WO2012083750A1 - 一种实现微波多输入多输出的方法、设备和系统 - Google Patents
一种实现微波多输入多输出的方法、设备和系统 Download PDFInfo
- Publication number
- WO2012083750A1 WO2012083750A1 PCT/CN2011/080862 CN2011080862W WO2012083750A1 WO 2012083750 A1 WO2012083750 A1 WO 2012083750A1 CN 2011080862 W CN2011080862 W CN 2011080862W WO 2012083750 A1 WO2012083750 A1 WO 2012083750A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- receiving
- phase
- channel
- signals
- transmission
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 40
- 230000005540 biological transmission Effects 0.000 claims abstract description 82
- 238000012545 processing Methods 0.000 claims abstract description 43
- 238000012937 correction Methods 0.000 claims description 95
- 230000003044 adaptive effect Effects 0.000 claims description 26
- 238000012549 training Methods 0.000 claims description 23
- 230000008878 coupling Effects 0.000 claims description 14
- 238000010168 coupling process Methods 0.000 claims description 14
- 238000005859 coupling reaction Methods 0.000 claims description 14
- 238000006243 chemical reaction Methods 0.000 claims description 13
- 238000012821 model calculation Methods 0.000 claims description 11
- 238000004364 calculation method Methods 0.000 claims description 7
- 238000004891 communication Methods 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 18
- 230000006870 function Effects 0.000 description 8
- 238000002474 experimental method Methods 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 4
- 238000005562 fading Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 241000209094 Oryza Species 0.000 description 2
- 235000007164 Oryza sativa Nutrition 0.000 description 2
- 235000009566 rice Nutrition 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0697—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using spatial multiplexing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/18—Phase-modulated carrier systems, i.e. using phase-shift keying
Definitions
- the present invention relates to the field of wireless communications, and in particular, to a method, device and system for implementing microwave multiple input multiple output. Background technique
- a MIMO (Multi-input Multi-output) system can increase channel capacity compared to a SISO (Single-input Single-output) system.
- the wireless MIM0 system assumes that the channel is Rayleigh fading: the channel has no direct path, but has a rich multipath. At this time, the capacity of the MIM0 channel can be linearly increased according to the number of antennas.
- the system For microwave channels, usually the system has a strong direct path, at which point the channel can be modeled as a Les fading.
- the condition number in the MIM0 system is defined as the ratio between the maximum eigenvalue and the minimum eigenvalue of the channel matrix. The larger the condition number, the stronger the singularity of the channel, and the smaller the condition number, that is, the closer to 1, the orthogonality of the MIM0 system. The better the performance is.
- the multiple subchannels of the MIM0 system can maintain orthogonal performance, and the condition number of the channel is close to 1, thereby supporting independent transmission of multiple data streams.
- microwave multiple input and multiple output There are two options for implementing microwave multiple input and multiple output:
- a relay base station is added between the microwave base station 1 and the microwave base station 2, and mutually independent transmission paths are generated by relaying of the relay base station, thereby increasing channel capacity.
- the essence of this scheme is to add an independent transmission path, so that the channel correlation approaches 0.
- the interval between the antennas of the transceiver 3 is the Rayleigh interval
- the interval between the antennas of the transceiver 4 is also the Rayleigh interval. This makes the correlation of the MIM0 channel tend to zero, thereby increasing the channel capacity.
- the required Rayleigh distance is 3 m under the condition of 2 km transmission. At this time, the area of the antenna array is large and it is not easy to implement.
- the first solution requires an additional relay base station to increase the capacity of the microwave MIM0 system, the hardware cost is higher, and the relay base The location selected by the station is also very important, and the networking is more difficult;
- embodiments of the present invention provide a method, apparatus and system for implementing microwave multiple input multiple output.
- a device for implementing microwave multiple input and multiple output comprising a transmission channel correction module
- the transmit channel correction module includes: a transmit energy distributor and a transmit coupler;
- the transmit energy allocator is configured to decompose each of the N transmit signals into the same number of transmit signals as the number of transmit antennas according to the first energy allocation parameter, and the number of transmit antennas is N, and N is greater than 1.
- the transmitting coupler is configured to perform phase processing on each of the path transmission signals according to the first phase parameter, and select one phase-processed sub-transmission signal from the N-channel transmission signals to superimpose, respectively obtain N output signals. And transmitting N output signals through N of the transmitting antennas respectively.
- a device for implementing microwave multiple input multiple output comprising a receiving channel correction module
- the receiving channel correction module includes: a receiving energy distributor and a receiving coupler;
- the receiving energy distributor is configured to decompose each of the M receiving signals into the same number of receiving signals as the number of receiving antennas according to the second energy distribution parameter, and the number of receiving antennas is M, M is greater than 1.
- the receiving coupler is configured to perform phase processing on each of the received signals according to the second phase parameter, and select one of the phase-processed sub-received signals from the M-channel received signals to be superimposed to obtain the M-channel output signals respectively. .
- a method for implementing microwave multiple input multiple output comprising
- each of the N-way transmission signals into sub-transmission signals having the same number of transmission antennas according to the first energy distribution parameter, and the number of transmission antennas is ⁇ N being a natural number greater than one;
- the transmitting antenna is transmitted.
- a method for implementing microwave multiple input multiple output comprising
- each of the received signals of the M channels into the same number of receiving signals as the number of receiving antennas according to the second energy distribution parameter, and the number of receiving antennas is a natural number greater than 1;
- each sub-received signal is subjected to phase processing, and each of the M-channel received signals is selected to be phase-processed sub-received signals for superposition, and M-channel output signals are respectively obtained.
- a system for implementing microwave multiple input multiple output comprising a transmitter and a receiver: the transmitter includes a transmission channel correction module, and the receiver includes a reception channel correction module;
- the transmit channel correction module includes: a transmit energy distributor and a transmit coupler;
- the transmit energy allocator is configured to decompose each of the N transmit signals into the same number of transmit signals as the number of transmit antennas according to the first energy allocation parameter, and the number of transmit antennas is N, and N is greater than 1.
- the transmitting coupler is configured to perform phase processing on each of the path transmission signals according to the first phase parameter, and select one phase-processed sub-transmission signal from the N-channel transmission signals to superimpose, respectively obtain N output signals. Transmitting N output signals through N of the transmitting antennas respectively;
- the receiving channel correction module includes: a receiving energy distributor and a receiving coupler;
- the receiving energy distributor is configured to decompose each of the N received signals into a sub-received signal having the same number of receiving antennas according to the second energy distribution parameter, and the number of receiving antennas is N;
- the receiving coupler is configured to perform phase processing on each of the path receiving signals according to the second phase parameter, and select one phase-processed sub-received signal from the N-channel receiving signals to be superimposed to obtain N-way output signals respectively.
- each of the N signals By decomposing each of the N signals into sub-signals of the same number of antennas according to the energy distribution parameter, phase processing each sub-signal according to the phase parameter, and selecting one phase of each of the N signals
- the sub-signals are superimposed to obtain N output signals respectively, thereby reducing the number of channel conditions of the MIM0 system, so that the result of channel cascading is equivalent to the influence of multipath on the channel, so that the channel of the microwave MIMO system can be maintained.
- Orthogonal performance which supports multi-stream independent transmission, without the need for additional hardware, the antenna array has a small area.
- FIG. 1 is a schematic structural diagram of an apparatus for implementing microwave multiple input and multiple output according to an embodiment of the present invention
- FIG. 2 is a schematic structural diagram of a transmission channel correction module according to an embodiment of the present invention.
- FIG. 3 is a schematic structural diagram of a transmitter adaptive parameter generator according to an embodiment of the present invention.
- FIG. 4a is another schematic structural diagram of an apparatus for implementing microwave multiple input and multiple output according to an embodiment of the present invention
- FIG. 4b is another schematic structural diagram of an apparatus for implementing microwave multiple input and multiple output according to an embodiment of the present invention
- 5 is a schematic structural diagram of an apparatus for implementing a microwave multiple input and multiple output according to another embodiment of the present invention
- FIG. 6 is a schematic structural diagram of a receiving channel correction module according to another embodiment of the present invention.
- FIG. 7 is a schematic structural diagram of a receiver adaptive parameter generator according to another embodiment of the present invention.
- FIG. 8 is a schematic diagram of another structure of a device for implementing microwave multiple input and multiple output according to another embodiment of the present invention.
- FIG. 8b is another schematic structural diagram of an apparatus for implementing microwave multiple input and multiple output according to another embodiment of the present invention.
- FIG. 8c is another schematic structural diagram of an apparatus for implementing microwave multiple input and multiple output according to another embodiment of the present invention.
- FIG. 9 is a flowchart of a method for implementing microwave multiple input multiple output according to another embodiment of the present invention.
- FIG. 10 is a flowchart of a method for implementing microwave multiple input multiple output according to another embodiment of the present invention.
- FIG. 11 is a schematic structural diagram of a system for implementing microwave multiple input and multiple output according to another embodiment of the present invention. detailed description
- an embodiment of the present invention provides a device for implementing microwave multiple input multiple output.
- the device When the device is located at a transmitter, the device includes: a transmission channel correction module 101;
- the transmit channel correction module 101 includes: a transmit energy distributor 101a and a transmit coupler 101b ;
- the transmit energy distributor 101a is configured to decompose each of the N transmit signals into the same number of transmit signals as the number of transmit antennas according to the first energy allocation parameter, and the number of transmit antennas is N, and N is greater than 1.
- a natural coupler configured to perform phase processing on each of the sub-transmission signals according to the first phase parameter, and select one sub-transmission signal after phase processing from the N-channel transmission signals to superimpose, respectively obtain N output signals, respectively The N output signals are transmitted through N transmit antennas.
