되지 않은 단말에게 CSG 셀의 CRE 바이어스 값을 줌으로써, 단말이 CSG 셀에 들어가서 CSG 기지국으로부터 간섭을 심하게 받아 RLF에 빠지기 전에 CSG 셀을 미리 검출하여 RLF에 빠지는 것을 예방할 수도 있다. If the neighboring micro cell is a CSG, the CSG bias value of the CSG cell is given to an unauthorized terminal, thereby preventing the UE from entering the CSG cell and detecting the CSG cell in advance before falling into the RLF due to severe interference from the CSG base station. It may be.
본 발명에 의하면 무선 통신 시스템에서 셀 사이의 부하 균형을 더 효율적으로 이루며, 또한, 셀 커버리지를 효과적으로 조정할 수 있다. According to the present invention, load balancing between cells in a wireless communication system can be made more efficient, and cell coverage can be effectively adjusted.
또한, 단말로 하여금 더 높은 QoS(Quality of Service)를 보장할 수 있으며, 특히, CSG(Closed Subscriber Group)셀에 허락되지 않은 단말로 하여금 CSG 셀을 미리 검출하여 RLF(Radio Link Failure)에 빠지는 것을 예방할 수 있는 장점을 가진다.In addition, the terminal can guarantee a higher quality of service (QoS), and in particular, the terminal that is not allowed to the closed subscriber group (CSG) cell detects the CSG cell in advance and falls into a radio link failure (RLF). It has the advantage of being preventable.
도 1은 매크로 셀, 펨토 셀 그리고 피코 셀로 구성된 네트워크의 개념을 개략적으로 설명하는 도면이다.1 is a diagram schematically illustrating the concept of a network consisting of a macro cell, a femto cell and a pico cell.
도 2는 본 발명의 일 실시예에 따른 셀 선택 또는 핸드오버를 나타낸다.2 illustrates cell selection or handover according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 셀 선택 또는 핸드오버를 나타낸다.3 illustrates cell selection or handover according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 셀 선택 또는 핸드오버를 나타낸다.4 illustrates cell selection or handover according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 셀 선택 또는 핸드오버를 나타낸다.5 illustrates cell selection or handover according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따른 셀 선택 또는 핸드오버를 나타낸다.6 illustrates cell selection or handover according to an embodiment of the present invention.
도 7은 일반적인 핸드오버 과정을 나타낸 흐름도이다. 7 is a flowchart illustrating a general handover process.
도 8은 본 발명의 일 예에 따른 핸드오버 과정을 나타낸 흐름도이다.8 is a flowchart illustrating a handover process according to an embodiment of the present invention.
도 9는 본 발명의 일 예에 따라 CRE 바이어스를 단말 카테고리를 기준으로 적용하지 않은 경우를 나타낸 일 예이다.9 illustrates an example in which a CRE bias is not applied based on a terminal category according to an embodiment of the present invention.
도 10는 본 발명의 일 예에 따라 CRE 바이어스를 단말 카테고리를 기준으로 적용한 경우를 나타낸 일 예이다. 10 illustrates an example of applying a CRE bias based on a terminal category according to an embodiment of the present invention.
도 11은 본 발명에 따른 핸드오버를 수행하는 RRC 연결 상태의 단말의 동작을 나타낸 순서도이다.11 is a flowchart illustrating an operation of a terminal in an RRC connected state for performing handover according to the present invention.
도 12는 본 발명에 따라 셀 선택 오프셋을 이용하여 셀을 재선택하는 과정을 나타낸 흐름도이다.12 is a flowchart illustrating a process of reselecting a cell using a cell selection offset according to the present invention.
도 13은 본 발명에 따라 셀 선택 오프셋을 이용하여 셀 재선택 과정을 나타낸 다른 예이다.13 illustrates another example of a cell reselection process using a cell selection offset according to the present invention.
도 14는 본 발명의 일 실시예에 따른 기지국의 동작을 나타낸 흐름도이다.14 is a flowchart illustrating the operation of a base station according to an embodiment of the present invention.
도 15는 본 발명이 적용되는 시스템에서 CSG 셀이 존재하는 경우의 일 실시예를 개략적으로 설명하는 순서도이다.15 is a flowchart schematically illustrating an embodiment in which a CSG cell is present in a system to which the present invention is applied.
도 16은 본 발명이 적용되는 시스템에서 CSG 셀이 존재하는 경우의 일 실시예를 개략적으로 설명하는 도면이다.FIG. 16 is a diagram schematically illustrating an embodiment in which a CSG cell is present in a system to which the present invention is applied.
도 17은 본 발명의 실시예에 따른 송수신 장치의 블록도이다.17 is a block diagram of a transmission and reception apparatus according to an embodiment of the present invention.
이하, 본 명세서에서는 일부 실시 예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 명세서의 실시 예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 명세서의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, some embodiments will be described in detail with reference to the accompanying drawings. In adding reference numerals to the components of each drawing, it should be noted that the same reference numerals are assigned to the same components as much as possible even though they are shown in different drawings. In addition, in describing the embodiments of the present specification, when it is determined that a detailed description of a related well-known configuration or function may obscure the gist of the present specification, the detailed description thereof will be omitted.
본 명세서는 무선 통신 시스템을 일 예로 설명하며, 특히 다수의 요소 반송파를 지원하는 차세대 무선 통신 시스템을 일 예로 설명한다. 그러나, 본 명세서의 일 실시 예는 GSM, WCDMA, HSPA를 거쳐 LTE(Long Term Evolution) 및 LTE-A(LTE-advanced)로 진화하는 비동기 무선 통신과, CDMA, CDMA-2000 및 UMB로 진화하는 동기식 무선통신 시스템에 적용될 수 있다.Herein, the wireless communication system will be described as an example, and in particular, a next generation wireless communication system supporting a plurality of CCs will be described as an example. However, one embodiment of the present specification provides asynchronous wireless communication that evolves to Long Term Evolution (LTE) and LTE-advanced (LTE-A) through GSM, WCDMA, and HSPA, and synchronous evolution to CDMA, CDMA-2000, and UMB. It can be applied to a wireless communication system.
본 명세서에서, 무선 통신 시스템은 단말(User Equipment, UE) 및 기지국(evolved Node-B, eNB)을 포함하며, 단말은 고정되거나 이동성을 가질 수 있으며, MS(mobile station), MT(mobile terminal), UT(user terminal), SS(subscriber station), 무선기기(wireless device), PDA(personal digital assistant), 무선 모뎀(wireless modem), 휴대기기(handheld device) 등 다른 용어로 불릴 수 있다. 또한, 단말기, 사용자 및 사용자 장치라고도 불릴 수 있다. In the present specification, a wireless communication system includes a user equipment (UE) and a base station (evolved Node-B, eNB), and the terminal may be fixed or mobile, and may have a mobile station (MS) and a mobile terminal (MT). It may be called other terms such as a user terminal (UT), a subscriber station (SS), a wireless device, a personal digital assistant, a wireless modem, a handheld device, and the like. It may also be called a terminal, a user and a user device.
기지국(eNB)은 일반적으로 단말과 통신하는 고정된 지점(fixed station)을 말하며, BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다. eNB은 하나 또는 그 이상의 셀에 대해 서비스를 제공할 수 있다. 한편, 셀은 커버리지(또는 최대 송신 파워)를 기준으로 매크로 셀(Macro Cell) 또는 마이크로 셀(Micro Cell)로 분류할 수 있다. 매크로 셀은 마이크로 셀보다 넓은 커버리지 또는 큰 송신 파워를 가진다. 마이크로 셀은 피코 셀(Pico Cell), 펨토 셀(Femto Cell) 등 다른 용어로 불릴 수 있다. A base station (eNB) generally refers to a fixed station for communicating with a terminal, and may be referred to by other terms such as a base transceiver system (BTS) and an access point. The eNB may provide services for one or more cells. Meanwhile, a cell may be classified into a macro cell or a micro cell based on coverage (or maximum transmission power). Macro cells have wider coverage or greater transmit power than micro cells. The micro cell may be referred to in other terms, such as a pico cell, a femto cell.
이종 네트워크(Heterogeneous Network)는 매크로 셀의 커버리지 내에 마이크로 셀이 존재하는 네트워크로 구성할 수 있다. 본 명세서에서, 피코 셀, 펨토 셀과 같은 마이크로 셀의 용도가 특별히 한정되어 있지는 않지만, 일반적으로 피코 셀은 매크로 셀만으로는 커버되지 않는 통신 음영 지역이나, 데이터 서비스 요구가 많은 영역, 소위 핫존(hotzone)에 이용될 수 있다. 일 예로 펨토 셀은 일반적으로 실내 사무실이나 가정에서 이용될 수 있다. A heterogeneous network may be configured as a network in which a micro cell exists within the coverage of a macro cell. In the present specification, the use of micro cells such as pico cells and femto cells is not particularly limited, but in general, pico cells are communication shadow areas that are not covered by macro cells alone, or areas where data service demands are high, so-called hot zones. It can be used to. For example, femto cells may be generally used in indoor offices or homes.
도 1은 매크로 셀, 펨토 셀 그리고 피코 셀로 구성된 이종 네트워크의 개념을 개략적으로 설명하는 도면이다. 도 1에서는 설명의 편의를 위해 매크로 셀, 펨토 셀 그리고 피코 셀로 구성된 이종 네트워크를 설명하고 있으나, 이종 네트워크는 릴레이 또는 다른 유형의 셀을 포함하여 구성될 수도 있다. 1 is a diagram schematically illustrating a concept of a heterogeneous network including a macro cell, a femto cell, and a pico cell. Although FIG. 1 illustrates a heterogeneous network composed of a macro cell, a femto cell, and a pico cell for convenience of description, the heterogeneous network may include a relay or another type of cell.
도 1을 참조하면, 이종 네트워크에는 매크로 셀(10)과 펨토 셀(20) 그리고 피코 셀(30)이 함께 운용되고 있다. 매크로 셀(10)과 펨토 셀(20) 그리고 피코 셀(30)은 각각 자신의 셀 커버리지(10, 20, 30)를 갖는다. 펨토 셀은 저전력 무선 접속 포인트로서, 예컨대 가정이나 사무실 등 실내에서 사용되는 초소형 이동 통신용 기지국이다. 펨토 셀은 가정이나 사무실의 DSL 또는 케이블 브로드밴드 등을 이용하여 이동 통신 코어 네트워크에 접속할 수 있다. Referring to FIG. 1, a macro cell 10, a femto cell 20, and a pico cell 30 are operated together in a heterogeneous network. The macro cell 10, femto cell 20, and pico cell 30 each have their own cell coverages 10, 20, 30. A femto cell is a low power wireless access point, which is a small base station for mobile communication used indoors such as a home or an office. A femto cell can access a mobile communication core network using DSL or cable broadband in a home or office.
셀은 사용자의 접근성에 따라 OA(open access) 셀과 CSG(Closed Subscriber Group) 셀로 분류될 수 있다. CSG 셀은 기본적으로 CSG에 속하는 멤버에게만 특화된 서비스를 제공하는 것을 목적으로 한다. 마이크로 셀은 OA 셀 또는 CSG 셀일 수 있다.Cells may be classified into open access (OA) cells and closed subscriber group (CSG) cells according to user accessibility. The CSG cell basically aims to provide specialized services only to members belonging to the CSG. The micro cell may be an OA cell or a CSG cell.
단말은 PUE(Pico-cell User Equipment)와 MUE(Macro-cell User Equipment) 등으로 정의되어 사용될 수 있다. PUE는 피코 셀과 같은 마이크로 셀을 서빙 셀로 하는 단말이다. 본 발명에서는 피코 셀 뿐만 아니라 펨토 셀도 포함하여 마이크로 셀을 서빙 셀로 하는 단말은 PUE라고 나타낸다. MUE는 매크로 셀을 서빙 셀로 하는 단말이다. The terminal may be defined and used as a pico-cell user equipment (PUE) and a macro-cell user equipment (MUE). PUE is a terminal that uses a micro cell such as a pico cell as a serving cell. In the present invention, not only the pico cell but also the femto cell, the terminal including the micro cell as the serving cell is referred to as PUE. The MUE is a terminal having a macro cell as a serving cell.
단말의 상태(state)는 무선 자원 제어(Radio Resource Control, RRC)와의 연결 여부에 따라 RRC 연결(RRC connected) 상태와 RRC 휴지(RRC idle) 상태로 나뉜다. The state of the UE is divided into an RRC connected state and an RRC idle state according to whether the RRC is connected to the radio resource control (RRC).
첫째, RRC 휴지 상태에서 단말은 다음과 같이 동작한다. 이때, 다음 동작 중 하나 또는 여러 동작을 동시에 수행할 수도 있고, 순차적으로 수행할 수도 있다. 각각의 상태에서 다음과 같은 동작을 할 수 있다는 것이지 그것이 꼭 순차적으로 일어나는 것을 의미하는 것은 아니다. First, in the RRC idle state, the UE operates as follows. At this time, one or several of the following operations may be performed simultaneously or sequentially. In each state, you can do the following, but that doesn't mean that they happen sequentially:
단말은 NAS(non-access stratum)에 의하여 단말 특정(UE-specific) DRX(Discontinuous Reception)가 구성된다. 여기서, DRX는 단말의 전력 소모를 줄이기 위하여 단말이 수신 동작을 중지하고 슬립(sleep)하도록 제어하는 기능이다. 그리고, 네이버(neighbor) 셀들 중 해당 단말에게 서빙 셀로 적합한(suitable) 셀을 찾기 위하여 셀 선택(selection)과 셀 재선택(reselection) 과정을 수행할 수 있다. 여기서, 셀 재선택 과정이란 셀 선택을 하고 있는 상태에서, 가장 적합한(best) 셀로 옮겨가기 위한 과정을 말한다.The terminal is configured with UE-specific Discontinuous Reception (DRX) by non-access stratum (NAS). Here, DRX is a function of controlling the terminal to stop the reception operation and sleep (sleep) in order to reduce the power consumption of the terminal. In addition, a cell selection and cell reselection process may be performed to find a suitable cell as a serving cell to a corresponding UE among neighbor cells. Here, the cell reselection process refers to a process for moving to the best cell in the state of cell selection.
단말은 서빙(serving) 셀로부터 전송되는 시스템 정보(System information : SI)을 모니터한다. 상기 서빙 셀은 캠프-온(camp-on)을 완료한 셀을 말한다. 여기서, 캠프-온이란 단말이 셀 선택 또는 재선택 과정을 완료하고 시스템 정보와 페이징 정보를 모니터하고 있는 상태에 있는 것을 말한다.The terminal monitors system information (SI) transmitted from a serving cell. The serving cell refers to a cell that has completed camp-on. Here, the camp-on refers to a state in which the terminal completes a cell selection or reselection process and monitors system information and paging information.
단말은 페이징 채널(Paging channel)을 모니터 한다.The terminal monitors a paging channel.
둘째, RRC 연결 상태에서 단말은 다음과 같이 동작한다. 이때, 다음 동작 중 하나 또는 여러 동작을 동시에 수행할 수도 있고, 순차적으로 수행할 수도 있다. 각각의 상태에서 다음과 같은 동작을 할 수 있다는 것이지 그것이 꼭 순차적으로 일어나는 것을 의미하는 것은 아니다. Second, in the RRC connected state, the terminal operates as follows. At this time, one or several of the following operations may be performed simultaneously or sequentially. In each state, you can do the following, but that doesn't mean that they happen sequentially:
단말은 유니캐스트(unicast) 데이터를 전송/수신할 수 있다. 그리고, 단말은 기지국의 MAC(media access control)계층에 의해 정의된 단말 특정 DRX를 구성하고 동작할 수 있다. 또한, 단말은 페이징 채널과 SIB1(System Information Block Type 1), 시스템 정보, 제어 채널 등을 모니터 한다. 이때, RRC 휴지 상태와는 다른 주기(일반적으로 RRC 휴지 상태의 주기보다 짧은 주기)로 모니터를 진행한다. The terminal may transmit / receive unicast data. The terminal may configure and operate a terminal specific DRX defined by a media access control (MAC) layer of the base station. In addition, the terminal monitors the paging channel, SIB1 (System Information Block Type 1), system information, control channel, and the like. At this time, the monitor is progressed at a different period from the RRC idle state (generally shorter than the cycle of the RRC idle state).
기지국은 단말이 채널 정보를 획득할 수 있도록 단말의 동작을 구성하는 정보를 전송할 수 있으며, 단말은 구성한 상기 정보에 따라 채널 품질 정보(Channel Quality Information, CQI), 측정(measurement) 정보 등을 기지국으로 보고(report) 할 수 있다.The base station may transmit information constituting the operation of the terminal so that the terminal can obtain the channel information, the terminal transmits the channel quality information (CQI), measurement information and the like to the base station according to the configured information You can report.
기지국은 단말이 보고한 정보를 기반으로 정해진 규칙에 의거하여 현재 서빙 셀보다 네이버 셀의 신호세기가 단말에게 더 적합하다고 판단하는 경우, 단말을 상기 네이버 셀로 핸드오버 시킬 수 있다. 여기서, 핸드오버 대상이 되는 셀은 동일 주파수 대역의 다른 기지국(이하, 인트라-주파수(intra-frequency) 기지국), 다른 주파수 대역의 같은 기지국 또는 다른 기지국(이하, 인터-주파수(inter-frequency) 기지국), 또는 다른 무선전송방식을 사용하는 기지국(이하, 인터-RAT(inter-RAT(Radio Access Technologies)) 기지국)이 될 수 있다.When the base station determines that the signal strength of the neighbor cell is more suitable for the terminal based on a rule determined based on the information reported by the terminal, the base station may handover the terminal to the neighbor cell. Herein, the cell to be handed over may be another base station of the same frequency band (hereinafter, an intra-frequency base station), the same base station of another frequency band or another base station (hereinafter, an inter-frequency base station). Or an inter-RAT (inter-RAT (Radio Access Technologies)) base station using another radio transmission scheme.
