[go: up one dir, main page]

WO2012079346A1 - 一种用于定位的移动广播信号解调芯片 - Google Patents

一种用于定位的移动广播信号解调芯片 Download PDF

Info

Publication number
WO2012079346A1
WO2012079346A1 PCT/CN2011/075451 CN2011075451W WO2012079346A1 WO 2012079346 A1 WO2012079346 A1 WO 2012079346A1 CN 2011075451 W CN2011075451 W CN 2011075451W WO 2012079346 A1 WO2012079346 A1 WO 2012079346A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning
signal
mobile broadcast
module
demodulation chip
Prior art date
Application number
PCT/CN2011/075451
Other languages
English (en)
French (fr)
Inventor
邓中亮
吕子平
施浒立
关维国
袁协
那日苏
李合敏
来奇峰
徐连明
Original Assignee
北京邮电大学
北京首科信通科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京邮电大学, 北京首科信通科技有限责任公司 filed Critical 北京邮电大学
Priority to US13/992,503 priority Critical patent/US9204417B2/en
Publication of WO2012079346A1 publication Critical patent/WO2012079346A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0221Receivers
    • G01S5/02213Receivers arranged in a network for determining the position of a transmitter
    • G01S5/02216Timing or synchronisation of the receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7073Synchronisation aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/024Guidance services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2201/00Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
    • H04B2201/69Orthogonal indexing scheme relating to spread spectrum techniques in general
    • H04B2201/707Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation
    • H04B2201/70715Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation with application-specific features
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters

Definitions

  • a mobile broadcast signal demodulation chip for positioning is applied to the Chinese Patent Office on December 13, 2010, and the application number is 201010602152. 0, the invention name is "a mobile broadcast signal demodulation chip for positioning.
  • the present invention relates to the field of wireless communications, and in particular, to a mobile broadcast signal demodulation chip for positioning. Background technique
  • LBS Lication Based Service
  • the technology combined with GIS (Geographic Information System), provides users with a value-added service based on location navigation and query. It is a combination of spatial information technology and wireless communication technology.
  • GIS Geographic Information System
  • LBS has three methods for achieving positioning: GPS (Global Positioning System) positioning, wireless network positioning, and hybrid positioning.
  • GPS Global Positioning System
  • hybrid positioning is the combination of the first two positioning methods, and is the most commonly used positioning method today.
  • a positioning method provided by the prior art a set of actual signal parameter information obtained by positioning, a base station identifier corresponding to each actual signal parameter information, and stored sets of signal parameters actually measured in different sub-areas in advance The statistical value and the base station identifier corresponding to each actual signal parameter information are used to locate the mobile terminal by matching, thereby improving the positioning speed and accuracy.
  • the existing demodulation chip only has the function of receiving and demodulating the mobile broadcast signal, and the terminal needs to add a separate positioning module to realize the positioning function, and the integration degree is low, which is disadvantageous for developing a terminal having high-precision positioning function indoors and outdoors.
  • the technical problem to be solved by the present invention is to provide a mobile broadcast signal demodulation chip for positioning, which can not only normally demodulate broadcast data in a mobile broadcast signal, but also demodulate a mobile broadcast signal slot header or a transmission frame header. Insert The positioning of the spread spectrum signal to obtain the navigation message information and the positioning feature parameters can effectively improve the positioning accuracy.
  • a mobile broadcast signal demodulation chip for positioning which includes:
  • a receiving demodulation module configured to demodulate a slot header of the received mobile broadcast signal or a positioning spread spectrum signal inserted in a transmission frame header to obtain navigation message information, where the navigation message information includes a base station identifier of the mobile broadcast base station;
  • a measurement module is configured to measure and acquire a positioning feature parameter.
  • the positioning feature parameter includes one or more of a signal delay value, a signal delay difference, a signal strength, and a signal arrival angle of each mobile broadcast base station to the terminal.
  • the navigation message information further includes a time correction parameter, where the positioning feature parameter is a signal delay value or a signal delay difference of each mobile broadcast base station to the terminal, and the demodulation chip further includes an error correction module. And modifying the signal delay value or the signal delay difference by using the time correction parameter.
  • the positioning feature parameter is a signal delay value or a signal delay difference of each mobile broadcast base station to the terminal
  • the demodulation chip further includes an error correction module. And modifying the signal delay value or the signal delay difference by using the time correction parameter.
  • the mobile broadcast signal demodulation chip for positioning further includes a processing module, configured to acquire positioning data according to the navigation information message acquired by the receiving demodulation module and the positioning feature parameter acquired by the measurement module.
  • the processing module acquires positioning data by using a geometric solution positioning technology, and the navigation message information further includes location information of the mobile broadcast base station.
  • the processing module acquires positioning data by using feature matching positioning technology.
  • the mobile broadcast signal demodulation chip for positioning further includes a barometric pressure measurement module and a positioning data correction module, wherein the air pressure measurement module is configured to measure atmospheric pressure; and the positioning data correction module is configured to The atmospheric pressure measured by the air pressure measurement module calculates an altitude value, and uses the altitude value to correct the positioning data obtained by the positioning data acquisition module to obtain final positioning data.
  • the air pressure measurement module is configured to measure atmospheric pressure
  • the positioning data correction module is configured to The atmospheric pressure measured by the air pressure measurement module calculates an altitude value, and uses the altitude value to correct the positioning data obtained by the positioning data acquisition module to obtain final positioning data.
  • the mobile broadcast signal demodulation chip for positioning further includes a communication module, configured to send the navigation message information acquired by the receiving and demodulating module and the positioning feature parameter acquired by the measurement module to the network And locating the location data returned by the network side positioning server.
  • a communication module configured to send the navigation message information acquired by the receiving and demodulating module and the positioning feature parameter acquired by the measurement module to the network And locating the location data returned by the network side positioning server.
  • the positioning spread spectrum signal is filled with a TXID (Transmitter Identifier) and a a front portion of a synchronization signal; if the mobile broadcast signal is a DAB signal, the positioning spread spectrum signal is filled in a zero symbol of each transmission frame.
  • TXID Transmitter Identifier
  • the mobile broadcast signal demodulation chip for positioning provided by the invention can demodulate the positioning spread spectrum signal inserted in the slot header of the mobile broadcast signal or the transmission frame header to obtain navigation message information, and obtain and obtain the positioning feature parameter, which can effectively improve positioning accuracy.
  • the mobile broadcast signal demodulation chip for positioning provided by the invention is compatible with the original mobile broadcast The system does not affect the function of terminal mobile broadcast reception under the original system, and is easy to implement.