- FIG. 2 is an example of a 2 ⁇ 2 antenna system with two inputs and two outputs.
- the transmit energy distributor 101a is composed of N energy distribution units, each energy distribution unit is composed of N first multipliers, and each first multiplier is used to decompose one transmission signal to obtain one sub-transmission signal;
- the transmit coupler 101b is composed of N transmit coupling units, each transmit coupling unit is composed of N second multipliers and a first adder, and each second multiplier is respectively connected to the first adder, each of the first The two multipliers are respectively used for phase processing the one-way sub-transmission signal, and the first adder is configured to respectively acquire the phase-processed sub-transmission signals from the N second multipliers to superimpose to obtain one output signal.
- the device further includes a transmitting end adaptive parameter generator 102 for obtaining the first energy distribution parameter and the first phase parameter by training or by theoretical model calculation.
- the training method may be: the transmitting end adaptive parameter generator 102 sends the configuration parameter to the transmission channel correction module 101, observes the minimum mean square error or the bit error rate of the receiver where the device is located, and the minimum mean square error or error When the code rate is the lowest, the corresponding configuration parameters are recorded as correction parameters. After completion, the channel conditions are changed. The channel conditions include the transmission distance, the carrier frequency, and the antenna distance. The above experiment is repeated, and the correction parameters are recorded until all channel conditions are traversed.
- the transmitting end adaptive parameter generator 102 refers to FIG. 3.
- the transmitting end adaptive parameter generator 102 includes: a channel state information calculating unit, an energy selecting unit, and a phase selecting unit;
- a channel state information calculation unit configured to generate a decision threshold according to the input channel state information
- An energy selection unit configured to determine a first energy distribution parameter according to the decision threshold
- phase selection unit configured to determine a first phase parameter according to the decision threshold.
- the device further includes: a modulation module for modulating the baseband signal, an intermediate frequency module for performing the first frequency conversion on the data, and a radio frequency module for performing the second frequency conversion on the data;
- the location of the 101 is baseband, radio frequency, or intermediate frequency.
- the above three modules have three connection relationships with the transmission channel correction module 101 - see FIG. 4-a, the modulation module is connected to the transmission channel correction module 101, and the transmission channel correction module 101 is provided. Connected to the IF module, and the IF module is connected to the RF module;
- the modulation module is connected to the intermediate frequency module, the intermediate frequency module is connected to the radio frequency module, and the radio frequency module is connected to the transmission channel correction module 101.
- the modulation module is connected to the intermediate frequency module, the intermediate frequency module is connected to the transmission channel correction module 101, and the transmission channel correction module 101 is connected to the radio frequency module.
- the device further includes an encoding module coupled to the modulation module for encoding the original signal prior to performing the function of the modulation module.
- the transmitter and the receiver are generally integrated, and have the function of transmitting the microwave signal to the opposite end and receiving the microwave signal from the opposite end. Therefore, the embodiment may further include a receiving channel correction module 201 for Correct the microwave signal from the opposite end.
- the receiving channel correction module 201 includes: a receiving energy distributor 201a and a receiving coupler 201b ; and a receiving energy distributor 201a for decomposing each of the M receiving signals into and according to the second energy distribution parameter.
- a sub-received signal having the same number of receiving antennas, the number of receiving antennas is M, M is a natural number greater than 1;
- the receiving coupler 201b is configured to perform phase processing on each sub-received signal according to the second phase parameter, and receive signals from the M-channel
- Each of the sub-received signals after phase processing is selected to be superimposed, and the M-channel output signals are respectively obtained.
- circuit diagram of the receiving channel correction module 201 is shown in FIG. 6.
- the receiving energy distributor 201a is composed of M energy distributing units, each of which is composed of M third multipliers Composition, each third multiplier is used to decompose one received signal to obtain a sub-received signal;
- the receiving coupler 201b is composed of M receiving coupling units, each receiving coupling unit is composed of M fourth multipliers and one second adder, and each fourth multiplier is respectively connected with the second adder, each of the first The four multipliers are respectively used for phase processing of one sub-received signal, and the second adder is used for acquiring phase-processed sub-received signals from M fourth multipliers for superposition to obtain one output signal.
- the apparatus further includes a receiver adaptive parameter generator 202 for obtaining the second energy distribution parameter and the second phase parameter by training or by theoretical model calculation.
- This embodiment does not limit the specific training method.
- One training method may be: The receiving end adaptive parameter generator 202 sends the configuration parameter to the receiving channel correction module 201 to observe the minimum mean square error of the receiver where the device is located or Bit error rate, the configuration parameter corresponding to the minimum mean square error or the lowest bit error rate is recorded as the correction parameter. After completion, the channel conditions are changed. The channel conditions include the transmission distance, the carrier frequency, and the antenna distance. The above experiment is repeated, and the correction parameters are recorded until all channel conditions are traversed.
- the receiving end adaptive parameter generator 202 includes: a channel state information calculating unit, an energy selecting unit, and a phase selecting unit;
- a channel state information calculation unit configured to generate a decision threshold according to the input channel state information
- An energy selection unit configured to determine a second energy distribution parameter according to the decision threshold
- phase selection unit configured to determine a second phase parameter according to the decision threshold.
- the device further includes: a demodulation module for demodulating the baseband signal, an intermediate frequency module for performing the first frequency conversion on the data, and a radio frequency module for performing the second frequency conversion on the data;
- the position of the correction module 201 is baseband, radio frequency, or intermediate frequency.
- the above three modules have three connection relationships with the receiving channel correction module 201 - see FIG. 8_a, the demodulation module is connected to the receiving channel correction module 201, and the channel correction module is received.
- 201 is connected to the intermediate frequency module, and the intermediate frequency module is connected to the radio frequency module;
- the demodulation module is connected to the intermediate frequency module, the intermediate frequency module is connected to the radio frequency module, and the radio frequency module is connected to the receiving channel correction module 201;
- the demodulation module is connected to the intermediate frequency module, the intermediate frequency module is connected to the receiving channel correction module 201, and the receiving channel correction module 201 is connected to the radio frequency module.
- the device further includes a decoding module coupled to the demodulation module for decoding the original signal prior to performing the function of the demodulation module.
- FIG. 5 another embodiment of the present invention provides a device for implementing microwave multiple input multiple output.
- the device When the device is located at a receiver, the device includes: a receiving channel correction module 201;
- the receiving channel correction module 201 includes: a receiving energy distributor 201a and a receiving coupler 201b ;
- the receiving energy distributor 201a is configured to decompose each of the M receiving signals into the same number of receiving signals as the number of receiving antennas according to the second energy distribution parameter, and the number of receiving antennas is M, and M is greater than 1.
- the natural coupler is configured to perform phase processing on each of the sub-received signals according to the second phase parameter, and select one sub-received signal from each of the M-channel received signals to be superimposed to obtain an M-channel output signal.
- circuit diagram of the receiving channel correction module 201 is shown in FIG. 6.
- the receiving energy distributor 201a is composed of M energy distributing units, each energy distributing unit is composed of M third multipliers, and each third multiplier is respectively used to decompose one receiving signal to obtain one path receiving signal;
- the receiving coupler 201b is composed of M receiving coupling units, each receiving coupling unit is composed of M fourth multipliers and one second adder, and each fourth multiplier is respectively connected with the second adder, each of the first The four multipliers are respectively used for phase processing of one sub-received signal, and the second adder is used for acquiring phase-processed sub-received signals from M fourth multipliers for superposition to obtain one output signal.
- the apparatus further includes a receiver adaptive parameter generator 202 for obtaining the second energy distribution parameter and the second phase parameter by training or by theoretical model calculation.
- This embodiment does not limit the specific training method.
- One training method may be: The receiving end adaptive parameter generator 202 sends the configuration parameter to the receiving channel correction module 201 to observe the minimum mean square error of the receiver where the device is located or Bit error rate, the configuration parameter corresponding to the minimum mean square error or the lowest bit error rate is recorded as the correction parameter. After completion, the channel conditions are changed. The channel conditions include the transmission distance, the carrier frequency, and the antenna distance. The above experiment is repeated, and the correction parameters are recorded until all channel conditions are traversed.
- the receiving end adaptive parameter generator 202 includes: a channel state information calculating unit, an energy selecting unit, and a phase selecting unit;
- a channel state information calculation unit configured to generate a decision threshold according to the input channel state information
- An energy selection unit configured to determine a second energy distribution parameter according to the decision threshold
- phase selection unit configured to determine a second phase parameter according to the decision threshold.
- the device further includes: a demodulation module for demodulating the baseband signal, an intermediate frequency module for performing the first frequency conversion on the data, and a radio frequency module for performing the second frequency conversion on the data;
- the position of the correction module 201 is baseband, radio frequency, or intermediate frequency, and the above three modules have three connections with the receiving channel correction module 201. Relationship - Referring to FIG. 8_a, the demodulation module is connected to the receiving channel correction module 201, and the receiving channel correction module 201 is connected to the intermediate frequency module, and the intermediate frequency module is connected to the radio frequency module;
- the demodulation module is connected to the intermediate frequency module, the intermediate frequency module is connected to the radio frequency module, and the radio frequency module is connected to the receiving channel correction module 201;
- the demodulation module is connected to the intermediate frequency module, the intermediate frequency module is connected to the receiving channel correction module 201, and the receiving channel correction module 201 is connected to the radio frequency module.
- the device further includes a decoding module coupled to the demodulation module for decoding the original signal prior to performing the function of the demodulation module.
