[go: up one dir, main page]

WO2012067203A1 - Substrate for light-emitting element, and light-emitting device - Google Patents

Substrate for light-emitting element, and light-emitting device Download PDF

Info

Publication number
WO2012067203A1
WO2012067203A1 PCT/JP2011/076576 JP2011076576W WO2012067203A1 WO 2012067203 A1 WO2012067203 A1 WO 2012067203A1 JP 2011076576 W JP2011076576 W JP 2011076576W WO 2012067203 A1 WO2012067203 A1 WO 2012067203A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
emitting element
light
light emitting
insulating layer
Prior art date
Application number
PCT/JP2011/076576
Other languages
French (fr)
Japanese (ja)
Inventor
篤人 ▲橋▼本
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2012544308A priority Critical patent/JP5862574B2/en
Publication of WO2012067203A1 publication Critical patent/WO2012067203A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/858Means for heat extraction or cooling
    • H10H20/8582Means for heat extraction or cooling characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/8506Containers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/857Interconnections, e.g. lead-frames, bond wires or solder balls

Definitions

  • the present invention relates to a light emitting element substrate and a light emitting device using the same.
  • a substrate for a light-emitting element having high thermal diffusivity is a structure in which a penetrating metal body composed of a metal having a higher thermal conductivity than an insulating substrate is provided through an insulating substrate made of low-temperature fired ceramics.
  • the penetrating metal body has, for example, Cu, Ag, Au or the like as a main component and is larger than the mounting area of the light emitting element (see, for example, Patent Document 1).
  • a substrate for a light emitting element with higher thermal diffusibility is required from the viewpoint of ensuring the lifetime.
  • the light-emitting element is likely to be at a high temperature, so that characteristic deterioration such as a decrease in luminance is likely to occur, and the mold resin covering the light-emitting element and the phosphor contained therein are likely to deteriorate. .
  • the distance between the pair of external electrode terminals may be a problem on the back side opposite to the main surface on which the light emitting element is mounted.
  • a one-wire type light emitting element having a pair of element electrodes on the upper part and the lower part is mounted on a through metal body and the through metal body is used not only as a heat dissipation path but also as a conductive path, it is provided on the back side.
  • the distance between the pair of external electrode terminals is not sufficient.
  • the present invention has been made in order to solve the above-described problem, and in a light emitting element substrate having a heat dissipating body, the electrical insulation on the back side is ensured while suppressing a decrease in thermal diffusivity. It is intended to provide.
  • Another object of the present invention is to provide a light-emitting device using such a light-emitting element substrate and having excellent thermal diffusibility and electrical reliability.
  • the substrate for a light emitting element of the present invention is made of an inorganic insulating material, and includes a mounting surface including a mounting portion on which the light emitting element is mounted, a substrate body having a non-mounting surface on the surface opposite to the mounting surface,
  • the heat sink has a heat dissipating member provided so that one end reaches the mounting portion from the mounting surface to the non-mounting surface, and the heat dissipating member has a thickness direction distance from the non-mounting surface.
  • the insulating body made of an inorganic material arranged in a surface direction so as to cover the entire cross section of the heat radiating body at a position that is 60% or less of the thickness of the substrate main body, and the main body of the heat radiating body
  • the portion other than the insulating layer is made of a conductor.
  • the upper surface of the insulating layer is disposed at a position where the distance in the thickness direction from the non-mounting surface of the substrate body is 40% or less of the thickness of the substrate body. Preferably it is.
  • the cross-sectional area of the heat radiating body in the direction orthogonal to the thickness direction of the substrate main body is preferably 0.2 to 16 times the area of the mounting portion of the light emitting element.
  • the thickness of the insulating layer is preferably 10 to 200 ⁇ m, particularly preferably 10 to 100 ⁇ m.
  • the insulating layer can be made of a material mainly composed of glass.
  • the insulating layer can be composed of a sintered body of a glass ceramic composition containing glass powder and ceramic powder.
  • the substrate body is preferably composed of a sintered body of a glass ceramic composition containing glass powder and ceramic powder.
  • the conductor constituting the main body of the heat dissipating body has at least one of Cu, Ag, and Au as a main component.
  • the frame body for accommodating a light emitting element can be provided in the peripheral part by the side of the mounting surface of the said board
  • the present invention provides a light emitting device comprising the light emitting element substrate of the present invention and a light emitting element mounted on the mounting portion of the light emitting element substrate.
  • one electrode of the light emitting element is connected to the first wiring conductor layer formed on the mounting portion of the light emitting element substrate by a conductive adhesive material, and the other electrode is
  • the light emitting element substrate is connected to a second wiring conductor layer formed on the mounting surface of the light emitting element substrate so as to be insulated from the first wiring conductor layer by wire bonding.
  • the radiator provided from the mounting surface to the non-mounting surface of the substrate main body is an intermediate portion in the thickness direction of the main body of the radiator (hereinafter, referred to as a heat dissipation main body) made of a conductor. Since the insulating layer made of an inorganic material is inserted or arranged at the end portion on the non-mounting surface side, insulation between the electrode terminals on the back surface side is ensured.
  • the distance of the insulating layer in the thickness direction from the non-mounting surface of the substrate body (hereinafter referred to as the distance from the non-mounting surface) is 60% or less of the thickness of the substrate body, and the radiator Since the insulating layer that forms part of the surface is not arranged on the side close to the mounting surface, the increase in thermal resistance due to the intervening insulating layer is suppressed, and the light emission has a sufficiently low thermal resistance and good heat dissipation An element substrate is obtained.
  • the light emitting element substrate having a high thermal diffusivity in this way, a light emitting device with high luminance can be obtained with less luminance deterioration of the light emitting element.
  • a substrate for a light emitting device of the present invention includes a mounting surface including a mounting portion on which the light emitting device is mounted, a substrate body made of an inorganic insulating material having a non-mounting surface on the surface opposite to the mounting surface, and the substrate body. And a heat dissipating body provided in a thickness direction from the mounting surface of the light emitting element to the non-mounting surface and with one end portion reaching the mounting portion.
  • this heat radiator was arrange
  • the cross section of a heat radiator means a cross section perpendicular
  • substrate body means a direction perpendicular
  • the standard of the distance from the non-mounting surface of the substrate body in the insulating layer is, for example, the lower surface of the insulating layer, but may be the upper surface of the insulating layer.
  • the position of the upper surface of the insulating layer can be said to be the position of the lower surface of the heat radiating main body (hereinafter referred to as the mounting surface side heat radiating main body) whose end is in contact with the mounting portion.
  • the length of the heat radiating body and the thickness of the insulating layer in contact with the lower surface of the heat radiating body are adjusted so that the thickness is 60% or less of the thickness of the substrate body.
  • the value of 60% or less includes 0%. In that case, the lower surface of the insulating layer is exposed to the non-mounting surface. Including this position, and as described above, the distance from the non-mounting surface is 60% or less of the thickness of the substrate body, including the case where the reference of the distance from the non-mounting surface is the upper surface of the insulating layer.
  • the position of the insulating layer may be indicated as an intermediate portion in the thickness direction.
  • the distance of the insulating layer in the thickness direction from the non-mounting surface of the substrate body may be based on the lower surface of the insulating layer as described above, or may be the upper surface of the insulating layer. This case is also included.
  • the heat dissipation body made of a conductor is divided by an insulating layer made of an inorganic material having a lower thermal conductivity than the conductor, but this insulating layer is separated from the non-mounting surface of the substrate body. Is located at a position where the distance of the substrate body is 60% or less of the entire thickness of the substrate body, so that the increase in thermal resistance due to the interposition of the insulating layer is suppressed, and the heat radiator composed of the heat radiating body and the insulating layer is A light-emitting element substrate having sufficiently low thermal resistance and good heat dissipation is obtained.
  • Thermal resistance is proportional to the length of the heat dissipation path through which heat is transmitted, and inversely proportional to the cross-sectional area and thermal conductivity.
  • the temperature rise increases in proportion to the size of the heat flux concentrated on the thermal resistance. Therefore, in order to avoid the temperature rise of the semiconductor element, that is, to lower the thermal resistance of the entire system including the substrate, it has a high thermal resistance. It is necessary not to concentrate the heat flux on the part. In the structure assumed by the present invention, it is necessary not to concentrate the heat flux on the insulator layer having a low thermal conductivity and a high heat resistance as a heat dissipation path, so that the diffusion due to the heat conduction is insufficient and the heat flux is concentrated. Arranging the insulating layer further away from the region immediately below the semiconductor element is considered significant in terms of suppressing thermal resistance.
  • the insulating layer that forms part of the heat sink together with the heat dissipation body is disposed at a position where the distance from the non-mounting surface of the substrate body is 60% or less of the entire thickness of the substrate body.
  • the heat from the element is first conducted to a heat radiating body made of a conductor arranged so as to be in contact with the mounting portion, and a heat radiating body having a certain length (more specifically, 40% of the thickness of the board main body) or more. Conducts and reaches the insulating layer.
  • heat is conducted not only in the thickness direction but also in the lateral direction (plane direction) in the process of heat propagation in the heat radiating body.
  • the heat flux concentrated on the insulating layer having a low rate can be reduced, and an increase in thermal resistance due to the arrangement of the insulating layer can be sufficiently suppressed.
  • FIG. 1 is a cross-sectional view of a light-emitting element substrate of the present invention.
  • the light emitting element substrate 10 has a substantially flat substrate body 1.
  • substantially flat form means flat form on a visual level.
  • the substrate body 1 is made of an inorganic insulating material, and a frame 2 is formed on the peripheral edge of the upper surface.
  • a cavity is formed by the frame body 2, and the bottom surface of the cavity is a mounting surface 1 a on which a light emitting element is mounted, and the surface opposite to the mounting surface 1 a of the substrate body 1 is a non-mounting surface 1 b. It has become.
  • Examples of the inorganic insulating material constituting the substrate body 1 include an aluminum oxide sintered body (alumina ceramic), an aluminum nitride sintered body, a mullite sintered body, and a glass ceramic composition containing glass powder and ceramic powder.
  • Examples thereof include LTCC (Low Temperature Co-fired Ceramics). In the present invention, LTCC is preferable from the viewpoints of high reflectivity, ease of production, easy processability, economy, and the like.
  • the shape, thickness, size and the like of the substrate body 1 are not particularly limited, and can be changed according to the design of the light emitting device, such as the number of light emitting elements to be mounted and the arrangement method. Moreover, the raw material composition of LTCC which comprises the substrate main body 1, sintering conditions, etc. are demonstrated in the manufacturing method of the board
  • the substrate body 1 preferably has a bending strength of, for example, 250 MPa or more from the viewpoint of suppressing damage or the like when the light emitting element is mounted or after use.
  • a wiring conductor layer 3 electrically connected to the light emitting element is provided on the mounting surface 1 a of the substrate body 1.
  • the wiring conductor layer 3 includes an anode-side or cathode-side first wiring conductor layer 3a formed so as to be connected to the light-emitting element mounting portion and the vicinity thereof, and a first portion disposed on the periphery of the mounting surface 1a. And the second wiring conductor layer 3b opposite to the wiring conductor layer 3a.
  • the constituent material of the wiring conductor layer 3 is not particularly limited as long as it is the same as the wiring conductor layer used for a normal light emitting element substrate. Specifically, it will be described in the manufacturing method described later.
  • the thickness of the wiring conductor layer 3 (that is, the thickness of each of the first wiring conductor layer 3a and the second wiring conductor layer 3b) is preferably 5 to 50 ⁇ m.
  • the other surface of the substrate body 1 is a non-mounting surface 1b on which no light emitting element is mounted, and external electrode terminals 4 on the anode side and the cathode side are provided on the non-mounting surface 1b.
  • the external electrode terminal 4 has a first external electrode terminal 4a and a second external electrode terminal 4b. These external electrode terminals 4 are connected to the wiring conductor layers 3 formed on the mounting surface 1a of the substrate body 1 through the connection vias 5 formed inside the substrate body 1, respectively (corresponding first wiring conductor layers respectively). 3a and the second wiring conductor layer 3b).
  • the shape and constituent materials of the external electrode terminal 4 and the connection via 5 can be used without particular limitation as long as they are the same as those used for the substrate for a light emitting element. These will be specifically described in the substrate manufacturing method described later.
  • the radiator 6 is provided in the substrate body 1 along the thickness direction from the mounting surface 1a to the non-mounting surface 1b.
  • the heat dissipating body 6 has an upper end in contact with the first wiring conductor layer 3 a formed on the mounting surface of the light emitting element, and a lower end reaching a predetermined position such as an intermediate portion in the thickness direction of the substrate body 1.
  • a first heat dissipating body 7a disposed on the lower end of the first heat dissipating body 7a so as to cover the entire cross section, and the insulating layer 8 sandwiched between the first heat dissipating body 7a.
  • the 2nd thermal radiation main body 7b It consists of the 2nd thermal radiation main body 7b arrange
  • the lower end portion of the second heat radiating body 7 b reaches the non-mounting surface 1 b of the substrate body 1.
  • the first heat radiating body 7a and the second heat radiating body 7b are collectively referred to as a heat radiating body 7.
  • the cross-sectional areas of the first heat radiating body 7a and the second heat radiating body 7b may be smaller, larger or equal to the area of the light emitting element mounting portion. It is preferably larger than the area of the part.
  • the cross-sectional area of the heat dissipating bodies 7a and 7b is 0.2 to 16 times the area of the light emitting element mounting portion, and 1.0 to 4 0.0 times is more preferable, and 1.4 to 4.0 times is particularly preferable.
  • the cross-sectional area of the heat radiating bodies 7a and 7b refers to the area of a cross section perpendicular to the thickness direction of the substrate body.
  • the area of the mounting portion on which the light emitting element is mounted corresponds to the bottom area of the light emitting element (the area of the mounting surface of the light emitting element mounted on the mounting surface).
  • part of the thickness direction of the thermal radiation main body 7 may be sufficient.
  • the cross-sectional area of the heat radiating body 7 defined in the horizontal direction in plan view changes in the thickness direction of the substrate (for example, a truncated cone shape or a truncated pyramid shape)
  • the smallest cross-sectional area is the target.
  • first and second heat dissipating bodies 7a and 7b have the same cross-sectional area.
  • any material can be used without particular limitation as long as it is the same as that used for a thermal via of a substrate for a light emitting element. This will be specifically described in the substrate manufacturing method described later.
  • the insulating layer 8 disposed in the middle portion in the thickness direction of the heat radiating body 6 has a distance L2 from the non-mounting surface 1b of the substrate body 1 on the lower surface thereof to 60% or less of the thickness L1 of the substrate body 1. It is provided in the position. More specifically, when the thickness L1 of the substrate body 1 is 500 ⁇ m, the insulating layer 8 is provided so that the lower surface is located at a position where the distance L2 from the non-mounting surface 1b is 0 to 300 ⁇ m.
  • the thickness L1 of the substrate body 1 is not particularly limited, but is usually about 200 to 500 ⁇ m.
  • the substrate body 1 preferably has a substantially uniform thickness, but may have a non-uniform thickness.
  • the thickness of the insulating layer 8 is 10 to 200 ⁇ m, particularly preferably 10 to 100 ⁇ m. If the thickness is less than 10 ⁇ m, the effect of ensuring insulation by providing the insulating layer 8 cannot be sufficiently obtained. When the thickness exceeds 100 ⁇ m, the heat resistance of the heat radiating body 6 becomes too large, and it becomes difficult to obtain sufficient heat dissipation.
  • the insulating layer 8 preferably has a substantially uniform thickness, but may have a non-uniform thickness.
  • the insulating layer 8 can be made of a material mainly composed of glass (hereinafter referred to as a glass material). Moreover, the insulating layer 8 can also be comprised by the sintered compact (LTCC) of the glass-ceramics composition containing glass powder and ceramic powder similarly to the board
  • LTCC sintered compact
  • the glass material which comprises the insulating layer 8 is demonstrated below.
  • Glass material constituting the insulating layer 8 are those containing glass be at least SiO 2, B 2 O 3, where and Na 2 O and K at least one kind of component selected from 2 O.
  • this glass material can contain ceramic powder in a proportion of 10% by mass or less.
  • the content of the ceramic powder is preferably 3% by mass or more.
  • the strength of the insulating layer 8 may be increased.
  • the glass material preferably contains silica powder or alumina powder as ceramic powder.
  • the average particle size D 50 (hereinafter, simply referred to as D 50 may be described as the powder). .) Is 2.5 ⁇ m or less, more preferably 0.5 ⁇ m or less, it is possible to improve the printability and to flatten the end of the insulating layer 8 to suppress the undulation of the layer surface. Note that D 50 is a value obtained by a particle size measuring apparatus using a laser diffraction / scattering method.
  • the content of the ceramic powder in the glass material can be set by the particle size.
  • D 50 is 1 to 2.5 ⁇ m, the content is preferably 3 to 10% by mass. 8 mass% or less is preferable and 5 mass% or less is more preferable.
  • D 50 is less than 1 ⁇ m, the content is preferably 3 to 5% by mass.
  • the glass constituting the insulating layer is expressed by mol% on the basis of oxide, SiO 2 62-84%, B 2 O 3 10-25%, Al 2 O 3 0-5%, Na 2 O and K At least one selected from 2 O is contained in a total of 1 to 5%, the total content of SiO 2 and Al 2 O 3 is 62 to 84%, MgO is selected from 0 to 10%, CaO, SrO, BaO In the case of containing at least one selected from the above, a product obtained by firing a borosilicate glass powder whose total content is 5% or less is preferable.
  • composition is simply expressed as% in terms of mol% based on oxide.
  • SiO 2 is a glass network former, a component that increases chemical durability, particularly acid resistance, and is essential. If it is less than 62%, the acid resistance may be insufficient. If it exceeds 84%, the glass melting temperature tends to be high, or the glass transition point (Tg) tends to be too high.
  • B 2 O 3 is a glass network former and is essential. If it is less than 10%, the glass melting temperature tends to be high, and the glass may become unstable. Preferably it is 12% or more. If it exceeds 25%, not only is it difficult to obtain stable glass, but chemical durability may be reduced.
  • Al 2 O 3 is not essential, but may be contained in a range of 5% or less in order to enhance the stability or chemical durability of the glass. If it exceeds 5%, the transparency of the glass may decrease.
  • the total content of SiO 2 and Al 2 O 3 is 62 to 84%. If it is less than 62%, chemical durability may be insufficient. If it exceeds 84%, the glass melting temperature becomes high, or Tg becomes too high.
  • Na 2 O and K 2 O are components that lower Tg, and at least one of them is essential. It can contain up to 5% in total. If it exceeds 5%, chemical durability, particularly acid resistance, may deteriorate. Moreover, there exists a possibility that the electrical insulation of a sintered compact may fall. Na 2 O, and containing any one or more of K 2 O, Na 2 O, it is preferable that the total content of K 2 O is not less than 1%.
  • MgO is not essential, but may be contained up to 10% in order to lower Tg or stabilize the glass. Preferably it is 8% or less.
  • CaO, SrO, and BaO are not essential, but may be contained up to 5% in total in order to lower the melting temperature of the glass or stabilize the glass. If it exceeds 5%, the acid resistance may decrease.
  • the glass constituting the insulating layer of the present invention consists essentially of the above components, but may contain other components as long as the object of the present invention is not impaired. When such components are contained, the total content of these components is preferably 10% or less. However, lead oxide is not contained.
  • the insulating layer 8 of the present invention is preferably formed by firing a composition formed by mixing such a borosilicate glass powder composed of each component and, if necessary, the ceramic powder.
  • a mixed powder of a borosilicate glass powder having a composition and the ceramic powder is formed into a paste, screen-printed, and fired.
  • the method is not particularly limited as long as the insulating layer 8 having a predetermined thickness can be formed at a position within a predetermined range of the distance from the non-mounting surface 1b in the substrate body 1.
  • the light emitting element use substrate 1 of this invention is not limited to this. As long as it is not contrary to the gist of the present invention, the configuration can be changed as necessary.
  • the light emitting element substrate 10 of the present invention configured as described above, materials and manufacturing methods normally used for the LTCC substrate for mounting the light emitting element can be applied. Further, the light emitting device of the present invention to be described later can also be produced by an ordinary method using ordinary members except that the light emitting element substrate 10 of the present invention is used.
  • the substrate body 1 is composed of LTCC
  • the insulating layer 8 constituting a part of the radiator 6 is composed of a glass material.
  • the method for manufacturing the substrate 10 for light emitting device of the present invention will be described by taking as an example the method for manufacturing the substrate to be manufactured.
  • the first layer 1 can be manufactured by a manufacturing method including the following steps (A) to (E). More specifically, the following steps (A) to (E) are preferably carried out in this order to produce the light emitting element substrate according to the present invention.
  • the members used for the manufacture will be described with the same reference numerals as those of the finished product.
  • the heat dissipating body and the conductor paste layer for the heat dissipating body are represented by the same 7 (or 7a, 7b) code
  • the insulating layer and the unfired insulating layer are represented by the same 8 code. The other is the same.