  • FIG. 1 is a structural block diagram of a mobile broadcast signal demodulation chip for positioning according to a first embodiment of the present invention
  • FIG. 2 is a schematic diagram of a frame structure of a CMMB signal
  • FIG. 3 is a schematic diagram of a method for inserting and positioning a spread spectrum signal in the CMMB shown in FIG. 2;
  • FIG. 4 is a schematic diagram of a channel structure of a DAB signal
  • FIG. 5 is a schematic diagram showing a frame structure of a synchronization channel of the DAB signal shown in FIG. 4;
  • FIG. 6 is a schematic diagram of a method for inserting and broadcasting a positioning spread spectrum signal in the DAB signal shown in FIG. 4;
  • FIG. 7 is a structural block diagram of a mobile broadcast signal demodulation chip for positioning according to a second embodiment of the present invention
  • FIG. 8 is a structural block diagram of a mobile broadcast signal demodulation chip for positioning according to a third embodiment of the present invention
  • FIG. 9 is a structural block diagram of a mobile broadcast signal demodulation chip for positioning according to a fourth embodiment of the present invention
  • FIG. 10 is a structural block diagram of a mobile broadcast signal demodulation chip for positioning according to a fifth embodiment of the present invention.
  • Embodiments of the present invention provide a mobile broadcast signal demodulation chip for positioning, which can not only normally demodulate broadcast data in a mobile broadcast signal, but also demodulate a mobile broadcast signal slot header or a transmission frame header. Positioning the spread spectrum signal to obtain the navigation message information and the positioning feature parameters can effectively improve the positioning accuracy.
  • FIG. 1 is a schematic structural diagram of a mobile broadcast signal demodulation chip for positioning according to a first embodiment of the present invention.
  • the mobile broadcast signal demodulation chip for positioning provided in this embodiment includes a receiving demodulation module 11 and a measurement module 12.
  • the receiving demodulation module 11 is configured to demodulate a slot header of the received mobile broadcast signal or a positioning spread spectrum signal inserted in the transmission frame header to obtain navigation message information;
  • CMMB China Mobi le Multimedia Broadcasting
  • DAB Digital Audio Broadcasting
  • the measuring module 12 is configured to measure and acquire a positioning feature parameter.
  • the positioning feature parameter includes one or more of a signal delay value, a signal delay difference, a signal strength, and a signal arrival angle of each mobile broadcast base station to the terminal.
  • the positioning spread spectrum signal is filled in a TXID (Transmitter Identifier) of each time slot and a front part of the first synchronization signal.
  • TXID Transmitter Identifier
  • the frame structure of the CMMB signal is shown in Figure 2.
  • Each frame (Is) is divided into 40 time slots.
  • the ⁇ ⁇ sync symbol is replaced with the Gold code of the code length 511 for coarse capture and tracking demodulation.
  • the insertion of the spread code in the 100 ⁇ period of the first sync signal can still perform synchronization and channel estimation, so the TXID segment 36 ⁇ ⁇ and the first sync signal can be forwarded.
  • ⁇ CDMA (Code Division Multiple Access) positioning spread spectrum signal insertion a total of 136 ⁇ ⁇ time, wherein the first 102. 2 ⁇ m fill 511-bit Gold code, after 33. 8 ⁇ m as a guard interval
  • the 680-bit spreading code is used to modulate the lbit telegram, and the effective spreading gain is at least 27.08 dB, and the amplitude of the positioning spread spectrum signal is the same as the amplitude of the CMMB data subcarrier.
  • a spreading code may be superimposed on the remaining portion of each time slot of the CMMB signal, as shown in FIG.
  • the superimposed spreading code can still adopt the Gold code sequence of the code length 511, and the remaining CMMB data parts of each time slot are cyclically superimposed with the Gold of the code length 511 except that the 136 ⁇ ⁇ section of each time slot is not superimposed.
  • the code sequence, and the phase of the superposed code is kept continuous with the phase of the code in the slot header.
  • the superimposed code signal is superimposed on the CMMB data by 20 dB below the CMMB signal energy.
  • the superimposed code signal is 20 dB below the CMMB signal energy to ensure that it does not interfere with the normal reception of the CMMB signal.
  • the spreading code may also be a LAS code or M sequence with a zero cross correlation window greater than 128, and the multiple correlation interference is suppressed by the cross correlation mitigation algorithm.
  • the position of the slot head may be determined according to the existing system scheme of the CMMB, and then the position-spreading signal inserted in the slot header is captured and demodulated at the slot head position to measure the positioning characteristic signal. After the capture is completed, the continuous superimposed superposition spreading code is used for long-term correlation integration in the tracking state to improve the measurement accuracy and measurement stability of the feature information.
  • the positioning spread spectrum signal is filled in the zero symbol of each transmission frame.
  • the channel structure of the DAB is as shown in FIG. 4, which includes a synchronization channel, a fast information channel, and a main traffic channel.
  • the synchronization channel occupies the first two OFDM symbols of each transmission frame in any transmission mode. As shown in FIG. 5, the first OFDM symbol is a zero symbol (and LL) with a duration of TNULL, and the second symbol is Phase Base Station Symbol (PRS) of duration Ts.
  • PRS Phase Base Station Symbol
  • Each transmitter in the SFN (Single Frequency Network) is assigned a unique identifier (ID), and the adjacent transmitters are not allocated.
  • ID unique identifier
  • the transmitter information data is modulated by the spread spectrum word, and the cyclic prefix is expanded to a length of TNULL, which occupies the zero symbol transmission using the synchronization channel.
  • the two segments can be cyclically filled with a code length of 127Gold code, and the following 78 bits form a 332 code length spreading sequence (the receiver takes 254 bit code correlation demodulation, which can be selected according to actual conditions. Or the last 78 bits to do the guard interval, to ensure the complete demodulation of the 254-bit code).
  • Gold code generation takes the first four.
  • the energy of the zero-symbol modulation is 10 dB lower than that of the DAB signal, as shown in FIG. 6.
  • the demodulation and positioning of the spread spectrum signal may first determine or transmit the zero symbol position of the frame header according to the existing DAB system scheme, and then capture and demodulate the positioning spread spectrum signal inserted in the slot header at the zero symbol position to measure the positioning characteristic signal.
  • the mobile broadcast signal demodulation chip for positioning in this embodiment can demodulate the positioning spread spectrum signal inserted in the slot header of the mobile broadcast signal or the transmission frame header to obtain navigation message information, and obtain and obtain the positioning feature parameter, which can effectively improve positioning accuracy.
  • the mobile broadcast signal demodulation chip for positioning provided by the embodiment of the present invention is compatible with the original mobile broadcast system, and does not affect the function of receiving mobile broadcast of the terminal in the original system, and is easy to implement.
  • FIG. 7 is a schematic structural diagram of a mobile broadcast signal demodulation chip for positioning according to a second embodiment of the present invention. As shown in FIG. 7, the mobile broadcast signal demodulation chip for positioning provided in this embodiment includes a receiving demodulation module 71, a measurement module 72, and an error correction module 73.
  • the receiving demodulation module 71 is configured to demodulate a slot header of the received mobile broadcast signal or a positioning spread spectrum signal inserted in the transmission frame header to obtain navigation message information.
  • the measuring module 72 is configured to measure and acquire a positioning feature parameter.
  • the positioning feature parameter includes one or more of a signal delay value, a signal delay difference, a signal strength, and a signal arrival angle of each mobile broadcast base station to the terminal.
  • the error correction module 73 is configured to correct the signal delay value or the signal delay difference by using the time correction parameter.
  • the mobile broadcast signal demodulation chip for positioning provided in this embodiment can demodulate the positioning spread spectrum signal inserted in the slot header of the mobile broadcast signal or the transmission frame header to obtain navigation message information, and obtain and obtain the positioning feature parameter, which can be effective. Improve positioning accuracy.
  • the mobile broadcast signal demodulation chip for positioning provided by the embodiment of the present invention is compatible with the original mobile broadcast system, and does not affect the function of receiving mobile broadcast of the terminal in the original system, and is easy to implement.
  • FIG. 8 is a structural block diagram of a mobile broadcast signal demodulation chip for positioning according to a third embodiment of the present invention.
  • the mobile broadcast signal demodulation chip for positioning provided by this embodiment is different from the mobile broadcast signal demodulation chip for positioning provided by the second embodiment in that it further includes a processing module 74.
  • the processing module 74 is configured to obtain positioning data according to the navigation information message and the positioning feature parameter.
  • the processing module 74 can obtain positioning data by using a geometric solution positioning technology.
  • the navigation message information includes at least a base station ID and location information of the mobile broadcast base station.
  • the processing module 74 can also find the location data in the database through the feature matching positioning technology.
  • the mobile broadcast signal demodulation chip for positioning provided in this embodiment can demodulate the positioning spread spectrum signal inserted in the slot header of the mobile broadcast signal or the transmission frame header to obtain navigation message information, and obtain and obtain the positioning feature parameter, which can be effective. Improve positioning accuracy.
  • the mobile broadcast signal demodulation chip for positioning provided by the embodiment of the present invention is compatible with the original mobile broadcast system, and does not affect the function of receiving mobile broadcast of the terminal in the original system, and is easy to implement.
  • FIG. 9 is a structural block diagram of a mobile broadcast signal demodulation chip for positioning according to a fourth embodiment of the present invention.
  • the mobile broadcast signal demodulating chip for positioning provided by the present embodiment is different from the mobile broadcast signal demodulating chip for positioning provided by the third embodiment in that it further includes a barometric pressure measuring module 75.
  • the air pressure measuring module 75 is configured to measure the atmospheric pressure and transmit it to the processing module 74, which may be an air pressure sensor.
  • the processing module 74 is further configured to calculate an altitude value according to the atmospheric pressure measured by the air pressure measuring module 75, and use the altitude value.
  • the positioning data obtained by the processing module 74 is corrected to obtain final positioning data.
  • the final positioning data includes horizontal position information and height position information, and achieves hierarchical positioning in height.
  • the air pressure measurement is based on the principle that the atmospheric pressure decreases with height in the gravitational field and has a certain functional relationship. Therefore, the atmospheric pressure can be measured by using a barometric pressure sensor, and then the altitude value can be calculated based on the relationship between the air pressure and the altitude.
  • the air pressure sensor is used to convert the measured air pressure into an analog voltage signal output, and the V/F conversion converts the analog voltage signal output by the air pressure sensor into a pulse signal having a certain frequency (the frequency of which varies linearly with the input voltage).
  • FIG. 10 is a structural block diagram of a mobile broadcast signal demodulation chip for positioning according to a fifth embodiment of the present invention. Real The mobile broadcast signal demodulation chip for positioning provided by the embodiment is different from the mobile broadcast signal demodulation chip for positioning provided by the foregoing second embodiment in that it further includes a communication module 76.
  • the communication module 76 is configured to send the navigation message information acquired by the receiving demodulation module 71 and the positioning feature parameter acquired by the measurement module 72 to the network side positioning server, and receive the positioning data returned by the network side positioning server.
  • the positioning feature parameter may be an error-corrected parameter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本发明公开了一种用于定位的移动广播信号解调芯片,属于无线通信领域。该解调芯片包括接收解调模块和测量模块,所述接收解调模块,用于解调接收到的移动广播信号的时隙头或传输帧头中插播的定位扩频信号以获取导航电文信息;所述测量模块,用于测量获取定位特征参数。该用于定位的移动广播信号解调芯片不仅可以正常解调移动广播信号中的广播数据,还可以解调移动广播信号时隙头或传输帧头中插播的定位扩频信号,从而获得导航电文信息和定位特征参数,可以有效提高定位精度。

Description

一种用于定位的移动广播信号解调芯片 本申请要求于 2010年 12月 13日提交中国专利局、 申请号为 201010602152. 0, 发明名 称为 "一种用于定位的移动广播信号解调芯片" 的中国专利申请的优先权, 其全部内容通 过引用结合在本申请中。 技术领域
本发明涉及无线通信领域, 尤其涉及一种用于定位的移动广播信号解调芯片。 背景技术
LBS ( Location Based Service, 基于位置的服务) 是通过移动通信网络, 采用无线定 书
位技术, 结合 GIS (Geographic Information System, 地理信息系统), 为用户提供基于位 置导航、 查询的一种增值业务, 是空间信息技术与无线通讯技术的结合。 近年来, 无线电 技术和无线局域网技术的进步以及定位服务需求的增加大力推动了定位技术的发展, 人们 对 LBS的需求也与日倶增, 特别是在应对紧急情况时, 定位信息更是显得尤为重要, 因此, 基于 LBS的无线定位应用具有广泛的应用市场。
目前, LBS有三种实现定位的方法: GPS (Global Positioning System, 全球定位系统) 定位、 无线网络定位和混合定位。 其中, 混合定位就是前两种定位方法的结合, 是现今最 常用的定位方法。 现有技术提供的一种定位方法中, 通过定位时获得的一组实际信号参数 信息、 每一实际信号参数信息对应的基站标识以及存储的预先在不同子区域中实际测量到 的各组信号参数统计值以及每一实际信号参数信息对应的基站标识, 通过匹配, 对移动终 端进行定位, 提高了定位速度和精度。
然而, 由于移动基站信号覆盖范围不足, 所以采用现有技术提供的定位方法的定位精 度仍然有待提高。 此外, 如果大量移动终端都与基站通讯进行定位则会占用通讯资源。
另外, 现有的解调芯片仅具有对移动广播信号的接收解调功能, 终端需要添加单独的 定位模块才能实现定位功能, 集成度低, 不利于开发具有室内外高精度定位功能的终端。 发明内容
本发明要解决的技术问题在于提供一种用于定位的移动广播信号解调芯片, 其不仅可 以正常解调移动广播信号中的广播数据, 还可以解调移动广播信号时隙头或传输帧头中插 播的定位扩频信号, 从而获得导航电文信息和定位特征参数, 可以有效提高定位精度。 为了解决上述技术问题, 本发明实施例提供了一种用于定位的移动广播信号解调芯片, 其包括:
接收解调模块, 用于解调接收到的移动广播信号的时隙头或传输帧头中插播的定位扩 频信号以获取导航电文信息, 所述导航电文信息包括移动广播基站的基站标识; 以及
测量模块, 用于测量获取定位特征参数。
进一步地, 所述定位特征参数包括各个移动广播基站到终端的信号时延值、 信号时延 差值、 信号强度、 信号到达角度中的一个或多个。
优选地, 所述导航电文信息还包括时间修正参数, 所述定位特征参数为各个移动广播 基站到终端的信号时延值或信号时延差值, 则所述解调芯片还包括误差修正模块, 用于采 用所述时间修正参数对所述信号时延值或信号时延差值进行修正。
优选地, 所述用于定位的移动广播信号解调芯片还包括处理模块, 用于根据所述接收 解调模块获取的导航信息电文和所述测量模块获取的定位特征参数获取定位数据。
进一步地, 所述处理模块通过几何解算定位技术获取定位数据, 则所述导航电文信息 还包括移动广播基站的位置信息。
可选地, 所述处理模块通过特征匹配定位技术获取定位数据。
优选地, 所述用于定位的移动广播信号解调芯片还包括气压测量模块和定位数据校正 模块, 其中, 所述气压测量模块用于测量大气压力; 所述定位数据校正模块用于根据所述 气压测量模块测得的大气压力计算海拔高度值, 并采用所述海拔高度值对所述定位数据获 取模块获得的定位数据进行校正以获得最终定位数据。
优选地, 所述用于定位的移动广播信号解调芯片还包括通信模块, 用于将所述接收解 调模块获取的导航电文信息和所述测量模块获取的定位特征参数和所述发送给网络侧定位 服务器, 以及接收所述网络侧定位服务器返回的定位数据。
优选地, 若所述移动广播信号为 CMMB (China Mobi le Multimedia Broadcasting, 中 国移动多媒体广播) 信号, 则所述定位扩频信号填充在每个时隙的 TXID ( Transmitter Identifier, 发射机标识) 和第一个同步信号的前部; 若所述移动广播信号为 DAB信号, 则所述定位扩频信号填充在每个传输帧的零符号中。
本发明实施例提供的技术方案的有益效果是:
本发明提供的用于定位的移动广播信号解调芯片可以解调移动广播信号时隙头或传输 帧头中插播的定位扩频信号从而获得导航电文信息, 并且测量获得定位特征参数, 可以有 效提高定位精度。 并且本发明提供的用于定位的移动广播信号解调芯片兼容原有移动广播 体制, 不影响对于原体制下终端移动广播接收的功能, 易于实现。 附图说明
为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例描述中所需要使用的 附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于本 领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的 附图。
图 1本发明第一实施例提供的用于定位的移动广播信号解调芯片的结构框图; 图 2为 CMMB信号的帧结构示意图;
图 3为图 2所示的 CMMB中的定位扩频信号插播方式示意图;
图 4为 DAB信号的信道结构示意图;
图 5为图 4所示的 DAB信号的同步信道的帧结构示意图;
图 6为图 4所示的 DAB信号中的定位扩频信号插播方式示意图;
图 7为本发明第二实施例提供的用于定位的移动广播信号解调芯片的结构框图; 图 8为本发明第三实施例提供的用于定位的移动广播信号解调芯片的结构框图; 图 9为本发明第四实施例提供的用于定位的移动广播信号解调芯片的结构框图; 图 10为本发明第五实施例提供的用于定位的移动广播信号解调芯片的结构框图。 具体实施方式
为使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图对本发明实施方式作 进一步地详细描述。
本发明实施例提供了一种用于定位的移动广播信号解调芯片, 其不仅可以正常解调移 动广播信号中的广播数据, 还可以解调移动广播信号时隙头或传输帧头中插播的定位扩频 信号, 从而获得导航电文信息和定位特征参数, 可以有效提高定位精度。
图 1 为本发明第一实施例提供的用于定位的移动广播信号解调芯片的结构示意图。 如 图 1所示, 本实施例提供的用于定位的移动广播信号解调芯片包括接收解调模块 11和测量 模块 12。
其中, 接收解调模块 11, 用于解调接收到的移动广播信号的时隙头或传输帧头中插播 的定位扩频信号以获取导航电文信息;
例如解调接收到的 CMMB (China Mobi le Multimedia Broadcasting, 中国移动多媒体 广播) 信号、 DAB (Digital Audio Broadcasting, 数字信号广播) 信号等移动广播信号的 时隙头或传输帧头中插播的定位扩频信号以获取导航电文信息, 该导航电文信息包括移动 广播基站的基站标识;
测量模块 12, 用于测量获取定位特征参数。
其中, 定位特征参数包括各个移动广播基站到终端的信号时延值、 信号时延差值、 信 号强度、 信号到达角度中的一个或多个。
具体的, 若移动广播信号为 CMMB 信号, 则定位扩频信号填充在每个时隙的 TXID (Transmitter Identifier, 发射机标识) 和第一个同步信号的前部。 CMMB信号的帧结构 如图 2所示, 每帧 (Is) 分为 40个时隙, 每个时隙 (25ms ) 中, 前 136 μ m段的 CMMB数据 段 (包括 36 μ πι ΤΧΠ)和 ΙΟΟ μ πι同步符号) 替换为码长 511的 Gold码, 作为粗捕获及跟踪 解调之用。 由于 CMMB信号有两段同步信号, 占用第一个同步信号的 100 μ πι时间段插入扩 频码仍可进行同步与信道估计, 故可以将 TXID段 36 μ πι与第一个同步信号的前 ΙΟΟ μ πι进 行 CDMA (Code Division Multiple Access, 码分多址) 定位扩频信号插播, 共 136 μ πι时 间, 其中前 102. 2 μ m填充 511位 Gold码, 后 33. 8 μ m作为保护间隔, 进行循环填充 169 位, 该 680位扩频码调制 lbit电文, 有效扩频增益至少为 27. 08dB, 定位扩频信号幅度与 CMMB数据子载波的幅度值相同。此夕卜, 还可以在所述 CMMB信号的每个时隙的剩余部分叠加 扩频码, 叠加方式如图 3所示。 具体的, 叠加扩频码仍可以采用码长 511的 Gold码序列, 除每个时隙头前 136 μ πι段不叠加外,各个时隙的其余 CMMB数据部分均循环叠加该码长 511 的 Gold码序列, 且叠加码相位与时隙头中码相位保持连续。 叠加码信号以低于 CMMB信号 能量 20dB方式, 叠加于 CMMB数据之上。 叠加码信号以低于 CMMB信号能量 20dB以保证不 干扰 CMMB信号的正常接收。
扩频码还可以是零互相关窗大于 128的 LAS码或 M序列, 通过互相关减轻算法抑制多 址干扰。
解调定位扩频信号时可先根据 CMMB现有系统方案确定时隙头位置, 再在时隙头位置捕 获并解调插播于时隙头的定位扩频信号, 测量定位特征信号。 捕获完毕后, 在跟踪状态下 利用连续叠加的叠加扩频码进行长时间相关积分, 以提高特征信息测量精度与测量稳定性。
若移动广播信号为 DAB信号, 则定位扩频信号填充在每个传输帧的零符号中。 DAB的信 道结构如图 4所示, 其包括同步信道, 快速信息信道和主业务信道。 而同步信道在任何传 输模式中都占用每个传输帧的前两个 0FDM符号, 如图 5所示, 第一个 0FDM符号是持续时 间为 TNULL的零符号 (而 LL), 第二个符号是持续时间为 Ts的相位基站符号 (PRS)。 各个 发射点的发射机在零符号期间, 使用码分多址方式发送发射机信息数据。 SFN ( Single Frequency Network, 单频网) 内每台发射机分配唯一的标识 (ID), 相邻的发射机分配不 同的扩频字, 考虑到多径干扰问题, 采用扩频字将发射机信息数据调制后, 通过循环前缀 扩展成长度为 TNULL, 占用使用同步信道的零符号传输。进一步地,可以在零符号起始时刻, 采用码长 127Gold码循环填充两段, 以及后面 78位,构成 332码长扩频序列(接收机取 254 位码相关解调,可根据实际情况选取前或后 78位做保护间隔,保证 254位码完整解调即可)。 7阶(码长 127 ) Gold码生成取前四。 为保证接收终端有效进行空能量检测以实现 DAB信号 解调时的同步, 在对零符号调制时使其能量低于 DAB信号能量 10dB, 如图 6所示。
解调定位扩频信号时可先根据 DAB现有系统方案确定或传输帧头的零符号位置, 再在 零符号位置捕获并解调插播于时隙头的定位扩频信号, 测量定位特征信号。
本实施例的用于定位的移动广播信号解调芯片可以解调移动广播信号时隙头或传输帧 头中插播的定位扩频信号从而获得导航电文信息, 并且测量获得定位特征参数, 可以有效 提高定位精度。 并且本发明实施例提供的用于定位的移动广播信号解调芯片兼容原有移动 广播体制, 不影响对于原体制下终端移动广播接收的功能, 易于实现。 图 7 为本发明第二实施例提供的用于定位的移动广播信号解调芯片的结构示意图。 如 图 7所示, 本实施例提供的用于定位的移动广播信号解调芯片包括接收解调模块 71、 测量 模块 72和误差修正模块 73。
其中, 接收解调模块 71, 用于解调接收到的移动广播信号的时隙头或传输帧头中插播 的定位扩频信号以获取导航电文信息。
例如解调接收到的 CMMB信号、 DAB信号等移动广播信号的时隙头或传输帧头中插播的 定位扩频信号以获取导航电文信息, 该导航电文信息包括移动广播基站的基站标识和时间 修正参数。
测量模块 72, 用于测量获取定位特征参数。
其中, 定位特征参数包括各个移动广播基站到终端的信号时延值、 信号时延差值、 信 号强度、 信号到达角度中的一个或多个。
误差修正模块 73, 用于采用时间修正参数对信号时延值或信号时延差值进行修正。 本实施例提供的用于定位的移动广播信号解调芯片可以解调移动广播信号时隙头或传 输帧头中插播的定位扩频信号从而获得导航电文信息, 并且测量获得定位特征参数, 可以 有效提高定位精度。 并且本发明实施例提供的用于定位的移动广播信号解调芯片兼容原有 移动广播体制, 不影响对于原体制下终端移动广播接收的功能, 易于实现。 此外, 本实施 例的测量模块采用了信号时延差值作为定位特征参数, 从而消除了接收终端与基站不同步 导致的误差, 而误差修正模块采用时间修正参数对信号时延差值进行修正, 从而可以获得 更高的时延特征精度, 进而有效提高定位精度。 图 8 为本发明第三实施例提供的用于定位的移动广播信号解调芯片的结构框图。 本实 施例提供的用于定位的移动广播信号解调芯片与第二实施例提供的用于定位的移动广播信 号解调芯片的不同之处在于, 其还包括处理模块 74。
处理模块 74, 用于根据导航信息电文和定位特征参数获取定位数据。
具体地, 处理模块 74可以通过几何解算定位技术获取定位数据, 此时, 导航电文信息 至少包括移动广播基站的基站 ID和位置信息。 处理模块 74还可以通过特征匹配定位技术 在数据库中查找获取定位数据。
本实施例提供的用于定位的移动广播信号解调芯片可以解调移动广播信号时隙头或传 输帧头中插播的定位扩频信号从而获得导航电文信息, 并且测量获得定位特征参数, 可以 有效提高定位精度。 并且本发明实施例提供的用于定位的移动广播信号解调芯片兼容原有 移动广播体制, 不影响对于原体制下终端移动广播接收的功能, 易于实现。 图 9 为本发明第四实施例提供的用于定位的移动广播信号解调芯片的结构框图。 本实 施例提供的用于定位的移动广播信号解调芯片与第三实施例提供的用于定位的移动广播信 号解调芯片的不同之处在于, 其还包括气压测量模块 75。
气压测量模块 75, 用于测量大气压力并传给处理模块 74, 可以为气压传感器; 处理模块 74, 还用于根据气压测量模块 75测得的大气压力计算海拔高度值, 并采用该 海拔高度值对处理模块 74获得的定位数据进行校正以获得最终定位数据。 该最终定位数据 包括水平位置信息与高度位置信息, 实现了高度上的分层定位。
气压测高是根据在重力场内, 大气压力随高度增加而减小, 并有确定的函数关系的原 理工作的。 因此, 可以通过使用气压传感器来测量大气压力, 然后根据气压与海拔高度的 关系, 计算出海拔高度值。 测量时气压传感器用来将被测气压转换为模拟电压信号输出, 经过 V/F转换把气压传感器输出的模拟电压信号转换成具有一定频率的脉冲信号 (其频率 随输入电压呈线性变化)。 通过单片机接收该脉冲信号, 得到单位时间内获得的脉冲数, 依 据电压与频率的线性关系式计算出所对应的实际气压值, 之后经过数据处理给出高度指示, 实现高层上的区分。 最后, 根据广播定位坐标、 伪距和气压测高计的数值进行用户位置计 算, 进一步提高室内复杂定位的精度。 图 10为本发明第五实施例提供的用于定位的移动广播信号解调芯片的结构框图。 本实 施例提供的用于定位的移动广播信号解调芯片与前述第二实施例提供的用于定位的移动广 播信号解调芯片的不同之处在于, 其还包括通信模块 76。
通信模块 76, 用于将接收解调模块 71获取的导航电文信息和测量模块 72获取的定位 特征参数发送给网络侧定位服务器, 以及接收网络侧定位服务器返回的定位数据。
其中, 定位特征参数可以是经过误差修正后的参数。 以上所述仅为本发明的优选实施例, 并非因此限制本发明的专利范围, 凡是利用本发 明说明书及附图内容所作的等效结构或等效流程变换, 或直接或间接应用在其他相关的技 术领域, 均同理包括在本发明的专利保护范围内。

Claims

权 利 要 求 书
1. 一种用于定位的移动广播信号解调芯片, 其特征在于, 包括:
接收解调模块, 用于解调接收到的移动广播信号的时隙头或传输帧头中插播的定位扩频 信号以获取导航电文信息, 所述导航电文信息包括移动广播基站的基站标识; 以及
测量模块, 用于测量获取定位特征参数。
2. 根据权利要求 1所述的解调芯片, 其特征在于, 所述定位特征参数包括各个移动广播 基站到终端的信号时延值、 信号时延差值、 信号强度、 信号到达角度中的一个或多个。
3. 根据权利要求 2所述的解调芯片, 其特征在于, 所述导航电文信息还包括时间修正参 数, 所述定位特征参数为各个移动广播基站到终端的信号时延值或信号时延差值, 则所述解 调芯片还包括误差修正模块, 用于采用所述时间修正参数对所述信号时延值或信号时延差值 进行修正。
4. 根据权利要求 1-3任一项所述的解调芯片, 其特征在于, 还包括处理模块, 用于根据 所述接收解调模块获取的导航信息电文和所述测量模块获取的定位特征参数获取定位数据。
5. 根据权利要求 4所述的解调芯片, 其特征在于, 还包括气压测量模块, 用于测量大气 压力并传给所述处理模块;
所述处理模块, 还用于根据所述气压测量模块测得的大气压力计算海拔高度值, 并采用 所述海拔高度值对所述处理模块获得的定位数据进行校正以获得最终定位数据。
6. 根据权利要求 4所述的解调芯片, 其特征在于, 所述处理模块通过几何解算定位技术 获取定位数据, 则所述导航电文信息还包括移动广播基站的位置信息。
7. 根据权利要求 4所述的解调芯片, 其特征在于, 所述处理模块通过特征匹配定位技术 获取定位数据。
8. 根据权利要求 1-3任一项所述的解调芯片, 其特征在于, 还包括: 通信模块, 用于将 所述接收解调模块获取的导航电文信息和所述测量模块获取的定位特征参数发送给网络侧定 位服务器, 以及接收所述网络侧定位服务器返回的定位数据。
9. 根据权利要求 1-3任一项所述的解调芯片, 其特征在于,
若所述移动广播信号为中国移动多媒体广播信号, 则所述定位扩频信号填充在每个时隙 的发射机标识和第一个同步信号的前部;
若所述移动广播信号为数字信号广播信号, 则所述定位扩频信号填充在每个传输帧的零 符号中。
PCT/CN2011/075451 2010-12-13 2011-06-08 一种用于定位的移动广播信号解调芯片 WO2012079346A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/992,503 US9204417B2 (en) 2010-12-13 2011-06-08 Mobile broadcast signal demodulation chip for location determination

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010602152.0A CN102076003B (zh) 2010-12-13 2010-12-13 一种用于定位的移动广播信号解调芯片
CN201010602152.0 2010-12-13

Publications (1)

Publication Number Publication Date
WO2012079346A1 true WO2012079346A1 (zh) 2012-06-21

Family

ID=44034311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/075451 WO2012079346A1 (zh) 2010-12-13 2011-06-08 一种用于定位的移动广播信号解调芯片

Country Status (3)

Country Link
US (1) US9204417B2 (zh)
CN (1) CN102076003B (zh)
WO (1) WO2012079346A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017174004A1 (zh) * 2016-04-08 2017-10-12 深圳超级数据链技术有限公司 载波同步方法和装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102076003B (zh) 2010-12-13 2014-01-29 北京邮电大学 一种用于定位的移动广播信号解调芯片
WO2013091160A1 (zh) * 2011-12-19 2013-06-27 北京邮电大学 定位方法及定位系统
CN102724754B (zh) * 2012-06-13 2014-12-31 北京邮电大学 无线定位方法及基站
CN102769910B (zh) * 2012-07-13 2016-08-10 北京邮电大学 一种终端及其自主定位方法
CN102857252B (zh) * 2012-07-31 2014-11-26 北京邮电大学 基于广播定位信号的跟踪方法和装置
US9055528B2 (en) * 2013-02-06 2015-06-09 Qualcomm Incorporated Determination of NCS parameter and logical root sequence assignments
US9270418B1 (en) * 2015-09-02 2016-02-23 Cognitive Systems Corp. Identifying a code for signal decoding
CN106341151B (zh) * 2016-11-11 2017-11-24 广东欧珀移动通信有限公司 调整发射功率的方法及装置
CN107179523B (zh) * 2017-04-11 2020-03-20 深圳思凯微电子有限公司 目标定位方法及装置
CN108282693A (zh) * 2018-03-28 2018-07-13 中国电子科技集团公司第二十九研究所 一种dtmb数字电视信号帧头的解调方法及系统
CN109033020B (zh) * 2018-09-07 2022-09-23 北谷电子有限公司 一种剪叉式高空作业平台举升高度计算方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996020542A1 (en) * 1994-12-23 1996-07-04 Stanford Telecommunications, Inc. Position enhanced communication system
CN1284830A (zh) * 1999-08-12 2001-02-21 深圳市中兴通讯股份有限公司 移动终端自行定位的方法
CN101384070A (zh) * 2007-09-06 2009-03-11 大唐移动通信设备有限公司 一种移动终端定位方法、装置及系统
CN102076003A (zh) * 2010-12-13 2011-05-25 北京邮电大学 一种用于定位的移动广播信号解调芯片

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5960355A (en) * 1996-02-16 1999-09-28 Telefonaktiebolaget Lm Ericsson Method and an arrangement relating to telecommunication systems
US6861984B2 (en) * 2001-02-02 2005-03-01 Rosum Corporation Position location using broadcast digital television signals
US20050181809A1 (en) * 2002-05-23 2005-08-18 Hild Stefan G. Method and apparatus for determining a geographic location of an electronic device
US20060116818A1 (en) * 2004-12-01 2006-06-01 Televigation, Inc. Method and system for multiple route navigation
JP4296302B2 (ja) * 2006-04-04 2009-07-15 測位衛星技術株式会社 位置情報提供システムおよび携帯電話機
CN101354070A (zh) 2007-07-29 2009-01-28 江利 一种新型汽车减振器
US20090175379A1 (en) * 2007-12-12 2009-07-09 Rosum Corporation Transmitter Identification For Wireless Signals Having A Digital Audio Broadcast Physical Layer
US20090286556A1 (en) * 2008-05-19 2009-11-19 Freescale Semiconductor, Inc Apparatus, method, and program for outputting present position
JP5753647B2 (ja) * 2008-10-09 2015-07-22 セイコーエプソン株式会社 電子時計及び衛星信号受信方法
US20110164690A1 (en) * 2009-07-02 2011-07-07 Maxlinear, Inc. Methods and systems for location estimation
CN101616482A (zh) * 2009-07-31 2009-12-30 北京邮电大学 一种移动通信系统中的定位方法与移动终端、定位服务器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996020542A1 (en) * 1994-12-23 1996-07-04 Stanford Telecommunications, Inc. Position enhanced communication system
CN1284830A (zh) * 1999-08-12 2001-02-21 深圳市中兴通讯股份有限公司 移动终端自行定位的方法
CN101384070A (zh) * 2007-09-06 2009-03-11 大唐移动通信设备有限公司 一种移动终端定位方法、装置及系统
CN102076003A (zh) * 2010-12-13 2011-05-25 北京邮电大学 一种用于定位的移动广播信号解调芯片

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017174004A1 (zh) * 2016-04-08 2017-10-12 深圳超级数据链技术有限公司 载波同步方法和装置

Also Published As

Publication number Publication date
CN102076003B (zh) 2014-01-29
US20140308972A1 (en) 2014-10-16
US9204417B2 (en) 2015-12-01
CN102076003A (zh) 2011-05-25

Similar Documents

Publication Publication Date Title
WO2012079346A1 (zh) 一种用于定位的移动广播信号解调芯片
CN102104837B (zh) 一种基于移动广播的定位方法和装置
KR100977944B1 (ko) 수신기 및 gps 신호와 dbs 신호를 사용한 위치확인 방법
EP3208946B1 (en) Communication device and method in the cellular band
CN113728578B (zh) 用于定位参考信号交错配置的系统和方法
CN100466851C (zh) 识别通信网中器材位置的方法与设备
US20230094598A1 (en) Time of arrival estimation for bluetooth systems and devices
US20030052822A1 (en) Position location using broadcast digital television signals
US7432852B2 (en) Method of synchronizing base stations of a terrestrial cellular communication network
CN103703841A (zh) 用户设备的定位方法、数据发送方法、装置及用户设备
WO2012116630A1 (zh) 一种定位方法和设备
US20090274099A1 (en) Methods and apparatus for communicating transmitter information in a communication network
WO2022047138A2 (en) Atsc 3.0 single frequency networks used for positioning navigation timing and synergy 4g / 5g networks
CN102012499B (zh) 基于中国地面数字电视单频网的定位方法及系统
US8677440B2 (en) Position determination using ATSC-M/H signals
WO2011082182A1 (en) Gnss reception using distributed time synchronization
CN107024700A (zh) 一种卫星导航信息传输系统、发射装置及接收装置
CN202189145U (zh) 一种特征参数采集装置
CN102096085A (zh) 一种cttb信号与卫星信号相结合的定位方法
CN108957501A (zh) 一种数字地面多媒体广播同步的地基导航定位方法与系统
CN112333643B (zh) 5g下行信号的无线定位方法、系统、介质及智能终端
CN102256352B (zh) 基于物理层管道技术的定位方法
WO2004057360A2 (en) Position location using digital audio broadcast signals
Gaderer et al. Localisation in wireless sensor networks
CN110474861B (zh) 一种基于时空基准的无线通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11847977

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13992503

Country of ref document: US

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24/10/2013)

122 Ep: pct application non-entry in european phase

Ref document number: 11847977

Country of ref document: EP

Kind code of ref document: A1