- each of the N signals By decomposing each of the N signals into sub-signals of the same number of antennas according to the energy distribution parameter, phase processing each sub-signal according to the phase parameter, and selecting one phase of each of the N signals
- the sub-signals are superimposed to obtain N output signals respectively, thereby reducing the number of channel conditions of the MIM0 system, so that the result of channel cascading is equivalent to the influence of multipath on the channel, so that the channel of the microwave MIMO system can be maintained.
- Orthogonal performance which supports multi-stream independent transmission, without the need for additional hardware, the antenna array has a small area.
- another embodiment of the present invention provides a method for implementing microwave multiple input multiple output, the method comprising:
- each of the N channels of the transmission signal into the same number of transmissions as the number of the transmission antenna according to the first energy distribution parameter, and the number of the transmission antennas is ⁇ N is a natural number greater than 1.
- 302 Perform phase processing on each of the sub-transmission signals according to the first phase parameter, and select one sub-transmission signal after phase processing from the N-channel transmission signals to superimpose, respectively obtain N output signals, and respectively pass N output signals respectively through N Send antennas for transmission.
- the first energy distribution parameter and the first phase parameter are obtained by training or obtained by theoretical model calculation.
- the specific training process refers to the device embodiment, and details are not described herein again.
- the transmission signal is a baseband signal, a radio frequency signal, or an intermediate frequency signal.
- each of the N signals By decomposing each of the N signals into sub-signals of the same number of antennas according to the energy distribution parameter, phase processing each sub-signal according to the phase parameter, and selecting one phase of each of the N signals
- the sub-signals are superimposed to obtain N output signals respectively, thereby reducing the number of channel conditions of the MIM0 system, so that the result of channel cascading is equivalent to the influence of multipath on the channel, so that the channel of the microwave MIMO system can be maintained.
- Orthogonal performance which supports multi-stream independent transmission, without the need for additional hardware, the antenna array has a small area.
- another embodiment of the present invention provides a method for implementing microwave multiple input multiple output, the method comprising:
- each received signal in the M-channel received signal into a sub-received signal having the same number of copies as the receiving antenna according to the second energy distribution parameter, and the number of receiving antennas is a natural number greater than 1;
- 402 Perform phase processing on each sub-received signal according to the second phase parameter, and select one sub-received signal after phase processing from the M-channel received signal to superimpose, and respectively obtain an M-channel output signal.
- the second energy distribution parameter and the second phase parameter are obtained by training or obtained by theoretical model calculation.
- the specific training process refers to the device embodiment, and details are not described herein again.
- the received signal is a baseband signal, a radio frequency signal, or an intermediate frequency signal.
- the method further includes:
- each of the received signals of the M channels into the same number of receiving signals as the number of receiving antennas according to the second energy distribution parameter, and the number of receiving antennas is a natural number greater than 1;
- each sub-received signal is subjected to phase processing, and each of the M-channel received signals is selected to be phase-processed sub-received signals for superposition, and the M-channel output signals are respectively obtained.
- each of the N signals By decomposing each of the N signals into sub-signals of the same number of antennas according to the energy distribution parameter, phase processing each sub-signal according to the phase parameter, and selecting one phase of each of the N signals
- the sub-signals are superimposed to obtain N output signals respectively, thereby reducing the number of channel conditions of the MIM0 system, so that the result of channel cascading is equivalent to the influence of multipath on the channel, so that the channel of the microwave MIMO system can be maintained.
- Orthogonal performance which supports multi-stream independent transmission, without the need for additional hardware, the antenna array has a small area.
- another embodiment of the present invention provides a system for implementing microwave multiple input multiple output.
- the number of transmitter transmit antennas is the same as the number of receiver receive antennas, and the system includes a transmitter 10 and Receiver 20:
- the transmitter 10 includes a transmit channel correction module 101
- the receiver 20 includes a receive channel correction module 201;
- the transmit channel correction module 101 includes: a transmit energy distributor 101a and a transmit coupler 101b ;
- the transmit energy distributor 101a is configured to decompose each of the N transmit signals into the same number of transmit signals as the number of transmit antennas according to the first energy allocation parameter, and the number of transmit antennas is N, and N is greater than 1.
- a natural coupler configured to perform phase processing on each of the sub-transmission signals according to the first phase parameter, and select one sub-transmission signal after phase processing from the N-channel transmission signals to superimpose, respectively obtain N output signals, respectively The N output signals are respectively transmitted through N transmitting antennas;
- the receiving channel correction module 201 includes: a receiving energy distributor 201a and a receiving coupler 201b ;
- a receiving energy distributor 201a configured to receive each of the N received signals according to the second energy distribution parameter The number is decomposed into the same number of sub-received signals as the number of receiving antennas, and the number of receiving antennas is N;
- the receiving coupler 201b is configured to perform phase processing on each of the received signals according to the second phase parameter, and select one of the phase-processed sub-received signals from the N-channel received signals to be superimposed to obtain N-way output signals.
- the transfer function of the transmit channel correction module is Ha
- the transfer function of the receive channel correction module is Hb
- the original channel is Ho
- FIG. 2 is an example of a 2 ⁇ 2 antenna system with two inputs and two outputs.
- the transmit energy distributor 101a is composed of N energy distribution units, each energy distribution unit is composed of N first multipliers, and each first multiplier is used to decompose one transmission signal to obtain one sub-transmission signal;
- the transmit coupler 101b is composed of N transmit coupling units, each transmit coupling unit is composed of N second multipliers and a first adder, and each second multiplier is respectively connected to the first adder, each of the first The two multipliers are respectively used for phase processing the one-way sub-transmission signal, and the first adder is configured to respectively acquire the phase-processed sub-transmission signals from the N second multipliers to superimpose to obtain one output signal.
- the system further includes a transmitter adaptive parameter generator 102 for obtaining the first energy distribution parameter and the first phase parameter by training or by theoretical model calculation.
- the specific training method is not limited in this embodiment.
- One training method may be: the sending end adaptive parameter generator 102 sends the configuration parameter to the sending channel correction module 101 to observe the minimum mean square error of the receiver where the device is located or Bit error rate, the configuration parameter corresponding to the minimum mean square error or the lowest bit error rate is recorded as the correction parameter.
- the channel conditions are changed.
- the channel conditions include the transmission distance, the carrier frequency, and the antenna distance. The above experiment is repeated, and the correction parameters are recorded until all channel conditions are traversed.
- the transmitting end adaptive parameter generator 102 refers to FIG. 3.
- the transmitting end adaptive parameter generator 102 includes: a channel state information calculating unit, an energy selecting unit, and a phase selecting unit;
- a channel state information calculation unit configured to generate a decision threshold according to the input channel state information
- An energy selection unit configured to determine a first energy distribution parameter according to the decision threshold
- phase selection unit configured to determine a first phase parameter according to the decision threshold.
- the system further includes: a modulation module for modulating the baseband signal, an intermediate frequency module for performing the first frequency conversion of the data, and a radio frequency module for performing the second frequency conversion on the data;
- the location of the 101 is baseband, radio frequency, or intermediate frequency.
- the above three modules have three connection relationships with the transmission channel correction module 101 - see FIG. 4-a, the modulation module is connected to the transmission channel correction module 101, and the transmission channel correction module 101 is provided. Connected to the IF module, and the IF module is connected to the RF module;
- the modulation module is connected to the IF module, the IF module is connected to the RF module, and the RF module is The transmission channel correction module 101 is connected;
- the modulation module is connected to the intermediate frequency module, the intermediate frequency module is connected to the transmission channel correction module 101, and the transmission channel correction module 101 is connected to the radio frequency module.
- system further includes an encoding module coupled to the modulation module for encoding the original signal prior to performing the function of the modulation module.
- circuit diagram of the receiving channel correction module 201 is shown in FIG. 6.
- the receiving energy distributor 201a is composed of N energy distributing units, each energy distributing unit is composed of N third multipliers, and each third multiplier is used to decompose one receiving signal to obtain one path receiving signal;
- the receiving coupler 201b is composed of N receiving coupling units, each receiving coupling unit is composed of N fourth multipliers and one second adder, and each fourth multiplier is respectively connected to the second adder, each of the first The four multipliers are respectively used for phase processing of one sub-received signal, and the second adder is configured to respectively obtain phase-processed sub-received signals from the N fourth multipliers for superposition to obtain one output signal.
- the system further includes a receiver adaptive parameter generator 202 for obtaining the second energy distribution parameter and the second phase parameter by training or by theoretical model calculation.
- This embodiment does not limit the specific training method.
- One training method may be: The receiving end adaptive parameter generator 202 sends the configuration parameter to the receiving channel correction module 201 to observe the minimum mean square error of the receiver where the device is located or Bit error rate, the configuration parameter corresponding to the minimum mean square error or the lowest bit error rate is recorded as the correction parameter. After completion, the channel conditions are changed. The channel conditions include the transmission distance, the carrier frequency, and the antenna distance. The above experiment is repeated, and the correction parameters are recorded until all channel conditions are traversed.
- the receiving end adaptive parameter generator 202 includes: a channel state information calculating unit, an energy selecting unit, and a phase selecting unit;
- a channel state information calculation unit configured to generate a decision threshold according to the input channel state information
- An energy selection unit configured to determine a second energy distribution parameter according to the decision threshold
- phase selection unit configured to determine a second phase parameter according to the decision threshold.
- the system further includes: a demodulation module for demodulating the baseband signal, an intermediate frequency module for performing the first frequency conversion of the data, and a radio frequency module for performing the second frequency conversion on the data;
- the position of the correction module 201 is baseband, radio frequency, or intermediate frequency.
- the above three modules have three connection relationships with the receiving channel correction module 201 - see FIG. 8_a, the demodulation module is connected to the receiving channel correction module 201, and the channel correction module is received.