  • Green sheet manufacturing process for main body A plurality of green sheets (hereinafter referred to as green for main body) for forming the substrate main body 1 of the substrate 10 for light emitting element using a glass ceramic composition containing glass powder and ceramic powder. (Also referred to as a sheet).
  • the main body green sheet includes an upper layer green sheet, an inner layer green sheet, and a lower layer green sheet. In this step, a green sheet for a frame is also produced in order to form a frame.
  • (C) Glass paste layer formation process The glass paste layer which consists of glass materials is formed in the predetermined position of the green sheet for inner layers, and the unbaking insulating layer 8 is formed.
  • a fired main body member hereinafter sometimes referred to as a green sheet with a conductive paste layer and a green sheet with a glass paste layer
  • thermocompression to obtain an unfired substrate.
  • the green sheet for main body is made of glass ceramic composition (for example, LTCC composition) containing glass powder and ceramic powder, binder, plasticizer, dispersant, solvent, etc. if necessary. Is added to the slurry to prepare a slurry, which is formed into a sheet by a doctor blade method or the like and dried. Moreover, the green sheet for a frame is produced by processing the green sheet thus produced into a predetermined shape.
  • glass ceramic composition for example, LTCC composition
  • Glass powder in a glass ceramic composition used for producing a green sheet for a main body (hereinafter, this glass powder is also referred to as glass powder for main body) having a glass transition point (Tg) of 550 ° C. or higher and 700 ° C. or lower. Is preferred. When Tg is less than 550 ° C., degreasing may be difficult, and when it exceeds 700 ° C., the shrinkage start temperature becomes high and the dimensional accuracy may be lowered.
  • the glass powder is one in which crystals are precipitated when fired at 800 ° C. or higher and 930 ° C. or lower. In the case where crystals do not precipitate, there is a possibility that sufficient mechanical strength cannot be obtained. Furthermore, the thing whose crystallization peak temperature (Tc) measured by DTA (differential thermal analysis) is 880 degrees C or less is preferable. When Tc exceeds 880 ° C., the dimensional accuracy may be reduced.
  • SiO 2 is 57 to 65%
  • B 2 O 3 is 13 to 18%
  • CaO is 9 to 23%
  • Al 2 O 3 is 3% in terms of mol% based on oxide.
  • Those containing at least one selected from K 2 O and Na 2 O in a total of 0.5 to 6% are preferable. By using such a thing, it becomes easy to improve the surface flatness of the substrate body 1.
  • SiO 2 serves as a glass network former.
  • the content of SiO 2 is preferably 58% or more, more preferably 59% or more, and particularly preferably 60% or more. Further, the content of SiO 2 is preferably 64% or less, more preferably 63% or less.
  • B 2 O 3 is a glass network former. If the content of B 2 O 3 is less than 13%, there is a possibility that the glass melting temperature or Tg may be too high. On the other hand, when the content of B 2 O 3 exceeds 18%, it is difficult to obtain a stable glass, and the chemical durability may be lowered.
  • the content of B 2 O 3 is preferably 14% or more, more preferably 15% or more. Further, the content of B 2 O 3 is preferably 17% or less, more preferably 16% or less.
  • Al 2 O 3 is added to increase the stability, chemical durability, and strength of the glass. If the content of Al 2 O 3 is less than 3%, the glass may become unstable. On the other hand, when the content of Al 2 O 3 exceeds 8%, the glass melting temperature and Tg may be excessively high.
  • the content of Al 2 O 3 is preferably 4% or more, more preferably 5% or more. Further, the content of Al 2 O 3 is preferably 7% or less, more preferably 6% or less.
  • CaO is added to increase glass stability and crystal precipitation, and to lower the glass melting temperature and Tg.
  • the content of CaO is less than 9%, the glass melting temperature may be excessively high.
  • the content of CaO exceeds 23%, the glass may become unstable.
  • the content of CaO is preferably 12% or more, more preferably 13% or more, and particularly preferably 14% or more. Further, the content of CaO is preferably 22% or less, more preferably 21% or less, and particularly preferably 20% or less.
  • K 2 O and Na 2 O are added to lower Tg.
  • the glass melting temperature and Tg may be excessively high.
  • the total content of K 2 O and Na 2 O exceeds 6%, chemical durability, particularly acid resistance may be lowered, and electrical insulation may be lowered.
  • the total content of K 2 O and Na 2 O is preferably 0.8% or more and 5% or less.
  • the glass powder for main bodies is not necessarily limited to what consists only of the said component, Other components can be contained in the range with which various characteristics, such as Tg, are satisfy
  • the glass powder for main body is obtained by blending and mixing each glass raw material so as to become a glass having the above composition, producing by a melting method, and pulverizing by a dry pulverization method or a wet pulverization method.
  • a wet pulverization method it is preferable to use water or ethyl alcohol as a solvent.
  • the pulverizer include a roll mill, a ball mill, and a jet mill.
  • the 50% particle size (D 50 ) of the glass powder for main body is preferably 0.5 ⁇ m or more and 2 ⁇ m or less. If D 50 of the glass powder is less than 0.5 [mu] m, handling the glass powder is likely to agglomerate are not only difficult, uniform dispersion becomes difficult. On the other hand, if the D 50 of the glass powder exceeds 2 ⁇ m, there is a possibility that increase and insufficient sintering of the glass softening temperature is generated.
  • the particle diameter may be adjusted by classification as necessary after pulverization, for example.
  • the ceramic powder those conventionally used for the production of LTCC substrates can be used.
  • alumina powder, zirconia powder, or a mixture of alumina powder and zirconia powder can be suitably used.
  • a ceramic powder hereinafter referred to as a high refractive index ceramic powder
  • a high refractive index ceramic powder having a higher refractive index than alumina together with the alumina powder.
  • the high refractive index ceramic powder is a component for improving the reflectance of the substrate that is a sintered body, and examples thereof include titania powder, zirconia powder, and stabilized zirconia powder. While the refractive index of alumina is about 1.8, the refractive index of titania is about 2.7 and the refractive index of zirconia is about 2.2, which is higher than that of alumina. . D 50 of these ceramic powders is preferably 0.5 ⁇ m or more and 4 ⁇ m or less.
  • the glass ceramic composition is mixed. Things are obtained.
  • a slurry can be obtained by adding a binder and, if necessary, a plasticizer, a dispersant, a solvent, and the like to the glass ceramic composition.
  • binder for example, polyvinyl butyral, acrylic resin or the like can be suitably used.
  • plasticizer for example, dibutyl phthalate, dioctyl phthalate, butyl benzyl phthalate and the like can be used.
  • solvent organic solvents such as toluene, xylene, 2-propanol and 2-butanol can be preferably used.
  • the slurry thus obtained is formed into a sheet by a doctor blade method or the like and dried to produce a plurality of green sheets for the main body (upper layer green sheet, lower layer green sheet and inner layer green sheet). .
  • a green sheet for a frame is manufactured by processing the green sheet manufactured in the same manner into a predetermined shape. Further, a small-diameter through hole for forming a connection via and a large-diameter through hole for forming a heat dissipating main body are formed at predetermined positions of the green sheet for main body using a punching machine or the like.
  • the conductive paste layer for forming the wiring conductor layer 3 and the external electrode terminal 4 is formed in the predetermined position on the green sheet for main bodies produced at the said process. Also, a conductor for filling the inside of the through hole for forming the connection via formed in the green sheet for the main body and the through hole for forming the heat radiating main body to form the connection via 5 and the heat radiating main bodies 7a and 7b A paste layer is formed.
  • conductor paste layers 3a and 3b for first and second wiring conductor layers, conductor paste layer 5 for connection vias, conductor paste layers 7a and 7b for heat radiation bodies, and conductor paste layer 4 for external electrode terminals Examples of the method include a method of applying and filling a conductive paste by screen printing. The film thicknesses of the conductor paste layers 3a and 3b for the first and second wiring conductor layers and the conductor paste layer 4 for the external electrode terminals are adjusted so that the finally obtained film thickness becomes a predetermined film thickness. It is preferable.
  • a metal powder mainly composed of copper (Cu), silver (Ag), gold (Au) or the like is added to a vehicle such as ethyl cellulose, and a solvent or the like is added to make a paste. Things can be used.
  • a metal powder silver powder, metal powder composed of silver and platinum, or metal powder composed of silver and palladium are preferably used.
  • (C) Glass paste layer forming step for insulating layer For insulating layer so that this layer is completely covered on either or both of conductor paste layers 7a and 7b for heat dissipation body of inner layer green sheet
  • the glass paste layer 8 is formed by screen printing.
  • a glass paste for an insulating layer is a paste obtained by adding a vehicle such as ethyl cellulose and, if necessary, a solvent, etc. to a composition obtained by mixing the glass powder for an insulating layer and the ceramic powder as necessary. What was made into a shape can be used.
  • the film thickness of the insulating layer glass paste layer 8 to be formed is adjusted so that the finally obtained insulating layer 8 has a thickness of 10 to 200 ⁇ m, more preferably 10 to 100 ⁇ m.
  • Degreasing is performed, for example, under the condition of holding at a temperature of 500 ° C. to 600 ° C. for 1 hour to 10 hours.
  • the degreasing temperature is less than 500 ° C. or the degreasing time is less than 1 hour, the binder or the like may not be sufficiently removed.
  • the degreasing temperature is about 600 ° C. and the degreasing time is about 10 hours, the binder and the like can be sufficiently removed, and if it exceeds this, productivity and the like may be lowered.
  • Calcination is performed by appropriately adjusting the time in a temperature range of 800 ° C. to 930 ° C. in consideration of obtaining a dense structure of the base body 1 and productivity. Specifically, it is preferable to hold at a temperature of 850 ° C. or more and 900 ° C. or less for 20 minutes or more and 60 minutes or less, and a temperature of 860 ° C. or more and 880 ° C. or less is particularly preferable. If the firing temperature is less than 800 ° C., the base body 1 may not be obtained as a dense structure. On the other hand, if the firing temperature exceeds 930 ° C., the productivity may be lowered, for example, the base body 1 may be deformed.
  • the light emitting element substrate 10 is obtained.
  • Ni / gold plating Ni
  • Ni is applied so as to cover the surfaces of the wiring conductor layers 3a and 3b exposed on the mounting surface 1a of the substrate body 1 as necessary. It is also possible to dispose a conductive protective film used for conductor protection in the substrate 10 for a normal light emitting device, such as plating having a two-layer structure of plating and Au plating.
  • the manufacturing method of the light emitting element substrate 10 in which the insulating layer 8 that constitutes a part of the radiator 6 is made of a glass material has been described. However, when the substrate in which the insulating layer 8 is made of LTCC is manufactured. Uses a green sheet made of LTCC having no holes at the position where the insulating layer 8 is disposed, and (D) the laminating step and then (E) the firing step are performed in the same manner as described above.
  • the frame green sheet need not be a single green sheet, and may be a laminate of a plurality of green sheets. Further, the number of main body green sheets excluding the frame green sheet is not limited. Furthermore, the order of forming each part can be changed as appropriate as long as the light emitting element substrate 10 can be manufactured.
  • FIG. 2 is a cross-sectional view showing an embodiment of the light emitting device of the present invention.
  • the light-emitting device 20 of the present invention includes the above-described light-emitting element substrate 10 of the present invention and a one-wire type light-emitting element (for example, an LED element) 11 mounted on the mounting portion of the light-emitting element substrate 10. .
  • the light emitting element 11 is fixed to the mounting portion of the substrate body 1 using a conductive die bond material 12 containing a conductive material such as silver, and the anode side of the lower surface of the light emitting element 11 or the
  • the cathode-side first electrode 11a is electrically connected to the first wiring conductor layer 3a.
  • the second electrode 11b on the upper surface of the light emitting element 11 on the cathode side or the anode side is connected to the second wiring conductor layer 3b by the bonding wire 13. Further, a sealing layer 14 made of mold resin is provided so as to cover these light emitting elements 11 and bonding wires 13.
  • the sealing layer 14 can contain a phosphor.
  • the light-emitting device 20 of the present invention since the light-emitting element substrate 10 having a sufficiently low thermal resistance and good heat dissipation is used, the luminance of the light-emitting element 11 is less deteriorated and high emission luminance is obtained. It is done.
  • a light emitting device 20 can be suitably used as, for example, a backlight such as a mobile phone or a large liquid crystal display, illumination for automobiles or decoration, and other light sources.
  • a 1-wire type LED element (size length 0.6 mm, width 0.6 mm, thickness 0.1 mm) is mounted on the mounting portion of the light emitting element substrate 10 shown in FIG.
  • the thermal resistance of this evaluation model was obtained by numerical analysis.
  • ANSYS ICEPAK Version 12.1.6 was used, and the input power was 1.0 W.
  • the substrate body 1 was made of LTCC and had a thickness of 500 ⁇ m.
  • the insulating layer 8 constituting a part of the radiator 6 is a glass layer or LTCC layer shown below, and the thickness d of the insulating layer 8 and the lower surface of the insulating layer 8 from the non-mounting surface 1b of the substrate body 1
  • the analysis was performed by changing the distance L2 as shown in Table 1.
  • the analysis results are shown in Tables 1 and 2.
  • the analysis result shown in Table 1 is shown with the graph of FIG.
  • Examples 1 to 9 and Examples 13 and 14 are evaluation models corresponding to examples of the present invention
  • Examples 10 to 12 and Example 15 are evaluation models corresponding to comparative examples.
  • Relative thermal resistance value is a relative value when a thermal resistance value obtained by analyzing in a similar manner for a model constituted by only a conductor layer without providing the insulating layer 8 on the radiator 6 is a reference (1.00). It is. The relative thermal resistance value means that the smaller the numerical value, the better the thermal diffusivity.
  • Table 3 shows physical property values (thermal conductivity) of each component of the evaluation model used for the analysis.
  • thermal conductivity of “LTCC” constituting the substrate body and insulating layer of the evaluation model shown in Table 3 and “glass” constituting the insulating layer is a physical property value of the material produced as shown below. is there.
  • the green sheet for main body and the green sheet for insulating layer for manufacturing the substrate main body 1 are manufactured as follows. That is, as represented by mol% based on oxides, glass composition, SiO 2 is 60.4%, B 2 O 3 is 15.6%, Al 2 O 3 is 6%, CaO is 15%, K 2 O is The raw materials are blended and mixed so that 1% and Na 2 O become 2%. The raw material mixture is put in a platinum crucible and melted at 1600 ° C. for 60 minutes, and then the molten glass is poured out and cooled. The glass is pulverized for 40 hours by an alumina ball mill to produce glass powder. In addition, ethyl alcohol is used as a solvent for pulverization.
  • the glass powder was 38% by mass
  • the alumina filler manufactured by Showa Denko KK, trade name: AL-45H
  • the zirconia filler manufactured by Daiichi Rare Element Chemical Co., Ltd., trade name: HSY-3F-J.
  • this glass ceramic composition 15 g of an organic solvent (mixed with toluene, xylene, 2-propanol, 2-butanol in a mass ratio of 4: 2: 2: 1), a plasticizer (di-2-ethylhexyl phthalate) 2.5 g, 5 g of polyvinyl butyral (made by Denka, trade name: PVK # 3000K) as a binder, and 0.5 g of a dispersant (trade name: BYK180, made by Big Chemie) are mixed and mixed to prepare a slurry. .
  • an organic solvent mixed with toluene, xylene, 2-propanol, 2-butanol in a mass ratio of 4: 2: 2: 1
  • a plasticizer di-2-ethylhexyl phthalate
  • polyvinyl butyral made by Denka, trade name: PVK # 3000K
  • a dispersant trade name: BYK180, made by Big Che
  • the slurry is applied onto a PET film by a doctor blade method, and the dried green sheets are laminated so that the thickness after firing becomes 0.5 mm, thereby producing a green sheet for a main body.
  • the green sheet for an insulating layer it is laminated so that the thickness after firing becomes 0.1 mm.
  • a glass powder for forming an insulating layer is prepared as shown below. First, the raw materials are blended and mixed so that the glass composition is 81.6% of SiO 2 , 16.6% of B 2 O 3 , and 1.8% of K 2 O in terms of mol% based on oxide. The raw material mixture was put in a platinum crucible and melted at 1600 ° C. for 60 minutes, and then the molten glass was poured out and cooled. This glass is pulverized by an alumina ball mill to produce glass powder for an insulating layer. In addition, ethyl alcohol is used as a solvent for pulverization.
  • the glass powder solidified with a press is fired to form a glass bulk body, and then the thermal conductivity is measured.
  • the value measured in this way is the thermal conductivity of the glass shown in Table 3.
  • the distance L2 from the lower surface of the insulating layer 8 to the non-mounting surface of the substrate body is 60% or less (300 ⁇ m or less) of the thickness L1 (500 ⁇ m) of the substrate body 1.
  • the insulating layer 8 is disposed at a position close to the mounting surface 1a where the distance L2 exceeds 60%.
  • the thermal resistance is kept low, and the heat dissipation is good.
  • Example 16 is an Example and Example 17 is a comparative example.
  • the substrate body 1 is an LTCC substrate having a size of 5 mm ⁇ 5 mm, the thickness L1 of the substrate body 1 is 500 ⁇ m, and the insulating layer 8 disposed in the middle portion in the thickness direction of the radiator 6 is an LTCC layer.
  • the distances L2 of the lower surface of the insulating layer 8 from the non-mounting surface of the substrate body were 0 ⁇ m and 400 ⁇ m, respectively, and the thickness d of the insulating layer 8 was 100 ⁇ m.
  • an LED element “ES-CEBLV45” (1.14 mm ⁇ 1.14 mm) manufactured by Epistar was used as the light emitting element, and the input power was 1 W.
  • Table 4 shows the measured thermal resistance values. In Table 4, the relative thermal resistance value when the thermal resistance value measured in Example 16 is 1.00 is shown.
  • Example 15 When the relative thermal resistance values of Example 13 and Example 15 shown in Table 2 are compared, the ratio between the relative thermal resistance value of Example 15 and the relative thermal resistance value of Example 13 (relative thermal resistance value of Example 15 / Example 13). (Relative thermal resistance value) was 1.45 (1.60 / 1.10), whereas the ratio of the actually measured relative thermal resistance value of Example 17 to the relative thermal resistance value of Example 16 was 1.41. It is. Therefore, it can be confirmed that the predicted value by the numerical simulation and the actually measured value on the sample substrate agree well. Further, since the measured thermal resistance value shows the same tendency as in Table 3, excellent heat dissipation can be obtained by disposing the insulating layer 8 closer to the non-mounting surface 1b of the substrate body 1. This can be confirmed.
  • the insulating layer 8 is disposed on the lower side of the heat radiating body 7 a disposed so that the upper end portion is in contact with the mounting surface 1 a of the substrate body 1.
  • a light emitting element substrate 10 having a structure arranged so as to reach the surface 1b and changing the distance (the thickness d of the insulating layer 8) between the lower surface of the heat radiating body 7a and the non-mounting surface 1b of the substrate body 1 is assumed. .
  • an evaluation model in which a 1-wire type LED element (size: 0.6 mm, width: 0.6 mm, thickness: 0.1 mm) is mounted on the mounting portion of the light emitting element substrate 10, The thermal resistance of the evaluation model was obtained by numerical analysis.
  • the substrate body 1 was made of LTCC and had a thickness L1 of 500 ⁇ m. Further, the insulating layer 8 is made of LTCC as in the case of the substrate body 1. Further, the heat radiating body 7a is assumed to have a prismatic shape in which the cross section perpendicular to the thickness direction of the substrate is a square having a side length of 1.2 mm, and the physical property values (heat Conductivity) was used for analysis. The analysis results are shown in Table 5. Moreover, the analysis result shown in Table 5 is shown with the graph of FIG.
  • Examples 19 to 26 are evaluation models corresponding to examples of the present invention, and Examples 27 to 33 are evaluation models corresponding to comparative examples.
  • the ratio (%) of the distance from the non-mounting surface of the lower surface of the insulating layer 8 to the thickness of the substrate body 1 in Table 5 is the lower surface of the heat radiating body 7a (or the upper surface of the insulating layer 8) and the substrate body in FIG. 1 represents a percentage of a value obtained by dividing the distance d from the non-mounting surface 1b by 1 by the thickness L1 of the substrate body 1.
  • the relative thermal resistance value is based on the thermal resistance value obtained by analyzing the model of Example 18 in which the heat radiating body is configured only by the conductor layer without providing the insulating layer 8 below the heat radiating body 7a. Relative value when (1.00).
  • the ratio (d / L1) (%) of the distance from the lower surface of the insulating layer 8 to the thickness of the substrate body 1 from the non-mounting surface 1b of the substrate body 1 is 60% or less. It can be seen that in some cases, a sufficiently low thermal resistance is obtained, and when it is 40% or less, the thermal resistance is further reduced. That is, the heat dissipating body 7a has a sufficient length so that the distance d from the lower surface 1b of the substrate body 1 to the heat dissipating body 7a is 60% or less, preferably 40% or less of the thickness L1 of the substrate body. When it has, it turns out that a thermal resistance does not raise so much and shows favorable heat dissipation.
  • the change in the thermal resistance value when the cross-sectional area of the heat radiating body 7a was changed was also analyzed. That is, in the light emitting element substrate 10 having the structure shown in FIG. 4 in which the substrate body 1 and the insulating layer 8 are made of LTCC, the thickness L1 of the substrate body 1 is 500 ⁇ m, the lower surface of the heat radiating body 7a and the substrate body 1 In the evaluation model in which the distance d from the non-mounting surface 1b is 100 ⁇ m, the evaluation model of Examples 34 to 41 in which the cross-sectional area of the cross section perpendicular to the thickness direction of the substrate of the heat radiating body 7a is changed using the above analysis program The thermal resistance value was analyzed.
  • the LED element is a one-wire type having a square bottom of 0.6 mm in length and 0.6 mm in width and having a thickness of 0.1 mm.
  • the analysis results are shown in Table 6.
  • the analysis results shown in Table 6 are shown in the graph of FIG.
  • the ratio of the size of the heat radiating body 7a to the bottom area of the light emitting element represents a value obtained by dividing the cross-sectional area of the heat radiating body 7a by the bottom area of the light emitting element.
  • the relative thermal resistance value is obtained by analyzing the evaluation model of Example 36 in which the cross-sectional area of the heat radiating body 7a has the same square bottom area as the light emitting element having the size of 0.6 mm in length and 0.6 mm in width. It is a relative value when the thermal resistance value is the reference (1.00).
  • the cross section of the heat radiating body 7a is a square with a side length of 1.2 mm, and the ratio of the size of the heat radiating body 7a to the bottom area of the light emitting element is 4.00 (400 times). %). Therefore, the evaluation model of Example 37 is also the evaluation model of Example 20.
  • a more preferable range of the ratio of the cross-sectional area of the heat dissipation body 7a is 1.0 to 4.0 times the bottom area of the light emitting element.
  • the larger the ratio of the cross-sectional area of the heat radiating body 7b to the bottom area of the light emitting element the lower the thermal resistance and the better the heat radiating property.
  • substrate for light emitting elements which has favorable thermal diffusibility and the electrical insulation of the back side was ensured is obtained.
  • the light-emitting device of the present invention using such a light-emitting element substrate has low luminance deterioration and high light-emitting luminance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