셀 영역 확장(cell range expansion : CRE)은 네트워크의 부하 균형(load balancing)의 이익을 얻기 위해 마이크로 셀의 커버리지(coverage)를 증가시키는 것을 말한다. 마이크로 셀의 커버리지가 증가하면, 수용 가능한 단말의 수도 증가한다. 여기서, 부하 균형을 맞추는 것은 여러 셀들의 트래픽(traffic) 부하가 불공평하게 분배되었을 때 수행될 수 있다. 일 예로, 셀에서 오버-트래픽(over-traffic)이 발생했을 때, 핸드오버 또는 셀 재선택 방법을 통하여 사용자를 오버-트래픽이 발생한 셀에서 다른 셀로 보내 줄 수 있다.Cell range expansion (CRE) refers to increasing the coverage of a micro cell in order to benefit from network load balancing. As the coverage of the microcells increases, the number of acceptable terminals also increases. Here, load balancing may be performed when traffic loads of several cells are unevenly distributed. For example, when over-traffic occurs in a cell, a user may be sent from the cell where the over-traffic occurs to another cell through a handover or a cell reselection method.
본 명세서에 따른, CRE 바이어스(bias)는 CRE를 적용하기 위해 셀의 신호 세기에 더해지는 오프셋을 말한다. 이하에서 마이크로 셀의 신호 세기를 Smc, 매크로 셀의 신호 세기를 Smm, CRE 바이어스를 Sb라 표시한다. Sb1은 제1 CRE 바이어스, Sb2은 제2 CRE 바이어스, Sb3은 제 3 CRE 바이어스를 말한다. According to the present specification, CRE bias refers to an offset added to the signal strength of a cell to apply CRE. Hereinafter, the signal strength of the micro cell is denoted by Smc, the signal strength of the macro cell is denoted by Smm, and the CRE bias is denoted by Sb. Sb1 refers to the first CRE bias, Sb2 refers to the second CRE bias, and Sb3 refers to the third CRE bias.
예를 들어, Smc + Sb > Smm가 소정 시간 동안 유지되면, MUE는 마이크로 셀로 핸드오버를 수행할 수 있다. Sb가 클수록, MUE가 마이크로 셀로 핸드오버 할 가능성이 높아지고, 마이크로 셀의 커버리지가 커지는 역할을 한다.For example, if Smc + Sb> Smm is maintained for a predetermined time, the MUE may perform handover to the micro cell. The larger Sb is, the higher the probability that the MUE is handed over to the micro cell, and serves to increase the coverage of the micro cell.
CRE 바이어스의 일 예로 핸드오버 과정에서 사용되는 변수가 이용될 수 있다. 핸드오버 과정에서 사용되는 변수에는 Ocn과 Ocs등이 있다. 여기서, Ocn은 인접 셀의 측정 값에 더해지는 셀 특정 오프셋 값이고, Ocs는 서빙 셀의 측정 값에 더해지는 셀 특정 오프셋 값이다. 상기 Ocn 및 Ocs의 디폴트(default) 값은 0으로 설정될 수 있으며, 상기 Ocn과 Ocs는 RRC 메시지를 통해 전송된다. 이때, 상기 Ocn과 Ocs의 값이 다수의 단말들에 대하여 동일한 값을 가지는 경우, 셀 특정 메시지를 통해 전송될 수도 있고, 각 단말에 대하여 상이한 Ocn과 Ocs이 설정되는 경우, 상기 Ocn과 Ocs의 값은 단말 특정 메시지를 통해 전송될 수도 있다. As an example of the CRE bias, a variable used in the handover process may be used. Variables used in the handover process include Ocn and Ocs. Here, Ocn is a cell specific offset value added to the measured value of the adjacent cell, and Ocs is a cell specific offset value added to the measured value of the serving cell. Default values of the Ocn and the Ocs may be set to 0, and the Ocn and the Ocs are transmitted through an RRC message. In this case, when the value of the Ocn and Ocs has the same value for a plurality of terminals, it may be transmitted through a cell specific message, when the different Ocn and Ocs is set for each terminal, the value of the Ocn and Ocs May be transmitted through a terminal specific message.
이하에서, 단말 특정 메시지는 셀 내 특정 단말에게 전송되는 메시지로, RRC 메시지, MAC 메시지 등이 있으며, 상기 메시지들은 PDSCH(Physical Downlink Shared Channel)를 통해 전송되거나, 또는 PDCCH(Physical Downlink Control Channel)을 통해 전송될 수 있다. Hereinafter, the UE specific message is a message transmitted to a specific UE in a cell, and includes an RRC message and a MAC message, and the messages are transmitted through a physical downlink shared channel (PDSCH) or a physical downlink control channel (PDCCH). Can be sent through.
또한, 셀 특정 메시지는 셀 내 모든 단말에게 전송되는 시스템 정보를 포함하는 RRC 메시지 등이 있으며, 상기 RRC 메시지는 PDSCH를 통해 전송되거나 브로드캐스팅 채널(Physical Broadcasting Channel : PBCH)을 통해 전송될 수 있다.In addition, the cell specific message may include an RRC message including system information transmitted to all UEs in the cell, and the RRC message may be transmitted through a PDSCH or through a broadcasting channel (PBCH).
한편, 신호 세기는 해당되는 셀의 파워/품질을 나타내는 지표로, CQI(Channel Quality Indicator), RSRP(Reference Signal Received Power) 및/또는 RSRQ (Reference Signal Received Quality)와 같은 파라미터가 사용될 수 있다. 여기서, 상기 RSRP는 측정 주파수 대역 내의 CRS(Cell-specific Reference Signal)를 운반하는 RE(Resource element)s 파워의 선형적 평균을 의미한다. RSRQ는 N*RSRP/(E-UTRA carrier RSSI)로 표현할 수 있으며, 상기 N은 E-UTRA(Evolved Universal Terrestrial Radio Access) 케리어 RSSI 측정 대역의 RB의 수를 의미하고, E-UTRA carrier RSSI(Received Signal Strength Indicator)은 측정 주파수에서 안테나 포트(Antenna port) 0의 RS를 포함하고 있는 OFDM 심볼 전체에 받은 신호의 선형적 평균 값을 의미한다. 상기 RSSI는 인접 채널의 간섭, 열 잡음 등을 모두 포함하는 값이다. Meanwhile, the signal strength is an index indicating power / quality of a corresponding cell, and parameters such as CQI (Channel Quality Indicator), RSRP (Reference Signal Received Power) and / or RSRQ (Reference Signal Received Quality) may be used. Here, the RSRP refers to a linear average of power of resource elements (REs) carrying a cell-specific reference signal (CRS) in a measurement frequency band. RSRQ may be expressed as N * RSRP / (E-UTRA carrier RSSI), where N denotes the number of RBs in the Evolved Universal Terrestrial Radio Access (E-UTRA) carrier RSSI measurement band, and the E-UTRA carrier RSSI (Received) Signal Strength Indicator) refers to a linear average value of a signal received in an entire OFDM symbol including RS of antenna port 0 at a measurement frequency. The RSSI is a value that includes both interference and thermal noise of adjacent channels.
도 2는 본 발명의 일 실시예에 따른 셀 선택 또는 핸드오버를 나타낸다.2 illustrates cell selection or handover according to an embodiment of the present invention.
도 2를 참고하면, PUE(300)는 마이크로 셀(200)의 제1 커버리지(210) 내에 있으며, 마이크로 셀(200)을 서빙 셀로 하고 있다. 이때의 CRE 바이어스를 Sb1이라 가정한다. 즉, 마이크로 셀(200)의 제1 커버리지(210)가 Sb1로 설정된 상태이다.Referring to FIG. 2, the PUE 300 is in the first coverage 210 of the micro cell 200 and uses the micro cell 200 as a serving cell. Assume that the CRE bias at this time is Sb1. That is, the first coverage 210 of the micro cell 200 is set to Sb1.
마이크로 셀(200)이 CRE 바이어스 Sb1를 조정하여, 이전보다 작은 값을 갖는 CRE 바이어스 Sb2를 PUE(300)에게 알려준다. 조정된 CRE 바이어스 Sb2는 단말 특정 메시지를 통해 마이크로 셀(200)이 PUE(300)에게 알려줄 수 있다.The micro cell 200 adjusts the CRE bias Sb1 to inform the PUE 300 of the CRE bias Sb2 having a smaller value than before. The adjusted CRE bias Sb2 may inform the PUE 300 by the micro cell 200 through a terminal specific message.
Sb2가 Sb1 보다 작은 값을 가지므로, 셀 선택 또는 핸드오버를 위한 판단에 있어서는 조정된 마이크로 셀(200)의 제2 커버리지(220)가 제1 커버리지(210) 보다 작아진다. Since Sb2 has a smaller value than Sb1, the second coverage 220 of the adjusted micro cell 200 is smaller than the first coverage 210 in the determination for cell selection or handover.
따라서, Smc + Sb2 < Smm 일 경우, PUE(300)는 매크로 셀(100)을 선택하거나, 매크로 셀(100)로의 핸드오버를 수행할 수 있다.Therefore, when Smc + Sb2 <Smm, the PUE 300 may select the macro cell 100 or perform a handover to the macro cell 100.
도 3은 본 발명의 일 실시예에 따른 셀 선택 또는 핸드오버를 나타낸다.3 illustrates cell selection or handover according to an embodiment of the present invention.
도 3를 참조하면, 조정된 CRE 바이어스 Sb2는 마이크로 셀(200)이 셀 특정 메시지를 통해 PUE(300)에게 알려준다. 마이크로 셀(200) 내의 모든 단말들은 조정된 CRE 바이어스 Sb2를 수신할 수 있다.Referring to FIG. 3, the adjusted CRE bias Sb2 informs the PUE 300 through the cell specific message by the micro cell 200. All terminals in the micro cell 200 may receive the adjusted CRE bias Sb2.
Sb2(220)가 Sb1(210)보다 작은 값을 가지므로, 셀 선택 또는 핸드오버를 위한 판단에 있어서는 조정된 마이크로 셀(200)의 제2 커버리지(220)는 제1 커버리지(210) 보다 작아진다. Since Sb2 220 has a smaller value than Sb1 210, the second coverage 220 of the adjusted micro cell 200 becomes smaller than the first coverage 210 in the determination for cell selection or handover. .
따라서, Smc + Sb2 < Smm 되었을 경우, PUE(300)는 매크로 셀(100)을 선택하거나, 매크로 셀(100)로의 핸드오버를 수행할 수 있다.Therefore, when Smc + Sb2 <Smm, the PUE 300 may select the macro cell 100 or perform a handover to the macro cell 100.
도 4는 본 발명의 일 실시예에 따른 셀 선택 또는 핸드오버를 나타낸다.4 illustrates cell selection or handover according to an embodiment of the present invention.
도 4를 참조하면, MUE(300)는 매크로 셀(100)의 커버리지 내에 있으며, 매크로 셀(100)을 서빙 셀로 하고 있다. 이때의 CRE 바이어스를 Sb1 이라 하자.Referring to FIG. 4, the MUE 300 is within the coverage of the macro cell 100 and uses the macro cell 100 as a serving cell. Let CRE bias be Sb1.
매크로 셀(100)이 CRE 바이어스 Sb1를 조정하여, 이전보다 큰 값을 갖는 CRE 바이어스 Sb3를 MUE(300)에게 알려준다. 조정된 CRE 바이어스 Sb3는 매크로 셀(100)이 단말 특정 메시지를 통해 MUE(300)에게 알려줄 수 있다.The macro cell 100 adjusts the CRE bias Sb1 to inform the MUE 300 of the CRE bias Sb3 having a larger value than before. The adjusted CRE bias Sb3 may inform the MUE 300 through the UE-specific message by the macro cell 100.
Sb3 가 Sb1 보다 큰 값을 가지므로, 셀 선택 또는 핸드오버를 위한 판단에 있어서는 조정된 마이크로 셀(200)의 제2 커버리지(260)가 제1 커버리지(250) 보다 커진다. Since Sb3 has a larger value than Sb1, the second coverage 260 of the adjusted micro cell 200 is larger than the first coverage 250 in the determination for cell selection or handover.
따라서, MUE(300)는 마이크로 셀(200)로의 핸드오버 또는 셀 선택을 수행할 수 있다.Accordingly, the MUE 300 may perform handover or cell selection to the micro cell 200.
도 5는 본 발명의 일 실시예에 따른 셀 선택 또는 핸드오버를 나타낸다.5 illustrates cell selection or handover according to an embodiment of the present invention.
도 5를 참조하면, 조정된 CRE 바이어스 Sb3(이전보다 큰 값을 갖는 CRE 바이어스)는 마이크로 셀(200)의 셀 특정 메시지를 통해 전송되고, MUE(300)이 조정된 CRE 바이어스 Sb3를 청취한다(listen).Referring to FIG. 5, the adjusted CRE bias Sb3 (CRE bias with a larger value than before) is transmitted through a cell specific message of the micro cell 200, and the MUE 300 listens to the adjusted CRE bias Sb3 ( listen).
Sb3 가 Sb1 보다 큰 값을 가지므로, 셀 선택 또는 핸드오버를 위한 판단에 있어서는 조정된 마이크로 셀(200)의 제2 커버리지(260)는 제1 커버리지(250) 보다 커진다. Since Sb3 has a larger value than Sb1, the second coverage 260 of the adjusted micro cell 200 becomes larger than the first coverage 250 in the determination for cell selection or handover.
따라서, MUE(300)는 마이크로 셀(200)로의 셀 선택 또는 핸드오버를 수행할 수 있다.Accordingly, the MUE 300 may perform cell selection or handover to the micro cell 200.
도 6은 본 발명의 일 실시예에 따른 셀 선택 또는 핸드오버를 나타낸다. 셀의 커버리지 경계는 실제 원형, 타원 등 다양한 형태일 수 있다. 6 illustrates cell selection or handover according to an embodiment of the present invention. The coverage boundary of the cell may be in various forms such as an actual circle or an ellipse.
도 6을 참조하면, 셀 재선택 판단에 있어서, 셀 커버리지를 다양한 형태로 적용할 수 있다. 예컨대, 마이크로 셀의 기지국으로부터 동일한 거리만큼 떨어져 있어도 셀 재선택의 판단에 있어서 MUE(310)는 매크로 셀의 커버리지에 속하지만, MUE(300)는 마이크로 셀의 커버리지에 속하도록 할 수 있다. 즉, MUE(300)에 대하여만 CRE 바이어스를 조정하여 셀 재선택 또는 핸드오버를 유도하는 것을 생각할 수 있다.Referring to FIG. 6, in cell reselection determination, cell coverage may be applied in various forms. For example, although the MUE 310 belongs to the coverage of the macro cell in the determination of cell reselection even if it is separated by the same distance from the base station of the micro cell, the MUE 300 may belong to the coverage of the micro cell. That is, it is conceivable to induce cell reselection or handover by adjusting the CRE bias only for the MUE 300.
조정된 CRE 바이어스 Sb3 즉, 이전보다 큰 값을 갖는 CRE 바이어스 Sb3는 매크로 셀(100)의 단말 특정 메시지를 통해 MUE(300)에게 전송된다. The adjusted CRE bias Sb3, that is, the CRE bias Sb3 having a larger value than before, is transmitted to the MUE 300 through a terminal specific message of the macro cell 100.
Sb3 가 Sb1 보다 큰 값을 가지므로, 셀 선택 또는 핸드오버를 위한 판단에 있어서는, 조정된 마이크로 셀(200)의 제2 커버리지(260)는 제1 커버리지(250) 보다 커진다. Since Sb3 has a larger value than Sb1, in the determination for cell selection or handover, the adjusted second coverage 260 of the micro cell 200 becomes larger than the first coverage 250.
따라서, MUE(300)는 마이크로 셀(200)로의 셀 선택 또는 핸드오버를 수행할 수 있다.Accordingly, the MUE 300 may perform cell selection or handover to the micro cell 200.
마이크로 셀(피코 셀)은 핫 스팟 영역(Hot spot zone)이 된다. 여기서 핫 스팟 영역은 상대적으로 부하가 많은 셀을 말한다. 만약 CRE 바이어스의 값이 고정되면, 마이크로 셀의 부하가 증가될 때 마이크로 셀이 모든 단말을 커버하기 힘든 상황이 발생할 수 있다. 반대로, 마이크로 셀 내의 단말의 수가 작고, 매크로 셀 내의 단말의 수가 상대적으로 많은 경우를 고려하자. 바이어스 값이 고정되면, 마이크로 셀로 단말을 핸드오버하기 어려워 부하 균형을 맞추기 힘들다. The micro cell (pico cell) becomes a hot spot zone. Here, the hot spot area refers to a cell with a relatively high load. If the value of the CRE bias is fixed, a situation in which the micro cell cannot cover all the terminals may occur when the load of the micro cell is increased. On the contrary, consider the case where the number of terminals in the micro cell is small and the number of terminals in the macro cell is relatively large. If the bias value is fixed, it is difficult to balance the load because it is difficult to handover the terminal to the micro cell.
CRE 바이어스를 단말 특정 메시지를 통해 보내면, 단말 각각 마다 고유의 CRE 바이어스를 지정할 수 있다. 같은 위치에 있는 단말이라도 단말 능력(Capability)에 따라서 링크 의존도(link reliability, 예를 들어 에러율(error rate))가 다르므로, CRE 바이어스를 각 단말 별로 지정함으로써, 각 단말에게 적합한 서비스를 제공할 수 있다. 마이크로 셀의 커버리지는 각 단말마다 달라질 수 있다. When the CRE bias is sent through the UE-specific message, a unique CRE bias can be designated for each UE. Even in a terminal located at the same location, link reliability (e.g., an error rate) varies depending on the capability of the terminal, so that a CRE bias can be specified for each terminal to provide an appropriate service to each terminal. have. The coverage of the micro cell may vary for each terminal.
도 7은 일반적인 핸드오버 과정을 나타낸 흐름도이다. 7 is a flowchart illustrating a general handover process.
도 7을 참고하면, 단말이 소스(source) 기지국에 측정 결과를 보고하면(S710), 소스 기지국은 타겟(target) 기지국과 함께 핸드오버 준비(preparation)를 한다(S720). 소스 기지국이 RRC 연결 재설정(RRC Connection Reconfiguration)을 단말에게 알리면(S730), 랜덤 액세스 과정(Random access procedure)을 수행한다(S740). 단말은 타겟 기지국으로 RRC 연결 재설정 완료(RRC Connection Reconfiguration Complete)를 알린다(S750).Referring to FIG. 7, when the terminal reports the measurement result to the source base station (S710), the source base station prepares for handover with the target base station (S720). When the source base station notifies the terminal of the RRC connection reconfiguration (S730), it performs a random access procedure (S740). The UE informs the target base station of the RRC connection reconfiguration complete (S750).
이하에서, 단말이 RRC 연결 상태에 있는 경우와 RRC 휴지 상태에 있는 경우를 나누어서 CRE 바이어스를 이용하여 부하 균형을 맞추기 위한 셀 선택 또는 핸드오버 방법에 대하여 설명한다.Hereinafter, a cell selection or handover method for balancing a load using a CRE bias will be described by dividing a case where the UE is in an RRC connected state and a case where the UE is in an RRC idle state.
1. 단말이 RRC 연결 상태에 있는 경우1. When the terminal is in the RRC connection state
도 8은 본 발명에 따라서 RRC 연결 상태에 있는 단말의 핸드오버 수행을 나타낸 흐름도이다. 이하 도 8에 관한 설명에서, 이때, 단말은 MUE일 수 있고 PUE일 수도 있다. 단말이 MUE일 경우 기지국은 매크로 기지국을 의미하고, 단말이 PUE일 경우 기지국은 피코 기지국(또는 펨토 기지국)을 의미한다.8 is a flowchart illustrating the handover of a UE in an RRC connected state according to the present invention. Hereinafter, in the description of FIG. 8, the UE may be a MUE or a PUE. When the terminal is MUE, the base station means a macro base station, and when the terminal is a PUE, the base station means a pico base station (or femto base station).
도 8을 참고하면, 먼저 RRC 연결 상태에 있는 단말은 측정 결과를 기지국에 보고한다(S810). 상기 측정결과는 주기적으로 측정한 측정 결과를 보고한 측정 결과일 수 있고, 이벤트가 발생할 때 측정한 이벤트-트리거링(event-triggering) 측정 결과일 수도 있다.Referring to FIG. 8, first, a UE in an RRC connection state reports a measurement result to a base station (S810). The measurement result may be a measurement result of reporting a measurement result measured periodically, or may be an event-triggering measurement result measured when an event occurs.
다음 표 1은 단말이 기지국에 보고하는 이벤트의 일 예를 나타낸 것이다.The following Table 1 shows an example of an event that the terminal reports to the base station.
표 1
Table 1
이벤트 | 보고 목적 |
A1 | 서빙 셀의 신호세기가 임계값(threshold)보다 큼 |
A2 | 서빙 셀의 신호세기가 임계값보다 작음 |
A3 | 네이버 셀의 신호세기가 서빙 셀과 추가 마진(margin)을 더한값보다 오프셋(offset)만큼 큼 |
A4 | 네이버 셀이 신호세기가 임계값보다 큼 |
A5 | 서빙셀의 신호세기가 제1 임계값보다 작고, 네이버 셀의 신호세기가 제2 임계값보다 큼 |
B1 | 인터 RAT 네이버 셀의 신호세기가 임계값보다 큼 |
B2 | 서빙셀의 신호세기가 제1 임계값보다 작고, 인터 RAT 네이터 셀의 신호세기가 제2 임계값보다 큼. |
event | Report purpose |
A1 | The signal strength of the serving cell is greater than the threshold |
A2 | The signal strength of the serving cell is less than the threshold |
A3 | The signal strength of the neighboring cell is offset by more than the serving cell plus the additional margin |
A4 | NAVER cell has signal strength above threshold |
A5 | The signal strength of the serving cell is less than the first threshold and the signal strength of the neighbor cell is greater than the second threshold. |
B1 | Signal strength of inter RAT neighbor cell is higher than threshold |
B2 | The signal strength of the serving cell is less than the first threshold, and the signal strength of the inter RAT navigator cell is greater than the second threshold. |
단말은 상기 A1 내지 B2의 이벤트를 각각의 목적에 따라 기지국으로 보고한다. 이벤트의 발생 보고 및 이때 측정한 측정 결과가 핸드오버의 선택 기준이 될 수 있다.The terminal reports the events of A1 to B2 to the base station according to each purpose. The occurrence report of the event and the measurement result measured at this time may be the selection criteria of the handover.
이어서, 기지국은 상기 측정 결과 또는 단말의 성능을 기초로 MME(Mobility Management Entity)에게 CRE 바이어스의 변경을 요청한다(S820). 기지국은 상기 측정 결과를 기초로 CRE 바이어스 값을 변경할 수 있다.Subsequently, the base station requests a change of the CRE bias from the mobility management entity (MME) based on the measurement result or the performance of the terminal (S820). The base station may change the CRE bias value based on the measurement result.
MME는 상기 요청에 대한 응답으로 변경된 CRE 바이어스를 기지국으로 알려준다(S830). MME가 CRE 바이어스 값의 변경을 기지국의 요청 없이도 명령할 수 있는 경우, 기지국은 MME가 전송하는 CRE 바이어스를 기준으로 CRE 바이어스 값을 변경할 수 있다. 이때는 단계 S810 또는 S820이 생략될 수 있다.The MME informs the base station of the changed CRE bias in response to the request (S830). If the MME can command the change of the CRE bias value without the request of the base station, the base station may change the CRE bias value based on the CRE bias transmitted by the MME. In this case, step S810 or S820 may be omitted.
또는 변경되는 CRE 바이어스의 영향을 받는 셀들을 관장하는 MME가 각각 다를 경우, MME 간의 정보 교환(MME가 관장하는 셀의 로딩(loading), 기지국 설정 정보(페이징 설정(Paging configuration), 기지국의 안테나 수, 사용하는 주파수 대역) 등)을 통하여 CRE 바이어스 값을 변경할 수 있다. 예를 들어, 피코 셀의 CRE 바이어스의 변경이 요구되는 상황이고, 그러한 CRE 바이어스의 변경에 의하여 매크로 셀이 영향을 받는 경우, 매크로 기지국을 관장하는 MME를 MME1이라고 하고, 피코 기지국을 관장하는 MME를 MME2라고 하자. 피코 기지국이 MME2에 CRE 바이어스의 변경을 요구하면, MME2는 MME1에게 이러한 정보를 교환한 후, 변경된 CRE 바이어스를 각각의 기지국에게 알릴 수 있다. Alternatively, when MMEs managing cells affected by the changed CRE bias are different, information exchange between MMEs (loading of cells managed by MMEs, base station configuration information (paging configuration), and the number of antennas of a base station) , Frequency band to be used) and the like can be used to change the CRE bias value. For example, in a situation where a change in the CRE bias of the pico cell is required, and the macro cell is affected by such a change in the CRE bias, the MME managing the macro base station is referred to as MME1, and the MME managing the pico base station is called. Let's call it MME2. If the pico base station requests the MME2 to change the CRE bias, the MME2 may exchange this information with the MME1 and then inform each base station of the changed CRE bias.
MME가 기지국에 전송하는 정보는 MME가 오퍼레이터의 정책과 단말의 콘텍스트(Context) 정보 등을 기준으로 결정한 RFSP 인덱스(RAT/Frequency Selection Priority Index)가 될 수 있다. RFSP 인덱스는 단말 특정적이며, MME가 HSS(Home Subscriber Server)로부터 수신한 값이다. 이 정보를 수신한 기지국은 이 정보를 기준으로 CRE 바이어스 값을 변경할 수 있다. The information transmitted to the base station by the MME may be an RFSP index (RAT / Frequency Selection Priority Index) determined by the MME based on an operator's policy and context information of the terminal. The RFSP index is terminal specific and is a value received by the MME from a home subscriber server (HSS). The base station receiving this information can change the CRE bias value based on this information.
한편, 기지국은 단계 S810에서 측정한 상기 측정 결과 또는 단말의 성능을 기준으로 MME의 응답 없이도 CRE 바이어스의 변경을 할 수 있다. 이때, 단계 S820 및 S830이 생략될 수 있다.On the other hand, the base station can change the CRE bias without the response of the MME based on the measurement result or the performance of the terminal measured in step S810. In this case, steps S820 and S830 may be omitted.
또는, 기지국 스스로 부하 균형을 판단하여 CRE 바이어스 값을 변경할 수 있다. 이때는 단계 S810, S820 및 S830이 생략될 수 있다.Alternatively, the base station itself may determine the load balance to change the CRE bias value. In this case, steps S810, S820, and S830 may be omitted.
이와 같이 기지국은 인접 셀에 대한 정보(예를 들면, 오버-트래픽의 여부 등)를 바탕으로 부하 균형을 맞출 필요가 있는지 여부를 판단하여 CRE 바이어스 값의 변경한다(S840). 단계 S840은 부하 균형 이외의 이유로 CRE 바이어스 값을 변경하고자 하는 경우 또는 부하 균형을 맞출 필요가 없을 때에는 CRE 바이어스 값을 변경하지 않는다. 즉, 단계 S840은 선택적으로 수행된다. In this way, the base station determines whether it is necessary to balance the load based on information (eg, over-traffic or the like) for the neighbor cell, and changes the CRE bias value (S840). Step S840 does not change the CRE bias value when it is desired to change the CRE bias value for reasons other than load balancing or when it is not necessary to balance the load. That is, step S840 is optionally performed.
기지국은 단말에게 CRE 바이어스를 전송한다(S850). 단계 S810 내지 S840을 통해 변경된 CRE 바이어스를 전송한다. 만약 단계 S810 내지 S840의 전부 또는 일부가 생략됨에 따라 CRE 바이어스가 변경되지 않은 경우, CRE 바이어스를 변경하지 않고 전송한다. CRE 바이어스는 셀 특정 메시지 또는 단말 특정 메시지를 통해 전송될 수 있다. CRE 바이어스는 브로드캐스트 채널 또는 공용(common) 채널을 통해 전송될 수 있으며, 전용(dedicated) 채널을 통해서 전송될 수도 있다.The base station transmits a CRE bias to the terminal (S850). The modified CRE bias is transmitted through steps S810 to S840. If the CRE bias is not changed as all or part of steps S810 to S840 are omitted, the CRE bias is transmitted without changing the CRE bias. The CRE bias may be transmitted through a cell specific message or a terminal specific message. The CRE bias may be transmitted through a broadcast channel or a common channel, or may be transmitted through a dedicated channel.
단말은 수신한 CRE 바이어스를 기초로 핸드오버 과정을 수행한다(S860). 수신한 CRE 바이어스를 상기 측정 결과에 적용하여 핸드오버 과정을 진행한다. 핸드오버 과정은 단계 S850에서 단말이 기지국으로부터 CRE 바이어스를 수신하는 것과 동시에 진행될 수 있다.The terminal performs a handover process based on the received CRE bias (S860). The handover process is performed by applying the received CRE bias to the measurement result. The handover process may proceed simultaneously with the UE receiving the CRE bias from the base station in step S850.
발명의 또 다른 실시 예로써, 상기 도 8에서 설명한 단계 S810 내지 S860을 단말이 서빙 셀에서 타겟 셀로 핸드오버 하는 예에도 적용할 수 있다.As another embodiment of the present invention, steps S810 to S860 described in FIG. 8 may also be applied to an example in which the UE hands over from a serving cell to a target cell.
먼저, 단말이 측정 결과를 서빙 셀에 보고한다. 상기 측정 결과는 주기적으로 측정한 측정 결과 또는 이벤트가 발생할 때 측정한 이벤트-트리거링 측정 결과일 수 있다.First, the terminal reports the measurement result to the serving cell. The measurement result may be a measurement result measured periodically or an event-triggered measurement result measured when an event occurs.
이어서, 서빙 셀은 상기 측정 결과 또는 단말의 성능을 기초로 CRE 바이어스의 변경을 타겟 셀에게 요청한다. 서빙 셀은 상기 측정 결과를 기초로 CRE 바이어스 값을 변경할 수 있다.Subsequently, the serving cell requests the target cell to change the CRE bias based on the measurement result or the performance of the UE. The serving cell may change the CRE bias value based on the measurement result.
타겟 셀은 상기 요청에 대한 응답으로 변경된 CRE 바이어스를 서빙 셀로 알려준다. 타겟 셀이 서빙 셀의 요청 없이도 CRE 바이어스 값의 변경을 명령할 수 있는 경우, 서빙 셀은 타겟 셀로 전송하는 CRE 바이어스를 기준으로 CRE 바이어스 값을 변경할 수 있다. 한편, 서빙 셀은 타겟 셀의 응답 없이도 측정한 상기 측정 결과 또는 단말의 성능을 기준으로 CRE 바이어스의 변경을 할 수 있다. 또는, 서빙 셀 스스로 부하 균형을 판단하여 CRE 바이어스 값을 변경할 수 있다. The target cell informs the serving cell of the changed CRE bias in response to the request. If the target cell can instruct the change of the CRE bias value without the request of the serving cell, the serving cell can change the CRE bias value based on the CRE bias transmitted to the target cell. On the other hand, the serving cell can change the CRE bias based on the measurement result or the performance of the UE measured without the response of the target cell. Alternatively, the serving cell may determine the load balance by itself and change the CRE bias value.
이와 같이 서빙 셀은 인접 셀에 대한 정보(예를 들면, 오버 트래픽의 여부 등)를 바탕으로 부하 균형을 맞출 필요가 있는지 여부를 판단하여 CRE 바이어스 값의 변경한다. 부하 균형 이외의 이유로 CRE 바이어스 값을 변경하고자 하는 경우 또는 부하 균형을 맞출 필요가 없는 경우에는 CRE 바이어스 값을 변경하지 않는다. As described above, the serving cell determines whether the load needs to be balanced based on information on the neighbor cell (for example, whether over traffic or the like), and changes the CRE bias value. If you want to change the CRE bias value for reasons other than load balancing, or if you do not need to balance the load, do not change the CRE bias value.
서빙 셀은 단말에게 CRE 바이어스를 전송한다. 이전 절차에서 CRE 바이어스가 변경되었다면 변경된 CRE 바이어스를 전송하고, CRE 바이어스가 변경되지 않았다면 CRE 바이어스를 변경하지 않고 전송한다. CRE 바이어스는 셀 특정 메시지 또는 단말 특정 메시지를 통해 전송될 수 있다. CRE 바이어스는 브로드캐스트 채널 또는 공용 채널을 통해 전송될 수 있으며, 전용 채널을 통해서 전송될 수도 있다.The serving cell transmits a CRE bias to the terminal. If the CRE bias is changed in the previous procedure, the changed CRE bias is transmitted. If the CRE bias is not changed, the CRE bias is transmitted without changing the CRE bias. The CRE bias may be transmitted through a cell specific message or a terminal specific message. The CRE bias may be transmitted over a broadcast channel or a shared channel, or may be transmitted over a dedicated channel.
단말은 수신한 CRE 바이어스를 기초로 핸드오버를 수행한다. 수신한 CRE 바이어스를 상기 측정결과에 적용하여 핸드오버를 진행한다. 핸드오버는 단말이 서빙 셀로부터 CRE 바이어스를 수신하는 것과 동시에 진행될 수 있다.The terminal performs handover based on the received CRE bias. Handover is performed by applying the received CRE bias to the measurement result. Handover may proceed simultaneously with the UE receiving the CRE bias from the serving cell.
CRE 바이어스는 셀 특정 메시지를 통해서 전송될 수도 있고, 단말 특정 메시지를 통해서 전송될 수도 있다. 즉, CRE 바이어스를 셀 특정적으로 적용할 수 있지만 단말 특정적으로 적용할 수도 있다. 일 예로, CRE 바이어스를 단말 카테고리(category)를 기준으로 적용하여 셀 선택 또는 핸드오버를 수행할 수 있다. 여기서, 단말의 카테고리란 단말이 하이-엔드(High-end) 단말인지, 로우-엔드(low-end) 단말인지를 구분하는 카테고리일 수 있고, 다른 종류의 카테고리도 가능하다.The CRE bias may be transmitted through a cell specific message or may be transmitted through a terminal specific message. That is, CRE bias can be applied cell-specifically, but UE-specific can also be applied. For example, cell selection or handover may be performed by applying a CRE bias based on a terminal category. Here, the category of the terminal may be a category for distinguishing whether the terminal is a high-end terminal or a low-end terminal, and other types of categories may be possible.
이하에서 도 9 및 도 10을 비교하여 셀 특정적으로 CRE 바이어스를 적용했을 때보다 단말 특정적으로 CRE 바이어스를 적용했을 때 더 효과적인 것을 설명한다. 이하에서 피코 셀에 관한 설명은 펨토 셀에 대하여도 적용할 수 있다.9 and 10 will be described below, which is more effective when the CRE bias is applied to the UE specificly than when the CRE bias is applied to the cell. Hereinafter, the description of the pico cell may be applied to the femto cell.
도 9는 CRE 바이어스를 단말 카테고리를 기준으로 적용하지 않은 경우를 나타낸 일 예이다. 9 illustrates an example in which a CRE bias is not applied based on a terminal category.
도 9를 참고하면, 최초의 피코 셀의 영역(area)(910)에 셀 특정 적인 CRE 바이어스를 적용하여 부하 균형이 맞도록 조정한 피코 셀의 영역(920)의 경우, 너무 많은 단말이 피코 셀의 영역에 포함되어 피코 셀에 오버-트래픽이 발생할 여지가 있다.Referring to FIG. 9, in the case of the region 920 of the pico cell adjusted to load balance by applying a cell-specific CRE bias to an area 910 of the first pico cell, too many terminals are pico cells. There is room for over-traffic in the pico cell.
이 경우 부하 균형을 맞추기 위하여 다시 셀 특정 CRE 바이어스를 적용하여 피코 셀 영역을 줄이는 것보다는, CRE 바이어스를 통한 이익(system throughput)을 유지하면서 효과적인 부하 균형을 맞추기 위하여, 단말의 카테고리를 기준으로 CRE 바이어스 값을 적용할 수 있다. In this case, rather than applying the cell-specific CRE bias to reduce the pico cell area again to balance the load, the CRE bias based on the category of the UE in order to balance the load effectively while maintaining the system throughput through the CRE bias. You can apply the value.
도 10는 본 발명에 따라서 CRE 바이어스를 단말 카테고리를 기준으로 적용한 경우를 나타낸 일 예이다. 10 illustrates an example in which a CRE bias is applied based on a terminal category according to the present invention.
도 10을 참고하면, 단말 특정적으로 CRE 바이어스 값을 적용한다. 단말의 카테고리를 기준으로 하이-엔드 단말을 포함하고 로우-엔드 단말을 포함하지 않도록 CRE 바이어스를 적용한다. 이때, 피코 셀의 영역은 하이-엔드 단말을 포함하는 범위까지 확장된다. 다만, 로우-엔드 단말은 포함하지 않는다. 따라서, 확장된 피코 셀의 영역(930)에 포함된 단말의 수가 셀 특정적으로 CRE 바이어스 값을 적용하였을 때보다 더 적다. 따라서, CRE를 사용함으로써 얻을 수 있는 이득(예를 들면, 시스템 이익)을 유지하면서 더 선택적이고 효과적으로 부하 균형을 맞출 수 있다. Referring to FIG. 10, a terminal-specific CRE bias value is applied. The CRE bias is applied to include the high-end terminal and not the low-end terminal based on the category of the terminal. At this time, the area of the pico cell is extended to the range including the high-end terminal. However, the low-end terminal is not included. Therefore, the number of UEs included in the region 930 of the extended pico cell is smaller than when the cell-specific CRE bias value is applied. Thus, it is more selective and effective to load balance while maintaining the gain (eg system gain) that can be gained by using CRE.
도 11은 본 발명에 따른 핸드오버를 수행함에 있어서 RRC 연결 상태의 단말의 동작을 나타낸 순서도이다.11 is a flowchart illustrating an operation of a terminal in an RRC connected state in performing a handover according to the present invention.
도 11을 참고하면, 단말은 CRE 바이어스를 수신한다(S1110). 수신한 상기 CRE 바이어스 값을 기초로 측정 결과를 기지국에 보고한다(S1120). 여기서 측정 결과는 RSRP, RSRQ, CQI, 및 이벤트 중 적어도 하나를 포함할 수 있다. 이벤트에 관하여는 상기 표 1을 참고할 수 있다. 예를 들어, 측정하였을 때 서빙 셀보다 네이버 셀의 신호 세기가 더 세다고 측정되면 단말은 이벤트 A3를 기지국에 보고한다. Referring to FIG. 11, the terminal receives a CRE bias (S1110). The measurement result is reported to the base station based on the received CRE bias value (S1120). Here, the measurement result may include at least one of RSRP, RSRQ, CQI, and an event. Refer to Table 1 above regarding events. For example, when it is measured that the signal strength of the neighbor cell is stronger than the serving cell, the terminal reports the event A3 to the base station.
기지국이 단말로부터 수신한 측정 결과를 기초로, 기지국은 서빙 셀에서 네이버 셀로 본 발명에 따른 핸드오버를 진행한다(S1130). 일 예로, 상기 도 8 내지 도 10에서 설명한 핸드오버가 진행될 수 있다.Based on the measurement result received by the base station from the terminal, the base station proceeds to handover according to the present invention from the serving cell to the neighbor cell (S1130). For example, the handover described with reference to FIGS. 8 to 10 may be performed.
2. 단말이 RRC 휴지 상태에 있는 경우.2. When the terminal is in the RRC idle state.
이하에서, RRC 휴지 상태의 단말에게 CRE 바이어스를 적용하여 셀 선택을 수행하는 방법에 대하여 설명한다.Hereinafter, a method of performing cell selection by applying a CRE bias to a UE in an RRC idle state will be described.
먼저, 셀 선택의 기준은 다음과 같다. First, the cell selection criteria are as follows.
여기서, Srxlev는 셀 선택 수신(Reception; RX) 레벨(level) 값이고, 단위는 데시벨(dB)이다. Squal은 셀 선택 품질(quality) 값이고, 단위는 데시벨이다. Qrxlevmeas는 측정된(measured) 셀 RX 레벨 값이고, Qqualmeas는 측정된 셀 품질 값이다. Qrxlevmin은 셀 내의 요구되는 RX 레벨의 최소값이고, 단위는 dBm이다. dBm은 실제 전력(milliwatt)을 dB(decibels) 단위로 변환한 것이다. Qqualmin은 셀 내의 요구되는 품질 레벨의 최소값이고, 단위는 dB이다. Qrxlevminoffset은 Srxlev 값의 결정에 사용되는 오프셋 값으로, 다른 사업자 망(Visited Public Land Mobile Network: VPLMN)에 캠프-온 하고 있을 경우, 원래 사업자 망(Public land Mobile Network: PLNM)을 주기적으로 탐색(search)함으로써 본인의 사업자 망에 오프셋 값을 주어 본인의 사업자 망에 접속하도록 하기 위한 오프셋 값이다. Qqualminoffset도 동일한 목적으로 Squal의 결정에 사용되는 오프셋 값이다. Pcompensation은 PEMAX-PpowerClass와 0중 더 큰 값인데, PEMAX은 상위 계층(layer)에 의하여 허락된 단말이 사용하는 상향링크 전송(Transmission: TX) 전력 레벨의 최대값을 말하고, PPowerClass는 단말 전력 클래스(class)에 따른 단말의 RF(Radio Frequency) 출력 전력의 최대값이다. Here, S rxlev is a cell selection reception (RX) level value and a unit is decibel (dB). S qual is a cell selection quality value and the unit is decibels. Q rxlevmeas is the measured cell RX level value and Q qualmeas is the measured cell quality value. Q rxlevmin is the minimum value of the required RX level in the cell, and the unit is dBm. dBm is the actual power (milliwatt) converted to dB (decibels). Q qualmin is the minimum of the required quality level in the cell and is in dB. Q rxlevminoffset is an offset value used to determine the S rxlev value, and periodically searches for the original land network (PLNM) when camping on another site (VLMN). By performing a search, the offset value is given to the user's network so that the user's network can be accessed. Q qualminoffset is also an offset value used to determine S qual for the same purpose. P compensation is the larger value of PEMAX-P powerClass and 0, PEMAX is the maximum value of the uplink Transmission (TX) power level used by the terminal allowed by the upper layer, P PowerClass is the terminal The maximum value of the RF (Radio Frequency) output power of a terminal according to a power class.
그리고, 셀 재선택의 기준은 다음과 같다. The cell reselection criteria are as follows.
여기서, Qmeas는 셀 재선택에 사용되는 RSRP 측정 값(quantity)이고, Qoffset은 인트라-주파수 셀 재선택을 하는 경우에 대하여, Qoffsets,n이 존재하면 Qoffsets,n값이고, 그렇지 않다면 0이다. 또한, Qoffset은 인터-주파수 셀 재선택을 하는 경우에 대하여 Qoffsets,n이 존재하면 Qoffsets,n와 Qoffsetfrequency 값의 합이고, 그렇지 않다면 Qoffsetfrequency 값을 갖는다. 여기서, Qoffset 값은 셀 재선택 과정에 있어서 인접 셀의 RSRP 측정 값에 추가적으로 적용하는 오프셋 값을 말한다. Qoffsets,n 은 서빙셀과 네이버셀 사이의 오프셋이다. 상기 Qoffsets,n값은 -24dB 내지 24dB의 값을 가질 수 있으며 2dB단위로 설정 가능하다. Qoffsetfrequency 는 인터-주파수 셀 재선택을 할 때(하나의 기지국에서도 주파수 별로 운용이 다르게 되므로, 주파수를 옮겨가는 것도 핸드오버, 재선택의 개념이 존재한다), 쓰일 수 있는 주파수 스페시픽(specific) 오프셋으로, LTE의 E-UTRAN(Evolved Universal Terrestrial Radio Access Network)에서 주파수마다 우선순위를 주기 위하여 쓰이는 변수이다. 예를 들어, 선호주파수 대역에 사용자가 몰리는 것을 막기 위하여 이 오프셋 값을 이용하여 부하 균형을 시킬 수 있다. 따라서 상기 R값 즉, Rs 및 Rn 값들을 모두 포함하여 R값이 높을수록 단말은 셀 재선택 시 우선적으로 해당 셀을 선택하게 된다.Here, Q meas is the RSRP measurement value (quantity) to be used in the cell reselection, Qoffset is intra- If a case that the frequency cell reselection, Qoffset s, n is present, and Qoffset s, n value, and if not 0 to be. Also, Qoffset inter-frequency cell when the Qoffset s with respect to the case of reselection, n present the sum of the Qoffset s, n and Q offsetfrequency value, otherwise has a Q value offsetfrequency. Here, the Qoffset value refers to an offset value additionally applied to the RSRP measurement value of the neighbor cell in the cell reselection process. Qoffset s, n is an offset between the serving cell and the neighbor cell. The Qoffset s, n value may have a value of −24 dB to 24 dB and may be set in units of 2 dB. Q offsetfrequency can be used when inter-frequency cell reselection (because one base station operates differently for each frequency, there is a concept of handover and reselection). ) Offset, which is a variable used to give priority to each frequency in the Evolved Universal Terrestrial Radio Access Network (E-UTRAN) of LTE. For example, this offset can be used to balance the load to prevent the user from being concentrated in the preferred frequency band. Therefore, the higher the R value including both the R value, that is, R s and R n values, the terminal preferentially selects the corresponding cell when the cell is reselected.
한편, 본 발명에서 고려하는 RSRQ에 대한 정의는 다음과 같다.Meanwhile, the definition of RSRQ considered in the present invention is as follows.
본 발명이 적용되는 LTE 시스템에서 RSRQ은 N*RSRP/(E-UTRA carrier RSSI)로 표현할 수 있으며, 상기 N은 E-UTRA(Evolved Universal Terrestrial Radio Access) 케리어 RSSI 측정 주파수 대역내의 모든 RB(resource block)들의 개수를 의미한다. 일반적으로 하나의 셀의 다운링크 주파수 대역폭이 될 수 있다. In the LTE system to which the present invention is applied, the RSRQ may be expressed as N * RSRP / (E-UTRA carrier RSSI), where N is an Evolved Universal Terrestrial Radio Access (E-UTRA) carrier RSSI measurement block in all RBs in a frequency band ) Means the number. In general, it may be the downlink frequency bandwidth of one cell.
또한 E-UTRA carrier RSSI(Received Signal Strength Indicator)은 상기 RSSI 측정 주파수에서 안테나 포트 0을 통해 전송되는 신호들 중 RS를 포함하고 있는 OFDM 심볼들에 대하여 상기 OFDM 심볼들 전체에 받은 신호의 선형적 평균 값을 의미한다. 상기 RSSI는 인접 채널의 간섭, 열 잡음 등을 모두 포함하는 값이다. 만약 단말이 상위 계층으로부터 상기 RSRQ 측정을 위한 서브프레임을 지시를 받은 경우 (예를 들어 eNB로부터 RSRQ 측정가능 서브프레임과 RSRQ 측정불가 서브프레임을 구분하는 정보를 수신한 경우), 단말은 RSSI 측정 시 RS를 포함하고 있는 OFDM 심볼들만이 아닌 지시된 서브프레임의 모든 OFDM 심볼들에 대하여 측정한다. 상기 측정한 RSRQ 값은 RRC 휴지(idle) 모드 및 RRC 연결(connected) 모드에 적용될 수 있으며 각 모드별로 현재 서빙셀과 동일한 주파수 대역 및 상이한 주파수 대역에 대한 측정 시에도 적용될 수 있다. 상기 RSRQ 값은 UE의 안테나 연결부(antenna connector)에서 측정한다.In addition, the E-UTRA carrier RSSI (Received Signal Strength Indicator) is a linear average of signals received on all OFDM symbols with respect to OFDM symbols including RS among the signals transmitted through antenna port 0 at the RSSI measurement frequency. It means the value. The RSSI is a value that includes both interference and thermal noise of adjacent channels. If the UE receives an indication of the subframe for the RSRQ measurement from a higher layer (for example, when the UE receives information for distinguishing between the RSRQ measurable subframe and the RSRQ non-measurable subframe), the UE at the RSSI measurement All OFDM symbols of the indicated subframe are measured, not just the OFDM symbols including the RS. The measured RSRQ value may be applied to the RRC idle mode and the RRC connected mode, and may also be applied to the same frequency band and different frequency band as the current serving cell for each mode. The RSRQ value is measured at an antenna connector of the UE.
본 발명에서는 상기 오프셋(Qoffsets,n) 값의 절대 값이 미리 정해진 특정 값 또는 브로드캐스팅채널을 통해 전송된 임계치를 초과하는 값을 가짐을 확인한 경우, 매크로 셀 또는 피코 셀 내 단말은 상위 계층으로부터 상기 RSRQ 측정을 위한 서브프레임을 지시를 받은 것으로 간주하고, 휴지 모드 단말은 RSRQ 측정 시 RSRQ 측정이 지시된 서브프레임의 모든 OFDM 심볼에서 RSSI를 측정하는 동작을 시작한다. 만일 단말이 기지국(eNB)으로부터 RSRQ 측정가능 서브프레임과 RSRQ 측정불가 서브프레임을 구분하는 정보가 확보되어 있지 않은 경우, 단말은 모든 서브프레임에 대하여 RSRQ 측정이 지시되었다고 판단한다. 또한 상기 단말은 휴지 모드를 위한 TDM(Time Divisino Multiplexing) eICIC(enhanced Inter Cell Interference Coordination) 모드를 활성화 할 수 있다. 또한 레이어(layer) 1(물리계층)에서 RSRP 및/또는 RSRQ를 측정하기 위해 단말 내부에서 구성할 수 있는 RRM 측정 주기를 변경할 수 있다. 상기 측정주기는 서브프레임 단위로 설정된다. 상기 RRM 측정 주기 변경 시 FDD의 경우 40ms의 배수가 아닌 주기로 변경하며, TDD의 경우 20ms 및 70ms 및 50ms의 배수가 아닌 주기로 변경한다.In the present invention, when it is confirmed that the absolute value of the offset (Qoffset s, n ) value has a predetermined value or a value exceeding a threshold transmitted through a broadcasting channel, the terminal in the macro cell or pico cell is determined from an upper layer. It is assumed that the subframe for the RSRQ measurement is received, and the idle mode UE starts measuring the RSSI in all OFDM symbols of the subframe in which the RSRQ measurement is indicated during the RSRQ measurement. If the UE does not have information for distinguishing between the RSRQ measurable subframe and the RSRQ non-measurable subframe from the eNB, the UE determines that RSRQ measurement has been indicated for all subframes. In addition, the terminal may activate a Time Divisino Multiplexing (TDM) enhanced Inter Cell Interference Coordination (eICIC) mode. In addition, in order to measure RSRP and / or RSRQ in Layer 1 (physical layer), an RRM measurement cycle that can be configured in the terminal may be changed. The measurement period is set in subframe units. When the RRM measurement cycle is changed, the FDD is changed to a cycle other than a multiple of 40 ms, and the TDD is changed to a cycle that is not a multiple of 20 ms and 70 ms and 50 ms.
상기 미리 정해진 특정 값은 고정적인 값으로 설정하는 것으로 5dB 또는 10dB 또는 15dB 또는 20dB 중 하나의 값으로 설정될 수 있다. 또한 브로드캐스팅 채널을 통해 전송되는 임계치는 SIB4를 통해 전송될 수 있으며 다음 표 2와 같이 구성될 수 있다.The predetermined specific value may be set to a fixed value, and may be set to one of 5 dB or 10 dB or 15 dB or 20 dB. In addition, the threshold transmitted through the broadcasting channel may be transmitted through SIB4 and may be configured as shown in Table 2 below.
표 2
TABLE 2
SystemInformationBlockType4 ::= SEQUENCE { |
..., |
threshTDMeICIC ReselectionThreshold, OPTIONAL, -- Need ON |
..., |
} |
SystemInformationBlockType4 :: = SEQUENCE { |
..., |
threshTDMeICIC ReselectionThreshold, OPTIONAL,-Need ON |
..., |
} |
여기서 상기 ReselectionThreshold 값은 0 내지 31의 값을 갖는 정수로 표현될 수 있으며 실제 적용 값은 상기 ReselectionThreshold 값 그대로 적용되거나 N배로 설정된 값이 될 수도 있다. 예를 들어 ReselectionThreshold 값이 5이고 N이 2인 경우 실제로 적용되는 값은 5*2=10dB 값이 된다. 만일 상기 값이 설정되어 있지 않다면 초기값으로 5dB 또는 10dB 또는 15dB 또는 20dB 중 하나의 값이 설정될 수 있다.Here, the ReselectionThreshold value may be expressed as an integer having a value of 0 to 31, and the actual application value may be applied as it is or set to N times. For example, if the ReselectionThreshold value is 5 and N is 2, the actual value applied is 5 * 2 = 10dB. If the value is not set, one of 5 dB or 10 dB or 15 dB or 20 dB may be set as an initial value.
예를 들어, 매크로셀 또는 피코셀을 서빙셀로 설정한 단말의 경우 다음과 같이 동작할 수 있다. 우선 단말은 서빙셀로부터 수신한 브로드캐스팅 채널의 정보를 확인한다. 상기 브로드캐스팅 채널로 전송된 정보 중에 네이버셀에 대한 Qoffsets,n 값이 존재하는 지 확인한다. 만일 상기 값이 존재하지 않은 Qoffsets,n 네이버셀의 값은 0으로 설정한다. 만일 특정 네이버셀에 대한 Qoffsets,n의 절대 값이 임계치 이상인 네이버셀에 대한 정보가 적어도 하나 이상 확인되면 단말은 상위 계층으로부터 상기 RSRQ 측정을 위한 서브프레임을 지시를 받은 것으로 간주하고 휴지 모드에서 RSRQ 측정 시 RSRQ 측정이 지시된 서브프레임의 모든 OFDM 심볼에서 RSSI를 측정하는 동작을 시작한다.For example, a terminal configured to set a macro cell or a pico cell as a serving cell may operate as follows. First, the terminal checks the information of the broadcasting channel received from the serving cell. It is checked whether there is a Qoffset s, n value for a neighbor cell among the information transmitted through the broadcasting channel. If the value does not exist, the value of Qoffset s, n neighbor cells is set to zero. If at least one piece of information on a neighbor cell whose absolute value of Qoffset s, n for a particular neighbor cell is greater than or equal to a threshold value is identified, the UE regards the subframe for measuring the RSRQ from an upper layer and receives the RSRQ in the idle mode. In the measurement, an operation of measuring RSSI in all OFDM symbols of a subframe indicated by RSRQ measurement is started.
또한 본 발명에서는 매크로셀 또는 피코셀 또는 그에 준하는 셀을 서빙셀로 설정한 단말이 펨토 셀과 같은 CSG 셀이 인접 셀에 존재함을 확인한 경우, 단말은 상위 계층으로부터 상기 RSRQ 측정을 위한 서브프레임을 지시를 받은 것으로 간주하고 휴지 모드에서 RSRQ 측정 시 RSRQ 측정이 지시된 서브프레임의 모든 OFDM 심볼에서 RSSI를 측정하는 동작을 시작한다. 만일 단말이 기지국(eNB)으로부터 RSRQ 측정가능 서브프레임과 RSRQ 측정불가 서브프레임을 구분하는 정보가 확보되어 있지 않은 경우, 단말은 모든 서브프레임에 대하여 RSRQ 측정이 지시되었다고 판단한다. 또한 상기 단말은 휴지 모드를 위한 TDM eICIC 모드를 활성화 할 수 있다. 또한 레이어 1(물리계층)에서 RSRP 및/또는 RSRQ를 측정하기 위해 단말 내부에서 구성할 수 있는 RRM 측정 주기를 변경할 수 있다. 상기 측정주기는 서브프레임 단위로 설정된다. 상기 RRM 측정 주기 변경 시 FDD의 경우 40ms의 배수가 아닌 주기로 변경하며, TDD의 경우 20ms 및 70ms 및 50ms의 배수가 아닌 주기로 변경한다.In addition, in the present invention, when the UE which sets the macro cell or the pico cell or the cell corresponding thereto as the serving cell confirms that the CSG cell such as the femto cell exists in the neighbor cell, the UE performs subframes for the RSRQ measurement from an upper layer. It is assumed that the indication is received, and when the RSRQ measurement is performed in the idle mode, the operation of measuring the RSSI in all OFDM symbols of the indicated subframe RSRQ measurement is started. If the UE does not have information for distinguishing between the RSRQ measurable subframe and the RSRQ non-measurable subframe from the eNB, the UE determines that RSRQ measurement has been indicated for all subframes. In addition, the terminal may activate the TDM eICIC mode for the idle mode. In addition, in order to measure RSRP and / or RSRQ in Layer 1 (physical layer), an RRM measurement cycle that can be configured in the terminal may be changed. The measurement period is set in subframe units. When the RRM measurement cycle is changed, the FDD is changed to a cycle other than a multiple of 40 ms, and the TDD is changed to a cycle that is not a multiple of 20 ms and 70 ms and 50 ms.
휴지 모드 단말은 현재 캠프-온 한 셀, 즉 서빙 셀에서 브로드캐스팅 채널을 통해 제공되는 정보 중 CSG셀들의 물리적 셀 ID(physical cell ID : PCI) 값의 범위를 확인할 수 있다.The idle mode terminal may check a range of physical cell ID (PCI) values of CSG cells among information currently provided through a broadcasting channel in a camp-on cell, that is, a serving cell.
표 3
TABLE 3
SystemInformationBlockType4 ::= SEQUENCE { |
..., |
csg-PhysCellIdRange PhysCellIdRange |
..., |
} |
SystemInformationBlockType4 :: = SEQUENCE { |
..., |
csg-PhysCellIdRange PhysCellIdRange |
..., |
} |
상기 csg-PhysCellIdRange 필드는 상기 브로드캐스팅 채널을 전송하는 셀이 CSG셀이 아닌 경우, 항상 존재하는 필드가 아닐 수 있다. 예를 들어, 해당 셀 내 및 상기 셀을 중심으로 특정 범위내에 CSG셀이 존재하지 않는 경우, 상기 필드는 존재하지 않을 수 있다. 그러나 CSG의 경우, 상기 csg-PhysCellIdRange 필드는 브로드캐스팅 채널에 항상 포함되어야 한다.The csg-PhysCellIdRange field may not always be present when the cell transmitting the broadcasting channel is not a CSG cell. For example, if a CSG cell does not exist in a corresponding range within the cell and around the cell, the field may not exist. However, in the case of CSG, the csg-PhysCellIdRange field should always be included in the broadcasting channel.
PCI의 범위값을 정의하는 PhysCellIdRange 필드는 다음과 같이 정의될 수 있다.The PhysCellIdRange field defining the range value of PCI may be defined as follows.
표 4
Table 4
PhysCellIdRange ::= SEQUENCE { |
start PhysCellId, |
range ENUMERATED { |
n4, n8, n12, n16, n24, n32, n48, n64, n84, |
n96, n128, n168, n252, n504, spare2, |
spare1} OPTIONAL -- Need OP |
} |
PhysCellIdRange :: = SEQUENCE { |
start PhysCellId, |
range ENUMERATED { |
n4, n8, n12, n16, n24, n32, n48, n64, n84, |
n96, n128, n168, n252, n504, spare2, |
spare1} OPTIONAL-Need OP |
} |
여기서, n4 와 같은 필드값의 의미는 시작(start) 값에서부터 연속적인 PCI 범위값의 개수를 나타낸다. 예를 들어, 시작 PCI 값이 52이고 범위(range) 값이 n8인 경우, CSG셀들이 갖을 수 있는 PCI 값은 52, 53, … , 59가 된다.Here, the meaning of a field value such as n4 indicates the number of consecutive PCI range values from the start value. For example, if the starting PCI value is 52 and the range value is n8, the PCI values that CSG cells may have are 52, 53,... , 59.
휴지 모드 단말은 인접셀들의 RSRP를 측정한다. 이 때 각 인접셀을 구분하기 위하여 동기채널에 포함되어 있는 PCI 정보를 확인하고 상기 확인된 PCI 정보를 이용하여 RSRP를 측정하게 된다. 이때 상기 확인된 PCI정보가 상기 브로드캐스팅된 정보를 통해 CSG 셀들이 갖는 PCI 값의 범위내에 존재하는 값인지를 확인한다. 만일 상기 PCI 값이 CSG 셀이라고 판단되는 PCI값으로 확인되면 휴지 모드 단말은 상위 계층으로부터 상기 RSRQ 측정을 위한 서브프레임을 지시를 받은 것으로 간주하고 휴지 모드에서 RSRQ 측정 시 RSRQ 측정이 지시된 서브프레임의 모든 OFDM 심볼에서 RSSI를 측정하는 동작을 시작한다.The idle mode terminal measures RSRP of neighbor cells. At this time, in order to distinguish each adjacent cell, PCI information included in a synchronization channel is checked and RSRP is measured using the checked PCI information. At this time, it is checked whether the checked PCI information exists within a range of PCI values of CSG cells through the broadcasted information. If the PCI value is determined to be a PCI value that is determined to be a CSG cell, the idle mode UE considers that the subframe for the RSRQ measurement is received from a higher layer, and the RSRQ measurement is indicated when the RSRQ measurement is instructed in the idle mode. The operation of measuring RSSI in all OFDM symbols starts.
또한, 본 발명에서는 상기 오프셋(Qoffsets,n) 값을 CRE 바이어스 값으로 이용하고자 한다. In addition, the present invention intends to use the offset (Qoffsets, n) value as a CRE bias value.
이하에서, 본 발명에 따른 CRE 바이어스를 적용하여 셀 선택하는 방법을 설명한다.Hereinafter, a method of selecting a cell by applying the CRE bias according to the present invention will be described.
RRC 휴지 상태 단말이 셀 선택을 하고자 할 때, CRE 바이어스를 시스템 정보를 통해서 전송할 수 있다. 셀 선택을 하는 단말에게 CRE 바이어스 값을 주기 위한 변수가 추가적으로 셀 선택 기준에 포함될 수 있다. 이 변수를 시스템 정보(예를 들어, SIB4(System Information Block 4))를 통해서 전송할 수 있다. 여기서, CRE 바이어스 값을 주기 위하여 추가되는 변수를 셀 선택 오프셋(Offset_Cell_selection)이라고 할 수 있다. 즉, 셀 선택 오프셋이라는 변수는 CRE 바이어스를 적용하기 위하여 RRC 휴지 상태의 단말에 이용하는 오프셋 값이다.When the RRC idle state UE wants to select a cell, the CRE bias may be transmitted through system information. A variable for giving the CRE bias value to the UE for cell selection may additionally be included in the cell selection criteria. This variable may be transmitted through system information (for example, System Information Block 4 (SIB4)). Herein, a variable added to give a CRE bias value may be referred to as a cell selection offset (Offset_Cell_selection). That is, the variable called cell selection offset is an offset value used for the UE in the RRC idle state to apply the CRE bias.
일 예로, 셀 선택 오프셋은 상기 수학식 1에서 설명한 Qrxlevmeas 또는 Qqualmeas 값에 더해지는 오프셋 값으로 정의할 수 있다. 또한, 셀 선택 오프셋은 2가지의 값을 가질 수도 있다. 예를 들어, 단말의 카테고리를 기준으로 로우-엔드 단말을 위한 CRE 바이어스 값과 하이-엔드 단말을 위한 CRE 바이어스 값을 모두 포함하여 전송할 수 있다. 이때, 셀 선택 오프셋을 수신한 단말은 자신의 카테고리에 맞는 오프셋 값을 선택하여 CRE 바이어스 값으로 적용하여 셀 선택을 할 수 있다.For example, the cell selection offset may be defined as an offset value added to the Q rxlevmeas or Q qualmeas value described in Equation 1 above. In addition, the cell selection offset may have two values. For example, the CRE bias value for the low-end terminal and the CRE bias value for the high-end terminal may be included and transmitted based on the category of the terminal. In this case, the terminal receiving the cell selection offset may select an offset value corresponding to its category and apply the CRE bias value to select the cell.
또는 기지국이 MME로부터 수신하는 RFSP 인덱스를 기준으로 단말의 CRE 바이어스 값을 변경할 수 있다. RFSP 인덱스는 단말-특정적이며, MME가 HSS로부터 수신한 값이다. 변경된 CRE 바이어스 값을 수신한 단말은 이 값을 기준으로 셀 재선택을 수행할 수 있다. Alternatively, the base station may change the CRE bias value of the terminal based on the RFSP index received from the MME. The RFSP index is UE-specific and is a value received by the MME from the HSS. Upon receiving the changed CRE bias value, the UE may perform cell reselection based on this value.
도 12는 본 발명에 따라서 셀 선택 오프셋을 이용하여 셀을 재선택하는 과정을 나타낸 흐름도이다. 단말은 MUE 또는 PUE일 수 있는데, 도 12는 단말이 MUE일 때의 실시 예로써, MUE가 매크로 기지국으로부터 피코 기지국으로 셀 재선택을 하는 것에 관한 실시 예이다. 12 is a flowchart illustrating a process of reselecting a cell using a cell selection offset according to the present invention. The UE may be a MUE or a PUE. FIG. 12 is an embodiment when the UE is a MUE. The UE may perform cell reselection from a macro base station to a pico base station.
시스템 정보 중 SIB4와 SIB5(System Information Block 5)는 단말이 캠프-온 한 상태에서 수신할 수 있는 것으로써, 인접 셀에 대한 정보가 들어 있다. SIB4는 인트라-주파수 인접 셀의 정보를 포함하며, SIB5는 인터-주파수 인접 셀의 정보를 포함한다. SIB4 and SIB5 (System Information Block 5) of the system information can be received while the terminal is camped on, and includes information on neighbor cells. SIB4 includes information of an intra-frequency neighbor cell, and SIB5 includes information of an inter-frequency neighbor cell.
이러한 SIB4 또는 SIB5와 같은 시스템 정보를 통해 셀 선택 오프셋을 전송할 수 있다. 일 예로, 상기 수학식 2에서 설명한 Qoffset 값이 CRE 바이어스 값을 적용하기 위한 셀 선택 오프셋으로 이용될 수 있다. Qoffest은 셀 재선택 과정에 있어서 인접 셀의 RSRP 측정 값에 추가적으로 적용하는 오프셋 값을 말한다. The cell selection offset may be transmitted through system information such as SIB4 or SIB5. For example, the Qoffset value described in Equation 2 may be used as a cell selection offset for applying a CRE bias value. Qoffest refers to an offset value additionally applied to RSRP measurement values of neighbor cells in a cell reselection process.
도 12를 참고하면, 단말(MUE)은 매크로 기지국에 캠프-온 한다(S1210). 캠프-온 한 단말은 캠프-온 한 서빙 셀(여기서는, 매크로 셀)로부터 시스템 정보를 수신한다(S1220). 캠프-온을 한 상태는 셀 선택을 한 상태이고, 선택한 셀이 서빙 셀이 된다. 단말은 서빙 셀로부터 SIB4 또는 SIB5와 같은 시스템 정보를 수신하게 된다. Referring to FIG. 12, the terminal UE camps on the macro base station (S1210). The camp-on terminal receives system information from the camp-on one serving cell (here, the macro cell) (S1220). The camp-on state is a cell selection state, and the selected cell becomes a serving cell. The terminal receives system information such as SIB4 or SIB5 from the serving cell.
서빙 셀의 기지국(여기서, 매크로 기지국)은 시스템 정보를 통하여 셀 선택 오프셋 값을 전송한다. 단말은 시스템 정보를 통해 수신한 셀 선택 오프셋 값을 적용하여 서빙 셀과 네이버 셀의 신호 세기를 측정하고 비교한다(S1230).The base station (here, the macro base station) of the serving cell transmits a cell selection offset value through system information. The UE measures and compares the signal strengths of the serving cell and the neighbor cell by applying the cell selection offset value received through the system information (S1230).
상기 측정 결과를 기준으로 셀 재선택한다(S1240). 예를 들어, 피코 셀과 같은 마이크로 셀의 신호 세기를 Smc, 매크로 셀의 신호 세기를 Smm, 셀 선택 오프셋을 Qoffset이라 표시할 때, "Smc+Qoffset > Smm"가 소정 시간 동안 유지되면, 매크로 셀에 캠프-온하고 있던 MUE는 피코 셀과 같은 마이크로 셀로 셀 재선택을 수행할 수 있다. 상기 수신한 셀 선택 오프셋 값으로 인하여 네이버 셀과 서빙 셀의 측정 값과 비교 결과가 다르게 함으로써, 가장 적합한 셀이 네이버 셀이 될 경우 셀 재선택 과정이 진행될 수 있다.The cell is reselected based on the measurement result (S1240). For example, when the signal strength of a micro cell such as a pico cell is expressed as Smc, the signal intensity of a macro cell as Smm, and the cell selection offset is Qoffset, when "Smc + Qoffset> Smm" is maintained for a predetermined time, the macro cell The MUE that has been camped on may perform cell reselection with a micro cell such as a pico cell. As a result of comparing the measured values of the neighbor cell and the serving cell is different due to the received cell selection offset value, the cell reselection process may be performed when the most suitable cell becomes the neighbor cell.
도 13은 본 발명에 따라서 셀 선택 오프셋을 이용하여 셀 재선택 과정을 나타낸 다른 예이다. 단말이 PUE일 때의 실시예로써, PUE가 매크로 기지국으로부터 피코 기지국으로 셀 재선택을 하는 것에 관한 실시예이다.13 illustrates another example of a cell reselection process using a cell selection offset according to the present invention. When the terminal is a PUE, the PUE is an embodiment for cell reselection from the macro base station to the pico base station.
도 13을 참고하면, 단말(PUE)은 피코 셀에 캠프-온 한다(S1310). 캠프-온 한 단말은 캠프-온 한 서빙 셀(여기서, 피코 셀)로부터 시스템 정보를 수신한다(S1320). 서빙 셀의 기지국은 시스템 정보를 통하여 셀 선택 오프셋 값을 전송한다. 단말은 시스템 정보를 통해 수신한 셀 선택 오프셋 값을 적용하여 서빙 셀과 네이버 셀의 신호 세기를 측정하고 비교한다(S1330). 상기 측정 결과를 기준으로 셀 재선택 과정 수행한다. Referring to FIG. 13, the terminal PUE camps on a pico cell (S1310). The camp-on terminal receives system information from the camp-on one serving cell (here, the pico cell) (S1320). The base station of the serving cell transmits a cell selection offset value through system information. The terminal measures and compares the signal strengths of the serving cell and the neighbor cell by applying the cell selection offset value received through the system information (S1330). The cell reselection process is performed based on the measurement result.
예를 들어, 피코 셀과 같은 마이크로 셀의 신호 세기를 Smc, 매크로 셀의 신호 세기를 Smm, 셀 선택 오프셋 값을 Qoffset이라 표시할 때, "Smc+Qoffset < Smm"가 소정 시간 동안 유지되면, 피코 셀과 같은 마이크로 셀에 캠프-온하고 있던 PUE는 매크로 셀로 셀 재선택을 수행할 수 있다. 상기 수신한 셀 선택 오프셋 값으로 인하여 네이버 셀과 서빙 셀의 측정 값과 비교 결과가 다르게 함으로써, 가장 적합한 셀이 네이버 셀이 될 경우 셀 재선택 과정이 진행될 수 있다.For example, when the signal strength of a micro cell, such as a pico cell, is represented by Smc, the macro cell signal strength is Smm, and the cell selection offset value is Qoffset, when "Smc + Qoffset <Smm" is maintained for a predetermined time, The PUE camping on the same micro cell as the cell may perform cell reselection to the macro cell. As a result of comparing the measured values of the neighbor cell and the serving cell is different due to the received cell selection offset value, the cell reselection process may be performed when the most suitable cell becomes the neighbor cell.
도 14는 본 발명의 일 실시예에 따른 기지국의 동작을 나타낸 흐름도이다.14 is a flowchart illustrating the operation of a base station according to an embodiment of the present invention.
기지국은 단말 및 네트워크로부터 측정 결과 및 단말 성능 등 단말 및 네트워크의 정보를 수신한다(S1410). 부하 균형 및/또는 단말의 측정 결과 및/또는 단말 성능을 고려하여, 기지국은 단말의 CRE 바이어스 값의 수정 여부를 결정한다(S1420). CRE 바이어스 값은 디폴트(default)로 셀 특정적인 값 또는 0으로 설정되어 있다. The base station receives information of the terminal and the network, such as measurement results and terminal performance from the terminal and the network (S1410). In consideration of the load balance and / or the measurement result and / or the terminal performance of the terminal, the base station determines whether to modify the CRE bias value of the terminal (S1420). The CRE bias value is set to cell-specific or zero by default.
예를 들어, 기지국은 셀 내 단말의 수가 많아지면 CRE 바이어스 값의 수정을 결정할 수 있다. 또는, 기지국은 단말의 채널 상태가 나빠지면, CRE 바이어스 값의 수정을 결정할 수 있다. 또는 단말 성능에 따라서 CRE 바이어스 값의 수정을 결정할 수 있다.For example, the base station may determine to modify the CRE bias value when the number of terminals in the cell increases. Or, if the channel state of the terminal worsens, the base station may determine to modify the CRE bias value. Alternatively, the correction of the CRE bias value may be determined according to the terminal performance.
상기 단말 성능은 예를 들어 단말의 상향링크/하향링크에 대한 송수신 가능 용량(예를 들어, 단말 내 메모리 크기)을 기준으로 구성된 단말 카테고리(category)가 될 수 있으며, 또는 해당 단말이 지원 가능한 주파수 대역이 될 수 있다. 이때 상기 지원 가능한 주파수 대역은 단일 서빙 셀 내의 상향링크 및 하향링크의 주파수 대역의 크기를 기준으로 설정할 수도 있으며 또는 다수의 서빙 셀이 구성된 경우, 해당 단말이 구성 가능한 서빙 셀의 개수 및 조합도 기준으로 설정될 수 있다. 상기 서빙 셀 조합은 연속적인 서빙 셀들에 대한 구성 가능 여부 및 비연속적인 서빙 셀들에 대한 구성 가능 여부를 포함한다. 이 때 상기 서빙 셀은 하향링크 요소 반송파만으로도 구성될 수 있으며 또는 하향링크 요소 반송파 및 상향링크 요소 반송파를 모두 포함할 수 있다.The terminal performance may be, for example, a terminal category configured based on a transmit / receive capacity for the uplink / downlink of the terminal (for example, a memory size in the terminal), or a frequency supported by the corresponding terminal. It can be a band. In this case, the supportable frequency band may be set based on the sizes of uplink and downlink frequency bands within a single serving cell, or when a plurality of serving cells are configured, based on the number and combination of serving cells configurable by the corresponding UE. Can be set. The serving cell combination includes configurability for continuous serving cells and continuity for discontinuous serving cells. In this case, the serving cell may consist of only a downlink component carrier or may include both a downlink component carrier and an uplink component carrier.
또한 상기 단말 성능은 해당 단말이 지원 가능한 최대 안테나 포트 개수가 될 수 있다. 이 때 상기 안테나 포트 개수는 하향링크와 상향링크를 구분하여 정의되며 각각 독립적으로 구성될 수 있다.In addition, the terminal performance may be the maximum number of antenna ports that the terminal can support. In this case, the number of antenna ports is defined by dividing downlink and uplink and may be configured independently.
또한 상기 단말 성능은 해당 단말이 지원 가능한 주파수 대역과 지원 가능한 최대 안테나 포트 개수의 조합으로 정의될 수 있다. 예를 들어, 해당 단말이 지원 가능한 주파수 대역은 서빙 셀 당 20MHz이고, 지원 가능한 최대 서빙 셀 수는 3개이며, 최대 안테나 포트 개수는 하향링크의 경우 8개, 상향링크의 경우 4개인 경우, 지원 가능한 주파수 대역과 지원 가능한 최대 안테나 포트 개수의 조합은 표 5와 같이 나타낼 수 있다. In addition, the terminal performance may be defined as a combination of a frequency band that the terminal can support and the maximum number of antenna ports that can be supported. For example, the frequency band that the terminal can support is 20 MHz per serving cell, the maximum number of serving cells that can be supported is three, and the maximum number of antenna ports is eight for downlink and four for uplink. The combination of the possible frequency band and the maximum number of antenna ports that can be supported can be shown in Table 5.
표 5
Table 5
CA 및 MIMO capability index | 최대 지원 가능 서빙셀 조합 | 최대 지원 가능 안테나 포트 개수 |
1 | 서빙 셀 1개 (1.4 ~ 20MHz) | 8개 |
2 | 연속 서빙 셀 2개 | 4개 |
3 | 비연속 서빙 셀 2개 | 2개 |
4 | 연속 서빙 셀 3개 | 4개 |
CA and MIMO capability index | Maximum Supported Serving Cell Combinations | Maximum Supported Antenna Ports |
One | 1 serving cell (1.4 to 20 MHz) | 8 |
2 | 2 continuous serving cells | Four |
3 | 2 | 2 |
4 | 3 continuous serving cells | Four |
단계 S1420에서 CRE 바이어스 값을 수정할 필요성이 없을 경우 다음 단계는 일어나지 않는다. CRE 바이어스 값을 수정하기로 결정되면, 기지국은 CRE 바이어스를 수정한다(S1430). 예를 들어, 단말 카테고리를 기준으로 CRE 바이어스 값을 다르게 설정할 경우, 단말 카테고리가 임의의 단계 이상(High-end, '하이-엔드')인 단말과 그 이하(Low-end, '로우-엔드')인 단말에게 다른 CRE 바이어스(bias) 값을 설정할 수 있다. 예를 들어 단말 카테고리가 다음 표 6과 같이 8개로 구성된 경우, 상기 단말이 단말 카테고리 4단계부터 8단계 사이의 성능으로 정의되는 경우, 하이-엔드로 구분되어 기지국은 단말에게 상기 하이-엔드에 대한 CRE 바이어스 값을 설정하고, 만일 상기 단말이 단말 카테고리 4단계 미만인 경우, 로우-엔드로 구분되어 기지국은 단말에게 로우-엔드에 대한 CRE 바이어스 값을 설정한다. If there is no need to modify the CRE bias value in step S1420, the next step does not occur. If it is determined to correct the CRE bias value, the base station corrects the CRE bias (S1430). For example, if the CRE bias value is set differently based on the terminal category, the terminal whose terminal category is higher than or equal to a certain level (high-end, 'high-end') and lower (low-end, 'low-end') Other CRE bias values can be set for the UE. For example, if the terminal category is composed of eight as shown in Table 6, when the terminal is defined as the performance between the terminal category step 4 to step 8, it is divided into high-end base station to the terminal for the high-end If the CRE bias value is set, and the UE is less than the UE category 4 step, it is divided into low-ends and the base station sets a CRE bias value for the low-end to the UE.
표 6
Table 6
UE Category | Max. Data rate(DL/UL)(Mbps) | DL | UL | |||||
Max. num. of DL-SCH TB bits per TTI | Max. num. of DL-SCH per TB per TTI | Total num. of soft channel bits | Max. num. of spatial layers | Max. num of UL-SCH TB bits per TTI | Max. num of UL-SCH per TB per TTI | Support for 64QAM | ||
Category 1 | 10Mbps / 5Mbps | 10296 | 10296 | 250368 | 1 | 5160 | 5160 | No |
Category 2 | 50Mbps / 25Mbps | 51024 | 51024 | 1237248 | 2 | 25456 | 25456 | No |
Category 3 | 100Mbps / 50Mbps | 102048 | 75376 | 1237248 | 2 | 51024 | 51024 | No |
Category 4 | 150Mbps / 50Mbps | 150752 | 75376 | 1827072 | 2 | 51024 | 51024 | No |
Category 5 | 300Mbps / 75Mbps | 299552 | 149776 | 3667200 | 4 | 75376 | 75376 | Yes |
Category 6 | 300Mbps / 50Mbps | 301504 | 149776 (4layers)75376 (2layers) | 3667200 | 2 or 4 | 51024 | 51024 | No |
Category 7 | 300Mbps / 150 or 100Mbps | 301504 | 149776 (4layers)75376 (2layers) | 3667200 | 2 or 4 | 102048 | 51024 | No |
Category 8 | 1200Mbps / 600 Mbps | 2998560 | 299856 | 35982720 | 8 | 1497760 | 149776 | Yes |
UE Category | Max. Data rate (DL / UL) (Mbps) | DL | UL | |||||
Max. num. of DL-SCH TB bits per TTI | Max. num. of DL-SCH per TB per TTI | Total num. of soft channel bits | Max. num. of spatial layers | Max. num of UL-SCH TB bits per TTI | Max. num of UL-SCH per TB per TTI | Support for | ||
Category | ||||||||
1 | 10 Mbps / 5 Mbps | 10296 | 10296 | 250368 | One | 5160 | 5160 | No |
| 50 Mbps / 25 Mbps | 51024 | 51024 | 1237248 | 2 | 25456 | 25456 | No |
Category 3 | 100 Mbps / 50 Mbps | 102048 | 75376 | 1237248 | 2 | 51024 | 51024 | No |
Category 4 | 150 Mbps / 50 Mbps | 150752 | 75376 | 1827072 | 2 | 51024 | 51024 | No |
Category 5 | 300 Mbps / 75 Mbps | 299552 | 149776 | 3667200 | 4 | 75376 | 75376 | Yes |
Category 6 | 300 Mbps / 50 Mbps | 301504 | 149776 (4layers) 75376 (2layers) | 3667200 | 2 or 4 | 51024 | 51024 | No |
Category 7 | 300 Mbps / 150 or 100 Mbps | 301504 | 149776 (4layers) 75376 (2layers) | 3667200 | 2 or 4 | 102048 | 51024 | No |
Category 8 | 1200 Mbps / 600 Mbps | 2998560 | 299856 | 35982720 | 8 | 1497760 | 149776 | Yes |
기지국은 수정된 CRE 바이어스를 단말에게 전송한다(S1440). 수정된 CRE 바이어스는 셀 특정 메시지 또는 단말 특정 메시지를 통해 전송될 수 있다.The base station transmits the modified CRE bias to the terminal (S1440). The modified CRE bias may be transmitted through a cell specific message or a terminal specific message.
도 15는 본 발명이 적용되는 시스템에서 CSG 셀이 존재하는 경우의 일 실시예를 개략적으로 설명하는 순서도이다. CSG 셀에 인접한 사용자의 단말이 CSG 셀 접속이 허용되지 않는 단말인 경우에, 기지국은 이 사용자의 단말에 대한 CRE 바이어스를 조정하여 해당 단말이 CSG 셀로부터의 간섭에 미리 대응할 수 있도록 조치할 수 있다.15 is a flowchart schematically illustrating an embodiment in which a CSG cell is present in a system to which the present invention is applied. If the UE of the user adjacent to the CSG cell is a UE that is not allowed to access the CSG cell, the base station may adjust the CRE bias for the UE of the user so that the UE may respond to interference from the CSG cell in advance. .
도 15를 참조하면, 서빙 셀은 (비허용) 단말의 인접 셀인 CSG 셀인지를 확인한다(S1510). 단말은 CSG 셀의 PCI를 보고 자신의 화이트 리스트(White list)에 CSG ID 여부를 확인하여 자신이 CSG 셀에 허용된 단말인지, 허용되지 않은 단말이지 여부를, 서빙 셀에 알려준다. 여기서, 화이트 리스트는, 단말이 자신이 들어갈 수 있는 셀들의 집합으로, 이는 상위 계층으로부터 수신된다. Referring to FIG. 15, the serving cell checks whether the serving cell is a CSG cell which is a neighbor cell of the (not allowed) (S1510). The UE checks the PCI of the CSG cell and checks the CSG ID on its white list to inform the serving cell of whether the UE is allowed in the CSG cell or not. Here, the white list is a set of cells that the terminal can enter, which is received from a higher layer.
단말의 인접 셀이 해당 단말의 접속이 허용되지 않는 CSG 셀인 것을 확인하면, 서빙 셀은 CSG 셀을 고려한 CRE 바이어스를 해당 단말에 전송한다(S1520). 서빙 셀은 CSG 셀에 접속이 허용되지 않는 단말에게만 CRE 바이어스를 전송함으로써, CRE 바이어스를 수신한 단말이 CSG 셀로부터 더 심한 간섭을 받기 전에 예방할 수 있도록 한다. 그 예방은 eICIC 기술을 도입하는 것으로, 허락되지 않은 사용자가 CSG 셀로 심한 간섭을 받기 전에, CSG 셀로부터의 간섭을 받는다는 것을 고의적으로 느끼게 하여 서빙 셀이 eICIC 기술을 일찍 측정의 제한(Measurement restriction: 예를 들어 CSG 셀의 ABS(Almost Blank Subframe)에서만 서빙 셀에 대한 측정을 수행함) 적용시키도록 할 수 있다. 여기서, ABS는 강한 셀(Aggressor cell)로부터 간섭을 받는 자원(Resource)를 보호하기 위하여 사용된다. ABS는 서브프레임을 통하여 전송되는 제어정보, 데이터 정보, 시그널링(채널측정 및 동기화 등을 위해 전송되는 신호들) 등의 전송 파워를 줄이거나 전송을 하지 않는 것이다. 물론 역 호환성(backwards compatibility)을 위해 단말에게 꼭 필요한 제어 정보 및 데이터 정보, 시그널링, 시스템 정보를 전송할 수 있어야 한다. 또한, ABS로써 MBSFN(Multimedia Broadcast Single Frequency Network) 서브프레임을 사용할 수도 있다.If it is confirmed that the neighbor cell of the terminal is a CSG cell that is not allowed to access the terminal, the serving cell transmits the CRE bias considering the CSG cell to the terminal (S1520). The serving cell transmits a CRE bias only to a terminal that is not allowed to access the CSG cell, thereby preventing the terminal receiving the CRE bias from receiving more interference from the CSG cell. The prevention is the introduction of eICIC technology, which deliberately feels that an unauthorized user is subjected to interference from the CSG cell before being severely interrupted by the CSG cell, thereby allowing the serving cell to measure eICIC technology early. For example, the measurement of the serving cell may be applied only to the ABS (Almost Blank Subframe) of the CSG cell. In this case, ABS is used to protect a resource that is interfered with by an aggressive cell. The ABS reduces or does not transmit power such as control information, data information, and signaling (signals transmitted for channel measurement and synchronization) transmitted through the subframe. Of course, it is necessary to transmit control information, data information, signaling, and system information necessary for the terminal for backwards compatibility. In addition, an ABS may use a multimedia broadcast single frequency network (MBSFN) subframe.
예컨대, 서빙 셀은 CSG 셀에 접속이 허용되지 않는 단말에게만 CRE 바이어스를 전송할 수 있다. 상기 CRE 바이어스는 0보다 큰 값이다. For example, the serving cell may transmit a CRE bias only to a terminal that is not allowed to access the CSG cell. The CRE bias is a value greater than zero.
또한, 서빙 셀은 CSG 셀에 접속이 허용되는 단말과 CSG 셀에 접속이 허용되지 않는 단말에 각각 다른 CRE 바이어스를 전송할 수도 있다.In addition, the serving cell may transmit different CRE biases to the UE that is allowed to access the CSG cell and the UE that is not allowed to access the CSG cell.
기지국은 CRE 바이어스를 단말에 전송함으로써, 일찍 단말에게 측정의 제한을 적용할 수 있도록 하여, 불필요한 핸드오버 요청, RLF 발생 등이 일어나지 않도록 방지할 수도 있다. By transmitting the CRE bias to the terminal, the base station can apply the measurement limitation to the terminal early, thereby preventing unnecessary handover requests, RLF generation, and the like.
서빙 셀은 다양한 방법으로 해당 단말이 CSG 셀에 접속할 수 있는 단말인지를 판단할 수 있다. The serving cell may determine whether the corresponding terminal is a terminal that can access the CSG cell in various ways.
CRE 바이어스는 단말 특정 메시지를 통해 전송될 수 있다. CRE 바이어스는 브로드캐스트 채널이나 공용(common) 채널을 통해 전송될 수 있다. CRE 바이어스는 전용(dedicated) 채널을 통해 전송될 수 있다. CRE 바이어스는 기존의 측정 과정에서 사용되는 변수가 이용될 수 있다. 이 변수는 셀 특정 메시지일 수도 있고 단말 특정 메시지일 수도 있다.The CRE bias may be transmitted through a terminal specific message. The CRE bias can be transmitted through a broadcast channel or a common channel. The CRE bias may be sent over a dedicated channel. The CRE bias may be a variable used in the existing measurement process. This variable may be a cell specific message or a terminal specific message.
단말은 채널 상태나 통신 품질 등과 관련된 측정(이하, '측정'이라 한다)을 수행하고 이를 서빙 셀에 보고 할 수 있다(S1530). 이때, 단말은 CRE 바이어스를 반영한 측정값을 서빙 셀에 보고한다. The UE may perform measurement (hereinafter, referred to as 'measurement') related to channel state or communication quality and report this to the serving cell (S1530). At this time, the terminal reports the measured value reflecting the CRE bias to the serving cell.
CRE 바이어스가 반영된 측정값을 수신한 서빙 셀은 단말이 CSG 셀로부터 간섭의 영향을 크게 받기 전에 미리, 단말이 수행하는 측정에 제한을 설정하는 명령을 단말에 전달할 수 있다(S1540). The serving cell receiving the measured value reflecting the CRE bias may transmit a command for setting a limit to the measurement performed by the UE in advance before the UE is greatly influenced by the interference from the CSG cell (S1540).
CRE 바이어스가 반영되지 않은 측정 값으로는 아직 CSG 셀로부터 간섭의 영향을 크게 받는 것을 아닌 상황이라고 하더라도, CRE 바이어스가 반영된 측정 값으로 판단하여 측정에 제한을 둘 필요가 있다고 판단한 경우에, 서빙 셀은 단말의 측정에 필요한 제한을 가할 수 있다. 예컨대, 서빙 셀은 단말에게 CSG 셀이 사용하는 하향링크 서브프레임 패턴 중, 간섭이 적게 일어나는 서브프레임상에서 측정을 수행하도록 측정을 제한할 수 있다. If the measurement value without the CRE bias is not yet significantly affected by the interference from the CSG cell, the serving cell determines that the measurement value needs to be limited by determining the measurement value with the CRE bias reflected. Restrictions necessary for the measurement of the terminal can be added. For example, the serving cell may limit the measurement to the UE to perform measurement on a subframe in which interference is low among the downlink subframe patterns used by the CSG cell.
단말의 측정이 간섭이 강하게 일어나고 있는 서브프레임상에서 수행되면, 측정의 신뢰도가 떨어지게 되고, 측정 보고를 받은 서빙 셀은 채널 상태나 통신 상태를 잘못 인식할 우려가 있다. 따라서, 단말이 CSG 셀에 들어가서 이미 CSG 셀의 간섭을 크게 받는 상황에서 측정의 제한을 두거나 필요한 조치를 하는 경우에는, 단말이 CSG 셀로부터의 간섭에 의해 RLF(Radio Link Failure) 상태에 빠질 우려가 있다. 따라서, 서빙 셀은 단말이 간섭의 영향을 받기 전에, 인접하는 CSG 셀로부터의 간섭을 고려하여 측정 제한을 설정하도록 할 수 있다.If the measurement of the UE is performed on a subframe in which interference is strongly occurring, the reliability of the measurement is deteriorated, and the serving cell receiving the measurement report may misrecognize a channel state or a communication state. Therefore, when the UE enters the CSG cell and already receives a large amount of interference from the CSG cell, in case of limiting the measurement or taking necessary measures, the UE may be in a RLF (Radio Link Failure) state due to interference from the CSG cell. have. Therefore, the serving cell may allow the UE to set measurement limits in consideration of interference from neighboring CSG cells before the UE is affected by the interference.
측정에 제한을 설정하는 명령을 수신한 단말은 제한된 내용에 기반한 측정을 수행하고 이를 서빙 셀에 보고 할 수 있다(S1550). Upon receiving the command for setting a limit on the measurement, the UE may perform the measurement based on the restricted content and report it to the serving cell (S1550).
이때, 측정의 제한은 상술한 바와 같이, CSG 셀로부터의 간섭을 덜 받을 수 있는 서브프레임상에서 측정이 수행되게 하므로, CSG 셀로부터의 심한 간섭을 받는 서프프레임상에서의 측정 결과로 불필요한 RLF 상태에 빠지는 현상을 막을 수 있다. 따라서, 서빙 셀은 단말이 CSG 셀의 간섭을 피할 수 있도록 적절한 셀 간 간섭 조정을 수행할 수 있다.In this case, the limitation of the measurement is that the measurement is performed on a subframe that can receive less interference from the CSG cell as described above, and thus, the measurement results on the subframe that is severely interfered with the CSG cell, thereby falling into an unnecessary RLF state. The phenomenon can be prevented. Therefore, the serving cell may perform appropriate inter-cell interference coordination so that the UE can avoid the interference of the CSG cell.
여기서는, CRE 바이어스를 단말에 전송하고 이를 반영한 측정 결과를 확인한 후에 측정 제한 설정 명령을 단말에 전달하는 것으로 설명하였으나, 미리 수신한 측정 결과에 기초해서, CRE 바이어스와 측정 제한 설정 명령을 함께 단말에 전송할 수 있다. 예를 들어, 비허용 셀에 대한 Ocn 변수 값이 0 초과로 수신되면, 단말은 측정 제한을 시작 할 수 있다. 단말은 CRE 바이어스와 측정 제한 설정 명령을 함께 수신하면, 해당 CSG 셀에 핸드오버를 요청하는 등 불필요한 동작을 (더 이상) 수행하지 않고, 측정 제한이 반영된 측정을 수행할 수 있다.In this case, the CRE bias is transmitted to the terminal and the measurement result reflecting the measurement result is confirmed, and then the measurement limit setting command is transmitted to the terminal. However, based on the previously received measurement result, the CRE bias and the measurement limit setting command are transmitted together to the terminal. Can be. For example, if an Ocn variable value for an unacceptable cell is received above 0, the terminal may start measurement restriction. When the UE receives the CRE bias and the measurement limit setting command together, the UE may perform the measurement in which the measurement limit is reflected without performing an unnecessary operation (no longer) such as requesting a handover to the corresponding CSG cell.
도 16은 본 발명이 적용되는 시스템에서 CSG 셀이 존재하는 경우의 일 실시예를 개략적으로 설명하는 도면이다. 도 16을 통해, 도 15에서 설명한 실시예를 구체적으로 확인할 수 있다.FIG. 16 is a diagram schematically illustrating an embodiment in which a CSG cell is present in a system to which the present invention is applied. 16, the embodiment described with reference to FIG. 15 may be specifically confirmed.
도 16에서, 단말 1(UE 1;1640)과 단말 2(UE 2;1650)는 매크로 셀(1610)을 서빙 셀로 하는 단말이다. 매트로 셀(1610)의 셀 영역 안에 존재하는 CSG 셀(1630)에 대하여, 단말 1(1640)은 접속이 허용되지 않는 단말이며, 단말 2(1650)은 접속이 허용되는 단말이다. 따라서, CSG 셀로 들어가는 경우에 단말 2(1650)는 CSG 셀로 핸드오버를 함으로써 추가적인 조치가 필요 없지만, 단말 1(1640)은 CSG 셀로 핸드오버 할 수 없으며, CSG 셀에 의한 간섭의 영향을 받게 된다. In FIG. 16, UE 1 (UE 1; 1640) and UE 2 (UE 2; 1650) are terminals having a macro cell 1610 as a serving cell. For the CSG cell 1630 existing in the cell area of the macro cell 1610, the terminal 1 1640 is a terminal that is not allowed to access, and the terminal 2 1650 is a terminal that is allowed to access. Accordingly, in case of entering the CSG cell, UE 2 1650 does not need to take additional action by handing over to the CSG cell, but UE 1 1640 cannot handover to the CSG cell and is affected by interference by the CSG cell.
이때, 매크로 셀 기지국(1610)은 단말 1(1640)이 CSG 셀에 인접해 있다는 것을 확인하고, 단말 1(1640)에 CRE 바이어스를 전송함으로써, 단말 1(1640)이 CSG 셀에 들어가서 RLF 빠지기 전에, 미리 필요한 조치가 수행되도록 할 수 있다.At this time, the macro cell base station 1610 confirms that the terminal 1 1640 is adjacent to the CSG cell, and transmits a CRE bias to the terminal 1 1640, before the terminal 1 1640 enters the CSG cell and the RLF is removed For example, the necessary measures can be performed in advance.
도 16을 참조하면, 본 발명을 적용할 때, CRE 바이어스를 수신하고 이를 반영하여 측정을 수행하는 단말 1(1640)에 대하여, CSG 셀의 영역은 CRE 바이어스를 수신하지 않은 단말 2(1650)과는 다르게 판단될 수 있음을 확인할 수 있다. 따라서, 단말 1(1640)은 원래의 CSG 셀 영역에 진입하기 전에, 미리 측정 제한을 설정하는 등의 필요한 조치를 수행할 수 있게 된다.Referring to FIG. 16, when applying the present invention, with respect to the terminal 1 1640 which receives the CRE bias and performs the measurement by reflecting the CRE bias, the area of the CSG cell is the terminal 2 1650 that does not receive the CRE bias. It can be seen that can be determined differently. Accordingly, the UE 1640 may perform necessary measures such as setting a measurement limit in advance before entering the original CSG cell area.
도 17은 본 발명의 실시예가 구현되는 무선통신 시스템을 나타낸 블록도이다. 17 is a block diagram illustrating a wireless communication system in which an embodiment of the present invention is implemented.
기지국(50)은 프로세서(processor, 51), 메모리(memory, 52) 및 RF부(RF(radio frequency) unit, 53)을 포함한다. RF부(53)는 프로세서(51)와 연결되어, 무선 신호를 송신 및/또는 수신한다. RF부(53)는 단말로부터 측정 결과 보고를 수신하고, 인접 셀과 관련된 정보, 예컨대 CSG 셀에 접속할 수 있는지 여부 등에 관한 정보를 수신할 수 있으며, 단말에 CRE 바이어스와 측정 제한 명령 등을 전송할 수 있다. 또한 RF부(53)는 다른 셀들과의 사이에서 필요한 정보를 송수신할 수 있다. 예컨대, 기지국은 RF부(53)를 통해 인접 셀들과의 사이에서 CRE 바이어스 변경 요청과 CRE 바이어스 변경 응답을 송수신할 수 있다. The base station 50 includes a processor 51, a memory 52, and an RF unit 53. The RF unit 53 is connected to the processor 51 and transmits and / or receives a radio signal. The RF unit 53 may receive a measurement result report from the terminal, receive information related to an adjacent cell, for example, whether or not it can access a CSG cell, and transmit a CRE bias and a measurement limit command to the terminal. have. In addition, the RF unit 53 may transmit and receive necessary information between other cells. For example, the base station may transmit and receive a CRE bias change request and a CRE bias change response between adjacent cells through the RF unit 53.
메모리(52)는 프로세서(51)와 연결되어, 프로세서(51)를 구동하기 위한 다양한 정보를 저장한다. 메모리(52)는 단말이 전송하는 측정 보고에 관한 정보, 단말에 전송하는 CRE 바이어스에 관한 정보, 주변 셀과의 사이에서 송수신하는 CSE 바이어스에 관한 정보 및/또는 단말과 주위 셀 사이의 관계, 예컨대, 단말이 특정 CSG 셀의 멤버인지에 관한 정보 등을 저장할 수 있다.The memory 52 is connected to the processor 51 and stores various information for driving the processor 51. The memory 52 may include information about a measurement report transmitted by a terminal, information about a CRE bias transmitted to a terminal, information about a CSE bias transmitted and received between neighboring cells, and / or a relationship between a terminal and a neighboring cell, such as The terminal may store information on whether the terminal is a member of a specific CSG cell.
프로세서(51)는 메모리(52), RF부(53)와 연결되어, 이들을 제어할 수 있다. 프로세서(51)는 단말로부터 수신한 측정 보고를 기반으로, CRE 바이어스를 결정할 수 있으며, 이와 관련하여 다른 셀들과의 사이에서 CRE 변경에 관한 절차를 수행할 수 있다. 한편, 프로세서(51)는 단말에 인접하는 셀이 CSG 셀인지, 단말이 해당 CSG 셀의 멤버인지를 확인하고 이에 관해서 단말에 전달할 CRE 바이어스를 결정할 수도 있으며, 단말의 측정 보고를 기반으로 측정 제한을 설정하게 할 것인지를 결정하여 단말에 전달할 수도 있다.The processor 51 may be connected to the memory 52 and the RF unit 53 to control them. The processor 51 may determine the CRE bias based on the measurement report received from the terminal, and may perform a procedure regarding a CRE change among other cells in this regard. Meanwhile, the processor 51 may determine whether the cell adjacent to the terminal is a CSG cell, the terminal is a member of the corresponding CSG cell, and determine a CRE bias to be transmitted to the terminal. It may be determined whether to make a setting and delivered to the terminal.
단말(60)은 프로세서(61), 메모리(62) 및 RF부(63)을 포함한다. The terminal 60 includes a processor 61, a memory 62, and an RF unit 63.
RF부(63)는 프로세서(61)와 연결되어, 무선 신호를 송신 및/또는 수신한다. RF부(63)은 측정 결과나 인접 셀에 관한 정보 예컨대, 인접 셀이 CSG 셀인지, 해당 CSG 셀에 접속할 수 있는지 등을 기지국에 전송할 수 있으며, 기지국으로부터 CRE 바이어스에 관한 정보 및/또는 측정 제한 설정 명령을 수신할 수 있다.The RF unit 63 is connected to the processor 61 and transmits and / or receives a radio signal. The RF unit 63 may transmit a measurement result or information about a neighboring cell, such as whether the neighboring cell is a CSG cell or can be connected to the corresponding CSG cell, to the base station, and information on the CRE bias and / or measurement limitation from the base station. A setup command can be received.
메모리(62)는 프로세서(61)와 연결되어, 프로세서(61)를 구동하기 위한 다양한 정보를 저장한다. 예컨대, 메모리(62) 기지국으로부터 수신한 CRE 바이어스에 관한 정보를 저장할 수 있으며, 기지국이 측정 제한 설정 명령을 전송한 경우에 이에 관한 정보를 저장할 수 있다. The memory 62 is connected to the processor 61 and stores various information for driving the processor 61. For example, the memory 62 may store information on the CRE bias received from the base station, and may store the information about the CRE bias when the base station transmits a measurement limit setting command.
프로세서(61)는 RF부(63) 및 메모리(62)와 연결되어 이들을 제어한다. 프로세서(61)는 기지국에 보고할 측정을 수행한다. 이때, 프로세서(61)는 기지국으로부터 수신한 CRE 바이어스를 반영하여 측정을 수행할 수 있으며, 기지국으로부터 수신한 측정 제한을 반영하여 측정을 수행할 수 있다. 또한, 프로세서(61)는 인접하는 셀에 관한 정보를 RF부(63)를 통해서 기지국에 전송할 수 있다. 예컨대, 인접하는 셀이 접속할 수 없는 CSG 셀인 것을 확인하면, 프로세서(61)는 이와 관련된 정보를 기지국에 전송할 수 있다. The processor 61 is connected to the RF unit 63 and the memory 62 to control them. Processor 61 performs the measurements to report to the base station. In this case, the processor 61 may perform the measurement by reflecting the CRE bias received from the base station, and may perform the measurement by reflecting the measurement limit received from the base station. In addition, the processor 61 may transmit information about an adjacent cell to the base station through the RF unit 63. For example, if it is confirmed that the neighboring cell is a CSG cell to which it cannot connect, the processor 61 may transmit information related thereto to the base station.
프로세서는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부는 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다. The processor may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processing devices. The memory may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium and / or other storage device. The RF unit may include a baseband circuit for processing a radio signal. When the embodiment is implemented in software, the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function. The module may be stored in memory and executed by a processor. The memory may be internal or external to the processor and may be coupled to the processor by various well known means.
상술한 예시적인 시스템에서, 방법들은 일련의 단계 또는 블록으로써 순서도를 기초로 설명되고 있지만, 본 발명은 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당업자라면 순서도에 나타낸 단계들이 배타적이지 않고, 다른 단계가 포함되거나 순서도의 하나 또는 그 이상의 단계가 본 발명의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다.In the exemplary system described above, the methods are described based on a flowchart as a series of steps or blocks, but the invention is not limited to the order of steps, and certain steps may occur in a different order or concurrently with other steps than those described above. Can be. In addition, those skilled in the art will appreciate that the steps shown in the flowcharts are not exclusive and that other steps may be included or one or more steps in the flowcharts may be deleted without affecting the scope of the present invention.
Claims (18)
- 무선 통신 시스템의 핸드오버 과정에서 단말의 동작 방법으로서,A method of operating a terminal in a handover process of a wireless communication system,제1 CRE(cell range expansion) 바이어스를 제1 메시지를 통해 수신하는 단계;Receiving a first cell range expansion (CRE) bias via a first message;상기 제1 CRE 바이어스가 수정된 제2 CRE 바이어스를 제2 메시지를 통해 수신하는 단계; 및Receiving a second CRE bias in which the first CRE bias is modified through a second message; And상기 제2 CRE 바이어스를 기반으로 핸드오버 절차로 진행하는 단계를 포함하되, Proceeding to the handover procedure based on the second CRE bias,상기 제1 및 제2 CRE 바이어스는 마이크로 셀의 신호 세기에 더해지는 오프셋이고, The first and second CRE bias is an offset added to the signal strength of the micro cell,상기 제2 CRE 바이어스와 상기 마이크로 셀의 신호 세기의 합이 매크로 셀의 신호 세기보다 크면, 상기 핸드오버 절차는 상기 마이크로 셀로의 핸드오버 과정이 진행되는 것을 특징으로 하는 방법.If the sum of the second CRE bias and the signal strength of the micro cell is greater than the signal strength of the macro cell, the handover procedure is a handover process to the micro cell.
- 제1항에 있어서, The method of claim 1,상기 제2 CRE 바이어스와 상기 마이크로 셀의 신호 세기의 합이 상기 매크로 셀의 신호 세기보다 큰 것이 소정 시간 동안 유지되면 상기 마이크로 셀로의 핸드오버 과정이 진행되는 것을 특징으로 하는 방법.And if the sum of the second CRE bias and the signal strength of the micro cell is greater than the signal strength of the macro cell for a predetermined time, handover to the micro cell.
- 제1항에 있어서, The method of claim 1,상기 제1 메시지 및 제2 메시지는 각각 서빙 셀의 셀 특정 메시지 또는 네이버 셀의 셀 특정 메시지인 것을 특징으로 하는 방법.And the first message and the second message are cell specific messages of a serving cell or cell specific messages of a neighbor cell, respectively.
- 제1항에 있어서, The method of claim 1,상기 제1 메시지 및 제2 메시지는 각각 서빙 셀의 단말 특정 메시지인 것을 특징으로 하는 방법.Wherein the first message and the second message are terminal specific messages of a serving cell, respectively.
- 제1항에 있어서, The method of claim 1,상기 제1 메시지는 서빙 셀의 셀 특정 메시지 또는 네이버 셀의 셀 특정 메시지이고, The first message is a cell specific message of a serving cell or a cell specific message of a neighbor cell,상기 제2 메시지는 상기 서빙 셀의 단말 특정 메시지인 것을 특징으로 하는 방법.The second message is a terminal specific message of the serving cell.
- 무선 통신 시스템에서 기지국이 셀 커버리지를 조정하는 방법으로서,A method for adjusting cell coverage by a base station in a wireless communication system,셀 내 적어도 하나의 단말로부터 측정 결과를 수신하는 단계;Receiving a measurement result from at least one terminal in a cell;상기 측정 결과를 기반으로 상기 셀의 커버리지를 조정할지 여부를 결정하는 단계;Determining whether to adjust the coverage of the cell based on the measurement result;상기 셀의 커버리지의 조정이 결정되면, CRE 바이어스를 수정하는 단계; 및If the adjustment of the coverage of the cell is determined, correcting a CRE bias; And상기 수정된 CRE 바이어스를 상기 적어도 하나의 단말에게 전송하는 단계를 포함하는 것을 특징으로 하는 방법.Transmitting the modified CRE bias to the at least one terminal.
- 제6항에 있어서, The method of claim 6,상기 적어도 하나의 단말은 상기 수정된 CRE 바이어스를 기반으로 셀 선택 또는 핸드오버를 수행하는 단계를 더 포함하되,The at least one terminal further comprises the step of performing cell selection or handover based on the modified CRE bias,상기 수정된 CRE 바이어스는 마이크로 셀의 신호 세기에 더해지는 오프셋이고, 상기 수정된 CRE 바이어스와 상기 마이크로 셀의 신호 세기의 합이 매크로 셀의 신호 세기보다 크면 상기 마이크로 셀이 셀 선택 또는 핸드오버되는 것을 특징으로 하는 방법.The modified CRE bias is an offset added to the signal strength of the micro cell, and if the sum of the modified CRE bias and the signal strength of the micro cell is greater than the signal strength of the macro cell, the micro cell is selected or handed over. How to.
- 제6항에 있어서, The method of claim 6,상기 적어도 하나의 단말은 상기 수정된 CRE 바이어스를 기반으로 셀 선택 또는 핸드오버를 수행하되, The at least one terminal performs cell selection or handover based on the modified CRE bias,상기 수정된 CRE 바이어스는 매크로 셀의 신호 세기에 더해지는 오프셋이고, 상기 수정된 CRE 바이어스와 상기 매크로 셀의 신호 세기의 합이 마이크로 셀의 신호 세기보다 크면 상기 매크로 셀이 셀 선택 또는 핸드오버 되는 것을 특징으로 하는 방법.The modified CRE bias is an offset added to the signal strength of the macro cell, and if the sum of the modified CRE bias and the signal strength of the macro cell is greater than the signal strength of the micro cell, the macro cell is selected or handed over. How to.
- 제6항에 있어서, The method of claim 6,상기 수정된 CRE 바이어스는 셀 특정 메시지를 통해 전송되는 것을 특징으로 하는 방법.Wherein the modified CRE bias is transmitted via a cell specific message.
- 제6항에 있어서, The method of claim 6,상기 수정된 CRE 바이어스는 단말 특정 메시지를 통해 전송되는 것을 특징으로 하는 방법.The modified CRE bias is transmitted via a terminal specific message.
- 무선 통신 시스템의 핸드오버 과정에서 단말의 동작 방법으로서,A method of operating a terminal in a handover process of a wireless communication system,제1 CRE(cell range expansion) 바이어스를 제1 메시지를 통해 수신하는 단계;Receiving a first cell range expansion (CRE) bias via a first message;상기 제1 CRE 바이어스가 수정된 제2 CRE 바이어스를 제2 메시지를 통해 수신하는 단계; 및Receiving a second CRE bias in which the first CRE bias is modified through a second message; And상기 제2 CRE 바이어스를 기반으로 핸드오버 절차로 진행하는 단계를 포함하되, Proceeding to the handover procedure based on the second CRE bias,상기 제1 및 제2 CRE 바이어스는 매크로 셀의 신호 세기에 더해지는 오프셋이고, 상기 제2 CRE 바이어스와 상기 매크로 셀의 신호 세기의 합이 마이크로 셀의 신호 세기보다 크면 상기 매크로 셀로의 핸드오버 과정이 진행되는 것을 특징으로 하는 방법.The first and second CRE bias are offsets added to the signal strength of the macro cell, and if the sum of the second CRE bias and the signal strength of the macro cell is greater than the signal strength of the micro cell, the handover process to the macro cell proceeds. Characterized in that the method.
- 무선 통신 시스템에서 단말이 셀 선택 또는 재선택을 수행하는 방법으로서,A method in which a terminal performs cell selection or reselection in a wireless communication system,제1 CRE(cell range expansion) 바이어스를 제1 메시지를 통해 수신하는 단계;Receiving a first cell range expansion (CRE) bias via a first message;상기 제1 CRE 바이어스가 수정된 제2 CRE 바이어스를 제2 메시지를 통해 수신하는 단계; 및Receiving a second CRE bias in which the first CRE bias is modified through a second message; And상기 제2 CRE 바이어스를 기반으로 셀 선택 또는 재선택을 수행하는 단계를 포함하되, Performing cell selection or reselection based on the second CRE bias;상기 제1 및 제2 CRE 바이어스는 마이크로 셀의 신호 세기에 더해지는 오프셋이고, 상기 제2 CRE 바이어스와 상기 마이크로 셀의 신호 세기의 합이 매크로 셀의 신호 세기보다 크면 상기 마이크로 셀이 선택 또는 재선택되는 것을 특징으로 하는 방법.The first and second CRE bias are offsets added to the signal strength of the micro cell, and if the sum of the second CRE bias and the signal strength of the micro cell is greater than the signal strength of the macro cell, the micro cell is selected or reselected. Characterized in that the method.
- 무선 통신 시스템에서 단말이 셀 선택 또는 재선택을 수행하는 방법으로서,A method in which a terminal performs cell selection or reselection in a wireless communication system,제1 CRE(cell range expansion) 바이어스를 제1 메시지를 통해 수신하는 단계;Receiving a first cell range expansion (CRE) bias via a first message;상기 제1 CRE 바이어스가 수정된 제2 CRE 바이어스를 제2 메시지를 통해 수신하는 단계; 및Receiving a second CRE bias in which the first CRE bias is modified through a second message; And상기 제2 CRE 바이어스를 기반으로 셀 선택/재선택을 수행하는 단계를 포함하되, Performing cell selection / reselection based on the second CRE bias;상기 제1 및 제2 CRE 바이어스는 매크로 셀의 신호 세기에 더해지는 오프셋이고, 상기 제2 CRE 바이어스와 상기 매크로 셀의 신호 세기의 합이 마이크로 셀의 신호 세기보다 크면 상기 매크로 셀이 선택 또는 재선택 되는 것을 특징으로 하는 방법.The first and second CRE bias are offsets added to the signal strength of the macro cell, and if the sum of the second CRE bias and the signal strength of the macro cell is greater than the signal strength of the micro cell, the macro cell is selected or reselected. Characterized in that the method.
- 무선 통신 시스템에서 단말의 동작 방법으로서, As an operation method of a terminal in a wireless communication system,기지국에 인접 셀에 관한 정보를 전송하는 단계;Transmitting information about an adjacent cell to a base station;기지국으로부터 CRE 바이어스를 수신하는 단계;Receiving a CRE bias from a base station;수신한 CRE 바이어스를 반영하여 측정을 수행하는 단계;Performing measurement by reflecting the received CRE bias;서빙 셀로부터 인접한 CSG 셀의 영향을 고려한 측정 제한 설정 명령을 수신하는 단계; 및 Receiving a measurement limit setting command considering the influence of an adjacent CSG cell from a serving cell; And상기 측정 제한 설정 명령을 반영한 측정을 수행하는 단계를 포함하는 것을 특징으로 하는 방법. And performing a measurement reflecting the measurement limit setting command.
- 제14항에 있어서, 상기 인접 셀에 관한 정보는, 인접 셀의 PCI(Physical Cell ID), 인접 셀의 특성 또는 인접 셀에 접속할 수 있는지 여부에 관한 정보를 포함하는 것을 특징으로 하는 방법.15. The method of claim 14, wherein the information about the neighbor cell comprises information about a physical cell ID (PCI) of the neighbor cell, characteristics of the neighbor cell, or whether the neighbor cell can be connected to the neighbor cell.
- 무선 통신 시스템에서 단말의 동작 방법으로서, As an operation method of a terminal in a wireless communication system,단말로부터 수신한 정보에 기반해서, 상기 단말에 인접한 셀이 상기 단말이 접속할 수 없는 CSG 셀인지를 확인하는 단계;Determining whether a cell adjacent to the terminal is a CSG cell to which the terminal cannot access based on the information received from the terminal;상기 단말에 인접한 셀이 상기 단말이 접속할 수 없는 CSG 셀인 것으로 확인되면, 단말에 CRE 바이어스를 전송하는 단계;If it is determined that the cell adjacent to the terminal is a CSG cell to which the terminal cannot access, transmitting a CRE bias to the terminal;상기 단말로부터 상기 CRE 바이어스가 반영된 측정 결과를 수신하는 단계; 및Receiving a measurement result reflecting the CRE bias from the terminal; And상기 측정 결과에 근거하여 측정 제한이 필요하다고 판단한 경우에는 상기 단말에 측정 제한 설정 명령을 전송하는 단계를 포함하는 것을 특징으로 하는 방법.And if it is determined that measurement limitation is necessary based on the measurement result, transmitting a measurement limit setting command to the terminal.
- 제16항에 있어서, 상기 CRE 바이어스는 상기 CSG 셀에 접속할 수 없는 단말에게만 전송되는 것을 특징으로 하는 방법.17. The method of claim 16, wherein the CRE bias is transmitted only to terminals that cannot access the CSG cell.
- 제16항에 있어서, 상기 CRE 바이어스는 상기 CSG 셀에 접속할 수 있는 단말에게 전송되는 CRE 바이어스와는 상이한 값을 갖는 것을 특징으로 하는 방법. 17. The method of claim 16, wherein the CRE bias has a different value from the CRE bias transmitted to a terminal that can access the CSG cell.
Applications Claiming Priority (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2011-0001993 | 2011-01-07 | ||
KR20110001993 | 2011-01-07 | ||
KR20110009728 | 2011-01-31 | ||
KR10-2011-0009728 | 2011-01-31 | ||
KR20110012569 | 2011-02-11 | ||
KR10-2011-0012569 | 2011-02-11 | ||
KR20110029113 | 2011-03-30 | ||
KR10-2011-0029113 | 2011-03-30 | ||
KR1020110080310A KR20120080514A (en) | 2011-01-07 | 2011-08-11 | Apparatus and method of performing cell selection in wireless communication system |
KR10-2011-0080310 | 2011-08-11 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2012093888A2 true WO2012093888A2 (en) | 2012-07-12 |
WO2012093888A3 WO2012093888A3 (en) | 2012-11-29 |
Family
ID=46457873
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2012/000152 WO2012093888A2 (en) | 2011-01-07 | 2012-01-06 | Device and method for selecting cell in wireless communication system |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2012093888A2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103648129A (en) * | 2013-12-04 | 2014-03-19 | 上海交通大学无锡研究院 | Heterogeneous-network switching method based on load balancing and QoS |
CN103813385A (en) * | 2012-11-13 | 2014-05-21 | 中国移动通信集团河南有限公司 | Cell business resource distribution method and device |
WO2014165807A1 (en) * | 2013-04-05 | 2014-10-09 | Kyocera Corporation | Dynamic radio coverage area transition management with coordinated handover |
RU2606398C1 (en) * | 2012-11-13 | 2017-01-10 | Телефонактиеболагет Л М Эрикссон (Пабл) | Method and apparatus for triggering specific operation mode for terminals operating in extended long range |
CN106471837A (en) * | 2014-07-02 | 2017-03-01 | 三星电子株式会社 | For the method and apparatus in a balanced way of the inter-cell load in wireless communication system |
WO2018160009A1 (en) * | 2017-02-28 | 2018-09-07 | 삼성전자 주식회사 | Handover method and apparatus in wireless communication system supporting eicic function |
US10123356B2 (en) | 2015-04-27 | 2018-11-06 | Telefonaktiebolaget Lm Ericsson (Publ) | Robust selection of PRACH repetition level for MTC enhanced coverage |
US10136369B2 (en) | 2013-03-29 | 2018-11-20 | Alcatel Lucent | Method, apparatus, and system for biasing adjustment of cell range expansion |
US10194402B2 (en) | 2012-11-13 | 2019-01-29 | Telefonaktiebolaget L M Ericsson (Publ) | Method for modifying parameter values for long range extension and corresponding node |
US11337083B2 (en) | 2015-12-11 | 2022-05-17 | Telefonaktiebolaget Lm Ericsson (Publ) | Radio network node and a wireless device, and methods therein |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9980196B2 (en) * | 2015-01-16 | 2018-05-22 | Telefonaktiebolaget Lm Ericsson (Publ) | Method and device for mobility control |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20090097072A (en) * | 2008-03-10 | 2009-09-15 | 엘지전자 주식회사 | Subframe Grouping Information Transmission Method and Subframe Grouped Frame Decoding Method |
KR20100032269A (en) * | 2008-09-17 | 2010-03-25 | 엘지전자 주식회사 | Method of handover |
KR20100035965A (en) * | 2008-09-29 | 2010-04-07 | 주식회사 케이티 | Method and system for processing handover mobile communication terminal |
KR20100094942A (en) * | 2009-02-19 | 2010-08-27 | 엘지전자 주식회사 | Apparatus and method for performing handover in wireless communication system |
-
2012
- 2012-01-06 WO PCT/KR2012/000152 patent/WO2012093888A2/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20090097072A (en) * | 2008-03-10 | 2009-09-15 | 엘지전자 주식회사 | Subframe Grouping Information Transmission Method and Subframe Grouped Frame Decoding Method |
KR20100032269A (en) * | 2008-09-17 | 2010-03-25 | 엘지전자 주식회사 | Method of handover |
KR20100035965A (en) * | 2008-09-29 | 2010-04-07 | 주식회사 케이티 | Method and system for processing handover mobile communication terminal |
KR20100094942A (en) * | 2009-02-19 | 2010-08-27 | 엘지전자 주식회사 | Apparatus and method for performing handover in wireless communication system |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10757565B2 (en) | 2012-11-13 | 2020-08-25 | Telefonaktiebolaget L M Ericsson (Publ) | Method and apparatus for triggering of specific operation mode for terminals operating in extended long range |
CN103813385A (en) * | 2012-11-13 | 2014-05-21 | 中国移动通信集团河南有限公司 | Cell business resource distribution method and device |
US11856648B2 (en) | 2012-11-13 | 2023-12-26 | Telefonaktiebolaget L M Ericsson (Publ) | Method and apparatus for triggering of specific operation mode for terminals operating in extended long range |
RU2606398C1 (en) * | 2012-11-13 | 2017-01-10 | Телефонактиеболагет Л М Эрикссон (Пабл) | Method and apparatus for triggering specific operation mode for terminals operating in extended long range |
US11678274B2 (en) | 2012-11-13 | 2023-06-13 | Telefonaktiebolaget L M Ericsson (Publ) | Method for modifying parameter values for long range extension and corresponding node |
US11153833B2 (en) | 2012-11-13 | 2021-10-19 | Telefonaktiebolaget L M Ericsson (Publ) | Method for modifying parameter values for long range extension and corresponding node |
US10631253B2 (en) | 2012-11-13 | 2020-04-21 | Telefonaktiebolaget L M Ericsson (Publ) | Method for modifying parameter values for long range extension and corresponding node |
US10097990B2 (en) | 2012-11-13 | 2018-10-09 | Telefonaktiebolaget L M Ericsson (Publ) | Method and apparatus for triggering of specific operation mode for terminals operating in extended long range |
US10194402B2 (en) | 2012-11-13 | 2019-01-29 | Telefonaktiebolaget L M Ericsson (Publ) | Method for modifying parameter values for long range extension and corresponding node |
US10136369B2 (en) | 2013-03-29 | 2018-11-20 | Alcatel Lucent | Method, apparatus, and system for biasing adjustment of cell range expansion |
US10194363B2 (en) | 2013-04-05 | 2019-01-29 | Kyocera Corporation | Dynamic radio coverage area transition management |
US9801109B2 (en) | 2013-04-05 | 2017-10-24 | Kyocera Corporation | Dynamic radio coverage area transition management with coordinated handover |
WO2014165807A1 (en) * | 2013-04-05 | 2014-10-09 | Kyocera Corporation | Dynamic radio coverage area transition management with coordinated handover |
CN103648129A (en) * | 2013-12-04 | 2014-03-19 | 上海交通大学无锡研究院 | Heterogeneous-network switching method based on load balancing and QoS |
US10547550B2 (en) | 2014-07-02 | 2020-01-28 | Samsung Electronics Co., Ltd. | Method and apparatus for inter-cell load balance in wireless communication system |
CN106471837B (en) * | 2014-07-02 | 2020-07-17 | 三星电子株式会社 | Method and apparatus for inter-cell load balancing in a wireless communication system |
US11463363B2 (en) | 2014-07-02 | 2022-10-04 | Samsung Electronics Co., Ltd. | Method and apparatus for inter-cell load balance in wireless communication system |
CN106471837A (en) * | 2014-07-02 | 2017-03-01 | 三星电子株式会社 | For the method and apparatus in a balanced way of the inter-cell load in wireless communication system |
US10123356B2 (en) | 2015-04-27 | 2018-11-06 | Telefonaktiebolaget Lm Ericsson (Publ) | Robust selection of PRACH repetition level for MTC enhanced coverage |
US11337083B2 (en) | 2015-12-11 | 2022-05-17 | Telefonaktiebolaget Lm Ericsson (Publ) | Radio network node and a wireless device, and methods therein |
WO2018160009A1 (en) * | 2017-02-28 | 2018-09-07 | 삼성전자 주식회사 | Handover method and apparatus in wireless communication system supporting eicic function |
US11259226B2 (en) | 2017-02-28 | 2022-02-22 | Samsung Electronics Co., Ltd. | Handover method and apparatus in wireless communication system supporting eICIC function |
Also Published As
Publication number | Publication date |
---|---|
WO2012093888A3 (en) | 2012-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012093888A2 (en) | Device and method for selecting cell in wireless communication system | |
WO2012138087A2 (en) | Device and method for transmitting control information for inter-heterogeneous cell interference adjustment in a wireless communication system | |
WO2016144099A1 (en) | Method and device of reselecting cell by terminal | |
WO2011013967A2 (en) | Apparatus and method for determining mobility state in wireless communication system | |
WO2012134198A2 (en) | Apparatus and method for controlling paging in heterogeneous wireless network system | |
WO2012060608A2 (en) | Method for coordinating inter-cell interference and base station | |
WO2018143760A1 (en) | Measurement performing method and user equipment | |
WO2011059267A2 (en) | Methods and apparatus to support interference management in multi-tier wireless communication systems | |
WO2012091450A2 (en) | Method and apparatus for requesting inter-cell interference coordination and method and apparatus for processing inter-cell interference coordination request | |
WO2014137127A1 (en) | Cell reselection method and user equipment therefor | |
WO2013005904A1 (en) | Cell measurement method and terminal | |
WO2015084046A1 (en) | Cell selection method and measurement method for cell reselection | |
WO2011078542A2 (en) | Methods and apparatus to support base station detection and selection in multi-tier wireless networks | |
WO2016195383A1 (en) | D2d operation method performed by ue in wireless communication system and ue using same method | |
WO2016195450A1 (en) | Method for transmitting data by terminal in wireless communication system supporting high-speed uplink, and apparatus for same | |
WO2012093759A1 (en) | Method and apparatus for selecting a node in a distributed multi-node system | |
WO2013141624A1 (en) | Apparatus and method for transmitting inter-heterogeneous cell interference coordination information | |
WO2015026098A1 (en) | Method of transmitting and receiving cell information by using synchronization signal and device supporting same | |
WO2014112716A1 (en) | Method for performing measurement through eliminating interference and terminal | |
WO2016190655A1 (en) | Method and device for reporting wlan connection status by terminal | |
WO2014010850A1 (en) | Method for using terminal to detect small-scale cell in environment in which macrocell and small-scale cell coexist | |
WO2014077489A1 (en) | Method and terminal for performing measurements in coverage extension area of small-scale cell when macro cell and small-scale cell coexist | |
WO2017026719A1 (en) | Method and apparatus for terminal to perform frequency measurement on basis of cell specific priority | |
WO2017026780A1 (en) | Method and device for terminal determining whether to report wlan measurement result | |
WO2016167559A1 (en) | Method and device for activating or deactivating terminal-based traffic steering |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12732334 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12732334 Country of ref document: EP Kind code of ref document: A2 |