- 201 is connected to the intermediate frequency module, and the intermediate frequency module is connected to the radio frequency module;
- the demodulation module is connected to the intermediate frequency module, the intermediate frequency module is connected to the radio frequency module, and the radio frequency module is connected to the receiving channel correction module 201.
- the demodulation module is connected to the intermediate frequency module, the intermediate frequency module is connected to the receiving channel correction module 201, and the receiving channel correction module 201 is connected to the radio frequency module.
- system further includes a decoding module coupled to the demodulation module for decoding the original signal prior to performing the function of the demodulation module.
- each of the N signals By decomposing each of the N signals into sub-signals of the same number of antennas according to the energy distribution parameter, phase processing each sub-signal according to the phase parameter, and selecting one phase of each of the N signals
- the sub-signals are superimposed to obtain N output signals respectively, thereby reducing the number of channel conditions of the MIM0 system, so that the result of channel cascading is equivalent to the influence of multipath on the channel, so that the channel of the microwave MIMO system can be maintained.
- Orthogonal performance which supports multi-stream independent transmission, without the need for additional hardware, the antenna array has a small area.
- a person skilled in the art may understand that all or part of the steps of implementing the above embodiments may be completed by hardware, or may be instructed by a program to execute related hardware, and the program may be stored in a computer readable storage medium.
- the storage medium mentioned may be a read only memory, a magnetic disk or an optical disk or the like.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Radio Transmission System (AREA)
- Mobile Radio Communication Systems (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
本发明提供一种实现微波多输入多输出的方法、设备和系统,涉及无线通信领域,设备包括:发送信道校正模块,包括:发送能量分配器和发送耦合器;发送能量分配器,按照第一能量分配参数将N路发送信号中的每一路发送信号分解成与发送天线数量相同份数的子发送信号,发送天线数量为N,N为大于1的自然数;发送耦合器,按照第一相位参数对各路子发送信号进行相位处理,从N路发送信号中各选取一路相位处理后的子发送信号进行叠加,分别得到N路输出信号。本发明减小了MIMO系统的信道条件数,使得信道级联的结果等效于多径对信道的影响,使微波MIMO系统的信道保持正交性,从而支持多数据流独立传输,同时无需使用额外的硬件,天线阵列的面积较小。
Description
一种实现微波多输入多输出的方法、 设备和系统 技术领域
本发明涉及无线通信领域, 特别涉及一种实现微波多输入多输出的方法、 设备和系统。 背景技术
MIMO (Multi-input Multi-output, 多输入多输出) 系统相对于 SISO (Single-input Single-output, 单输入单输出) 系统, 可以增加信道容量。 无线 MIM0系统假设信道为瑞 利衰落: 信道没有直达径, 而是具备丰富的多径。 此时, MIM0信道的容量可以根据天线的 数量线性增加。
对于微波信道而言, 通常系统具有较强的直达径, 此时信道可以被模拟成莱斯衰落。 在莱斯衰落信道下, 信道矩阵通常为低秩状态, 即部分 MIM0信道矩阵特征值 为 0, 根据 香农公式0 = ^ §2(1 + ^ ((72 )), 其中 为 MIM0信道矩阵特征值, 为平均信号功 率, σ2为噪声功率, 为发送天线个数, r为接收天线的个数, B为信号带宽, C为信道容 量, 低秩状态下 MIM0系统的容量不能得到充分发挥。 MIM0系统中的条件数定义为信道矩阵 的最大特征值与最小特征值之间的比值, 条件数越大, 信道的奇异性越强, 条件数越小, 即越接近 1, MIM0系统的正交性越好。 对于莱斯信道下的 MIM0系统, 当天线间隔为瑞利距 离时, MIM0系统的多个子信道可以保持正交性能, 信道的条件数接近 1, 从而支持多数据 流独立传输。 目前有两种实现微波多输入多输出的方案:
第一种, 在微波基站 1和微波基站 2之间加入中继基站, 通过中继基站的转发产生相 互独立的传输路径, 从而增加信道容量。 这种方案的实质是增加了一条独立的发送路径, 使得信道相关性趋近于 0。
第二种, 收发机 3的天线之间的间隔为瑞利间隔, 收发机 4的天线之间的间隔也为瑞 利间隔。 这样使得 MIM0信道的相关性趋于 0, 从而增加信道容量。 对于 30GHz频段而言, 传输 2km的条件下, 所需要的瑞利距离为 3m, 此时天线阵的面积较大, 不易于实现。
在实现本发明的过程中, 发明人发现现有技术至少存在以下问题:
第一种方案需要额外的中继基站提升微波 MIM0系统容量, 硬件成本较高, 并且中继基
站所选的位置也非常关键, 组网的难度较大;
第二种方案收发机天线之间的间隔较大, 天线阵列的面积较大, 天线阵列不易于实现。 发明内容
为了在实现微波 MIM0时避免使用额外的硬件, 减小天线阵列的面积, 本发明实施例提 供了一种实现微波多输入多输出的方法、 设备和系统。
所述技术方案如下:
一种实现微波多输入多输出的设备, 所述设备包括发送信道校正模块;
所述发送信道校正模块包括: 发送能量分配器和发送耦合器;
所述发送能量分配器, 用于按照第一能量分配参数将 N路发送信号中的每一路发送信 号分解成与发送天线数量相同份数的子发送信号,发送天线数量为 N, N为大于 1的自然数; 所述发送耦合器, 用于按照第一相位参数对各路子发送信号进行相位处理, 从 N路发 送信号中各选取一路相位处理后的子发送信号进行叠加, 分别得到 N路输出信号, 将 N路 输出信号分别通过 N个所述发送天线进行发送。
一种实现微波多输入多输出的设备, 所述设备包括接收信道校正模块;
所述接收信道校正模块包括: 接收能量分配器和接收耦合器;
所述接收能量分配器, 用于按照第二能量分配参数将 M路接收信号中的每一路接收信 号分解成与接收天线数量相同份数的子接收信号,接收天线数量为 M, M为大于 1的自然数; 所述接收耦合器, 用于按照第二相位参数对各路子接收信号进行相位处理, 从 M路接 收信号中各选取一路相位处理后的子接收信号进行叠加, 分别得到 M路输出信号。
一种实现微波多输入多输出的方法, 所述方法包括
按照第一能量分配参数将 N路发送信号中的每一路发送信号分解成与发送天线数量相 同份数的子发送信号, 发送天线数量为^ N为大于 1的自然数;
按照第一相位参数对各路子发送信号进行相位处理, 从 N路发送信号中各选取一路相 位处理后的子发送信号进行叠加, 分别得到 N路输出信号, 将 N路输出信号分别通过 N个 所述发送天线进行发送。
一种实现微波多输入多输出的方法, 所述方法包括
按照第二能量分配参数将 M路接收信号中的每一路接收信号分解成与接收天线数量相 同份数的子接收信号, 接收天线数量为 M为大于 1的自然数;
按照第二相位参数对各路子接收信号进行相位处理, 从 M路接收信号中各选取一路相 位处理后的子接收信号进行叠加, 分别得到 M路输出信号。
一种实现微波多输入多输出的系统, 所述系统包括发射机和接收机: 所述发射机包括 发送信道校正模块, 所述接收机包括接收信道校正模块;
所述发送信道校正模块包括: 发送能量分配器和发送耦合器;
所述发送能量分配器, 用于按照第一能量分配参数将 N路发送信号中的每一路发送信 号分解成与发送天线数量相同份数的子发送信号,发送天线数量为 N, N为大于 1的自然数; 所述发送耦合器, 用于按照第一相位参数对各路子发送信号进行相位处理, 从 N路发 送信号中各选取一路相位处理后的子发送信号进行叠加, 分别得到 N路输出信号, 将 N路 输出信号分别通过 N个所述发送天线进行发送;
所述接收信道校正模块包括: 接收能量分配器和接收耦合器;
所述接收能量分配器, 用于按照第二能量分配参数将 N路接收信号中的每一路接收信 号分解成与接收天线数量相同份数的子接收信号, 接收天线数量为 N;
所述接收耦合器, 用于按照第二相位参数对各路子接收信号进行相位处理, 从 N路接 收信号中各选取一路相位处理后的子接收信号进行叠加, 分别得到 N路输出信号。