Provided are: a substrate for a light-emitting element, said substrate having an electrically insulating bottom surface while minimizing decreases in heat diffusion; and a high-brightness light-emitting device using such a substrate. Said substrate has: a substrate body that comprises an inorganic insulating material and has a mounting surface, which contains a mounting area in which a light-emitting element is mounted, and a non-mounting surface on the side opposite the mounting surface; and a heat dissipator provided inside the substrate body from the mounting surface to the non-mounting surface such that one end reaches the mounting area. Said heat dissipator has an insulating layer that comprises an inorganic material and is disposed, parallel to the surfaces of the substrate so as to cover the entire cross-section of the heat dissipator, at a position such that the thickness-direction distance between said insulating layer and the non-mounting surface is 60% or less of the thickness of the substrate body. The main body of the heat dissipator, said main body being the parts other than the aforementioned insulating layer, comprises a conductor.

Description

発光素子用基板および発光装置Light emitting element substrate and light emitting device

 本発明は、発光素子用基板とこれを用いた発光装置に関する。 The present invention relates to a light emitting element substrate and a light emitting device using the same.

 近年、発光ダイオード(LED)のような発光素子の高輝度化に伴い、携帯電話や大型液晶TVのバックライト等として発光素子を用いた発光装置が使用されている。しかしながら、発光素子の高輝度化に伴って発熱量が増加しており、発光素子の輝度の低下をなくすために、発光素子から発生する熱を速やかに拡散する高い放熱性を有する発光素子用基板が必要となっている。 In recent years, with the increase in luminance of light emitting elements such as light emitting diodes (LEDs), light emitting devices using light emitting elements are used as backlights for mobile phones and large liquid crystal TVs. However, the amount of heat generation increases with the increase in luminance of the light emitting element, and in order to eliminate the decrease in luminance of the light emitting element, the substrate for the light emitting element having high heat dissipation property that quickly diffuses the heat generated from the light emitting element Is required.

 熱拡散性の高い発光素子用基板として、低温焼成セラミックスからなる絶縁基体を貫通して、絶縁基体よりも高い熱伝導率を有する金属から構成される貫通金属体が設けられた構造が知られている。貫通金属体は、例えばCu、Ag、Au等を主成分とし、発光素子の搭載面積よりも大きいことなどが知られている(例えば、特許文献1参照。)。 Known as a substrate for a light-emitting element having high thermal diffusivity is a structure in which a penetrating metal body composed of a metal having a higher thermal conductivity than an insulating substrate is provided through an insulating substrate made of low-temperature fired ceramics. Yes. It is known that the penetrating metal body has, for example, Cu, Ag, Au or the like as a main component and is larger than the mounting area of the light emitting element (see, for example, Patent Document 1).

日本特開2006-41230号公報Japanese Unexamined Patent Publication No. 2006-41230

 しかしながら、ハイパワー型の発光装置では、その寿命を確保する観点から、より熱拡散性の高い発光素子用基板が求められている。ハイパワー型の発光装置の場合、発光素子が高温になりやすいことから、輝度の低下等の特性劣化が生じやすく、また発光素子を覆うモールド樹脂やその内部に含有される蛍光体が劣化しやすい。 However, in a high power type light emitting device, a substrate for a light emitting element with higher thermal diffusibility is required from the viewpoint of ensuring the lifetime. In the case of a high-power type light-emitting device, the light-emitting element is likely to be at a high temperature, so that characteristic deterioration such as a decrease in luminance is likely to occur, and the mold resin covering the light-emitting element and the phosphor contained therein are likely to deteriorate. .

 また、発光装置では、発光素子が搭載される主面とは反対の裏面側において、一対の外部電極端子間の距離等が問題となることがある。例えば、上部と下部とに一対の素子電極を有する1ワイヤタイプの発光素子を貫通金属体上に搭載し、貫通金属体を放熱経路としてだけでなく導電経路として利用した構造では、裏面側に設けられる一対の外部電極端子間の距離が十分にとれない場合があった。特に、ハイパワー型の発光装置のように入力電力が大きい場合や、熱拡散性を確保するために貫通金属体の断面積を大きくした場合には、外部電極端子間の距離が十分にとれず、それらの間の電気的絶縁性が不十分になりやすい。また、外部回路を放熱に利用する従来の構成では十分な放熱が得られないため、電気回路と放熱構造を電気的に絶縁して、十分な放熱性が得られる放熱フィンを設ける必要性が高まってきた。このため、高い熱拡散性を確保しつつ、裏面側の電気的絶縁性も十分に確保できる発光素子用基板が求められている。 In the light emitting device, the distance between the pair of external electrode terminals may be a problem on the back side opposite to the main surface on which the light emitting element is mounted. For example, in a structure in which a one-wire type light emitting element having a pair of element electrodes on the upper part and the lower part is mounted on a through metal body and the through metal body is used not only as a heat dissipation path but also as a conductive path, it is provided on the back side. In some cases, the distance between the pair of external electrode terminals is not sufficient. In particular, when the input power is large as in a high-power type light-emitting device, or when the cross-sectional area of the through metal body is increased to ensure thermal diffusivity, the distance between the external electrode terminals cannot be sufficient. The electrical insulation between them tends to be insufficient. In addition, since the conventional configuration using an external circuit for heat dissipation cannot provide sufficient heat dissipation, it is necessary to provide a heat dissipation fin that provides sufficient heat dissipation by electrically insulating the electric circuit and the heat dissipation structure. I came. For this reason, there is a demand for a light emitting element substrate that can sufficiently ensure electrical insulation on the back surface side while ensuring high thermal diffusivity.

 本発明は、上記課題を解決するためになされたものであって、放熱体を有する発光素子用基板において、熱拡散性の低下を抑制しつつ、裏面側の電気的絶縁性を確保したものを提供することを目的としている。また、本発明は、このような発光素子用基板を用いた熱拡散性と電気的信頼性に優れた発光装置を提供することを目的としている。 The present invention has been made in order to solve the above-described problem, and in a light emitting element substrate having a heat dissipating body, the electrical insulation on the back side is ensured while suppressing a decrease in thermal diffusivity. It is intended to provide. Another object of the present invention is to provide a light-emitting device using such a light-emitting element substrate and having excellent thermal diffusibility and electrical reliability.

 本発明の発光素子用基板は、無機絶縁材料からなり、発光素子が搭載される搭載部を含む搭載面と当該搭載面の反対側の面に非搭載面を有する基板本体と、前記基板本体内に、前記搭載面から前記非搭載面にかけて、一方の端部が前記搭載部に達するように設けられた放熱体を有し、前記放熱体は、前記非搭載面からの厚さ方向の距離が前記基板本体の厚さの60%以下となる位置に、前記放熱体の断面全体を覆うように面方向に配置された無機材料からなる絶縁層を有し、かつ前記放熱体の本体である前記絶縁層以外の部分は導体により構成されていることを特徴とする。 The substrate for a light emitting element of the present invention is made of an inorganic insulating material, and includes a mounting surface including a mounting portion on which the light emitting element is mounted, a substrate body having a non-mounting surface on the surface opposite to the mounting surface, The heat sink has a heat dissipating member provided so that one end reaches the mounting portion from the mounting surface to the non-mounting surface, and the heat dissipating member has a thickness direction distance from the non-mounting surface. The insulating body made of an inorganic material arranged in a surface direction so as to cover the entire cross section of the heat radiating body at a position that is 60% or less of the thickness of the substrate main body, and the main body of the heat radiating body The portion other than the insulating layer is made of a conductor.

 本発明の発光素子用基板において、前記絶縁層は、その上面が、基板本体の非搭載面からの厚さ方向の距離が前記基板本体の厚さの40%以下となる位置に配設されていることが好ましい。また、前記放熱体の前記基板本体の厚さ方向に直交する方向の断面積は、前記発光素子の搭載部の面積の0.2~16倍であることが好ましい。そして、前記絶縁層の厚さは、10~200μmが好ましく、特に10~100μmが好ましい。
 上記した数値範囲を示す「~」とは、特段の定めがない限り、その前後に記載された数値を下限値及び上限値として含む意味で使用され、以下本明細書において「~」は、同様の意味をもって使用される。
 前記絶縁層は、ガラスを主体とする材料から構成することができる。また、前記絶縁層は、ガラス粉末とセラミックス粉末とを含むガラスセラミックス組成物の焼結体から構成することができる。前記基板本体は、ガラス粉末とセラミックス粉末とを含むガラスセラミックス組成物の焼結体から構成することが好ましい。さらに、前記放熱体の本体を構成する導体は、Cu、Ag、Auのうちの少なくとも1種を主成分とすることが好ましい。またさらに、前記基板本体の搭載面側の周縁部に、発光素子を収容するための枠体を有することができる。
In the substrate for a light emitting device of the present invention, the upper surface of the insulating layer is disposed at a position where the distance in the thickness direction from the non-mounting surface of the substrate body is 40% or less of the thickness of the substrate body. Preferably it is. The cross-sectional area of the heat radiating body in the direction orthogonal to the thickness direction of the substrate main body is preferably 0.2 to 16 times the area of the mounting portion of the light emitting element. The thickness of the insulating layer is preferably 10 to 200 μm, particularly preferably 10 to 100 μm.
Unless otherwise specified, “to” indicating the numerical range described above is used to mean that the numerical values described before and after it are used as a lower limit value and an upper limit value, and hereinafter “to” Used with meaning.
The insulating layer can be made of a material mainly composed of glass. The insulating layer can be composed of a sintered body of a glass ceramic composition containing glass powder and ceramic powder. The substrate body is preferably composed of a sintered body of a glass ceramic composition containing glass powder and ceramic powder. Furthermore, it is preferable that the conductor constituting the main body of the heat dissipating body has at least one of Cu, Ag, and Au as a main component. Furthermore, the frame body for accommodating a light emitting element can be provided in the peripheral part by the side of the mounting surface of the said board | substrate body.

 さらに、本発明は、上記本発明の発光素子用基板と、前記発光素子用基板の前記搭載部に搭載された発光素子を備えることを特徴とする発光装置を提供する。 Furthermore, the present invention provides a light emitting device comprising the light emitting element substrate of the present invention and a light emitting element mounted on the mounting portion of the light emitting element substrate.

 本発明の発光装置において、前記発光素子の一方の電極は、前記発光素子用基板の前記搭載部に形成された第1の配線導体層に導電性の接着材料により接続され、他方の電極は、前記発光素子用基板の前記搭載面に前記第1の配線導体層と絶縁されて形成された第2の配線導体層にワイヤボンディングにより接続されていることが好ましい。 In the light emitting device of the present invention, one electrode of the light emitting element is connected to the first wiring conductor layer formed on the mounting portion of the light emitting element substrate by a conductive adhesive material, and the other electrode is Preferably, the light emitting element substrate is connected to a second wiring conductor layer formed on the mounting surface of the light emitting element substrate so as to be insulated from the first wiring conductor layer by wire bonding.

 本発明の発光素子用基板は、基板本体の搭載面から非搭載面にかけて設けられた放熱体が、導体からなる放熱体の本体(以下、放熱本体と示す。)の厚さ方向の中間部あるいは非搭載面側の端部に、無機材料からなる絶縁層が介挿、あるいは配置された構造を有するので、裏面側の電極端子間の絶縁性が確保される。そのうえ、この絶縁層の、基板本体の非搭載面からの厚さ方向の距離(以下、非搭載面からの距離と示す。)が基板本体の厚さの60%以下となっており、放熱体の一部をなす絶縁層が搭載面に近い側には配置されていないため、絶縁層の介在による熱抵抗の上昇は抑制され、十分に低い熱抵抗を有し、良好な放熱性を有する発光素子用基板が得られる。 In the substrate for a light emitting element of the present invention, the radiator provided from the mounting surface to the non-mounting surface of the substrate main body is an intermediate portion in the thickness direction of the main body of the radiator (hereinafter, referred to as a heat dissipation main body) made of a conductor. Since the insulating layer made of an inorganic material is inserted or arranged at the end portion on the non-mounting surface side, insulation between the electrode terminals on the back surface side is ensured. In addition, the distance of the insulating layer in the thickness direction from the non-mounting surface of the substrate body (hereinafter referred to as the distance from the non-mounting surface) is 60% or less of the thickness of the substrate body, and the radiator Since the insulating layer that forms part of the surface is not arranged on the side close to the mounting surface, the increase in thermal resistance due to the intervening insulating layer is suppressed, and the light emission has a sufficiently low thermal resistance and good heat dissipation An element substrate is obtained.

 また、このように熱拡散性の高い発光素子用基板を使用することで、発光素子の輝度劣化が少なく、発光輝度の高い発光装置が得られる。 In addition, by using the light emitting element substrate having a high thermal diffusivity in this way, a light emitting device with high luminance can be obtained with less luminance deterioration of the light emitting element.

本発明の発光素子用基板の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the board | substrate for light emitting elements of this invention. 本発明の発光装置の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the light-emitting device of this invention. 放熱体の一部を構成する絶縁層がガラス材料から構成される発光素子用基板の熱抵抗の値を、数値解析により求めた結果を示すグラフである。It is a graph which shows the result of having calculated | required the value of the thermal resistance of the board | substrate for light emitting elements by which the insulating layer which comprises a part of heat radiator is comprised from glass material by numerical analysis. 本発明の発光素子用基板の別の実施形態を示す断面図である。It is sectional drawing which shows another embodiment of the board | substrate for light emitting elements of this invention. 基板本体の厚さに対する絶縁層の基板本体の非搭載面からの距離の割合を変えて構成された発光素子用基板について、熱抵抗値を数値解析により求めた結果を示すグラフである。It is a graph which shows the result of having calculated | required the thermal resistance value by the numerical analysis about the board | substrate for light emitting elements comprised by changing the ratio of the distance from the non-mounting surface of the board | substrate body with respect to the thickness of a board | substrate body. 発光素子の底面積に対する放熱体の断面積の比を変えて構成された発光素子用基板について、熱抵抗値を数値解析により求めた結果を示すグラフである。It is a graph which shows the result of having calculated | required the thermal resistance value by the numerical analysis about the board | substrate for light emitting elements comprised changing the ratio of the cross-sectional area of the heat radiator with respect to the bottom area of a light emitting element.

 以下、本発明の実施の形態について説明するが、本発明はこれに限定されるものではない。 Hereinafter, embodiments of the present invention will be described, but the present invention is not limited thereto.

 本発明の発光素子用基板は、発光素子が搭載される搭載部を含む搭載面と当該搭載面の反対側の面に非搭載面を有する無機絶縁材料からなる基板本体と、この基板本体内に、発光素子の搭載面から前記非搭載面にかけて厚さ方向に、かつ一方の端部が搭載部に達するように設けられた放熱体を有する。 A substrate for a light emitting device of the present invention includes a mounting surface including a mounting portion on which the light emitting device is mounted, a substrate body made of an inorganic insulating material having a non-mounting surface on the surface opposite to the mounting surface, and the substrate body. And a heat dissipating body provided in a thickness direction from the mounting surface of the light emitting element to the non-mounting surface and with one end portion reaching the mounting portion.

 そして、この放熱体は、基板本体の非搭載面からの距離が、基板本体の厚さの60%以下となる位置に、前記放熱体の断面全体に亘って基板本体の面方向に配置された絶縁層を有しており、この絶縁層以外の残りの部分が導体により構成された放熱本体となっている。すなわち、導体からなる放熱本体と前記所定の位置に配置された絶縁層とにより、放熱体が構成されている。なお、放熱体の断面は、基板本体の厚さ方向に垂直な断面をいい、基板本体の面方向は、厚さ方向と垂直な方向をいう。 And this heat radiator was arrange | positioned in the surface direction of the board | substrate body over the whole cross section of the said heat radiator in the position from which the distance from the non-mounting surface of a board | substrate body will be 60% or less of the thickness of a board | substrate body. It has an insulating layer, and the remaining part other than this insulating layer is a heat radiating body constituted by a conductor. That is, a heat radiating body is constituted by a heat radiating body made of a conductor and an insulating layer disposed at the predetermined position. In addition, the cross section of a heat radiator means a cross section perpendicular | vertical to the thickness direction of a board | substrate body, and the surface direction of a board | substrate body means a direction perpendicular | vertical to a thickness direction.