本发明实施例提供的技术方案的有益效果是:
通过按照能量分配参数将 N路信号中的每一路信号分解成与天线数量 N相同份数的子 信号, 按照相位参数对各路子信号进行相位处理, 从 N路信号中各选取一路相位处理后的 子信号进行叠加, 分别得到 N路输出信号, 从而减小了 MIM0系统的信道条件数, 使得信道 级联的结果等效于多径对信道的影响, 使微波多输入多输出系统的信道可以保持正交性能, 从而支持多数据流独立传输, 同时无需使用额外的硬件, 天线阵列的面积较小。 附图说明
为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例描述中所需要使用的 附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于本 领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的 附图。
图 1是本发明一个实施例提供的实现微波多输入多输出的设备结构示意图;
图 2是本发明一个实施例提供的发送信道校正模块结构示意图;
图 3是本发明一个实施例提供的发送端自适应参数产生器结构示意图;
图 4a是本发明一个实施例提供的实现微波多输入多输出的设备另一结构示意图; 图 4b是本发明一个实施例提供的实现微波多输入多输出的设备另一结构示意图; 图 4c是本发明一个实施例提供的实现微波多输入多输出的设备另一结构示意图;
图 5是本发明另一实施例提供的实现微波多输入多输出的设备结构示意图; 图 6是本发明另一实施例提供的接收信道校正模块结构示意图;
图 7是本发明另一实施例提供的接收端自适应参数产生器结构示意图;
图 8a是本发明另一实施例提供的实现微波多输入多输出的设备另一结构示意图;
图 8b是本发明另一实施例提供的实现微波多输入多输出的设备另一结构示意图;
图 8c是本发明另一实施例提供的实现微波多输入多输出的设备另一结构示意图;
图 9是本发明另一实施例提供的实现微波多输入多输出的方法流程图;
图 10是本发明另一实施例提供的实现微波多输入多输出的方法流程图;
图 11是本发明另一实施例提供的实现微波多输入多输出的系统结构示意图。 具体实施方式
为使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图对本发明实施方式作 进一步地详细描述。
参见图 1, 本发明的一个实施例提供了一种实现微波多输入多输出的设备, 当该设备位 于发射机时, 该设备包括: 发送信道校正模块 101 ;
发送信道校正模块 101包括: 发送能量分配器 101a和发送耦合器 101b;
发送能量分配器 101a, 用于按照第一能量分配参数将 N路发送信号中的每一路发送信 号分解成与发送天线数量相同份数的子发送信号,发送天线数量为 N, N为大于 1的自然数; 发送耦合器 101b, 用于按照第一相位参数对各路子发送信号进行相位处理, 从 N路发 送信号中各选取一路相位处理后的子发送信号进行叠加, 分别得到 N路输出信号, 将 N路 输出信号分别通过 N个发送天线进行发送。
具体实现时, 发送信道校正模块 101的电路图参见图 2, 图 2是以二输入二输出的 2 X 2天线系统为例进行说明。
发送能量分配器 101a由 N个能量分配单元组成, 每个能量分配单元由 N个第一乘法器 组成, 每个第一乘法器分别用于分解一路发送信号得到一路子发送信号;
发送耦合器 101b由 N个发送耦合单元组成, 每个发送耦合单元由 N个第二乘法器和一 个第一加法器组成, 每个第二乘法器分别与该第一加法器连接, 每个第二乘法器分别用于 对一路子发送信号进行相位处理, 第一加法器用于从 N个第二乘法器分别获取相位处理后 的子发送信号进行叠加, 得到一路输出信号。
进一步, 该设备还包括发送端自适应参数产生器 102, 用于通过训练获得或者通过理论 模型计算获得第一能量分配参数和第一相位参数。 本实施例并不限定具体的训练方法, 其
中一种训练方法可以为: 发送端自适应参数产生器 102将配置参数送入发送信道校正模块 101 , 观察该设备所在接收机的最小均方误差或者误码率, 将最小均方误差或者误码率最低 时对应的配置参数作为校正参数记录下来。 完成后改变信道条件, 信道条件包括传输距离、 载波频点和天线距离等, 重复上述实验, 并记录校正参数, 直至遍历所有信道情况为止。
具体实现时, 发送端自适应参数产生器 102参见图 3, 发送端自适应参数产生器 102包 括: 信道状态信息计算单元、 能量选择单元和相位选择单元;
信道状态信息计算单元, 用于根据输入的信道状态信息产生判决阈值;
能量选择单元, 用于根据判决阈值, 确定第一能量分配参数;
相位选择单元, 用于根据判决阈值, 确定第一相位参数。
进一步, 该设备还包括: 用于对基带信号进行调制的调制模块、 用于对数据进行第一 次变频的中频模块、和用于对数据进行第二次变频的射频模块; 根据发送信道校正模块 101 所处的位置是基带、 射频、 或者中频, 上述三个模块与发送信道校正模块 101 有三种连接 关系- 参见图 4-a, 调制模块与发送信道校正模块 101连接, 且发送信道校正模块 101与中频 模块连接, 中频模块与射频模块连接;
或者, 参见图 4-b, 调制模块与中频模块连接, 中频模块与射频模块连接, 射频模块与 发送信道校正模块 101连接;
或者,参见图 4-c,调制模块与中频模块连接, 中频模块与发送信道校正模块 101连接, 发送信道校正模块 101与射频模块连接。
进一步的, 该设备还包括与调制模块连接的编码模块, 用于在执行调制模块的功能之 前, 对原始信号进行编码。
在微波设备中, 发射机和接收机通常是一体的, 同时具备发射微波信号到对端和从对 端接收微波信号的功能, 因此, 该实施例中还可以包括接收信道校正模块 201, 用于校正来 自对端的微波信号。
参见图 5, 接收信道校正模块 201包括: 接收能量分配器 201a和接收耦合器 201b; 接收能量分配器 201a, 用于按照第二能量分配参数将 M路接收信号中的每一路接收信 号分解成与接收天线数量相同份数的子接收信号,接收天线数量为 M, M为大于 1的自然数; 接收耦合器 201b, 用于按照第二相位参数对各路子接收信号进行相位处理, 从 M路接 收信号中各选取一路相位处理后的子接收信号进行叠加, 分别得到 M路输出信号。
具体实现时, 接收信道校正模块 201的电路图参见图 6。
接收能量分配器 201a由 M个能量分配单元组成, 每个能量分配单元由 M个第三乘法器
组成, 每个第三乘法器分别用于分解一路接收信号得到一路子接收信号;
接收耦合器 201b由 M个接收耦合单元组成, 每个接收耦合单元由 M个第四乘法器和一 个第二加法器组成, 每个第四乘法器分别与该第二加法器连接, 每个第四乘法器分别用于 对一路子接收信号进行相位处理, 第二加法器用于从 M个第四乘法器分别获取相位处理后 的子接收信号进行叠加, 得到一路输出信号。
进一步, 该设备还包括接收端自适应参数产生器 202, 用于通过训练获得或者通过理论 模型计算获得第二能量分配参数和第二相位参数。 本实施例并不限定具体的训练方法, 其 中一种训练方法可以为: 接收端自适应参数产生器 202将配置参数送入接收信道校正模块 201, 观察该设备所在接收机的最小均方误差或者误码率, 将最小均方误差或者误码率最低 时对应的配置参数作为校正参数记录下来。 完成后改变信道条件, 信道条件包括传输距离、 载波频点和天线距离等, 重复上述实验, 并记录校正参数, 直至遍历所有信道情况为止。
具体实现时, 接收端自适应参数产生器 202参见图 7, 接收端自适应参数产生器 202包 括: 信道状态信息计算单元、 能量选择单元和相位选择单元;
信道状态信息计算单元, 用于根据输入的信道状态信息产生判决阈值;
能量选择单元, 用于根据判决阈值, 确定第二能量分配参数;
相位选择单元, 用于根据判决阈值, 确定第二相位参数。
进一步, 该设备还包括: 用于对基带信号进行解调的解调模块、 用于对数据进行第一 次变频的中频模块、 和用于对数据进行第二次变频的射频模块; 根接收信道校正模块 201 所处的位置是基带、 射频、 或者中频, 上述三个模块与接收信道校正模块 201 有三种连接 关系- 参见图 8_a, 解调模块与接收信道校正模块 201连接, 且接收信道校正模块 201与中频 模块连接, 中频模块与射频模块连接;
或者, 参见图 8_b, 解调模块与中频模块连接, 中频模块与射频模块连接, 射频模块与 接收信道校正模块 201连接;
或者,参见图 8-c,解调模块与中频模块连接, 中频模块与接收信道校正模块 201连接, 接收信道校正模块 201与射频模块连接。
进一步的, 该设备还包括与解调模块连接的解码模块, 用于在执行解调模块的功能之 前, 对原始信号进行解码。
通过按照能量分配参数将 N路信号中的每一路信号分解成与天线数量 N相同份数的子 信号, 按照相位参数对各路子信号进行相位处理, 从 N路信号中各选取一路相位处理后的 子信号进行叠加, 分别得到 N路输出信号, 从而减小了 MIM0系统的信道条件数, 使得信道
级联的结果等效于多径对信道的影响, 使微波多输入多输出系统的信道可以保持正交性能, 从而支持多数据流独立传输, 同时无需使用额外的硬件, 天线阵列的面积较小。 参见图 5, 本发明的另一个实施例提供了一种实现微波多输入多输出的设备, 当该设备 位于接收机时, 该设备包括: 接收信道校正模块 201 ;
接收信道校正模块 201包括: 接收能量分配器 201a和接收耦合器 201b;
接收能量分配器 201a, 用于按照第二能量分配参数将 M路接收信号中的每一路接收信 号分解成与接收天线数量相同份数的子接收信号,接收天线数量为 M, M为大于 1的自然数; 接收耦合器 201b, 用于按照第二相位参数对各路子接收信号进行相位处理, 从 M路接 收信号中各选取一路相位处理后的子接收信号进行叠加, 分别得到 M路输出信号。
具体实现时, 接收信道校正模块 201的电路图参见图 6。
接收能量分配器 201a由 M个能量分配单元组成, 每个能量分配单元由 M个第三乘法器 组成, 每个第三乘法器分别用于分解一路接收信号得到一路子接收信号;
接收耦合器 201b由 M个接收耦合单元组成, 每个接收耦合单元由 M个第四乘法器和一 个第二加法器组成, 每个第四乘法器分别与该第二加法器连接, 每个第四乘法器分别用于 对一路子接收信号进行相位处理, 第二加法器用于从 M个第四乘法器分别获取相位处理后 的子接收信号进行叠加, 得到一路输出信号。
进一步, 该设备还包括接收端自适应参数产生器 202, 用于通过训练获得或者通过理论 模型计算获得第二能量分配参数和第二相位参数。 本实施例并不限定具体的训练方法, 其 中一种训练方法可以为: 接收端自适应参数产生器 202将配置参数送入接收信道校正模块 201, 观察该设备所在接收机的最小均方误差或者误码率, 将最小均方误差或者误码率最低 时对应的配置参数作为校正参数记录下来。 完成后改变信道条件, 信道条件包括传输距离、 载波频点和天线距离等, 重复上述实验, 并记录校正参数, 直至遍历所有信道情况为止。
具体实现时, 接收端自适应参数产生器 202参见图 7, 接收端自适应参数产生器 202包 括: 信道状态信息计算单元、 能量选择单元和相位选择单元;
信道状态信息计算单元, 用于根据输入的信道状态信息产生判决阈值;
能量选择单元, 用于根据判决阈值, 确定第二能量分配参数;
相位选择单元, 用于根据判决阈值, 确定第二相位参数。
进一步, 该设备还包括: 用于对基带信号进行解调的解调模块、 用于对数据进行第一 次变频的中频模块、 和用于对数据进行第二次变频的射频模块; 根接收信道校正模块 201 所处的位置是基带、 射频、 或者中频, 上述三个模块与接收信道校正模块 201 有三种连接
关系- 参见图 8_a, 解调模块与接收信道校正模块 201连接, 且接收信道校正模块 201与中频 模块连接, 中频模块与射频模块连接;
或者, 参见图 8_b, 解调模块与中频模块连接, 中频模块与射频模块连接, 射频模块与 接收信道校正模块 201连接;
或者,参见图 8-c,解调模块与中频模块连接, 中频模块与接收信道校正模块 201连接, 接收信道校正模块 201与射频模块连接。
进一步的, 该设备还包括与解调模块连接的解码模块, 用于在执行解调模块的功能之 前, 对原始信号进行解码。
通过按照能量分配参数将 N路信号中的每一路信号分解成与天线数量 N相同份数的子 信号, 按照相位参数对各路子信号进行相位处理, 从 N路信号中各选取一路相位处理后的 子信号进行叠加, 分别得到 N路输出信号, 从而减小了 MIM0系统的信道条件数, 使得信道 级联的结果等效于多径对信道的影响, 使微波多输入多输出系统的信道可以保持正交性能, 从而支持多数据流独立传输, 同时无需使用额外的硬件, 天线阵列的面积较小。 基于图 1所示的实施例, 参见图 9, 本发明的另一个实施例提供了一种实现微波多输入 多输出的方法, 该方法包括:
301: 按照第一能量分配参数将 N路发送信号中的每一路发送信号分解成与发送天线数 量相同份数的子发送信号, 发送天线数量为^ N为大于 1的自然数;
302: 按照第一相位参数对各路子发送信号进行相位处理, 从 N路发送信号中各选取一 路相位处理后的子发送信号进行叠加, 分别得到 N路输出信号, 将 N路输出信号分别通过 N 个发送天线进行发送。
其中, 第一能量分配参数和第一相位参数通过训练获得或者通过理论模型计算获得。 具体训练过程参考装置实施例, 这里不再赘述。
其中, 发送信号为基带信号、 射频信号、 或者中频信号。
通过按照能量分配参数将 N路信号中的每一路信号分解成与天线数量 N相同份数的子 信号, 按照相位参数对各路子信号进行相位处理, 从 N路信号中各选取一路相位处理后的 子信号进行叠加, 分别得到 N路输出信号, 从而减小了 MIM0系统的信道条件数, 使得信道 级联的结果等效于多径对信道的影响, 使微波多输入多输出系统的信道可以保持正交性能, 从而支持多数据流独立传输, 同时无需使用额外的硬件, 天线阵列的面积较小。
基于图 5所示的实施例, 参见图 10, 本发明的另一个实施例提供了一种实现微波多输 入多输出的方法, 该方法包括:
401: 按照第二能量分配参数将 M路接收信号中的每一路接收信号分解成与接收天线数 量相同份数的子接收信号, 接收天线数量为 M为大于 1的自然数;
402: 按照第二相位参数对各路子接收信号进行相位处理, 从 M路接收信号中各选取一 路相位处理后的子接收信号进行叠加, 分别得到 M路输出信号。
其中, 第二能量分配参数和第二相位参数通过训练获得或者通过理论模型计算获得。 具体训练过程参考装置实施例, 这里不再赘述。
其中, 接收信号为基带信号、 射频信号、 或者中频信号。
进一步, 该方法还包括:
按照第二能量分配参数将 M路接收信号中的每一路接收信号分解成与接收天线数量相 同份数的子接收信号, 接收天线数量为 M为大于 1的自然数;
按照第二相位参数对各路子接收信号进行相位处理, 从 M路接收信号中各选取一路相 位处理后的子接收信号进行叠加, 分别得到 M路输出信号。
通过按照能量分配参数将 N路信号中的每一路信号分解成与天线数量 N相同份数的子 信号, 按照相位参数对各路子信号进行相位处理, 从 N路信号中各选取一路相位处理后的 子信号进行叠加, 分别得到 N路输出信号, 从而减小了 MIM0系统的信道条件数, 使得信道 级联的结果等效于多径对信道的影响, 使微波多输入多输出系统的信道可以保持正交性能, 从而支持多数据流独立传输, 同时无需使用额外的硬件, 天线阵列的面积较小。 参见图 11, 本发明的另一个实施例提供了一种实现微波多输入多输出的系统, 通常情 况下, 发射机发送天线的数量和接收机接收天线的数量相同, 该系统包括发射机 10和接收 机 20: 发射机 10包括发送信道校正模块 101, 接收机 20包括接收信道校正模块 201 ;
发送信道校正模块 101包括: 发送能量分配器 101a和发送耦合器 101b;
发送能量分配器 101a, 用于按照第一能量分配参数将 N路发送信号中的每一路发送信 号分解成与发送天线数量相同份数的子发送信号,发送天线数量为 N, N为大于 1的自然数; 发送耦合器 101b, 用于按照第一相位参数对各路子发送信号进行相位处理, 从 N路发 送信号中各选取一路相位处理后的子发送信号进行叠加, 分别得到 N路输出信号, 将 N路 输出信号分别通过 N个发送天线进行发送;
接收信道校正模块 201包括: 接收能量分配器 201a和接收耦合器 201b;
接收能量分配器 201a, 用于按照第二能量分配参数将 N路接收信号中的每一路接收信
号分解成与接收天线数量相同份数的子接收信号, 接收天线数量为 N;
接收耦合器 201b, 用于按照第二相位参数对各路子接收信号进行相位处理, 从 N路接 收信号中各选取一路相位处理后的子接收信号进行叠加, 分别得到 N路输出信号。
假设发送信道校正模块的传递函数为 Ha, 接收信道校正模块的传递函数为 Hb, 原始信 道为 Ho, 则改进后的信道为: Hi = Ha X Ho X Hb。
具体实现时, 发送信道校正模块 101的电路图参见图 2, 图 2是以二输入二输出的 2 X 2天线系统为例进行说明。
发送能量分配器 101a由 N个能量分配单元组成, 每个能量分配单元由 N个第一乘法器 组成, 每个第一乘法器分别用于分解一路发送信号得到一路子发送信号;
发送耦合器 101b由 N个发送耦合单元组成, 每个发送耦合单元由 N个第二乘法器和一 个第一加法器组成, 每个第二乘法器分别与该第一加法器连接, 每个第二乘法器分别用于 对一路子发送信号进行相位处理, 第一加法器用于从 N个第二乘法器分别获取相位处理后 的子发送信号进行叠加, 得到一路输出信号。
进一步, 该系统还包括发送端自适应参数产生器 102, 用于通过训练获得或者通过理论 模型计算获得第一能量分配参数和第一相位参数。 本实施例并不限定具体的训练方法, 其 中一种训练方法可以为: 发送端自适应参数产生器 102将配置参数送入发送信道校正模块 101 , 观察该设备所在接收机的最小均方误差或者误码率, 将最小均方误差或者误码率最低 时对应的配置参数作为校正参数记录下来。 完成后改变信道条件, 信道条件包括传输距离、 载波频点和天线距离等, 重复上述实验, 并记录校正参数, 直至遍历所有信道情况为止。
具体实现时, 发送端自适应参数产生器 102参见图 3, 发送端自适应参数产生器 102包 括: 信道状态信息计算单元、 能量选择单元和相位选择单元;
信道状态信息计算单元, 用于根据输入的信道状态信息产生判决阈值;
能量选择单元, 用于根据判决阈值, 确定第一能量分配参数;
相位选择单元, 用于根据判决阈值, 确定第一相位参数。
进一步, 该系统还包括: 用于对基带信号进行调制的调制模块、 用于对数据进行第一 次变频的中频模块、和用于对数据进行第二次变频的射频模块; 根据发送信道校正模块 101 所处的位置是基带、 射频、 或者中频, 上述三个模块与发送信道校正模块 101 有三种连接 关系- 参见图 4-a, 调制模块与发送信道校正模块 101连接, 且发送信道校正模块 101与中频 模块连接, 中频模块与射频模块连接;
或者, 参见图 4-b, 调制模块与中频模块连接, 中频模块与射频模块连接, 射频模块与
发送信道校正模块 101连接;
或者,参见图 4-c,调制模块与中频模块连接, 中频模块与发送信道校正模块 101连接, 发送信道校正模块 101与射频模块连接。
进一步的, 该系统还包括与调制模块连接的编码模块, 用于在执行调制模块的功能之 前, 对原始信号进行编码。
具体实现时, 接收信道校正模块 201的电路图参见图 6。
接收能量分配器 201a由 N个能量分配单元组成, 每个能量分配单元由 N个第三乘法器 组成, 每个第三乘法器分别用于分解一路接收信号得到一路子接收信号;
接收耦合器 201b由 N个接收耦合单元组成, 每个接收耦合单元由 N个第四乘法器和一 个第二加法器组成, 每个第四乘法器分别与该第二加法器连接, 每个第四乘法器分别用于 对一路子接收信号进行相位处理, 第二加法器用于从 N个第四乘法器分别获取相位处理后 的子接收信号进行叠加, 得到一路输出信号。
进一步, 该系统还包括接收端自适应参数产生器 202, 用于通过训练获得或者通过理论 模型计算获得第二能量分配参数和第二相位参数。 本实施例并不限定具体的训练方法, 其 中一种训练方法可以为: 接收端自适应参数产生器 202将配置参数送入接收信道校正模块 201, 观察该设备所在接收机的最小均方误差或者误码率, 将最小均方误差或者误码率最低 时对应的配置参数作为校正参数记录下来。 完成后改变信道条件, 信道条件包括传输距离、 载波频点和天线距离等, 重复上述实验, 并记录校正参数, 直至遍历所有信道情况为止。
具体实现时, 接收端自适应参数产生器 202参见图 7, 接收端自适应参数产生器 202包 括: 信道状态信息计算单元、 能量选择单元和相位选择单元;
信道状态信息计算单元, 用于根据输入的信道状态信息产生判决阈值;
能量选择单元, 用于根据判决阈值, 确定第二能量分配参数;
相位选择单元, 用于根据判决阈值, 确定第二相位参数。
进一步, 该系统还包括: 用于对基带信号进行解调的解调模块、 用于对数据进行第一 次变频的中频模块、 和用于对数据进行第二次变频的射频模块; 根接收信道校正模块 201 所处的位置是基带、 射频、 或者中频, 上述三个模块与接收信道校正模块 201 有三种连接 关系- 参见图 8_a, 解调模块与接收信道校正模块 201连接, 且接收信道校正模块 201与中频 模块连接, 中频模块与射频模块连接;
或者, 参见图 8_b, 解调模块与中频模块连接, 中频模块与射频模块连接, 射频模块与 接收信道校正模块 201连接;
或者,参见图 8-c,解调模块与中频模块连接, 中频模块与接收信道校正模块 201连接, 接收信道校正模块 201与射频模块连接。
进一步的, 该系统还包括与解调模块连接的解码模块, 用于在执行解调模块的功能之 前, 对原始信号进行解码。