 絶縁層における基板本体の非搭載面からの距離の基準は、例えば絶縁層の下面とするが、絶縁層の上面とすることもできる。絶縁層の上面の位置は、端部が搭載部に接する放熱本体(以下、搭載面側放熱本体という。)の下面の位置ともいえるので、搭載面側放熱本体の下面の非搭載面からの距離が、基板本体の厚さの60%以下となるように、前記放熱本体の長さおよびこの放熱本体の下面に接する絶縁層の厚さを調整する。 The standard of the distance from the non-mounting surface of the substrate body in the insulating layer is, for example, the lower surface of the insulating layer, but may be the upper surface of the insulating layer. The position of the upper surface of the insulating layer can be said to be the position of the lower surface of the heat radiating main body (hereinafter referred to as the mounting surface side heat radiating main body) whose end is in contact with the mounting portion. However, the length of the heat radiating body and the thickness of the insulating layer in contact with the lower surface of the heat radiating body are adjusted so that the thickness is 60% or less of the thickness of the substrate body.

 絶縁層における基板本体の非搭載面からの距離の基準を絶縁層の下面とした場合、前記60%以下の値には0%も含まれる。その場合、絶縁層の下面は、非搭載面に露出することになる。この位置も含めて、また前記したように、非搭載面からの距離の基準を絶縁層の上面とした場合も含めて、非搭載面からの距離が基板本体の厚さの60%以下となる絶縁層の位置を、厚さ方向の中間部等と示すことがある。
 本発明において、絶縁層の、基板本体の非搭載面からの厚さ方向の距離とは、上記したように、絶縁層の下面を基準としてもよいし、また絶縁層の上面としてもよく、いずれの場合も含むものである。
When the reference of the distance from the non-mounting surface of the substrate body in the insulating layer is the lower surface of the insulating layer, the value of 60% or less includes 0%. In that case, the lower surface of the insulating layer is exposed to the non-mounting surface. Including this position, and as described above, the distance from the non-mounting surface is 60% or less of the thickness of the substrate body, including the case where the reference of the distance from the non-mounting surface is the upper surface of the insulating layer. The position of the insulating layer may be indicated as an intermediate portion in the thickness direction.
In the present invention, the distance of the insulating layer in the thickness direction from the non-mounting surface of the substrate body may be based on the lower surface of the insulating layer as described above, or may be the upper surface of the insulating layer. This case is also included.

 本発明の発光素子用基板においては、導体からなる放熱本体は、熱伝導率が導体よりも低い無機材料からなる絶縁層により分断されているが、この絶縁層は、基板本体の非搭載面からの距離が基板本体の厚さ全体の60%以下になるような位置に配置されているので、絶縁層の介在による熱抵抗の上昇は抑制され、放熱本体と絶縁層により構成される放熱体は十分に低い熱抵抗を有し、良好な放熱性を有する発光素子用基板が得られる。 In the light emitting element substrate of the present invention, the heat dissipation body made of a conductor is divided by an insulating layer made of an inorganic material having a lower thermal conductivity than the conductor, but this insulating layer is separated from the non-mounting surface of the substrate body. Is located at a position where the distance of the substrate body is 60% or less of the entire thickness of the substrate body, so that the increase in thermal resistance due to the interposition of the insulating layer is suppressed, and the heat radiator composed of the heat radiating body and the insulating layer is A light-emitting element substrate having sufficiently low thermal resistance and good heat dissipation is obtained.

 熱抵抗は熱の伝わる放熱経路の長さに比例し、断面積および熱伝導率に反比例する。温度上昇は、熱抵抗に集中する熱流束の大きさに比例して大きくなるため、半導体素子の温度上昇を避ける、すなわち基板を含む系全体の熱抵抗を下げるためには、高い熱抵抗を有す部分に熱流束を集中させないことが必要となる。本発明の想定する構造においては、熱伝導率が低く放熱経路として熱抵抗が高い絶縁体層に、熱流束を集中させないことが必要となり、熱伝導による拡散が不十分で熱流束が集中するような半導体素子直下の領域から、絶縁層をより離して配置することは、熱抵抗を抑えるという点で有意であると考えられる。 熱 Thermal resistance is proportional to the length of the heat dissipation path through which heat is transmitted, and inversely proportional to the cross-sectional area and thermal conductivity. The temperature rise increases in proportion to the size of the heat flux concentrated on the thermal resistance. Therefore, in order to avoid the temperature rise of the semiconductor element, that is, to lower the thermal resistance of the entire system including the substrate, it has a high thermal resistance. It is necessary not to concentrate the heat flux on the part. In the structure assumed by the present invention, it is necessary not to concentrate the heat flux on the insulator layer having a low thermal conductivity and a high heat resistance as a heat dissipation path, so that the diffusion due to the heat conduction is insufficient and the heat flux is concentrated. Arranging the insulating layer further away from the region immediately below the semiconductor element is considered significant in terms of suppressing thermal resistance.

 本発明においては、放熱本体とともに放熱体の一部をなす絶縁層が、基板本体の非搭載面からの距離が基板本体の厚さ全体の60%以下となる位置に配置されているので、発光素子からの熱は、まず搭載部に接するように配置された導体からなる放熱本体に伝導され、一定の長さ(より具体的には、基板本体の厚さの40%)以上の放熱本体を伝導して絶縁層に達する。そして、このような位置に絶縁層を配置した構造では、放熱本体中を熱が伝搬していく過程で厚さ方向だけでなく横方向(面方向)にも熱が伝導されるので、熱伝導率が低い絶縁層に集中する熱流束を減らすことができ、絶縁層を配置したことによる熱抵抗の上昇を十分に抑えることができる。 In the present invention, the insulating layer that forms part of the heat sink together with the heat dissipation body is disposed at a position where the distance from the non-mounting surface of the substrate body is 60% or less of the entire thickness of the substrate body. The heat from the element is first conducted to a heat radiating body made of a conductor arranged so as to be in contact with the mounting portion, and a heat radiating body having a certain length (more specifically, 40% of the thickness of the board main body) or more. Conducts and reaches the insulating layer. In the structure in which the insulating layer is disposed at such a position, heat is conducted not only in the thickness direction but also in the lateral direction (plane direction) in the process of heat propagation in the heat radiating body. The heat flux concentrated on the insulating layer having a low rate can be reduced, and an increase in thermal resistance due to the arrangement of the insulating layer can be sufficiently suppressed.

 以下、本発明の発光素子用基板の一実施形態を図面に基づいて説明する。この実施形態は、1ワイヤタイプの発光素子を搭載するために適用される発光素子用基板の例を示すが、本発明はこれに限定されるものではない。 Hereinafter, an embodiment of a light emitting element substrate of the present invention will be described with reference to the drawings. Although this embodiment shows an example of a light emitting element substrate applied to mount a 1 wire type light emitting element, the present invention is not limited to this.

 図1は、本発明の発光素子用基板の断面図である。この発光素子用基板10は、略平板状の基板本体1を有している。なお、本明細書において、略平板状とは、目視レベルで平板状との意味である。基板本体1は無機絶縁材料からなり、上面の周縁部に枠体2が形成されている。そして、この枠体2によりキャビティが形成されており、キャビティの底面は発光素子の搭載される搭載面1aとなっており、前記基板本体1の搭載面1aの反対側の面は非搭載面1bとなっている。 FIG. 1 is a cross-sectional view of a light-emitting element substrate of the present invention. The light emitting element substrate 10 has a substantially flat substrate body 1. In addition, in this specification, substantially flat form means flat form on a visual level. The substrate body 1 is made of an inorganic insulating material, and a frame 2 is formed on the peripheral edge of the upper surface. A cavity is formed by the frame body 2, and the bottom surface of the cavity is a mounting surface 1 a on which a light emitting element is mounted, and the surface opposite to the mounting surface 1 a of the substrate body 1 is a non-mounting surface 1 b. It has become.

 基板本体1を構成する無機絶縁材料としては、酸化アルミニウム質焼結体(アルミナセラミックス)や窒化アルミニウム質焼結体、ムライト質焼結体、ガラス粉末とセラミックス粉末とを含むガラスセラミックス組成物の焼結体(LTCC:Low Temperature Co-fired Ceramics)等が挙げられる。本発明においては、高反射性、製造の容易性、易加工性、経済性等の観点から、LTCCが好ましい。 Examples of the inorganic insulating material constituting the substrate body 1 include an aluminum oxide sintered body (alumina ceramic), an aluminum nitride sintered body, a mullite sintered body, and a glass ceramic composition containing glass powder and ceramic powder. Examples thereof include LTCC (Low Temperature Co-fired Ceramics). In the present invention, LTCC is preferable from the viewpoints of high reflectivity, ease of production, easy processability, economy, and the like.

 本発明において、基板本体1の形状、厚さ、大きさ等は特に制限されず、搭載する発光素子の個数や配置の方法等、発光装置の設計に合わせて変更できる。また、基板本体1を構成するLTCCの原料組成、焼結条件等については、後述する発光素子用基板10の製造方法において説明する。基板本体1は、発光素子の搭載時やその後の使用時における損傷等を抑制する観点から、抗折強度が例えば250MPa以上であることが好ましい。 In the present invention, the shape, thickness, size and the like of the substrate body 1 are not particularly limited, and can be changed according to the design of the light emitting device, such as the number of light emitting elements to be mounted and the arrangement method. Moreover, the raw material composition of LTCC which comprises the substrate main body 1, sintering conditions, etc. are demonstrated in the manufacturing method of the board | substrate 10 for light emitting elements mentioned later. The substrate body 1 preferably has a bending strength of, for example, 250 MPa or more from the viewpoint of suppressing damage or the like when the light emitting element is mounted or after use.

 基板本体1の搭載面1aには、発光素子と電気的に接続される配線導体層3が設けられている。配線導体層3は、発光素子の搭載部およびその近傍に連接して形成されたアノード側またはカソード側の第1の配線導体層3aと、搭載面1aの周辺部に配設された、第1の配線導体層3aと反対極側の第2の配線導体層3bを有する。 A wiring conductor layer 3 electrically connected to the light emitting element is provided on the mounting surface 1 a of the substrate body 1. The wiring conductor layer 3 includes an anode-side or cathode-side first wiring conductor layer 3a formed so as to be connected to the light-emitting element mounting portion and the vicinity thereof, and a first portion disposed on the periphery of the mounting surface 1a. And the second wiring conductor layer 3b opposite to the wiring conductor layer 3a.

 本実施形態において、配線導体層3の構成材料は、通常の発光素子用基板に用いられる配線導体層と同様のものであれば特に制限されない。具体的には、後述する製造方法において説明する。配線導体層3の厚さ(すなわち、第1の配線導体層3aおよび第2の配線導体層3bのそれぞれの厚さ)は、5~50μmが好ましい。 In the present embodiment, the constituent material of the wiring conductor layer 3 is not particularly limited as long as it is the same as the wiring conductor layer used for a normal light emitting element substrate. Specifically, it will be described in the manufacturing method described later. The thickness of the wiring conductor layer 3 (that is, the thickness of each of the first wiring conductor layer 3a and the second wiring conductor layer 3b) is preferably 5 to 50 μm.

 基板本体1の他方の面は、発光素子の搭載されない非搭載面1bとされており、この非搭載面1bには、アノード側およびカソード側の外部電極端子4が設けられている。この外部電極端子4は、第1の外部電極端子4aと第2の外部電極端子4bとを有する。これらの外部電極端子4は、それぞれ基板本体1の内部に形成された接続ビア5を介して、基板本体1の搭載面1aに形成された配線導体層3(それぞれ対応する第1の配線導体層3aおよび第2の配線導体層3b)と電気的に接続されている。 The other surface of the substrate body 1 is a non-mounting surface 1b on which no light emitting element is mounted, and external electrode terminals 4 on the anode side and the cathode side are provided on the non-mounting surface 1b. The external electrode terminal 4 has a first external electrode terminal 4a and a second external electrode terminal 4b. These external electrode terminals 4 are connected to the wiring conductor layers 3 formed on the mounting surface 1a of the substrate body 1 through the connection vias 5 formed inside the substrate body 1, respectively (corresponding first wiring conductor layers respectively). 3a and the second wiring conductor layer 3b).

 外部電極端子4および接続ビア5の形状や構成材料としては、通常発光素子用基板に用いられるものと同様のものであれば特に制限なく使用できる。これらは、後述する基板の製造方法で具体的に説明する。 The shape and constituent materials of the external electrode terminal 4 and the connection via 5 can be used without particular limitation as long as they are the same as those used for the substrate for a light emitting element. These will be specifically described in the substrate manufacturing method described later.

 また、本実施形態においては、基板本体1内に、搭載面1aから非搭載面1bにかけて厚さ方向に沿って放熱体6が設けられている。この放熱体6は、上端部が発光素子の搭載面に形成された第1の配線導体層3aに接し、かつ下端部が基板本体1の厚さ方向の中間部等の所定の位置に達するように配設された第1の放熱本体7aと、この第1の放熱本体7aの下端部にその断面全体を覆うように配置された絶縁層8と、この絶縁層8を間に挟んで前記第1の放熱本体7aの下方に連続するように同軸的に配設された第2の放熱本体7bとからなる。図1の実施形態においては、第2の放熱本体7bの下端部は、基板本体1の非搭載面1bに達している。以下、第1の放熱本体7aと第2の放熱本体7bとを併せて、放熱本体7とも称する。 In the present embodiment, the radiator 6 is provided in the substrate body 1 along the thickness direction from the mounting surface 1a to the non-mounting surface 1b. The heat dissipating body 6 has an upper end in contact with the first wiring conductor layer 3 a formed on the mounting surface of the light emitting element, and a lower end reaching a predetermined position such as an intermediate portion in the thickness direction of the substrate body 1. A first heat dissipating body 7a disposed on the lower end of the first heat dissipating body 7a so as to cover the entire cross section, and the insulating layer 8 sandwiched between the first heat dissipating body 7a. It consists of the 2nd thermal radiation main body 7b arrange | positioned coaxially so that it may continue under the 1 thermal radiation main body 7a. In the embodiment of FIG. 1, the lower end portion of the second heat radiating body 7 b reaches the non-mounting surface 1 b of the substrate body 1. Hereinafter, the first heat radiating body 7a and the second heat radiating body 7b are collectively referred to as a heat radiating body 7.

 これら第1の放熱本体7aおよび第2の放熱本体7bの断面積は、いずれも、発光素子の搭載部の面積と比べて小さくても大きくても、あるいは等倍でもよいが、発光素子の搭載部の面積よりも大きいことが好ましい。これら放熱本体7a、7bの断面積が大きいほど、熱抵抗を抑制し放熱性を高める点で効果があるが、放熱本体7a、7bはAg、Cu、Auを含む貴金属を含有するため、断面積を大きくするとコストが増大するデメリットがある。要求される放熱性能とコストとのバランスを鑑み、発光素子の搭載部の面積に対して、放熱本体7a、7bの断面積を0.2~16倍とするのが好ましく、1.0~4.0倍がより好ましく、特に1.4~4.0倍が好ましい。なお、放熱本体7a、7bの断面積は、基板本体の厚さ方向に垂直な断面の面積をいう。また、発光素子が搭載される搭載部の面積は、発光素子の底面積(搭載面に載置される発光素子の載置面の面積)に相当する。
 また、放熱本体7の部位において、その断面積は厚み方向に関して同形状である場合(例えば、円柱状や角柱状など)には、放熱本体7の厚み方向のどの部位の断面積でもよい。しかし、平面視における水平方向で規定される放熱本体7の断面積が、基板厚み方向に関して変化するような場合(例えば、円錐台状や角錐台状など)には、放熱本体7の厚み方向で最小となる部位の断面積が対象となる。
The cross-sectional areas of the first heat radiating body 7a and the second heat radiating body 7b may be smaller, larger or equal to the area of the light emitting element mounting portion. It is preferably larger than the area of the part. The larger the cross-sectional area of these heat dissipating bodies 7a and 7b, the more effective it is to suppress the thermal resistance and enhance the heat dissipating property. There is a demerit that the cost increases when the value is increased. In view of the balance between required heat dissipation performance and cost, it is preferable that the cross-sectional area of the heat dissipating bodies 7a and 7b is 0.2 to 16 times the area of the light emitting element mounting portion, and 1.0 to 4 0.0 times is more preferable, and 1.4 to 4.0 times is particularly preferable. The cross-sectional area of the heat radiating bodies 7a and 7b refers to the area of a cross section perpendicular to the thickness direction of the substrate body. The area of the mounting portion on which the light emitting element is mounted corresponds to the bottom area of the light emitting element (the area of the mounting surface of the light emitting element mounted on the mounting surface).
Moreover, in the site | part of the thermal radiation main body 7, when the cross-sectional area is the same shape regarding thickness direction (for example, column shape, prismatic shape, etc.), the cross-sectional area of any site | part of the thickness direction of the thermal radiation main body 7 may be sufficient. However, when the cross-sectional area of the heat radiating body 7 defined in the horizontal direction in plan view changes in the thickness direction of the substrate (for example, a truncated cone shape or a truncated pyramid shape), The smallest cross-sectional area is the target.

 また、第1および第2の放熱本体7a、7bは同一の断面積を有することが好ましい。これらの放熱本体7a、7bの構成材料としては、通常発光素子用基板のサーマルビアに用いられるものと同様のものであれば、特に制限なく使用できる。後述する基板の製造方法で具体的に説明する。 Moreover, it is preferable that the first and second heat dissipating bodies 7a and 7b have the same cross-sectional area. As a constituent material of these heat radiating bodies 7a and 7b, any material can be used without particular limitation as long as it is the same as that used for a thermal via of a substrate for a light emitting element. This will be specifically described in the substrate manufacturing method described later.

 放熱体6の厚さ方向の中間部等に配設された絶縁層8は、その下面の基板本体1の非搭載面1bからの距離L2が、基板本体1の厚さL1の60%以下となる位置に設けられている。より具体的には、基板本体1の厚さL1が500μmの場合、非搭載面1bからの距離L2が0~300μmとなる位置に下面が位置するように、絶縁層8が設けられている。絶縁層8下面の、基板本体の非搭載面1bからの距離L2が、基板本体1の厚さL1の60%を超える場合には、放熱体6全体の熱抵抗が大きくなり十分な放熱性が得られにくくなる。また、第1の放熱本体7aの厚さL3が、基板本体1の厚さL1の少なくとも40%を備えている場合には、より放熱性が高まり、十分な放熱性が得られる。なお、L2がL1の0%である場合には、絶縁層8が第1の放熱本体7aの下端部に接して配置された構造となり、絶縁層8は非搭載面1bと面一になるので、第2の放熱本体7bは存在しないことになる。この場合も、本発明の一つの実施形態である。基板本体1の厚さL1は、特に制限はないが、通常200~500μm程度である。基板本体1は、実質的に均一な厚さであるのが好ましいが、不均一な厚さとなっていてもよい。 The insulating layer 8 disposed in the middle portion in the thickness direction of the heat radiating body 6 has a distance L2 from the non-mounting surface 1b of the substrate body 1 on the lower surface thereof to 60% or less of the thickness L1 of the substrate body 1. It is provided in the position. More specifically, when the thickness L1 of the substrate body 1 is 500 μm, the insulating layer 8 is provided so that the lower surface is located at a position where the distance L2 from the non-mounting surface 1b is 0 to 300 μm. When the distance L2 of the lower surface of the insulating layer 8 from the non-mounting surface 1b of the substrate body exceeds 60% of the thickness L1 of the substrate body 1, the heat resistance of the entire radiator 6 is increased and sufficient heat dissipation is achieved. It becomes difficult to obtain. In addition, when the thickness L3 of the first heat radiating body 7a is at least 40% of the thickness L1 of the substrate body 1, the heat dissipation is further improved and sufficient heat dissipation is obtained. When L2 is 0% of L1, the insulating layer 8 is arranged in contact with the lower end of the first heat radiating body 7a, and the insulating layer 8 is flush with the non-mounting surface 1b. The second heat radiating body 7b does not exist. This is also an embodiment of the present invention. The thickness L1 of the substrate body 1 is not particularly limited, but is usually about 200 to 500 μm. The substrate body 1 preferably has a substantially uniform thickness, but may have a non-uniform thickness.

 絶縁層8の厚さは10~200μmであり、特に10~100μmの範囲が好ましい。厚さが10μm未満の場合には、絶縁層8を設けることによる絶縁性確保の効果が十分に得られない。厚さが100μmを超えると、放熱体6の熱抵抗が大きくなりすぎるため、十分な放熱性が得られにくくなる。絶縁層8は、実質的に均一な厚さであるのが好ましいが、不均一な厚さとなっていてもよい。 The thickness of the insulating layer 8 is 10 to 200 μm, particularly preferably 10 to 100 μm. If the thickness is less than 10 μm, the effect of ensuring insulation by providing the insulating layer 8 cannot be sufficiently obtained. When the thickness exceeds 100 μm, the heat resistance of the heat radiating body 6 becomes too large, and it becomes difficult to obtain sufficient heat dissipation. The insulating layer 8 preferably has a substantially uniform thickness, but may have a non-uniform thickness.

 この絶縁層8は、ガラスを主体とする材料(以下、ガラス材料という。)により構成することができる。また、絶縁層8は、基板本体1と同様に、ガラス粉末とセラミックス粉末とを含むガラスセラミックス組成物の焼結体(LTCC)により構成することもできる。絶縁層8を構成するLTCCの原料組成、焼結条件等については、後述する発光素子用基板の製造方法において説明する。 The insulating layer 8 can be made of a material mainly composed of glass (hereinafter referred to as a glass material). Moreover, the insulating layer 8 can also be comprised by the sintered compact (LTCC) of the glass-ceramics composition containing glass powder and ceramic powder similarly to the board | substrate body 1. FIG. The raw material composition, sintering conditions, and the like of LTCC constituting the insulating layer 8 will be described in a method for manufacturing a light emitting element substrate described later.

 絶縁層8を構成するガラス材料について、以下に説明する。絶縁層8を構成するガラス材料は、少なくともSiO、B、およびNaOとKOから選ばれる少なくとも1種を構成成分とするガラスを含有するものである。 The glass material which comprises the insulating layer 8 is demonstrated below. Glass material constituting the insulating layer 8 are those containing glass be at least SiO 2, B 2 O 3, where and Na 2 O and K at least one kind of component selected from 2 O.

 またこのガラス材料は、セラミックス粉末を10質量%以下の割合で含有することができる。セラミックス粉末の含有量は好ましくは3質量%以上である。セラミックス粉末を含有することにより、絶縁層8の強度を高くできる場合がある。また、耐酸性のような耐薬品性の観点からは、前記ガラス材料はセラミックス粉末としてシリカ粉末またはアルミナ粉末を含有することが好ましい。 Further, this glass material can contain ceramic powder in a proportion of 10% by mass or less. The content of the ceramic powder is preferably 3% by mass or more. By containing ceramic powder, the strength of the insulating layer 8 may be increased. Further, from the viewpoint of chemical resistance such as acid resistance, the glass material preferably contains silica powder or alumina powder as ceramic powder.

 前記ガラス材料に、シリカ粉末、アルミナ粉末、ジルコニア粉末、チタニア粉末から選ばれる少なくとも1種を含有させることで、そしてその粉末として、平均粒径D50(以下、単にD50と記載することもある。)が2.5μm以下より好ましくは0.5μm以下の微粒子を用いることで、印刷性を高め、かつ絶縁層8端部を平坦化して、層表面のうねりを抑制できる。なお、D50は、レーザ回折・散乱法による粒子径測定装置により得られる値をいう。 When the glass material contains at least one selected from silica powder, alumina powder, zirconia powder, and titania powder, the average particle size D 50 (hereinafter, simply referred to as D 50 may be described as the powder). .) Is 2.5 μm or less, more preferably 0.5 μm or less, it is possible to improve the printability and to flatten the end of the insulating layer 8 to suppress the undulation of the layer surface. Note that D 50 is a value obtained by a particle size measuring apparatus using a laser diffraction / scattering method.

 ガラス材料中のセラミックス粉末の含有量は、粒径により設定できる。D50が1~2.5μmのときには、含有量を3~10質量%とするのが好ましい。8質量%以下が好ましく、5質量%以下がより好ましい。D50が1μm未満のときには、その含有量は3~5質量%とすることが好ましい。上記した上限を超えてセラミックス粉末を含有させると、ガラス材料の流動性が悪化して、絶縁層8の平坦性が悪くなるばかりでなく、焼結不足が生じやすくなる。 The content of the ceramic powder in the glass material can be set by the particle size. When D 50 is 1 to 2.5 μm, the content is preferably 3 to 10% by mass. 8 mass% or less is preferable and 5 mass% or less is more preferable. When D 50 is less than 1 μm, the content is preferably 3 to 5% by mass. When the ceramic powder is contained exceeding the above upper limit, the fluidity of the glass material is deteriorated, and not only the flatness of the insulating layer 8 is deteriorated but also the sintering is likely to be insufficient.

 絶縁層を構成するガラスは、酸化物基準のモル%表示で、SiOを62~84%、Bを10~25%、Alを0~5%、NaOおよびKOから選ばれる少なくとも1種を合計で1~5%含有し、SiOとAlの含有量の合計が62~84%、MgOを0~10%、CaO、SrO、BaOから選ばれる少なくとも1種を含有する場合にその含有量の合計が5%以下であるホウケイ酸ガラス粉末を焼成してなるものが好ましい。 The glass constituting the insulating layer is expressed by mol% on the basis of oxide, SiO 2 62-84%, B 2 O 3 10-25%, Al 2 O 3 0-5%, Na 2 O and K At least one selected from 2 O is contained in a total of 1 to 5%, the total content of SiO 2 and Al 2 O 3 is 62 to 84%, MgO is selected from 0 to 10%, CaO, SrO, BaO In the case of containing at least one selected from the above, a product obtained by firing a borosilicate glass powder whose total content is 5% or less is preferable.

 このようなガラスの各成分について説明する。なお、以下では特に断らない限り、組成は酸化物基準のモル%表示で単に%と表記する。 Each component of such glass will be described. In the following, unless otherwise specified, the composition is simply expressed as% in terms of mol% based on oxide.

 SiOはガラスのネットワークフォーマであり、化学的耐久性、とくに耐酸性を高くする成分であり必須である。62%未満では耐酸性が不十分となるおそれがある。84%超ではガラス溶融温度が高くなる、またはガラス転移点(Tg)が高くなりすぎるおそれがある。 SiO 2 is a glass network former, a component that increases chemical durability, particularly acid resistance, and is essential. If it is less than 62%, the acid resistance may be insufficient. If it exceeds 84%, the glass melting temperature tends to be high, or the glass transition point (Tg) tends to be too high.

 Bはガラスのネットワークフォーマであり、必須である。10%未満ではガラス溶融温度が高くなり、またガラスが不安定になるおそれがある。好ましくは12%以上である。25%超では、安定なガラスを得にくくなるばかりでなく、化学的耐久性が低下するおそれがある。 B 2 O 3 is a glass network former and is essential. If it is less than 10%, the glass melting temperature tends to be high, and the glass may become unstable. Preferably it is 12% or more. If it exceeds 25%, not only is it difficult to obtain stable glass, but chemical durability may be reduced.

 Alは必須ではないが、ガラスの安定性または化学的耐久性を高めるために5%以下の範囲で含有してもよい。5%超ではガラスの透明性が低下するおそれがある。 Al 2 O 3 is not essential, but may be contained in a range of 5% or less in order to enhance the stability or chemical durability of the glass. If it exceeds 5%, the transparency of the glass may decrease.

 SiOとAlの含有量の合計は62~84%である。62%未満であると化学的耐久性が不十分になるおそれがある。84%超であるとガラス溶融温度が高くなる、またはTgが高くなりすぎる。 The total content of SiO 2 and Al 2 O 3 is 62 to 84%. If it is less than 62%, chemical durability may be insufficient. If it exceeds 84%, the glass melting temperature becomes high, or Tg becomes too high.

 NaOおよびKOはTgを低下させる成分であり、少なくとも一方は必須である。合計で5%まで含有することができる。5%超では化学的耐久性、特に耐酸性が悪化するおそれがある。また、焼結体の電気絶縁性が低下するおそれがある。NaO、KOのいずれか1以上を含有し、NaO、KOの含有量の合計は1%以上であることが好ましい。 Na 2 O and K 2 O are components that lower Tg, and at least one of them is essential. It can contain up to 5% in total. If it exceeds 5%, chemical durability, particularly acid resistance, may deteriorate. Moreover, there exists a possibility that the electrical insulation of a sintered compact may fall. Na 2 O, and containing any one or more of K 2 O, Na 2 O, it is preferable that the total content of K 2 O is not less than 1%.

 MgOは必須ではないが、Tgを低下させる、またはガラスを安定化させるために、10%まで含有してもよい。好ましくは8%以下である。 MgO is not essential, but may be contained up to 10% in order to lower Tg or stabilize the glass. Preferably it is 8% or less.

 CaO、SrO、BaOはいずれも必須ではないが、ガラスの溶融温度を低下させる、またはガラスを安定化させるために、合計で5%まで含有してもよい。5%超であると耐酸性が低下するおそれがある。 CaO, SrO, and BaO are not essential, but may be contained up to 5% in total in order to lower the melting temperature of the glass or stabilize the glass. If it exceeds 5%, the acid resistance may decrease.

 本発明の絶縁層を構成するガラスは本質的に上記成分からなるが、本発明の目的を損なわない範囲でその他の成分を含有してもよい。そのような成分を含有する場合、それら成分の含有量の合計は10%以下が好ましい。ただし、鉛酸化物は含有しない。 The glass constituting the insulating layer of the present invention consists essentially of the above components, but may contain other components as long as the object of the present invention is not impaired. When such components are contained, the total content of these components is preferably 10% or less. However, lead oxide is not contained.

 本発明の絶縁層8は、好ましくは、このような各成分からなるホウケイ酸ガラス粉末と必要に応じて前記セラミックス粉末とを混合してなる組成物を焼成してなるものであり、例えば、前記組成を有するホウケイ酸ガラス粉末と前記セラミックス粉末との混合粉末を、ペースト化してスクリーン印刷し、焼成して形成される。しかし、基板本体1内で非搭載面1bからの距離が所定の範囲の位置に所定の厚さの絶縁層8を形成できる方法であれば、特に限定されない。 The insulating layer 8 of the present invention is preferably formed by firing a composition formed by mixing such a borosilicate glass powder composed of each component and, if necessary, the ceramic powder. A mixed powder of a borosilicate glass powder having a composition and the ceramic powder is formed into a paste, screen-printed, and fired. However, the method is not particularly limited as long as the insulating layer 8 having a predetermined thickness can be formed at a position within a predetermined range of the distance from the non-mounting surface 1b in the substrate body 1.

 以上、本発明の発光素子用基板1の実施形態について一例を挙げて説明したが、本発明の発光素子用基板はこれに限定されるものではない。本発明の趣旨に反しない限りにおいて、また必要に応じてその構成を適宜変更できる。 As mentioned above, although an example was given and demonstrated about embodiment of the light emitting element use substrate 1 of this invention, the light emitting element use substrate of this invention is not limited to this. As long as it is not contrary to the gist of the present invention, the configuration can be changed as necessary.

 上記のように構成される本発明の発光素子用基板10の製造においては、発光素子搭載用のLTCC基板に通常用いられる材料および製造方法が適用できる。また、後述する本発明の発光装置についても、本発明の発光素子用基板10を用いる以外は、通常の部材を用いて通常の方法で製造できる。 In the manufacture of the light emitting element substrate 10 of the present invention configured as described above, materials and manufacturing methods normally used for the LTCC substrate for mounting the light emitting element can be applied. Further, the light emitting device of the present invention to be described later can also be produced by an ordinary method using ordinary members except that the light emitting element substrate 10 of the present invention is used.

 以下に、1ワイヤタイプの発光素子を搭載するための図1に示される基板のうちで、基板本体1がLTCCで構成され、放熱体6の一部を構成する絶縁層8がガラス材料から構成される基板を製造する方法を例にして、本発明の発光素子用基板10の製造方法を説明する。 In the following, among the substrates shown in FIG. 1 for mounting a one-wire type light emitting element, the substrate body 1 is composed of LTCC, and the insulating layer 8 constituting a part of the radiator 6 is composed of a glass material. The method for manufacturing the substrate 10 for light emitting device of the present invention will be described by taking as an example the method for manufacturing the substrate to be manufactured.

 図1に示す発光素子用基板10は、以下の(A)~(E)の各工程を含む製造方法により製造できる。より具体的には、以下の(A)~(E)工程をこの順に従って行い、本発明に係る発光素子用基板を製造するのが好ましい。なお、以下の説明では、その製造に用いる部材について、完成品の部材と同一の符号を付して説明する。例えば、放熱本体と放熱本体用の導体ペースト層とは、同じ7(または7a、7b)の符号をもって表記し、また、絶縁層と未焼成絶縁層とは、同じ8の符号をもって表記しており、他も同様である。 1 can be manufactured by a manufacturing method including the following steps (A) to (E). More specifically, the following steps (A) to (E) are preferably carried out in this order to produce the light emitting element substrate according to the present invention. In the following description, the members used for the manufacture will be described with the same reference numerals as those of the finished product. For example, the heat dissipating body and the conductor paste layer for the heat dissipating body are represented by the same 7 (or 7a, 7b) code, and the insulating layer and the unfired insulating layer are represented by the same 8 code. The other is the same.

(A)本体用グリーンシート作製工程
 ガラス粉末とセラミックス粉末とを含むガラスセラミックス組成物を用いて、発光素子用基板10の基板本体1を形成するための複数枚のグリーンシート(以下、本体用グリーンシートとも称する。)を作製する。なお、本体用グリーンシートは、上層用グリーンシート、内層用グリーンシート、および下層用グリーンシートを含む。この工程では、枠体を形成するために枠体用グリーンシートの作製も行う。
(A) Green sheet manufacturing process for main body A plurality of green sheets (hereinafter referred to as green for main body) for forming the substrate main body 1 of the substrate 10 for light emitting element using a glass ceramic composition containing glass powder and ceramic powder. (Also referred to as a sheet). The main body green sheet includes an upper layer green sheet, an inner layer green sheet, and a lower layer green sheet. In this step, a green sheet for a frame is also produced in order to form a frame.

(B)導体ペースト層形成工程
 各本体用グリーンシートの所定の位置に導体ペースト層を形成し、未焼成配線導体層3、未焼成外部電極端子4、未焼成接続ビア5、未焼成放熱本体7a、7b等をそれぞれ形成する。
(B) Conductive paste layer forming step A conductive paste layer is formed at a predetermined position of each main body green sheet, and the unfired wiring conductor layer 3, the unfired external electrode terminal 4, the unfired connection via 5, and the unfired heat dissipation body 7a. , 7b, etc., respectively.

(C)ガラスペースト層形成工程
 内層用グリーンシートの所定の位置に、ガラス材料からなるガラスペースト層を形成し、未焼成絶縁層8を形成する。
(C) Glass paste layer formation process The glass paste layer which consists of glass materials is formed in the predetermined position of the green sheet for inner layers, and the unbaking insulating layer 8 is formed.

(D)積層工程
 本体用グリーンシートの表面または内部に導体ペースト層(本例において、内層用グリーンシートにおいてはさらにガラスペースト層が形成されている。)が形成されて得られた複数枚の未焼成本体部材(以下、導体ペースト層付きグリーンシート、およびガラスペースト層付きグリーンシートというときがある。)等を重ね合わせ、熱圧着により一体化して未焼成基板を得る。
(D) Laminating Step A plurality of uncoated sheets obtained by forming a conductive paste layer (in this example, a glass paste layer is further formed in the inner layer green sheet) on the surface or inside of the main body green sheet. A fired main body member (hereinafter sometimes referred to as a green sheet with a conductive paste layer and a green sheet with a glass paste layer) and the like are stacked and integrated by thermocompression to obtain an unfired substrate.

(E)焼成工程
 前記未焼成基板を800~930℃で焼成する。
(E) Firing step The unfired substrate is fired at 800 to 930 ° C.

 以下、各工程についてさらに説明する。 Hereinafter, each process will be further described.

(A)本体用グリーンシート作製工程
 本体用グリーンシートは、ガラス粉末とセラミックス粉末とを含むガラスセラミックス組成物(例えば、LTCC組成物)に、バインダー、必要に応じて可塑剤、分散剤、溶剤等を添加してスラリーを調製し、これをドクターブレード法等によりシート状に成形し、乾燥させることで製造できる。また、こうして作製されたグリーンシートを、所定の形状に加工することにより、枠体用グリーンシートを作製する。
(A) Green sheet manufacturing process for main body The green sheet for main body is made of glass ceramic composition (for example, LTCC composition) containing glass powder and ceramic powder, binder, plasticizer, dispersant, solvent, etc. if necessary. Is added to the slurry to prepare a slurry, which is formed into a sheet by a doctor blade method or the like and dried. Moreover, the green sheet for a frame is produced by processing the green sheet thus produced into a predetermined shape.

 本体用グリーンシートを作製するために用いられるガラスセラミックス組成物におけるガラス粉末(以下、このガラス粉末を本体用ガラス粉末とも称する)としては、ガラス転移点(Tg)が550℃以上700℃以下のものが好ましい。Tgが550℃未満の場合には、脱脂が困難となるおそれがあり、700℃を超える場合には、収縮開始温度が高くなり、寸法精度が低下するおそれがある。 Glass powder in a glass ceramic composition used for producing a green sheet for a main body (hereinafter, this glass powder is also referred to as glass powder for main body) having a glass transition point (Tg) of 550 ° C. or higher and 700 ° C. or lower. Is preferred. When Tg is less than 550 ° C., degreasing may be difficult, and when it exceeds 700 ° C., the shrinkage start temperature becomes high and the dimensional accuracy may be lowered.

 また、このガラス粉末は、800℃以上930℃以下で焼成したときに結晶が析出するものであることが好ましい。結晶が析出しないものの場合、十分な機械的強度を得ることができないおそれがある。さらに、DTA(示差熱分析)により測定される結晶化ピーク温度(Tc)が880℃以下のものが好ましい。Tcが880℃を超える場合、寸法精度が低下するおそれがある。 Further, it is preferable that the glass powder is one in which crystals are precipitated when fired at 800 ° C. or higher and 930 ° C. or lower. In the case where crystals do not precipitate, there is a possibility that sufficient mechanical strength cannot be obtained. Furthermore, the thing whose crystallization peak temperature (Tc) measured by DTA (differential thermal analysis) is 880 degrees C or less is preferable. When Tc exceeds 880 ° C., the dimensional accuracy may be reduced.

 このような本体用ガラス粉末としては、酸化物基準のモル%表示で、SiOを57~65%、Bを13~18%、CaOを9~23%、Alを3~8%、KOおよびNaOから選ばれる少なくとも一方を合計で0.5~6%含有するものが好ましい。このようなものを用いることで、基板本体1の表面平坦度を向上させることが容易となる。 As such glass powder for main body, SiO 2 is 57 to 65%, B 2 O 3 is 13 to 18%, CaO is 9 to 23%, Al 2 O 3 is 3% in terms of mol% based on oxide. Those containing at least one selected from K 2 O and Na 2 O in a total of 0.5 to 6% are preferable. By using such a thing, it becomes easy to improve the surface flatness of the substrate body 1.

 ここで、SiOは、ガラスのネットワークフォーマとなるものである。SiOの含有量が57%未満の場合、安定なガラスを得ることが難しく、また化学的耐久性も低下するおそれがある。一方、SiOの含有量が65%を超える場合には、ガラス溶融温度やTgが過度に高くなるおそれがある。SiOの含有量は、好ましくは58%以上、より好ましくは59%以上、特に好ましくは60%以上である。また、SiOの含有量は、好ましくは64%以下、より好ましくは63%以下である。 Here, SiO 2 serves as a glass network former. When the content of SiO 2 is less than 57%, it is difficult to obtain a stable glass and the chemical durability may be lowered. On the other hand, when the content of SiO 2 exceeds 65%, the glass melting temperature and Tg may be excessively increased. The content of SiO 2 is preferably 58% or more, more preferably 59% or more, and particularly preferably 60% or more. Further, the content of SiO 2 is preferably 64% or less, more preferably 63% or less.

 Bは、ガラスのネットワークフォーマとなるものである。Bの含有量が13%未満の場合、ガラス溶融温度やTgが過度に高くなるおそれがある。一方、Bの含有量が18%を超える場合、安定なガラスを得ることが難しく、また化学的耐久性も低下するおそれがある。Bの含有量は、好ましくは14%以上、より好ましくは15%以上である。また、Bの含有量は、好ましくは17%以下、より好ましくは16%以下である。 B 2 O 3 is a glass network former. If the content of B 2 O 3 is less than 13%, there is a possibility that the glass melting temperature or Tg may be too high. On the other hand, when the content of B 2 O 3 exceeds 18%, it is difficult to obtain a stable glass, and the chemical durability may be lowered. The content of B 2 O 3 is preferably 14% or more, more preferably 15% or more. Further, the content of B 2 O 3 is preferably 17% or less, more preferably 16% or less.

 Alは、ガラスの安定性、化学的耐久性、および強度を高めるために添加される。Alの含有量が3%未満の場合、ガラスが不安定となるおそれがある。一方、Alの含有量が8%を超える場合、ガラス溶融温度やTgが過度に高くなるおそれがある。Alの含有量は、好ましくは4%以上、より好ましくは5%以上である。また、Alの含有量は、好ましくは7%以下、より好ましくは6%以下である。 Al 2 O 3 is added to increase the stability, chemical durability, and strength of the glass. If the content of Al 2 O 3 is less than 3%, the glass may become unstable. On the other hand, when the content of Al 2 O 3 exceeds 8%, the glass melting temperature and Tg may be excessively high. The content of Al 2 O 3 is preferably 4% or more, more preferably 5% or more. Further, the content of Al 2 O 3 is preferably 7% or less, more preferably 6% or less.

 CaOは、ガラスの安定性や結晶の析出性を高めるとともに、ガラス溶融温度やTgを低下させるために添加される。CaOの含有量が9%未満の場合、ガラス溶融温度が過度に高くなるおそれがある。一方、CaOの含有量が23%を超える場合、ガラスが不安定になるおそれがある。CaOの含有量は、好ましくは12%以上、より好ましくは13%以上、特に好ましくは14%以上である。また、CaOの含有量は、好ましくは22%以下、より好ましくは21%以下、特に好ましくは20%以下である。 CaO is added to increase glass stability and crystal precipitation, and to lower the glass melting temperature and Tg. When the content of CaO is less than 9%, the glass melting temperature may be excessively high. On the other hand, when the content of CaO exceeds 23%, the glass may become unstable. The content of CaO is preferably 12% or more, more preferably 13% or more, and particularly preferably 14% or more. Further, the content of CaO is preferably 22% or less, more preferably 21% or less, and particularly preferably 20% or less.

 KO、NaOは、Tgを低下させるために添加される。KOおよびNaOの合計した含有量が0.5%未満の場合、ガラス溶融温度やTgが過度に高くなるおそれがある。一方、KOおよびNaOの合計した含有量が6%を超える場合、化学的耐久性、特に耐酸性が低下するおそれがあり、電気的絶縁性も低下するおそれがある。KOおよびNaOの合計した含有量は、0.8%以上5%以下であることが好ましい。 K 2 O and Na 2 O are added to lower Tg. When the total content of K 2 O and Na 2 O is less than 0.5%, the glass melting temperature and Tg may be excessively high. On the other hand, when the total content of K 2 O and Na 2 O exceeds 6%, chemical durability, particularly acid resistance may be lowered, and electrical insulation may be lowered. The total content of K 2 O and Na 2 O is preferably 0.8% or more and 5% or less.

 なお、本体用ガラス粉末は、必ずしも上記成分のみからなるものに限定されず、Tg等の諸特性を満たす範囲で他の成分を含有することができる。他の成分を含有する場合、その合計した含有量は10%以下であることが好ましい。 In addition, the glass powder for main bodies is not necessarily limited to what consists only of the said component, Other components can be contained in the range with which various characteristics, such as Tg, are satisfy | filled. When other components are contained, the total content is preferably 10% or less.

 本体用ガラス粉末は、上記したような組成を有するガラスとなるように各ガラス原料を配合、混合し、溶融法によって製造し、乾式粉砕法や湿式粉砕法によって粉砕して得られる。湿式粉砕法の場合、溶媒として水またはエチルアルコールを用いることが好ましい。粉砕機としては、例えばロールミル、ボールミル、ジェットミル等が挙げられる。 The glass powder for main body is obtained by blending and mixing each glass raw material so as to become a glass having the above composition, producing by a melting method, and pulverizing by a dry pulverization method or a wet pulverization method. In the case of the wet pulverization method, it is preferable to use water or ethyl alcohol as a solvent. Examples of the pulverizer include a roll mill, a ball mill, and a jet mill.

 本体用ガラス粉末の50%粒径(D50)は0.5μm以上2μm以下であることが好ましい。ガラス粉末のD50が0.5μm未満の場合、ガラス粉末が凝集しやすく取り扱いが困難になるばかりでなく、均一分散が困難になる。一方、ガラス粉末のD50が2μmを超える場合には、ガラス軟化温度の上昇や焼結不足が発生するおそれがある。粒径は、例えば粉砕後に必要に応じて分級して調整してもよい。 The 50% particle size (D 50 ) of the glass powder for main body is preferably 0.5 μm or more and 2 μm or less. If D 50 of the glass powder is less than 0.5 [mu] m, handling the glass powder is likely to agglomerate are not only difficult, uniform dispersion becomes difficult. On the other hand, if the D 50 of the glass powder exceeds 2μm, there is a possibility that increase and insufficient sintering of the glass softening temperature is generated. The particle diameter may be adjusted by classification as necessary after pulverization, for example.

 セラミックス粉末としては、従来からLTCC基板の製造に用いられるものが使用でき、例えばアルミナ粉末、ジルコニア粉末、またはアルミナ粉末とジルコニア粉末との混合物等を好適に使用できる。特に、アルミナ粉末とともに、アルミナよりも高い屈折率を有するセラミックスの粉末(以下、高屈折率セラミックス粉末と示す。)を使用することが好ましい。 As the ceramic powder, those conventionally used for the production of LTCC substrates can be used. For example, alumina powder, zirconia powder, or a mixture of alumina powder and zirconia powder can be suitably used. In particular, it is preferable to use a ceramic powder (hereinafter referred to as a high refractive index ceramic powder) having a higher refractive index than alumina together with the alumina powder.

 高屈折率セラミックス粉末は、焼結体である基板の反射率を向上させるための成分であり、例えばチタニア粉末、ジルコニア粉末、安定化ジルコニア粉末等が挙げられる。アルミナの屈折率が1.8程度であるのに対して、チタニアの屈折率は2.7程度、ジルコニアの屈折率は2.2程度であり、アルミナに比べて高い屈折率を有している。これらのセラミックスの粉末のD50は、0.5μm以上4μm以下であることが好ましい。 The high refractive index ceramic powder is a component for improving the reflectance of the substrate that is a sintered body, and examples thereof include titania powder, zirconia powder, and stabilized zirconia powder. While the refractive index of alumina is about 1.8, the refractive index of titania is about 2.7 and the refractive index of zirconia is about 2.2, which is higher than that of alumina. . D 50 of these ceramic powders is preferably 0.5 μm or more and 4 μm or less.

 このようなガラス粉末とセラミックス粉末とを、例えばガラス粉末が30質量%以上50質量%以下、セラミックス粉末が50質量%以上70質量%以下となるように配合し、混合することにより、ガラスセラミックス組成物が得られる。また、このガラスセラミックス組成物に、バインダー、必要に応じて可塑剤、分散剤、溶剤等を添加することによりスラリーが得られる。 By mixing and mixing such glass powder and ceramic powder such that the glass powder is 30% by mass to 50% by mass and the ceramic powder is 50% by mass to 70% by mass, the glass ceramic composition is mixed. Things are obtained. In addition, a slurry can be obtained by adding a binder and, if necessary, a plasticizer, a dispersant, a solvent, and the like to the glass ceramic composition.

 バインダーとしては、例えばポリビニルブチラール、アクリル樹脂等を好適に使用できる。可塑剤としては、例えばフタル酸ジブチル、フタル酸ジオクチル、フタル酸ブチルベンジル等を使用できる。溶剤としては、トルエン、キシレン、2-プロパノール、2-ブタノール等の有機溶剤を好適に使用できる。 As the binder, for example, polyvinyl butyral, acrylic resin or the like can be suitably used. As the plasticizer, for example, dibutyl phthalate, dioctyl phthalate, butyl benzyl phthalate and the like can be used. As the solvent, organic solvents such as toluene, xylene, 2-propanol and 2-butanol can be preferably used.

 このようにして得られたスラリーをドクターブレード法等によりシート状に成形し、乾燥させて、複数枚の本体用グリーンシート(上層用グリーンシート、下層用グリーンシートおよび内層用グリーンシート)を作製する。また、同様にして製造されたグリーンシートを、所定の形状に加工することにより、枠体用グリーンシートを作製する。さらに、本体用グリーンシートの所定の位置に、孔空け機等を用いて接続ビア形成用の小径の貫通孔、ならびに放熱本体形成用の大径の貫通孔を形成する。 The slurry thus obtained is formed into a sheet by a doctor blade method or the like and dried to produce a plurality of green sheets for the main body (upper layer green sheet, lower layer green sheet and inner layer green sheet). . In addition, a green sheet for a frame is manufactured by processing the green sheet manufactured in the same manner into a predetermined shape. Further, a small-diameter through hole for forming a connection via and a large-diameter through hole for forming a heat dissipating main body are formed at predetermined positions of the green sheet for main body using a punching machine or the like.

(B)導体ペースト層形成工程
 前記工程で作製された本体用グリーンシート上の所定の位置に、配線導体層3や外部電極端子4を形成するための導体ペースト層を形成する。また、本体用グリーンシートに形成された接続ビア形成用の貫通孔、および放熱本体形成用の貫通孔の内部に導体ペーストを充填し、接続ビア5および放熱本体7a、7bを形成するための導体ペースト層を形成する。
(B) Conductive paste layer formation process The conductive paste layer for forming the wiring conductor layer 3 and the external electrode terminal 4 is formed in the predetermined position on the green sheet for main bodies produced at the said process. Also, a conductor for filling the inside of the through hole for forming the connection via formed in the green sheet for the main body and the through hole for forming the heat radiating main body to form the connection via 5 and the heat radiating main bodies 7a and 7b A paste layer is formed.

 第1および第2の配線導体層用の導体ペースト層3a、3b、接続ビア用の導体ペースト層5、放熱本体用の導体ペースト層7a、7b、および外部電極端子用の導体ペースト層4の形成方法としては、導体ペーストをスクリーン印刷により塗布、充填する方法が挙げられる。第1および第2の配線導体層用の導体ペースト層3a、3bおよび外部電極端子用の導体ペースト層4の膜厚は、最終的に得られる膜厚が所定の膜厚となるように調整することが好ましい。 Formation of conductor paste layers 3a and 3b for first and second wiring conductor layers, conductor paste layer 5 for connection vias, conductor paste layers 7a and 7b for heat radiation bodies, and conductor paste layer 4 for external electrode terminals Examples of the method include a method of applying and filling a conductive paste by screen printing. The film thicknesses of the conductor paste layers 3a and 3b for the first and second wiring conductor layers and the conductor paste layer 4 for the external electrode terminals are adjusted so that the finally obtained film thickness becomes a predetermined film thickness. It is preferable.

 導体ペーストとしては、例えば銅(Cu)、銀(Ag)、金(Au)等を主成分とする金属の粉末に、エチルセルロース等のビヒクル、必要に応じて溶剤等を添加してペースト状としたものを使用できる。なお、上記金属粉末としては、銀粉末、銀と白金からなる金属粉末、または銀とパラジウムからなる金属粉末が好ましく用いられる。 As the conductive paste, for example, a metal powder mainly composed of copper (Cu), silver (Ag), gold (Au) or the like is added to a vehicle such as ethyl cellulose, and a solvent or the like is added to make a paste. Things can be used. As the metal powder, silver powder, metal powder composed of silver and platinum, or metal powder composed of silver and palladium are preferably used.

(C)絶縁層用ガラスペースト層形成工程
 内層用グリーンシートの放熱本体用の導体ペースト層7aおよび7bのいずれか一方、または双方の上に、この層を完全に覆うようにして、絶縁層用のガラスペースト層8をスクリーン印刷により形成する。
(C) Glass paste layer forming step for insulating layer For insulating layer so that this layer is completely covered on either or both of conductor paste layers 7a and 7b for heat dissipation body of inner layer green sheet The glass paste layer 8 is formed by screen printing.

 絶縁層用ガラスペーストは、前記した絶縁層用のガラス粉末と、必要に応じて前記セラミックス粉末とを混合してなる組成物に、エチルセルロース等のビヒクル、必要に応じて溶剤等を添加してペースト状としたものを用いることができる。形成される絶縁層用ガラスペースト層8の膜厚は、最終的に得られる絶縁層8の厚さが10~200μmとなるように、より好ましくは10~100μmとなるように調整される。 A glass paste for an insulating layer is a paste obtained by adding a vehicle such as ethyl cellulose and, if necessary, a solvent, etc. to a composition obtained by mixing the glass powder for an insulating layer and the ceramic powder as necessary. What was made into a shape can be used. The film thickness of the insulating layer glass paste layer 8 to be formed is adjusted so that the finally obtained insulating layer 8 has a thickness of 10 to 200 μm, more preferably 10 to 100 μm.

(D)積層工程
 前記(B)工程で得られた導体ペースト層付きグリーンシートと、前記(C)工程で得られたガラスペースト層付きグリーンシートを所定の順で重ね合わせ、この上層用グリーンシートの上にさらに枠体用グリーンシートを重ねた後、熱圧着により一体化する。こうして、未焼成基板10が得られる。
(D) Laminating step The green sheet with a conductive paste layer obtained in the step (B) and the green sheet with a glass paste layer obtained in the step (C) are superposed in a predetermined order, and this upper layer green sheet A green sheet for a frame body is further stacked on the substrate, and then integrated by thermocompression bonding. In this way, the unfired substrate 10 is obtained.

(E)焼成工程
 上記工程で得られた未焼成基板10について、必要に応じてバインダー等を脱脂後、ガラスセラミックス組成物等を焼結させるための焼成を行って発光素子用基板10とする。
(E) Firing process About the unbaked board | substrate 10 obtained at the said process, after degreasing | defatting a binder etc. as needed, the baking for sintering a glass ceramic composition etc. is performed and it is set as the board | substrate 10 for light emitting elements.

 脱脂は、例えば500℃以上600℃以下の温度で1時間以上10時間以下保持する条件で行う。脱脂温度が500℃未満もしくは脱脂時間が1時間未満の場合、バインダー等を十分に除去できないおそれがある。一方、脱脂温度は600℃程度、脱脂時間は10時間程度とすれば、バインダー等を十分に除去でき、これを超えるとかえって生産性等が低下するおそれがある。 Degreasing is performed, for example, under the condition of holding at a temperature of 500 ° C. to 600 ° C. for 1 hour to 10 hours. When the degreasing temperature is less than 500 ° C. or the degreasing time is less than 1 hour, the binder or the like may not be sufficiently removed. On the other hand, if the degreasing temperature is about 600 ° C. and the degreasing time is about 10 hours, the binder and the like can be sufficiently removed, and if it exceeds this, productivity and the like may be lowered.

 焼成は、基体本体1の緻密な構造の獲得と生産性を考慮して、800℃~930℃の温度範囲で適宜時間を調整して行う。具体的には、850℃以上900℃以下の温度で20分以上60分以下保持することが好ましく、特に860℃以上880℃以下の温度が好ましい。焼成温度が800℃未満では、基体本体1が緻密な構造のものとして得られないおそれがある。一方、焼成温度は930℃を超えると、基体本体1が変形するなど、生産性等が低下するおそれがある。また、上記導体ペーストとして、銀を主成分とする金属粉末を含有する金属ペーストを用いた場合、焼成温度が880℃を超えると、過度に軟化するために所定の形状を維持できなくなるおそれがある。 Calcination is performed by appropriately adjusting the time in a temperature range of 800 ° C. to 930 ° C. in consideration of obtaining a dense structure of the base body 1 and productivity. Specifically, it is preferable to hold at a temperature of 850 ° C. or more and 900 ° C. or less for 20 minutes or more and 60 minutes or less, and a temperature of 860 ° C. or more and 880 ° C. or less is particularly preferable. If the firing temperature is less than 800 ° C., the base body 1 may not be obtained as a dense structure. On the other hand, if the firing temperature exceeds 930 ° C., the productivity may be lowered, for example, the base body 1 may be deformed. Further, when a metal paste containing a metal powder containing silver as a main component is used as the conductor paste, if the firing temperature exceeds 880 ° C., there is a risk that the predetermined shape cannot be maintained due to excessive softening. .

 このようにして発光素子用基板10が得られるが、焼成後、必要に応じて基板本体1の搭載面1aに露出した配線導体層3a、3bの表面を被覆するように、Ni/金メッキ(NiメッキとAuメッキの2層構成のメッキ)等の、通常発光素子用基板10において導体保護用に用いられる導電性保護膜を配設することもできる。 In this way, the light emitting element substrate 10 is obtained. After firing, Ni / gold plating (Ni) is applied so as to cover the surfaces of the wiring conductor layers 3a and 3b exposed on the mounting surface 1a of the substrate body 1 as necessary. It is also possible to dispose a conductive protective film used for conductor protection in the substrate 10 for a normal light emitting device, such as plating having a two-layer structure of plating and Au plating.

 以上、放熱体6の一部を構成する絶縁層8がガラス材料から構成される発光素子用基板10の製造方法について説明したが、前記絶縁層8がLTCCから構成される基板を製造する場合には、この絶縁層8を配置する位置に、孔のないLTCCからなるグリーンシートを使用し、前記と同様に(D)積層工程、次いで(E)焼成工程を行う。 The manufacturing method of the light emitting element substrate 10 in which the insulating layer 8 that constitutes a part of the radiator 6 is made of a glass material has been described. However, when the substrate in which the insulating layer 8 is made of LTCC is manufactured. Uses a green sheet made of LTCC having no holes at the position where the insulating layer 8 is disposed, and (D) the laminating step and then (E) the firing step are performed in the same manner as described above.

 なお、以上の発光素子用基板10の製造方法において、枠体用グリーンシートは単一のグリーンシートからなる必要はなく、複数枚のグリーンシートを積層したものであってもよい。また、枠体用グリーンシートを除いた本体用グリーンシートの枚数も限定されない。さらに、各部の形成順序等については、発光素子用基板10の製造が可能な限度において適宜変更できる。 In the manufacturing method of the light emitting element substrate 10 described above, the frame green sheet need not be a single green sheet, and may be a laminate of a plurality of green sheets. Further, the number of main body green sheets excluding the frame green sheet is not limited. Furthermore, the order of forming each part can be changed as appropriate as long as the light emitting element substrate 10 can be manufactured.

 次に、本発明の発光素子用基板10を有する発光素子装置の好ましい実施形態を、図面に基づいて説明する。ただし、本発明の発光装置はこれに限定されるものではない。図2は、本発明の発光装置の一実施形態を示す断面図である。 Next, a preferred embodiment of a light emitting device having the light emitting device substrate 10 of the present invention will be described with reference to the drawings. However, the light emitting device of the present invention is not limited to this. FIG. 2 is a cross-sectional view showing an embodiment of the light emitting device of the present invention.

 本発明の発光装置20は、上記した本発明の発光素子用基板10と、該発光素子用基板10の搭載部に搭載された1ワイヤタイプの発光素子(例えば、LED素子)11を備えている。発光素子11は、銀等の導電材料を含む導電性ダイボンド材12を用いて基板本体1の搭載部に固定されるとともに、この導電性ダイボンド材12を介して、発光素子11下面のアノード側またはカソード側の第1の電極11aが、第1の配線導体層3aに電気的に接続されている。また、発光素子11上面のカソード側またはアノード側の第2の電極11bは、第2の配線導体層3bにボンディングワイヤ13によって接続されている。さらに、これらの発光素子11やボンディングワイヤ13を覆うように、モールド樹脂からなる封止層14が設けられている。封止層14は蛍光体を含有することができる。 The light-emitting device 20 of the present invention includes the above-described light-emitting element substrate 10 of the present invention and a one-wire type light-emitting element (for example, an LED element) 11 mounted on the mounting portion of the light-emitting element substrate 10. . The light emitting element 11 is fixed to the mounting portion of the substrate body 1 using a conductive die bond material 12 containing a conductive material such as silver, and the anode side of the lower surface of the light emitting element 11 or the The cathode-side first electrode 11a is electrically connected to the first wiring conductor layer 3a. The second electrode 11b on the upper surface of the light emitting element 11 on the cathode side or the anode side is connected to the second wiring conductor layer 3b by the bonding wire 13. Further, a sealing layer 14 made of mold resin is provided so as to cover these light emitting elements 11 and bonding wires 13. The sealing layer 14 can contain a phosphor.

 本発明の発光装置20によれば、十分に低い熱抵抗を有し良好な放熱性を有する発光素子用基板10が用いられているので、発光素子11の輝度劣化が少なく、高い発光輝度が得られる。このような発光装置20は、例えば、携帯電話や大型液晶ディスプレイ等のバックライト、自動車用あるいは装飾用の照明、その他の光源として好適に使用できる。 According to the light-emitting device 20 of the present invention, since the light-emitting element substrate 10 having a sufficiently low thermal resistance and good heat dissipation is used, the luminance of the light-emitting element 11 is less deteriorated and high emission luminance is obtained. It is done. Such a light emitting device 20 can be suitably used as, for example, a backlight such as a mobile phone or a large liquid crystal display, illumination for automobiles or decoration, and other light sources.

 次に、本発明の実施例を記載する。なお、本発明はこれらの実施例に限定されるものではない。 Next, examples of the present invention will be described. The present invention is not limited to these examples.

 図1に示す発光素子用基板10の搭載部に1ワイヤタイプのLED素子(サイズ縦0.6mm、横0.6mm、厚さ0.1mm)を搭載し、銀を含む導電性ダイボンド材12により第1の配線導体層3aに固定した評価モデルを想定し、この評価モデルの熱抵抗を数値解析により求めた。解析プログラムとしてはANSYS ICEPAK Version 12.1.6を用い、入力電力は1.0Wとした。基板本体1は、LTCCにより構成された厚さ500μmのものとした。また、放熱体6の一部を構成する絶縁層8は、以下に示すガラス層またはLTCC層とし、絶縁層8の厚さdおよび絶縁層8の下面の基板本体1の非搭載面1bからの距離L2を、表1に示すように変えて解析を行った。解析結果を表1および表2に示す。また、表1に示す解析結果を図3のグラフで示す。 A 1-wire type LED element (size length 0.6 mm, width 0.6 mm, thickness 0.1 mm) is mounted on the mounting portion of the light emitting element substrate 10 shown in FIG. Assuming an evaluation model fixed to the first wiring conductor layer 3a, the thermal resistance of this evaluation model was obtained by numerical analysis. As an analysis program, ANSYS ICEPAK Version 12.1.6 was used, and the input power was 1.0 W. The substrate body 1 was made of LTCC and had a thickness of 500 μm. Further, the insulating layer 8 constituting a part of the radiator 6 is a glass layer or LTCC layer shown below, and the thickness d of the insulating layer 8 and the lower surface of the insulating layer 8 from the non-mounting surface 1b of the substrate body 1 The analysis was performed by changing the distance L2 as shown in Table 1. The analysis results are shown in Tables 1 and 2. Moreover, the analysis result shown in Table 1 is shown with the graph of FIG.

 表1および表2において、例1~9および例13,14は本発明の実施例に相当する評価モデルであり、例10~12および例15は比較例に相当する評価モデルである。相対熱抵抗値は、放熱体6に絶縁層8を設けず、導体層のみで構成したモデルについて、同様に解析して得られた熱抵抗値を基準(1.00)としたときの相対値である。相対熱抵抗値は、数値が小さいほど熱拡散性が良好であることを意味する。解析に用いた評価モデルの各構成要素の物性値(熱伝導率)を表3に示す。 In Tables 1 and 2, Examples 1 to 9 and Examples 13 and 14 are evaluation models corresponding to examples of the present invention, and Examples 10 to 12 and Example 15 are evaluation models corresponding to comparative examples. Relative thermal resistance value is a relative value when a thermal resistance value obtained by analyzing in a similar manner for a model constituted by only a conductor layer without providing the insulating layer 8 on the radiator 6 is a reference (1.00). It is. The relative thermal resistance value means that the smaller the numerical value, the better the thermal diffusivity. Table 3 shows physical property values (thermal conductivity) of each component of the evaluation model used for the analysis.

Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003

 なお、表3に示す評価モデルの基板本体および絶縁層を構成する「LTCC」、および絶縁層を構成する「ガラス」の熱伝導率は、以下に示すように作製された材料についての物性値である。 The thermal conductivity of “LTCC” constituting the substrate body and insulating layer of the evaluation model shown in Table 3 and “glass” constituting the insulating layer is a physical property value of the material produced as shown below. is there.

<LTCCの熱伝導率の測定>
 基板本体1を作製するための本体用グリーンシートおよび絶縁層用のグリーンシートは、以下に示すようにして作製する。すなわち、酸化物基準のモル%表示で、ガラス組成が、SiOが60.4%、Bが15.6%、Alが6%、CaOが15%、KOが1%、NaOが2%となるように原料を配合、混合し、この原料混合物を白金ルツボに入れて1600℃で60分間溶融させた後、溶融状態のガラスを流し出し冷却する。このガラスをアルミナ製ボールミルにより40時間粉砕してガラス粉末を製造する。なお、粉砕時の溶媒にはエチルアルコールを用いる。
<Measurement of thermal conductivity of LTCC>
The green sheet for main body and the green sheet for insulating layer for manufacturing the substrate main body 1 are manufactured as follows. That is, as represented by mol% based on oxides, glass composition, SiO 2 is 60.4%, B 2 O 3 is 15.6%, Al 2 O 3 is 6%, CaO is 15%, K 2 O is The raw materials are blended and mixed so that 1% and Na 2 O become 2%. The raw material mixture is put in a platinum crucible and melted at 1600 ° C. for 60 minutes, and then the molten glass is poured out and cooled. The glass is pulverized for 40 hours by an alumina ball mill to produce glass powder. In addition, ethyl alcohol is used as a solvent for pulverization.

 次いで、このガラス粉末が38質量%、アルミナフィラー(昭和電工社製、商品名:AL-45H)が38質量%、ジルコニアフィラー(第一稀元素化学工業社製、商品名:HSY-3F-J)が24質量%となるように配合し、混合することにより、基板本体用および絶縁層用のガラスセラミックス組成物(LTCC組成物)を製造する。このガラスセラミックス組成物50gに、有機溶剤(トルエン、キシレン、2-プロパノール、2-ブタノールを質量比4:2:2:1で混合したもの)15g、可塑剤(フタル酸ジ-2-エチルヘキシル)2.5g、バインダーとしてのポリビニルブチラール(デンカ社製、商品名:PVK#3000K)5g、さらに分散剤(ビックケミー社製、商品名:BYK180)0.5gを配合し、混合してスラリーを調製する。 Next, the glass powder was 38% by mass, the alumina filler (manufactured by Showa Denko KK, trade name: AL-45H) was 38% by mass, the zirconia filler (manufactured by Daiichi Rare Element Chemical Co., Ltd., trade name: HSY-3F-J). ) Is mixed so as to be 24% by mass, and mixed to produce a glass ceramic composition (LTCC composition) for a substrate body and an insulating layer. 50 g of this glass ceramic composition, 15 g of an organic solvent (mixed with toluene, xylene, 2-propanol, 2-butanol in a mass ratio of 4: 2: 2: 1), a plasticizer (di-2-ethylhexyl phthalate) 2.5 g, 5 g of polyvinyl butyral (made by Denka, trade name: PVK # 3000K) as a binder, and 0.5 g of a dispersant (trade name: BYK180, made by Big Chemie) are mixed and mixed to prepare a slurry. .

 このスラリーをPETフィルム上にドクターブレード法により塗布し、乾燥させたグリーンシートを焼成後の厚さが0.5mmになるように積層し、本体用グリーンシートを製造する。絶縁層用グリーンシートの場合には、焼成後の厚さが0.1mmになるように積層する。 The slurry is applied onto a PET film by a doctor blade method, and the dried green sheets are laminated so that the thickness after firing becomes 0.5 mm, thereby producing a green sheet for a main body. In the case of the green sheet for an insulating layer, it is laminated so that the thickness after firing becomes 0.1 mm.

 これらのグリーンシートを550℃で5時間保持して脱脂し、さらに870℃で30分間保持して焼成した後、焼結体(基板本体、絶縁層)の熱伝導率を測定する。こうして測定される値が、表3に示すLTCCの熱伝導率である。 These green sheets are degreased by holding them at 550 ° C. for 5 hours, and further fired by holding them at 870 ° C. for 30 minutes, and then the thermal conductivity of the sintered body (substrate body, insulating layer) is measured. The value measured in this way is the thermal conductivity of LTCC shown in Table 3.

<ガラスの熱伝導率の測定>
 絶縁層形成用のガラス粉末を、以下に示すように調製する。まず、酸化物基準のモル%表示で、ガラス組成として、SiOを81.6%、Bを16.6%、KOを1.8%となるように原料を配合、混合し、この原料混合物を白金ルツボに入れて1600℃で60分間溶融させた後、溶融状態のガラスを流し出し冷却した。このガラスをアルミナ製ボールミルにより粉砕して絶縁層用ガラス粉末を製造する。なお、粉砕時の溶媒にはエチルアルコールを用いる。
<Measurement of thermal conductivity of glass>
A glass powder for forming an insulating layer is prepared as shown below. First, the raw materials are blended and mixed so that the glass composition is 81.6% of SiO 2 , 16.6% of B 2 O 3 , and 1.8% of K 2 O in terms of mol% based on oxide. The raw material mixture was put in a platinum crucible and melted at 1600 ° C. for 60 minutes, and then the molten glass was poured out and cooled. This glass is pulverized by an alumina ball mill to produce glass powder for an insulating layer. In addition, ethyl alcohol is used as a solvent for pulverization.

 このガラス粉末をプレス機にて固化させたものを焼成してガラスのバルク体を形成した後、その熱伝導率を測定する。こうして測定される値が、表3に示すガラスの熱伝導率である。 The glass powder solidified with a press is fired to form a glass bulk body, and then the thermal conductivity is measured. The value measured in this way is the thermal conductivity of the glass shown in Table 3.

 上記表1および表2の解析結果から、絶縁層8の下面の、基板本体の非搭載面からの距離L2が基板本体1の厚さL1(500μm)の60%以下(300μm以下)となっている例1~9および例13、14(実施例)の評価モデルにおいては、前記距離L2が60%を超える搭載面1aに近い位置に絶縁層8が配置された、例10~12および例15(比較例)の評価モデルに比べて、熱抵抗が低く抑えられており、良好な放熱性を有することがわかる。 From the analysis results in Tables 1 and 2, the distance L2 from the lower surface of the insulating layer 8 to the non-mounting surface of the substrate body is 60% or less (300 μm or less) of the thickness L1 (500 μm) of the substrate body 1. In the evaluation models of Examples 1 to 9 and Examples 13 and 14 (Examples), the insulating layer 8 is disposed at a position close to the mounting surface 1a where the distance L2 exceeds 60%. As compared with the evaluation model of (Comparative Example), it can be seen that the thermal resistance is kept low, and the heat dissipation is good.

 上述のような解析プログラムを用いた数値シミュレーションによる熱抵抗値の算定に加えて、実際に発光素子用基板10を製造し、その搭載部に発光素子を実装して放熱効果を検証した。実測用のサンプル基板は、前記した発光素子用基板の製造方法にしたがって製造した。サンプル基板は2種類(例16,17)用意し、各例のサンプル基板の構成は、それぞれ例13および例15と同様にした。なお、例16は実施例であり、例17は比較例である。 In addition to the calculation of the thermal resistance value by the numerical simulation using the analysis program as described above, the light-emitting element substrate 10 was actually manufactured, and the light-emitting element was mounted on the mounting portion to verify the heat dissipation effect. The sample substrate for actual measurement was manufactured according to the method for manufacturing a substrate for a light emitting element described above. Two types of sample substrates (Examples 16 and 17) were prepared, and the configurations of the sample substrates in each example were the same as those in Example 13 and Example 15, respectively. In addition, Example 16 is an Example and Example 17 is a comparative example.

 具体的には、図1に示す構造を有するサンプル基板を用意した。基板本体1は、5mm×5mmサイズのLTCC基板で、基板本体1の厚さL1は500μmであり、放熱体6の厚さ方向の中間部等に配設される絶縁層8をLTCC層とし、絶縁層8の下面の、基板本体の非搭載面からの距離L2をそれぞれ0μm、400μmとし、絶縁層8の厚さdをいずれも100μmとした。また、発光素子として、Epistar社製のLED素子「ES-CEBLV45」(1.14mm×1.14mm)を用い、入力電力は1Wとした。実測された熱抵抗値を表4に示す。表4においては、例16において測定された熱抵抗値を1.00とした場合の相対熱抵抗値を示す。 Specifically, a sample substrate having the structure shown in FIG. 1 was prepared. The substrate body 1 is an LTCC substrate having a size of 5 mm × 5 mm, the thickness L1 of the substrate body 1 is 500 μm, and the insulating layer 8 disposed in the middle portion in the thickness direction of the radiator 6 is an LTCC layer. The distances L2 of the lower surface of the insulating layer 8 from the non-mounting surface of the substrate body were 0 μm and 400 μm, respectively, and the thickness d of the insulating layer 8 was 100 μm. Further, an LED element “ES-CEBLV45” (1.14 mm × 1.14 mm) manufactured by Epistar was used as the light emitting element, and the input power was 1 W. Table 4 shows the measured thermal resistance values. In Table 4, the relative thermal resistance value when the thermal resistance value measured in Example 16 is 1.00 is shown.

Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004

 表2に示された例13と例15の相対熱抵抗値を比較すると、例15の相対熱抵抗値と例13の相対熱抵抗値との比(例15の相対熱抵抗値/例13の相対熱抵抗値)は1.45(1.60/1.10)であったのに対し、実測された例17の相対熱抵抗値と例16の相対熱抵抗値との比は1.41である。したがって、数値シミュレーションによる予測値とサンプル基板での実測値が良好に一致することが確認できる。また、実測した熱抵抗値が表3と同様の傾向を示していることから、絶縁層8をより基板本体1の非搭載面1bに近い位置に配置することで、優れた放熱性が得られることが実証されていることが確認できる。 When the relative thermal resistance values of Example 13 and Example 15 shown in Table 2 are compared, the ratio between the relative thermal resistance value of Example 15 and the relative thermal resistance value of Example 13 (relative thermal resistance value of Example 15 / Example 13). (Relative thermal resistance value) was 1.45 (1.60 / 1.10), whereas the ratio of the actually measured relative thermal resistance value of Example 17 to the relative thermal resistance value of Example 16 was 1.41. It is. Therefore, it can be confirmed that the predicted value by the numerical simulation and the actually measured value on the sample substrate agree well. Further, since the measured thermal resistance value shows the same tendency as in Table 3, excellent heat dissipation can be obtained by disposing the insulating layer 8 closer to the non-mounting surface 1b of the substrate body 1. This can be confirmed.

 次に、図4に示すように、上端部が基板本体1の搭載面1aに接するように配設された放熱本体7aの下側に、絶縁層8をその下面が、基板本体1の非搭載面1bに達するように配置した構造を有し、放熱本体7aの下面と基板本体1の非搭載面1bとの距離(絶縁層8の厚さd)を変えた発光素子用基板10を想定した。そして、そのような発光素子用基板10の搭載部に、1ワイヤタイプのLED素子(サイズ縦0.6mm、横0.6mm、厚さ0.1mm)を搭載した評価モデルを想定し、それらの評価モデルの熱抵抗を数値解析により求めた。 Next, as shown in FIG. 4, the insulating layer 8 is disposed on the lower side of the heat radiating body 7 a disposed so that the upper end portion is in contact with the mounting surface 1 a of the substrate body 1. A light emitting element substrate 10 having a structure arranged so as to reach the surface 1b and changing the distance (the thickness d of the insulating layer 8) between the lower surface of the heat radiating body 7a and the non-mounting surface 1b of the substrate body 1 is assumed. . Further, assuming an evaluation model in which a 1-wire type LED element (size: 0.6 mm, width: 0.6 mm, thickness: 0.1 mm) is mounted on the mounting portion of the light emitting element substrate 10, The thermal resistance of the evaluation model was obtained by numerical analysis.

 解析プログラムとしては、前記した解析と同様にANSYS ICEPAK Version 12.1.6を使用し、入力電力は1.0Wとした。基板本体1は、LTCCにより構成された厚さL1が500μmのものとした。また、絶縁層8は、基板本体1と同様にLTCCにより構成されたものとした。さらに、放熱本体7aは、基板の厚さ方向に垂直な断面が、一辺の長さが1.2mmの正方形である角柱状のものを想定し、表3に示す各構成要素の物性値(熱伝導率)を使用して解析を行った。解析結果を表5に示す。また、表5に示す解析結果を図5のグラフで示す。 As the analysis program, ANSYS ICEPAK Version 12.1.6 was used as in the above analysis, and the input power was 1.0 W. The substrate body 1 was made of LTCC and had a thickness L1 of 500 μm. Further, the insulating layer 8 is made of LTCC as in the case of the substrate body 1. Further, the heat radiating body 7a is assumed to have a prismatic shape in which the cross section perpendicular to the thickness direction of the substrate is a square having a side length of 1.2 mm, and the physical property values (heat Conductivity) was used for analysis. The analysis results are shown in Table 5. Moreover, the analysis result shown in Table 5 is shown with the graph of FIG.

 表5において、例19~26は本発明の実施例に相当する評価モデルであり、例27~33は比較例に相当する評価モデルである。表5における基板本体1の厚さに対する絶縁層8の下面の非搭載面からの距離の割合(%)とは、図4における、放熱本体7aの下面(または絶縁層8の上面)と基板本体1の非搭載面1bとの距離dを、基板本体1の厚さL1で除した値の百分率を表す。また、相対熱抵抗値は、放熱本体7aの下側に絶縁層8を設けず、導体層のみで放熱体を構成した例18のモデルについて、同様に解析して得られた熱抵抗値を基準(1.00)としたときの相対値である。 In Table 5, Examples 19 to 26 are evaluation models corresponding to examples of the present invention, and Examples 27 to 33 are evaluation models corresponding to comparative examples. The ratio (%) of the distance from the non-mounting surface of the lower surface of the insulating layer 8 to the thickness of the substrate body 1 in Table 5 is the lower surface of the heat radiating body 7a (or the upper surface of the insulating layer 8) and the substrate body in FIG. 1 represents a percentage of a value obtained by dividing the distance d from the non-mounting surface 1b by 1 by the thickness L1 of the substrate body 1. The relative thermal resistance value is based on the thermal resistance value obtained by analyzing the model of Example 18 in which the heat radiating body is configured only by the conductor layer without providing the insulating layer 8 below the heat radiating body 7a. Relative value when (1.00).

Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005

 表5および図5の解析結果から、基板本体1の厚さに対する絶縁層8の下面の、基板本体1の非搭載面1bからの距離の割合(d/L1)(%)が60%以下である場合に、十分に低い熱抵抗が得られ、40%以下である場合にさらに熱抵抗が低くなることがわかる。すなわち、放熱本体7aが、その下面の、基板本体1の非搭載面1bからの距離dが基板本体の厚さL1の60%以下、好ましくは40%以下となるような、十分な長さを持つ場合に、熱抵抗がそれほど上昇せず、良好な放熱性を示すことがわかる。 From the analysis results of Table 5 and FIG. 5, the ratio (d / L1) (%) of the distance from the lower surface of the insulating layer 8 to the thickness of the substrate body 1 from the non-mounting surface 1b of the substrate body 1 is 60% or less. It can be seen that in some cases, a sufficiently low thermal resistance is obtained, and when it is 40% or less, the thermal resistance is further reduced. That is, the heat dissipating body 7a has a sufficient length so that the distance d from the lower surface 1b of the substrate body 1 to the heat dissipating body 7a is 60% or less, preferably 40% or less of the thickness L1 of the substrate body. When it has, it turns out that a thermal resistance does not raise so much and shows favorable heat dissipation.

 さらに、例20の評価モデルにおいて、放熱本体7aの断面積を変えた場合の熱抵抗値の変化も解析した。すなわち、基板本体1および絶縁層8がLTCCから構成される、図4に示す構造を有する発光素子用基板10において、基板本体1の厚さL1を500μm、放熱本体7aの下面と基板本体1の非搭載面1bとの距離dを100μmとする評価モデルにおいて、放熱本体7aの基板の厚さ方向に垂直な断面の断面積を変えた例34~41の評価モデルについて、前記解析プログラムを用いて熱抵抗値を解析した。LED素子は、縦0.6mm、横0.6mmの正方形の底面を有し、厚さ0.1mmの1ワイヤタイプのものとする。解析結果を表6に示す。また、表6に示す解析結果を図6のグラフで示す。 Furthermore, in the evaluation model of Example 20, the change in the thermal resistance value when the cross-sectional area of the heat radiating body 7a was changed was also analyzed. That is, in the light emitting element substrate 10 having the structure shown in FIG. 4 in which the substrate body 1 and the insulating layer 8 are made of LTCC, the thickness L1 of the substrate body 1 is 500 μm, the lower surface of the heat radiating body 7a and the substrate body 1 In the evaluation model in which the distance d from the non-mounting surface 1b is 100 μm, the evaluation model of Examples 34 to 41 in which the cross-sectional area of the cross section perpendicular to the thickness direction of the substrate of the heat radiating body 7a is changed using the above analysis program The thermal resistance value was analyzed. The LED element is a one-wire type having a square bottom of 0.6 mm in length and 0.6 mm in width and having a thickness of 0.1 mm. The analysis results are shown in Table 6. The analysis results shown in Table 6 are shown in the graph of FIG.

 表6において、発光素子の底面積に対する放熱本体7aの大きさの割合とは、放熱本体7aの断面積を発光素子の底面積で除した値を表す。相対熱抵抗値は、放熱本体7aの断面積が、上記した縦0.6mm、横0.6mmのサイズの発光素子と同じ正方形の底面積を有する例36の評価モデルについて、解析して得られた熱抵抗値を基準(1.00)としたときの相対値である。なお、前記例20の評価モデルにおいて、放熱本体7aの断面は一辺の長さが1.2mmの正方形を呈し、発光素子の底面積に対する放熱本体7aの大きさの割合は4.00倍(400%)となる。したがって、例37の評価モデルは例20の評価モデルでもある。 In Table 6, the ratio of the size of the heat radiating body 7a to the bottom area of the light emitting element represents a value obtained by dividing the cross-sectional area of the heat radiating body 7a by the bottom area of the light emitting element. The relative thermal resistance value is obtained by analyzing the evaluation model of Example 36 in which the cross-sectional area of the heat radiating body 7a has the same square bottom area as the light emitting element having the size of 0.6 mm in length and 0.6 mm in width. It is a relative value when the thermal resistance value is the reference (1.00). In the evaluation model of Example 20, the cross section of the heat radiating body 7a is a square with a side length of 1.2 mm, and the ratio of the size of the heat radiating body 7a to the bottom area of the light emitting element is 4.00 (400 times). %). Therefore, the evaluation model of Example 37 is also the evaluation model of Example 20.

Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006

 表6の解析結果から、発光素子の底面積に対する放熱本体7aの断面積の割合が大きいほど、熱抵抗が低く、良好な放熱性を有することがわかる。しかし、前記放熱本体7aの断面積が大きくなると、放熱本体7aを構成する貴金属等の材料コストが増大するデメリットがあることから、放熱本体7aの断面積が発光素子の底面積の0.2倍~16倍の範囲とすれば、材料コストの増大を抑え、かつ十分な放熱性能が得られることがわかる。さらに、材料コストと放熱性能のバランスの観点から、放熱本体7aの断面積の割合のより好ましい範囲は、発光素子の底面積の1.0倍~4.0倍である。
 発光素子の底面積に対する放熱本体7bの断面積の割合が大きいほど、熱抵抗が低く、良好な放熱性を有することも、放熱本体7aの場合と同様である。
From the analysis results of Table 6, it can be seen that the larger the ratio of the cross-sectional area of the heat radiating body 7a to the bottom area of the light emitting element, the lower the thermal resistance and the better the heat dissipation. However, if the cross-sectional area of the heat radiating body 7a is increased, there is a demerit that the material cost of the noble metal and the like constituting the heat radiating body 7a is increased. It can be seen that when the range is ˜16 times, the increase in material cost can be suppressed and sufficient heat radiation performance can be obtained. Further, from the viewpoint of the balance between the material cost and the heat dissipation performance, a more preferable range of the ratio of the cross-sectional area of the heat dissipation body 7a is 1.0 to 4.0 times the bottom area of the light emitting element.
As in the case of the heat radiating body 7a, the larger the ratio of the cross-sectional area of the heat radiating body 7b to the bottom area of the light emitting element, the lower the thermal resistance and the better the heat radiating property.

 本発明によれば、良好な熱拡散性を有し、かつ裏面側の電気的絶縁性が確保された発光素子用基板が得られる。そして、このような発光素子用基板を用いた本発明の発光装置は、発光素子の輝度劣化が小さく発光輝度が高いので、例えば携帯電話や大型液晶ディスプレイ等のバックライト、自動車用あるいは装飾用の照明、その他の光源として好適に使用できる。
 なお、2010年11月19日に出願された日本特許出願2010-259592号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の開示として取り入れるものである。
ADVANTAGE OF THE INVENTION According to this invention, the board | substrate for light emitting elements which has favorable thermal diffusibility and the electrical insulation of the back side was ensured is obtained. The light-emitting device of the present invention using such a light-emitting element substrate has low luminance deterioration and high light-emitting luminance. For example, backlights for mobile phones and large liquid crystal displays, automobiles, or decorations. It can be suitably used as an illumination or other light source.
The entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2010-2559592 filed on November 19, 2010 are incorporated herein as the disclosure of the present invention. .

1…基板本体、2…枠体、3…配線導体層(配線導体層用の導体ペースト層)、4…外部電極端子(外部電極端子用の導体ペースト層)、5…接続ビア(接続ビア用の導体ペースト層)、6…放熱体、7…放熱本体(放熱本体用の導体ペースト層)、8…絶縁層(未焼成絶縁層)、10…発光素子用基板、11…発光素子、12…導電性ダイボンド材、13…ボンディングワイヤ、14…封止層、20…発光装置。 DESCRIPTION OF SYMBOLS 1 ... Board | substrate body, 2 ... Frame, 3 ... Wiring conductor layer (conductor paste layer for wiring conductor layers), 4 ... External electrode terminal (conductor paste layer for external electrode terminals), 5 ... Connection via (for connection via) Conductor paste layer), 6 ... radiator, 7 ... heat radiating body (conductor paste layer for heat radiating body), 8 ... insulating layer (unfired insulating layer), 10 ... substrate for light emitting element, 11 ... light emitting element, 12 ... Conductive die-bonding material, 13 ... bonding wire, 14 ... sealing layer, 20 ... light emitting device.

Claims (12)

 無機絶縁材料からなり、発光素子が搭載される搭載部を含む搭載面と当該搭載面の反対側の面に非搭載面を有する基板本体と、
 前記基板本体内に、前記搭載面から前記非搭載面にかけて、一方の端部が前記搭載部に達するように設けられた放熱体を有し、
 前記放熱体は、前記非搭載面からの厚さ方向の距離が前記基板本体の厚さの60%以下となる位置に、前記放熱体の断面全体を覆うように面方向に配置された無機材料からなる絶縁層を有し、
 かつ前記放熱体の本体である前記絶縁層以外の部分は導体により構成されていることを特徴とする発光素子用基板。
A substrate body made of an inorganic insulating material, including a mounting surface including a mounting portion on which the light emitting element is mounted, and a non-mounting surface on the surface opposite to the mounting surface;
In the substrate body, from the mounting surface to the non-mounting surface, having a heat radiator provided so that one end reaches the mounting portion,
The heat radiator is an inorganic material arranged in the surface direction so as to cover the entire cross section of the heat radiator at a position where the distance in the thickness direction from the non-mounting surface is 60% or less of the thickness of the substrate body. An insulating layer made of
And the part other than the said insulating layer which is the main body of the said heat radiator is comprised with the conductor, The board | substrate for light emitting elements characterized by the above-mentioned.
 前記絶縁層は、その上面が前記非搭載面からの厚さ方向の距離が前記基板本体の厚さの40%以下となる位置に配設されている、請求項1に記載の発光素子用基板。 The light-emitting element substrate according to claim 1, wherein the insulating layer has an upper surface disposed at a position where a distance in a thickness direction from the non-mounting surface is 40% or less of a thickness of the substrate body. .  前記放熱体の前記基板本体の厚さ方向に直交する方向の断面積は、前記発光素子が搭載される搭載部の面積の0.2~16倍である、請求項1または2に記載の発光素子用基板。 3. The light emitting device according to claim 1, wherein a cross-sectional area of the heat radiating body in a direction orthogonal to a thickness direction of the substrate body is 0.2 to 16 times an area of a mounting portion on which the light emitting element is mounted. Device substrate.  前記絶縁層の厚さは、10~200μmである請求項1~3のいずれか1項に記載の発光素子用基板。 4. The light-emitting element substrate according to claim 1, wherein the insulating layer has a thickness of 10 to 200 μm.  前記絶縁層の厚さは、10~100μmである請求項1~3のいずれか1項に記載の発光素子用基板。 4. The light-emitting element substrate according to claim 1, wherein the insulating layer has a thickness of 10 to 100 μm.  前記絶縁層は、ガラスを主体とする材料からなる請求項1~5のいずれか1項に記載の発光素子用基板。 The light emitting element substrate according to any one of claims 1 to 5, wherein the insulating layer is made of a material mainly composed of glass.  前記絶縁層は、ガラス粉末とセラミックス粉末とを含むガラスセラミックス組成物の焼結体からなる請求項1~6のいずれか1項に記載の発光素子用基板。 The substrate for a light emitting device according to any one of claims 1 to 6, wherein the insulating layer is made of a sintered body of a glass ceramic composition containing glass powder and ceramic powder.  前記基板本体は、ガラス粉末とセラミックス粉末とを含むガラスセラミックス組成物の焼結体からなる請求項1~7のいずれか1項に記載の発光素子用基板。 The light-emitting element substrate according to any one of claims 1 to 7, wherein the substrate body is made of a sintered body of a glass ceramic composition containing glass powder and ceramic powder.  前記放熱体の本体を構成する導体は、Cu、Ag、Auのうちの少なくとも1種を主成分とする請求項1~8のいずれか1項に記載の発光素子用基板。 The light emitting element substrate according to any one of claims 1 to 8, wherein the conductor constituting the main body of the heat dissipating body contains at least one of Cu, Ag, and Au as a main component.  前記基板本体の搭載面に、前記発光素子を収容するための枠体を有する請求項1~9のいずれか1項に記載の発光素子用基板。 10. The light-emitting element substrate according to claim 1, further comprising a frame for housing the light-emitting element on a mounting surface of the substrate body.  請求項1~10のいずれか1項に記載の発光素子用基板と、
 前記発光素子用基板の前記搭載部に搭載された発光素子と
 を備えることを特徴とする発光装置。
A light-emitting element substrate according to any one of claims 1 to 10,
A light emitting device comprising: a light emitting element mounted on the mounting portion of the light emitting element substrate.
 前記発光素子の一方の電極は、前記発光素子用基板の前記搭載部に形成された第1の配線導体層に導電性の接着材料により接続され、他方の電極は、前記発光素子用基板の前記搭載面に前記第1の配線導体層と絶縁されて形成された第2の配線導体層にワイヤボンディングにより接続されている請求項11に記載の発光装置。 One electrode of the light-emitting element is connected to a first wiring conductor layer formed on the mounting portion of the light-emitting element substrate by a conductive adhesive material, and the other electrode is the electrode of the light-emitting element substrate. The light-emitting device according to claim 11, wherein the light-emitting device is connected to a second wiring conductor layer formed on a mounting surface by being insulated from the first wiring conductor layer by wire bonding.
PCT/JP2011/076576 2010-11-19 2011-11-17 Substrate for light-emitting element, and light-emitting device WO2012067203A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012544308A JP5862574B2 (en) 2010-11-19 2011-11-17 Light emitting element substrate and light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-259592 2010-11-19
JP2010259592 2010-11-19

Publications (1)

Publication Number Publication Date
WO2012067203A1 true WO2012067203A1 (en) 2012-05-24

Family

ID=46084124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076576 WO2012067203A1 (en) 2010-11-19 2011-11-17 Substrate for light-emitting element, and light-emitting device

Country Status (3)

Country Link
JP (1) JP5862574B2 (en)
TW (1) TW201234540A (en)
WO (1) WO2012067203A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014064218A1 (en) * 2012-10-26 2014-05-01 Osram Opto Semiconductors Gmbh Housing for an optoelectronic component and method for producing a housing
JP2016500485A (en) * 2012-12-21 2016-01-12 エプコス アクチエンゲゼルシャフトEpcos Ag Component carrier and component carrier assembly
EP2919287A4 (en) * 2012-11-06 2016-05-11 Ngk Insulators Ltd SUBSTRATE FOR LIGHT EMITTING DIODES
EP2919286A4 (en) * 2012-11-06 2016-05-11 Ngk Insulators Ltd SUBSTRATE FOR LIGHT EMITTING DIODES
JP2016103518A (en) * 2014-11-27 2016-06-02 京セラ株式会社 Wiring board and electronic device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004214436A (en) * 2003-01-06 2004-07-29 Sharp Corp Semiconductor light emitting device and manufacturing method thereof
JP2006066519A (en) * 2004-08-25 2006-03-09 Kyocera Corp WIRING BOARD FOR LIGHT EMITTING ELEMENT AND LIGHT EMITTING DEVICE
JP2006093565A (en) * 2004-09-27 2006-04-06 Kyocera Corp WIRING BOARD FOR LIGHT EMITTING ELEMENT, LIGHT EMITTING DEVICE, AND ITS MANUFACTURING METHOD
JP2009071013A (en) * 2007-09-13 2009-04-02 Ngk Spark Plug Co Ltd Mounting substrate for light emitting element

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008109079A (en) * 2006-09-26 2008-05-08 Kyocera Corp SURFACE MOUNT LIGHT EMITTING DEVICE WIRING BOARD AND LIGHT EMITTING DEVICE

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004214436A (en) * 2003-01-06 2004-07-29 Sharp Corp Semiconductor light emitting device and manufacturing method thereof
JP2006066519A (en) * 2004-08-25 2006-03-09 Kyocera Corp WIRING BOARD FOR LIGHT EMITTING ELEMENT AND LIGHT EMITTING DEVICE
JP2006093565A (en) * 2004-09-27 2006-04-06 Kyocera Corp WIRING BOARD FOR LIGHT EMITTING ELEMENT, LIGHT EMITTING DEVICE, AND ITS MANUFACTURING METHOD
JP2009071013A (en) * 2007-09-13 2009-04-02 Ngk Spark Plug Co Ltd Mounting substrate for light emitting element

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014064218A1 (en) * 2012-10-26 2014-05-01 Osram Opto Semiconductors Gmbh Housing for an optoelectronic component and method for producing a housing
EP2919287A4 (en) * 2012-11-06 2016-05-11 Ngk Insulators Ltd SUBSTRATE FOR LIGHT EMITTING DIODES
EP2919286A4 (en) * 2012-11-06 2016-05-11 Ngk Insulators Ltd SUBSTRATE FOR LIGHT EMITTING DIODES
US9402300B2 (en) 2012-11-06 2016-07-26 Ngk Insulators, Ltd. Substrate for light-emitting diode
US9408295B2 (en) 2012-11-06 2016-08-02 Ngk Insulators, Ltd. Substrate for light-emitting diode
JP2016500485A (en) * 2012-12-21 2016-01-12 エプコス アクチエンゲゼルシャフトEpcos Ag Component carrier and component carrier assembly
US10021776B2 (en) 2012-12-21 2018-07-10 Epcos Ag Component carrier and component carrier arrangement
JP2018139317A (en) * 2012-12-21 2018-09-06 エプコス アクチエンゲゼルシャフトEpcos Ag Component carrier and component carrier assembly
JP2016103518A (en) * 2014-11-27 2016-06-02 京セラ株式会社 Wiring board and electronic device

Also Published As

Publication number Publication date
JPWO2012067203A1 (en) 2014-05-19
TW201234540A (en) 2012-08-16
JP5862574B2 (en) 2016-02-16

Similar Documents

Publication Publication Date Title
JP5640632B2 (en) Light emitting device
JP5742353B2 (en) Light emitting element substrate and light emitting device
JP5729375B2 (en) Light emitting device
CN102208516A (en) Substrate for light-emitting element and light-emitting device
JP5862574B2 (en) Light emitting element substrate and light emitting device
WO2012036219A1 (en) Light-emitting element substrate and light-emitting device
US20120275166A1 (en) Substrate for mounting light-emitting element, its production process and light-emitting device
JP5644771B2 (en) Light emitting element substrate and light emitting device
JP2013149637A (en) Light emitting device and manufacturing method of the same
WO2013141322A1 (en) Method for manufacturing substrate for light-emitting element, substrate for light-emitting element, and light-emitting device
JP5725029B2 (en) Light emitting element mounting substrate and light emitting device
JP2014067965A (en) Light-emitting device
WO2012067204A1 (en) Substrate for light-emitting element, and light-emitting device
JP5812092B2 (en) Light emitting element substrate and light emitting device
JP2012074478A (en) Substrate for light emitting element, and light emitting device
JP2013183129A (en) Substrate for mounting light emitting element and light emitting device
JP2012099534A (en) Element substrate and light-emitting device
JP2011228652A (en) Substrate for light-emitting element and light-emitting device
JP2015070088A (en) Light emitting element substrate and light emitting device
JPWO2015111452A1 (en) Light emitting element substrate and light emitting device
JP2011176303A (en) Substrate for mounting light emitting element and method for manufacturing the same
JP2012238855A (en) Substrate for light emitting element and light emitting device
JP2011176110A (en) Substrate for light emitting element and light emitting device
JP2012033781A (en) Substrate for mounting light emitting element, and light emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11841995

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012544308

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11841995

Country of ref document: EP

Kind code of ref document: A1