通过按照能量分配参数将 N路信号中的每一路信号分解成与天线数量 N相同份数的子 信号, 按照相位参数对各路子信号进行相位处理, 从 N路信号中各选取一路相位处理后的 子信号进行叠加, 分别得到 N路输出信号, 从而减小了 MIM0系统的信道条件数, 使得信道 级联的结果等效于多径对信道的影响, 使微波多输入多输出系统的信道可以保持正交性能, 从而支持多数据流独立传输, 同时无需使用额外的硬件, 天线阵列的面积较小。 本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完 成, 也可以通过程序来指令相关的硬件完成, 所述的程序可以存储于一种计算机可读存储 介质中, 上述提到的存储介质可以是只读存储器, 磁盘或光盘等。
以上所述仅为本发明的较佳实施例, 并不用以限制本发明, 凡在本发明的精神和原则 之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。
Claims
1、 一种实现微波多输入多输出的设备, 其特征在于, 所述设备包括发送信道校正模块; 所述发送信道校正模块包括: 发送能量分配器和发送耦合器;
所述发送能量分配器, 用于按照第一能量分配参数将 N路发送信号中的每一路发送信号 分解成与发送天线数量相同份数的子发送信号, 发送天线数量为^ N为大于 1的自然数; 所述发送耦合器, 用于按照第一相位参数对各路子发送信号进行相位处理, 从 N路发送 信号中各选取一路相位处理后的子发送信号进行叠加, 分别得到 N路输出信号, 将 N路输出 信号分别通过 N个所述发送天线进行发送。
2、 根据权利要求 1所述的设备, 其特征在于,
所述发送能量分配器由 N个能量分配单元组成, 每个能量分配单元由 N个第一乘法器组 成, 每个第一乘法器分别用于分解一路发送信号得到一路子发送信号;
所述发送耦合器由 N个发送耦合单元组成, 每个发送耦合单元由 N个第二乘法器和一个 第一加法器组成, 每个第二乘法器分别与该第一加法器连接, 每个第二乘法器分别用于对一 路子发送信号进行相位处理, 第一加法器用于从 N个第二乘法器分别获取相位处理后的子发 送信号进行叠加, 得到一路输出信号。
3、根据权利要求 1所述的设备,其特征在于,所述设备还包括发送端自适应参数产生器, 用于通过训练获得或者通过理论模型计算获得第一能量分配参数和第一相位参数。
4、 根据权利要求 3所述的设备, 其特征在于, 所述发送端自适应参数产生器包括: 信道 状态信息计算单元、 能量选择单元和相位选择单元;
所述信道状态信息计算单元, 用于根据输入的信道状态信息产生判决阈值;
所述能量选择单元, 用于根据所述判决阈值, 确定第一能量分配参数;
所述相位选择单元, 用于根据所述判决阈值, 确定第一相位参数。
5、 根据权利要求 1所述的设备, 其特征在于, 所述设备还包括: 用于对基带信号进行调 制的调制模块、 用于对数据进行第一次变频的中频模块、 和用于对数据进行第二次变频的射 频模块;
所述调制模块与所述发送信道校正模块连接, 且所述发送信道校正模块与所述中频模块 连接, 所述中频模块与所述射频模块连接;
或者, 所述调制模块与所述中频模块连接, 所述中频模块与所述射频模块连接, 所述射 频模块与所述发送信道校正模块连接; 或者, 所述调制模块与所述中频模块连接, 所述中频模块与所述发送信道校正模块连接, 所述发送信道校正模块与所述射频模块连接。
6、 根据权利要求 1所述的设备, 其特征在于, 所述设备还包括: 接收信道校正模块; 所述接收信道校正模块包括: 接收能量分配器和接收耦合器;
所述接收能量分配器, 用于按照第二能量分配参数将 M路接收信号中的每一路接收信号 分解成与接收天线数量相同份数的子接收信号, 接收天线数量为 M为大于 1的自然数; 所述接收耦合器, 用于按照第二相位参数对各路子接收信号进行相位处理, 从 M路接收 信号中各选取一路相位处理后的子接收信号进行叠加, 分别得到 M路输出信号。
7、 一种实现微波多输入多输出的设备, 其特征在于, 所述设备包括接收信道校正模块; 所述接收信道校正模块包括: 接收能量分配器和接收耦合器;
所述接收能量分配器, 用于按照第二能量分配参数将 M路接收信号中的每一路接收信号 分解成与接收天线数量相同份数的子接收信号, 接收天线数量为 M为大于 1的自然数; 所述接收耦合器, 用于按照第二相位参数对各路子接收信号进行相位处理, 从 M路接收 信号中各选取一路相位处理后的子接收信号进行叠加, 分别得到 M路输出信号。
8、 根据权利要求 7所述的设备, 其特征在于,
所述接收能量分配器由 M个能量分配单元组成, 每个能量分配单元由 M个第三乘法器组 成, 每个第三乘法器分别用于分解一路接收信号得到一路子接收信号;
所述接收耦合器由 M个接收耦合单元组成, 每个接收耦合单元由 M个第四乘法器和一个 第二加法器组成, 每个第四乘法器分别与该第二加法器连接, 每个第四乘法器分别用于对一 路子接收信号进行相位处理, 第二加法器用于从 M个第四乘法器分别获取相位处理后的子接 收信号进行叠加, 得到一路输出信号。
9、根据权利要求 7所述的设备,其特征在于,所述设备还包括接收端自适应参数产生器, 用于通过训练获得或者通过理论模型计算获得第二能量分配参数和第二相位参数。
10、 根据权利要求 9所述的设备, 其特征在于, 所述接收端自适应参数产生器包括: 信 道状态信息计算单元、 能量选择单元和相位选择单元;
所述信道状态信息计算单元, 用于根据输入的信道状态信息产生判决阈值;
所述能量选择单元, 用于根据所述判决阈值, 确定第二能量分配参数;
所述相位选择单元, 用于根据所述判决阈值, 确定第二相位参数。
11、 根据权利要求 7所述的设备, 其特征在于, 所述设备还包括: 用于对基带信号进行 解调的解调模块、 用于对数据进行第一次变频的中频模块、 和用于对数据进行第二次变频的 射频模块;
所述解调模块与所述接收信道校正模块连接, 且所述接收信道校正模块与所述中频模块 连接, 所述中频模块与所述射频模块连接;
或者, 所述解调模块与所述中频模块连接, 所述中频模块与所述射频模块连接, 所述射 频模块与所述接收信道校正模块连接;
或者, 所述解调模块与所述中频模块连接, 所述中频模块与所述接收信道校正模块连接, 所述接收信道校正模块与所述射频模块连接。
12、 一种实现微波多输入多输出的方法, 其特征在于, 所述方法包括
按照第一能量分配参数将 N路发送信号中的每一路发送信号分解成与发送天线数量相同 份数的子发送信号, 发送天线数量为^ N为大于 1的自然数;
按照第一相位参数对各路子发送信号进行相位处理, 从 N路发送信号中各选取一路相位 处理后的子发送信号进行叠加, 分别得到 N路输出信号, 将 N路输出信号分别通过 N个所述 发送天线进行发送。
13、 根据权利要求 12所述的方法, 其特征在于, 第一能量分配参数和第一相位参数通过 训练获得或者通过理论模型计算获得。
14、 根据权利要求 12所述的方法, 其特征在于, 所述发送信号为基带信号、 射频信号、 或者中频信号。
15、 根据权利要求 12所述的方法, 其特征在于, 所述方法还包括
按照第二能量分配参数将 M路接收信号中的每一路接收信号分解成与接收天线数量相同 份数的子接收信号, 接收天线数量为 M为大于 1的自然数;
按照第二相位参数对各路子接收信号进行相位处理, 从 M路接收信号中各选取一路相位 处理后的子接收信号进行叠加, 分别得到 M路输出信号。
16、 一种实现微波多输入多输出的方法, 其特征在于, 所述方法包括
按照第二能量分配参数将 M路接收信号中的每一路接收信号分解成与接收天线数量相同 份数的子接收信号, 接收天线数量为 M为大于 1的自然数;
按照第二相位参数对各路子接收信号进行相位处理, 从 M路接收信号中各选取一路相位 处理后的子接收信号进行叠加, 分别得到 M路输出信号。
17、 根据权利要求 16所述的方法, 其特征在于, 第二能量分配参数和第二相位参数通过 训练获得或者通过理论模型计算获得。
18、 根据权利要求 16所述的方法, 其特征在于, 所述接收信号为基带信号、 射频信号、 或者中频信号。
19、 一种实现微波多输入多输出的系统, 其特征在于, 所述系统包括发射机和接收机: 所述发射机包括发送信道校正模块, 所述接收机包括接收信道校正模块;
所述发送信道校正模块包括: 发送能量分配器和发送耦合器;
所述发送能量分配器, 用于按照第一能量分配参数将 N路发送信号中的每一路发送信号 分解成与发送天线数量相同份数的子发送信号, 发送天线数量为^ N为大于 1的自然数; 所述发送耦合器, 用于按照第一相位参数对各路子发送信号进行相位处理, 从 N路发送 信号中各选取一路相位处理后的子发送信号进行叠加, 分别得到 N路输出信号, 将 N路输出 信号分别通过 N个所述发送天线进行发送;
所述接收信道校正模块包括: 接收能量分配器和接收耦合器;
所述接收能量分配器, 用于按照第二能量分配参数将 N路接收信号中的每一路接收信号 分解成与接收天线数量相同份数的子接收信号, 接收天线数量为 N;
所述接收耦合器, 用于按照第二相位参数对各路子接收信号进行相位处理, 从 N路接收 信号中各选取一路相位处理后的子接收信号进行叠加, 分别得到 N路输出信号。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201180002243.3A CN102439870B (zh) | 2011-10-17 | 2011-10-17 | 一种实现微波多输入多输出的方法、设备和系统 |
EP11850651.8A EP2720384B1 (en) | 2011-10-17 | 2011-10-17 | Method, device and system for implementing microwave multiple-input multiple-output |
ES11850651.8T ES2642768T3 (es) | 2011-10-17 | 2011-10-17 | Procedimiento, dispositivo y sistema para implementar múltiples entradas y múltiples salidas de microondas |
PCT/CN2011/080862 WO2012083750A1 (zh) | 2011-10-17 | 2011-10-17 | 一种实现微波多输入多输出的方法、设备和系统 |
US14/192,233 US9214991B2 (en) | 2011-10-17 | 2014-02-27 | Method, device, and system for implementing microwave multiple-input multiple-output |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2011/080862 WO2012083750A1 (zh) | 2011-10-17 | 2011-10-17 | 一种实现微波多输入多输出的方法、设备和系统 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/192,233 Continuation US9214991B2 (en) | 2011-10-17 | 2014-02-27 | Method, device, and system for implementing microwave multiple-input multiple-output |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012083750A1 true WO2012083750A1 (zh) | 2012-06-28 |
Family
ID=45986256
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2011/080862 WO2012083750A1 (zh) | 2011-10-17 | 2011-10-17 | 一种实现微波多输入多输出的方法、设备和系统 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9214991B2 (zh) |
EP (1) | EP2720384B1 (zh) |
CN (1) | CN102439870B (zh) |
ES (1) | ES2642768T3 (zh) |
WO (1) | WO2012083750A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118972024B (zh) * | 2024-10-14 | 2025-01-21 | 北京翌特视讯科技有限公司 | 一体化13Ghz微波传输装置的组网传输管理方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1695318A (zh) * | 2002-10-16 | 2005-11-09 | 高通股份有限公司 | 用于mimo系统的速率自适应传输方案 |
JP2006287613A (ja) * | 2005-03-31 | 2006-10-19 | Sanyo Electric Co Ltd | 受信機 |
CN1949678A (zh) * | 2005-10-12 | 2007-04-18 | 株式会社日立制作所 | 无线数据通信系统、无线数据通信方法以及通信装置 |
WO2011019310A1 (en) * | 2009-08-14 | 2011-02-17 | Telefonaktiebolaget L M Ericsson (Publ) | Antenna device |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6687492B1 (en) | 2002-03-01 | 2004-02-03 | Cognio, Inc. | System and method for antenna diversity using joint maximal ratio combining |
US6728517B2 (en) | 2002-04-22 | 2004-04-27 | Cognio, Inc. | Multiple-input multiple-output radio transceiver |
CN101166030B (zh) | 2002-04-22 | 2013-01-16 | Ipr许可公司 | 多输入多输出无线电收发机 |
US8320301B2 (en) * | 2002-10-25 | 2012-11-27 | Qualcomm Incorporated | MIMO WLAN system |
US7486720B2 (en) | 2005-05-11 | 2009-02-03 | Mitsubishi Electric Research Laboratories, Inc. | Training frames for MIMO stations |
JP4928621B2 (ja) * | 2010-05-27 | 2012-05-09 | シャープ株式会社 | 無線通信システム、基地局装置、移動局装置、無線通信方法および集積回路 |
JP5690201B2 (ja) * | 2011-04-27 | 2015-03-25 | シャープ株式会社 | 通信システム、移動局装置、基地局装置、通信方法および集積回路 |
US8624794B2 (en) * | 2011-07-05 | 2014-01-07 | Broadcom Corporation | Poly spiral antenna |
-
2011
- 2011-10-17 ES ES11850651.8T patent/ES2642768T3/es active Active
- 2011-10-17 WO PCT/CN2011/080862 patent/WO2012083750A1/zh active Application Filing
- 2011-10-17 EP EP11850651.8A patent/EP2720384B1/en active Active
- 2011-10-17 CN CN201180002243.3A patent/CN102439870B/zh active Active
-
2014
- 2014-02-27 US US14/192,233 patent/US9214991B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1695318A (zh) * | 2002-10-16 | 2005-11-09 | 高通股份有限公司 | 用于mimo系统的速率自适应传输方案 |
JP2006287613A (ja) * | 2005-03-31 | 2006-10-19 | Sanyo Electric Co Ltd | 受信機 |
CN1949678A (zh) * | 2005-10-12 | 2007-04-18 | 株式会社日立制作所 | 无线数据通信系统、无线数据通信方法以及通信装置 |
WO2011019310A1 (en) * | 2009-08-14 | 2011-02-17 | Telefonaktiebolaget L M Ericsson (Publ) | Antenna device |
Also Published As
Publication number | Publication date |
---|---|
CN102439870B (zh) | 2014-07-09 |
EP2720384A4 (en) | 2014-08-20 |
US20140177757A1 (en) | 2014-06-26 |
CN102439870A (zh) | 2012-05-02 |
EP2720384A1 (en) | 2014-04-16 |
EP2720384B1 (en) | 2017-08-23 |
US9214991B2 (en) | 2015-12-15 |
ES2642768T3 (es) | 2017-11-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7444170B2 (en) | Co-channel wireless communication methods and systems using nonsymmetrical alphabets | |
CN101986587B (zh) | 一种克服弱散射的多天线码本选择调制方法 | |
CN101771509B (zh) | 一种正交网络空时编码方法及中继传输系统 | |
CN106470064B (zh) | 发送分集方法及设备 | |
CN104247318B (zh) | 无线网络中用于干扰协调传输和接收的方法和装置 | |
CN105075139A (zh) | 在多天线无线通信系统中发送信号的方法及其装置 | |
CN104104425A (zh) | 一种基于期望与干扰信号关系的多用户mimo自适应接收方法 | |
JP7196686B2 (ja) | 無線通信システム、無線通信方法、送信局装置および受信局装置 | |
KR20030078663A (ko) | 폐루프 다중 안테나 시스템 | |
CN101986575B (zh) | 多用户mimo系统的预编码方法 | |
CN101471712A (zh) | 多输入多输出广播信道中的预编码处理方法及装置、基站 | |
CN103580737B (zh) | 基于最小均方误差的双向中继系统天线对选择方法 | |
CN102769486B (zh) | 双向多跳中继系统中的中继端信号处理方法 | |
CN107104718A (zh) | 一种用于毫米波rsm‑mimo系统的混合预编码方法 | |
CN101917218A (zh) | 减少反馈信息的mimo多用户系统下行传输方法及系统 | |
US8989296B2 (en) | Operating method of wireless local area network station | |
CN110557348B (zh) | 用于解调数据的方法和通信装置 | |
CN101815321B (zh) | 用于混合组网的数据处理方法和装置 | |
Xia et al. | Practical antenna training for millimeter wave MIMO communication | |
KR101055573B1 (ko) | 다중 사용자, 다중 안테나 무선 송출 시스템에서의 프리 코딩 장치 | |
WO2007003096A1 (fr) | Récepteur et système de communication radio permettant de réduire la vitesse de multiplexe de fréquence | |
Singh et al. | NOMA based generalized precoding aided spatial modulation with multiuser MIMO in downlink | |
CN102439870B (zh) | 一种实现微波多输入多输出的方法、设备和系统 | |
CN101521531B (zh) | 一种利用天线选择增强td-lte下行链路性能的方法 | |
CN104092516A (zh) | 一种适用于mu-mimo系统的非正交预编码码本设计方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180002243.3 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11850651 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2011850651 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011850651 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |