WO2012067139A1 - Compound, field-effect transistor and process for production thereof, solar cell and process for production thereof, organic light-emitting element and process for production thereof, and composition - Google Patents
Compound, field-effect transistor and process for production thereof, solar cell and process for production thereof, organic light-emitting element and process for production thereof, and composition Download PDFInfo
- Publication number
- WO2012067139A1 WO2012067139A1 PCT/JP2011/076381 JP2011076381W WO2012067139A1 WO 2012067139 A1 WO2012067139 A1 WO 2012067139A1 JP 2011076381 W JP2011076381 W JP 2011076381W WO 2012067139 A1 WO2012067139 A1 WO 2012067139A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- compound
- semiconductor layer
- organic semiconductor
- effect transistor
- field effect
- Prior art date
Links
- 150000001875 compounds Chemical class 0.000 title claims abstract description 233
- 238000000034 method Methods 0.000 title claims description 188
- 230000005669 field effect Effects 0.000 title claims description 139
- 239000000203 mixture Substances 0.000 title claims description 97
- 238000004519 manufacturing process Methods 0.000 title claims description 81
- 230000008569 process Effects 0.000 title description 10
- 125000001931 aliphatic group Chemical group 0.000 claims abstract description 31
- 125000001424 substituent group Chemical group 0.000 claims abstract description 23
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims abstract description 18
- 125000003118 aryl group Chemical group 0.000 claims abstract description 16
- 125000005843 halogen group Chemical group 0.000 claims abstract description 12
- 239000004065 semiconductor Substances 0.000 claims description 283
- 239000000463 material Substances 0.000 claims description 105
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 claims description 39
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 39
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 28
- 125000004432 carbon atom Chemical group C* 0.000 claims description 28
- 238000004528 spin coating Methods 0.000 claims description 26
- 125000000217 alkyl group Chemical group 0.000 claims description 22
- 238000007639 printing Methods 0.000 claims description 21
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 claims description 20
- 238000005266 casting Methods 0.000 claims description 15
- 238000007740 vapor deposition Methods 0.000 claims description 15
- 238000000151 deposition Methods 0.000 claims description 14
- RELMFMZEBKVZJC-UHFFFAOYSA-N 1,2,3-trichlorobenzene Chemical compound ClC1=CC=CC(Cl)=C1Cl RELMFMZEBKVZJC-UHFFFAOYSA-N 0.000 claims description 10
- OCJBOOLMMGQPQU-UHFFFAOYSA-N 1,4-dichlorobenzene Chemical compound ClC1=CC=C(Cl)C=C1 OCJBOOLMMGQPQU-UHFFFAOYSA-N 0.000 claims description 10
- 229940117389 dichlorobenzene Drugs 0.000 claims description 10
- 238000007598 dipping method Methods 0.000 claims description 10
- 125000006165 cyclic alkyl group Chemical group 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 333
- 239000010408 film Substances 0.000 description 207
- 239000002904 solvent Substances 0.000 description 43
- 239000000758 substrate Substances 0.000 description 42
- 238000002347 injection Methods 0.000 description 37
- 239000007924 injection Substances 0.000 description 37
- 239000012298 atmosphere Substances 0.000 description 30
- 229910052751 metal Inorganic materials 0.000 description 29
- 239000002184 metal Substances 0.000 description 29
- -1 2,2-dimethylbutyl group Chemical group 0.000 description 24
- 230000001681 protective effect Effects 0.000 description 18
- 238000004544 sputter deposition Methods 0.000 description 17
- 238000001771 vacuum deposition Methods 0.000 description 17
- 238000006243 chemical reaction Methods 0.000 description 16
- 230000015572 biosynthetic process Effects 0.000 description 15
- 239000010931 gold Substances 0.000 description 15
- 229920002120 photoresistant polymer Polymers 0.000 description 15
- 229910045601 alloy Inorganic materials 0.000 description 14
- 239000000956 alloy Substances 0.000 description 14
- 239000011521 glass Substances 0.000 description 13
- SLIUAWYAILUBJU-UHFFFAOYSA-N pentacene Chemical compound C1=CC=CC2=CC3=CC4=CC5=CC=CC=C5C=C4C=C3C=C21 SLIUAWYAILUBJU-UHFFFAOYSA-N 0.000 description 13
- 229910000789 Aluminium-silicon alloy Inorganic materials 0.000 description 12
- 238000004770 highest occupied molecular orbital Methods 0.000 description 12
- 239000000243 solution Substances 0.000 description 12
- 238000003786 synthesis reaction Methods 0.000 description 12
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 11
- 229910052814 silicon oxide Inorganic materials 0.000 description 11
- 230000003647 oxidation Effects 0.000 description 10
- 238000007254 oxidation reaction Methods 0.000 description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 9
- 230000006866 deterioration Effects 0.000 description 9
- 238000000206 photolithography Methods 0.000 description 9
- 229910052710 silicon Inorganic materials 0.000 description 9
- 239000010703 silicon Substances 0.000 description 9
- 229910052782 aluminium Inorganic materials 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 8
- 239000011651 chromium Substances 0.000 description 8
- 125000004122 cyclic group Chemical group 0.000 description 8
- 230000004048 modification Effects 0.000 description 8
- 238000012986 modification Methods 0.000 description 8
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 7
- 125000001153 fluoro group Chemical group F* 0.000 description 7
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 7
- 229910052737 gold Inorganic materials 0.000 description 7
- 238000004768 lowest unoccupied molecular orbital Methods 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- 230000018044 dehydration Effects 0.000 description 6
- 238000006297 dehydration reaction Methods 0.000 description 6
- 238000001035 drying Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000005530 etching Methods 0.000 description 6
- 229910052731 fluorine Inorganic materials 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 239000010409 thin film Substances 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 5
- 239000002585 base Substances 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 238000010030 laminating Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 4
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 4
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 4
- 125000003277 amino group Chemical group 0.000 description 4
- 229910052801 chlorine Inorganic materials 0.000 description 4
- 125000001309 chloro group Chemical group Cl* 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 229920001477 hydrophilic polymer Polymers 0.000 description 4
- UEEXRMUCXBPYOV-UHFFFAOYSA-N iridium;2-phenylpyridine Chemical compound [Ir].C1=CC=CC=C1C1=CC=CC=N1.C1=CC=CC=C1C1=CC=CC=N1.C1=CC=CC=C1C1=CC=CC=N1 UEEXRMUCXBPYOV-UHFFFAOYSA-N 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- 238000000059 patterning Methods 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 230000002265 prevention Effects 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 229910000104 sodium hydride Inorganic materials 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 239000004372 Polyvinyl alcohol Substances 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 3
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 3
- 238000000862 absorption spectrum Methods 0.000 description 3
- 125000006615 aromatic heterocyclic group Chemical group 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000006482 condensation reaction Methods 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 239000007772 electrode material Substances 0.000 description 3
- 125000002950 monocyclic group Chemical group 0.000 description 3
- 125000004433 nitrogen atom Chemical group N* 0.000 description 3
- 229920000553 poly(phenylenevinylene) Polymers 0.000 description 3
- 125000003367 polycyclic group Chemical group 0.000 description 3
- 229920001721 polyimide Polymers 0.000 description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- 239000012312 sodium hydride Substances 0.000 description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 3
- UHXOHPVVEHBKKT-UHFFFAOYSA-N 1-(2,2-diphenylethenyl)-4-[4-(2,2-diphenylethenyl)phenyl]benzene Chemical group C=1C=C(C=2C=CC(C=C(C=3C=CC=CC=3)C=3C=CC=CC=3)=CC=2)C=CC=1C=C(C=1C=CC=CC=1)C1=CC=CC=C1 UHXOHPVVEHBKKT-UHFFFAOYSA-N 0.000 description 2
- MNDIARAMWBIKFW-UHFFFAOYSA-N 1-bromohexane Chemical compound CCCCCCBr MNDIARAMWBIKFW-UHFFFAOYSA-N 0.000 description 2
- 238000005160 1H NMR spectroscopy Methods 0.000 description 2
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 229920002125 Sokalan® Polymers 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- 125000003282 alkyl amino group Chemical group 0.000 description 2
- KOJCSFXTXGAEGX-UHFFFAOYSA-N anthra[2,3-g]cinnoline Chemical compound N1=NC=CC2=CC3=CC4=CC5=CC=CC=C5C=C4C=C3C=C21 KOJCSFXTXGAEGX-UHFFFAOYSA-N 0.000 description 2
- 125000002029 aromatic hydrocarbon group Chemical group 0.000 description 2
- 125000001769 aryl amino group Chemical group 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000004440 column chromatography Methods 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000011982 device technology Methods 0.000 description 2
- XUCJHNOBJLKZNU-UHFFFAOYSA-M dilithium;hydroxide Chemical compound [Li+].[Li+].[OH-] XUCJHNOBJLKZNU-UHFFFAOYSA-M 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 150000008376 fluorenones Chemical class 0.000 description 2
- 229910003472 fullerene Inorganic materials 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 150000008282 halocarbons Chemical class 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 125000005543 phthalimide group Chemical group 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 description 2
- 229920000052 poly(p-xylylene) Polymers 0.000 description 2
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 2
- 239000004584 polyacrylic acid Substances 0.000 description 2
- 229920000767 polyaniline Polymers 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 239000011970 polystyrene sulfonate Substances 0.000 description 2
- 229960002796 polystyrene sulfonate Drugs 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 238000010898 silica gel chromatography Methods 0.000 description 2
- 150000003852 triazoles Chemical class 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- DTGKSKDOIYIVQL-WEDXCCLWSA-N (+)-borneol Chemical group C1C[C@@]2(C)[C@@H](O)C[C@@H]1C2(C)C DTGKSKDOIYIVQL-WEDXCCLWSA-N 0.000 description 1
- 0 *c1c(*)c(*)c(c(*)c2Oc3c(*)c4c(*)c(*)c(*)c(*)c4c(*)c3N(*)c2c2*)c2c1* Chemical compound *c1c(*)c(*)c(c(*)c2Oc3c(*)c4c(*)c(*)c(*)c(*)c4c(*)c3N(*)c2c2*)c2c1* 0.000 description 1
- BCMCBBGGLRIHSE-UHFFFAOYSA-N 1,3-benzoxazole Chemical compound C1=CC=C2OC=NC2=C1 BCMCBBGGLRIHSE-UHFFFAOYSA-N 0.000 description 1
- 150000004057 1,4-benzoquinones Chemical class 0.000 description 1
- QKLPIYTUUFFRLV-YTEMWHBBSA-N 1,4-bis[(e)-2-(2-methylphenyl)ethenyl]benzene Chemical compound CC1=CC=CC=C1\C=C\C(C=C1)=CC=C1\C=C\C1=CC=CC=C1C QKLPIYTUUFFRLV-YTEMWHBBSA-N 0.000 description 1
- 125000004973 1-butenyl group Chemical group C(=CCC)* 0.000 description 1
- 125000001637 1-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C(*)=C([H])C([H])=C([H])C2=C1[H] 0.000 description 1
- 125000006017 1-propenyl group Chemical group 0.000 description 1
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 1
- 125000004338 2,2,3-trimethylbutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000003562 2,2-dimethylpentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- VEUMBMHMMCOFAG-UHFFFAOYSA-N 2,3-dihydrooxadiazole Chemical class N1NC=CO1 VEUMBMHMMCOFAG-UHFFFAOYSA-N 0.000 description 1
- 125000003660 2,3-dimethylpentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(C([H])([H])[H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000003764 2,4-dimethylpentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000004974 2-butenyl group Chemical group C(C=CC)* 0.000 description 1
- 125000003229 2-methylhexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000005916 2-methylpentyl group Chemical group 0.000 description 1
- 125000001622 2-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C(*)C([H])=C([H])C2=C1[H] 0.000 description 1
- VRBFTYUMFJWSJY-UHFFFAOYSA-N 28804-46-8 Chemical compound ClC1CC(C=C2)=CC=C2C(Cl)CC2=CC=C1C=C2 VRBFTYUMFJWSJY-UHFFFAOYSA-N 0.000 description 1
- 125000004336 3,3-dimethylpentyl group Chemical group [H]C([H])([H])C([H])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- ASPBNNSOXDPULW-UHFFFAOYSA-N 3-amino-6,7-dichloronaphthalen-2-ol Chemical compound ClC1=C(Cl)C=C2C=C(O)C(N)=CC2=C1 ASPBNNSOXDPULW-UHFFFAOYSA-N 0.000 description 1
- ZHVPTERSBUMMHK-UHFFFAOYSA-N 3-aminonaphthalen-2-ol Chemical compound C1=CC=C2C=C(O)C(N)=CC2=C1 ZHVPTERSBUMMHK-UHFFFAOYSA-N 0.000 description 1
- 125000004975 3-butenyl group Chemical group C(CC=C)* 0.000 description 1
- 125000004337 3-ethylpentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(C([H])([H])C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000003469 3-methylhexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000005917 3-methylpentyl group Chemical group 0.000 description 1
- DDTHMESPCBONDT-UHFFFAOYSA-N 4-(4-oxocyclohexa-2,5-dien-1-ylidene)cyclohexa-2,5-dien-1-one Chemical class C1=CC(=O)C=CC1=C1C=CC(=O)C=C1 DDTHMESPCBONDT-UHFFFAOYSA-N 0.000 description 1
- 125000000590 4-methylphenyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)C([H])([H])[H] 0.000 description 1
- RINNIXRPLZSNJJ-UHFFFAOYSA-N 5-[3-tert-butyl-4-phenyl-5-(4-phenylphenyl)phenyl]-1h-1,2,4-triazole Chemical class C=1C=CC=CC=1C=1C(C(C)(C)C)=CC(C2=NNC=N2)=CC=1C(C=C1)=CC=C1C1=CC=CC=C1 RINNIXRPLZSNJJ-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910016036 BaF 2 Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 238000003775 Density Functional Theory Methods 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- UUIQMZJEGPQKFD-UHFFFAOYSA-N Methyl butyrate Chemical compound CCCC(=O)OC UUIQMZJEGPQKFD-UHFFFAOYSA-N 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 229930192627 Naphthoquinone Chemical class 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical group OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 1
- 229920000286 Poly(2-decyloxy-1,4-phenylene) Polymers 0.000 description 1
- 229920000280 Poly(3-octylthiophene) Polymers 0.000 description 1
- 229920000291 Poly(9,9-dioctylfluorene) Polymers 0.000 description 1
- 229920012266 Poly(ether sulfone) PES Polymers 0.000 description 1
- 229920001665 Poly-4-vinylphenol Polymers 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical group [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- MCEWYIDBDVPMES-UHFFFAOYSA-N [60]pcbm Chemical compound C123C(C4=C5C6=C7C8=C9C%10=C%11C%12=C%13C%14=C%15C%16=C%17C%18=C(C=%19C=%20C%18=C%18C%16=C%13C%13=C%11C9=C9C7=C(C=%20C9=C%13%18)C(C7=%19)=C96)C6=C%11C%17=C%15C%13=C%15C%14=C%12C%12=C%10C%10=C85)=C9C7=C6C2=C%11C%13=C2C%15=C%12C%10=C4C23C1(CCCC(=O)OC)C1=CC=CC=C1 MCEWYIDBDVPMES-UHFFFAOYSA-N 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 125000005073 adamantyl group Chemical group C12(CC3CC(CC(C1)C3)C2)* 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 1
- 150000004056 anthraquinones Chemical class 0.000 description 1
- 125000005428 anthryl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C3C(*)=C([H])C([H])=C([H])C3=C([H])C2=C1[H] 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 125000001204 arachidyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- OYLGJCQECKOTOL-UHFFFAOYSA-L barium fluoride Chemical compound [F-].[F-].[Ba+2] OYLGJCQECKOTOL-UHFFFAOYSA-L 0.000 description 1
- 229910001632 barium fluoride Inorganic materials 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 238000010549 co-Evaporation Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000006547 cyclononyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- UFULAYFCSOUIOV-UHFFFAOYSA-N cysteamine Chemical compound NCCS UFULAYFCSOUIOV-UHFFFAOYSA-N 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- QXYJCZRRLLQGCR-UHFFFAOYSA-N dioxomolybdenum Chemical compound O=[Mo]=O QXYJCZRRLLQGCR-UHFFFAOYSA-N 0.000 description 1
- GNTDGMZSJNCJKK-UHFFFAOYSA-N divanadium pentaoxide Chemical compound O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 125000001072 heteroaryl group Chemical group 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 1
- 125000000040 m-tolyl group Chemical group [H]C1=C([H])C(*)=C([H])C(=C1[H])C([H])([H])[H] 0.000 description 1
- 125000002960 margaryl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000000813 microcontact printing Methods 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000003136 n-heptyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- JRNGUTKWMSBIBF-UHFFFAOYSA-N naphthalene-2,3-diol Chemical compound C1=CC=C2C=C(O)C(O)=CC2=C1 JRNGUTKWMSBIBF-UHFFFAOYSA-N 0.000 description 1
- 150000002791 naphthoquinones Chemical class 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 125000001196 nonadecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000002868 norbornyl group Chemical group C12(CCC(CC1)C2)* 0.000 description 1
- 125000003261 o-tolyl group Chemical group [H]C1=C([H])C(*)=C(C([H])=C1[H])C([H])([H])[H] 0.000 description 1
- 238000007645 offset printing Methods 0.000 description 1
- WCPAKWJPBJAGKN-UHFFFAOYSA-N oxadiazole Chemical compound C1=CON=N1 WCPAKWJPBJAGKN-UHFFFAOYSA-N 0.000 description 1
- 150000004866 oxadiazoles Chemical class 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000002958 pentadecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000001420 photoelectron spectroscopy Methods 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical class N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920002493 poly(chlorotrifluoroethylene) Polymers 0.000 description 1
- 229920000327 poly(triphenylamine) polymer Polymers 0.000 description 1
- 239000005023 polychlorotrifluoroethylene (PCTFE) polymer Substances 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 125000003548 sec-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 229940042055 systemic antimycotics triazole derivative Drugs 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 description 1
- 125000001973 tert-pentyl group Chemical group [H]C([H])([H])C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- TVIVIEFSHFOWTE-UHFFFAOYSA-K tri(quinolin-8-yloxy)alumane Chemical compound [Al+3].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 TVIVIEFSHFOWTE-UHFFFAOYSA-K 0.000 description 1
- 125000002889 tridecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- ODHXBMXNKOYIBV-UHFFFAOYSA-N triphenylamine Chemical class C1=CC=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 ODHXBMXNKOYIBV-UHFFFAOYSA-N 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D265/00—Heterocyclic compounds containing six-membered rings having one nitrogen atom and one oxygen atom as the only ring hetero atoms
- C07D265/28—1,4-Oxazines; Hydrogenated 1,4-oxazines
- C07D265/34—1,4-Oxazines; Hydrogenated 1,4-oxazines condensed with carbocyclic rings
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B19/00—Oxazine dyes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K10/00—Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
- H10K10/40—Organic transistors
- H10K10/46—Field-effect transistors, e.g. organic thin-film transistors [OTFT]
- H10K10/462—Insulated gate field-effect transistors [IGFETs]
- H10K10/466—Lateral bottom-gate IGFETs comprising only a single gate
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/15—Hole transporting layers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a novel compound, a field effect transistor using the compound and a method for producing the same, a solar cell using the compound and a method for producing the same, an organic light emitting device using the compound and a method for producing the same, and the compound.
- the present invention relates to a composition for an organic semiconductor layer of a field effect transistor, a composition for an organic semiconductor layer of a solar cell, and a composition for a carrier transport layer of an organic light emitting device.
- Patent Document 1 discloses using pentacene for a semiconductor layer of an organic semiconductor device.
- Patent Document 2 discloses poly (3-octylthiophene) as a polymer organic semiconductor used for a semiconductor layer of a field effect transistor.
- Non-Patent Document 1 discloses the use of dihydrodiazapentacene (DHDAP) as a semiconductor layer of an organic FET device.
- Patent Document 3 discloses that DHDAP into which an alkyl group is introduced is used for the carrier transport layer.
- Non-Patent Document 1 since the organic semiconductor materials disclosed in Patent Documents 1 to 3 and Non-Patent Document 1 are easily oxidized in the air atmosphere, the organic semiconductor material may be decomposed during the manufacturing process, or the organic semiconductor in the semiconductor device. Device characteristics may deteriorate as materials deteriorate.
- pentacene disclosed in Cited Document 1 has a low ionization potential and is easily oxidized in the atmosphere as shown below, resulting in a deterioration in device characteristics.
- DHDAP disclosed in Non-Patent Document 1 also has a low ionization potential and easily gives diazapentacene (DAP), which is a dehydrogenated oxidation product.
- DAP diazapentacene
- a protective film in order to improve environmental resistance.
- a technique is disclosed in which a protective film is provided by laminating a silicon oxide film, an alumina film, a silicon nitride film, an epoxy resin film, or the like on the device surface (Japanese Patent Laid-Open No. 2005-191077).
- Japanese Patent Laid-Open No. 2005-191077 Japanese Patent Laid-Open No. 2005-191077
- the organic semiconductor layer cannot be sufficiently protected against oxygen and moisture in the atmosphere, and the protective film can be formed without damaging the organic semiconductor layer.
- a material and a method for forming such a protective film are not conventionally known.
- a condensed ring compound such as pentacene has low solubility in a solvent. Therefore, when forming a film as a semiconductor layer, it is generally necessary to apply a vacuum deposition method, which is a vacuum process, and the production cost is high. Become. Usually, when an organic semiconductor layer is formed, a method in which a device is manufactured by dissolving an organic semiconductor material in an organic solvent and forming a film by a spin coating method, an inkjet method, or the like using the obtained solution is applied. Compared with the vacuum deposition method, the manufacturing cost can be greatly reduced, and an organic semiconductor device having a large area can be easily manufactured.
- an organic semiconductor material that is highly soluble in a solvent and that stably exists in an air atmosphere from the manufacturing process of the device to after it is manufactured.
- an organic semiconductor material has not been known so far.
- An aspect of the present invention has been made in view of the above circumstances, a novel compound that has high solubility in a solvent and is stable in an air atmosphere and is suitable as an organic semiconductor material, and a semiconductor device using the compound. The issue is to provide.
- One embodiment of the present invention provides a compound represented by the following general formula (1).
- R 1 is an optionally substituted aliphatic hydrocarbon group having 1 to 20 carbon atoms; R 2 to R 13 each independently has a hydrogen atom, a halogen atom or a substituent.
- Another embodiment of the present invention is the compound, wherein the R 1 is an alkyl group having 1 to 15 carbon atoms, and the R 2 to R 13 are each independently a hydrogen atom, a halogen atom, or a carbon number of 1 to 10
- the compound which is the alkyl group of may be sufficient.
- R 1 is a linear, branched, or cyclic alkyl group having 5 to 9 carbon atoms
- the R 2 to R 13 are each independently a hydrogen atom.
- it may be a compound which is a halogen atom or an alkyl group having 1 to 5 carbon atoms.
- a field effect transistor including an organic semiconductor layer including the compound.
- one embodiment of the present invention may be a field effect transistor further including a hydrophilic film, wherein the organic semiconductor layer is provided over the hydrophilic film.
- the field effect transistor further includes a gate electrode, a gate insulating film, a source electrode, and a drain electrode, and the organic semiconductor layer faces the gate electrode with the gate insulating film interposed therebetween. The field effect transistor may be provided so that the source electrode and the drain electrode are in contact with the organic semiconductor layer.
- the field effect transistor further includes a gate electrode, a gate insulating film, a source electrode, and a drain electrode, and the organic semiconductor layer faces the gate electrode with the gate insulating film interposed therebetween.
- the organic semiconductor layer may be a field effect transistor provided so as to cover the source electrode and the drain electrode.
- One embodiment of the present invention may be the field effect transistor in which the organic semiconductor layer is formed by applying the compound.
- One embodiment of the present invention may be the field effect transistor according to the field effect transistor, wherein the organic semiconductor layer is formed by vapor deposition of the compound.
- Another embodiment of the present invention is a method for manufacturing a field effect transistor including an organic semiconductor layer containing the compound, and a dipping method, a spin coating method, a casting method, and an inkjet method using the composition containing the compound And the organic semiconductor layer is formed by any one of printing methods, and the composition includes at least one selected from the group consisting of toluene, chlorobenzene, dichlorobenzene, trichlorobenzene, dichloromethane, and chloroform.
- a manufacturing method is provided.
- Another embodiment of the present invention provides a solar cell including an organic semiconductor layer containing the compound.
- the solar cell may further include a hydrophilic film, and the organic semiconductor layer may be provided over the hydrophilic film.
- the organic semiconductor layer may be formed by applying the compound.
- the organic semiconductor layer may be formed by vapor deposition of the compound.
- one embodiment of the present invention is a method for manufacturing a solar cell including an organic semiconductor layer containing the compound, and a dipping method, a spin coating method, a casting method, an ink jet method, and a method using the composition containing the compound
- the organic semiconductor layer is formed by any one of printing methods, and the composition includes at least one selected from the group consisting of toluene, chlorobenzene, dichlorobenzene, trichlorobenzene, dichloromethane, and chloroform.
- the composition includes at least one selected from the group consisting of toluene, chlorobenzene, dichlorobenzene, trichlorobenzene, dichloromethane, and chloroform.
- I will provide a.
- Another embodiment of the present invention is a solar cell including an organic semiconductor layer including a p-type semiconductor material and an n-type semiconductor material, and at least one of the p-type semiconductor material and the n-type semiconductor material includes the compound. May be.
- an organic light-emitting device including a carrier transport layer containing the compound.
- the organic light-emitting element may further include a hydrophilic film, and the carrier transport layer may be provided on the hydrophilic film.
- the carrier transport layer may be formed by applying the compound.
- the carrier transport layer may be formed by depositing the compound.
- Another embodiment of the present invention is a method for manufacturing an organic light-emitting element including a carrier transport layer containing the compound, and a dipping method, a spin coating method, a casting method, and an inkjet method using the composition containing the compound.
- the carrier transport layer is formed by any one of printing methods, and the composition is an organic light emitting device comprising at least one selected from the group consisting of toluene, chlorobenzene, dichlorobenzene, trichlorobenzene, dichloromethane, and chloroform.
- a manufacturing method is provided.
- Another embodiment of the present invention provides a composition for an organic semiconductor layer of a field effect transistor containing the compound. Another embodiment of the present invention provides a composition for an organic semiconductor layer of a solar cell containing the compound. Another embodiment of the present invention is a composition for an organic semiconductor layer of a solar cell including a p-type semiconductor material and an n-type semiconductor material, and at least one of the p-type semiconductor material and the n-type semiconductor material includes such a compound. I will provide a. Another embodiment of the present invention provides a composition for a carrier transport layer of an organic light-emitting device comprising the compound.
- a novel compound that is highly soluble in a solvent and stable in the air atmosphere and is suitable as an organic semiconductor material, and a semiconductor device using the compound can be provided.
- FIG. It is a schematic sectional drawing for demonstrating the manufacturing method of the field effect transistor shown in FIG. It is a schematic sectional drawing for demonstrating the manufacturing method of the field effect transistor shown in FIG. It is a schematic sectional drawing for demonstrating the manufacturing method of the field effect transistor shown in FIG. It is a schematic sectional drawing for demonstrating the manufacturing method of the field effect transistor shown in FIG. It is a schematic sectional drawing for demonstrating the manufacturing method of the field effect transistor shown in FIG. It is a schematic sectional drawing for demonstrating the manufacturing method of the field effect transistor shown in FIG. It is a schematic sectional drawing for demonstrating the manufacturing method of the field effect transistor shown in FIG. It is a schematic sectional drawing for demonstrating the manufacturing method of the field effect transistor shown in FIG. It is a schematic sectional drawing for demonstrating the manufacturing method of the field effect transistor shown in FIG. It is a schematic sectional drawing for demonstrating the manufacturing method of the field effect transistor shown in FIG. It is a schematic sectional drawing for demonstrating the manufacturing method of the field effect transistor shown in FIG
- FIG. It is a schematic sectional drawing for demonstrating the manufacturing method of the field effect transistor shown in FIG. It is a schematic sectional drawing for demonstrating the manufacturing method of the field effect transistor shown in FIG. It is a schematic sectional drawing for demonstrating the manufacturing method of the field effect transistor shown in FIG. It is a schematic sectional drawing for demonstrating the manufacturing method of the field effect transistor shown in FIG. It is a schematic sectional drawing for demonstrating the manufacturing method of the field effect transistor shown in FIG. It is a schematic sectional drawing for demonstrating the manufacturing method of the field effect transistor shown in FIG. It is a schematic sectional drawing for demonstrating the manufacturing method of the field effect transistor shown in FIG. It is a schematic sectional drawing for demonstrating the manufacturing method of the field effect transistor shown in FIG. It is a schematic sectional drawing for demonstrating the manufacturing method of the field effect transistor shown in FIG. It is a schematic sectional drawing for demonstrating the manufacturing method of the field effect transistor shown in FIG. It is a schematic sectional drawing for demonstrating the manufacturing method of the field effect transistor shown in FIG
- FIG. 16 is a schematic cross-sectional view for explaining a method for manufacturing the organic light-emitting element shown in FIG. 15.
- FIG. 16 is a schematic cross-sectional view for explaining a method for manufacturing the organic light-emitting element shown in FIG. 15.
- FIG. 16 is a schematic cross-sectional view for explaining a method for manufacturing the organic light-emitting element shown in FIG. 15.
- FIG. 16 is a schematic cross-sectional view for explaining a method for manufacturing the organic light-emitting element shown in FIG. 15.
- FIG. 16 is a schematic cross-sectional view for explaining a method for manufacturing the organic light-emitting element shown in FIG. 15.
- FIG. 16 is a schematic cross-sectional view for explaining a method for manufacturing the organic light-emitting element shown in FIG. 15.
- FIG. 16 is a schematic cross-sectional view for explaining a method for manufacturing the organic light-emitting element shown in FIG. 15.
- FIG. 16 is a schematic cross-sectional view for explaining a method for manufacturing the organic light-emitting element shown in FIG. 15.
- FIG. 16 is a schematic cross-sectional view for explaining a method for manufacturing the organic light-emitting element shown in FIG. 15.
- FIG. 2 is a graph showing the results of measurement of absorption intensity immediately after solution preparation and after one month of standing for the solution of compound (1-1) in Example 1.
- 10 is a graph showing measurement results of gate voltage (Vg) -drain current (Id) characteristics of the field effect transistor manufactured in Example 3.
- a compound according to one embodiment of the present invention is represented by the following general formula (1) (hereinafter abbreviated as compound (1)) and has a dibenzophenoxazine skeleton.
- R 1 is an optionally substituted aliphatic hydrocarbon group having 1 to 20 carbon atoms
- R 2 to R 13 each independently has a hydrogen atom, a halogen atom or a substituent.
- An aromatic group which may be substituted or an aliphatic hydrocarbon group having 1 to 20 carbon atoms.
- R 1 is an aliphatic hydrocarbon group having 1 to 20 carbon atoms which may have a substituent.
- the aliphatic hydrocarbon group for R 1 may be either a saturated aliphatic hydrocarbon group or an unsaturated aliphatic hydrocarbon group, and may be linear, branched, or cyclic.
- linear or branched saturated aliphatic hydrocarbon group examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, and a tert group.
- n-pentyl group isopentyl group, neopentyl group, tert-pentyl group, 1-methylbutyl group, n-hexyl group, 2-methylpentyl group, 3-methylpentyl group, 2,2-dimethylbutyl group, 2,3-dimethylbutyl group, n-heptyl group, 2-methylhexyl group, 3-methylhexyl group, 2,2-dimethylpentyl group, 2,3-dimethylpentyl group, 2,4-dimethylpentyl group, 3 , 3-dimethylpentyl group, 3-ethylpentyl group, 2,2,3-trimethylbutyl group, n-octyl group, isooctyl group, nonyl group, decyl group Undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, he
- the linear or branched saturated aliphatic hydrocarbon group may have 1 to 20 carbon atoms.
- the alkyl group is preferably an alkyl group having 1 to 15 carbon atoms, and more preferably an alkyl group having 5 to 9 carbon atoms. By doing in this way, it can be set as a compound with high solubility with respect to a solvent.
- the solubility of the chain length of the alkyl chain introduced into the condensed ring compound having high planarity J. Am. Chem. Soc. 2007, 129, and 15732.
- the solubility is particularly good when the chain length of the alkyl chain is 5 to 9, and it is shown that the solubility decreases as the chain length becomes longer.
- the alkyl substituent to be introduced preferably has 5 to 9 carbon atoms, and it can be assumed that any carbon number has the same effect on solubility.
- linear or branched unsaturated aliphatic hydrocarbon group examples include a vinyl group (ethenyl group), an allyl group (2-propenyl group), a 1-propenyl group, a 1-butenyl group, a 2-butenyl group,
- a single bond (C—C) between one or more carbon atoms is a double bond (C ⁇ C) or a triple bond (C ⁇ C) can be exemplified, and the number and position of unsaturated bonds are not particularly limited.
- the cyclic aliphatic hydrocarbon group may be monocyclic or polycyclic.
- Examples of the cyclic saturated aliphatic hydrocarbon group (cycloalkyl group) include cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, tricyclodecyl group, adamantyl Group, tetracyclododecyl group, isobornyl group, norbornyl group and the like.
- cyclic unsaturated aliphatic hydrocarbon group a double bond (C—C) between one or more carbon atoms in the cyclic saturated aliphatic hydrocarbon group is an unsaturated bond ( Examples include those substituted with C ⁇ C) or triple bonds (C ⁇ C), and the number and position of unsaturated bonds are not particularly limited.
- the cyclic aliphatic hydrocarbon group may have 3 to 20 carbon atoms. In view of the relationship between the carbon number of the cyclic aliphatic hydrocarbon group and the solubility, it is preferably a cyclic aliphatic hydrocarbon group having 3 to 15 carbon atoms, and a cyclic aliphatic carbon group having 5 to 9 carbon atoms. More preferably, it is a hydrogen group. By doing in this way, it can be set as a compound with high solubility with respect to a solvent.
- one or more hydrogen atoms may be substituted with a substituent.
- substituents include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom; hydroxyl group; mercapto group; nitro group; amino group; alkoxy group; aryl group; alkylamino group; arylamino group; Can be illustrated.
- the position and number of hydrogen atoms substituted with the substituent are not particularly limited.
- alkoxy group as the substituent in R 1 examples include a monovalent group in which the alkyl group in R 1 is bonded to an oxygen atom.
- the aryl group as the substituent in R 1 may be monocyclic or polycyclic, and may be a phenyl group, a 2-methylphenyl group, a 3-methylphenyl group, a 4-methylphenyl group, or a 2,6-dimethylphenyl group. 2,4,6-trimethylphenyl group, 1-ethylphenyl group, 1-propylphenyl group, 1-butylphenyl group, 1-naphthyl group, 2-naphthyl group, anthryl group and the like.
- the alkylamino group as a substituent in R 1, one or two hydrogen atoms, monovalent group substituted with the same alkyl group and the alkyl group in R 1 amino group (-NH 2) can be illustrated.
- Examples of the arylamino group as the substituent in R 1 include a monovalent group in which one or two hydrogen atoms of an amino group (—NH 2 ) are substituted with the aryl group.
- Examples of the acyl group as the substituent in R 1 include a monovalent group in which the alkyl group or aryl group in R 1 is bonded to a carbonyl group (—C ( ⁇ O) —).
- R 1 is preferably a saturated aliphatic hydrocarbon group (alkyl group).
- each of R 2 to R 13 is independently a hydrogen atom, a halogen atom, or an optionally substituted aromatic group or an aliphatic hydrocarbon group having 1 to 20 carbon atoms.
- the halogen atom in R 2 to R 13 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
- the aromatic group in R 2 to R 13 may be monocyclic or polycyclic, and may be any of an aromatic hydrocarbon group (aryl group) and an aromatic heterocyclic group (heteroaryl group).
- the aromatic hydrocarbon group for R 2 to R 13 is the same as the aryl group as a substituent for R 1 .
- the aromatic heterocyclic group in R 2 to R 13 is not particularly limited as long as it has a hetero atom as an atom constituting the aromatic ring.
- the hetero atom include a nitrogen atom, an oxygen atom, a sulfur atom, A selenium atom etc. can be illustrated.
- Preferred examples of the aromatic heterocyclic group include a pyridyl group, a furyl group, a thienyl group, and a selenothienyl group.
- the aliphatic hydrocarbon group for R 2 to R 13 is the same as the aliphatic hydrocarbon group for R 1 , preferably a saturated aliphatic hydrocarbon group, and may be linear or branched. preferable.
- An alkyl group having 1 to 10 carbon atoms is preferable, and an alkyl group having 1 to 5 carbon atoms is more preferable. By doing so, the influence of repulsion between molecules due to steric hindrance of the substituent can be suppressed.
- one or more hydrogen atoms may be substituted with a substituent.
- the substituent is the same as the substituent in R 1 .
- R 2 to R 13 are preferably a hydrogen atom, a halogen atom, an alkyl group having 1 to 5 carbon atoms, or an aromatic group having 3 to 12 carbon atoms which may have a substituent.
- Compound (1) is stable even in an air atmosphere, such as high solubility in a solvent and high oxidation resistance. Therefore, as described later, it is particularly suitable as an organic semiconductor material for organic electronic devices (semiconductor devices) such as field effect transistors, solar cells, and organic light emitting elements.
- organic electronic devices semiconductor devices
- the high oxidation resistance of the compound (1) is presumed to be due to the fact that the main skeleton is a dibenzophenoxazine skeleton, thereby reducing the HOMO level.
- the high solubility of the compound (1) in the solvent is presumed to be because R 1 is bonded to the nitrogen atom constituting the dibenzophenoxazine skeleton.
- Compound (1) can be produced, for example, by the method shown below. That is, a compound represented by the following general formula (1a) (hereinafter abbreviated as compound (1a)) and a compound represented by the following general formula (1b) (hereinafter abbreviated as compound (1b)). A step of reacting to synthesize a compound represented by the following general formula (1c) (hereinafter abbreviated as compound (1c)) (hereinafter abbreviated as compound (1c) synthesis step), and compound (1c); And a step of reacting a compound represented by the following general formula (1d) (hereinafter abbreviated as compound (1d)) to synthesize compound (1) (hereinafter abbreviated as compound (1) synthesis step). A compound (1) can be manufactured by the method which has this.
- R 1 to R 13 are the same as described above; X is a chlorine atom or a bromine atom.
- Compound (1c) synthesis step In the compound (1c) synthesis step, compounds (1a) and (1b) are subjected to a dehydration condensation reaction.
- R 2 to R 13 are the same as in the case of the compound (1).
- the amount of compound (1a) used is preferably 0.5 to 1.5 times the molar amount of compound (1b).
- the dehydration condensation reaction may be performed using a solvent or may be performed without a solvent, but is preferably performed without a solvent from the viewpoint that the reaction can proceed promptly. A solvent will not be specifically limited if it does not react with the raw material to be used.
- the dehydration condensation reaction may be performed under normal pressure or reduced pressure.
- reaction temperature suitably according to the kind etc. of raw material to be used.
- the temperature is preferably 150 to 260 ° C.
- reaction time it is preferably 1 to 24 hours.
- post-treatment may be performed as necessary to take out the product compound (1c).
- post-treatment refers to operations such as filtration, concentration, extraction, dehydration, and pH adjustment, and any one of these operations may be performed alone or in combination of two or more.
- the compound (1c) can be removed by operations such as concentration, crystallization, column chromatography, etc., and operations such as column chromatography, crystallization, extraction, and stirring and washing of the crystals with a solvent can be performed as necessary. Purification may be performed by repeating once or more. Moreover, you may post-process as needed and may perform the next process (compound (1) synthetic
- Compound (1) synthesis step In the compound (1) synthesis step, compounds (1c) and (1d) are reacted to introduce an aliphatic hydrocarbon group into the nitrogen atom of compound (1c).
- R 1 is the same as in compound (1).
- X is a chlorine atom or a bromine atom.
- the amount of compound (1d) used is preferably 1 to 3 times the molar amount of compound (1c).
- the amount of compound (1d) used should be set in consideration of the amount of compound (1a) used and the reaction rate of compound (1c) in the synthesis step of compound (1c). That's fine.
- the reaction is preferably performed in the presence of a base.
- the base is preferably a strong base such as sodium hydride (NaH) or n-butyllithium (n-BuLi).
- the usage-amount of a base is the same as the usage-amount of a compound (1d).
- the reaction is preferably performed using a solvent, and the solvent is not particularly limited as long as it does not react with the raw material used, but N, N-dimethylformamide (DMF) and the like can be exemplified as a preferable one.
- the reaction is preferably performed under anhydrous conditions.
- the reaction temperature may be appropriately set according to the type of raw material used, but is preferably 15 to 30 ° C.
- the reaction time may be adjusted so as to maximize the amount of compound (1) produced in consideration of the reaction temperature, but it is preferably 1 to 12 hours.
- post-treatment may be performed as necessary to take out the target compound (1).
- compound (1), compound (1c), etc. can be confirmed by a known method such as nuclear magnetic resonance spectroscopy ( 1 H-NMR, 13 C-NMR).
- composition for organic semiconductor layers of a field effect transistor includes the compound (1).
- compound (1) has high solubility in a solvent. Therefore, the composition for an organic semiconductor layer of the present embodiment in which the compound (1) is dissolved in a solvent can be easily prepared.
- the organic semiconductor layer of the field effect transistor can be formed by a dipping method, a spin method, or the like. It can be formed by a simple method such as a coating method, a casting method, an ink jet method, or a printing method.
- the organic semiconductor layer may be formed by depositing the compound (1) by a vacuum deposition method or the like. However, the manufacturing cost of the field effect transistor can be significantly reduced by simply forming a film without using a vacuum apparatus or the like as described above.
- a method of forming the organic semiconductor layer by applying the composition (compound (1)) is suitable.
- composition for an organic semiconductor layer of the present embodiment preferably contains a hydrocarbon such as toluene or a halogenated hydrocarbon such as dichloromethane, chloroform, chlorobenzene, dichlorobenzene, or trichlorobenzene, or a mixture thereof as a solvent component.
- a hydrocarbon such as toluene or a halogenated hydrocarbon such as dichloromethane, chloroform, chlorobenzene, dichlorobenzene, or trichlorobenzene, or a mixture thereof as a solvent component.
- the composition for organic semiconductor layers may contain at least one of toluene, chlorobenzene, dichlorobenzene, trichlorobenzene, dichloromethane, and chloroform as a solvent component.
- composition for an organic semiconductor layer may contain only the compound (1) in addition to the solvent component, or may contain a component other than the compound (1).
- the ratio of the compound (1) to all components other than the solvent component is preferably 90% by mass or more, and more preferably 100% by mass (including only the compound (1)).
- the compound (1) contained in the composition for organic semiconductor layers may be one kind or two or more kinds. In the case of two or more kinds, the combination and ratio may be appropriately set according to the purpose.
- the content of the compound (1) is preferably 0.2 to 5% by mass.
- composition for organic semiconductor layer of solar cell is the same as the composition for an organic semiconductor layer of the above-described field effect transistor except that it contains the compound (1) and has a different use.
- the composition for an organic semiconductor layer of this embodiment in which the compound (1) is dissolved in a solvent can be easily prepared, and the organic semiconductor layer of a solar cell can be formed by a simple method by using such a composition. .
- composition for an organic semiconductor layer includes a p-type semiconductor material and an n-type semiconductor material, and the p-type semiconductor material and / or the n-type semiconductor material is Compound (1) is included. Since the composition for organic semiconductor layers of this embodiment can be easily prepared by dissolving the compound (1) in a solvent, the organic semiconductor layer for solar cells is similar to the organic semiconductor layer composition for field effect transistors described above. Can be formed by a simple method.
- the organic semiconductor layer of the solar cell may be formed by vapor-depositing the compound (1) by a vacuum vapor deposition method or the like, but by simply forming a film without using a vacuum device or the like, the manufacturing cost of the solar cell can be reduced. In particular, a method of forming the organic semiconductor layer by applying the composition (compound (1)) is suitable.
- the p-type semiconductor material and / or the n-type semiconductor material may be composed only of the compound (1) or may contain components other than the compound (1).
- the ratio of the compound (1) to the semiconductor material is preferably 90% by mass or more, and more preferably 100% by mass (consisting only of the compound (1)).
- the compound (1) contained in the semiconductor material may be one kind or two or more kinds. In the case of two or more kinds, the combination and ratio may be appropriately set according to the purpose.
- n-type semiconductor material examples include those exemplified as the material of the n-type semiconductor layer in the solar cell described later.
- fullerene; [6,6] -phenyl is preferable.
- fullerene derivatives such as C61 butyric acid methyl ester (PCBM); fluorinated phthalocyanines in which one or more hydrogen atoms constituting the phthalimide ring are substituted with fluorine atoms. In the fluorinated phthalocyanine, all hydrogen atoms constituting the phthalimide ring may be substituted with fluorine atoms.
- the organic semiconductor layer composition preferably contains, as a solvent component, a hydrocarbon such as toluene or a halogenated hydrocarbon such as dichloromethane, chloroform, chlorobenzene, dichlorobenzene, or trichlorobenzene, or a mixture thereof.
- a hydrocarbon such as toluene or a halogenated hydrocarbon such as dichloromethane, chloroform, chlorobenzene, dichlorobenzene, or trichlorobenzene, or a mixture thereof.
- the composition for organic semiconductor layers may contain at least one of toluene, chlorobenzene, dichlorobenzene, trichlorobenzene, dichloromethane, and chloroform as a solvent component.
- the content of the p-type semiconductor material is preferably 0.2 to 5% by mass.
- the content of the n-type semiconductor material is preferably 0.2 to 5% by mass.
- composition for a carrier transport layer is the same as the composition for an organic semiconductor layer of the above-described field effect transistor except that it contains the compound (1) and has a different use.
- the carrier transport layer composition of the present embodiment in which the compound (1) is dissolved in a solvent can be easily prepared.
- the carrier transport layer of the organic light emitting device can be formed by a simple method. it can.
- the field effect transistor which concerns on 1 aspect of this invention is equipped with the organic-semiconductor layer containing a compound (1). And it can be set as the structure similar to the conventional field effect transistor except having provided this organic-semiconductor layer.
- the compound (1) is mainly used as a p-type semiconductor, but functions as an n-type semiconductor when a substituent having a strong electron-withdrawing property such as a fluorine atom is introduced or depending on the selection of an electrode material. It is also possible to make it.
- description will be given with reference to the drawings.
- FIG. 1 is a schematic cross-sectional view illustrating the main part of the field effect transistor according to the first embodiment.
- the field effect transistor 1 ⁇ / b> A shown here is schematically configured by laminating a gate electrode 12, a gate insulating film 13, a source electrode 14, a drain electrode 15, and an organic semiconductor layer 16 on a substrate 11. More specifically, the gate electrode 12 is provided on a part of the substrate 11. Further, a gate insulating film 13 is provided on the substrate 11 so as to cover the gate electrode 12. On the gate insulating film 13, a source electrode 14 and a drain electrode 15 are provided apart from each other. Further, an organic semiconductor layer 16 is provided on the gate insulating film 13 so as to cover the source electrode 14 and the drain electrode 15. The organic semiconductor layer 16 is provided so as to face the gate electrode 12 with the gate insulating film 13 interposed therebetween.
- the field effect transistor 1A has a bottom-gate / bottom-contact transistor structure.
- the material of the substrate 11 can be appropriately selected according to the configuration and performance of the device.
- the substrate 11 may have a single layer structure made of one kind of material, or may have a multiple layer structure in which two or more kinds of materials are laminated.
- the material of the gate electrode 12 is not particularly limited, and may be one normally used in the field. Specifically, low resistance metals such as gold, platinum, silver, copper, aluminum, tantalum, and doped silicon; 3,4-polyethylenedioxythiophene (hereinafter abbreviated as PEDOT) / polystyrene sulfonate (hereinafter, referred to as “PETOT”) Examples thereof include organic conductors such as PSS).
- PEDOT 3,4-polyethylenedioxythiophene
- PET polystyrene sulfonate
- the material of the source electrode 14 and the drain electrode 15 is close to the highest occupied molecular orbital (HOMO) level or the lowest unoccupied molecular orbital (LUMO) level of the composition for the organic semiconductor layer.
- Materials close to the HOMO level include metals with relatively high work functions such as gold, platinum, silver, or alloys containing one or more of these; transparent oxides such as indium tin oxide (ITO) and zinc oxide (ZnO)
- ITO indium tin oxide
- ZnO zinc oxide
- Physical conductors Organic conductors such as PEDOT / PSS can be exemplified.
- Examples of the material close to the LUMO level include metals having a relatively low work function such as aluminum, titanium, alkali metals, or alloys containing one or more of these.
- Examples of the alkali metal include lithium, sodium, and potassium.
- the source electrode 14 and the drain electrode 15 may be formed on the gate insulating film 13 through an adhesion layer (not shown).
- adhesion layer examples include chromium.
- the thicknesses of the gate electrode 12, the source electrode 14, and the drain electrode 15 are not particularly limited as long as they are normal transistor thicknesses, and are preferably adjusted as appropriate according to the purpose.
- the material is a metal, it is preferably 30 nm to 200 nm.
- These electrodes can be formed, for example, by vapor deposition, sputtering, coating, or the like depending on the material.
- the material of the gate insulating film 13 is preferably a material having a high dielectric constant and hardly causing defects such as pinholes when forming a thin film. Since the dielectric constant is high, the threshold value of the field effect transistor can be further reduced. In addition, by reducing defects such as pinholes when forming a thin film, a function effect of the gate insulating film 13 is suppressed and a field effect transistor with better characteristics can be obtained.
- examples of such films include inorganic insulating films such as silicon oxide films, silicon nitride films, tantalum pentoxide films, and aluminum oxide films; organic insulating films such as polyimide films, parylene films, and polyvinylphenol films.
- the film thickness of the gate insulating film 13 is preferably set so that the capacitance per unit area is increased, and the threshold voltage of the field effect transistor can be further reduced by reducing the film thickness.
- the film thickness of the gate insulating film 13 is preferably adjusted as appropriate according to the relative dielectric constant, insulation, etc. of the material, and is preferably 50 nm to 300 nm, for example. By doing so, the capacitance per unit area can be increased, and the threshold voltage of the field effect transistor can be reduced.
- the gate insulating film 13 can be formed by, for example, vapor deposition, sputtering, coating, or the like depending on the material.
- the gate insulating film 13 is a silicon oxide film, a silicon nitride film or the like
- the surface in contact with the organic semiconductor layer 16 is preferably treated with a silane coupling agent or the like.
- the organic semiconductor layer 16 includes the compound (1).
- it may be formed by applying a composition containing the compound (1), or by using the composition for an organic semiconductor layer described above, a dipping method, a casting method, a spin coating method, an inkjet method. It may be formed by a low-cost thin film forming method such as a printing method or a printing method, or may be formed by depositing the compound (1) by a vacuum vapor deposition method or the like.
- the compound (1) has high oxidation resistance. Therefore, the organic semiconductor layer 16 containing the compound (1) is stable in the air atmosphere.
- the organic semiconductor layer 16 is preferably provided on a hydrophilic film.
- the film quality of the organic semiconductor layer 16 can be made more uniform.
- the “hydrophilic film” refers to a film having a hydrophilic group on the surface.
- a hydrophilic film may be separately provided on the gate insulating film 13.
- At least the surface itself may be hydrophilic.
- the material of the hydrophilic film in this case include metal oxide insulators such as a silicon oxide film and an aluminum oxide film; hydrophilic polymers such as polyethylene glycol, polyacrylic acid, and polyvinyl alcohol.
- a protective film may be further provided on at least the organic semiconductor layer 16.
- the organic semiconductor layer 16 can be protected from erosion by oxygen, moisture, or the like, so that the field effect transistor 1A exhibits more stable semiconductor characteristics.
- a field effect transistor 1A ′ shown in FIG. 2 is obtained by covering the entire surface of the organic semiconductor layer 16 with a protective film 17 in the field effect transistor shown in FIG.
- the protective film 17 may be either an organic film or an inorganic film.
- the material of the organic film polyparylene (paraxylylene polymer); epoxy resin; acrylic resin; polyparaxylene; polyperfluoroolefin, polyperfluoroether, polytetrafluoroethylene, polychlorotrifluoroethylene, polydichlorodifluoroethylene, etc.
- fluorine-based polymer polyimide and the like.
- Examples of the material of the inorganic film include metal nitride, metal oxide, carbon, silicon and the like.
- the protective film 17 may have either a single layer structure or a multilayer structure.
- FIG. 3 is a schematic cross-sectional view illustrating the main part of the field effect transistor according to the second embodiment.
- the field effect transistor 1B shown here is shown in FIG. 1 except that the surface modification layer 18 is provided on the surface of the source electrode 14 and the drain electrode 15 and the organic semiconductor layer 16 is in contact with the surface modification layer 18. This is the same as the field effect transistor 1A shown.
- the surface modification layer 18 can be formed by, for example, causing a surface modifier to act on the surfaces of the source electrode 14 and the drain electrode 15 and may be composed of either an organic molecule or an inorganic molecule.
- the surface modification layer 18 is preferably a hydrophilic film. By doing so, the film quality of the organic semiconductor layer 16 can be made more uniform. In particular, when the organic semiconductor layer 16 is formed by placing the above composition for an organic semiconductor layer, a remarkable effect is obtained. It is done.
- a hydrophilic film is separately provided as the surface modification layer 18 on the source electrode 14 and the surface of the drain electrode 15 .
- the organic semiconductor layer 16 may be in contact with the hydrophilic film.
- the hydrophilic film is preferably provided separately by modifying the surfaces of the source electrode 14 and the drain electrode 15 by surface treatment.
- examples of the hydrophilic group possessed by the hydrophilic film include a hydroxyl group, an amino group, a carboxyl group, a sulfonic acid group, and a phosphoric acid group.
- FIG. 4 is a schematic cross-sectional view illustrating the main part of the field effect transistor according to the third embodiment.
- the field effect transistor 1 ⁇ / b> C shown here is schematically configured by laminating a gate electrode 12, a gate insulating film 13, an organic semiconductor layer 16, a source electrode 14 and a drain electrode 15 on a substrate 11. More specifically, the gate electrode 12 is provided on a part of the substrate 11. Further, a gate insulating film 13 is provided on the substrate 11 so as to cover the gate electrode 12. An organic semiconductor layer 16 is provided on the gate insulating film 13. A source electrode 14 and a drain electrode 15 are provided on the organic semiconductor layer 16 so as to be separated from each other. The organic semiconductor layer 16 is provided so as to face the gate electrode 12 with the gate insulating film 13 interposed therebetween.
- the field effect transistor 1C has a top contact type transistor structure.
- the film quality of the organic semiconductor layer 16 may be affected by a layer (underlying layer) immediately below the organic semiconductor layer 16.
- a layer underlying layer
- the organic semiconductor layer 16 is affected by the gate insulating film 13, the source electrode 14 and the drain electrode 15 in contact therewith.
- the film quality will change at the site in contact with each.
- a field effect transistor field effect transistor 1C having a top contact type structure as shown in FIG. 4 since the organic semiconductor layer 16 is entirely formed on the gate insulating film 13, the organic semiconductor The film quality of the layer 16 becomes more uniform, and the field effect transistor exhibits more stable semiconductor characteristics.
- field effect transistor 1C field effect transistor 1C having a top contact type structure as shown in FIG. 4
- a gate is formed at the time of manufacture. It is possible to reduce damage to the insulating film 13 and generation of residues. As a result, the interface between the gate insulating film 13 and the organic semiconductor layer 16 can be in a better state.
- the field effect transistor 1C is the same as the field effect transistor 1A except that the stacking order of the source electrode 14, the drain electrode 15, and the organic semiconductor layer 16 is different. Therefore, for example, a protective film may be provided on the organic semiconductor layer 16 so as to cover the source electrode 14 and the drain electrode 15.
- FIG. 5 is a schematic cross-sectional view illustrating the main part of the field effect transistor according to the fourth embodiment.
- the field effect transistor 1D shown here is the same as the field effect transistor 1C shown in FIG. 4 except that a hydrophilic film 13 ′ is provided as the gate insulating film 13. That is, in the field effect transistor 1D, the organic semiconductor layer 16 is in contact with the hydrophilic film 13 ′. By doing in this way, the film quality of the organic-semiconductor layer 16 can be made more uniform similarly to the case of the field effect transistor 1A.
- the hydrophilic film 13 ′ can be made of a hydrophilic polymer such as polyethylene glycol, polyacrylic acid, or polyvinyl alcohol.
- the field effect transistor according to one embodiment of the present invention is not limited to the one shown in FIGS. 1 to 5, and a part of these structures may be changed. For example, the following are mentioned.
- the organic semiconductor layer 16 is provided on the substrate 11, and the source electrode 14 and the drain electrode 15 are provided on the organic semiconductor layer 16 so as to be separated from each other, and the source electrode 14 and the drain electrode are provided.
- a field effect transistor 1E in which a gate insulating film 13 and a gate electrode 12 are provided in this order on an organic semiconductor layer 16 between 15 layers.
- II As illustrated in FIG.
- the source electrode 14 and the drain electrode 15 are provided separately on the substrate 11, and the organic semiconductor layer 16 is formed on the substrate 11 so as to cover the source electrode 14 and the drain electrode 15.
- the field effect transistor since the organic semiconductor layer is stable in an air atmosphere, the field effect transistor can operate stably for a long period of time in the air atmosphere as well.
- the field effect transistor according to one embodiment of the present invention can be manufactured, for example, by the following method. First, a method for manufacturing the field effect transistor 1A shown in FIG. 1 will be described. 8A to 8E are schematic cross-sectional views for explaining a method for manufacturing the field effect transistor 1A.
- a film made of the material constituting the gate electrode 12 is formed on the substrate 11, and the film is formed into a desired pattern by photolithography and etching. As shown in FIG. A gate electrode 12 is formed.
- An example of the film formation method is a sputtering method.
- a gate insulating film 13 is formed on the substrate 11 so as to cover the gate electrode 12.
- An example of a method for forming the gate insulating film 13 is a sputtering method.
- the photoresist film 90 is for forming the source electrode 14 and the drain electrode 15 and has openings corresponding to these shapes.
- a metal film made of the material of the source electrode 14 and the drain electrode 15 is formed on the gate insulating film 13 so as to cover the photoresist film 90, and the photoresist film 90 is removed, as shown in FIG. 8D.
- the source electrode 14 and the drain electrode 15 are formed at predetermined positions on the gate insulating film 13.
- an adhesion layer (not shown) is formed on the gate insulating film 13 so as to cover the photoresist film 90, and the metal film is formed on the adhesion layer. May be.
- the material for the adhesion layer include metals such as chromium.
- An example of a method for forming the metal film and the adhesion layer is a vacuum deposition method.
- the adhesion layer is also removed together with the photoresist film 90.
- An example of a method for removing the photoresist film 90 is a lift-off method in which the substrate 11 is immersed in an organic solvent such as acetone.
- an organic semiconductor layer 16 is formed on the gate insulating film 13 so as to cover the source electrode 14 and the drain electrode 15.
- the organic semiconductor layer 16 may be formed by placing the composition for an organic semiconductor layer of the above-described field effect transistor containing the compound (1) on the gate insulating film 13 and further removing the solvent by drying as necessary. Can be formed.
- the method for forming the organic semiconductor layer 16 using the composition include an immersion method, a spin coating method, a casting method, an ink jet method, and a printing method.
- the printing method include a micro contact printing method, a reverse offset printing method, a flexographic printing method, a lithographic printing method, and an intaglio printing method.
- the organic semiconductor layer 16 may be formed by vapor-depositing the compound (1) by a vacuum vapor deposition method or the like.
- the field effect transistor 1A shown in FIG. 1 is obtained.
- the protective film 17 is further formed on the organic semiconductor layer 16 to obtain the field effect transistor 1A 'shown in FIG.
- FIGS. 9A to 9F are schematic cross-sectional views for explaining a method of manufacturing the field effect transistor 1B.
- a source electrode 14 and a drain electrode 15 are formed at predetermined positions on the gate insulating film 13 by a method similar to the method described with reference to FIGS. 8A to 8D, as shown in FIGS. 9A to 9D.
- a surface modifying layer 18 is formed by applying a surface modifying agent to the surfaces of the source electrode 14 and the drain electrode 15.
- an organic semiconductor layer 16 is formed on the gate insulating film 13 so as to cover the surface-modified source electrode 14 and drain electrode 15.
- the formation method of the organic semiconductor layer 16 is the same as that of the field effect transistor 1A. For example, by making the surface modification layer 18 hydrophilic, the film quality of the organic semiconductor layer 16 becomes more uniform.
- the field effect transistor 1B shown in FIG. 3 is obtained.
- a protective film may be further formed on the organic semiconductor layer 16.
- 10A to 10D are schematic cross-sectional views for explaining a method of manufacturing the field effect transistor 1C.
- a film made of a material constituting the gate electrode 12 is formed on the substrate 11, and the film is formed into a desired pattern by photolithography and etching. As shown in FIG. A gate electrode 12 is formed.
- An example of the film formation method is a sputtering method.
- a gate insulating film 13 is formed on the substrate 11 so as to cover the gate electrode 12.
- An example of a method for forming the gate insulating film 13 is a sputtering method.
- an organic semiconductor layer 16 is formed on the gate insulating film 13.
- the organic semiconductor layer 16 can be formed, for example, by placing the composition for an organic semiconductor layer containing the compound (1) on the gate insulating film 13 and further removing the solvent by drying as necessary.
- Examples of the method for forming the organic semiconductor layer 16 using the composition include an immersion method, a spin coating method, a casting method, an ink jet method, and a printing method. Examples of the printing method are the same as those described above.
- the organic semiconductor layer 16 may be formed by vapor-depositing the compound (1) by a vacuum vapor deposition method or the like.
- the source electrode 14 and the drain electrode 15 are formed on the organic semiconductor layer 16 by a vacuum deposition method or the like through a metal mask (not shown) having a predetermined opening.
- the field effect transistor 1C shown in FIG. 4 is obtained.
- a protective film may be further formed on the organic semiconductor layer 16 so as to cover the source electrode 14 and the drain electrode 15.
- 11A to 11D are schematic cross-sectional views for explaining a method for manufacturing the field effect transistor 1D.
- a gate electrode 12 is formed at a predetermined position on the substrate 11 as shown in FIG. 11A by a method similar to the method described with reference to FIG. 10A.
- a hydrophilic film 13 ′ is formed on the substrate 11 so as to cover the gate electrode 12.
- a spin coating method can be exemplified.
- an organic semiconductor layer 16 is formed on the hydrophilic film 13 ′.
- the organic semiconductor layer 16 can be formed by a method similar to the method described with reference to FIG. 10C.
- the film quality of the organic semiconductor layer 16 becomes more uniform on the hydrophilic film 13 '.
- the source electrode 14 and the drain electrode 15 are formed on the organic semiconductor layer 16.
- the source electrode 14 and the drain electrode 15 can be formed by a method similar to the method described with reference to FIG. 10D.
- the field effect transistor 1D shown in FIG. 5 is obtained.
- a protective film may be further formed on the organic semiconductor layer 16 so as to cover the source electrode 14 and the drain electrode 15.
- the solar cell which concerns on 1 aspect of this invention is equipped with the organic-semiconductor layer containing the said compound (1). And it can be set as the structure similar to the conventional solar cell except having provided this organic-semiconductor layer.
- the compound (1) is mainly used as a p-type semiconductor, but functions as an n-type semiconductor when a substituent having a strong electron-withdrawing property such as a fluorine atom is introduced or depending on the selection of an electrode material. It is also possible to make it.
- description will be given with reference to the drawings.
- FIG. 12 is a schematic cross-sectional view illustrating the main part of the solar cell according to the present invention.
- an anode electrode 22, a p-type semiconductor layer 24, an n-type semiconductor layer 25, and a cathode electrode 23 are laminated in this order on a glass substrate 21, and is schematically configured. That is, a pair of electrodes including an anode electrode 22 and a cathode electrode 23 and a pn junction p-type semiconductor layer 24 and an n-type semiconductor layer 25 sandwiched between the pair of electrodes are provided on the glass substrate 21. It is what was done.
- the p-type semiconductor layer 24 contains the compound (1). And, for example, it may be formed by applying a composition containing the compound (1), or by using the above-mentioned composition for p-type semiconductor layer, a dipping method, a casting method, a spin coating method, It may be formed by a low-cost thin film forming method such as an inkjet method or a printing method, or may be formed by depositing the compound (1) by a vacuum vapor deposition method or the like.
- the film thickness of the p-type semiconductor layer 24 is preferably 5 nm to 500 nm. As described above, the compound (1) has high oxidation resistance. Therefore, the p-type semiconductor layer 24 containing the compound (1) is stable in the air atmosphere.
- the p-type semiconductor layer 24 is preferably provided on a hydrophilic film. That is, it is preferable that a hydrophilic film is provided on the surface of the anode electrode 22 on the p-type semiconductor layer 24 side. By doing so, the film quality of the p-type semiconductor layer 24 can be made more uniform, particularly when the p-type semiconductor layer 24 is formed by applying the p-type semiconductor layer composition. Effects can be obtained.
- the “hydrophilic film” is the same as in the case of the above-described field effect transistor, and can be formed by the same method.
- Examples of the material of the n-type semiconductor layer 25 that does not include the compound (1) include fullerenes, fullerene derivatives, and fluorinated phthalocyanines exemplified for the n-type semiconductor material.
- the film thickness of the n-type semiconductor layer 25 is preferably 5 nm to 500 nm.
- Examples of the material of the anode electrode 22 include ITO, which is a transparent electrode, and PEDOT / PSS, which is an organic conductor.
- the film thickness of the anode electrode 22 is preferably 10 nm to 500 nm.
- Examples of the material of the cathode electrode 23 include silver and aluminum.
- the film thickness of the cathode electrode 23 is preferably 10 nm to 500 nm.
- FIG. 13 is a schematic cross-sectional view illustrating the main part of such a solar cell.
- an anode electrode 22, an organic semiconductor layer 26, and a cathode electrode 23 are laminated in this order on a glass substrate 21, and is roughly configured.
- a pair of electrodes including an anode electrode 22 and a cathode electrode 23 and an organic semiconductor layer 26 sandwiched between the pair of electrodes are provided on the glass substrate 21.
- the organic semiconductor layer 26 can be formed by the same method as in the case of the p-type semiconductor layer 24 in the solar cell 2A, for example, using the composition for an organic semiconductor layer of the solar cell.
- the solar cell since the organic semiconductor layer is stable in the air atmosphere, the solar cell can operate stably over a long period of time in the air atmosphere as well.
- the solar cell which concerns on 1 aspect of this invention can be manufactured with the following method, for example.
- 14A to 14D are schematic cross-sectional views for explaining a method for manufacturing the solar cell 2A.
- the anode electrode 22 is formed on the glass substrate 21. Examples of the method for forming the anode electrode 22 include a sputtering method.
- a p-type semiconductor layer 24 is formed on the anode electrode 22.
- the p-type semiconductor layer 24 can be formed, for example, by placing the above-mentioned composition for a p-type semiconductor layer containing the compound (1) on the anode electrode 22 and further removing the solvent by drying as necessary.
- the method for forming the p-type semiconductor layer 24 using the composition is the same as the method for forming the organic semiconductor layer using the composition for organic semiconductor layer at the time of manufacturing the field effect transistor. Examples thereof include a method, a casting method, an ink jet method, and a printing method.
- the p-type semiconductor layer 24 may be formed by vapor-depositing the compound (1) by a vacuum vapor deposition method or the like.
- an n-type semiconductor layer 25 is formed on the p-type semiconductor layer 24.
- An example of a method for forming the n-type semiconductor layer 25 is a vacuum deposition method.
- the cathode electrode 23 is formed on the n-type semiconductor layer 25.
- An example of a method for forming the cathode electrode 23 is a vacuum vapor deposition method. By performing the above steps, a solar cell 2A shown in FIG. 14D is obtained. At this time, a protective film may be further formed on the cathode electrode 23. This protective film may be the same as that used in the above-described field effect transistor.
- the organic light emitting device includes a carrier transport layer containing the compound (1). And it can be set as the structure similar to the conventional organic light emitting element except having provided this carrier transport layer.
- the compound (1) is mainly used as a p-type semiconductor.
- an n-type semiconductor electron It is also possible to function as a transport layer.
- FIG. 15 is a schematic cross-sectional view illustrating the main part of the organic light-emitting element according to one embodiment of the present invention.
- the organic light emitting element 3A shown here is schematically configured by laminating an anode electrode 32, an organic electroluminescence (hereinafter abbreviated as organic EL) portion 34, and a cathode electrode 33 in this order on a glass substrate 31. That is, a pair of electrodes including an anode electrode 32 and a cathode electrode 33 and an organic EL portion 34 sandwiched between the pair of electrodes are provided on a glass substrate 31.
- organic EL organic electroluminescence
- the anode electrode 32 and the cathode electrode 33 are the same as the anode electrode and the cathode electrode in the solar cell, respectively.
- the organic EL section 34 is constructed by laminating a carrier injection layer 34a, a carrier transport layer 34b, a light emitting layer 34c, an electron transport layer 34d, and an electron injection layer 34e in this order from the anode electrode 32 side to the cathode electrode 33 side.
- the carrier injection layer 34a, the carrier transport layer 34b, the light emitting layer 34c, the electron transport layer 34d, and the electron injection layer 34e may each have a single layer structure or a multilayer structure.
- the carrier transport layer 34b contains the compound (1).
- it may be formed by applying a composition containing the compound (1), or by using the above carrier transport layer composition, a dipping method, a casting method, a spin coating method, an inkjet method. It may be formed by a low-cost thin film forming method such as a printing method or a printing method, or may be formed by depositing the compound (1) by a vacuum vapor deposition method or the like.
- the film thickness of the carrier transport layer 34b is preferably 5 nm to 500 nm. As described above, the compound (1) has high oxidation resistance. Therefore, the carrier transport layer 34b containing the compound (1) is stable in the air atmosphere.
- the carrier transport layer 34b is preferably provided on a hydrophilic film. That is, it is preferable that a hydrophilic film is provided on the surface of the carrier injection layer 34a on the carrier transport layer 34b side. By doing so, the film quality of the carrier transport layer 34b can be made more uniform. In particular, when the carrier transport layer 34b is formed by applying the above-described composition for the carrier transport layer, a remarkable effect can be obtained. can get.
- the “hydrophilic film” is the same as in the case of the above-described field effect transistor, and can be formed by the same method.
- the carrier injection material may be a known material for organic EL or organic photoconductor.
- Preferred carrier injection materials include oxides such as vanadium oxide (V 2 O 5 ) and molybdenum oxide (MoO 2 ) and inorganic p-type semiconductor materials; polyaniline (PANI), polyaniline-camphor sulfonic acid (PANI-CSA), 3 , 4-polyethylenedioxythiophene / polystyrene sulfonate (PEDOT / PSS), poly (triphenylamine) derivative (Poly-TPD), polyvinylcarbazole (PVCz), poly (p-phenylene vinylene) (PPV), poly ( Examples thereof include polymer materials such as p-naphthalene vinylene) (PNV).
- the material applied to the carrier injection layer 34a is the highest occupied molecular orbital (HOMO) than the carrier injection / transport material applied to the carrier transport layer 34b from the viewpoint of more efficiently injecting and transporting carriers from the anode.
- HOMO occupied molecular orbital
- a material having a low energy level is preferred.
- the thickness of the carrier injection layer 34a is preferably 1 nm to 500 nm.
- the material of the light emitting layer 34c may be a known material for organic EL, and can be classified into, for example, a low molecular light emitting material and a polymer light emitting material.
- Preferred examples of the low-molecular light-emitting material include aromatic dimethylidene compounds such as 4,4′-bis (2,2′-diphenylvinyl) -biphenyl (DPVBi); 5-methyl-2- [2- [4- Oxadiazole compounds such as (5-methyl-2-benzoxazolyl) phenyl] vinyl] benzoxazole; 3- (4-biphenylyl) -4-phenyl-5-tert-butylphenyl-1,2,4 -Triazole derivatives such as triazole (TAZ); styrylbenzene compounds such as 1,4-bis (2-methylstyryl) benzene; fluorescent organic materials such as fluorenone derivatives.
- aromatic dimethylidene compounds such as 4,4′-bis (2,
- Preferred examples of the polymer light-emitting material include polyphenylene vinylene derivatives such as poly (2-decyloxy-1,4-phenylene) (DO-PPP); polyspiro derivatives such as poly (9,9-dioctylfluorene) (PDAF). Etc. can be illustrated.
- the thickness of the light emitting layer 34c is preferably 5 nm to 500 nm.
- the electron injection / transport material may be a known material for organic EL or organic photoconductor.
- Preferred electron injecting and transporting materials include inorganic materials that are n-type semiconductors, oxadiazole derivatives, triazole derivatives, thiopyrazine dioxide derivatives, benzoquinone derivatives, naphthoquinone derivatives, anthraquinone derivatives, diphenoquinone derivatives, fluorenone derivatives, benzodifuran derivatives, and the like.
- Molecular materials Polymer materials such as poly (oxadiazole) (Poly-OXZ) and polystyrene derivatives (PSS) can be exemplified.
- examples of the electron injection material include fluorides such as lithium fluoride (LiF) and barium fluoride (BaF 2 ); oxides such as lithium oxide (Li 2 O) and the like.
- the lowest unoccupied molecular orbital (LUMO) is used as compared with the electron injection / transport material applied to the electron transport layer 34d from the viewpoint of more efficiently injecting and transporting electrons from the cathode.
- a material having a high energy level is preferred.
- the material applied to the electron transport layer 34d is preferably a material having higher electron mobility than the electron injection transport material applied to the electron injection layer 34e.
- the film thickness of the electron transport layer 34d is preferably 5 nm to 500 nm.
- the film thickness of the electron injection layer 34e is preferably 0.1 nm to 100 nm.
- the organic light emitting device is not limited to the one shown in FIG. 15, and a part of the configuration may be changed.
- the structure of the organic EL unit 34 as follows can be given.
- An organic EL part in which a carrier injection layer, a carrier transport layer, a light emitting layer, a carrier prevention layer, and an electron transport layer are laminated in this order from the anode electrode 32 side to the cathode electrode 33 side.
- An organic EL portion in which a carrier injection layer, a carrier transport layer, a light emitting layer, a carrier prevention layer, an electron transport layer, and an electron injection layer are laminated in this order from the anode electrode 32 side to the cathode electrode 33 side.
- V An organic EL in which a carrier injection layer, a carrier transport layer, an electron blocking layer, a light emitting layer, a carrier blocking layer, an electron transport layer, and an electron injection layer are laminated in this order from the anode electrode 32 side to the cathode electrode 33 side. Department.
- the carrier prevention layer and the electron prevention layer may be known for organic EL.
- the organic light-emitting device can operate stably over a long period of time in the air atmosphere because the carrier transport layer is stable in the air atmosphere.
- the organic light emitting device according to one embodiment of the present invention can be manufactured, for example, by the following method.
- 16A to 16G are schematic cross-sectional views for explaining a method for manufacturing the organic light emitting device 3A.
- the anode electrode 32 is formed on the glass substrate 31.
- An example of a method for forming the anode electrode 32 is a sputtering method.
- a carrier injection layer 34 a is formed on the anode electrode 32.
- a spin coating method can be exemplified.
- a carrier transport layer 34b is formed on the carrier injection layer 34a.
- the carrier transport layer 34b can be formed, for example, by placing the above-mentioned composition for carrier transport layer containing the compound (1) on the carrier injection layer 34a and further removing the solvent by drying as necessary.
- the method for forming the carrier transport layer 34b using the composition for the carrier transport layer is the same as the method for forming the organic semiconductor layer using the composition for the organic semiconductor layer during the production of the field effect transistor. Examples thereof include a spin coating method, a casting method, an ink jet method, and a printing method.
- the carrier transport layer 34b may be formed by depositing the compound (1) by a vacuum deposition method or the like.
- a light emitting layer 34c is formed on the carrier transport layer 34b.
- An example of a method for forming the light emitting layer 34c is a vacuum deposition method.
- an electron transport layer 34d is formed on the light emitting layer 34c.
- An example of a method for forming the electron transport layer 34d is a vacuum deposition method.
- an electron injection layer 34e is formed on the electron transport layer 34d.
- a vacuum deposition method can be exemplified.
- the cathode electrode 33 is formed on the electron injection layer 34e.
- a vacuum deposition method can be exemplified. By performing the above steps, an organic light emitting device 3A shown in FIG. 15 is obtained.
- Example 1 a compound represented by the following general formula (1-1) was synthesized as a synthetic intermediate using a compound represented by the following general formula (1c-1) (hereinafter abbreviated as compound (1c-1)) ( Hereinafter, the compound (1-1) was abbreviated.
- Example 2 According to the following procedure, a compound represented by the following general formula (1-2) was synthesized as a synthetic intermediate using a compound represented by the following general formula (1c-2) (hereinafter abbreviated as compound (1c-2)) Hereinafter, compound (1-2) was prepared.
- the compound (1-1) had a larger ionization potential than pentacene. This indicated that the compound (1-1) had a lower HOMO level than pentacene.
- the compound (1-1) has a lower HOMO level than pentacene and has a large ionization potential, that is, the compound (1-1) is more resistant to oxidation than pentacene. It showed that the nature is high.
- the HOMO level such as the compound (1-1)
- the compound (1-1 for example, when used as an organic semiconductor layer of a field effect transistor in which the source electrode and the gate electrode are gold (work function is about 5 eV), holes (carriers) ) It was expected that injection would be easier.
- the measurement results shown in Table 1 and the results of the first principle calculation shown in Table 2 were in good agreement.
- FIG. 17 shows the measurement results of the absorption intensity immediately after preparation of the solution and after one month of standing in the dark. As shown in FIG.
- the compound (1-1) had higher oxidation resistance than pentacene, which is a typical organic semiconductor material, and was stable even in the air atmosphere.
- pentacene which is a typical organic semiconductor material
- a semiconductor device having stable electrical characteristics can be provided.
- the field effect transistor 1A shown in FIG. 1 was manufactured by the manufacturing method described with reference to FIGS. 8A to 8E. More specifically, it is as follows.
- the material of the gate electrode 12 was an AlSi alloy in which 10% silicon (Si) was added to aluminum (Al). Then, a 40 nm thick metal film made of an AlSi alloy was formed on the substrate 11 by sputtering using a metal target made of this AlSi alloy. The patterning of the metal film was performed by photolithography and etching.
- the material of the gate insulating film 13 was silicon oxide (SiO 2 ), and a silicon oxide film having a thickness of 300 nm was formed by a sputtering method.
- the photoresist film 90 was formed by spin coating using a negative photoresist (ZPN 1150, manufactured by Nippon Zeon Co., Ltd.) for lift-off process, and then by photolithography.
- ZPN 1150 negative photoresist
- a lift-off method in which an adhesion layer made of chromium (Cr) with a thickness of 2 nm and a metal film made of gold (Au) with a thickness of 40 nm are sequentially formed by vacuum deposition, and the substrate 11 is immersed in an organic solvent such as acetone.
- the photoresist film 7 and unnecessary Au film / Cr film formed thereon were removed by the method to form the source electrode 14 and the drain electrode 15. At this time, the distance (channel length) between the source electrode 14 and the drain electrode 15 was 20 ⁇ m, and the length of the opposing electrode (channel width) was 1000 ⁇ m.
- the organic semiconductor layer 16 was formed using the composition for organic semiconductor layers containing the compound (1-1) produced in Example 1. This organic semiconductor layer composition was prepared using chloroform as a solvent so that the concentration of the compound (1-1) was 0.5 mass%.
- the organic semiconductor layer 16 having a film thickness of about 40 nm was formed by a cast method in which the composition for an organic semiconductor layer was placed on a predetermined portion by a spin coating method (rotation number: 1500 rpm) and gently dried in a saturated chloroform atmosphere.
- the field effect transistor 1B shown in FIG. 3 was manufactured by the manufacturing method described with reference to FIGS. 9A to 9F. More specifically, it is as follows.
- a glass substrate Cornning, Eagle 2000, thickness: 0.5 mm
- the material of the gate electrode 12 was an AlSi alloy in which 10% silicon (Si) was added to aluminum (Al).
- a 40 nm thick metal film made of an AlSi alloy was formed on the substrate 11 by sputtering using a metal target made of this AlSi alloy. The patterning of the metal film was performed by photolithography and etching.
- the material of the gate insulating film 13 was silicon oxide (SiO 2 ), and a silicon oxide film having a thickness of 300 nm was formed by a sputtering method.
- the photoresist film 90 was formed by spin coating using a negative photoresist (ZPN 1150, manufactured by Nippon Zeon Co., Ltd.) for lift-off process, and then by photolithography.
- ZPN 1150 negative photoresist
- a lift-off method in which an adhesion layer made of chromium (Cr) with a thickness of 2 nm and a metal film made of gold (Au) with a thickness of 40 nm are sequentially formed by vacuum deposition, and the substrate 11 is immersed in an organic solvent such as acetone.
- the photoresist film 7 and unnecessary Au film / Cr film formed thereon were removed by the method to form the source electrode 14 and the drain electrode 15.
- the distance (channel length) between the source electrode 14 and the drain electrode 15 was 20 ⁇ m
- the length of the opposing electrode (channel width) was 1000 ⁇ m.
- the surface modification layer 18 is obtained by immersing the substrate 11 on which the source electrode 14 and the drain electrode 15 are formed in an ethanol solution of 2-aminoethanethiol (10 mg / mL) for 5 hours, and then washing with isopropyl alcohol and drying. It was formed by drying under a nitrogen stream.
- the surface modification layer 18 is a hydrophilic film.
- the organic semiconductor layer 16 was formed using the composition for organic semiconductor layers containing the compound (1-1) produced in Example 1. This organic semiconductor layer composition was prepared using toluene as a solvent so that the concentration of the compound (1-1) was 0.5% by mass. The organic semiconductor layer 16 having a film thickness of about 40 nm was formed by a casting method in which the composition for an organic semiconductor layer was placed on a predetermined portion using a dispenser and gently dried in a saturated chloroform atmosphere.
- the field effect transistor 1B manufactured through the above steps operates stably even in the atmosphere as in the transistor of Example 3, and no significant deterioration in characteristics is observed even after one month after being placed in the atmosphere. It was.
- the field effect transistor 1C shown in FIG. 4 was manufactured by the manufacturing method described with reference to FIG. More specifically, it is as follows.
- the substrate 11 a glass substrate (Corning, Eagle 2000, thickness: 0.5 mm) was used.
- the material of the gate electrode 12 was an AlSi alloy in which 10% silicon (Si) was added to aluminum (Al).
- a 40 nm thick metal film made of an AlSi alloy was formed on the substrate 11 by sputtering using a metal target made of this AlSi alloy.
- the patterning of the metal film was performed by photolithography and etching.
- the material of the gate insulating film 13 was silicon oxide (SiO 2 ), and a silicon oxide film having a thickness of 300 nm was formed by a sputtering method.
- the organic semiconductor layer 16 was formed using the composition for organic semiconductor layers containing the compound (1-1) produced in Example 1. This organic semiconductor layer composition was prepared using toluene as a solvent so that the concentration of the compound (1-1) was 0.5% by mass. This composition for organic semiconductor layers was placed on a predetermined location by spin coating (rotation speed: 1500 rpm) to form an organic semiconductor layer 16 having a film thickness of about 40 nm.
- the source electrode 14 and the drain electrode 15 were made of gold (Au), and an Au film having a film thickness of 40 nm was formed by a vacuum deposition method through a metal mask. At this time, the distance (channel length) between the source electrode 14 and the drain electrode 15 was 50 ⁇ m, and the length of the opposing electrode (channel width) was 1000 ⁇ m.
- the field effect transistor 1C manufactured through the above steps operates stably in an air atmosphere as in the transistor of Example 3, and no significant deterioration in characteristics is observed even after one month after being placed in the air. It was.
- the field effect transistor 1D shown in FIG. 5 was manufactured by the manufacturing method described with reference to FIGS. 11A to 11D. More specifically, it is as follows.
- a glass substrate Cornning, Eagle 2000, thickness: 0.5 mm
- the material of the gate electrode 12 was an AlSi alloy in which 10% silicon (Si) was added to aluminum (Al).
- a 40 nm thick metal film made of an AlSi alloy was formed on the substrate 11 by sputtering using a metal target made of this AlSi alloy. The patterning of the metal film was performed by photolithography and etching.
- the hydrophilic film 13 ′ is a hydrophilic polymer layer having a thickness of 100 nm, and was formed by spin coating using an aqueous solution having a concentration of 10% by mass of polyvinyl alcohol, which is a hydrophilic polymer.
- the organic semiconductor layer 16 was formed using the composition for organic semiconductor layers containing the compound (1-1) produced in Example 1. This organic semiconductor layer composition was prepared using toluene as a solvent so that the concentration of the compound (1-1) was 0.5% by mass. This composition for organic semiconductor layers was placed on a predetermined location by spin coating (rotation speed: 1500 rpm) to form an organic semiconductor layer 16 having a film thickness of about 40 nm.
- the source electrode 14 and the drain electrode 15 were made of gold (Au), and an Au film having a film thickness of 40 nm was formed by a vacuum deposition method through a metal mask. At this time, the distance (channel length) between the source electrode 14 and the drain electrode 15 was 50 ⁇ m, and the length of the opposing electrode (channel width) was 1000 ⁇ m.
- the field effect transistor 1D manufactured through the above steps operates stably even in the air atmosphere as in the transistor of Example 3, and no significant deterioration in the characteristics is observed even after one month after being placed in the air. It was.
- Example 7 The organic semiconductor layer 16 was formed by an evaporation method in which the compound (1-1) was evaporated instead of forming the organic semiconductor layer 16 by a spin coating method using the composition for an organic semiconductor layer containing the compound (1-1).
- a field effect transistor 1A was produced in the same manner as in Example 3.
- the obtained field effect transistor 1A like the transistor of Example 3, operated stably even in the air atmosphere, and no significant deterioration in the characteristics was observed even after one month after being placed in the air.
- Example 8 The field effect transistor 1A ′ shown in FIG. 2 was manufactured by the manufacturing method described with reference to FIGS. 8A to 8E. That is, after forming the organic semiconductor layer 16 in the same manner as in Example 3, a Parylene C film having a film thickness of 500 nm is further formed as the protective film 17 by using a lab coater PDS2010 (trade name, manufactured by Japan Parylene). Forming on the layer 16 produced the field effect transistor 1A ′.
- the obtained field effect transistor 1A ′ like the transistor of Example 3, operated stably even in the air atmosphere, and no significant deterioration in the characteristics was observed even after one month after being placed in the air.
- the solar cell 2A shown in FIG. 12 was manufactured by the manufacturing method described with reference to FIG. More specifically, it is as follows.
- the p-type semiconductor layer 24 was formed using the p-type semiconductor layer composition containing the compound (1-1) produced in Example 1. This p-type semiconductor layer composition was prepared using chloroform as a solvent so that the concentration of the compound (1-1) was 0.5% by mass.
- This p-type semiconductor layer composition was placed on the anode electrode 22 by spin coating (rotation speed: 1500 rpm) to form a p-type semiconductor layer 24 having a thickness of about 40 nm.
- a film made of perfluorophthalocyanine having a film thickness of 50 nm was formed by a vacuum deposition method.
- an Al film having a thickness of 100 nm was formed by a vacuum deposition method.
- the organic light emitting device 3A shown in FIG. 15 was manufactured by the manufacturing method described with reference to FIGS. 16A to 16G. More specifically, it is as follows.
- As the anode electrode 32 an ITO film having a film thickness of 150 nm was formed by a sputtering method.
- the carrier injection layer 34a was formed by placing PEDOT / PSS (Bytron-P, manufactured by Bayer) on the anode electrode 32 by spin coating (rotation speed: 1500 rpm), and the film thickness was about 50 nm.
- the carrier transport layer 34b was formed using the composition for the carrier transport layer containing the compound (1-1) produced in Example 1.
- This carrier transport layer composition was prepared using chloroform as a solvent so that the concentration of the compound (1-1) was 0.5% by mass.
- the carrier transport layer composition was placed on the carrier injection layer 34a by spin coating (rotation speed 1500 rpm) to form a carrier transport layer 34b having a thickness of about 40 nm.
- the light-emitting layer 34c is formed by using 4,4′-N, N′-dicarbazol-biphenyl (CBP) and tris (2-phenylpyridine) iridium (Ir (PPY) 3 ) on the carrier transport layer 34b. It was formed by a vacuum vapor deposition method in which co-evaporation was performed. The concentration of Ir (PPY) 3 in the formed light emitting layer 34c was 6.5% by mass.
- the film thickness was 40 nm.
- the electron transport layer 34d was formed by vacuum-depositing tris (8-hydroxyquinoline aluminum) (A1q 3 ) on the light emitting layer 34c, and the film thickness was 40 nm.
- the electron injection layer 34e was formed by vacuum-depositing lithium oxide (Li 2 O) on the electron transport layer 34d, and the film thickness was 0.5 nm.
- the cathode electrode 33 was formed by vacuum-depositing aluminum (Al) on the electron injection layer 34e, and the film thickness was 150 nm.
- Ir (PPY) 3 was observed in the obtained organic light emitting device 3A. Further, it stably operated even in an air atmosphere, and no significant deterioration in the characteristics was observed even after one month after being placed in the air.
- the embodiment of the present invention can be used for semiconductor devices such as field effect transistors, solar cells, and organic light emitting elements.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Thin Film Transistor (AREA)
Abstract
Provided is a compound represented by general formula (1). (In the formula, R1 represents a C1-20 aliphatic hydrocarbon group which may have a substituent; and R2-R13 independently represent a hydrogen atom, a halogen atom, or an aromatic group or a C1-20 aliphatic hydrocarbon group each of which may have a substituent.)
Description
本発明は、新規の化合物、前記化合物を用いた電界効果トランジスタ及びその製造方法、前記化合物を用いた太陽電池及びその製造方法、前記化合物を用いた有機発光素子及びその製造方法、並びに前記化合物を用いた電界効果トランジスタの有機半導体層用組成物、太陽電池の有機半導体層用組成物、及び有機発光素子のキャリヤ輸送層用組成物に関する。
本願は、2010年11月16日に、日本に出願された特願2010-256098号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a novel compound, a field effect transistor using the compound and a method for producing the same, a solar cell using the compound and a method for producing the same, an organic light emitting device using the compound and a method for producing the same, and the compound. The present invention relates to a composition for an organic semiconductor layer of a field effect transistor, a composition for an organic semiconductor layer of a solar cell, and a composition for a carrier transport layer of an organic light emitting device.
This application claims priority based on Japanese Patent Application No. 2010-256098 filed in Japan on November 16, 2010, the contents of which are incorporated herein by reference.
本願は、2010年11月16日に、日本に出願された特願2010-256098号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a novel compound, a field effect transistor using the compound and a method for producing the same, a solar cell using the compound and a method for producing the same, an organic light emitting device using the compound and a method for producing the same, and the compound. The present invention relates to a composition for an organic semiconductor layer of a field effect transistor, a composition for an organic semiconductor layer of a solar cell, and a composition for a carrier transport layer of an organic light emitting device.
This application claims priority based on Japanese Patent Application No. 2010-256098 filed in Japan on November 16, 2010, the contents of which are incorporated herein by reference.
ユビキタス情報社会を迎え、情報端末としてフレキシブル、軽量、かつ安価なデバイスが求められている。さらに、このような情報端末としてのアプリケーションを想定した場合、大量生産のみならず、様々なユーザーの要求に対して迅速に対処できるプロセスが必要となる。こうしたデバイスやプロセスは、従来からあるシリコン系デバイス技術の延長ではその要望に十分に対応できない。そこで近年、このような要望に応え得る技術として、有機材料を半導体等に用いた電子デバイス技術の研究が盛んに行われている。その中でも、有機半導体材料を用いた有機トランジスタ(OFET)、有機発光ダイオード(OLED)、有機太陽電池などの有機電子デバイスが注目され、すでに実用化が始まっている。
Celebrating the ubiquitous information society, flexible, lightweight, and inexpensive devices are required as information terminals. Furthermore, when such an application as an information terminal is assumed, a process capable of quickly responding to not only mass production but also various user requests is required. Such devices and processes cannot sufficiently meet the demand by extending the conventional silicon-based device technology. In recent years, research on electronic device technology using organic materials for semiconductors has been actively conducted as a technology that can meet such demands. Among them, organic electronic devices such as organic transistors (OFETs), organic light emitting diodes (OLEDs), and organic solar cells using organic semiconductor materials have attracted attention and have already been put into practical use.
これまでに、電界効果トランジスタ(FET)などの半導体デバイスの活性層に用いる有機半導体材料としては、キャリヤ輸送特性を有する各種の化合物が知られている。
例えば、特許文献1には、有機半導体装置の半導体層にペンタセンを用いることが開示されている。また、特許文献2には、電界効果型トランジスタの半導体層に用いる高分子有機半導体として、ポリ(3-オクチルチオフェン)が開示されている。また、非特許文献1には、有機FETデバイスの半導体層として、ジヒドロジアザペンタセン(DHDAP)を用いることが開示されている。また、特許文献3には、アルキル基が導入されたDHDAPをキャリヤ輸送層に用いることが開示されている。 So far, various compounds having carrier transport properties have been known as organic semiconductor materials used for active layers of semiconductor devices such as field effect transistors (FETs).
For example,Patent Document 1 discloses using pentacene for a semiconductor layer of an organic semiconductor device. Patent Document 2 discloses poly (3-octylthiophene) as a polymer organic semiconductor used for a semiconductor layer of a field effect transistor. Non-Patent Document 1 discloses the use of dihydrodiazapentacene (DHDAP) as a semiconductor layer of an organic FET device. Patent Document 3 discloses that DHDAP into which an alkyl group is introduced is used for the carrier transport layer.
例えば、特許文献1には、有機半導体装置の半導体層にペンタセンを用いることが開示されている。また、特許文献2には、電界効果型トランジスタの半導体層に用いる高分子有機半導体として、ポリ(3-オクチルチオフェン)が開示されている。また、非特許文献1には、有機FETデバイスの半導体層として、ジヒドロジアザペンタセン(DHDAP)を用いることが開示されている。また、特許文献3には、アルキル基が導入されたDHDAPをキャリヤ輸送層に用いることが開示されている。 So far, various compounds having carrier transport properties have been known as organic semiconductor materials used for active layers of semiconductor devices such as field effect transistors (FETs).
For example,
しかし、特許文献1~3及び非特許文献1で開示されている有機半導体材料は、大気雰囲気下で酸化され易いため、製造過程で有機半導体材料が分解してしまったり、半導体デバイスでの有機半導体材料の劣化に伴ってデバイス特性が低下してしまったりする。例えば、引用文献1で開示されているペンタセンは、イオン化ポテンシャルが小さく、大気中では以下に示すように容易に酸化され、その結果、デバイス特性が低下してしまう。また、非特許文献1で開示されているDHDAPも、同様にイオン化ポテンシャルが小さく、脱水素型酸化生成物であるジアザペンタセン(DAP)を容易に与えることが指摘されている。
However, since the organic semiconductor materials disclosed in Patent Documents 1 to 3 and Non-Patent Document 1 are easily oxidized in the air atmosphere, the organic semiconductor material may be decomposed during the manufacturing process, or the organic semiconductor in the semiconductor device. Device characteristics may deteriorate as materials deteriorate. For example, pentacene disclosed in Cited Document 1 has a low ionization potential and is easily oxidized in the atmosphere as shown below, resulting in a deterioration in device characteristics. In addition, it has been pointed out that DHDAP disclosed in Non-Patent Document 1 also has a low ionization potential and easily gives diazapentacene (DAP), which is a dehydrogenated oxidation product.
このような大気雰囲気下で不安定な有機半導体材料をデバイスに用いる場合、耐環境性を高めるために、保護膜を設けることが考えられる。例えば、シリコン酸化膜、アルミナ膜、窒化シリコン膜、エポキシ樹脂フィルム等をデバイス表面に積層させて、保護膜を設ける技術が開示されている(特開2005-191077号公報)。しかし、このような保護膜を用いても、大気中の酸素や水分に対して有機半導体層を十分には保護できず、また、有機半導体層にダメージを与えることなく保護膜を形成するための材料や、このような保護膜の形成方法は従来知られていない。
When an organic semiconductor material that is unstable in such an air atmosphere is used for a device, it is conceivable to provide a protective film in order to improve environmental resistance. For example, a technique is disclosed in which a protective film is provided by laminating a silicon oxide film, an alumina film, a silicon nitride film, an epoxy resin film, or the like on the device surface (Japanese Patent Laid-Open No. 2005-191077). However, even if such a protective film is used, the organic semiconductor layer cannot be sufficiently protected against oxygen and moisture in the atmosphere, and the protective film can be formed without damaging the organic semiconductor layer. A material and a method for forming such a protective film are not conventionally known.
一方、ペンタセンのような縮環化合物等は溶媒に対する溶解性が低いため、半導体層として成膜する際には、一般的に真空プロセスである真空蒸着法を適用する必要があり、製造コストが高くなる。通常、有機半導体層を形成する際には、有機半導体材料を有機溶媒に溶解させ、得られた溶液を用いてスピンコート法、インクジェット法等により成膜してデバイスを作製する方法を適用すれば、真空蒸着法に比べて製造コストを大幅に低減でき、さらに、大面積の有機半導体デバイスも容易に製造できる。
On the other hand, a condensed ring compound such as pentacene has low solubility in a solvent. Therefore, when forming a film as a semiconductor layer, it is generally necessary to apply a vacuum deposition method, which is a vacuum process, and the production cost is high. Become. Usually, when an organic semiconductor layer is formed, a method in which a device is manufactured by dissolving an organic semiconductor material in an organic solvent and forming a film by a spin coating method, an inkjet method, or the like using the obtained solution is applied. Compared with the vacuum deposition method, the manufacturing cost can be greatly reduced, and an organic semiconductor device having a large area can be easily manufactured.
このように、安価でかつ優れた特性を有する半導体デバイスを製造するためには、溶媒に対する溶解性が高く、かつデバイスの製造過程から製造後に至るまで、大気雰囲気下で安定に存在する有機半導体材料が必要となるが、このような有機半導体材料はこれまでに知られていない。
本発明の態様は上記事情に鑑みてなされたものであり、溶媒に対する溶解性が高く、かつ大気雰囲気下で安定であり、有機半導体材料として好適な新規化合物と、該化合物を用いた半導体デバイスを提供することを課題とする。 As described above, in order to manufacture a semiconductor device having low cost and excellent characteristics, an organic semiconductor material that is highly soluble in a solvent and that stably exists in an air atmosphere from the manufacturing process of the device to after it is manufactured. However, such an organic semiconductor material has not been known so far.
An aspect of the present invention has been made in view of the above circumstances, a novel compound that has high solubility in a solvent and is stable in an air atmosphere and is suitable as an organic semiconductor material, and a semiconductor device using the compound. The issue is to provide.
本発明の態様は上記事情に鑑みてなされたものであり、溶媒に対する溶解性が高く、かつ大気雰囲気下で安定であり、有機半導体材料として好適な新規化合物と、該化合物を用いた半導体デバイスを提供することを課題とする。 As described above, in order to manufacture a semiconductor device having low cost and excellent characteristics, an organic semiconductor material that is highly soluble in a solvent and that stably exists in an air atmosphere from the manufacturing process of the device to after it is manufactured. However, such an organic semiconductor material has not been known so far.
An aspect of the present invention has been made in view of the above circumstances, a novel compound that has high solubility in a solvent and is stable in an air atmosphere and is suitable as an organic semiconductor material, and a semiconductor device using the compound. The issue is to provide.
本発明の一態様は、下記一般式(1)で表される化合物を提供する。
One embodiment of the present invention provides a compound represented by the following general formula (1).
(式中、R1は置換基を有していてもよい炭素数1~20の脂肪族炭化水素基であり;R2~R13はそれぞれ独立して水素原子、ハロゲン原子又は置換基を有していてもよい芳香族基もしくは炭素数1~20の脂肪族炭化水素基である。)
また、本発明の一態様は、前記化合物において、前記R1が炭素数1~15のアルキル基であり、前記R2~R13がそれぞれ独立して水素原子、ハロゲン原子又は炭素数1~10のアルキル基である化合物であってもよい。
また、本発明の一態様は、前記化合物において、前記R1が炭素数5~9の直鎖状または分岐鎖状もしくは環状アルキル基であり、前記R2~R13がそれぞれ独立して水素原子、ハロゲン原子又は炭素数1~5のアルキル基である化合物であってもよい。
(Wherein R 1 is an optionally substituted aliphatic hydrocarbon group having 1 to 20 carbon atoms; R 2 to R 13 each independently has a hydrogen atom, a halogen atom or a substituent. An aromatic group which may be substituted or an aliphatic hydrocarbon group having 1 to 20 carbon atoms.)
Another embodiment of the present invention is the compound, wherein the R 1 is an alkyl group having 1 to 15 carbon atoms, and the R 2 to R 13 are each independently a hydrogen atom, a halogen atom, or a carbon number of 1 to 10 The compound which is the alkyl group of may be sufficient.
Another embodiment of the present invention is the compound, wherein the R 1 is a linear, branched, or cyclic alkyl group having 5 to 9 carbon atoms, and the R 2 to R 13 are each independently a hydrogen atom. Further, it may be a compound which is a halogen atom or an alkyl group having 1 to 5 carbon atoms.
また、本発明の一態様は、前記化合物を含む有機半導体層を備えた電界効果トランジスタを提供する。
また、本発明の一態様は、更に親水性の膜を含み、前記電界効果トランジスタにおいて、前記有機半導体層が前記親水性の膜上に設けられている電界効果トランジスタであってもよい。
また、本発明の一態様は、前記電界効果トランジスタにおいて、更にゲート電極、ゲート絶縁膜、ソース電極及びドレイン電極を備え、前記有機半導体層が、前記ゲート絶縁膜を介して前記ゲート電極と対向するように設けられており、前記ソース電極及びドレイン電極が、前記有機半導体層上に接するように設けられている電界効果トランジスタであってもよい。
また、本発明の一態様は、前記電界効果トランジスタにおいて、更にゲート電極、ゲート絶縁膜、ソース電極及びドレイン電極を備え、前記有機半導体層が、前記ゲート絶縁膜を介して前記ゲート電極と対向するように設けられており、前記有機半導体層が、前記ソース電極及びドレイン電極上を覆うように設けられている電界効果トランジスタであってもよい。
また、本発明の一態様は、前記電界効果トランジスタにおいて、前記有機半導体層が、前記化合物が塗布されて形成されたものである電界効果トランジスタであってもよい。
また、本発明の一態様は、前記電界効果トランジスタにおいて、前記有機半導体層が、前記化合物が蒸着されて形成されたものである電界効果トランジスタであってもよい。
また、本発明の一態様は、前記化合物を含む有機半導体層を備えた電界効果トランジスタの製造方法であって、前記化合物を含む組成物を用いて浸漬法、スピンコート法、キャスト法、インクジェット法及び印刷法のいずれか一つによって前記有機半導体層を形成し、前記組成物は、トルエン、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン、ジクロロメタン及びクロロホルムからなる群より選択される少なくとも一種を含む電界効果トランジスタの製造方法を提供する。 Another embodiment of the present invention provides a field effect transistor including an organic semiconductor layer including the compound.
Further, one embodiment of the present invention may be a field effect transistor further including a hydrophilic film, wherein the organic semiconductor layer is provided over the hydrophilic film.
In one embodiment of the present invention, the field effect transistor further includes a gate electrode, a gate insulating film, a source electrode, and a drain electrode, and the organic semiconductor layer faces the gate electrode with the gate insulating film interposed therebetween. The field effect transistor may be provided so that the source electrode and the drain electrode are in contact with the organic semiconductor layer.
In one embodiment of the present invention, the field effect transistor further includes a gate electrode, a gate insulating film, a source electrode, and a drain electrode, and the organic semiconductor layer faces the gate electrode with the gate insulating film interposed therebetween. And the organic semiconductor layer may be a field effect transistor provided so as to cover the source electrode and the drain electrode.
One embodiment of the present invention may be the field effect transistor in which the organic semiconductor layer is formed by applying the compound.
One embodiment of the present invention may be the field effect transistor according to the field effect transistor, wherein the organic semiconductor layer is formed by vapor deposition of the compound.
Another embodiment of the present invention is a method for manufacturing a field effect transistor including an organic semiconductor layer containing the compound, and a dipping method, a spin coating method, a casting method, and an inkjet method using the composition containing the compound And the organic semiconductor layer is formed by any one of printing methods, and the composition includes at least one selected from the group consisting of toluene, chlorobenzene, dichlorobenzene, trichlorobenzene, dichloromethane, and chloroform. A manufacturing method is provided.
また、本発明の一態様は、更に親水性の膜を含み、前記電界効果トランジスタにおいて、前記有機半導体層が前記親水性の膜上に設けられている電界効果トランジスタであってもよい。
また、本発明の一態様は、前記電界効果トランジスタにおいて、更にゲート電極、ゲート絶縁膜、ソース電極及びドレイン電極を備え、前記有機半導体層が、前記ゲート絶縁膜を介して前記ゲート電極と対向するように設けられており、前記ソース電極及びドレイン電極が、前記有機半導体層上に接するように設けられている電界効果トランジスタであってもよい。
また、本発明の一態様は、前記電界効果トランジスタにおいて、更にゲート電極、ゲート絶縁膜、ソース電極及びドレイン電極を備え、前記有機半導体層が、前記ゲート絶縁膜を介して前記ゲート電極と対向するように設けられており、前記有機半導体層が、前記ソース電極及びドレイン電極上を覆うように設けられている電界効果トランジスタであってもよい。
また、本発明の一態様は、前記電界効果トランジスタにおいて、前記有機半導体層が、前記化合物が塗布されて形成されたものである電界効果トランジスタであってもよい。
また、本発明の一態様は、前記電界効果トランジスタにおいて、前記有機半導体層が、前記化合物が蒸着されて形成されたものである電界効果トランジスタであってもよい。
また、本発明の一態様は、前記化合物を含む有機半導体層を備えた電界効果トランジスタの製造方法であって、前記化合物を含む組成物を用いて浸漬法、スピンコート法、キャスト法、インクジェット法及び印刷法のいずれか一つによって前記有機半導体層を形成し、前記組成物は、トルエン、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン、ジクロロメタン及びクロロホルムからなる群より選択される少なくとも一種を含む電界効果トランジスタの製造方法を提供する。 Another embodiment of the present invention provides a field effect transistor including an organic semiconductor layer including the compound.
Further, one embodiment of the present invention may be a field effect transistor further including a hydrophilic film, wherein the organic semiconductor layer is provided over the hydrophilic film.
In one embodiment of the present invention, the field effect transistor further includes a gate electrode, a gate insulating film, a source electrode, and a drain electrode, and the organic semiconductor layer faces the gate electrode with the gate insulating film interposed therebetween. The field effect transistor may be provided so that the source electrode and the drain electrode are in contact with the organic semiconductor layer.
In one embodiment of the present invention, the field effect transistor further includes a gate electrode, a gate insulating film, a source electrode, and a drain electrode, and the organic semiconductor layer faces the gate electrode with the gate insulating film interposed therebetween. And the organic semiconductor layer may be a field effect transistor provided so as to cover the source electrode and the drain electrode.
One embodiment of the present invention may be the field effect transistor in which the organic semiconductor layer is formed by applying the compound.
One embodiment of the present invention may be the field effect transistor according to the field effect transistor, wherein the organic semiconductor layer is formed by vapor deposition of the compound.
Another embodiment of the present invention is a method for manufacturing a field effect transistor including an organic semiconductor layer containing the compound, and a dipping method, a spin coating method, a casting method, and an inkjet method using the composition containing the compound And the organic semiconductor layer is formed by any one of printing methods, and the composition includes at least one selected from the group consisting of toluene, chlorobenzene, dichlorobenzene, trichlorobenzene, dichloromethane, and chloroform. A manufacturing method is provided.
また、本発明の一態様は、前記化合物を含む有機半導体層を備えた太陽電池を提供する。
また、本発明の一態様は、前記太陽電池において、更に親水性の膜を含み、前記有機半導体層が前記親水性の膜上に設けられていてもよい。
また、本発明の一態様は、前記太陽電池において、前記有機半導体層が、前記化合物が塗布されて形成されたものであってもよい。
また、本発明の一態様は、前記太陽電池において、前記有機半導体層が、前記化合物が蒸着されて形成されたものであってもよい。
また、本発明の一態様は、前記化合物を含む有機半導体層を備えた太陽電池の製造方法であって、前記化合物を含む組成物を用いて浸漬法、スピンコート法、キャスト法、インクジェット法及び印刷法のいずれか一つによって前記有機半導体層を形成し、前記組成物は、トルエン、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン、ジクロロメタン及びクロロホルムからなる群より選択される少なくとも一種を含む太陽電池の製造方法を提供する。
また、本発明の一態様は、p型半導体材料とn型半導体材料とを含む有機半導体層を備え、少なくとも前記p型半導体材料およびn型半導体材料の一方が、前記化合物を含む太陽電池であってもよい。 Another embodiment of the present invention provides a solar cell including an organic semiconductor layer containing the compound.
In one embodiment of the present invention, the solar cell may further include a hydrophilic film, and the organic semiconductor layer may be provided over the hydrophilic film.
In one embodiment of the present invention, in the solar cell, the organic semiconductor layer may be formed by applying the compound.
In one embodiment of the present invention, in the solar cell, the organic semiconductor layer may be formed by vapor deposition of the compound.
Further, one embodiment of the present invention is a method for manufacturing a solar cell including an organic semiconductor layer containing the compound, and a dipping method, a spin coating method, a casting method, an ink jet method, and a method using the composition containing the compound The organic semiconductor layer is formed by any one of printing methods, and the composition includes at least one selected from the group consisting of toluene, chlorobenzene, dichlorobenzene, trichlorobenzene, dichloromethane, and chloroform. I will provide a.
Another embodiment of the present invention is a solar cell including an organic semiconductor layer including a p-type semiconductor material and an n-type semiconductor material, and at least one of the p-type semiconductor material and the n-type semiconductor material includes the compound. May be.
また、本発明の一態様は、前記太陽電池において、更に親水性の膜を含み、前記有機半導体層が前記親水性の膜上に設けられていてもよい。
また、本発明の一態様は、前記太陽電池において、前記有機半導体層が、前記化合物が塗布されて形成されたものであってもよい。
また、本発明の一態様は、前記太陽電池において、前記有機半導体層が、前記化合物が蒸着されて形成されたものであってもよい。
また、本発明の一態様は、前記化合物を含む有機半導体層を備えた太陽電池の製造方法であって、前記化合物を含む組成物を用いて浸漬法、スピンコート法、キャスト法、インクジェット法及び印刷法のいずれか一つによって前記有機半導体層を形成し、前記組成物は、トルエン、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン、ジクロロメタン及びクロロホルムからなる群より選択される少なくとも一種を含む太陽電池の製造方法を提供する。
また、本発明の一態様は、p型半導体材料とn型半導体材料とを含む有機半導体層を備え、少なくとも前記p型半導体材料およびn型半導体材料の一方が、前記化合物を含む太陽電池であってもよい。 Another embodiment of the present invention provides a solar cell including an organic semiconductor layer containing the compound.
In one embodiment of the present invention, the solar cell may further include a hydrophilic film, and the organic semiconductor layer may be provided over the hydrophilic film.
In one embodiment of the present invention, in the solar cell, the organic semiconductor layer may be formed by applying the compound.
In one embodiment of the present invention, in the solar cell, the organic semiconductor layer may be formed by vapor deposition of the compound.
Further, one embodiment of the present invention is a method for manufacturing a solar cell including an organic semiconductor layer containing the compound, and a dipping method, a spin coating method, a casting method, an ink jet method, and a method using the composition containing the compound The organic semiconductor layer is formed by any one of printing methods, and the composition includes at least one selected from the group consisting of toluene, chlorobenzene, dichlorobenzene, trichlorobenzene, dichloromethane, and chloroform. I will provide a.
Another embodiment of the present invention is a solar cell including an organic semiconductor layer including a p-type semiconductor material and an n-type semiconductor material, and at least one of the p-type semiconductor material and the n-type semiconductor material includes the compound. May be.
また、本発明の一態様は、前記化合物を含むキャリヤ輸送層を備えた有機発光素子を提供する。
また、本発明の一態様は、前記有機発光素子において、更に親水性の膜を有し、前記キャリヤ輸送層が親水性の膜上に設けられていてもよい。
また、本発明の一態様は、前記有機発光素子において、前記キャリヤ輸送層が、前記化合物が塗布されて形成されたものであってもよい。
また、本発明の一態様は、前記有機発光素子において、前記キャリヤ輸送層が、前記化合物が蒸着されて形成されたものであってもよい。
また、本発明の一態様は、前記化合物を含むキャリヤ輸送層を備えた有機発光素子の製造方法であって、前記化合物を含む組成物を用いて浸漬法、スピンコート法、キャスト法、インクジェット法及び印刷法のいずれか一つによって前記キャリヤ輸送層を形成し、前記組成物は、トルエン、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン、ジクロロメタン及びクロロホルムからなる群より選択される少なくとも一種を含む有機発光素子の製造方法を提供する。 Another embodiment of the present invention provides an organic light-emitting device including a carrier transport layer containing the compound.
In one embodiment of the present invention, the organic light-emitting element may further include a hydrophilic film, and the carrier transport layer may be provided on the hydrophilic film.
In one embodiment of the present invention, in the organic light emitting device, the carrier transport layer may be formed by applying the compound.
In one embodiment of the present invention, in the organic light emitting device, the carrier transport layer may be formed by depositing the compound.
Another embodiment of the present invention is a method for manufacturing an organic light-emitting element including a carrier transport layer containing the compound, and a dipping method, a spin coating method, a casting method, and an inkjet method using the composition containing the compound. And the carrier transport layer is formed by any one of printing methods, and the composition is an organic light emitting device comprising at least one selected from the group consisting of toluene, chlorobenzene, dichlorobenzene, trichlorobenzene, dichloromethane, and chloroform. A manufacturing method is provided.
また、本発明の一態様は、前記有機発光素子において、更に親水性の膜を有し、前記キャリヤ輸送層が親水性の膜上に設けられていてもよい。
また、本発明の一態様は、前記有機発光素子において、前記キャリヤ輸送層が、前記化合物が塗布されて形成されたものであってもよい。
また、本発明の一態様は、前記有機発光素子において、前記キャリヤ輸送層が、前記化合物が蒸着されて形成されたものであってもよい。
また、本発明の一態様は、前記化合物を含むキャリヤ輸送層を備えた有機発光素子の製造方法であって、前記化合物を含む組成物を用いて浸漬法、スピンコート法、キャスト法、インクジェット法及び印刷法のいずれか一つによって前記キャリヤ輸送層を形成し、前記組成物は、トルエン、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン、ジクロロメタン及びクロロホルムからなる群より選択される少なくとも一種を含む有機発光素子の製造方法を提供する。 Another embodiment of the present invention provides an organic light-emitting device including a carrier transport layer containing the compound.
In one embodiment of the present invention, the organic light-emitting element may further include a hydrophilic film, and the carrier transport layer may be provided on the hydrophilic film.
In one embodiment of the present invention, in the organic light emitting device, the carrier transport layer may be formed by applying the compound.
In one embodiment of the present invention, in the organic light emitting device, the carrier transport layer may be formed by depositing the compound.
Another embodiment of the present invention is a method for manufacturing an organic light-emitting element including a carrier transport layer containing the compound, and a dipping method, a spin coating method, a casting method, and an inkjet method using the composition containing the compound. And the carrier transport layer is formed by any one of printing methods, and the composition is an organic light emitting device comprising at least one selected from the group consisting of toluene, chlorobenzene, dichlorobenzene, trichlorobenzene, dichloromethane, and chloroform. A manufacturing method is provided.
また、本発明の一態様は、前記化合物を含む電界効果トランジスタの有機半導体層用組成物を提供する。
また、本発明の一態様は、前記化合物を含む太陽電池の有機半導体層用組成物を提供する。
また、本発明の一態様は、p型半導体材料とn型半導体材料とを含み、少なくとも前記p型半導体材料およびn型半導体材料の一方が、かかる化合物を含む太陽電池の有機半導体層用組成物を提供する。
また、本発明の一態様は、前記化合物を含む有機発光素子のキャリヤ輸送層用組成物を提供する。 Another embodiment of the present invention provides a composition for an organic semiconductor layer of a field effect transistor containing the compound.
Another embodiment of the present invention provides a composition for an organic semiconductor layer of a solar cell containing the compound.
Another embodiment of the present invention is a composition for an organic semiconductor layer of a solar cell including a p-type semiconductor material and an n-type semiconductor material, and at least one of the p-type semiconductor material and the n-type semiconductor material includes such a compound. I will provide a.
Another embodiment of the present invention provides a composition for a carrier transport layer of an organic light-emitting device comprising the compound.
また、本発明の一態様は、前記化合物を含む太陽電池の有機半導体層用組成物を提供する。
また、本発明の一態様は、p型半導体材料とn型半導体材料とを含み、少なくとも前記p型半導体材料およびn型半導体材料の一方が、かかる化合物を含む太陽電池の有機半導体層用組成物を提供する。
また、本発明の一態様は、前記化合物を含む有機発光素子のキャリヤ輸送層用組成物を提供する。 Another embodiment of the present invention provides a composition for an organic semiconductor layer of a field effect transistor containing the compound.
Another embodiment of the present invention provides a composition for an organic semiconductor layer of a solar cell containing the compound.
Another embodiment of the present invention is a composition for an organic semiconductor layer of a solar cell including a p-type semiconductor material and an n-type semiconductor material, and at least one of the p-type semiconductor material and the n-type semiconductor material includes such a compound. I will provide a.
Another embodiment of the present invention provides a composition for a carrier transport layer of an organic light-emitting device comprising the compound.
本発明の態様によれば、溶媒に対する溶解性が高く、かつ大気雰囲気下で安定であり、有機半導体材料として好適な新規化合物と、前記化合物を用いた半導体デバイスを提供できる。
According to the aspect of the present invention, a novel compound that is highly soluble in a solvent and stable in the air atmosphere and is suitable as an organic semiconductor material, and a semiconductor device using the compound can be provided.
[第一実施形態]
<化合物>
本発明の一態様に係る化合物は、下記一般式(1)で表され(以下、化合物(1)と略記する)、ジベンゾフェノキサジン骨格を有する。 [First embodiment]
<Compound>
A compound according to one embodiment of the present invention is represented by the following general formula (1) (hereinafter abbreviated as compound (1)) and has a dibenzophenoxazine skeleton.
<化合物>
本発明の一態様に係る化合物は、下記一般式(1)で表され(以下、化合物(1)と略記する)、ジベンゾフェノキサジン骨格を有する。 [First embodiment]
<Compound>
A compound according to one embodiment of the present invention is represented by the following general formula (1) (hereinafter abbreviated as compound (1)) and has a dibenzophenoxazine skeleton.
(式中、R1は置換基を有していてもよい炭素数1~20の脂肪族炭化水素基であり;R2~R13はそれぞれ独立して水素原子、ハロゲン原子又は置換基を有していてもよい芳香族基もしくは炭素数1~20の脂肪族炭化水素基である。)
(Wherein R 1 is an optionally substituted aliphatic hydrocarbon group having 1 to 20 carbon atoms; R 2 to R 13 each independently has a hydrogen atom, a halogen atom or a substituent. An aromatic group which may be substituted or an aliphatic hydrocarbon group having 1 to 20 carbon atoms.)
式中、R1は、置換基を有していてもよい炭素数1~20の脂肪族炭化水素基である。
R1における前記脂肪族炭化水素基は、飽和脂肪族炭化水素基及び不飽和脂肪族炭化水素基のいずれでもよく、直鎖状、分岐鎖状及び環状のいずれでもよい。 In the formula, R 1 is an aliphatic hydrocarbon group having 1 to 20 carbon atoms which may have a substituent.
The aliphatic hydrocarbon group for R 1 may be either a saturated aliphatic hydrocarbon group or an unsaturated aliphatic hydrocarbon group, and may be linear, branched, or cyclic.
R1における前記脂肪族炭化水素基は、飽和脂肪族炭化水素基及び不飽和脂肪族炭化水素基のいずれでもよく、直鎖状、分岐鎖状及び環状のいずれでもよい。 In the formula, R 1 is an aliphatic hydrocarbon group having 1 to 20 carbon atoms which may have a substituent.
The aliphatic hydrocarbon group for R 1 may be either a saturated aliphatic hydrocarbon group or an unsaturated aliphatic hydrocarbon group, and may be linear, branched, or cyclic.
前記直鎖状又は分岐鎖状の飽和脂肪族炭化水素基(アルキル基)としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、1-メチルブチル基、n-ヘキシル基、2-メチルペンチル基、3-メチルペンチル基、2,2-ジメチルブチル基、2,3-ジメチルブチル基、n-ヘプチル基、2-メチルヘキシル基、3-メチルヘキシル基、2,2-ジメチルペンチル基、2,3-ジメチルペンチル基、2,4-ジメチルペンチル基、3,3-ジメチルペンチル基、3-エチルペンチル基、2,2,3-トリメチルブチル基、n-オクチル基、イソオクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基等が例示できる。すなわち、前記直鎖状又は分岐鎖状の飽和脂肪族炭化水素基としては、炭素数は1~20であってもよい。そして、アルキル基の炭素数と溶解度の関係から鑑みて、炭素数1~15のアルキル基であることが好ましく、さらには炭素数5~9のアルキル基であることがより好ましい。このようにすることで、溶媒に対して溶解度の高い化合物とすることができる。
なお、平面性の高い縮環化合物に導入されたアルキル鎖の鎖長と、溶解度の関係に関する報告として、J.Am.Chem.Soc.2007,129,15732が挙げられる。これによると、溶解度はアルキル鎖の鎖長が5~9の場合が特に良く、これより鎖長が長くなるに従い、溶解度が低下していくことが示されている。従って、導入するアルキル置換基としては炭素数5~9が特に好ましく、そのいずれの炭素数においても溶解度に関して同程度の効果を示すものと推測できる。
前記直鎖状又は分岐鎖状の不飽和脂肪族炭化水素基としては、ビニル基(エテニル基)、アリル基(2-プロペニル基)、1-プロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基等、前記直鎖状又は分岐鎖状の飽和脂肪族炭化水素基において、一つ以上の炭素原子間の単結合(C-C)が、不飽和結合である二重結合(C=C)又は三重結合(C≡C)に置換されたものが例示でき、不飽和結合の数及び位置は特に限定されない。 Examples of the linear or branched saturated aliphatic hydrocarbon group (alkyl group) include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, and a tert group. -Butyl group, n-pentyl group, isopentyl group, neopentyl group, tert-pentyl group, 1-methylbutyl group, n-hexyl group, 2-methylpentyl group, 3-methylpentyl group, 2,2-dimethylbutyl group, 2,3-dimethylbutyl group, n-heptyl group, 2-methylhexyl group, 3-methylhexyl group, 2,2-dimethylpentyl group, 2,3-dimethylpentyl group, 2,4-dimethylpentyl group, 3 , 3-dimethylpentyl group, 3-ethylpentyl group, 2,2,3-trimethylbutyl group, n-octyl group, isooctyl group, nonyl group, decyl group Undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl group, eicosyl group and the like. That is, the linear or branched saturated aliphatic hydrocarbon group may have 1 to 20 carbon atoms. In view of the relationship between the carbon number and solubility of the alkyl group, the alkyl group is preferably an alkyl group having 1 to 15 carbon atoms, and more preferably an alkyl group having 5 to 9 carbon atoms. By doing in this way, it can be set as a compound with high solubility with respect to a solvent.
As a report on the relationship between the solubility of the chain length of the alkyl chain introduced into the condensed ring compound having high planarity and J. Am. Chem. Soc. 2007, 129, and 15732. According to this, the solubility is particularly good when the chain length of the alkyl chain is 5 to 9, and it is shown that the solubility decreases as the chain length becomes longer. Accordingly, the alkyl substituent to be introduced preferably has 5 to 9 carbon atoms, and it can be assumed that any carbon number has the same effect on solubility.
Examples of the linear or branched unsaturated aliphatic hydrocarbon group include a vinyl group (ethenyl group), an allyl group (2-propenyl group), a 1-propenyl group, a 1-butenyl group, a 2-butenyl group, In the linear or branched saturated aliphatic hydrocarbon group such as 3-butenyl group, a single bond (C—C) between one or more carbon atoms is a double bond (C ═C) or a triple bond (C≡C) can be exemplified, and the number and position of unsaturated bonds are not particularly limited.
なお、平面性の高い縮環化合物に導入されたアルキル鎖の鎖長と、溶解度の関係に関する報告として、J.Am.Chem.Soc.2007,129,15732が挙げられる。これによると、溶解度はアルキル鎖の鎖長が5~9の場合が特に良く、これより鎖長が長くなるに従い、溶解度が低下していくことが示されている。従って、導入するアルキル置換基としては炭素数5~9が特に好ましく、そのいずれの炭素数においても溶解度に関して同程度の効果を示すものと推測できる。
前記直鎖状又は分岐鎖状の不飽和脂肪族炭化水素基としては、ビニル基(エテニル基)、アリル基(2-プロペニル基)、1-プロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基等、前記直鎖状又は分岐鎖状の飽和脂肪族炭化水素基において、一つ以上の炭素原子間の単結合(C-C)が、不飽和結合である二重結合(C=C)又は三重結合(C≡C)に置換されたものが例示でき、不飽和結合の数及び位置は特に限定されない。 Examples of the linear or branched saturated aliphatic hydrocarbon group (alkyl group) include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, and a tert group. -Butyl group, n-pentyl group, isopentyl group, neopentyl group, tert-pentyl group, 1-methylbutyl group, n-hexyl group, 2-methylpentyl group, 3-methylpentyl group, 2,2-dimethylbutyl group, 2,3-dimethylbutyl group, n-heptyl group, 2-methylhexyl group, 3-methylhexyl group, 2,2-dimethylpentyl group, 2,3-dimethylpentyl group, 2,4-dimethylpentyl group, 3 , 3-dimethylpentyl group, 3-ethylpentyl group, 2,2,3-trimethylbutyl group, n-octyl group, isooctyl group, nonyl group, decyl group Undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl group, eicosyl group and the like. That is, the linear or branched saturated aliphatic hydrocarbon group may have 1 to 20 carbon atoms. In view of the relationship between the carbon number and solubility of the alkyl group, the alkyl group is preferably an alkyl group having 1 to 15 carbon atoms, and more preferably an alkyl group having 5 to 9 carbon atoms. By doing in this way, it can be set as a compound with high solubility with respect to a solvent.
As a report on the relationship between the solubility of the chain length of the alkyl chain introduced into the condensed ring compound having high planarity and J. Am. Chem. Soc. 2007, 129, and 15732. According to this, the solubility is particularly good when the chain length of the alkyl chain is 5 to 9, and it is shown that the solubility decreases as the chain length becomes longer. Accordingly, the alkyl substituent to be introduced preferably has 5 to 9 carbon atoms, and it can be assumed that any carbon number has the same effect on solubility.
Examples of the linear or branched unsaturated aliphatic hydrocarbon group include a vinyl group (ethenyl group), an allyl group (2-propenyl group), a 1-propenyl group, a 1-butenyl group, a 2-butenyl group, In the linear or branched saturated aliphatic hydrocarbon group such as 3-butenyl group, a single bond (C—C) between one or more carbon atoms is a double bond (C ═C) or a triple bond (C≡C) can be exemplified, and the number and position of unsaturated bonds are not particularly limited.
前記環状の脂肪族炭化水素基は、単環状及び多環状のいずれでもよい。
前記環状の飽和脂肪族炭化水素基(シクロアルキル基)としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、トリシクロデシル基、アダマンチル基、テトラシクロドデシル基、イソボルニル基、ノルボルニル基等が例示できる。
前記環状の不飽和脂肪族炭化水素基としては、前記環状の飽和脂肪族炭化水素基において、一つ以上の炭素原子間の単結合(C-C)が、不飽和結合である二重結合(C=C)又は三重結合(C≡C)に置換されたものが例示でき、不飽和結合の数及び位置は特に限定されない。
前記環状の脂肪族炭化水素基は、炭素数が3~20であってもよい。そして、環状の脂肪族炭化水素基の炭素数と溶解度の関係から鑑みて、炭素数3~15の環状の脂肪族炭化水素基であることが好ましく、炭素数5~9の環状の脂肪族炭化水素基であることがより好ましい。このようにすることで、溶媒に対して溶解度の高い化合物とすることができる。 The cyclic aliphatic hydrocarbon group may be monocyclic or polycyclic.
Examples of the cyclic saturated aliphatic hydrocarbon group (cycloalkyl group) include cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, tricyclodecyl group, adamantyl Group, tetracyclododecyl group, isobornyl group, norbornyl group and the like.
As the cyclic unsaturated aliphatic hydrocarbon group, a double bond (C—C) between one or more carbon atoms in the cyclic saturated aliphatic hydrocarbon group is an unsaturated bond ( Examples include those substituted with C═C) or triple bonds (C≡C), and the number and position of unsaturated bonds are not particularly limited.
The cyclic aliphatic hydrocarbon group may have 3 to 20 carbon atoms. In view of the relationship between the carbon number of the cyclic aliphatic hydrocarbon group and the solubility, it is preferably a cyclic aliphatic hydrocarbon group having 3 to 15 carbon atoms, and a cyclic aliphatic carbon group having 5 to 9 carbon atoms. More preferably, it is a hydrogen group. By doing in this way, it can be set as a compound with high solubility with respect to a solvent.
前記環状の飽和脂肪族炭化水素基(シクロアルキル基)としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、トリシクロデシル基、アダマンチル基、テトラシクロドデシル基、イソボルニル基、ノルボルニル基等が例示できる。
前記環状の不飽和脂肪族炭化水素基としては、前記環状の飽和脂肪族炭化水素基において、一つ以上の炭素原子間の単結合(C-C)が、不飽和結合である二重結合(C=C)又は三重結合(C≡C)に置換されたものが例示でき、不飽和結合の数及び位置は特に限定されない。
前記環状の脂肪族炭化水素基は、炭素数が3~20であってもよい。そして、環状の脂肪族炭化水素基の炭素数と溶解度の関係から鑑みて、炭素数3~15の環状の脂肪族炭化水素基であることが好ましく、炭素数5~9の環状の脂肪族炭化水素基であることがより好ましい。このようにすることで、溶媒に対して溶解度の高い化合物とすることができる。 The cyclic aliphatic hydrocarbon group may be monocyclic or polycyclic.
Examples of the cyclic saturated aliphatic hydrocarbon group (cycloalkyl group) include cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, tricyclodecyl group, adamantyl Group, tetracyclododecyl group, isobornyl group, norbornyl group and the like.
As the cyclic unsaturated aliphatic hydrocarbon group, a double bond (C—C) between one or more carbon atoms in the cyclic saturated aliphatic hydrocarbon group is an unsaturated bond ( Examples include those substituted with C═C) or triple bonds (C≡C), and the number and position of unsaturated bonds are not particularly limited.
The cyclic aliphatic hydrocarbon group may have 3 to 20 carbon atoms. In view of the relationship between the carbon number of the cyclic aliphatic hydrocarbon group and the solubility, it is preferably a cyclic aliphatic hydrocarbon group having 3 to 15 carbon atoms, and a cyclic aliphatic carbon group having 5 to 9 carbon atoms. More preferably, it is a hydrogen group. By doing in this way, it can be set as a compound with high solubility with respect to a solvent.
R1における前記脂肪族炭化水素基は、一つ以上の水素原子が置換基で置換されていてもよい。前記置換基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;水酸基;メルカプト基;ニトロ基;アミノ基;アルコキシ基;アリール基;アルキルアミノ基;アリールアミノ基;アシル基等が例示できる。置換基で置換される水素原子の位置及び数は、特に限定されない。
In the aliphatic hydrocarbon group for R 1 , one or more hydrogen atoms may be substituted with a substituent. Examples of the substituent include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom; hydroxyl group; mercapto group; nitro group; amino group; alkoxy group; aryl group; alkylamino group; arylamino group; Can be illustrated. The position and number of hydrogen atoms substituted with the substituent are not particularly limited.
R1における前記置換基としてのアルコキシ基としては、R1における前記アルキル基が酸素原子に結合した一価の基が例示できる。
R1における前記置換基としてのアリール基は、単環状及び多環状のいずれでもよく、フェニル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、2,6-ジメチルフェニル基、2,4,6-トリメチルフェニル基、1-エチルフェニル基、1-プロピルフェニル基、1-ブチルフェニル基、1-ナフチル基、2-ナフチル基、アントリル基等が例示できる。
R1における前記置換基としてのアルキルアミノ基としては、アミノ基(-NH2)の一つ又は二つの水素原子が、R1における前記アルキル基と同様のアルキル基で置換された一価の基が例示できる。
R1における前記置換基としてのアリールアミノ基としては、アミノ基(-NH2)の一つ又は二つの水素原子が、前記アリール基で置換された一価の基が例示できる。
R1における前記置換基としてのアシル基としては、R1における前記アルキル基又は前記アリール基がカルボニル基(-C(=O)-)に結合した一価の基が例示できる。 Examples of the alkoxy group as the substituent in R 1 include a monovalent group in which the alkyl group in R 1 is bonded to an oxygen atom.
The aryl group as the substituent in R 1 may be monocyclic or polycyclic, and may be a phenyl group, a 2-methylphenyl group, a 3-methylphenyl group, a 4-methylphenyl group, or a 2,6-dimethylphenyl group. 2,4,6-trimethylphenyl group, 1-ethylphenyl group, 1-propylphenyl group, 1-butylphenyl group, 1-naphthyl group, 2-naphthyl group, anthryl group and the like.
The alkylamino group as a substituent in R 1, one or two hydrogen atoms, monovalent group substituted with the same alkyl group and the alkyl group in R 1 amino group (-NH 2) Can be illustrated.
Examples of the arylamino group as the substituent in R 1 include a monovalent group in which one or two hydrogen atoms of an amino group (—NH 2 ) are substituted with the aryl group.
Examples of the acyl group as the substituent in R 1 include a monovalent group in which the alkyl group or aryl group in R 1 is bonded to a carbonyl group (—C (═O) —).
R1における前記置換基としてのアリール基は、単環状及び多環状のいずれでもよく、フェニル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、2,6-ジメチルフェニル基、2,4,6-トリメチルフェニル基、1-エチルフェニル基、1-プロピルフェニル基、1-ブチルフェニル基、1-ナフチル基、2-ナフチル基、アントリル基等が例示できる。
R1における前記置換基としてのアルキルアミノ基としては、アミノ基(-NH2)の一つ又は二つの水素原子が、R1における前記アルキル基と同様のアルキル基で置換された一価の基が例示できる。
R1における前記置換基としてのアリールアミノ基としては、アミノ基(-NH2)の一つ又は二つの水素原子が、前記アリール基で置換された一価の基が例示できる。
R1における前記置換基としてのアシル基としては、R1における前記アルキル基又は前記アリール基がカルボニル基(-C(=O)-)に結合した一価の基が例示できる。 Examples of the alkoxy group as the substituent in R 1 include a monovalent group in which the alkyl group in R 1 is bonded to an oxygen atom.
The aryl group as the substituent in R 1 may be monocyclic or polycyclic, and may be a phenyl group, a 2-methylphenyl group, a 3-methylphenyl group, a 4-methylphenyl group, or a 2,6-dimethylphenyl group. 2,4,6-trimethylphenyl group, 1-ethylphenyl group, 1-propylphenyl group, 1-butylphenyl group, 1-naphthyl group, 2-naphthyl group, anthryl group and the like.
The alkylamino group as a substituent in R 1, one or two hydrogen atoms, monovalent group substituted with the same alkyl group and the alkyl group in R 1 amino group (-NH 2) Can be illustrated.
Examples of the arylamino group as the substituent in R 1 include a monovalent group in which one or two hydrogen atoms of an amino group (—NH 2 ) are substituted with the aryl group.
Examples of the acyl group as the substituent in R 1 include a monovalent group in which the alkyl group or aryl group in R 1 is bonded to a carbonyl group (—C (═O) —).
R1は、飽和脂肪族炭化水素基(アルキル基)であることが好ましい。
R 1 is preferably a saturated aliphatic hydrocarbon group (alkyl group).
式中、R2~R13は、それぞれ独立して水素原子、ハロゲン原子又は置換基を有していてもよい芳香族基もしくは炭素数1~20の脂肪族炭化水素基である。
R2~R13におけるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が例示できる。
R2~R13における芳香族基は、単環状及び多環状のいずれでもよく、芳香族炭化水素基(アリール基)及び芳香族複素環式基(ヘテロアリール基)のいずれでもよい。
R2~R13における前記芳香族炭化水素基は、R1における置換基としての前記アリール基と同様である。
R2~R13における芳香族複素環式基は、芳香族環を構成する原子としてヘテロ原子を有するものであれば特に限定されず、前記ヘテロ原子としては、窒素原子、酸素原子、硫黄原子、セレン原子等が例示できる。好ましい芳香族複素環式基としては、ピリジル基、フリル基、チエニル基、セレノチエニル基等が例示できる。 In the formula, each of R 2 to R 13 is independently a hydrogen atom, a halogen atom, or an optionally substituted aromatic group or an aliphatic hydrocarbon group having 1 to 20 carbon atoms.
Examples of the halogen atom in R 2 to R 13 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
The aromatic group in R 2 to R 13 may be monocyclic or polycyclic, and may be any of an aromatic hydrocarbon group (aryl group) and an aromatic heterocyclic group (heteroaryl group).
The aromatic hydrocarbon group for R 2 to R 13 is the same as the aryl group as a substituent for R 1 .
The aromatic heterocyclic group in R 2 to R 13 is not particularly limited as long as it has a hetero atom as an atom constituting the aromatic ring. Examples of the hetero atom include a nitrogen atom, an oxygen atom, a sulfur atom, A selenium atom etc. can be illustrated. Preferred examples of the aromatic heterocyclic group include a pyridyl group, a furyl group, a thienyl group, and a selenothienyl group.
R2~R13におけるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が例示できる。
R2~R13における芳香族基は、単環状及び多環状のいずれでもよく、芳香族炭化水素基(アリール基)及び芳香族複素環式基(ヘテロアリール基)のいずれでもよい。
R2~R13における前記芳香族炭化水素基は、R1における置換基としての前記アリール基と同様である。
R2~R13における芳香族複素環式基は、芳香族環を構成する原子としてヘテロ原子を有するものであれば特に限定されず、前記ヘテロ原子としては、窒素原子、酸素原子、硫黄原子、セレン原子等が例示できる。好ましい芳香族複素環式基としては、ピリジル基、フリル基、チエニル基、セレノチエニル基等が例示できる。 In the formula, each of R 2 to R 13 is independently a hydrogen atom, a halogen atom, or an optionally substituted aromatic group or an aliphatic hydrocarbon group having 1 to 20 carbon atoms.
Examples of the halogen atom in R 2 to R 13 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
The aromatic group in R 2 to R 13 may be monocyclic or polycyclic, and may be any of an aromatic hydrocarbon group (aryl group) and an aromatic heterocyclic group (heteroaryl group).
The aromatic hydrocarbon group for R 2 to R 13 is the same as the aryl group as a substituent for R 1 .
The aromatic heterocyclic group in R 2 to R 13 is not particularly limited as long as it has a hetero atom as an atom constituting the aromatic ring. Examples of the hetero atom include a nitrogen atom, an oxygen atom, a sulfur atom, A selenium atom etc. can be illustrated. Preferred examples of the aromatic heterocyclic group include a pyridyl group, a furyl group, a thienyl group, and a selenothienyl group.
R2~R13における脂肪族炭化水素基は、R1における前記脂肪族炭化水素基と同様であり、飽和脂肪族炭化水素基であることが好ましく、直鎖状又は分岐鎖状であることが好ましい。そして、炭素数1~10のアルキル基であることが好ましく、炭素数1~5のアルキル基であることがより好ましい。こうすることで置換基の立体障害に起因する分子間の反発による影響を抑えることができる。
The aliphatic hydrocarbon group for R 2 to R 13 is the same as the aliphatic hydrocarbon group for R 1 , preferably a saturated aliphatic hydrocarbon group, and may be linear or branched. preferable. An alkyl group having 1 to 10 carbon atoms is preferable, and an alkyl group having 1 to 5 carbon atoms is more preferable. By doing so, the influence of repulsion between molecules due to steric hindrance of the substituent can be suppressed.
R2~R13における前記芳香族基又は脂肪族炭化水素基は、一つ以上の水素原子が置換基で置換されていてもよい。前記置換基は、R1における置換基と同様である。
In the aromatic group or aliphatic hydrocarbon group in R 2 to R 13 , one or more hydrogen atoms may be substituted with a substituent. The substituent is the same as the substituent in R 1 .
R2~R13は、水素原子、ハロゲン原子、炭素数が1~5のアルキル基、置換基を有していても良い炭素数3~12の芳香族基であることが好ましい。
R 2 to R 13 are preferably a hydrogen atom, a halogen atom, an alkyl group having 1 to 5 carbon atoms, or an aromatic group having 3 to 12 carbon atoms which may have a substituent.
好ましい化合物(1)の具体例を以下に示すが、化合物(1)はこれらに限定されるものではない。
Specific examples of preferred compound (1) are shown below, but compound (1) is not limited thereto.
化合物(1)は、溶媒に対する溶解性が高く、かつ耐酸化性が高いなど、大気雰囲気下でも安定である。したがって、後述するように、電界効果トランジスタ、太陽電池、有機発光素子等の有機電子デバイス(半導体デバイス)の有機半導体材料として、特に好適である。
化合物(1)の耐酸化性が高いのは、主骨格をジベンゾフェノキサジン骨格とすることで、HOMOレベルが低下したことによると推測される。
また、化合物(1)の溶媒に対する溶解性が高いのは、ジベンゾフェノキサジン骨格を構成する窒素原子に、R1が結合していることによると推測される。 Compound (1) is stable even in an air atmosphere, such as high solubility in a solvent and high oxidation resistance. Therefore, as described later, it is particularly suitable as an organic semiconductor material for organic electronic devices (semiconductor devices) such as field effect transistors, solar cells, and organic light emitting elements.
The high oxidation resistance of the compound (1) is presumed to be due to the fact that the main skeleton is a dibenzophenoxazine skeleton, thereby reducing the HOMO level.
The high solubility of the compound (1) in the solvent is presumed to be because R 1 is bonded to the nitrogen atom constituting the dibenzophenoxazine skeleton.
化合物(1)の耐酸化性が高いのは、主骨格をジベンゾフェノキサジン骨格とすることで、HOMOレベルが低下したことによると推測される。
また、化合物(1)の溶媒に対する溶解性が高いのは、ジベンゾフェノキサジン骨格を構成する窒素原子に、R1が結合していることによると推測される。 Compound (1) is stable even in an air atmosphere, such as high solubility in a solvent and high oxidation resistance. Therefore, as described later, it is particularly suitable as an organic semiconductor material for organic electronic devices (semiconductor devices) such as field effect transistors, solar cells, and organic light emitting elements.
The high oxidation resistance of the compound (1) is presumed to be due to the fact that the main skeleton is a dibenzophenoxazine skeleton, thereby reducing the HOMO level.
The high solubility of the compound (1) in the solvent is presumed to be because R 1 is bonded to the nitrogen atom constituting the dibenzophenoxazine skeleton.
[化合物(1)の製造方法]
化合物(1)は、例えば、以下に示す方法で製造できる。
すなわち、下記一般式(1a)で表される化合物(以下、化合物(1a)と略記する)と、下記一般式(1b)で表される化合物(以下、化合物(1b)と略記する)とを反応させて、下記一般式(1c)で表される化合物(以下、化合物(1c)と略記する)を合成する工程(以下、化合物(1c)合成工程と略記する)、及び化合物(1c)と、下記一般式(1d)で表される化合物(以下、化合物(1d)と略記する)とを反応させて、化合物(1)を合成する工程(以下、化合物(1)合成工程と略記する)を有する方法により、化合物(1)を製造できる。 [Production Method of Compound (1)]
Compound (1) can be produced, for example, by the method shown below.
That is, a compound represented by the following general formula (1a) (hereinafter abbreviated as compound (1a)) and a compound represented by the following general formula (1b) (hereinafter abbreviated as compound (1b)). A step of reacting to synthesize a compound represented by the following general formula (1c) (hereinafter abbreviated as compound (1c)) (hereinafter abbreviated as compound (1c) synthesis step), and compound (1c); And a step of reacting a compound represented by the following general formula (1d) (hereinafter abbreviated as compound (1d)) to synthesize compound (1) (hereinafter abbreviated as compound (1) synthesis step). A compound (1) can be manufactured by the method which has this.
化合物(1)は、例えば、以下に示す方法で製造できる。
すなわち、下記一般式(1a)で表される化合物(以下、化合物(1a)と略記する)と、下記一般式(1b)で表される化合物(以下、化合物(1b)と略記する)とを反応させて、下記一般式(1c)で表される化合物(以下、化合物(1c)と略記する)を合成する工程(以下、化合物(1c)合成工程と略記する)、及び化合物(1c)と、下記一般式(1d)で表される化合物(以下、化合物(1d)と略記する)とを反応させて、化合物(1)を合成する工程(以下、化合物(1)合成工程と略記する)を有する方法により、化合物(1)を製造できる。 [Production Method of Compound (1)]
Compound (1) can be produced, for example, by the method shown below.
That is, a compound represented by the following general formula (1a) (hereinafter abbreviated as compound (1a)) and a compound represented by the following general formula (1b) (hereinafter abbreviated as compound (1b)). A step of reacting to synthesize a compound represented by the following general formula (1c) (hereinafter abbreviated as compound (1c)) (hereinafter abbreviated as compound (1c) synthesis step), and compound (1c); And a step of reacting a compound represented by the following general formula (1d) (hereinafter abbreviated as compound (1d)) to synthesize compound (1) (hereinafter abbreviated as compound (1) synthesis step). A compound (1) can be manufactured by the method which has this.
(式中、R1~R13は前記と同様であり;Xは塩素原子又は臭素原子である。)
(Wherein R 1 to R 13 are the same as described above; X is a chlorine atom or a bromine atom.)
(化合物(1c)合成工程)
化合物(1c)合成工程においては、化合物(1a)及び(1b)を脱水縮合反応させる。
化合物(1a)及び(1b)において、R2~R13は、化合物(1)の場合と同様である。
化合物(1a)の使用量は、化合物(1b)の0.5~1.5倍モル量であることが好ましい。
脱水縮合反応は、溶媒を使用して行ってもよく、無溶媒で行ってもよいが、反応を速やかに進行させることができる点から、無溶媒で行うことが好ましい。溶媒は、使用原料と反応しないものであれば、特に限定されない。
また、脱水縮合反応は、常圧下及び減圧下のいずれで行ってもよい。常圧下で行う場合には、不活性ガス雰囲気下で行うことが好ましく、前記不活性ガスとしては、窒素ガス、アルゴンガス、ヘリウムガスが例示できる。
反応温度は、使用原料の種類等に応じて適宜設定すればよい。例えば、無溶媒で反応させる場合には、150~260℃であることが好ましい。
反応時間は、反応温度を考慮して、化合物(1c)の生成量が最大となるように調節すればよい。例えば、無溶媒で反応させる場合には、1~24時間であることが好ましい。
反応終了後は、必要に応じて後処理を行い、生成物である化合物(1c)を取り出せば良い。ここで、「後処理」とは、ろ過、濃縮、抽出、脱水、pH調整等の操作を指し、これら操作のいずれか一つを単独で、又は二つ以上を組み合わせて行えば良い。そして、化合物(1c)の取り出しは、濃縮、結晶化、カラムクロマトグラフィー等の操作で行えば良く、必要に応じて、カラムクロマトグラフィー、結晶化、抽出、溶媒による結晶の撹拌洗浄等の操作を一回以上繰り返して、精製を行っても良い。また、必要に応じて後処理を行い、化合物(1c)を取り出すことなく、次工程(化合物(1)合成工程)を行ってもよい。 (Compound (1c) synthesis step)
In the compound (1c) synthesis step, compounds (1a) and (1b) are subjected to a dehydration condensation reaction.
In the compounds (1a) and (1b), R 2 to R 13 are the same as in the case of the compound (1).
The amount of compound (1a) used is preferably 0.5 to 1.5 times the molar amount of compound (1b).
The dehydration condensation reaction may be performed using a solvent or may be performed without a solvent, but is preferably performed without a solvent from the viewpoint that the reaction can proceed promptly. A solvent will not be specifically limited if it does not react with the raw material to be used.
The dehydration condensation reaction may be performed under normal pressure or reduced pressure. When performed under normal pressure, it is preferably performed in an inert gas atmosphere, and examples of the inert gas include nitrogen gas, argon gas, and helium gas.
What is necessary is just to set reaction temperature suitably according to the kind etc. of raw material to be used. For example, when the reaction is performed without a solvent, the temperature is preferably 150 to 260 ° C.
What is necessary is just to adjust reaction time so that reaction temperature may be considered so that the production amount of a compound (1c) may become the maximum. For example, when the reaction is carried out without a solvent, it is preferably 1 to 24 hours.
After completion of the reaction, post-treatment may be performed as necessary to take out the product compound (1c). Here, “post-treatment” refers to operations such as filtration, concentration, extraction, dehydration, and pH adjustment, and any one of these operations may be performed alone or in combination of two or more. The compound (1c) can be removed by operations such as concentration, crystallization, column chromatography, etc., and operations such as column chromatography, crystallization, extraction, and stirring and washing of the crystals with a solvent can be performed as necessary. Purification may be performed by repeating once or more. Moreover, you may post-process as needed and may perform the next process (compound (1) synthetic | combination process), without taking out a compound (1c).
化合物(1c)合成工程においては、化合物(1a)及び(1b)を脱水縮合反応させる。
化合物(1a)及び(1b)において、R2~R13は、化合物(1)の場合と同様である。
化合物(1a)の使用量は、化合物(1b)の0.5~1.5倍モル量であることが好ましい。
脱水縮合反応は、溶媒を使用して行ってもよく、無溶媒で行ってもよいが、反応を速やかに進行させることができる点から、無溶媒で行うことが好ましい。溶媒は、使用原料と反応しないものであれば、特に限定されない。
また、脱水縮合反応は、常圧下及び減圧下のいずれで行ってもよい。常圧下で行う場合には、不活性ガス雰囲気下で行うことが好ましく、前記不活性ガスとしては、窒素ガス、アルゴンガス、ヘリウムガスが例示できる。
反応温度は、使用原料の種類等に応じて適宜設定すればよい。例えば、無溶媒で反応させる場合には、150~260℃であることが好ましい。
反応時間は、反応温度を考慮して、化合物(1c)の生成量が最大となるように調節すればよい。例えば、無溶媒で反応させる場合には、1~24時間であることが好ましい。
反応終了後は、必要に応じて後処理を行い、生成物である化合物(1c)を取り出せば良い。ここで、「後処理」とは、ろ過、濃縮、抽出、脱水、pH調整等の操作を指し、これら操作のいずれか一つを単独で、又は二つ以上を組み合わせて行えば良い。そして、化合物(1c)の取り出しは、濃縮、結晶化、カラムクロマトグラフィー等の操作で行えば良く、必要に応じて、カラムクロマトグラフィー、結晶化、抽出、溶媒による結晶の撹拌洗浄等の操作を一回以上繰り返して、精製を行っても良い。また、必要に応じて後処理を行い、化合物(1c)を取り出すことなく、次工程(化合物(1)合成工程)を行ってもよい。 (Compound (1c) synthesis step)
In the compound (1c) synthesis step, compounds (1a) and (1b) are subjected to a dehydration condensation reaction.
In the compounds (1a) and (1b), R 2 to R 13 are the same as in the case of the compound (1).
The amount of compound (1a) used is preferably 0.5 to 1.5 times the molar amount of compound (1b).
The dehydration condensation reaction may be performed using a solvent or may be performed without a solvent, but is preferably performed without a solvent from the viewpoint that the reaction can proceed promptly. A solvent will not be specifically limited if it does not react with the raw material to be used.
The dehydration condensation reaction may be performed under normal pressure or reduced pressure. When performed under normal pressure, it is preferably performed in an inert gas atmosphere, and examples of the inert gas include nitrogen gas, argon gas, and helium gas.
What is necessary is just to set reaction temperature suitably according to the kind etc. of raw material to be used. For example, when the reaction is performed without a solvent, the temperature is preferably 150 to 260 ° C.
What is necessary is just to adjust reaction time so that reaction temperature may be considered so that the production amount of a compound (1c) may become the maximum. For example, when the reaction is carried out without a solvent, it is preferably 1 to 24 hours.
After completion of the reaction, post-treatment may be performed as necessary to take out the product compound (1c). Here, “post-treatment” refers to operations such as filtration, concentration, extraction, dehydration, and pH adjustment, and any one of these operations may be performed alone or in combination of two or more. The compound (1c) can be removed by operations such as concentration, crystallization, column chromatography, etc., and operations such as column chromatography, crystallization, extraction, and stirring and washing of the crystals with a solvent can be performed as necessary. Purification may be performed by repeating once or more. Moreover, you may post-process as needed and may perform the next process (compound (1) synthetic | combination process), without taking out a compound (1c).
(化合物(1)合成工程)
化合物(1)合成工程においては、化合物(1c)及び(1d)を反応させ、化合物(1c)の窒素原子に脂肪族炭化水素基を導入する。
化合物(1d)において、R1は、化合物(1)の場合と同様である。また、Xは塩素原子又は臭素原子である。
化合物(1d)の使用量は、化合物(1c)の1~3倍モル量であることが好ましい。
化合物(1c)を取り出さない場合には、化合物(1a)の使用量と、化合物(1c)合成工程における化合物(1c)の反応率等を考慮して、化合物(1d)の使用量を設定すればよい。
反応は、塩基共存下で行うことが好ましく、例えば、化合物(1c)と塩基を混合した後、ここに化合物(1d)を加えて反応させることが好ましい。前記塩基は、水素化ナトリウム(NaH)、n-ブチルリチウム(n-BuLi)等の強塩基であることが好ましい。また、塩基の使用量は、化合物(1d)の使用量と同様であることが好ましい。
反応は、溶媒を使用して行うことが好ましく、溶媒は、使用原料と反応しないものであれば特に限定されないが、N,N-ジメチルホルムアミド(DMF)等が好ましいものとして例示できる。
また、反応は、無水条件下で行うことが好ましい。
反応温度は、使用原料の種類等に応じて適宜設定すればよいが、15~30℃であることが好ましい。
反応時間は、反応温度を考慮して、化合物(1)の生成量が最大となるように調節すればよいが、1~12時間であることが好ましい。
反応終了後は、化合物(1c)合成工程の場合と同様に、必要に応じて後処理を行い、目的物である化合物(1)を取り出せば良い。 (Compound (1) synthesis step)
In the compound (1) synthesis step, compounds (1c) and (1d) are reacted to introduce an aliphatic hydrocarbon group into the nitrogen atom of compound (1c).
In compound (1d), R 1 is the same as in compound (1). X is a chlorine atom or a bromine atom.
The amount of compound (1d) used is preferably 1 to 3 times the molar amount of compound (1c).
When compound (1c) is not taken out, the amount of compound (1d) used should be set in consideration of the amount of compound (1a) used and the reaction rate of compound (1c) in the synthesis step of compound (1c). That's fine.
The reaction is preferably performed in the presence of a base. For example, it is preferable to mix the compound (1c) and a base and then add the compound (1d) to the reaction. The base is preferably a strong base such as sodium hydride (NaH) or n-butyllithium (n-BuLi). Moreover, it is preferable that the usage-amount of a base is the same as the usage-amount of a compound (1d).
The reaction is preferably performed using a solvent, and the solvent is not particularly limited as long as it does not react with the raw material used, but N, N-dimethylformamide (DMF) and the like can be exemplified as a preferable one.
The reaction is preferably performed under anhydrous conditions.
The reaction temperature may be appropriately set according to the type of raw material used, but is preferably 15 to 30 ° C.
The reaction time may be adjusted so as to maximize the amount of compound (1) produced in consideration of the reaction temperature, but it is preferably 1 to 12 hours.
After completion of the reaction, as in the case of the compound (1c) synthesis step, post-treatment may be performed as necessary to take out the target compound (1).
化合物(1)合成工程においては、化合物(1c)及び(1d)を反応させ、化合物(1c)の窒素原子に脂肪族炭化水素基を導入する。
化合物(1d)において、R1は、化合物(1)の場合と同様である。また、Xは塩素原子又は臭素原子である。
化合物(1d)の使用量は、化合物(1c)の1~3倍モル量であることが好ましい。
化合物(1c)を取り出さない場合には、化合物(1a)の使用量と、化合物(1c)合成工程における化合物(1c)の反応率等を考慮して、化合物(1d)の使用量を設定すればよい。
反応は、塩基共存下で行うことが好ましく、例えば、化合物(1c)と塩基を混合した後、ここに化合物(1d)を加えて反応させることが好ましい。前記塩基は、水素化ナトリウム(NaH)、n-ブチルリチウム(n-BuLi)等の強塩基であることが好ましい。また、塩基の使用量は、化合物(1d)の使用量と同様であることが好ましい。
反応は、溶媒を使用して行うことが好ましく、溶媒は、使用原料と反応しないものであれば特に限定されないが、N,N-ジメチルホルムアミド(DMF)等が好ましいものとして例示できる。
また、反応は、無水条件下で行うことが好ましい。
反応温度は、使用原料の種類等に応じて適宜設定すればよいが、15~30℃であることが好ましい。
反応時間は、反応温度を考慮して、化合物(1)の生成量が最大となるように調節すればよいが、1~12時間であることが好ましい。
反応終了後は、化合物(1c)合成工程の場合と同様に、必要に応じて後処理を行い、目的物である化合物(1)を取り出せば良い。 (Compound (1) synthesis step)
In the compound (1) synthesis step, compounds (1c) and (1d) are reacted to introduce an aliphatic hydrocarbon group into the nitrogen atom of compound (1c).
In compound (1d), R 1 is the same as in compound (1). X is a chlorine atom or a bromine atom.
The amount of compound (1d) used is preferably 1 to 3 times the molar amount of compound (1c).
When compound (1c) is not taken out, the amount of compound (1d) used should be set in consideration of the amount of compound (1a) used and the reaction rate of compound (1c) in the synthesis step of compound (1c). That's fine.
The reaction is preferably performed in the presence of a base. For example, it is preferable to mix the compound (1c) and a base and then add the compound (1d) to the reaction. The base is preferably a strong base such as sodium hydride (NaH) or n-butyllithium (n-BuLi). Moreover, it is preferable that the usage-amount of a base is the same as the usage-amount of a compound (1d).
The reaction is preferably performed using a solvent, and the solvent is not particularly limited as long as it does not react with the raw material used, but N, N-dimethylformamide (DMF) and the like can be exemplified as a preferable one.
The reaction is preferably performed under anhydrous conditions.
The reaction temperature may be appropriately set according to the type of raw material used, but is preferably 15 to 30 ° C.
The reaction time may be adjusted so as to maximize the amount of compound (1) produced in consideration of the reaction temperature, but it is preferably 1 to 12 hours.
After completion of the reaction, as in the case of the compound (1c) synthesis step, post-treatment may be performed as necessary to take out the target compound (1).
化合物(1)、化合物(1c)等は、核磁気共鳴分光法(1H-NMR、13C-NMR)等の公知の手法で構造を確認できる。
The structure of compound (1), compound (1c), etc. can be confirmed by a known method such as nuclear magnetic resonance spectroscopy ( 1 H-NMR, 13 C-NMR).
<電界効果トランジスタの有機半導体層用組成物>
本発明の一態様に係る電界効果トランジスタの有機半導体層用組成物は、前記化合物(1)を含む。
上記のように、化合物(1)は溶媒に対する溶解性が高い。したがって、化合物(1)を溶媒に溶解させた、本実施形態の有機半導体層用組成物は容易に調製でき、かかる組成物を用いることにより、電界効果トランジスタの有機半導体層を、浸漬法、スピンコート法、キャスト法、インクジェット法、印刷法等の簡便な方法で形成できる。有機半導体層は、真空蒸着法等により、化合物(1)を蒸着させて形成してもよい。ただし、上記のように真空装置等を用いずに簡便に成膜することで、電界効果トランジスタの製造コストを大幅に低減できる。特に、前記組成物(化合物(1))を塗布して有機半導体層を形成する方法が好適である。 <Composition for organic semiconductor layer of field effect transistor>
The composition for organic semiconductor layers of a field effect transistor according to one embodiment of the present invention includes the compound (1).
As described above, compound (1) has high solubility in a solvent. Therefore, the composition for an organic semiconductor layer of the present embodiment in which the compound (1) is dissolved in a solvent can be easily prepared. By using such a composition, the organic semiconductor layer of the field effect transistor can be formed by a dipping method, a spin method, or the like. It can be formed by a simple method such as a coating method, a casting method, an ink jet method, or a printing method. The organic semiconductor layer may be formed by depositing the compound (1) by a vacuum deposition method or the like. However, the manufacturing cost of the field effect transistor can be significantly reduced by simply forming a film without using a vacuum apparatus or the like as described above. In particular, a method of forming the organic semiconductor layer by applying the composition (compound (1)) is suitable.
本発明の一態様に係る電界効果トランジスタの有機半導体層用組成物は、前記化合物(1)を含む。
上記のように、化合物(1)は溶媒に対する溶解性が高い。したがって、化合物(1)を溶媒に溶解させた、本実施形態の有機半導体層用組成物は容易に調製でき、かかる組成物を用いることにより、電界効果トランジスタの有機半導体層を、浸漬法、スピンコート法、キャスト法、インクジェット法、印刷法等の簡便な方法で形成できる。有機半導体層は、真空蒸着法等により、化合物(1)を蒸着させて形成してもよい。ただし、上記のように真空装置等を用いずに簡便に成膜することで、電界効果トランジスタの製造コストを大幅に低減できる。特に、前記組成物(化合物(1))を塗布して有機半導体層を形成する方法が好適である。 <Composition for organic semiconductor layer of field effect transistor>
The composition for organic semiconductor layers of a field effect transistor according to one embodiment of the present invention includes the compound (1).
As described above, compound (1) has high solubility in a solvent. Therefore, the composition for an organic semiconductor layer of the present embodiment in which the compound (1) is dissolved in a solvent can be easily prepared. By using such a composition, the organic semiconductor layer of the field effect transistor can be formed by a dipping method, a spin method, or the like. It can be formed by a simple method such as a coating method, a casting method, an ink jet method, or a printing method. The organic semiconductor layer may be formed by depositing the compound (1) by a vacuum deposition method or the like. However, the manufacturing cost of the field effect transistor can be significantly reduced by simply forming a film without using a vacuum apparatus or the like as described above. In particular, a method of forming the organic semiconductor layer by applying the composition (compound (1)) is suitable.
本実施形態の有機半導体層用組成物は、溶媒成分として、トルエン等の炭化水素或いはジクロロメタン、クロロホルム、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化炭化水素、又はそれらの混合物を含むことが好ましい。例えば、有機半導体層用組成物は、溶媒成分として、トルエン、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン、ジクロロメタン及びクロロホルムのうち少なくとも一種を含んでも良い。
The composition for an organic semiconductor layer of the present embodiment preferably contains a hydrocarbon such as toluene or a halogenated hydrocarbon such as dichloromethane, chloroform, chlorobenzene, dichlorobenzene, or trichlorobenzene, or a mixture thereof as a solvent component. For example, the composition for organic semiconductor layers may contain at least one of toluene, chlorobenzene, dichlorobenzene, trichlorobenzene, dichloromethane, and chloroform as a solvent component.
また、有機半導体層用組成物は、溶媒成分以外に、化合物(1)のみを含むものでもよいし、化合物(1)以外の成分を含むものでもよい。ただし、溶媒成分以外のすべての成分に占める化合物(1)の比率は、90質量%以上であることが好ましく、100質量%である(化合物(1)のみを含む)ことがより好ましい。
Further, the composition for an organic semiconductor layer may contain only the compound (1) in addition to the solvent component, or may contain a component other than the compound (1). However, the ratio of the compound (1) to all components other than the solvent component is preferably 90% by mass or more, and more preferably 100% by mass (including only the compound (1)).
有機半導体層用組成物に含まれる化合物(1)は、一種でもよいし、二種以上でもよい。二種以上である場合、その組み合わせ及び比率は、目的に応じて適宜設定すればよい。
有機半導体層用組成物は、化合物(1)の含有量が0.2~5質量%であることが好ましい。 The compound (1) contained in the composition for organic semiconductor layers may be one kind or two or more kinds. In the case of two or more kinds, the combination and ratio may be appropriately set according to the purpose.
In the composition for an organic semiconductor layer, the content of the compound (1) is preferably 0.2 to 5% by mass.
有機半導体層用組成物は、化合物(1)の含有量が0.2~5質量%であることが好ましい。 The compound (1) contained in the composition for organic semiconductor layers may be one kind or two or more kinds. In the case of two or more kinds, the combination and ratio may be appropriately set according to the purpose.
In the composition for an organic semiconductor layer, the content of the compound (1) is preferably 0.2 to 5% by mass.
<太陽電池の有機半導体層用組成物>
本発明の一態様に係る太陽電池の有機半導体層用組成物は、前記化合物(1)を含み、用途が異なること以外は、上記の電界効果トランジスタの有機半導体層用組成物と同様である。例えば、化合物(1)を溶媒に溶解させた、本実施形態の有機半導体層用組成物は容易に調製でき、かかる組成物を用いることにより、太陽電池の有機半導体層を簡便な方法で形成できる。 <Composition for organic semiconductor layer of solar cell>
The composition for an organic semiconductor layer of a solar cell according to one embodiment of the present invention is the same as the composition for an organic semiconductor layer of the above-described field effect transistor except that it contains the compound (1) and has a different use. For example, the composition for an organic semiconductor layer of this embodiment in which the compound (1) is dissolved in a solvent can be easily prepared, and the organic semiconductor layer of a solar cell can be formed by a simple method by using such a composition. .
本発明の一態様に係る太陽電池の有機半導体層用組成物は、前記化合物(1)を含み、用途が異なること以外は、上記の電界効果トランジスタの有機半導体層用組成物と同様である。例えば、化合物(1)を溶媒に溶解させた、本実施形態の有機半導体層用組成物は容易に調製でき、かかる組成物を用いることにより、太陽電池の有機半導体層を簡便な方法で形成できる。 <Composition for organic semiconductor layer of solar cell>
The composition for an organic semiconductor layer of a solar cell according to one embodiment of the present invention is the same as the composition for an organic semiconductor layer of the above-described field effect transistor except that it contains the compound (1) and has a different use. For example, the composition for an organic semiconductor layer of this embodiment in which the compound (1) is dissolved in a solvent can be easily prepared, and the organic semiconductor layer of a solar cell can be formed by a simple method by using such a composition. .
また、本発明の一態様に係る有機半導体層用組成物の他の実施形態は、p型半導体材料とn型半導体材料とを含み、前記p型半導体材料及び/又はn型半導体材料が、前記化合物(1)を含む。
本実施形態の有機半導体層用組成物は、化合物(1)を溶媒に溶解させて容易に調製できるので、上記の電界効果トランジスタの有機半導体層用組成物と同様に、太陽電池の有機半導体層を簡便な方法で形成できる。太陽電池の有機半導体層は、真空蒸着法等により、化合物(1)を蒸着させて形成してもよいが、真空装置等を用いずに簡便に成膜することで、太陽電池の製造コストを大幅に低減でき、特に、前記組成物(化合物(1))を塗布して有機半導体層を形成する方法が好適である。 In addition, another embodiment of the composition for an organic semiconductor layer according to one aspect of the present invention includes a p-type semiconductor material and an n-type semiconductor material, and the p-type semiconductor material and / or the n-type semiconductor material is Compound (1) is included.
Since the composition for organic semiconductor layers of this embodiment can be easily prepared by dissolving the compound (1) in a solvent, the organic semiconductor layer for solar cells is similar to the organic semiconductor layer composition for field effect transistors described above. Can be formed by a simple method. The organic semiconductor layer of the solar cell may be formed by vapor-depositing the compound (1) by a vacuum vapor deposition method or the like, but by simply forming a film without using a vacuum device or the like, the manufacturing cost of the solar cell can be reduced. In particular, a method of forming the organic semiconductor layer by applying the composition (compound (1)) is suitable.
本実施形態の有機半導体層用組成物は、化合物(1)を溶媒に溶解させて容易に調製できるので、上記の電界効果トランジスタの有機半導体層用組成物と同様に、太陽電池の有機半導体層を簡便な方法で形成できる。太陽電池の有機半導体層は、真空蒸着法等により、化合物(1)を蒸着させて形成してもよいが、真空装置等を用いずに簡便に成膜することで、太陽電池の製造コストを大幅に低減でき、特に、前記組成物(化合物(1))を塗布して有機半導体層を形成する方法が好適である。 In addition, another embodiment of the composition for an organic semiconductor layer according to one aspect of the present invention includes a p-type semiconductor material and an n-type semiconductor material, and the p-type semiconductor material and / or the n-type semiconductor material is Compound (1) is included.
Since the composition for organic semiconductor layers of this embodiment can be easily prepared by dissolving the compound (1) in a solvent, the organic semiconductor layer for solar cells is similar to the organic semiconductor layer composition for field effect transistors described above. Can be formed by a simple method. The organic semiconductor layer of the solar cell may be formed by vapor-depositing the compound (1) by a vacuum vapor deposition method or the like, but by simply forming a film without using a vacuum device or the like, the manufacturing cost of the solar cell can be reduced. In particular, a method of forming the organic semiconductor layer by applying the composition (compound (1)) is suitable.
前記p型半導体材料及び/又はn型半導体材料は、化合物(1)のみからなるものでもよいし、化合物(1)以外の成分を含むものでもよい。ただし、前記半導体材料に占める化合物(1)の比率は、90質量%以上であることが好ましく、100質量%である(化合物(1)のみからなる)ことがより好ましい。
前記半導体材料に含まれる化合物(1)は、一種でもよいし、二種以上でもよい。二種以上である場合、その組み合わせ及び比率は、目的に応じて適宜設定すればよい。 The p-type semiconductor material and / or the n-type semiconductor material may be composed only of the compound (1) or may contain components other than the compound (1). However, the ratio of the compound (1) to the semiconductor material is preferably 90% by mass or more, and more preferably 100% by mass (consisting only of the compound (1)).
The compound (1) contained in the semiconductor material may be one kind or two or more kinds. In the case of two or more kinds, the combination and ratio may be appropriately set according to the purpose.
前記半導体材料に含まれる化合物(1)は、一種でもよいし、二種以上でもよい。二種以上である場合、その組み合わせ及び比率は、目的に応じて適宜設定すればよい。 The p-type semiconductor material and / or the n-type semiconductor material may be composed only of the compound (1) or may contain components other than the compound (1). However, the ratio of the compound (1) to the semiconductor material is preferably 90% by mass or more, and more preferably 100% by mass (consisting only of the compound (1)).
The compound (1) contained in the semiconductor material may be one kind or two or more kinds. In the case of two or more kinds, the combination and ratio may be appropriately set according to the purpose.
前記化合物(1)を含まないn型半導体材料は、後述する太陽電池におけるn型半導体層の材質として例示したものが挙げられ、好ましいものとして具体的には、フラーレン;[6,6]-フェニルC61酪酸メチルエステル(PCBM)等のフラーレン誘導体;フタルイミド環を構成している一つ以上の水素原子がフッ素原子で置換されたフッ素化フタロシアニン等が例示できる。前記フッ素化フタロシアニンは、フタルイミド環を構成しているすべての水素原子がフッ素原子で置換されていてもよい。
Examples of the n-type semiconductor material that does not contain the compound (1) include those exemplified as the material of the n-type semiconductor layer in the solar cell described later. Specifically, fullerene; [6,6] -phenyl is preferable. Examples include fullerene derivatives such as C61 butyric acid methyl ester (PCBM); fluorinated phthalocyanines in which one or more hydrogen atoms constituting the phthalimide ring are substituted with fluorine atoms. In the fluorinated phthalocyanine, all hydrogen atoms constituting the phthalimide ring may be substituted with fluorine atoms.
有機半導体層用組成物は、溶媒成分として、トルエン等の炭化水素或いはジクロロメタン、クロロホルム、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化炭化水素、又はそれらの混合物を含むことが好ましい。例えば、有機半導体層用組成物は、溶媒成分として、トルエン、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン、ジクロロメタン及びクロロホルムのうち少なくとも一種を含んでも良い。
The organic semiconductor layer composition preferably contains, as a solvent component, a hydrocarbon such as toluene or a halogenated hydrocarbon such as dichloromethane, chloroform, chlorobenzene, dichlorobenzene, or trichlorobenzene, or a mixture thereof. For example, the composition for organic semiconductor layers may contain at least one of toluene, chlorobenzene, dichlorobenzene, trichlorobenzene, dichloromethane, and chloroform as a solvent component.
有機半導体層用組成物は、前記p型半導体材料の含有量が0.2~5質量%であることが好ましい。そして、同様に前記n型半導体材料の含有量が0.2~5質量%であることが好ましい。
In the composition for an organic semiconductor layer, the content of the p-type semiconductor material is preferably 0.2 to 5% by mass. Similarly, the content of the n-type semiconductor material is preferably 0.2 to 5% by mass.
<キャリヤ輸送層用組成物>
本発明の一態様に係るキャリヤ輸送層用組成物は、前記化合物(1)を含み、用途が異なること以外は、上記の電界効果トランジスタの有機半導体層用組成物と同様である。例えば、化合物(1)を溶媒に溶解させた、本実施形態のキャリヤ輸送層用組成物は容易に調製でき、かかる組成物を用いることにより、有機発光素子のキャリヤ輸送層を簡便な方法で形成できる。 <Composition for carrier transport layer>
The composition for a carrier transport layer according to one embodiment of the present invention is the same as the composition for an organic semiconductor layer of the above-described field effect transistor except that it contains the compound (1) and has a different use. For example, the carrier transport layer composition of the present embodiment in which the compound (1) is dissolved in a solvent can be easily prepared. By using such a composition, the carrier transport layer of the organic light emitting device can be formed by a simple method. it can.
本発明の一態様に係るキャリヤ輸送層用組成物は、前記化合物(1)を含み、用途が異なること以外は、上記の電界効果トランジスタの有機半導体層用組成物と同様である。例えば、化合物(1)を溶媒に溶解させた、本実施形態のキャリヤ輸送層用組成物は容易に調製でき、かかる組成物を用いることにより、有機発光素子のキャリヤ輸送層を簡便な方法で形成できる。 <Composition for carrier transport layer>
The composition for a carrier transport layer according to one embodiment of the present invention is the same as the composition for an organic semiconductor layer of the above-described field effect transistor except that it contains the compound (1) and has a different use. For example, the carrier transport layer composition of the present embodiment in which the compound (1) is dissolved in a solvent can be easily prepared. By using such a composition, the carrier transport layer of the organic light emitting device can be formed by a simple method. it can.
<電界効果トランジスタ>
本発明の一態様に係る電界効果トランジスタは、化合物(1)を含む有機半導体層を備える。そして、かかる有機半導体層を備えたこと以外は、従来の電界効果トランジスタと同様の構成とすることができる。ここでは、化合物(1)は、主にp型半導体として利用されるが、フッ素原子等の電子吸引性が強い置換基を導入した場合や、電極の材料の選択によっては、n型半導体として機能させることも可能である。以下、図面を参照しながら説明する。 <Field effect transistor>
The field effect transistor which concerns on 1 aspect of this invention is equipped with the organic-semiconductor layer containing a compound (1). And it can be set as the structure similar to the conventional field effect transistor except having provided this organic-semiconductor layer. Here, the compound (1) is mainly used as a p-type semiconductor, but functions as an n-type semiconductor when a substituent having a strong electron-withdrawing property such as a fluorine atom is introduced or depending on the selection of an electrode material. It is also possible to make it. Hereinafter, description will be given with reference to the drawings.
本発明の一態様に係る電界効果トランジスタは、化合物(1)を含む有機半導体層を備える。そして、かかる有機半導体層を備えたこと以外は、従来の電界効果トランジスタと同様の構成とすることができる。ここでは、化合物(1)は、主にp型半導体として利用されるが、フッ素原子等の電子吸引性が強い置換基を導入した場合や、電極の材料の選択によっては、n型半導体として機能させることも可能である。以下、図面を参照しながら説明する。 <Field effect transistor>
The field effect transistor which concerns on 1 aspect of this invention is equipped with the organic-semiconductor layer containing a compound (1). And it can be set as the structure similar to the conventional field effect transistor except having provided this organic-semiconductor layer. Here, the compound (1) is mainly used as a p-type semiconductor, but functions as an n-type semiconductor when a substituent having a strong electron-withdrawing property such as a fluorine atom is introduced or depending on the selection of an electrode material. It is also possible to make it. Hereinafter, description will be given with reference to the drawings.
図1は、第一の実施形態に係る電界効果トランジスタの要部を例示する概略断面図である。
ここに示す電界効果トランジスタ1Aは、基板11上に、ゲート電極12、ゲート絶縁膜13、ソース電極14、ドレイン電極15及び有機半導体層16が積層され、概略構成されている。より具体的には、基板11上の一部にゲート電極12が設けられている。さらにゲート電極12を覆うように、基板11上にゲート絶縁膜13が設けられている。そして、ゲート絶縁膜13上には、ソース電極14及びドレイン電極15が離間して設けられている。さらにソース電極14及びドレイン電極15上を覆うように、ゲート絶縁膜13上に有機半導体層16が設けられている。有機半導体層16は、ゲート絶縁膜13を介してゲート電極12と対向するように設けられている。電界効果トランジスタ1Aは、ボトムゲート・ボトムコンタクト型のトランジスタ構造を有する。 FIG. 1 is a schematic cross-sectional view illustrating the main part of the field effect transistor according to the first embodiment.
Thefield effect transistor 1 </ b> A shown here is schematically configured by laminating a gate electrode 12, a gate insulating film 13, a source electrode 14, a drain electrode 15, and an organic semiconductor layer 16 on a substrate 11. More specifically, the gate electrode 12 is provided on a part of the substrate 11. Further, a gate insulating film 13 is provided on the substrate 11 so as to cover the gate electrode 12. On the gate insulating film 13, a source electrode 14 and a drain electrode 15 are provided apart from each other. Further, an organic semiconductor layer 16 is provided on the gate insulating film 13 so as to cover the source electrode 14 and the drain electrode 15. The organic semiconductor layer 16 is provided so as to face the gate electrode 12 with the gate insulating film 13 interposed therebetween. The field effect transistor 1A has a bottom-gate / bottom-contact transistor structure.
ここに示す電界効果トランジスタ1Aは、基板11上に、ゲート電極12、ゲート絶縁膜13、ソース電極14、ドレイン電極15及び有機半導体層16が積層され、概略構成されている。より具体的には、基板11上の一部にゲート電極12が設けられている。さらにゲート電極12を覆うように、基板11上にゲート絶縁膜13が設けられている。そして、ゲート絶縁膜13上には、ソース電極14及びドレイン電極15が離間して設けられている。さらにソース電極14及びドレイン電極15上を覆うように、ゲート絶縁膜13上に有機半導体層16が設けられている。有機半導体層16は、ゲート絶縁膜13を介してゲート電極12と対向するように設けられている。電界効果トランジスタ1Aは、ボトムゲート・ボトムコンタクト型のトランジスタ構造を有する。 FIG. 1 is a schematic cross-sectional view illustrating the main part of the field effect transistor according to the first embodiment.
The
基板11の材質は、デバイスの構成及び性能等に応じて適宜選択できる。例えば、ガラス、石英、シリコン単結晶、多結晶シリコン、アモルファスシリコン;ポリイミド、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルサルフォン(PES)、ポリテトラフルオロエチレン等の絶縁性の高分子化合物等が例示できる。
基板11は一種の材質からなる単層構造でもよいし、二種以上の材質が積層された複数層構造でもよい。 The material of thesubstrate 11 can be appropriately selected according to the configuration and performance of the device. For example, glass, quartz, silicon single crystal, polycrystalline silicon, amorphous silicon; high insulation such as polyimide, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), polytetrafluoroethylene Examples thereof include molecular compounds.
Thesubstrate 11 may have a single layer structure made of one kind of material, or may have a multiple layer structure in which two or more kinds of materials are laminated.
基板11は一種の材質からなる単層構造でもよいし、二種以上の材質が積層された複数層構造でもよい。 The material of the
The
ゲート電極12の材質は特に限定されず、当該分野で通常使用されるものでよい。具体的には、金、白金、銀、銅、アルミニウム、タンタル、ドープシリコン等の低抵抗の金属;3,4-ポリエチレンジオキシチオフェン(以下、PEDOTと略記する)/ポリスチレンサルフォネイト(以下、PSSと略記する)等の有機導電体等が例示できる。
The material of the gate electrode 12 is not particularly limited, and may be one normally used in the field. Specifically, low resistance metals such as gold, platinum, silver, copper, aluminum, tantalum, and doped silicon; 3,4-polyethylenedioxythiophene (hereinafter abbreviated as PEDOT) / polystyrene sulfonate (hereinafter, referred to as “PETOT”) Examples thereof include organic conductors such as PSS).
ソース電極14、ドレイン電極15の材質としては、有機半導体層用組成物の最高占有分子軌道(HOMO:Highest Occupied Molecular Orbital)レベル、又は最低非占有分子軌道(LUMO:Lowest Unocuppied Molecular Orbital)レベルに近いものが例示できる。
HOMOレベルに近い材質としては、金、白金、銀、又はこれらの一種以上を含む合金等の比較的仕事関数が高い金属;インジウム・スズ酸化物(ITO)、酸化亜鉛(ZnO)等の透明酸化物導電体;PEDOT/PSS等の有機導電体が例示できる。
LUMOレベルに近い材質としては、アルミニウム、チタン、アルカリ金属、又はこれらの一種以上を含む合金等の比較的仕事関数が低い金属等が例示できる。前記アルカリ金属としては、リチウム、ナトリウム、カリウム等が例示できる。 The material of thesource electrode 14 and the drain electrode 15 is close to the highest occupied molecular orbital (HOMO) level or the lowest unoccupied molecular orbital (LUMO) level of the composition for the organic semiconductor layer. The thing can be illustrated.
Materials close to the HOMO level include metals with relatively high work functions such as gold, platinum, silver, or alloys containing one or more of these; transparent oxides such as indium tin oxide (ITO) and zinc oxide (ZnO) Physical conductors: Organic conductors such as PEDOT / PSS can be exemplified.
Examples of the material close to the LUMO level include metals having a relatively low work function such as aluminum, titanium, alkali metals, or alloys containing one or more of these. Examples of the alkali metal include lithium, sodium, and potassium.
HOMOレベルに近い材質としては、金、白金、銀、又はこれらの一種以上を含む合金等の比較的仕事関数が高い金属;インジウム・スズ酸化物(ITO)、酸化亜鉛(ZnO)等の透明酸化物導電体;PEDOT/PSS等の有機導電体が例示できる。
LUMOレベルに近い材質としては、アルミニウム、チタン、アルカリ金属、又はこれらの一種以上を含む合金等の比較的仕事関数が低い金属等が例示できる。前記アルカリ金属としては、リチウム、ナトリウム、カリウム等が例示できる。 The material of the
Materials close to the HOMO level include metals with relatively high work functions such as gold, platinum, silver, or alloys containing one or more of these; transparent oxides such as indium tin oxide (ITO) and zinc oxide (ZnO) Physical conductors: Organic conductors such as PEDOT / PSS can be exemplified.
Examples of the material close to the LUMO level include metals having a relatively low work function such as aluminum, titanium, alkali metals, or alloys containing one or more of these. Examples of the alkali metal include lithium, sodium, and potassium.
ソース電極14及びドレイン電極15は、密着層(図示略)を介してゲート絶縁膜13上に形成してもよい。密着層の材質としては、クロム等が例示できる。
The source electrode 14 and the drain electrode 15 may be formed on the gate insulating film 13 through an adhesion layer (not shown). Examples of the material for the adhesion layer include chromium.
ゲート電極12、ソース電極14、ドレイン電極15の膜厚は、特に限定されず、通常のトランジスタにおける膜厚であればよく、目的に応じて適宜調節することが好ましい。
例えば、材質が金属である場合には、30nm~200nmであることが好ましい。
これら電極は、材質に応じて、例えば、蒸着、スパッタ、塗布等で成膜できる。 The thicknesses of thegate electrode 12, the source electrode 14, and the drain electrode 15 are not particularly limited as long as they are normal transistor thicknesses, and are preferably adjusted as appropriate according to the purpose.
For example, when the material is a metal, it is preferably 30 nm to 200 nm.
These electrodes can be formed, for example, by vapor deposition, sputtering, coating, or the like depending on the material.
例えば、材質が金属である場合には、30nm~200nmであることが好ましい。
これら電極は、材質に応じて、例えば、蒸着、スパッタ、塗布等で成膜できる。 The thicknesses of the
For example, when the material is a metal, it is preferably 30 nm to 200 nm.
These electrodes can be formed, for example, by vapor deposition, sputtering, coating, or the like depending on the material.
ゲート絶縁膜13の材質は、誘電率が高く、薄膜形成時にピンホール等の欠陥が生じにくいものが好ましい。誘電率が高いことで、電界効果トランジスタの閾値をより低減できる。また、薄膜形成時にピンホール等の欠陥を少なくすることで、ゲート絶縁膜13の機能低下が抑制され、特性がより良好な電界効果トランジスタが得られる。
このような材質の膜としては、シリコン酸化膜、シリコン窒化膜、五酸化タンタル膜、酸化アルミニウム膜等の無機絶縁膜;ポリイミド膜、パリレン膜、ポリビニルフェノール膜等の有機絶縁膜等が例示できる。
ゲート絶縁膜13の膜厚は、単位面積あたりの静電容量が大きくなるように設定することが好ましく、また、膜厚を薄くすることで、電界効果トランジスタの閾値電圧をより低減できる。そして、ゲート絶縁膜13の膜厚は、材質の比誘電率、絶縁性等に応じて適宜調節することが好ましく、例えば、50nm~300nmであることが好ましい。このようにすることで、単位面積あたりの静電容量を大きくでき、かつ電界効果トランジスタの閾値電圧を低減できる。
ゲート絶縁膜13は、材質に応じて、例えば、蒸着、スパッタ、塗布等で成膜できる。 The material of thegate insulating film 13 is preferably a material having a high dielectric constant and hardly causing defects such as pinholes when forming a thin film. Since the dielectric constant is high, the threshold value of the field effect transistor can be further reduced. In addition, by reducing defects such as pinholes when forming a thin film, a function effect of the gate insulating film 13 is suppressed and a field effect transistor with better characteristics can be obtained.
Examples of such films include inorganic insulating films such as silicon oxide films, silicon nitride films, tantalum pentoxide films, and aluminum oxide films; organic insulating films such as polyimide films, parylene films, and polyvinylphenol films.
The film thickness of thegate insulating film 13 is preferably set so that the capacitance per unit area is increased, and the threshold voltage of the field effect transistor can be further reduced by reducing the film thickness. The film thickness of the gate insulating film 13 is preferably adjusted as appropriate according to the relative dielectric constant, insulation, etc. of the material, and is preferably 50 nm to 300 nm, for example. By doing so, the capacitance per unit area can be increased, and the threshold voltage of the field effect transistor can be reduced.
Thegate insulating film 13 can be formed by, for example, vapor deposition, sputtering, coating, or the like depending on the material.
このような材質の膜としては、シリコン酸化膜、シリコン窒化膜、五酸化タンタル膜、酸化アルミニウム膜等の無機絶縁膜;ポリイミド膜、パリレン膜、ポリビニルフェノール膜等の有機絶縁膜等が例示できる。
ゲート絶縁膜13の膜厚は、単位面積あたりの静電容量が大きくなるように設定することが好ましく、また、膜厚を薄くすることで、電界効果トランジスタの閾値電圧をより低減できる。そして、ゲート絶縁膜13の膜厚は、材質の比誘電率、絶縁性等に応じて適宜調節することが好ましく、例えば、50nm~300nmであることが好ましい。このようにすることで、単位面積あたりの静電容量を大きくでき、かつ電界効果トランジスタの閾値電圧を低減できる。
ゲート絶縁膜13は、材質に応じて、例えば、蒸着、スパッタ、塗布等で成膜できる。 The material of the
Examples of such films include inorganic insulating films such as silicon oxide films, silicon nitride films, tantalum pentoxide films, and aluminum oxide films; organic insulating films such as polyimide films, parylene films, and polyvinylphenol films.
The film thickness of the
The
ゲート絶縁膜13をシリコン酸化膜、シリコン窒化膜等とする場合には、その有機半導体層16と接する表面をシランカップリング剤等で処理することが好ましい。このようにすることで、ゲート絶縁膜13に接する有機半導体層16の結晶のグレインを大きくし、有機半導体素子の移動度をより向上させることができる。
When the gate insulating film 13 is a silicon oxide film, a silicon nitride film or the like, the surface in contact with the organic semiconductor layer 16 is preferably treated with a silane coupling agent or the like. By doing in this way, the grain of the crystal | crystallization of the organic-semiconductor layer 16 which contact | connects the gate insulating film 13 can be enlarged, and the mobility of an organic-semiconductor element can be improved more.
有機半導体層16は、化合物(1)を含む。そして、例えば、化合物(1)を含む組成物が塗布されて形成されたものであってもよいし、上記の有機半導体層用組成物を用いて、浸漬法、キャスト法、スピンコート法、インクジェット法又は印刷法等の低コストの薄膜形成法で形成されたものであってもよく、真空蒸着法等で化合物(1)が蒸着されて形成されたものであってもよい。
上記のように化合物(1)は耐酸化性が高い。したがって、化合物(1)を含む有機半導体層16は、大気雰囲気下で安定である。 Theorganic semiconductor layer 16 includes the compound (1). For example, it may be formed by applying a composition containing the compound (1), or by using the composition for an organic semiconductor layer described above, a dipping method, a casting method, a spin coating method, an inkjet method. It may be formed by a low-cost thin film forming method such as a printing method or a printing method, or may be formed by depositing the compound (1) by a vacuum vapor deposition method or the like.
As described above, the compound (1) has high oxidation resistance. Therefore, theorganic semiconductor layer 16 containing the compound (1) is stable in the air atmosphere.
上記のように化合物(1)は耐酸化性が高い。したがって、化合物(1)を含む有機半導体層16は、大気雰囲気下で安定である。 The
As described above, the compound (1) has high oxidation resistance. Therefore, the
有機半導体層16は、親水性の膜上に設けられていることが好ましい。このようにすることで、有機半導体層16の膜質をより均一にすることができ、特に、上記の有機半導体層用組成物を塗布して有機半導体層16を形成する場合に、顕著な効果が得られる。ここで、「親水性の膜」とは、表面に親水性基を有する膜を指す。
図1に示すように、有機半導体層16がゲート絶縁膜13上に形成される場合には、親水性の膜がゲート絶縁膜13上に別途設けられていてもよいし、ゲート絶縁膜13の少なくとも表面自体が親水性であってもよい。この場合の前記親水性の膜の材質としては、シリコン酸化膜、酸化アルミニウム膜等の金属酸化絶縁物;ポリエチレングリコール、ポリアクリル酸、ポリビニルアルコール等の親水性ポリマー等が例示できる。 Theorganic semiconductor layer 16 is preferably provided on a hydrophilic film. By doing so, the film quality of the organic semiconductor layer 16 can be made more uniform. In particular, when the organic semiconductor layer 16 is formed by applying the composition for an organic semiconductor layer, a remarkable effect is obtained. can get. Here, the “hydrophilic film” refers to a film having a hydrophilic group on the surface.
As shown in FIG. 1, when theorganic semiconductor layer 16 is formed on the gate insulating film 13, a hydrophilic film may be separately provided on the gate insulating film 13. At least the surface itself may be hydrophilic. Examples of the material of the hydrophilic film in this case include metal oxide insulators such as a silicon oxide film and an aluminum oxide film; hydrophilic polymers such as polyethylene glycol, polyacrylic acid, and polyvinyl alcohol.
図1に示すように、有機半導体層16がゲート絶縁膜13上に形成される場合には、親水性の膜がゲート絶縁膜13上に別途設けられていてもよいし、ゲート絶縁膜13の少なくとも表面自体が親水性であってもよい。この場合の前記親水性の膜の材質としては、シリコン酸化膜、酸化アルミニウム膜等の金属酸化絶縁物;ポリエチレングリコール、ポリアクリル酸、ポリビニルアルコール等の親水性ポリマー等が例示できる。 The
As shown in FIG. 1, when the
電界効果トランジスタ1Aにおいては、さらに、少なくとも有機半導体層16上に保護膜が設けられていてもよい。保護膜を設けることにより、有機半導体層16を酸素や水分などによる浸食から保護できるので、電界効果トランジスタ1Aは、さらに安定した半導体特性を示す。
In the field effect transistor 1A, a protective film may be further provided on at least the organic semiconductor layer 16. By providing the protective film, the organic semiconductor layer 16 can be protected from erosion by oxygen, moisture, or the like, so that the field effect transistor 1A exhibits more stable semiconductor characteristics.
図2に示す電界効果トランジスタ1A’は、図1に示す電界効果トランジスタにおいて、有機半導体層16上の全面が保護膜17で覆われたものである。
保護膜17は、有機膜及び無機膜のいずれでもよい。
有機膜の材質としては、ポリパリレン(パラキシリレン系ポリマー);エポキシ樹脂;アクリル樹脂;ポリパラキシレン;ポリパーフルオロオレフィン、ポリパーフルオロエーテル、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリジクロロジフルオロエチレン等のフッ素系高分子;ポリイミド等が例示できる。
無機膜の材質としては、金属窒化物、金属酸化物、炭素、シリコン等が例示できる。より具体的には、SiN、AlN、GaN等の窒化物;SiO、Al2O3、Ta2O5、ZnO、GeO等の酸化物;SiON等の酸化窒化物;SiCN等の炭化窒化物等が例示でき、前記金属はケイ素であることが好ましい。
保護膜17は、単層構造及び多層構造のいずれでもよい。 Afield effect transistor 1A ′ shown in FIG. 2 is obtained by covering the entire surface of the organic semiconductor layer 16 with a protective film 17 in the field effect transistor shown in FIG.
Theprotective film 17 may be either an organic film or an inorganic film.
As the material of the organic film, polyparylene (paraxylylene polymer); epoxy resin; acrylic resin; polyparaxylene; polyperfluoroolefin, polyperfluoroether, polytetrafluoroethylene, polychlorotrifluoroethylene, polydichlorodifluoroethylene, etc. Examples of the fluorine-based polymer; polyimide and the like.
Examples of the material of the inorganic film include metal nitride, metal oxide, carbon, silicon and the like. More specifically, nitrides such as SiN, AlN, and GaN; oxides such as SiO, Al 2 O 3 , Ta 2 O 5 , ZnO, and GeO; oxynitrides such as SiON; carbonitrides such as SiCN, and the like And the metal is preferably silicon.
Theprotective film 17 may have either a single layer structure or a multilayer structure.
保護膜17は、有機膜及び無機膜のいずれでもよい。
有機膜の材質としては、ポリパリレン(パラキシリレン系ポリマー);エポキシ樹脂;アクリル樹脂;ポリパラキシレン;ポリパーフルオロオレフィン、ポリパーフルオロエーテル、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリジクロロジフルオロエチレン等のフッ素系高分子;ポリイミド等が例示できる。
無機膜の材質としては、金属窒化物、金属酸化物、炭素、シリコン等が例示できる。より具体的には、SiN、AlN、GaN等の窒化物;SiO、Al2O3、Ta2O5、ZnO、GeO等の酸化物;SiON等の酸化窒化物;SiCN等の炭化窒化物等が例示でき、前記金属はケイ素であることが好ましい。
保護膜17は、単層構造及び多層構造のいずれでもよい。 A
The
As the material of the organic film, polyparylene (paraxylylene polymer); epoxy resin; acrylic resin; polyparaxylene; polyperfluoroolefin, polyperfluoroether, polytetrafluoroethylene, polychlorotrifluoroethylene, polydichlorodifluoroethylene, etc. Examples of the fluorine-based polymer; polyimide and the like.
Examples of the material of the inorganic film include metal nitride, metal oxide, carbon, silicon and the like. More specifically, nitrides such as SiN, AlN, and GaN; oxides such as SiO, Al 2 O 3 , Ta 2 O 5 , ZnO, and GeO; oxynitrides such as SiON; carbonitrides such as SiCN, and the like And the metal is preferably silicon.
The
[第二実施形態]
図3は、第二の実施形態に係る電界効果トランジスタの要部を例示する概略断面図である。なお、図3において、図1に示すものと同様の構成要素には、図1の場合と同様の符号を付し、その詳細な説明は省略する。これは、以降の図においても同様である。
ここに示す電界効果トランジスタ1Bは、ソース電極14及びドレイン電極15の表面に表面修飾層18が設けられ、表面修飾層18に有機半導体層16が接するように構成された点以外は、図1に示す電界効果トランジスタ1Aと同様である。表面修飾層18は、例えば、ソース電極14及びドレイン電極15の表面に表面修飾剤を作用させることで形成でき、有機分子及び無機分子のいずれから構成されていてもよい。 [Second Embodiment]
FIG. 3 is a schematic cross-sectional view illustrating the main part of the field effect transistor according to the second embodiment. In FIG. 3, the same components as those shown in FIG. 1 are denoted by the same reference numerals as those in FIG. 1, and detailed description thereof is omitted. The same applies to the following drawings.
Thefield effect transistor 1B shown here is shown in FIG. 1 except that the surface modification layer 18 is provided on the surface of the source electrode 14 and the drain electrode 15 and the organic semiconductor layer 16 is in contact with the surface modification layer 18. This is the same as the field effect transistor 1A shown. The surface modification layer 18 can be formed by, for example, causing a surface modifier to act on the surfaces of the source electrode 14 and the drain electrode 15 and may be composed of either an organic molecule or an inorganic molecule.
図3は、第二の実施形態に係る電界効果トランジスタの要部を例示する概略断面図である。なお、図3において、図1に示すものと同様の構成要素には、図1の場合と同様の符号を付し、その詳細な説明は省略する。これは、以降の図においても同様である。
ここに示す電界効果トランジスタ1Bは、ソース電極14及びドレイン電極15の表面に表面修飾層18が設けられ、表面修飾層18に有機半導体層16が接するように構成された点以外は、図1に示す電界効果トランジスタ1Aと同様である。表面修飾層18は、例えば、ソース電極14及びドレイン電極15の表面に表面修飾剤を作用させることで形成でき、有機分子及び無機分子のいずれから構成されていてもよい。 [Second Embodiment]
FIG. 3 is a schematic cross-sectional view illustrating the main part of the field effect transistor according to the second embodiment. In FIG. 3, the same components as those shown in FIG. 1 are denoted by the same reference numerals as those in FIG. 1, and detailed description thereof is omitted. The same applies to the following drawings.
The
表面修飾層18は、親水性の膜であることが好ましい。このようにすることで、有機半導体層16の膜質をより均一にすることができ、特に、上記の有機半導体層用組成物を載せて有機半導体層16を形成する場合に、顕著な効果が得られる。
The surface modification layer 18 is preferably a hydrophilic film. By doing so, the film quality of the organic semiconductor layer 16 can be made more uniform. In particular, when the organic semiconductor layer 16 is formed by placing the above composition for an organic semiconductor layer, a remarkable effect is obtained. It is done.
ここでは、表面修飾層18として親水性の膜を、ソース電極14上及びドレイン電極15の表面に別途設けた例を示しているが、有機半導体層16が親水性の膜に接するようにするためには、例えば、ソース電極14及びドレイン電極15の少なくとも表面自体が親水性であってもよい。そして、本実施形態においては、前記親水性の膜は、ソース電極14及びドレイン電極15の表面を表面処理して修飾することにより、別途設けることが好ましい。
本実施形態において、親水性の膜が有する親水性基としては、水酸基、アミノ基、カルボキシル基、スルホン酸基、リン酸基等が例示できる。 Here, an example in which a hydrophilic film is separately provided as thesurface modification layer 18 on the source electrode 14 and the surface of the drain electrode 15 is shown. However, in order for the organic semiconductor layer 16 to be in contact with the hydrophilic film. For example, at least the surfaces of the source electrode 14 and the drain electrode 15 may be hydrophilic. In the present embodiment, the hydrophilic film is preferably provided separately by modifying the surfaces of the source electrode 14 and the drain electrode 15 by surface treatment.
In the present embodiment, examples of the hydrophilic group possessed by the hydrophilic film include a hydroxyl group, an amino group, a carboxyl group, a sulfonic acid group, and a phosphoric acid group.
本実施形態において、親水性の膜が有する親水性基としては、水酸基、アミノ基、カルボキシル基、スルホン酸基、リン酸基等が例示できる。 Here, an example in which a hydrophilic film is separately provided as the
In the present embodiment, examples of the hydrophilic group possessed by the hydrophilic film include a hydroxyl group, an amino group, a carboxyl group, a sulfonic acid group, and a phosphoric acid group.
[第三実施形態]
図4は、第三の実施形態に係る電界効果トランジスタの要部を例示する概略断面図である。
ここに示す電界効果トランジスタ1Cは、基板11上に、ゲート電極12、ゲート絶縁膜13、有機半導体層16、ソース電極14及びドレイン電極15が積層され、概略構成されている。より具体的には、基板11上の一部にゲート電極12が設けられている。さらにゲート電極12を覆うように、基板11上にゲート絶縁膜13が設けられている。ゲート絶縁膜13上に有機半導体層16が設けられている。そして、有機半導体層16上には、ソース電極14及びドレイン電極15が離間して設けられている。有機半導体層16は、ゲート絶縁膜13を介してゲート電極12と対向するように設けられている。電界効果トランジスタ1Cは、トップコンタクト型構造のトランジスタ構造を有する。 [Third embodiment]
FIG. 4 is a schematic cross-sectional view illustrating the main part of the field effect transistor according to the third embodiment.
Thefield effect transistor 1 </ b> C shown here is schematically configured by laminating a gate electrode 12, a gate insulating film 13, an organic semiconductor layer 16, a source electrode 14 and a drain electrode 15 on a substrate 11. More specifically, the gate electrode 12 is provided on a part of the substrate 11. Further, a gate insulating film 13 is provided on the substrate 11 so as to cover the gate electrode 12. An organic semiconductor layer 16 is provided on the gate insulating film 13. A source electrode 14 and a drain electrode 15 are provided on the organic semiconductor layer 16 so as to be separated from each other. The organic semiconductor layer 16 is provided so as to face the gate electrode 12 with the gate insulating film 13 interposed therebetween. The field effect transistor 1C has a top contact type transistor structure.
図4は、第三の実施形態に係る電界効果トランジスタの要部を例示する概略断面図である。
ここに示す電界効果トランジスタ1Cは、基板11上に、ゲート電極12、ゲート絶縁膜13、有機半導体層16、ソース電極14及びドレイン電極15が積層され、概略構成されている。より具体的には、基板11上の一部にゲート電極12が設けられている。さらにゲート電極12を覆うように、基板11上にゲート絶縁膜13が設けられている。ゲート絶縁膜13上に有機半導体層16が設けられている。そして、有機半導体層16上には、ソース電極14及びドレイン電極15が離間して設けられている。有機半導体層16は、ゲート絶縁膜13を介してゲート電極12と対向するように設けられている。電界効果トランジスタ1Cは、トップコンタクト型構造のトランジスタ構造を有する。 [Third embodiment]
FIG. 4 is a schematic cross-sectional view illustrating the main part of the field effect transistor according to the third embodiment.
The
有機半導体層16の膜質は、有機半導体層16の直下にある層(下地)の影響を受ける可能性がある。例えば、図1に示すようなボトムゲート・ボトムコンタクト型の電界効果トランジスタ(電界効果トランジスタ1A)の場合、有機半導体層16は、これと接するゲート絶縁膜13、ソース電極14及びドレイン電極15の影響を受けて、それぞれと接する部位において膜質が変化する可能性がある。
これに対して、図4に示すようなトップコンタクト型構造の電界効果トランジスタ(電界効果トランジスタ1C)の場合には、有機半導体層16がすべてゲート絶縁膜13上に形成されているので、有機半導体層16の膜質がより均一となり、電界効果トランジスタは一層安定した半導体特性を示す。
さらに、図4に示すようなトップコンタクト型構造の電界効果トランジスタ(電界効果トランジスタ1C)の場合には、ソース電極14及びドレイン電極15を有機半導体層16上に形成するので、例えば、製造時にゲート絶縁膜13に与えるダメージや、残渣等の発生を低減できる。その結果、ゲート絶縁膜13と有機半導体層16との界面を、より良好な状態とすることができる。 The film quality of theorganic semiconductor layer 16 may be affected by a layer (underlying layer) immediately below the organic semiconductor layer 16. For example, in the case of a bottom gate / bottom contact field effect transistor (field effect transistor 1A) as shown in FIG. 1, the organic semiconductor layer 16 is affected by the gate insulating film 13, the source electrode 14 and the drain electrode 15 in contact therewith. In response, there is a possibility that the film quality will change at the site in contact with each.
On the other hand, in the case of a field effect transistor (field effect transistor 1C) having a top contact type structure as shown in FIG. 4, since the organic semiconductor layer 16 is entirely formed on the gate insulating film 13, the organic semiconductor The film quality of the layer 16 becomes more uniform, and the field effect transistor exhibits more stable semiconductor characteristics.
Further, in the case of a field effect transistor (field effect transistor 1C) having a top contact type structure as shown in FIG. 4, since the source electrode 14 and the drain electrode 15 are formed on the organic semiconductor layer 16, for example, a gate is formed at the time of manufacture. It is possible to reduce damage to the insulating film 13 and generation of residues. As a result, the interface between the gate insulating film 13 and the organic semiconductor layer 16 can be in a better state.
これに対して、図4に示すようなトップコンタクト型構造の電界効果トランジスタ(電界効果トランジスタ1C)の場合には、有機半導体層16がすべてゲート絶縁膜13上に形成されているので、有機半導体層16の膜質がより均一となり、電界効果トランジスタは一層安定した半導体特性を示す。
さらに、図4に示すようなトップコンタクト型構造の電界効果トランジスタ(電界効果トランジスタ1C)の場合には、ソース電極14及びドレイン電極15を有機半導体層16上に形成するので、例えば、製造時にゲート絶縁膜13に与えるダメージや、残渣等の発生を低減できる。その結果、ゲート絶縁膜13と有機半導体層16との界面を、より良好な状態とすることができる。 The film quality of the
On the other hand, in the case of a field effect transistor (
Further, in the case of a field effect transistor (
電界効果トランジスタ1Cは、ソース電極14、ドレイン電極15及び有機半導体層16の積層順が異なる点以外は、電界効果トランジスタ1Aと同様である。したがって、例えば、ソース電極14及びドレイン電極15を覆うように、有機半導体層16上に保護膜が設けられていてもよい。
The field effect transistor 1C is the same as the field effect transistor 1A except that the stacking order of the source electrode 14, the drain electrode 15, and the organic semiconductor layer 16 is different. Therefore, for example, a protective film may be provided on the organic semiconductor layer 16 so as to cover the source electrode 14 and the drain electrode 15.
[第四実施形態]
図5は、第四の実施形態に係る電界効果トランジスタの要部を例示する概略断面図である。
ここに示す電界効果トランジスタ1Dは、ゲート絶縁膜13として、親水性の膜13’が設けられている点以外は、図4に示す電界効果トランジスタ1Cと同様である。すなわち、電界効果トランジスタ1Dにおいては、有機半導体層16が親水性の膜13’に接している。このようにすることで、電界効果トランジスタ1Aの場合と同様に、有機半導体層16の膜質をより均一にすることができる。
親水性の膜13’は、例えば、ポリエチレングリコール、ポリアクリル酸、ポリビニルアルコール等の親水性ポリマーで構成できる。 [Fourth embodiment]
FIG. 5 is a schematic cross-sectional view illustrating the main part of the field effect transistor according to the fourth embodiment.
Thefield effect transistor 1D shown here is the same as the field effect transistor 1C shown in FIG. 4 except that a hydrophilic film 13 ′ is provided as the gate insulating film 13. That is, in the field effect transistor 1D, the organic semiconductor layer 16 is in contact with the hydrophilic film 13 ′. By doing in this way, the film quality of the organic-semiconductor layer 16 can be made more uniform similarly to the case of the field effect transistor 1A.
Thehydrophilic film 13 ′ can be made of a hydrophilic polymer such as polyethylene glycol, polyacrylic acid, or polyvinyl alcohol.
図5は、第四の実施形態に係る電界効果トランジスタの要部を例示する概略断面図である。
ここに示す電界効果トランジスタ1Dは、ゲート絶縁膜13として、親水性の膜13’が設けられている点以外は、図4に示す電界効果トランジスタ1Cと同様である。すなわち、電界効果トランジスタ1Dにおいては、有機半導体層16が親水性の膜13’に接している。このようにすることで、電界効果トランジスタ1Aの場合と同様に、有機半導体層16の膜質をより均一にすることができる。
親水性の膜13’は、例えば、ポリエチレングリコール、ポリアクリル酸、ポリビニルアルコール等の親水性ポリマーで構成できる。 [Fourth embodiment]
FIG. 5 is a schematic cross-sectional view illustrating the main part of the field effect transistor according to the fourth embodiment.
The
The
[第五実施形態]
本発明の一態様に係る電界効果トランジスタは、図1~5に示すものに限定されず、これらの構成の一部が変更されたものでもよい。例えば、以下に示すものが挙げられる。
(I)図6に例示するように、基板11上に有機半導体層16が設けられ、有機半導体層16上に、ソース電極14及びドレイン電極15が離間して設けられ、ソース電極14及びドレイン電極15間の有機半導体層16上に、ゲート絶縁膜13及びゲート電極12がこの順で設けられた電界効果トランジスタ1E。
(II)図7に例示するように、基板11上にソース電極14及びドレイン電極15が離間して設けられ、ソース電極14及びドレイン電極15上を覆うように、基板11上に有機半導体層16が設けられ、有機半導体層16上にゲート絶縁膜13が設けられ、ゲート絶縁膜13上の一部にゲート電極12が設けられた電界効果トランジスタ1F。 [Fifth embodiment]
The field effect transistor according to one embodiment of the present invention is not limited to the one shown in FIGS. 1 to 5, and a part of these structures may be changed. For example, the following are mentioned.
(I) As illustrated in FIG. 6, theorganic semiconductor layer 16 is provided on the substrate 11, and the source electrode 14 and the drain electrode 15 are provided on the organic semiconductor layer 16 so as to be separated from each other, and the source electrode 14 and the drain electrode are provided. A field effect transistor 1E in which a gate insulating film 13 and a gate electrode 12 are provided in this order on an organic semiconductor layer 16 between 15 layers.
(II) As illustrated in FIG. 7, thesource electrode 14 and the drain electrode 15 are provided separately on the substrate 11, and the organic semiconductor layer 16 is formed on the substrate 11 so as to cover the source electrode 14 and the drain electrode 15. A field effect transistor 1F in which a gate insulating film 13 is provided on the organic semiconductor layer 16, and a gate electrode 12 is provided on a part of the gate insulating film 13.
本発明の一態様に係る電界効果トランジスタは、図1~5に示すものに限定されず、これらの構成の一部が変更されたものでもよい。例えば、以下に示すものが挙げられる。
(I)図6に例示するように、基板11上に有機半導体層16が設けられ、有機半導体層16上に、ソース電極14及びドレイン電極15が離間して設けられ、ソース電極14及びドレイン電極15間の有機半導体層16上に、ゲート絶縁膜13及びゲート電極12がこの順で設けられた電界効果トランジスタ1E。
(II)図7に例示するように、基板11上にソース電極14及びドレイン電極15が離間して設けられ、ソース電極14及びドレイン電極15上を覆うように、基板11上に有機半導体層16が設けられ、有機半導体層16上にゲート絶縁膜13が設けられ、ゲート絶縁膜13上の一部にゲート電極12が設けられた電界効果トランジスタ1F。 [Fifth embodiment]
The field effect transistor according to one embodiment of the present invention is not limited to the one shown in FIGS. 1 to 5, and a part of these structures may be changed. For example, the following are mentioned.
(I) As illustrated in FIG. 6, the
(II) As illustrated in FIG. 7, the
本発明の一態様に係る電界効果トランジスタは、有機半導体層が大気雰囲気下で安定なので、同様に大気雰囲気下で、長期間に渡り安定に動作可能である。
In the field effect transistor according to one embodiment of the present invention, since the organic semiconductor layer is stable in an air atmosphere, the field effect transistor can operate stably for a long period of time in the air atmosphere as well.
[第六実施形態]
本発明の一態様に係る電界効果トランジスタは、例えば、以下の方法で製造できる。
まず、図1に示す電界効果トランジスタ1Aの製造方法について説明する。図8A~図8Eは、電界効果トランジスタ1Aの製造方法を説明するための概略断面図である。 [Sixth embodiment]
The field effect transistor according to one embodiment of the present invention can be manufactured, for example, by the following method.
First, a method for manufacturing thefield effect transistor 1A shown in FIG. 1 will be described. 8A to 8E are schematic cross-sectional views for explaining a method for manufacturing the field effect transistor 1A.
本発明の一態様に係る電界効果トランジスタは、例えば、以下の方法で製造できる。
まず、図1に示す電界効果トランジスタ1Aの製造方法について説明する。図8A~図8Eは、電界効果トランジスタ1Aの製造方法を説明するための概略断面図である。 [Sixth embodiment]
The field effect transistor according to one embodiment of the present invention can be manufactured, for example, by the following method.
First, a method for manufacturing the
基板11上に、ゲート電極12を構成する材質からなる膜を形成し、フォトリソグラフィー及びエッチングにより、前記膜を所望のパターンに形成して、図8Aに示すように、基板11上の所定箇所にゲート電極12を形成する。膜の形成方法としては、スパッタリング法が例示できる。
A film made of the material constituting the gate electrode 12 is formed on the substrate 11, and the film is formed into a desired pattern by photolithography and etching. As shown in FIG. A gate electrode 12 is formed. An example of the film formation method is a sputtering method.
次いで、図8Bに示すように、ゲート電極12を覆うように基板11上にゲート絶縁膜13を形成する。ゲート絶縁膜13の形成方法としては、スパッタリング法が例示できる。
Next, as shown in FIG. 8B, a gate insulating film 13 is formed on the substrate 11 so as to cover the gate electrode 12. An example of a method for forming the gate insulating film 13 is a sputtering method.
次いで、ゲート絶縁膜13上に、スピンコート法等により、レジスト膜を形成した後、フォトリソグラフィー法で露光及び現像を行うことにより、図8Cに示すように、所定のパターンのフォトレジスト膜90を形成する。フォトレジスト膜90は、ソース電極14及びドレイン電極15を形成するためのものであり、これらの形状に対応して開口部を有する。
Next, after a resist film is formed on the gate insulating film 13 by spin coating or the like, exposure and development are performed by photolithography, thereby forming a photoresist film 90 having a predetermined pattern as shown in FIG. 8C. Form. The photoresist film 90 is for forming the source electrode 14 and the drain electrode 15 and has openings corresponding to these shapes.
次いで、フォトレジスト膜90を覆うように、ゲート絶縁膜13上にソース電極14及びドレイン電極15の材質からなる金属膜を形成し、フォトレジスト膜90を除去することにより、図8Dに示すように、ゲート絶縁膜13上の所定の箇所にソース電極14及びドレイン電極15を形成する。この時、前記金属膜を形成する前に、フォトレジスト膜90を覆うように、ゲート絶縁膜13上に密着層(図示略)を形成しておき、この密着層上に前記金属膜を形成してもよい。密着層の材質としては、クロム等の金属が例示できる。前記金属膜、密着層の形成方法としては、真空蒸着法が例示できる。フォトレジスト膜90の除去により、この上に形成された前記金属膜、さらに密着層を形成した場合には、この密着層も、フォトレジスト膜90とともに除去される。フォトレジスト膜90の除去方法としては、基板11をアセトン等の有機溶媒中に浸漬するリフトオフ法が例示できる。
Next, a metal film made of the material of the source electrode 14 and the drain electrode 15 is formed on the gate insulating film 13 so as to cover the photoresist film 90, and the photoresist film 90 is removed, as shown in FIG. 8D. Then, the source electrode 14 and the drain electrode 15 are formed at predetermined positions on the gate insulating film 13. At this time, before forming the metal film, an adhesion layer (not shown) is formed on the gate insulating film 13 so as to cover the photoresist film 90, and the metal film is formed on the adhesion layer. May be. Examples of the material for the adhesion layer include metals such as chromium. An example of a method for forming the metal film and the adhesion layer is a vacuum deposition method. When the metal film formed on the photoresist film 90 and further an adhesion layer are formed by removing the photoresist film 90, the adhesion layer is also removed together with the photoresist film 90. An example of a method for removing the photoresist film 90 is a lift-off method in which the substrate 11 is immersed in an organic solvent such as acetone.
次いで、図8Eに示すように、ソース電極14及びドレイン電極15を覆うように、ゲート絶縁膜13上に有機半導体層16を形成する。有機半導体層16は、例えば、化合物(1)を含む、上記の電界効果トランジスタの有機半導体層用組成物をゲート絶縁膜13上に載せることで、さらに、必要に応じて溶媒を乾燥除去することで形成できる。前記組成物を用いて有機半導体層16を形成する方法としては、浸漬法、スピンコート法、キャスト法、インクジェット法又は印刷法が例示できる。印刷法としては、マイクロコンタクト印刷法、反転オフセット印刷法、フレキソ印刷法、平版印刷法、凹版印刷法等が例示できる。また、有機半導体層16は、真空蒸着法等により、化合物(1)を蒸着させて形成してもよい。
Next, as shown in FIG. 8E, an organic semiconductor layer 16 is formed on the gate insulating film 13 so as to cover the source electrode 14 and the drain electrode 15. For example, the organic semiconductor layer 16 may be formed by placing the composition for an organic semiconductor layer of the above-described field effect transistor containing the compound (1) on the gate insulating film 13 and further removing the solvent by drying as necessary. Can be formed. Examples of the method for forming the organic semiconductor layer 16 using the composition include an immersion method, a spin coating method, a casting method, an ink jet method, and a printing method. Examples of the printing method include a micro contact printing method, a reverse offset printing method, a flexographic printing method, a lithographic printing method, and an intaglio printing method. The organic semiconductor layer 16 may be formed by vapor-depositing the compound (1) by a vacuum vapor deposition method or the like.
上記工程を行うことで、図1に示す電界効果トランジスタ1Aが得られる。この時、さらに、有機半導体層16上に保護膜17を形成することで、図2に示す電界効果トランジスタ1A’が得られる。
By performing the above steps, the field effect transistor 1A shown in FIG. 1 is obtained. At this time, the protective film 17 is further formed on the organic semiconductor layer 16 to obtain the field effect transistor 1A 'shown in FIG.
次に、図3に示す電界効果トランジスタ1Bの製造方法について説明する。図9A~図9Fは、電界効果トランジスタ1Bの製造方法を説明するための概略断面図である。
図8A~図8Dを参照して説明した方法と同様の方法で、図9A~図9Dに示すように、ゲート絶縁膜13上の所定の箇所にソース電極14及びドレイン電極15を形成する。 Next, a manufacturing method of thefield effect transistor 1B shown in FIG. 3 will be described. 9A to 9F are schematic cross-sectional views for explaining a method of manufacturing the field effect transistor 1B.
Asource electrode 14 and a drain electrode 15 are formed at predetermined positions on the gate insulating film 13 by a method similar to the method described with reference to FIGS. 8A to 8D, as shown in FIGS. 9A to 9D.
図8A~図8Dを参照して説明した方法と同様の方法で、図9A~図9Dに示すように、ゲート絶縁膜13上の所定の箇所にソース電極14及びドレイン電極15を形成する。 Next, a manufacturing method of the
A
次いで、図9Eに示すように、ソース電極14及びドレイン電極15の表面に表面修飾剤を作用させて、表面修飾層18を形成する。
Next, as shown in FIG. 9E, a surface modifying layer 18 is formed by applying a surface modifying agent to the surfaces of the source electrode 14 and the drain electrode 15.
次いで、図9Fに示すように、表面修飾されたソース電極14及びドレイン電極15を覆うように、ゲート絶縁膜13上に有機半導体層16を形成する。有機半導体層16の形成方法は、電界効果トランジスタ1Aの場合と同様である。例えば、表面修飾層18を親水性とすることで、有機半導体層16の膜質がより均一となる。
Next, as shown in FIG. 9F, an organic semiconductor layer 16 is formed on the gate insulating film 13 so as to cover the surface-modified source electrode 14 and drain electrode 15. The formation method of the organic semiconductor layer 16 is the same as that of the field effect transistor 1A. For example, by making the surface modification layer 18 hydrophilic, the film quality of the organic semiconductor layer 16 becomes more uniform.
上記工程を行うことで、図3に示す電界効果トランジスタ1Bが得られる。この時、さらに、有機半導体層16上に保護膜を形成してもよい。
By performing the above steps, the field effect transistor 1B shown in FIG. 3 is obtained. At this time, a protective film may be further formed on the organic semiconductor layer 16.
次に、図4に示す電界効果トランジスタ1Cの製造方法について説明する。図10A~図10Dは、電界効果トランジスタ1Cの製造方法を説明するための概略断面図である。
基板11上に、ゲート電極12を構成する材質からなる膜を形成し、フォトリソグラフィー及びエッチングにより、前記膜を所望のパターンに形成して、図10Aに示すように、基板11上の所定箇所にゲート電極12を形成する。膜の形成方法としては、スパッタリング法が例示できる。 Next, a method for manufacturing thefield effect transistor 1C shown in FIG. 4 will be described. 10A to 10D are schematic cross-sectional views for explaining a method of manufacturing the field effect transistor 1C.
A film made of a material constituting thegate electrode 12 is formed on the substrate 11, and the film is formed into a desired pattern by photolithography and etching. As shown in FIG. A gate electrode 12 is formed. An example of the film formation method is a sputtering method.
基板11上に、ゲート電極12を構成する材質からなる膜を形成し、フォトリソグラフィー及びエッチングにより、前記膜を所望のパターンに形成して、図10Aに示すように、基板11上の所定箇所にゲート電極12を形成する。膜の形成方法としては、スパッタリング法が例示できる。 Next, a method for manufacturing the
A film made of a material constituting the
次いで、図10Bに示すように、ゲート電極12を覆うように基板11上にゲート絶縁膜13を形成する。ゲート絶縁膜13の形成方法としては、スパッタリング法が例示できる。
Next, as shown in FIG. 10B, a gate insulating film 13 is formed on the substrate 11 so as to cover the gate electrode 12. An example of a method for forming the gate insulating film 13 is a sputtering method.
次いで、図10Cに示すように、ゲート絶縁膜13上に有機半導体層16を形成する。有機半導体層16は、例えば、化合物(1)を含む前記有機半導体層用組成物をゲート絶縁膜13上に載せることで、さらに、必要に応じて溶媒を乾燥除去することで形成できる。前記組成物を用いて有機半導体層16を形成する方法としては、浸漬法、スピンコート法、キャスト法、インクジェット法又は印刷法が例示できる。印刷法としては、上記と同様のものが例示できる。また、有機半導体層16は、真空蒸着法等により、化合物(1)を蒸着させて形成してもよい。
Next, as shown in FIG. 10C, an organic semiconductor layer 16 is formed on the gate insulating film 13. The organic semiconductor layer 16 can be formed, for example, by placing the composition for an organic semiconductor layer containing the compound (1) on the gate insulating film 13 and further removing the solvent by drying as necessary. Examples of the method for forming the organic semiconductor layer 16 using the composition include an immersion method, a spin coating method, a casting method, an ink jet method, and a printing method. Examples of the printing method are the same as those described above. The organic semiconductor layer 16 may be formed by vapor-depositing the compound (1) by a vacuum vapor deposition method or the like.
次いで、有機半導体層16上に、所定の開口部を有する金属マスク(図示せず)を介して真空蒸着法等により、図10Dに示すように、ソース電極14及びドレイン電極15を形成する。
Next, as shown in FIG. 10D, the source electrode 14 and the drain electrode 15 are formed on the organic semiconductor layer 16 by a vacuum deposition method or the like through a metal mask (not shown) having a predetermined opening.
上記工程を行うことで、図4に示す電界効果トランジスタ1Cが得られる。この時、さらに、ソース電極14及びドレイン電極15を覆うように有機半導体層16上に保護膜を形成してもよい。
By performing the above steps, the field effect transistor 1C shown in FIG. 4 is obtained. At this time, a protective film may be further formed on the organic semiconductor layer 16 so as to cover the source electrode 14 and the drain electrode 15.
次に、図5に示す電界効果トランジスタ1Dの製造方法について説明する。図11A~11Dは、電界効果トランジスタ1Dの製造方法を説明するための概略断面図である。
図10Aを参照して説明した方法と同様の方法で、図11Aに示すように、基板11上の所定箇所にゲート電極12を形成する。 Next, a method for manufacturing thefield effect transistor 1D shown in FIG. 5 will be described. 11A to 11D are schematic cross-sectional views for explaining a method for manufacturing the field effect transistor 1D.
Agate electrode 12 is formed at a predetermined position on the substrate 11 as shown in FIG. 11A by a method similar to the method described with reference to FIG. 10A.
図10Aを参照して説明した方法と同様の方法で、図11Aに示すように、基板11上の所定箇所にゲート電極12を形成する。 Next, a method for manufacturing the
A
次いで、図11Bに示すように、ゲート電極12を覆うように基板11上に親水性の膜13’を形成する。親水性の膜13’の形成方法としては、スピンコート法が例示できる。
Next, as shown in FIG. 11B, a hydrophilic film 13 ′ is formed on the substrate 11 so as to cover the gate electrode 12. As a method for forming the hydrophilic film 13 ′, a spin coating method can be exemplified.
次いで、図11Cに示すように、親水性の膜13’上に有機半導体層16を形成する。有機半導体層16は、図10Cを参照して説明した方法と同様の方法で形成できる。親水性の膜13’上で、有機半導体層16の膜質はより均一となる。
Next, as shown in FIG. 11C, an organic semiconductor layer 16 is formed on the hydrophilic film 13 ′. The organic semiconductor layer 16 can be formed by a method similar to the method described with reference to FIG. 10C. The film quality of the organic semiconductor layer 16 becomes more uniform on the hydrophilic film 13 '.
次いで、図11Dに示すように、有機半導体層16上に、ソース電極14及びドレイン電極15を形成する。ソース電極14及びドレイン電極15は、図10Dを参照して説明した方法と同様の方法で形成できる。
Next, as shown in FIG. 11D, the source electrode 14 and the drain electrode 15 are formed on the organic semiconductor layer 16. The source electrode 14 and the drain electrode 15 can be formed by a method similar to the method described with reference to FIG. 10D.
上記工程を行うことで、図5に示す電界効果トランジスタ1Dが得られる。この時、さらに、ソース電極14及びドレイン電極15を覆うように有機半導体層16上に保護膜を形成してもよい。
By performing the above steps, the field effect transistor 1D shown in FIG. 5 is obtained. At this time, a protective film may be further formed on the organic semiconductor layer 16 so as to cover the source electrode 14 and the drain electrode 15.
<太陽電池>
本発明の一態様に係る太陽電池は、前記化合物(1)を含む有機半導体層を備える。そして、かかる有機半導体層を備えたこと以外は、従来の太陽電池と同様の構成とすることができる。ここでは、化合物(1)は、主にp型半導体として利用されるが、フッ素原子等の電子吸引性が強い置換基を導入した場合や、電極の材料の選択によっては、n型半導体として機能させることも可能である。以下、図面を参照しながら説明する。 <Solar cell>
The solar cell which concerns on 1 aspect of this invention is equipped with the organic-semiconductor layer containing the said compound (1). And it can be set as the structure similar to the conventional solar cell except having provided this organic-semiconductor layer. Here, the compound (1) is mainly used as a p-type semiconductor, but functions as an n-type semiconductor when a substituent having a strong electron-withdrawing property such as a fluorine atom is introduced or depending on the selection of an electrode material. It is also possible to make it. Hereinafter, description will be given with reference to the drawings.
本発明の一態様に係る太陽電池は、前記化合物(1)を含む有機半導体層を備える。そして、かかる有機半導体層を備えたこと以外は、従来の太陽電池と同様の構成とすることができる。ここでは、化合物(1)は、主にp型半導体として利用されるが、フッ素原子等の電子吸引性が強い置換基を導入した場合や、電極の材料の選択によっては、n型半導体として機能させることも可能である。以下、図面を参照しながら説明する。 <Solar cell>
The solar cell which concerns on 1 aspect of this invention is equipped with the organic-semiconductor layer containing the said compound (1). And it can be set as the structure similar to the conventional solar cell except having provided this organic-semiconductor layer. Here, the compound (1) is mainly used as a p-type semiconductor, but functions as an n-type semiconductor when a substituent having a strong electron-withdrawing property such as a fluorine atom is introduced or depending on the selection of an electrode material. It is also possible to make it. Hereinafter, description will be given with reference to the drawings.
図12は、本発明に係る太陽電池の要部を例示する概略断面図である。
ここに示す太陽電池2Aは、ガラス基板21上に、アノード電極22、p型半導体層24、n型半導体層25及びカソード電極23がこの順に積層され、概略構成されている。
すなわち、ガラス基板21上に、アノード電極22及びカソード電極23からなる一対の電極と、該一対の電極間に挟持された、pn接合したp型半導体層24及びn型半導体層25と、が設けられたものである。 FIG. 12 is a schematic cross-sectional view illustrating the main part of the solar cell according to the present invention.
In thesolar cell 2A shown here, an anode electrode 22, a p-type semiconductor layer 24, an n-type semiconductor layer 25, and a cathode electrode 23 are laminated in this order on a glass substrate 21, and is schematically configured.
That is, a pair of electrodes including ananode electrode 22 and a cathode electrode 23 and a pn junction p-type semiconductor layer 24 and an n-type semiconductor layer 25 sandwiched between the pair of electrodes are provided on the glass substrate 21. It is what was done.
ここに示す太陽電池2Aは、ガラス基板21上に、アノード電極22、p型半導体層24、n型半導体層25及びカソード電極23がこの順に積層され、概略構成されている。
すなわち、ガラス基板21上に、アノード電極22及びカソード電極23からなる一対の電極と、該一対の電極間に挟持された、pn接合したp型半導体層24及びn型半導体層25と、が設けられたものである。 FIG. 12 is a schematic cross-sectional view illustrating the main part of the solar cell according to the present invention.
In the
That is, a pair of electrodes including an
p型半導体層24は、前記化合物(1)を含む。そして、例えば、化合物(1)を含む組成物が塗布されて形成されたものであってもよいし、上記のp型半導体層用組成物を用いて、浸漬法、キャスト法、スピンコート法、インクジェット法又は印刷法等の低コストの薄膜形成法で形成されたものであってもよく、真空蒸着法等で化合物(1)が蒸着されて形成されたものであってもよい。
p型半導体層24の膜厚は、5nm~500nmであることが好ましい。
上記のように化合物(1)は耐酸化性が高い。したがって、化合物(1)を含むp型半導体層24は、大気雰囲気下で安定である。 The p-type semiconductor layer 24 contains the compound (1). And, for example, it may be formed by applying a composition containing the compound (1), or by using the above-mentioned composition for p-type semiconductor layer, a dipping method, a casting method, a spin coating method, It may be formed by a low-cost thin film forming method such as an inkjet method or a printing method, or may be formed by depositing the compound (1) by a vacuum vapor deposition method or the like.
The film thickness of the p-type semiconductor layer 24 is preferably 5 nm to 500 nm.
As described above, the compound (1) has high oxidation resistance. Therefore, the p-type semiconductor layer 24 containing the compound (1) is stable in the air atmosphere.
p型半導体層24の膜厚は、5nm~500nmであることが好ましい。
上記のように化合物(1)は耐酸化性が高い。したがって、化合物(1)を含むp型半導体層24は、大気雰囲気下で安定である。 The p-
The film thickness of the p-
As described above, the compound (1) has high oxidation resistance. Therefore, the p-
p型半導体層24は、親水性の膜上に設けられていることが好ましい。すなわち、アノード電極22のp型半導体層24側の表面には、親水性の膜が設けられていることが好ましい。このようにすることで、p型半導体層24の膜質をより均一にすることができ、特に、上記のp型半導体層用組成物を塗布してp型半導体層24を形成する場合に、顕著な効果が得られる。ここで、「親水性の膜」とは、上記の電界効果トランジスタの場合と同様であり、同様の方法で形成できる。
The p-type semiconductor layer 24 is preferably provided on a hydrophilic film. That is, it is preferable that a hydrophilic film is provided on the surface of the anode electrode 22 on the p-type semiconductor layer 24 side. By doing so, the film quality of the p-type semiconductor layer 24 can be made more uniform, particularly when the p-type semiconductor layer 24 is formed by applying the p-type semiconductor layer composition. Effects can be obtained. Here, the “hydrophilic film” is the same as in the case of the above-described field effect transistor, and can be formed by the same method.
前記化合物(1)を含まないn型半導体層25の材質としては、上記のn型半導体材料で例示したフラーレン、フラーレン誘導体、フッ素化フタロシアニン等が挙げられる。
n型半導体層25の膜厚は、5nm~500nmであることが好ましい。 Examples of the material of the n-type semiconductor layer 25 that does not include the compound (1) include fullerenes, fullerene derivatives, and fluorinated phthalocyanines exemplified for the n-type semiconductor material.
The film thickness of the n-type semiconductor layer 25 is preferably 5 nm to 500 nm.
n型半導体層25の膜厚は、5nm~500nmであることが好ましい。 Examples of the material of the n-
The film thickness of the n-
アノード電極22の材質としては、透明電極であるITO、有機導電体であるPEDOT/PSS等が例示できる。
アノード電極22の膜厚は、10nm~500nmであることが好ましい。 Examples of the material of theanode electrode 22 include ITO, which is a transparent electrode, and PEDOT / PSS, which is an organic conductor.
The film thickness of theanode electrode 22 is preferably 10 nm to 500 nm.
アノード電極22の膜厚は、10nm~500nmであることが好ましい。 Examples of the material of the
The film thickness of the
カソード電極23の材質としては、銀、アルミニウム等が例示できる。
カソード電極23の膜厚は、10nm~500nmであることが好ましい。 Examples of the material of thecathode electrode 23 include silver and aluminum.
The film thickness of thecathode electrode 23 is preferably 10 nm to 500 nm.
カソード電極23の膜厚は、10nm~500nmであることが好ましい。 Examples of the material of the
The film thickness of the
また、本発明に係る太陽電池の他の実施形態は、p型半導体材料とn型半導体材料とを含む有機半導体層を備え、前記p型半導体材料及び/又はn型半導体材料が、前記化合物(1)を含む。すなわち、いわゆるバルクヘテロ接合型有機薄膜太陽電池である。図13は、かかる太陽電池の要部を例示する概略断面図である。
ここに示す太陽電池2Bは、ガラス基板21上に、アノード電極22、有機半導体層26及びカソード電極23がこの順に積層され、概略構成されている。すなわち、ガラス基板21上に、アノード電極22及びカソード電極23からなる一対の電極と、該一対の電極間に挟持された有機半導体層26と、が設けられたものである。
有機半導体層26は、例えば、上記の太陽電池の有機半導体層用組成物を用いて、太陽電池2Aにおけるp型半導体層24の場合と同様の方法で形成できる。 In addition, another embodiment of the solar cell according to the present invention includes an organic semiconductor layer including a p-type semiconductor material and an n-type semiconductor material, and the p-type semiconductor material and / or the n-type semiconductor material includes the compound ( 1). That is, it is a so-called bulk heterojunction organic thin film solar cell. FIG. 13 is a schematic cross-sectional view illustrating the main part of such a solar cell.
In thesolar cell 2B shown here, an anode electrode 22, an organic semiconductor layer 26, and a cathode electrode 23 are laminated in this order on a glass substrate 21, and is roughly configured. That is, a pair of electrodes including an anode electrode 22 and a cathode electrode 23 and an organic semiconductor layer 26 sandwiched between the pair of electrodes are provided on the glass substrate 21.
Theorganic semiconductor layer 26 can be formed by the same method as in the case of the p-type semiconductor layer 24 in the solar cell 2A, for example, using the composition for an organic semiconductor layer of the solar cell.
ここに示す太陽電池2Bは、ガラス基板21上に、アノード電極22、有機半導体層26及びカソード電極23がこの順に積層され、概略構成されている。すなわち、ガラス基板21上に、アノード電極22及びカソード電極23からなる一対の電極と、該一対の電極間に挟持された有機半導体層26と、が設けられたものである。
有機半導体層26は、例えば、上記の太陽電池の有機半導体層用組成物を用いて、太陽電池2Aにおけるp型半導体層24の場合と同様の方法で形成できる。 In addition, another embodiment of the solar cell according to the present invention includes an organic semiconductor layer including a p-type semiconductor material and an n-type semiconductor material, and the p-type semiconductor material and / or the n-type semiconductor material includes the compound ( 1). That is, it is a so-called bulk heterojunction organic thin film solar cell. FIG. 13 is a schematic cross-sectional view illustrating the main part of such a solar cell.
In the
The
本発明に係る太陽電池は、有機半導体層が大気雰囲気下で安定なので、同様に大気雰囲気下で、長期間に渡り安定に動作可能である。
In the solar cell according to the present invention, since the organic semiconductor layer is stable in the air atmosphere, the solar cell can operate stably over a long period of time in the air atmosphere as well.
本発明の一態様に係る太陽電池は、例えば、以下の方法で製造できる。
図14A~図14Dは、太陽電池2Aの製造方法を説明するための概略断面図である。
まず、図14Aに示すように、ガラス基板21上にアノード電極22を形成する。
アノード電極22の形成方法としては、スパッタリング法が例示できる。 The solar cell which concerns on 1 aspect of this invention can be manufactured with the following method, for example.
14A to 14D are schematic cross-sectional views for explaining a method for manufacturing thesolar cell 2A.
First, as shown in FIG. 14A, theanode electrode 22 is formed on the glass substrate 21.
Examples of the method for forming theanode electrode 22 include a sputtering method.
図14A~図14Dは、太陽電池2Aの製造方法を説明するための概略断面図である。
まず、図14Aに示すように、ガラス基板21上にアノード電極22を形成する。
アノード電極22の形成方法としては、スパッタリング法が例示できる。 The solar cell which concerns on 1 aspect of this invention can be manufactured with the following method, for example.
14A to 14D are schematic cross-sectional views for explaining a method for manufacturing the
First, as shown in FIG. 14A, the
Examples of the method for forming the
次いで、図14Bに示すように、アノード電極22上にp型半導体層24を形成する。p型半導体層24は、例えば、化合物(1)を含む、上記のp型半導体層用組成物をアノード電極22上に載せることで、さらに、必要に応じて溶媒を乾燥除去することで形成できる。前記組成物を用いてp型半導体層24を形成する方法は、電界効果トランジスタの製造時に、有機半導体層用組成物を用いて有機半導体層を形成する方法と同様であり、浸漬法、スピンコート法、キャスト法、インクジェット法又は印刷法が例示できる。また、p型半導体層24は、真空蒸着法等により、化合物(1)を蒸着させて形成してもよい。
Next, as shown in FIG. 14B, a p-type semiconductor layer 24 is formed on the anode electrode 22. The p-type semiconductor layer 24 can be formed, for example, by placing the above-mentioned composition for a p-type semiconductor layer containing the compound (1) on the anode electrode 22 and further removing the solvent by drying as necessary. . The method for forming the p-type semiconductor layer 24 using the composition is the same as the method for forming the organic semiconductor layer using the composition for organic semiconductor layer at the time of manufacturing the field effect transistor. Examples thereof include a method, a casting method, an ink jet method, and a printing method. The p-type semiconductor layer 24 may be formed by vapor-depositing the compound (1) by a vacuum vapor deposition method or the like.
次いで、図14Cに示すように、p型半導体層24上にn型半導体層25を形成する。n型半導体層25の形成方法としては、真空蒸着法が例示できる。
Next, as shown in FIG. 14C, an n-type semiconductor layer 25 is formed on the p-type semiconductor layer 24. An example of a method for forming the n-type semiconductor layer 25 is a vacuum deposition method.
次いで、図14Dに示すように、n型半導体層25上にカソード電極23を形成する。カソード電極23の形成方法としては、真空蒸着法が例示できる。
上記工程を行うことで、図14Dに示す太陽電池2Aが得られる。この時、さらに、カソード電極23上に保護膜を形成してもよい。この保護膜は、上記の電界効果トランジスタにおいて用いるものと同様でよい。 Next, as shown in FIG. 14D, thecathode electrode 23 is formed on the n-type semiconductor layer 25. An example of a method for forming the cathode electrode 23 is a vacuum vapor deposition method.
By performing the above steps, asolar cell 2A shown in FIG. 14D is obtained. At this time, a protective film may be further formed on the cathode electrode 23. This protective film may be the same as that used in the above-described field effect transistor.
上記工程を行うことで、図14Dに示す太陽電池2Aが得られる。この時、さらに、カソード電極23上に保護膜を形成してもよい。この保護膜は、上記の電界効果トランジスタにおいて用いるものと同様でよい。 Next, as shown in FIG. 14D, the
By performing the above steps, a
<有機発光素子>
本発明の一態様に係る有機発光素子は、前記化合物(1)を含むキャリヤ輸送層を備える。そして、かかるキャリヤ輸送層を備えたこと以外は、従来の有機発光素子と同様の構成とすることができる。ここでは、化合物(1)は、主にp型半導体として利用されるが、フッ素原子等の電子吸引性が強い置換基を導入した場合や、電極の材料の選択によっては、n型半導体(電子輸送層)として機能させることも可能である。以下、図面を参照しながら説明する。 <Organic light emitting device>
The organic light emitting device according to one embodiment of the present invention includes a carrier transport layer containing the compound (1). And it can be set as the structure similar to the conventional organic light emitting element except having provided this carrier transport layer. Here, the compound (1) is mainly used as a p-type semiconductor. However, depending on the introduction of a substituent having a strong electron-withdrawing property such as a fluorine atom or the selection of an electrode material, an n-type semiconductor (electron It is also possible to function as a transport layer. Hereinafter, description will be given with reference to the drawings.
本発明の一態様に係る有機発光素子は、前記化合物(1)を含むキャリヤ輸送層を備える。そして、かかるキャリヤ輸送層を備えたこと以外は、従来の有機発光素子と同様の構成とすることができる。ここでは、化合物(1)は、主にp型半導体として利用されるが、フッ素原子等の電子吸引性が強い置換基を導入した場合や、電極の材料の選択によっては、n型半導体(電子輸送層)として機能させることも可能である。以下、図面を参照しながら説明する。 <Organic light emitting device>
The organic light emitting device according to one embodiment of the present invention includes a carrier transport layer containing the compound (1). And it can be set as the structure similar to the conventional organic light emitting element except having provided this carrier transport layer. Here, the compound (1) is mainly used as a p-type semiconductor. However, depending on the introduction of a substituent having a strong electron-withdrawing property such as a fluorine atom or the selection of an electrode material, an n-type semiconductor (electron It is also possible to function as a transport layer. Hereinafter, description will be given with reference to the drawings.
図15は、本発明の一態様に係る有機発光素子の要部を例示する概略断面図である。
ここに示す有機発光素子3Aは、ガラス基板31上に、アノード電極32、有機エレクトロルミネッセンス(以下、有機ELと略記する)部34及びカソード電極33がこの順に積層され、概略構成されている。すなわち、ガラス基板31上に、アノード電極32及びカソード電極33からなる一対の電極と、該一対の電極間に挟持された有機EL部34と、が設けられたものである。 FIG. 15 is a schematic cross-sectional view illustrating the main part of the organic light-emitting element according to one embodiment of the present invention.
The organiclight emitting element 3A shown here is schematically configured by laminating an anode electrode 32, an organic electroluminescence (hereinafter abbreviated as organic EL) portion 34, and a cathode electrode 33 in this order on a glass substrate 31. That is, a pair of electrodes including an anode electrode 32 and a cathode electrode 33 and an organic EL portion 34 sandwiched between the pair of electrodes are provided on a glass substrate 31.
ここに示す有機発光素子3Aは、ガラス基板31上に、アノード電極32、有機エレクトロルミネッセンス(以下、有機ELと略記する)部34及びカソード電極33がこの順に積層され、概略構成されている。すなわち、ガラス基板31上に、アノード電極32及びカソード電極33からなる一対の電極と、該一対の電極間に挟持された有機EL部34と、が設けられたものである。 FIG. 15 is a schematic cross-sectional view illustrating the main part of the organic light-emitting element according to one embodiment of the present invention.
The organic
アノード電極32及びカソード電極33は、それぞれ、上記の太陽電池におけるアノード電極及びカソード電極と同様のものである。
The anode electrode 32 and the cathode electrode 33 are the same as the anode electrode and the cathode electrode in the solar cell, respectively.
有機EL部34は、アノード電極32側からカソード電極33側へかけて、キャリヤ注入層34a、キャリヤ輸送層34b、発光層34c、電子輸送層34d及び電子注入層34eがこの順に積層され、概略構成されている。
キャリヤ注入層34a、キャリヤ輸送層34b、発光層34c、電子輸送層34d、電子注入層34eは、それぞれ単層構造及び多層構造のいずれであってもよい。 The organic EL section 34 is constructed by laminating acarrier injection layer 34a, a carrier transport layer 34b, a light emitting layer 34c, an electron transport layer 34d, and an electron injection layer 34e in this order from the anode electrode 32 side to the cathode electrode 33 side. Has been.
Thecarrier injection layer 34a, the carrier transport layer 34b, the light emitting layer 34c, the electron transport layer 34d, and the electron injection layer 34e may each have a single layer structure or a multilayer structure.
キャリヤ注入層34a、キャリヤ輸送層34b、発光層34c、電子輸送層34d、電子注入層34eは、それぞれ単層構造及び多層構造のいずれであってもよい。 The organic EL section 34 is constructed by laminating a
The
キャリヤ輸送層34bは、前記化合物(1)を含む。そして、例えば、化合物(1)を含む組成物が塗布されて形成されたものであってもよいし、上記のキャリヤ輸送層用組成物を用いて、浸漬法、キャスト法、スピンコート法、インクジェット法又は印刷法等の低コストの薄膜形成法で形成されたものであってもよく、真空蒸着法等で化合物(1)が蒸着されて形成されたものであってもよい。
キャリヤ輸送層34bの膜厚は、5nm~500nmであることが好ましい。
上記のように化合物(1)は耐酸化性が高い。したがって、化合物(1)を含むキャリヤ輸送層34bは、大気雰囲気下で安定である。 Thecarrier transport layer 34b contains the compound (1). For example, it may be formed by applying a composition containing the compound (1), or by using the above carrier transport layer composition, a dipping method, a casting method, a spin coating method, an inkjet method. It may be formed by a low-cost thin film forming method such as a printing method or a printing method, or may be formed by depositing the compound (1) by a vacuum vapor deposition method or the like.
The film thickness of thecarrier transport layer 34b is preferably 5 nm to 500 nm.
As described above, the compound (1) has high oxidation resistance. Therefore, thecarrier transport layer 34b containing the compound (1) is stable in the air atmosphere.
キャリヤ輸送層34bの膜厚は、5nm~500nmであることが好ましい。
上記のように化合物(1)は耐酸化性が高い。したがって、化合物(1)を含むキャリヤ輸送層34bは、大気雰囲気下で安定である。 The
The film thickness of the
As described above, the compound (1) has high oxidation resistance. Therefore, the
キャリヤ輸送層34bは、親水性の膜上に設けられていることが好ましい。すなわち、キャリヤ注入層34aのキャリヤ輸送層34b側の表面には、親水性の膜が設けられていることが好ましい。このようにすることで、キャリヤ輸送層34bの膜質をより均一にすることができ、特に、上記のキャリヤ輸送層用組成物を塗布してキャリヤ輸送層34bを形成する場合に、顕著な効果が得られる。ここで、「親水性の膜」とは、上記の電界効果トランジスタの場合と同様であり、同様の方法で形成できる。
The carrier transport layer 34b is preferably provided on a hydrophilic film. That is, it is preferable that a hydrophilic film is provided on the surface of the carrier injection layer 34a on the carrier transport layer 34b side. By doing so, the film quality of the carrier transport layer 34b can be made more uniform. In particular, when the carrier transport layer 34b is formed by applying the above-described composition for the carrier transport layer, a remarkable effect can be obtained. can get. Here, the “hydrophilic film” is the same as in the case of the above-described field effect transistor, and can be formed by the same method.
キャリヤ注入層34aにおいて、キャリヤ注入材料は、有機EL用又は有機光導電体用として公知のものでよい。好ましいキャリヤ注入材料としては、酸化バナジウム(V2O5)、酸化モリブデン(MoO2)等の酸化物や無機p型半導体材料;ポリアニリン(PANI)、ポリアニリン-樟脳スルホン酸(PANI-CSA)、3,4-ポリエチレンジオキシチオフェン/ポリスチレンサルフォネイト(PEDOT/PSS)、ポリ(トリフェニルアミン)誘導体(Poly-TPD)、ポリビニルカルバゾール(PVCz)、ポリ(p-フェニレンビニレン)(PPV)、ポリ(p-ナフタレンビニレン)(PNV)等の高分子材料等が例示できる。
また、キャリヤ注入層34aに適用する材料としては、陽極からのキャリヤの注入・輸送をより効率よく行う観点から、キャリヤ輸送層34bに適用するキャリヤ注入輸送材料よりも、最高被占分子軌道(HOMO)のエネルギー準位が低い材料が好ましい。
キャリヤ注入層34aの膜厚は、1nm~500nmであることが好ましい。 In thecarrier injection layer 34a, the carrier injection material may be a known material for organic EL or organic photoconductor. Preferred carrier injection materials include oxides such as vanadium oxide (V 2 O 5 ) and molybdenum oxide (MoO 2 ) and inorganic p-type semiconductor materials; polyaniline (PANI), polyaniline-camphor sulfonic acid (PANI-CSA), 3 , 4-polyethylenedioxythiophene / polystyrene sulfonate (PEDOT / PSS), poly (triphenylamine) derivative (Poly-TPD), polyvinylcarbazole (PVCz), poly (p-phenylene vinylene) (PPV), poly ( Examples thereof include polymer materials such as p-naphthalene vinylene) (PNV).
The material applied to thecarrier injection layer 34a is the highest occupied molecular orbital (HOMO) than the carrier injection / transport material applied to the carrier transport layer 34b from the viewpoint of more efficiently injecting and transporting carriers from the anode. A material having a low energy level is preferred.
The thickness of thecarrier injection layer 34a is preferably 1 nm to 500 nm.
また、キャリヤ注入層34aに適用する材料としては、陽極からのキャリヤの注入・輸送をより効率よく行う観点から、キャリヤ輸送層34bに適用するキャリヤ注入輸送材料よりも、最高被占分子軌道(HOMO)のエネルギー準位が低い材料が好ましい。
キャリヤ注入層34aの膜厚は、1nm~500nmであることが好ましい。 In the
The material applied to the
The thickness of the
発光層34cの材質は、有機EL用の公知のものでよく、例えば、低分子発光材料及び高分子発光材料等に分類できる。
前記低分子発光材料の好ましいものとしては、4,4’-ビス(2,2’-ジフェニルビニル)-ビフェニル(DPVBi)等の芳香族ジメチリデン化合物;5-メチル-2-[2-[4-(5-メチル-2-ベンゾオキサゾリル)フェニル]ビニル]ベンゾオキサゾール等のオキサジアゾール化合物;3-(4-ビフェニルイル)-4-フェニル-5-t-ブチルフェニル-1,2,4-トリアゾール(TAZ)等のトリアゾール誘導体;1,4-ビス(2-メチルスチリル)ベンゼン等のスチリルベンゼン化合物;フルオレノン誘導体等の蛍光性有機材料等が例示できる。
前記高分子発光材料の好ましいものとしては、ポリ(2-デシルオキシ-1,4-フェニレン)(DO-PPP)等のポリフェニレンビニレン誘導体;ポリ(9,9-ジオクチルフルオレン)(PDAF)等のポリスピロ誘導体等が例示できる。
発光層34cの膜厚は、5nm~500nmであることが好ましい。 The material of thelight emitting layer 34c may be a known material for organic EL, and can be classified into, for example, a low molecular light emitting material and a polymer light emitting material.
Preferred examples of the low-molecular light-emitting material include aromatic dimethylidene compounds such as 4,4′-bis (2,2′-diphenylvinyl) -biphenyl (DPVBi); 5-methyl-2- [2- [4- Oxadiazole compounds such as (5-methyl-2-benzoxazolyl) phenyl] vinyl] benzoxazole; 3- (4-biphenylyl) -4-phenyl-5-tert-butylphenyl-1,2,4 -Triazole derivatives such as triazole (TAZ); styrylbenzene compounds such as 1,4-bis (2-methylstyryl) benzene; fluorescent organic materials such as fluorenone derivatives.
Preferred examples of the polymer light-emitting material include polyphenylene vinylene derivatives such as poly (2-decyloxy-1,4-phenylene) (DO-PPP); polyspiro derivatives such as poly (9,9-dioctylfluorene) (PDAF). Etc. can be illustrated.
The thickness of thelight emitting layer 34c is preferably 5 nm to 500 nm.
前記低分子発光材料の好ましいものとしては、4,4’-ビス(2,2’-ジフェニルビニル)-ビフェニル(DPVBi)等の芳香族ジメチリデン化合物;5-メチル-2-[2-[4-(5-メチル-2-ベンゾオキサゾリル)フェニル]ビニル]ベンゾオキサゾール等のオキサジアゾール化合物;3-(4-ビフェニルイル)-4-フェニル-5-t-ブチルフェニル-1,2,4-トリアゾール(TAZ)等のトリアゾール誘導体;1,4-ビス(2-メチルスチリル)ベンゼン等のスチリルベンゼン化合物;フルオレノン誘導体等の蛍光性有機材料等が例示できる。
前記高分子発光材料の好ましいものとしては、ポリ(2-デシルオキシ-1,4-フェニレン)(DO-PPP)等のポリフェニレンビニレン誘導体;ポリ(9,9-ジオクチルフルオレン)(PDAF)等のポリスピロ誘導体等が例示できる。
発光層34cの膜厚は、5nm~500nmであることが好ましい。 The material of the
Preferred examples of the low-molecular light-emitting material include aromatic dimethylidene compounds such as 4,4′-bis (2,2′-diphenylvinyl) -biphenyl (DPVBi); 5-methyl-2- [2- [4- Oxadiazole compounds such as (5-methyl-2-benzoxazolyl) phenyl] vinyl] benzoxazole; 3- (4-biphenylyl) -4-phenyl-5-tert-butylphenyl-1,2,4 -Triazole derivatives such as triazole (TAZ); styrylbenzene compounds such as 1,4-bis (2-methylstyryl) benzene; fluorescent organic materials such as fluorenone derivatives.
Preferred examples of the polymer light-emitting material include polyphenylene vinylene derivatives such as poly (2-decyloxy-1,4-phenylene) (DO-PPP); polyspiro derivatives such as poly (9,9-dioctylfluorene) (PDAF). Etc. can be illustrated.
The thickness of the
電子輸送層34d及び電子注入層34eにおいて、電子注入輸送材料は、有機EL用又は有機光導電体用として公知のものでよい。好ましい電子注入輸送材料としては、n型半導体である無機材料、オキサジアゾール誘導体、トリアゾール誘導体、チオピラジンジオキシド誘導体、ベンゾキノン誘導体、ナフトキノン誘導体、アントラキノン誘導体、ジフェノキノン誘導体、フルオレノン誘導体、ベンゾジフラン誘導体等の低分子材料;ポリ(オキサジアゾール)(Poly-OXZ)、ポリスチレン誘導体(PSS)等の高分子材料が例示できる。特に、電子注入材料としては、フッ化リチウム(LiF)、フッ化バリウム(BaF2)等のフッ化物;酸化リチウム(Li2O)等の酸化物等が例示できる。
また、電子注入層34eに適用する材料としては、陰極からの電子の注入および輸送をより効率よく行う観点から、電子輸送層34dに適用する電子注入輸送材料よりも、最低非占有分子軌道(LUMO)のエネルギー準位が高い材料が好ましい。そして、電子輸送層34dに適用する材料としては、電子注入層34eに適用する電子注入輸送材料よりも、電子の移動度が高い材料が好ましい。
電子輸送層34dの膜厚は、5nm~500nmであることが好ましい。また、電子注入層34eの膜厚は、0.1nm~100nmであることが好ましい。 In theelectron transport layer 34d and the electron injection layer 34e, the electron injection / transport material may be a known material for organic EL or organic photoconductor. Preferred electron injecting and transporting materials include inorganic materials that are n-type semiconductors, oxadiazole derivatives, triazole derivatives, thiopyrazine dioxide derivatives, benzoquinone derivatives, naphthoquinone derivatives, anthraquinone derivatives, diphenoquinone derivatives, fluorenone derivatives, benzodifuran derivatives, and the like. Molecular materials: Polymer materials such as poly (oxadiazole) (Poly-OXZ) and polystyrene derivatives (PSS) can be exemplified. In particular, examples of the electron injection material include fluorides such as lithium fluoride (LiF) and barium fluoride (BaF 2 ); oxides such as lithium oxide (Li 2 O) and the like.
In addition, as a material applied to theelectron injection layer 34e, the lowest unoccupied molecular orbital (LUMO) is used as compared with the electron injection / transport material applied to the electron transport layer 34d from the viewpoint of more efficiently injecting and transporting electrons from the cathode. A material having a high energy level is preferred. The material applied to the electron transport layer 34d is preferably a material having higher electron mobility than the electron injection transport material applied to the electron injection layer 34e.
The film thickness of theelectron transport layer 34d is preferably 5 nm to 500 nm. The film thickness of the electron injection layer 34e is preferably 0.1 nm to 100 nm.
また、電子注入層34eに適用する材料としては、陰極からの電子の注入および輸送をより効率よく行う観点から、電子輸送層34dに適用する電子注入輸送材料よりも、最低非占有分子軌道(LUMO)のエネルギー準位が高い材料が好ましい。そして、電子輸送層34dに適用する材料としては、電子注入層34eに適用する電子注入輸送材料よりも、電子の移動度が高い材料が好ましい。
電子輸送層34dの膜厚は、5nm~500nmであることが好ましい。また、電子注入層34eの膜厚は、0.1nm~100nmであることが好ましい。 In the
In addition, as a material applied to the
The film thickness of the
本発明の一態様に係る有機発光素子は、図15に示すものに限定されず、その構成の一部が変更されたものでもよい。例えば、有機EL部34の構成を以下のようにしたものが挙げられる。
(i)アノード電極32側からカソード電極33側へかけて、キャリヤ輸送層、発光層及び電子輸送層がこの順に積層された有機EL部。
(ii)アノード電極32側からカソード電極33側へかけて、キャリヤ注入層、キャリヤ輸送層、発光層及び電子輸送層がこの順に積層された有機EL部。
(iii)アノード電極32側からカソード電極33側へかけて、キャリヤ注入層、キャリヤ輸送層、発光層、キャリヤ防止層及び電子輸送層がこの順に積層された有機EL部。
(iv)アノード電極32側からカソード電極33側へかけて、キャリヤ注入層、キャリヤ輸送層、発光層、キャリヤ防止層、電子輸送層及び電子注入層がこの順に積層された有機EL部。
(v)アノード電極32側からカソード電極33側へかけて、キャリヤ注入層、キャリヤ輸送層、電子防止層、発光層、キャリヤ防止層、電子輸送層及び電子注入層がこの順に積層された有機EL部。 The organic light emitting device according to one embodiment of the present invention is not limited to the one shown in FIG. 15, and a part of the configuration may be changed. For example, the structure of the organic EL unit 34 as follows can be given.
(I) An organic EL part in which a carrier transport layer, a light emitting layer, and an electron transport layer are laminated in this order from theanode electrode 32 side to the cathode electrode 33 side.
(Ii) An organic EL part in which a carrier injection layer, a carrier transport layer, a light emitting layer, and an electron transport layer are laminated in this order from theanode electrode 32 side to the cathode electrode 33 side.
(Iii) An organic EL part in which a carrier injection layer, a carrier transport layer, a light emitting layer, a carrier prevention layer, and an electron transport layer are laminated in this order from theanode electrode 32 side to the cathode electrode 33 side.
(Iv) An organic EL portion in which a carrier injection layer, a carrier transport layer, a light emitting layer, a carrier prevention layer, an electron transport layer, and an electron injection layer are laminated in this order from theanode electrode 32 side to the cathode electrode 33 side.
(V) An organic EL in which a carrier injection layer, a carrier transport layer, an electron blocking layer, a light emitting layer, a carrier blocking layer, an electron transport layer, and an electron injection layer are laminated in this order from theanode electrode 32 side to the cathode electrode 33 side. Department.
(i)アノード電極32側からカソード電極33側へかけて、キャリヤ輸送層、発光層及び電子輸送層がこの順に積層された有機EL部。
(ii)アノード電極32側からカソード電極33側へかけて、キャリヤ注入層、キャリヤ輸送層、発光層及び電子輸送層がこの順に積層された有機EL部。
(iii)アノード電極32側からカソード電極33側へかけて、キャリヤ注入層、キャリヤ輸送層、発光層、キャリヤ防止層及び電子輸送層がこの順に積層された有機EL部。
(iv)アノード電極32側からカソード電極33側へかけて、キャリヤ注入層、キャリヤ輸送層、発光層、キャリヤ防止層、電子輸送層及び電子注入層がこの順に積層された有機EL部。
(v)アノード電極32側からカソード電極33側へかけて、キャリヤ注入層、キャリヤ輸送層、電子防止層、発光層、キャリヤ防止層、電子輸送層及び電子注入層がこの順に積層された有機EL部。 The organic light emitting device according to one embodiment of the present invention is not limited to the one shown in FIG. 15, and a part of the configuration may be changed. For example, the structure of the organic EL unit 34 as follows can be given.
(I) An organic EL part in which a carrier transport layer, a light emitting layer, and an electron transport layer are laminated in this order from the
(Ii) An organic EL part in which a carrier injection layer, a carrier transport layer, a light emitting layer, and an electron transport layer are laminated in this order from the
(Iii) An organic EL part in which a carrier injection layer, a carrier transport layer, a light emitting layer, a carrier prevention layer, and an electron transport layer are laminated in this order from the
(Iv) An organic EL portion in which a carrier injection layer, a carrier transport layer, a light emitting layer, a carrier prevention layer, an electron transport layer, and an electron injection layer are laminated in this order from the
(V) An organic EL in which a carrier injection layer, a carrier transport layer, an electron blocking layer, a light emitting layer, a carrier blocking layer, an electron transport layer, and an electron injection layer are laminated in this order from the
前記キャリヤ防止層及び電子防止層は、有機EL用として公知のものでよい。
The carrier prevention layer and the electron prevention layer may be known for organic EL.
本発明の一態様に係る有機発光素子は、キャリヤ輸送層が大気雰囲気下で安定なので、同様に大気雰囲気下で、長期間に渡り安定に動作可能である。
The organic light-emitting device according to one embodiment of the present invention can operate stably over a long period of time in the air atmosphere because the carrier transport layer is stable in the air atmosphere.
本発明の一態様に係る有機発光素子は、例えば、以下の方法で製造できる。
図16A~図16Gは、有機発光素子3Aの製造方法を説明するための概略断面図である。
まず、図16Aに示すように、ガラス基板31上にアノード電極32を形成する。
アノード電極32の形成方法としては、スパッタリング法が例示できる。 The organic light emitting device according to one embodiment of the present invention can be manufactured, for example, by the following method.
16A to 16G are schematic cross-sectional views for explaining a method for manufacturing the organiclight emitting device 3A.
First, as shown in FIG. 16A, theanode electrode 32 is formed on the glass substrate 31.
An example of a method for forming theanode electrode 32 is a sputtering method.
図16A~図16Gは、有機発光素子3Aの製造方法を説明するための概略断面図である。
まず、図16Aに示すように、ガラス基板31上にアノード電極32を形成する。
アノード電極32の形成方法としては、スパッタリング法が例示できる。 The organic light emitting device according to one embodiment of the present invention can be manufactured, for example, by the following method.
16A to 16G are schematic cross-sectional views for explaining a method for manufacturing the organic
First, as shown in FIG. 16A, the
An example of a method for forming the
次いで、図16Bに示すように、アノード電極32上にキャリヤ注入層34aを形成する。キャリヤ注入層34aの形成方法としては、スピンコート法が例示できる。
Next, as shown in FIG. 16B, a carrier injection layer 34 a is formed on the anode electrode 32. As a method for forming the carrier injection layer 34a, a spin coating method can be exemplified.
次いで、図16Cに示すように、キャリヤ注入層34a上にキャリヤ輸送層34bを形成する。キャリヤ輸送層34bは、例えば、化合物(1)を含む、上記のキャリヤ輸送層用組成物をキャリヤ注入層34a上に載せることで、さらに、必要に応じて溶媒を乾燥除去することで形成できる。キャリヤ輸送層用組成物を用いてキャリヤ輸送層34bを形成する方法は、電界効果トランジスタの製造時に、有機半導体層用組成物を用いて有機半導体層を形成する方法と同様であり、浸漬法、スピンコート法、キャスト法、インクジェット法又は印刷法が例示できる。また、キャリヤ輸送層34bは、真空蒸着法等により、化合物(1)を蒸着させて形成してもよい。
Next, as shown in FIG. 16C, a carrier transport layer 34b is formed on the carrier injection layer 34a. The carrier transport layer 34b can be formed, for example, by placing the above-mentioned composition for carrier transport layer containing the compound (1) on the carrier injection layer 34a and further removing the solvent by drying as necessary. The method for forming the carrier transport layer 34b using the composition for the carrier transport layer is the same as the method for forming the organic semiconductor layer using the composition for the organic semiconductor layer during the production of the field effect transistor. Examples thereof include a spin coating method, a casting method, an ink jet method, and a printing method. The carrier transport layer 34b may be formed by depositing the compound (1) by a vacuum deposition method or the like.
次いで、図16Dに示すように、キャリヤ輸送層34b上に発光層34cを形成する。発光層34cの形成方法としては、真空蒸着法が例示できる。
Next, as shown in FIG. 16D, a light emitting layer 34c is formed on the carrier transport layer 34b. An example of a method for forming the light emitting layer 34c is a vacuum deposition method.
次いで、図16Eに示すように、発光層34c上に電子輸送層34dを形成する。
電子輸送層34dの形成方法としては、真空蒸着法が例示できる。 Next, as shown in FIG. 16E, anelectron transport layer 34d is formed on the light emitting layer 34c.
An example of a method for forming theelectron transport layer 34d is a vacuum deposition method.
電子輸送層34dの形成方法としては、真空蒸着法が例示できる。 Next, as shown in FIG. 16E, an
An example of a method for forming the
次いで、図16Fに示すように、電子輸送層34d上に電子注入層34eを形成する。電子注入層34eの形成方法としては、真空蒸着法が例示できる。
Next, as shown in FIG. 16F, an electron injection layer 34e is formed on the electron transport layer 34d. As a method for forming the electron injection layer 34e, a vacuum deposition method can be exemplified.
次いで、図16Gに示すように、電子注入層34e上にカソード電極33を形成する。カソード電極33の形成方法としては、真空蒸着法が例示できる。
上記工程を行うことで、図15に示す有機発光素子3Aが得られる。 Next, as shown in FIG. 16G, thecathode electrode 33 is formed on the electron injection layer 34e. As a method for forming the cathode electrode 33, a vacuum deposition method can be exemplified.
By performing the above steps, an organiclight emitting device 3A shown in FIG. 15 is obtained.
上記工程を行うことで、図15に示す有機発光素子3Aが得られる。 Next, as shown in FIG. 16G, the
By performing the above steps, an organic
以下、具体的実施例により、本発明についてより詳細に説明する。ただし、本発明は以下に示す実施例に何ら限定されるものではない。
Hereinafter, the present invention will be described in more detail with reference to specific examples. However, the present invention is not limited to the following examples.
<化合物(1)の製造>
[実施例1]
下記手順に従い、下記一般式(1c-1)で表される化合物(以下、化合物(1c-1)と略記する)を合成中間体として、下記一般式(1-1)で表される化合物(以下、化合物(1-1)と略記する)を製造した。 <Production of Compound (1)>
[Example 1]
According to the following procedure, a compound represented by the following general formula (1-1) was synthesized as a synthetic intermediate using a compound represented by the following general formula (1c-1) (hereinafter abbreviated as compound (1c-1)) ( Hereinafter, the compound (1-1) was abbreviated.
[実施例1]
下記手順に従い、下記一般式(1c-1)で表される化合物(以下、化合物(1c-1)と略記する)を合成中間体として、下記一般式(1-1)で表される化合物(以下、化合物(1-1)と略記する)を製造した。 <Production of Compound (1)>
[Example 1]
According to the following procedure, a compound represented by the following general formula (1-1) was synthesized as a synthetic intermediate using a compound represented by the following general formula (1c-1) (hereinafter abbreviated as compound (1c-1)) ( Hereinafter, the compound (1-1) was abbreviated.
(化合物(1c-1)合成工程)
3-アミノ-2-ナフトール(250mg、1.57mmol)と、2,3-ジヒドロキシナフタレン(250mg、1.56mmol)とをよく混合し、窒素雰囲気下、230℃で3時間加熱して脱水縮合させた。
次いで、反応終了後、生成物をN,N-ジメチルホルムアミド(DMF)を使用して再結晶することにより、292mgの化合物(1c-1)(ジベンゾフェノキサジン)を得た(収率66%)。 (Compound (1c-1) synthesis step)
3-amino-2-naphthol (250 mg, 1.57 mmol) and 2,3-dihydroxynaphthalene (250 mg, 1.56 mmol) are mixed well and heated at 230 ° C. for 3 hours in a nitrogen atmosphere for dehydration condensation. It was.
Then, after completion of the reaction, the product was recrystallized using N, N-dimethylformamide (DMF) to obtain 292 mg of compound (1c-1) (dibenzophenoxazine) (yield 66%). .
3-アミノ-2-ナフトール(250mg、1.57mmol)と、2,3-ジヒドロキシナフタレン(250mg、1.56mmol)とをよく混合し、窒素雰囲気下、230℃で3時間加熱して脱水縮合させた。
次いで、反応終了後、生成物をN,N-ジメチルホルムアミド(DMF)を使用して再結晶することにより、292mgの化合物(1c-1)(ジベンゾフェノキサジン)を得た(収率66%)。 (Compound (1c-1) synthesis step)
3-amino-2-naphthol (250 mg, 1.57 mmol) and 2,3-dihydroxynaphthalene (250 mg, 1.56 mmol) are mixed well and heated at 230 ° C. for 3 hours in a nitrogen atmosphere for dehydration condensation. It was.
Then, after completion of the reaction, the product was recrystallized using N, N-dimethylformamide (DMF) to obtain 292 mg of compound (1c-1) (dibenzophenoxazine) (yield 66%). .
(化合物(1-1)合成工程)
化合物(1c-1)(257mg、1.1mmol)の無水DMF溶液(10mL)に水素化ナトリウム(60%、60mg、1.5mmol)を少しずつ加えて、室温で2時間おいた後、ここに1-ブロモヘキサン(0.25g、1.5mmol)を加え、さらに2時間撹拌した。
次いで、減圧下で溶媒を留去し、残渣を塩化メチレンで抽出して、溶媒留去後の残渣からシリカゲルカラムクロマトグラフィーにより、化合物(1-1)を0.28g(収率45%)得た。化合物(1-1)は、無色結晶であり、吸湿性がなく、空気中において分解せず、安定であった。上記のように、市販品の原料を使用して、化合物(1-1)を容易に合成できた。 (Compound (1-1) Synthesis Step)
To a solution of compound (1c-1) (257 mg, 1.1 mmol) in anhydrous DMF (10 mL), sodium hydride (60%, 60 mg, 1.5 mmol) was added little by little and left at room temperature for 2 hours. 1-Bromohexane (0.25 g, 1.5 mmol) was added and further stirred for 2 hours.
Then, the solvent was distilled off under reduced pressure, the residue was extracted with methylene chloride, and 0.28 g (yield 45%) of compound (1-1) was obtained from the residue after the solvent was distilled off by silica gel column chromatography. It was. The compound (1-1) was a colorless crystal, was not hygroscopic, did not decompose in air, and was stable. As described above, compound (1-1) was easily synthesized using commercially available materials.
化合物(1c-1)(257mg、1.1mmol)の無水DMF溶液(10mL)に水素化ナトリウム(60%、60mg、1.5mmol)を少しずつ加えて、室温で2時間おいた後、ここに1-ブロモヘキサン(0.25g、1.5mmol)を加え、さらに2時間撹拌した。
次いで、減圧下で溶媒を留去し、残渣を塩化メチレンで抽出して、溶媒留去後の残渣からシリカゲルカラムクロマトグラフィーにより、化合物(1-1)を0.28g(収率45%)得た。化合物(1-1)は、無色結晶であり、吸湿性がなく、空気中において分解せず、安定であった。上記のように、市販品の原料を使用して、化合物(1-1)を容易に合成できた。 (Compound (1-1) Synthesis Step)
To a solution of compound (1c-1) (257 mg, 1.1 mmol) in anhydrous DMF (10 mL), sodium hydride (60%, 60 mg, 1.5 mmol) was added little by little and left at room temperature for 2 hours. 1-Bromohexane (0.25 g, 1.5 mmol) was added and further stirred for 2 hours.
Then, the solvent was distilled off under reduced pressure, the residue was extracted with methylene chloride, and 0.28 g (yield 45%) of compound (1-1) was obtained from the residue after the solvent was distilled off by silica gel column chromatography. It was. The compound (1-1) was a colorless crystal, was not hygroscopic, did not decompose in air, and was stable. As described above, compound (1-1) was easily synthesized using commercially available materials.
化合物(1-1)は、1H-NMRスペクトルによってその構造を確認した。
1H-NMR(400MHz,CDCl3):0.97 (t, J = 7.12 Hz, 3H), 1.38-1.62 (m, 6H), 1.81-1.90 (m, 2H), 3.82 (t, J = 8.13, 2H), 6.84 (s, 2H), 7.13 (s, 2H), 7.19-7.29 (m, 4H), 7.53-7.59 (m, 4H). The structure of compound (1-1) was confirmed by 1 H-NMR spectrum.
1 H-NMR (400 MHz, CDCl 3 ): 0.97 (t, J = 7.12 Hz, 3H), 1.38-1.62 (m, 6H), 1.81-1.90 (m, 2H), 3.82 (t, J = 8.13, 2H ), 6.84 (s, 2H), 7.13 (s, 2H), 7.19-7.29 (m, 4H), 7.53-7.59 (m, 4H).
1H-NMR(400MHz,CDCl3):0.97 (t, J = 7.12 Hz, 3H), 1.38-1.62 (m, 6H), 1.81-1.90 (m, 2H), 3.82 (t, J = 8.13, 2H), 6.84 (s, 2H), 7.13 (s, 2H), 7.19-7.29 (m, 4H), 7.53-7.59 (m, 4H). The structure of compound (1-1) was confirmed by 1 H-NMR spectrum.
1 H-NMR (400 MHz, CDCl 3 ): 0.97 (t, J = 7.12 Hz, 3H), 1.38-1.62 (m, 6H), 1.81-1.90 (m, 2H), 3.82 (t, J = 8.13, 2H ), 6.84 (s, 2H), 7.13 (s, 2H), 7.19-7.29 (m, 4H), 7.53-7.59 (m, 4H).
[実施例2]
下記手順に従い、下記一般式(1c-2)で表される化合物(以下、化合物(1c-2)と略記する)を合成中間体として、下記一般式(1-2)で表される化合物(以下、化合物(1-2)と略記する)を製造した。 [Example 2]
According to the following procedure, a compound represented by the following general formula (1-2) was synthesized as a synthetic intermediate using a compound represented by the following general formula (1c-2) (hereinafter abbreviated as compound (1c-2)) Hereinafter, compound (1-2) was prepared.
下記手順に従い、下記一般式(1c-2)で表される化合物(以下、化合物(1c-2)と略記する)を合成中間体として、下記一般式(1-2)で表される化合物(以下、化合物(1-2)と略記する)を製造した。 [Example 2]
According to the following procedure, a compound represented by the following general formula (1-2) was synthesized as a synthetic intermediate using a compound represented by the following general formula (1c-2) (hereinafter abbreviated as compound (1c-2)) Hereinafter, compound (1-2) was prepared.
(化合物(1c-2)合成工程)
3-アミノ-6,7-ジクロロ-2-ナフトール(250mg、1.10mmol)と、6,7-ジクロロ-2,3-ジヒドロキシナフタレン(250mg、1.09mmol)とをよく混合し、窒素雰囲気下、230℃で3時間加熱して脱水縮合させた。
次いで、反応終了後、DMFを使用して生成物を再結晶することにより、275mgの化合物(1c-2)を得た(収率60%)。 (Compound (1c-2) synthesis step)
3-Amino-6,7-dichloro-2-naphthol (250 mg, 1.10 mmol) and 6,7-dichloro-2,3-dihydroxynaphthalene (250 mg, 1.09 mmol) were mixed well under a nitrogen atmosphere. The mixture was heated at 230 ° C. for 3 hours for dehydration condensation.
Then, after completion of the reaction, the product was recrystallized using DMF to obtain 275 mg of compound (1c-2) (yield 60%).
3-アミノ-6,7-ジクロロ-2-ナフトール(250mg、1.10mmol)と、6,7-ジクロロ-2,3-ジヒドロキシナフタレン(250mg、1.09mmol)とをよく混合し、窒素雰囲気下、230℃で3時間加熱して脱水縮合させた。
次いで、反応終了後、DMFを使用して生成物を再結晶することにより、275mgの化合物(1c-2)を得た(収率60%)。 (Compound (1c-2) synthesis step)
3-Amino-6,7-dichloro-2-naphthol (250 mg, 1.10 mmol) and 6,7-dichloro-2,3-dihydroxynaphthalene (250 mg, 1.09 mmol) were mixed well under a nitrogen atmosphere. The mixture was heated at 230 ° C. for 3 hours for dehydration condensation.
Then, after completion of the reaction, the product was recrystallized using DMF to obtain 275 mg of compound (1c-2) (yield 60%).
(化合物(1-2)合成工程)
化合物(1c-2)(200mg、0.47mmol)の無水DMF溶液(10mL)に水素化ナトリウム(60%、40mg、1.0mmol)を少しずつ加えて、室温で2時間おいた後、ここに1-ブロモヘキサン(0.17g、1.0mmol)を加え、さらに2時間撹拌した。
次いで、減圧下で溶媒を留去し、残渣を塩化メチレンで抽出して、溶媒留去後の残渣からシリカゲルカラムクロマトグラフィーにより、化合物(1-2)を0.12g(収率49%)得た。化合物(1-2)は、無色結晶であり、吸湿性がなく、空気中において分解せず、安定であった。上記のように、市販品の原料を使用して、化合物(1-2)を容易に合成できた。 (Compound (1-2) Synthesis Step)
To a solution of compound (1c-2) (200 mg, 0.47 mmol) in anhydrous DMF (10 mL) was added sodium hydride (60%, 40 mg, 1.0 mmol) little by little, and the mixture was allowed to stand at room temperature for 2 hours. 1-Bromohexane (0.17 g, 1.0 mmol) was added, and the mixture was further stirred for 2 hours.
Then, the solvent was distilled off under reduced pressure, the residue was extracted with methylene chloride, and 0.12 g (yield 49%) of compound (1-2) was obtained from the residue after evaporation of the solvent by silica gel column chromatography. It was. The compound (1-2) was a colorless crystal, was not hygroscopic, did not decompose in air, and was stable. As described above, compound (1-2) was easily synthesized using commercially available materials.
化合物(1c-2)(200mg、0.47mmol)の無水DMF溶液(10mL)に水素化ナトリウム(60%、40mg、1.0mmol)を少しずつ加えて、室温で2時間おいた後、ここに1-ブロモヘキサン(0.17g、1.0mmol)を加え、さらに2時間撹拌した。
次いで、減圧下で溶媒を留去し、残渣を塩化メチレンで抽出して、溶媒留去後の残渣からシリカゲルカラムクロマトグラフィーにより、化合物(1-2)を0.12g(収率49%)得た。化合物(1-2)は、無色結晶であり、吸湿性がなく、空気中において分解せず、安定であった。上記のように、市販品の原料を使用して、化合物(1-2)を容易に合成できた。 (Compound (1-2) Synthesis Step)
To a solution of compound (1c-2) (200 mg, 0.47 mmol) in anhydrous DMF (10 mL) was added sodium hydride (60%, 40 mg, 1.0 mmol) little by little, and the mixture was allowed to stand at room temperature for 2 hours. 1-Bromohexane (0.17 g, 1.0 mmol) was added, and the mixture was further stirred for 2 hours.
Then, the solvent was distilled off under reduced pressure, the residue was extracted with methylene chloride, and 0.12 g (yield 49%) of compound (1-2) was obtained from the residue after evaporation of the solvent by silica gel column chromatography. It was. The compound (1-2) was a colorless crystal, was not hygroscopic, did not decompose in air, and was stable. As described above, compound (1-2) was easily synthesized using commercially available materials.
<化合物(1)の物性評価>
化合物(1-1)の吸収スペクトル(λmax in CH2Cl2)を測定し、大気中光電子分光法(AC-2)によるイオン化ポテンシャル(HOMOレベル)を測定した。これらの結果を、下記ペンタセンの結果と共に表1に示す。なお、ペンタセンの吸収スペクトルは、文献1「J.Am.Chem.Soc.,2007,129,2225.」より引用し、イオン化ポテンシャルは文献2「Jpn.J.Appl.Phys.2005,44,561.」より引用した。 <Evaluation of physical properties of compound (1)>
The absorption spectrum (λmax in CH 2 Cl 2 ) of the compound (1-1) was measured, and the ionization potential (HOMO level) by atmospheric photoelectron spectroscopy (AC-2) was measured. These results are shown in Table 1 together with the following pentacene results. The absorption spectrum of pentacene is cited fromReference 1 “J. Am. Chem. Soc., 2007, 129, 2225.” and the ionization potential is Reference 2 “Jpn. J. Appl. Phys. 2005, 44, 561”. Quoted from "."
化合物(1-1)の吸収スペクトル(λmax in CH2Cl2)を測定し、大気中光電子分光法(AC-2)によるイオン化ポテンシャル(HOMOレベル)を測定した。これらの結果を、下記ペンタセンの結果と共に表1に示す。なお、ペンタセンの吸収スペクトルは、文献1「J.Am.Chem.Soc.,2007,129,2225.」より引用し、イオン化ポテンシャルは文献2「Jpn.J.Appl.Phys.2005,44,561.」より引用した。 <Evaluation of physical properties of compound (1)>
The absorption spectrum (λmax in CH 2 Cl 2 ) of the compound (1-1) was measured, and the ionization potential (HOMO level) by atmospheric photoelectron spectroscopy (AC-2) was measured. These results are shown in Table 1 together with the following pentacene results. The absorption spectrum of pentacene is cited from
表1に示すように、化合物(1-1)は、ペンタセンよりもイオン化ポテンシャルが大きかった。これは、化合物(1-1)が、ペンタセンよりもHOMOレベルが低いことを示していた。
As shown in Table 1, the compound (1-1) had a larger ionization potential than pentacene. This indicated that the compound (1-1) had a lower HOMO level than pentacene.
一方、化合物(1-1)とペンタセンについて、DFT法(B3LYP6-31G*)による第一原理計算を行い、最高占有分子軌道(HOMO)、及び最低非占有分子軌道(LUMO)のレベルを算出した。結果を表2に示す。
On the other hand, for the compound (1-1) and pentacene, first-principles calculation was performed by the DFT method (B3LYP6-31G * ), and the levels of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) were calculated. . The results are shown in Table 2.
表2に示すように、第一原理計算の結果、化合物(1-1)はペンタセンよりもHOMOレベルが低く、大きなイオン化ポテンシャルを有すること、すなわち、化合物(1-1)はペンタセンよりも耐酸化性が高いことを示していた。
なお、化合物(1-1)のようなHOMOレベルであれば、例えば、ソース電極及びゲート電極が金(仕事関数は約5eV)である電界効果トランジスタの有機半導体層として使用すれば、ホール(キャリヤ)注入が容易になると予想された。
上記のように、表1に示す測定結果と、表2に示す第一原理計算の結果とは、よく一致していた。 As shown in Table 2, as a result of the first principle calculation, the compound (1-1) has a lower HOMO level than pentacene and has a large ionization potential, that is, the compound (1-1) is more resistant to oxidation than pentacene. It showed that the nature is high.
In the case of the HOMO level such as the compound (1-1), for example, when used as an organic semiconductor layer of a field effect transistor in which the source electrode and the gate electrode are gold (work function is about 5 eV), holes (carriers) ) It was expected that injection would be easier.
As described above, the measurement results shown in Table 1 and the results of the first principle calculation shown in Table 2 were in good agreement.
なお、化合物(1-1)のようなHOMOレベルであれば、例えば、ソース電極及びゲート電極が金(仕事関数は約5eV)である電界効果トランジスタの有機半導体層として使用すれば、ホール(キャリヤ)注入が容易になると予想された。
上記のように、表1に示す測定結果と、表2に示す第一原理計算の結果とは、よく一致していた。 As shown in Table 2, as a result of the first principle calculation, the compound (1-1) has a lower HOMO level than pentacene and has a large ionization potential, that is, the compound (1-1) is more resistant to oxidation than pentacene. It showed that the nature is high.
In the case of the HOMO level such as the compound (1-1), for example, when used as an organic semiconductor layer of a field effect transistor in which the source electrode and the gate electrode are gold (work function is about 5 eV), holes (carriers) ) It was expected that injection would be easier.
As described above, the measurement results shown in Table 1 and the results of the first principle calculation shown in Table 2 were in good agreement.
次に、化合物(1-1)の空気酸化に対する安定性を評価した。
すなわち、空気飽和の状態とした塩化メチレンを溶媒として化合物(1-1)の溶液を調製し、暗所で静置した。そして、溶液調製直後から静置一ヶ月後まで、紫外-可視(UV-Vis)分光の吸収スペクトルを測定することによって、化合物(1-1)の溶液について、吸収強度の経時変化を追跡した。この時、上記の文献1を参照した。溶液調製直後と暗所静置一ヶ月後における吸収強度の測定結果を図17に示す。
図17に示すように、化合物(1-1)の溶液の吸収強度は、調製直後と、暗所静置一ヶ月後とでは、違いが見られなかった。なお、ペンタセンについては、このような条件下で24時間静置すると、その溶液の吸収強度がほとんどゼロになることが文献1で報告されている。したがって、化合物(1-1)は、空気酸化に対する安定性がペンタセンよりも高いことが確認できた。 Next, the stability of the compound (1-1) against air oxidation was evaluated.
That is, a solution of compound (1-1) was prepared using methylene chloride in an air-saturated state as a solvent and allowed to stand in the dark. Then, from the time immediately after preparation of the solution to one month after standing, the absorption spectrum of ultraviolet-visible (UV-Vis) spectroscopy was measured, and the change in absorption intensity with time was traced for the solution of compound (1-1). At this time,Reference 1 described above was referred to. FIG. 17 shows the measurement results of the absorption intensity immediately after preparation of the solution and after one month of standing in the dark.
As shown in FIG. 17, there was no difference in the absorption intensity of the solution of the compound (1-1) between immediately after preparation and after one month of standing in the dark. In addition, it is reported byliterature 1 that the absorption intensity | strength of the solution will become almost zero about pentacene when it is left still for 24 hours on such conditions. Therefore, it was confirmed that the compound (1-1) had higher stability against air oxidation than pentacene.
すなわち、空気飽和の状態とした塩化メチレンを溶媒として化合物(1-1)の溶液を調製し、暗所で静置した。そして、溶液調製直後から静置一ヶ月後まで、紫外-可視(UV-Vis)分光の吸収スペクトルを測定することによって、化合物(1-1)の溶液について、吸収強度の経時変化を追跡した。この時、上記の文献1を参照した。溶液調製直後と暗所静置一ヶ月後における吸収強度の測定結果を図17に示す。
図17に示すように、化合物(1-1)の溶液の吸収強度は、調製直後と、暗所静置一ヶ月後とでは、違いが見られなかった。なお、ペンタセンについては、このような条件下で24時間静置すると、その溶液の吸収強度がほとんどゼロになることが文献1で報告されている。したがって、化合物(1-1)は、空気酸化に対する安定性がペンタセンよりも高いことが確認できた。 Next, the stability of the compound (1-1) against air oxidation was evaluated.
That is, a solution of compound (1-1) was prepared using methylene chloride in an air-saturated state as a solvent and allowed to stand in the dark. Then, from the time immediately after preparation of the solution to one month after standing, the absorption spectrum of ultraviolet-visible (UV-Vis) spectroscopy was measured, and the change in absorption intensity with time was traced for the solution of compound (1-1). At this time,
As shown in FIG. 17, there was no difference in the absorption intensity of the solution of the compound (1-1) between immediately after preparation and after one month of standing in the dark. In addition, it is reported by
以上のように、化合物(1-1)は、代表的な有機半導体材料であるペンタセンよりも耐酸化性が高く、大気雰囲気下でも安定であることが確認できた。化合物(1-1)を半導体材料として用いることにより、電気的特性が安定な半導体デバイスを提供できる。
As described above, it was confirmed that the compound (1-1) had higher oxidation resistance than pentacene, which is a typical organic semiconductor material, and was stable even in the air atmosphere. By using the compound (1-1) as a semiconductor material, a semiconductor device having stable electrical characteristics can be provided.
<電界効果トランジスタの製造>
[実施例3]
図8A~8Eを参照して説明した製造方法により、図1に示す電界効果トランジスタ1Aを製造した。より具体的には、以下の通りである。
基板11としては、ガラス基板(コーニング社製、Eagle2000、厚さ:0.5mm)を用いた。
ゲート電極12の材質は、アルミニウム(Al)に対して10%のシリコン(Si)を添加したAlSi合金とした。そして、このAlSi合金からなる金属ターゲットを用いたスパッタリング法により、基板11上に、AlSi合金からなる膜厚40nmの金属膜を形成した。この金属膜のパターンニングは、フォトリソグラフィー及びエッチングで行った。
ゲート絶縁膜13の材質は、酸化シリコン(SiO2)とし、スパッタリング法により、膜厚300nmの酸化シリコン膜を形成した。
フォトレジスト膜90は、膜厚を4μmとし、リフトオフプロセス用のネガ型フォトレジスト(日本ゼオン社製、ZPN1150)を用いて、スピンコート法により成膜した後、フォトリソグラフィー法で形成した。
真空蒸着法によって、膜厚2nmのクロム(Cr)からなる密着層、及び膜厚40nmの金(Au)からなる金属膜を順次成膜し、アセトン等の有機溶媒中に基板11を浸漬するリフトオフ法により、フォトレジスト膜7及びその上に形成された不要なAu膜/Cr膜を除去して、ソース電極14及びドレイン電極15を形成した。この時、ソース電極14及びドレイン電極15間の距離(チャネル長)は20μmであり、対向する電極の長さ(チャネル幅)は1000μmであった。
有機半導体層16は、実施例1で製造した化合物(1-1)を含む有機半導体層用組成物を用いて形成した。この有機半導体層用組成物については、クロロホルムを溶媒として、化合物(1-1)の濃度が0.5質量%となるように調製した。この有機半導体層用組成物をスピンコート法(回転数1500rpm)で所定の箇所に載せ、飽和クロロホルム雰囲気下で緩やかに乾燥させるキャスト法で、膜厚約40nmの有機半導体層16を形成した。 <Manufacture of field effect transistors>
[Example 3]
Thefield effect transistor 1A shown in FIG. 1 was manufactured by the manufacturing method described with reference to FIGS. 8A to 8E. More specifically, it is as follows.
As thesubstrate 11, a glass substrate (Corning, Eagle 2000, thickness: 0.5 mm) was used.
The material of thegate electrode 12 was an AlSi alloy in which 10% silicon (Si) was added to aluminum (Al). Then, a 40 nm thick metal film made of an AlSi alloy was formed on the substrate 11 by sputtering using a metal target made of this AlSi alloy. The patterning of the metal film was performed by photolithography and etching.
The material of thegate insulating film 13 was silicon oxide (SiO 2 ), and a silicon oxide film having a thickness of 300 nm was formed by a sputtering method.
Thephotoresist film 90 was formed by spin coating using a negative photoresist (ZPN 1150, manufactured by Nippon Zeon Co., Ltd.) for lift-off process, and then by photolithography.
A lift-off method in which an adhesion layer made of chromium (Cr) with a thickness of 2 nm and a metal film made of gold (Au) with a thickness of 40 nm are sequentially formed by vacuum deposition, and thesubstrate 11 is immersed in an organic solvent such as acetone. The photoresist film 7 and unnecessary Au film / Cr film formed thereon were removed by the method to form the source electrode 14 and the drain electrode 15. At this time, the distance (channel length) between the source electrode 14 and the drain electrode 15 was 20 μm, and the length of the opposing electrode (channel width) was 1000 μm.
Theorganic semiconductor layer 16 was formed using the composition for organic semiconductor layers containing the compound (1-1) produced in Example 1. This organic semiconductor layer composition was prepared using chloroform as a solvent so that the concentration of the compound (1-1) was 0.5 mass%. The organic semiconductor layer 16 having a film thickness of about 40 nm was formed by a cast method in which the composition for an organic semiconductor layer was placed on a predetermined portion by a spin coating method (rotation number: 1500 rpm) and gently dried in a saturated chloroform atmosphere.
[実施例3]
図8A~8Eを参照して説明した製造方法により、図1に示す電界効果トランジスタ1Aを製造した。より具体的には、以下の通りである。
基板11としては、ガラス基板(コーニング社製、Eagle2000、厚さ:0.5mm)を用いた。
ゲート電極12の材質は、アルミニウム(Al)に対して10%のシリコン(Si)を添加したAlSi合金とした。そして、このAlSi合金からなる金属ターゲットを用いたスパッタリング法により、基板11上に、AlSi合金からなる膜厚40nmの金属膜を形成した。この金属膜のパターンニングは、フォトリソグラフィー及びエッチングで行った。
ゲート絶縁膜13の材質は、酸化シリコン(SiO2)とし、スパッタリング法により、膜厚300nmの酸化シリコン膜を形成した。
フォトレジスト膜90は、膜厚を4μmとし、リフトオフプロセス用のネガ型フォトレジスト(日本ゼオン社製、ZPN1150)を用いて、スピンコート法により成膜した後、フォトリソグラフィー法で形成した。
真空蒸着法によって、膜厚2nmのクロム(Cr)からなる密着層、及び膜厚40nmの金(Au)からなる金属膜を順次成膜し、アセトン等の有機溶媒中に基板11を浸漬するリフトオフ法により、フォトレジスト膜7及びその上に形成された不要なAu膜/Cr膜を除去して、ソース電極14及びドレイン電極15を形成した。この時、ソース電極14及びドレイン電極15間の距離(チャネル長)は20μmであり、対向する電極の長さ(チャネル幅)は1000μmであった。
有機半導体層16は、実施例1で製造した化合物(1-1)を含む有機半導体層用組成物を用いて形成した。この有機半導体層用組成物については、クロロホルムを溶媒として、化合物(1-1)の濃度が0.5質量%となるように調製した。この有機半導体層用組成物をスピンコート法(回転数1500rpm)で所定の箇所に載せ、飽和クロロホルム雰囲気下で緩やかに乾燥させるキャスト法で、膜厚約40nmの有機半導体層16を形成した。 <Manufacture of field effect transistors>
[Example 3]
The
As the
The material of the
The material of the
The
A lift-off method in which an adhesion layer made of chromium (Cr) with a thickness of 2 nm and a metal film made of gold (Au) with a thickness of 40 nm are sequentially formed by vacuum deposition, and the
The
上記工程を経て製造した電界効果トランジスタ1Aについて、ゲート電圧(Vg)-ドレイン電流(Id)特性を測定した。結果を図18に示す。図18中、「ABS(Id)[A]」はドレイン電流の絶対値(グラフの左側縦軸参照)を、「SQRT(Id)」はドレイン電流の平方根(グラフの右側縦軸参照)をそれぞれ示す。
図18に示すように、得られた電界効果トランジスタは良好な特性を示した。この時の電界効果移動度は、3.1×10-6cm2/Vsであった。また、このトランジスタは大気雰囲気下でも安定に動作し、大気中に置いてから1ヶ月後の測定においても、著しい特性の低下は見られなかった。 With respect to thefield effect transistor 1A manufactured through the above steps, the gate voltage (Vg) -drain current (Id) characteristics were measured. The results are shown in FIG. In FIG. 18, “ABS (Id) [A]” is the absolute value of the drain current (see the vertical axis on the left side of the graph), and “SQRT (Id)” is the square root of the drain current (see the vertical axis on the right side of the graph). Show.
As shown in FIG. 18, the obtained field effect transistor showed good characteristics. The field effect mobility at this time was 3.1 × 10 −6 cm 2 / Vs. Further, this transistor operated stably even in an air atmosphere, and no significant deterioration in the characteristics was observed even in the measurement one month after being placed in the air.
図18に示すように、得られた電界効果トランジスタは良好な特性を示した。この時の電界効果移動度は、3.1×10-6cm2/Vsであった。また、このトランジスタは大気雰囲気下でも安定に動作し、大気中に置いてから1ヶ月後の測定においても、著しい特性の低下は見られなかった。 With respect to the
As shown in FIG. 18, the obtained field effect transistor showed good characteristics. The field effect mobility at this time was 3.1 × 10 −6 cm 2 / Vs. Further, this transistor operated stably even in an air atmosphere, and no significant deterioration in the characteristics was observed even in the measurement one month after being placed in the air.
[実施例4]
図9A~9Fを参照して説明した製造方法により、図3に示す電界効果トランジスタ1Bを製造した。より具体的には、以下の通りである。
基板11としては、ガラス基板(コーニング社製、Eagle2000、厚さ:0.5mm)を用いた。
ゲート電極12の材質は、アルミニウム(Al)に対して10%のシリコン(Si)を添加したAlSi合金とした。そして、このAlSi合金からなる金属ターゲットを用いたスパッタリング法により、基板11上に、AlSi合金からなる膜厚40nmの金属膜を形成した。この金属膜のパターンニングは、フォトリソグラフィー及びエッチングで行った。
ゲート絶縁膜13の材質は、酸化シリコン(SiO2)とし、スパッタリング法により、膜厚300nmの酸化シリコン膜を形成した。
フォトレジスト膜90は、膜厚を4μmとし、リフトオフプロセス用のネガ型フォトレジスト(日本ゼオン社製、ZPN1150)を用いて、スピンコート法により成膜した後、フォトリソグラフィー法で形成した。
真空蒸着法によって、膜厚2nmのクロム(Cr)からなる密着層、及び膜厚40nmの金(Au)からなる金属膜を順次成膜し、アセトン等の有機溶媒中に基板11を浸漬するリフトオフ法により、フォトレジスト膜7及びその上に形成された不要なAu膜/Cr膜を除去して、ソース電極14及びドレイン電極15を形成した。この時、ソース電極14及びドレイン電極15間の距離(チャネル長)は20μmであり、対向する電極の長さ(チャネル幅)は1000μmであった。
表面修飾層18は、ソース電極14及びドレイン電極15を形成させた基板11を、2-アミノエタンチオールのエタノール溶液(10mg/mL)に5時間浸漬し、次いで、イソプロピルアルコールで洗浄して、乾燥窒素気流下で乾燥させることにより形成した。
表面修飾層18は、親水性の膜である。
有機半導体層16は、実施例1で製造した化合物(1-1)を含む有機半導体層用組成物を用いて形成した。この有機半導体層用組成物については、トルエンを溶媒として、化合物(1-1)の濃度が0.5質量%となるように調製した。ディスペンサを用いて、この有機半導体層用組成物を所定の箇所に載せ、飽和クロロホルム雰囲気下で緩やかに乾燥させるキャスト法で、膜厚約40nmの有機半導体層16を形成した。 [Example 4]
Thefield effect transistor 1B shown in FIG. 3 was manufactured by the manufacturing method described with reference to FIGS. 9A to 9F. More specifically, it is as follows.
As thesubstrate 11, a glass substrate (Corning, Eagle 2000, thickness: 0.5 mm) was used.
The material of thegate electrode 12 was an AlSi alloy in which 10% silicon (Si) was added to aluminum (Al). Then, a 40 nm thick metal film made of an AlSi alloy was formed on the substrate 11 by sputtering using a metal target made of this AlSi alloy. The patterning of the metal film was performed by photolithography and etching.
The material of thegate insulating film 13 was silicon oxide (SiO 2 ), and a silicon oxide film having a thickness of 300 nm was formed by a sputtering method.
Thephotoresist film 90 was formed by spin coating using a negative photoresist (ZPN 1150, manufactured by Nippon Zeon Co., Ltd.) for lift-off process, and then by photolithography.
A lift-off method in which an adhesion layer made of chromium (Cr) with a thickness of 2 nm and a metal film made of gold (Au) with a thickness of 40 nm are sequentially formed by vacuum deposition, and thesubstrate 11 is immersed in an organic solvent such as acetone. The photoresist film 7 and unnecessary Au film / Cr film formed thereon were removed by the method to form the source electrode 14 and the drain electrode 15. At this time, the distance (channel length) between the source electrode 14 and the drain electrode 15 was 20 μm, and the length of the opposing electrode (channel width) was 1000 μm.
Thesurface modification layer 18 is obtained by immersing the substrate 11 on which the source electrode 14 and the drain electrode 15 are formed in an ethanol solution of 2-aminoethanethiol (10 mg / mL) for 5 hours, and then washing with isopropyl alcohol and drying. It was formed by drying under a nitrogen stream.
Thesurface modification layer 18 is a hydrophilic film.
Theorganic semiconductor layer 16 was formed using the composition for organic semiconductor layers containing the compound (1-1) produced in Example 1. This organic semiconductor layer composition was prepared using toluene as a solvent so that the concentration of the compound (1-1) was 0.5% by mass. The organic semiconductor layer 16 having a film thickness of about 40 nm was formed by a casting method in which the composition for an organic semiconductor layer was placed on a predetermined portion using a dispenser and gently dried in a saturated chloroform atmosphere.
図9A~9Fを参照して説明した製造方法により、図3に示す電界効果トランジスタ1Bを製造した。より具体的には、以下の通りである。
基板11としては、ガラス基板(コーニング社製、Eagle2000、厚さ:0.5mm)を用いた。
ゲート電極12の材質は、アルミニウム(Al)に対して10%のシリコン(Si)を添加したAlSi合金とした。そして、このAlSi合金からなる金属ターゲットを用いたスパッタリング法により、基板11上に、AlSi合金からなる膜厚40nmの金属膜を形成した。この金属膜のパターンニングは、フォトリソグラフィー及びエッチングで行った。
ゲート絶縁膜13の材質は、酸化シリコン(SiO2)とし、スパッタリング法により、膜厚300nmの酸化シリコン膜を形成した。
フォトレジスト膜90は、膜厚を4μmとし、リフトオフプロセス用のネガ型フォトレジスト(日本ゼオン社製、ZPN1150)を用いて、スピンコート法により成膜した後、フォトリソグラフィー法で形成した。
真空蒸着法によって、膜厚2nmのクロム(Cr)からなる密着層、及び膜厚40nmの金(Au)からなる金属膜を順次成膜し、アセトン等の有機溶媒中に基板11を浸漬するリフトオフ法により、フォトレジスト膜7及びその上に形成された不要なAu膜/Cr膜を除去して、ソース電極14及びドレイン電極15を形成した。この時、ソース電極14及びドレイン電極15間の距離(チャネル長)は20μmであり、対向する電極の長さ(チャネル幅)は1000μmであった。
表面修飾層18は、ソース電極14及びドレイン電極15を形成させた基板11を、2-アミノエタンチオールのエタノール溶液(10mg/mL)に5時間浸漬し、次いで、イソプロピルアルコールで洗浄して、乾燥窒素気流下で乾燥させることにより形成した。
表面修飾層18は、親水性の膜である。
有機半導体層16は、実施例1で製造した化合物(1-1)を含む有機半導体層用組成物を用いて形成した。この有機半導体層用組成物については、トルエンを溶媒として、化合物(1-1)の濃度が0.5質量%となるように調製した。ディスペンサを用いて、この有機半導体層用組成物を所定の箇所に載せ、飽和クロロホルム雰囲気下で緩やかに乾燥させるキャスト法で、膜厚約40nmの有機半導体層16を形成した。 [Example 4]
The
As the
The material of the
The material of the
The
A lift-off method in which an adhesion layer made of chromium (Cr) with a thickness of 2 nm and a metal film made of gold (Au) with a thickness of 40 nm are sequentially formed by vacuum deposition, and the
The
The
The
上記工程を経て製造した電界効果トランジスタ1Bは、実施例3のトランジスタと同様に、大気雰囲気下でも安定に動作し、大気中に置いてから1ヶ月後においても、著しい特性の低下は見られなかった。
The field effect transistor 1B manufactured through the above steps operates stably even in the atmosphere as in the transistor of Example 3, and no significant deterioration in characteristics is observed even after one month after being placed in the atmosphere. It was.
[実施例5]
図10を参照して説明した製造方法により、図4に示す電界効果トランジスタ1Cを製造した。より具体的には、以下の通りである。
基板11としては、ガラス基板(コーニング社製、Eagle2000、厚さ:0.5mm)を用いた。
ゲート電極12の材質は、アルミニウム(Al)に対して10%のシリコン(Si)を添加したAlSi合金とした。そして、このAlSi合金からなる金属ターゲットを用いたスパッタリング法により、基板11上に、AlSi合金からなる膜厚40nmの金属膜を形成した。この金属膜のパターンニングは、フォトリソグラフィー及びエッチングで行った。
ゲート絶縁膜13の材質は、酸化シリコン(SiO2)とし、スパッタリング法により、膜厚300nmの酸化シリコン膜を形成した。
有機半導体層16は、実施例1で製造した化合物(1-1)を含む有機半導体層用組成物を用いて形成した。この有機半導体層用組成物については、トルエンを溶媒として、化合物(1-1)の濃度が0.5質量%となるように調製した。この有機半導体層用組成物をスピンコート法(回転数1500rpm)で所定の箇所に載せ、膜厚約40nmの有機半導体層16を形成した。
ソース電極14及びドレイン電極15の材質は金(Au)とし、金属マスクを介して真空蒸着法により、膜厚40nmのAu膜を形成した。この時、ソース電極14及びドレイン電極15間の距離(チャネル長)は50μmであり、対向する電極の長さ(チャネル幅)は1000μmであった。 [Example 5]
Thefield effect transistor 1C shown in FIG. 4 was manufactured by the manufacturing method described with reference to FIG. More specifically, it is as follows.
As thesubstrate 11, a glass substrate (Corning, Eagle 2000, thickness: 0.5 mm) was used.
The material of thegate electrode 12 was an AlSi alloy in which 10% silicon (Si) was added to aluminum (Al). Then, a 40 nm thick metal film made of an AlSi alloy was formed on the substrate 11 by sputtering using a metal target made of this AlSi alloy. The patterning of the metal film was performed by photolithography and etching.
The material of thegate insulating film 13 was silicon oxide (SiO 2 ), and a silicon oxide film having a thickness of 300 nm was formed by a sputtering method.
Theorganic semiconductor layer 16 was formed using the composition for organic semiconductor layers containing the compound (1-1) produced in Example 1. This organic semiconductor layer composition was prepared using toluene as a solvent so that the concentration of the compound (1-1) was 0.5% by mass. This composition for organic semiconductor layers was placed on a predetermined location by spin coating (rotation speed: 1500 rpm) to form an organic semiconductor layer 16 having a film thickness of about 40 nm.
Thesource electrode 14 and the drain electrode 15 were made of gold (Au), and an Au film having a film thickness of 40 nm was formed by a vacuum deposition method through a metal mask. At this time, the distance (channel length) between the source electrode 14 and the drain electrode 15 was 50 μm, and the length of the opposing electrode (channel width) was 1000 μm.
図10を参照して説明した製造方法により、図4に示す電界効果トランジスタ1Cを製造した。より具体的には、以下の通りである。
基板11としては、ガラス基板(コーニング社製、Eagle2000、厚さ:0.5mm)を用いた。
ゲート電極12の材質は、アルミニウム(Al)に対して10%のシリコン(Si)を添加したAlSi合金とした。そして、このAlSi合金からなる金属ターゲットを用いたスパッタリング法により、基板11上に、AlSi合金からなる膜厚40nmの金属膜を形成した。この金属膜のパターンニングは、フォトリソグラフィー及びエッチングで行った。
ゲート絶縁膜13の材質は、酸化シリコン(SiO2)とし、スパッタリング法により、膜厚300nmの酸化シリコン膜を形成した。
有機半導体層16は、実施例1で製造した化合物(1-1)を含む有機半導体層用組成物を用いて形成した。この有機半導体層用組成物については、トルエンを溶媒として、化合物(1-1)の濃度が0.5質量%となるように調製した。この有機半導体層用組成物をスピンコート法(回転数1500rpm)で所定の箇所に載せ、膜厚約40nmの有機半導体層16を形成した。
ソース電極14及びドレイン電極15の材質は金(Au)とし、金属マスクを介して真空蒸着法により、膜厚40nmのAu膜を形成した。この時、ソース電極14及びドレイン電極15間の距離(チャネル長)は50μmであり、対向する電極の長さ(チャネル幅)は1000μmであった。 [Example 5]
The
As the
The material of the
The material of the
The
The
上記工程を経て製造した電界効果トランジスタ1Cは、実施例3のトランジスタと同様に、大気雰囲気下でも安定に動作し、大気中に置いてから1ヶ月後においても、著しい特性の低下は見られなかった。
The field effect transistor 1C manufactured through the above steps operates stably in an air atmosphere as in the transistor of Example 3, and no significant deterioration in characteristics is observed even after one month after being placed in the air. It was.
[実施例6]
図11A~11Dを参照して説明した製造方法により、図5に示す電界効果トランジスタ1Dを製造した。より具体的には、以下の通りである。
基板11としては、ガラス基板(コーニング社製、Eagle2000、厚さ:0.5mm)を用いた。
ゲート電極12の材質は、アルミニウム(Al)に対して10%のシリコン(Si)を添加したAlSi合金とした。そして、このAlSi合金からなる金属ターゲットを用いたスパッタリング法により、基板11上に、AlSi合金からなる膜厚40nmの金属膜を形成した。この金属膜のパターンニングは、フォトリソグラフィー及びエッチングで行った。
親水性の膜13’は、膜厚100nmの親水性ポリマー層であり、スピンコート法により、親水性ポリマーであるポリビニルアルコールの濃度10質量%の水溶液を用いて形成した。
有機半導体層16は、実施例1で製造した化合物(1-1)を含む有機半導体層用組成物を用いて形成した。この有機半導体層用組成物については、トルエンを溶媒として、化合物(1-1)の濃度が0.5質量%となるように調製した。この有機半導体層用組成物をスピンコート法(回転数1500rpm)で所定の箇所に載せ、膜厚約40nmの有機半導体層16を形成した。
ソース電極14及びドレイン電極15の材質は金(Au)とし、金属マスクを介して真空蒸着法により、膜厚40nmのAu膜を形成した。この時、ソース電極14及びドレイン電極15間の距離(チャネル長)は50μmであり、対向する電極の長さ(チャネル幅)は1000μmであった。 [Example 6]
Thefield effect transistor 1D shown in FIG. 5 was manufactured by the manufacturing method described with reference to FIGS. 11A to 11D. More specifically, it is as follows.
As thesubstrate 11, a glass substrate (Corning, Eagle 2000, thickness: 0.5 mm) was used.
The material of thegate electrode 12 was an AlSi alloy in which 10% silicon (Si) was added to aluminum (Al). Then, a 40 nm thick metal film made of an AlSi alloy was formed on the substrate 11 by sputtering using a metal target made of this AlSi alloy. The patterning of the metal film was performed by photolithography and etching.
Thehydrophilic film 13 ′ is a hydrophilic polymer layer having a thickness of 100 nm, and was formed by spin coating using an aqueous solution having a concentration of 10% by mass of polyvinyl alcohol, which is a hydrophilic polymer.
Theorganic semiconductor layer 16 was formed using the composition for organic semiconductor layers containing the compound (1-1) produced in Example 1. This organic semiconductor layer composition was prepared using toluene as a solvent so that the concentration of the compound (1-1) was 0.5% by mass. This composition for organic semiconductor layers was placed on a predetermined location by spin coating (rotation speed: 1500 rpm) to form an organic semiconductor layer 16 having a film thickness of about 40 nm.
Thesource electrode 14 and the drain electrode 15 were made of gold (Au), and an Au film having a film thickness of 40 nm was formed by a vacuum deposition method through a metal mask. At this time, the distance (channel length) between the source electrode 14 and the drain electrode 15 was 50 μm, and the length of the opposing electrode (channel width) was 1000 μm.
図11A~11Dを参照して説明した製造方法により、図5に示す電界効果トランジスタ1Dを製造した。より具体的には、以下の通りである。
基板11としては、ガラス基板(コーニング社製、Eagle2000、厚さ:0.5mm)を用いた。
ゲート電極12の材質は、アルミニウム(Al)に対して10%のシリコン(Si)を添加したAlSi合金とした。そして、このAlSi合金からなる金属ターゲットを用いたスパッタリング法により、基板11上に、AlSi合金からなる膜厚40nmの金属膜を形成した。この金属膜のパターンニングは、フォトリソグラフィー及びエッチングで行った。
親水性の膜13’は、膜厚100nmの親水性ポリマー層であり、スピンコート法により、親水性ポリマーであるポリビニルアルコールの濃度10質量%の水溶液を用いて形成した。
有機半導体層16は、実施例1で製造した化合物(1-1)を含む有機半導体層用組成物を用いて形成した。この有機半導体層用組成物については、トルエンを溶媒として、化合物(1-1)の濃度が0.5質量%となるように調製した。この有機半導体層用組成物をスピンコート法(回転数1500rpm)で所定の箇所に載せ、膜厚約40nmの有機半導体層16を形成した。
ソース電極14及びドレイン電極15の材質は金(Au)とし、金属マスクを介して真空蒸着法により、膜厚40nmのAu膜を形成した。この時、ソース電極14及びドレイン電極15間の距離(チャネル長)は50μmであり、対向する電極の長さ(チャネル幅)は1000μmであった。 [Example 6]
The
As the
The material of the
The
The
The
上記工程を経て製造した電界効果トランジスタ1Dは、実施例3のトランジスタと同様に、大気雰囲気下でも安定に動作し、大気中に置いてから1ヶ月後においても、著しい特性の低下は見られなかった。
The field effect transistor 1D manufactured through the above steps operates stably even in the air atmosphere as in the transistor of Example 3, and no significant deterioration in the characteristics is observed even after one month after being placed in the air. It was.
[実施例7]
有機半導体層16を、化合物(1-1)を含む有機半導体層用組成物を用いてスピンコート法により形成する代わりに、化合物(1-1)を蒸着させる蒸着法により形成したこと以外は、実施例3と同様の方法で電界効果トランジスタ1Aを製造した。
得られた電界効果トランジスタ1Aは、実施例3のトランジスタと同様に、大気雰囲気下でも安定に動作し、大気中に置いてから1ヶ月後においても、著しい特性の低下は見られなかった。 [Example 7]
Theorganic semiconductor layer 16 was formed by an evaporation method in which the compound (1-1) was evaporated instead of forming the organic semiconductor layer 16 by a spin coating method using the composition for an organic semiconductor layer containing the compound (1-1). A field effect transistor 1A was produced in the same manner as in Example 3.
The obtainedfield effect transistor 1A, like the transistor of Example 3, operated stably even in the air atmosphere, and no significant deterioration in the characteristics was observed even after one month after being placed in the air.
有機半導体層16を、化合物(1-1)を含む有機半導体層用組成物を用いてスピンコート法により形成する代わりに、化合物(1-1)を蒸着させる蒸着法により形成したこと以外は、実施例3と同様の方法で電界効果トランジスタ1Aを製造した。
得られた電界効果トランジスタ1Aは、実施例3のトランジスタと同様に、大気雰囲気下でも安定に動作し、大気中に置いてから1ヶ月後においても、著しい特性の低下は見られなかった。 [Example 7]
The
The obtained
[実施例8]
図8A~8Eを参照して説明した製造方法により、図2に示す電界効果トランジスタ1A’を製造した。すなわち、実施例3と同様の方法で有機半導体層16を形成した後、さらに、ラボコーターPDS2010(商品名、日本パリレン社製)を用いて、保護膜17として膜厚500nmのパリレンC膜を有機半導体層16上に形成することで、電界効果トランジスタ1A’を製造した。
得られた電界効果トランジスタ1A’は、実施例3のトランジスタと同様に、大気雰囲気下でも安定に動作し、大気中に置いてから1ヶ月後においても、著しい特性の低下は見られなかった。 [Example 8]
Thefield effect transistor 1A ′ shown in FIG. 2 was manufactured by the manufacturing method described with reference to FIGS. 8A to 8E. That is, after forming the organic semiconductor layer 16 in the same manner as in Example 3, a Parylene C film having a film thickness of 500 nm is further formed as the protective film 17 by using a lab coater PDS2010 (trade name, manufactured by Japan Parylene). Forming on the layer 16 produced the field effect transistor 1A ′.
The obtainedfield effect transistor 1A ′, like the transistor of Example 3, operated stably even in the air atmosphere, and no significant deterioration in the characteristics was observed even after one month after being placed in the air.
図8A~8Eを参照して説明した製造方法により、図2に示す電界効果トランジスタ1A’を製造した。すなわち、実施例3と同様の方法で有機半導体層16を形成した後、さらに、ラボコーターPDS2010(商品名、日本パリレン社製)を用いて、保護膜17として膜厚500nmのパリレンC膜を有機半導体層16上に形成することで、電界効果トランジスタ1A’を製造した。
得られた電界効果トランジスタ1A’は、実施例3のトランジスタと同様に、大気雰囲気下でも安定に動作し、大気中に置いてから1ヶ月後においても、著しい特性の低下は見られなかった。 [Example 8]
The
The obtained
<太陽電池の製造>
[実施例9]
図14を参照して説明した製造方法により、図12に示す太陽電池2Aを製造した。より具体的には、以下の通りである。
アノード電極22としては、膜厚150nmのITO膜を、スパッタリング法により形成した。
p型半導体層24は、実施例1で製造した化合物(1-1)を含むp型半導体層用組成物を用いて形成した。このp型半導体層用組成物については、クロロホルムを溶媒として、化合物(1-1)の濃度が0.5質量%となるように調製した。このp型半導体層用組成物をスピンコート法(回転数1500rpm)でアノード電極22上に載せ、膜厚約40nmのp型半導体層24を形成した。
n型半導体層25としては、膜厚50nmのパーフルオロフタロシアニンからなる膜を、真空蒸着法により形成した。
カソード電極23としては、膜厚100nmのAl膜を、真空蒸着法により形成した。
得られた太陽電池2Aは、大気雰囲気下でも安定に動作し、大気中に置いてから1ヶ月後においても、著しい特性の低下は見られなかった。 <Manufacture of solar cells>
[Example 9]
Thesolar cell 2A shown in FIG. 12 was manufactured by the manufacturing method described with reference to FIG. More specifically, it is as follows.
As theanode electrode 22, an ITO film having a thickness of 150 nm was formed by a sputtering method.
The p-type semiconductor layer 24 was formed using the p-type semiconductor layer composition containing the compound (1-1) produced in Example 1. This p-type semiconductor layer composition was prepared using chloroform as a solvent so that the concentration of the compound (1-1) was 0.5% by mass. This p-type semiconductor layer composition was placed on the anode electrode 22 by spin coating (rotation speed: 1500 rpm) to form a p-type semiconductor layer 24 having a thickness of about 40 nm.
As the n-type semiconductor layer 25, a film made of perfluorophthalocyanine having a film thickness of 50 nm was formed by a vacuum deposition method.
As thecathode electrode 23, an Al film having a thickness of 100 nm was formed by a vacuum deposition method.
The obtainedsolar cell 2A operated stably even in an air atmosphere, and no significant deterioration in the characteristics was observed even after one month after being placed in the air.
[実施例9]
図14を参照して説明した製造方法により、図12に示す太陽電池2Aを製造した。より具体的には、以下の通りである。
アノード電極22としては、膜厚150nmのITO膜を、スパッタリング法により形成した。
p型半導体層24は、実施例1で製造した化合物(1-1)を含むp型半導体層用組成物を用いて形成した。このp型半導体層用組成物については、クロロホルムを溶媒として、化合物(1-1)の濃度が0.5質量%となるように調製した。このp型半導体層用組成物をスピンコート法(回転数1500rpm)でアノード電極22上に載せ、膜厚約40nmのp型半導体層24を形成した。
n型半導体層25としては、膜厚50nmのパーフルオロフタロシアニンからなる膜を、真空蒸着法により形成した。
カソード電極23としては、膜厚100nmのAl膜を、真空蒸着法により形成した。
得られた太陽電池2Aは、大気雰囲気下でも安定に動作し、大気中に置いてから1ヶ月後においても、著しい特性の低下は見られなかった。 <Manufacture of solar cells>
[Example 9]
The
As the
The p-
As the n-
As the
The obtained
<有機発光素子の製造>
[実施例10]
図16A~16Gを参照して説明した製造方法により、図15に示す有機発光素子3Aを製造した。より具体的には、以下の通りである。
アノード電極32としては、膜厚150nmのITO膜を、スパッタリング法により形成した。
キャリヤ注入層34aは、PEDOT/PSS(Bytron-P、バイエル社製)をスピンコート法(回転数1500rpm)でアノード電極32上に載せることで形成し、膜厚を約50nmとした。
キャリヤ輸送層34bは、実施例1で製造した化合物(1-1)を含むキャリヤ輸送層用組成物を用いて形成した。このキャリヤ輸送層用組成物については、クロロホルムを溶媒として、化合物(1-1)の濃度が0.5質量%となるように調製した。このキャリヤ輸送層用組成物をスピンコート法(回転数1500rpm)でキャリヤ注入層34a上に載せ、膜厚約40nmのキャリヤ輸送層34bを形成した。
発光層34cは、キャリヤ輸送層34b上に、4,4’-N,N’-ジカルバソル-ビフェニル(CBP)及びトリス(2-フェニルピリジン)イリジウム(Ir(PPY)3)を、それぞれ異なる蒸着源から共蒸着させる真空蒸着法によって形成した。形成した発光層34c中のIr(PPY)3の濃度は、6.5質量%であった。また、膜厚は40nmであった。
電子輸送層34dは、発光層34c上にトリス(8-ヒドロキシキノリンアルミニウム)(A1q3)を真空蒸着させることで形成し、膜厚を40nmとした。
電子注入層34eは、電子輸送層34d上に酸化リチウム(Li2O)を真空蒸着させることで形成し、膜厚を0.5nmとした。
カソード電極33は、電子注入層34e上にアルミニウム(Al)を真空蒸着させることで形成し、膜厚を150nmとした。
得られた有機発光素子3Aは、Ir(PPY)3からの発光が認められた。また、大気雰囲気下でも安定に動作し、大気中に置いてから1ヶ月後においても、著しい特性の低下は見られなかった。 <Manufacture of organic light emitting devices>
[Example 10]
The organiclight emitting device 3A shown in FIG. 15 was manufactured by the manufacturing method described with reference to FIGS. 16A to 16G. More specifically, it is as follows.
As theanode electrode 32, an ITO film having a film thickness of 150 nm was formed by a sputtering method.
Thecarrier injection layer 34a was formed by placing PEDOT / PSS (Bytron-P, manufactured by Bayer) on the anode electrode 32 by spin coating (rotation speed: 1500 rpm), and the film thickness was about 50 nm.
Thecarrier transport layer 34b was formed using the composition for the carrier transport layer containing the compound (1-1) produced in Example 1. This carrier transport layer composition was prepared using chloroform as a solvent so that the concentration of the compound (1-1) was 0.5% by mass. The carrier transport layer composition was placed on the carrier injection layer 34a by spin coating (rotation speed 1500 rpm) to form a carrier transport layer 34b having a thickness of about 40 nm.
The light-emittinglayer 34c is formed by using 4,4′-N, N′-dicarbazol-biphenyl (CBP) and tris (2-phenylpyridine) iridium (Ir (PPY) 3 ) on the carrier transport layer 34b. It was formed by a vacuum vapor deposition method in which co-evaporation was performed. The concentration of Ir (PPY) 3 in the formed light emitting layer 34c was 6.5% by mass. The film thickness was 40 nm.
Theelectron transport layer 34d was formed by vacuum-depositing tris (8-hydroxyquinoline aluminum) (A1q 3 ) on the light emitting layer 34c, and the film thickness was 40 nm.
Theelectron injection layer 34e was formed by vacuum-depositing lithium oxide (Li 2 O) on the electron transport layer 34d, and the film thickness was 0.5 nm.
Thecathode electrode 33 was formed by vacuum-depositing aluminum (Al) on the electron injection layer 34e, and the film thickness was 150 nm.
In the obtained organiclight emitting device 3A, light emission from Ir (PPY) 3 was observed. Further, it stably operated even in an air atmosphere, and no significant deterioration in the characteristics was observed even after one month after being placed in the air.
[実施例10]
図16A~16Gを参照して説明した製造方法により、図15に示す有機発光素子3Aを製造した。より具体的には、以下の通りである。
アノード電極32としては、膜厚150nmのITO膜を、スパッタリング法により形成した。
キャリヤ注入層34aは、PEDOT/PSS(Bytron-P、バイエル社製)をスピンコート法(回転数1500rpm)でアノード電極32上に載せることで形成し、膜厚を約50nmとした。
キャリヤ輸送層34bは、実施例1で製造した化合物(1-1)を含むキャリヤ輸送層用組成物を用いて形成した。このキャリヤ輸送層用組成物については、クロロホルムを溶媒として、化合物(1-1)の濃度が0.5質量%となるように調製した。このキャリヤ輸送層用組成物をスピンコート法(回転数1500rpm)でキャリヤ注入層34a上に載せ、膜厚約40nmのキャリヤ輸送層34bを形成した。
発光層34cは、キャリヤ輸送層34b上に、4,4’-N,N’-ジカルバソル-ビフェニル(CBP)及びトリス(2-フェニルピリジン)イリジウム(Ir(PPY)3)を、それぞれ異なる蒸着源から共蒸着させる真空蒸着法によって形成した。形成した発光層34c中のIr(PPY)3の濃度は、6.5質量%であった。また、膜厚は40nmであった。
電子輸送層34dは、発光層34c上にトリス(8-ヒドロキシキノリンアルミニウム)(A1q3)を真空蒸着させることで形成し、膜厚を40nmとした。
電子注入層34eは、電子輸送層34d上に酸化リチウム(Li2O)を真空蒸着させることで形成し、膜厚を0.5nmとした。
カソード電極33は、電子注入層34e上にアルミニウム(Al)を真空蒸着させることで形成し、膜厚を150nmとした。
得られた有機発光素子3Aは、Ir(PPY)3からの発光が認められた。また、大気雰囲気下でも安定に動作し、大気中に置いてから1ヶ月後においても、著しい特性の低下は見られなかった。 <Manufacture of organic light emitting devices>
[Example 10]
The organic
As the
The
The
The light-emitting
The
The
The
In the obtained organic
本発明の態様は、電界効果トランジスタ、太陽電池、有機発光素子等の半導体デバイスに利用可能である。
The embodiment of the present invention can be used for semiconductor devices such as field effect transistors, solar cells, and organic light emitting elements.
1A,1B,1C,1D,1E,1F・・・電界効果トランジスタ、11・・・基板、12・・・ゲート電極、13・・・ゲート絶縁膜、13’・・・親水性の膜、14・・・ソース電極、15・・・ドレイン電極、16・・・有機半導体層、2A,2B・・・太陽電池、24・・・p型半導体層、26・・・有機半導体層、3A・・・有機発光素子、34b・・・キャリヤ輸送層
1A, 1B, 1C, 1D, 1E, 1F ... field effect transistor, 11 ... substrate, 12 ... gate electrode, 13 ... gate insulating film, 13 '... hydrophilic film, 14 ... Source electrode, 15 ... Drain electrode, 16 ... Organic semiconductor layer, 2A, 2B ... Solar cell, 24 ... P-type semiconductor layer, 26 ... Organic semiconductor layer, 3A ... .Organic light emitting device, 34b ... carrier transport layer
Claims (25)
- 下記一般式(1)で表される化合物。
(式中、R1は置換基を有していてもよい炭素数1~20の脂肪族炭化水素基であり;R2~R13はそれぞれ独立して水素原子、ハロゲン原子又は置換基を有していてもよい芳香族基もしくは炭素数1~20の脂肪族炭化水素基である。) A compound represented by the following general formula (1).
(Wherein R 1 is an optionally substituted aliphatic hydrocarbon group having 1 to 20 carbon atoms; R 2 to R 13 each independently has a hydrogen atom, a halogen atom or a substituent. An aromatic group which may be substituted or an aliphatic hydrocarbon group having 1 to 20 carbon atoms.) - 前記R1が炭素数1~15のアルキル基であり、前記R2~R13がそれぞれ独立して水素原子、ハロゲン原子又は炭素数1~10のアルキル基である請求項1に記載の化合物。 The compound according to claim 1, wherein R 1 is an alkyl group having 1 to 15 carbon atoms, and R 2 to R 13 are each independently a hydrogen atom, a halogen atom, or an alkyl group having 1 to 10 carbon atoms.
- 前記R1が炭素数5~9の直鎖状または分岐鎖状もしくは環状アルキル基であり、前記R2~R13がそれぞれ独立して水素原子、ハロゲン原子又は炭素数1~5のアルキル基である請求項2に記載の化合物。 R 1 is a linear, branched or cyclic alkyl group having 5 to 9 carbon atoms, and R 2 to R 13 are each independently a hydrogen atom, a halogen atom or an alkyl group having 1 to 5 carbon atoms. A compound according to claim 2.
- 請求項1に記載の化合物を含む有機半導体層を備える電界効果トランジスタ。 A field effect transistor comprising an organic semiconductor layer containing the compound according to claim 1.
- 更に、親水性の膜を含み、前記有機半導体層が前記親水性の膜上に設けられている請求項4に記載の電界効果トランジスタ。 The field effect transistor according to claim 4, further comprising a hydrophilic film, wherein the organic semiconductor layer is provided on the hydrophilic film.
- 更に、ゲート電極、ゲート絶縁膜、ソース電極及びドレイン電極を備え、
前記有機半導体層が、前記ゲート絶縁膜を介して前記ゲート電極と対向するように設けられており、
前記ソース電極及びドレイン電極が、前記有機半導体層上に接するように設けられている請求項4に記載の電界効果トランジスタ。 Furthermore, a gate electrode, a gate insulating film, a source electrode and a drain electrode are provided,
The organic semiconductor layer is provided so as to face the gate electrode through the gate insulating film,
The field effect transistor according to claim 4, wherein the source electrode and the drain electrode are provided in contact with the organic semiconductor layer. - 更に、ゲート電極、ゲート絶縁膜、ソース電極及びドレイン電極を備え、
前記有機半導体層が、前記ゲート絶縁膜を介して前記ゲート電極と対向するように設けられており、
前記有機半導体層が、前記ソース電極及びドレイン電極上を覆うように設けられている請求項4に記載の電界効果トランジスタ。 Furthermore, a gate electrode, a gate insulating film, a source electrode and a drain electrode are provided,
The organic semiconductor layer is provided so as to face the gate electrode through the gate insulating film,
The field effect transistor according to claim 4, wherein the organic semiconductor layer is provided so as to cover the source electrode and the drain electrode. - 前記有機半導体層が、前記化合物が塗布されて形成されたものである請求項4に記載の電界効果トランジスタ。 The field effect transistor according to claim 4, wherein the organic semiconductor layer is formed by applying the compound.
- 前記有機半導体層が、前記化合物が蒸着されて形成されたものである請求項4に記載の電界効果トランジスタ。 The field effect transistor according to claim 4, wherein the organic semiconductor layer is formed by depositing the compound.
- 請求項1に記載の化合物を含む有機半導体層を備えた電界効果トランジスタの製造方法であって、
前記化合物を含む組成物を用いて浸漬法、スピンコート法、キャスト法、インクジェット法及び印刷法の何れか一つによって前記有機半導体層を形成し、
前記組成物は、トルエン、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン、ジクロロメタン及びクロロホルムからなる群より選択される少なくとも一種を含む電界効果トランジスタの製造方法。 A method for producing a field effect transistor comprising an organic semiconductor layer comprising the compound according to claim 1,
Using the composition containing the compound, the organic semiconductor layer is formed by any one of a dipping method, a spin coating method, a casting method, an inkjet method, and a printing method,
The method of manufacturing a field effect transistor, wherein the composition includes at least one selected from the group consisting of toluene, chlorobenzene, dichlorobenzene, trichlorobenzene, dichloromethane, and chloroform. - 請求項1に記載の化合物を含む有機半導体層を備える太陽電池。 A solar cell provided with the organic-semiconductor layer containing the compound of Claim 1.
- 更に、親水性の膜を含み、前記有機半導体層が前記親水性の膜上に設けられている請求項11に記載の太陽電池。 The solar cell according to claim 11, further comprising a hydrophilic film, wherein the organic semiconductor layer is provided on the hydrophilic film.
- 前記有機半導体層が、前記化合物が塗布されて形成されたものである請求項11に記載の太陽電池。 The solar cell according to claim 11, wherein the organic semiconductor layer is formed by applying the compound.
- 前記有機半導体層が、前記化合物が蒸着されて形成されたものである請求項11に記載の太陽電池。 The solar cell according to claim 11, wherein the organic semiconductor layer is formed by vapor deposition of the compound.
- 請求項1に記載の化合物を含む有機半導体層を備えた太陽電池の製造方法であって、
前記化合物を含む組成物を用いて浸漬法、スピンコート法、キャスト法、インクジェット法及び印刷法の何れか一つによって前記有機半導体層を形成し、
前記組成物は、トルエン、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン、ジクロロメタン及びクロロホルムからなる群より選択される少なくとも一種を含む太陽電池の製造方法。 It is a manufacturing method of the solar cell provided with the organic-semiconductor layer containing the compound of Claim 1, Comprising:
Using the composition containing the compound, the organic semiconductor layer is formed by any one of a dipping method, a spin coating method, a casting method, an inkjet method, and a printing method,
The said composition is a manufacturing method of the solar cell containing at least 1 type selected from the group which consists of toluene, chlorobenzene, dichlorobenzene, trichlorobenzene, dichloromethane, and chloroform. - p型半導体材料とn型半導体材料とを含む有機半導体層を備え、
少なくとも前記p型半導体材料およびn型半導体材料の一方が、請求項1に記載の化合物を含む太陽電池。 an organic semiconductor layer including a p-type semiconductor material and an n-type semiconductor material;
The solar cell in which at least one of the p-type semiconductor material and the n-type semiconductor material contains the compound according to claim 1. - 請求項1に記載の化合物を含むキャリヤ輸送層を備えた有機発光素子。 An organic light-emitting device comprising a carrier transport layer containing the compound according to claim 1.
- 更に、親水性の膜を有し、前記キャリヤ輸送層が前記親水性の膜上に設けられている請求項17に記載の有機発光素子。 The organic light-emitting device according to claim 17, further comprising a hydrophilic film, wherein the carrier transport layer is provided on the hydrophilic film.
- 前記キャリヤ輸送層が、前記化合物が塗布されて形成されたものである請求項17に記載の有機発光素子。 The organic light-emitting device according to claim 17, wherein the carrier transport layer is formed by applying the compound.
- 前記キャリヤ輸送層が、前記化合物が蒸着されて形成されたものである請求項17に記載の有機発光素子。 The organic light-emitting device according to claim 17, wherein the carrier transport layer is formed by vapor deposition of the compound.
- 請求項1に記載の化合物を含むキャリヤ輸送層を備えた有機発光素子の製造方法であって、
前記化合物を含む組成物を用いて浸漬法、スピンコート法、キャスト法、インクジェット法又は印刷法によって前記キャリヤ輸送層を形成し、
前記組成物は、トルエン、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン、ジクロロメタン及びクロロホルムからなる群より選択される少なくとも一種を含む有機発光素子の製造方法。 A method for producing an organic light emitting device comprising a carrier transport layer comprising the compound according to claim 1,
The carrier transport layer is formed by a dipping method, a spin coating method, a casting method, an ink jet method or a printing method using a composition containing the compound,
The method for manufacturing an organic light emitting device, wherein the composition includes at least one selected from the group consisting of toluene, chlorobenzene, dichlorobenzene, trichlorobenzene, dichloromethane, and chloroform. - 請求項1に記載の化合物を含む電界効果トランジスタの有機半導体層用組成物。 A composition for an organic semiconductor layer of a field effect transistor comprising the compound according to claim 1.
- 請求項1に記載の化合物を含む太陽電池の有機半導体層用組成物。 The composition for organic-semiconductor layers of the solar cell containing the compound of Claim 1.
- p型半導体材料とn型半導体材料とを含み、
前記p型半導体材料およびn型半導体材料の少なくとも一方が、請求項1記載の化合物を含むことを特徴とする太陽電池の有機半導体層用組成物。 including a p-type semiconductor material and an n-type semiconductor material,
The composition for an organic semiconductor layer of a solar cell, wherein at least one of the p-type semiconductor material and the n-type semiconductor material contains the compound according to claim 1. - 請求項1に記載の化合物を含む有機発光素子のキャリヤ輸送層用組成物。 A composition for a carrier transport layer of an organic light-emitting device comprising the compound according to claim 1.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-256098 | 2010-11-16 | ||
JP2010256098 | 2010-11-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012067139A1 true WO2012067139A1 (en) | 2012-05-24 |
Family
ID=46084062
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/076381 WO2012067139A1 (en) | 2010-11-16 | 2011-11-16 | Compound, field-effect transistor and process for production thereof, solar cell and process for production thereof, organic light-emitting element and process for production thereof, and composition |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2012067139A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03144650A (en) * | 1989-10-17 | 1991-06-20 | Shipley Co Inc | Near UV photoresist |
JP2001094107A (en) * | 1999-09-20 | 2001-04-06 | Hitachi Ltd | Organic semiconductor device and liquid crystal display |
JP2004281408A (en) * | 2003-03-18 | 2004-10-07 | Eastman Kodak Co | P-type material mixture for electronic device |
WO2006059486A1 (en) * | 2004-12-02 | 2006-06-08 | Konica Minolta Holdings, Inc. | Organic thin-film transistor material, organic thin-film transistor, field effect transistor, switching device, organic semiconductor material, and organic semiconductor film |
-
2011
- 2011-11-16 WO PCT/JP2011/076381 patent/WO2012067139A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03144650A (en) * | 1989-10-17 | 1991-06-20 | Shipley Co Inc | Near UV photoresist |
JP2001094107A (en) * | 1999-09-20 | 2001-04-06 | Hitachi Ltd | Organic semiconductor device and liquid crystal display |
JP2004281408A (en) * | 2003-03-18 | 2004-10-07 | Eastman Kodak Co | P-type material mixture for electronic device |
WO2006059486A1 (en) * | 2004-12-02 | 2006-06-08 | Konica Minolta Holdings, Inc. | Organic thin-film transistor material, organic thin-film transistor, field effect transistor, switching device, organic semiconductor material, and organic semiconductor film |
Non-Patent Citations (2)
Title |
---|
DATABASE CAPLUS 1988, MARININA,L.E. ET AL.: "Synthesis and spectral- luminescence properties of dibenzo[b,i] phenoxazine and its derivatives", Database accession no. 1988:512053 * |
KHIMIYA GETEROTSIKLICHESKIKH SOEDINENII, 1988, pages 262 - 267 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5167560B2 (en) | Field effect transistor | |
JP4736324B2 (en) | Semiconductor device and manufacturing method thereof | |
US7355199B2 (en) | Substituted anthracenes and electronic devices containing the substituted anthracenes | |
JP6208133B2 (en) | Heterocyclic compounds and uses thereof | |
WO2010058833A1 (en) | Novel heterocyclic compound and use thereof | |
WO2013002217A1 (en) | Compound, field effect transistor and process for producing same, solar cell, organic luminescent element, compositions, array for display device, and display device | |
WO2012157474A1 (en) | Compound, field effect transistor, method for manufacturing field effect transistor, solar cell, organic light-emitting element, composition, array for display devices, and display device | |
JP6558777B2 (en) | Organic compounds and their uses | |
US10186664B2 (en) | N-fluoroalkyl-substituted dibromonaphthalene diimides and their use as semiconductor | |
WO2012115218A1 (en) | Method for producing dianthra[2,3-b:2',3'-f]thieno[3,2-b]thiophene, and use thereof | |
JP6592758B2 (en) | Novel condensed polycyclic aromatic compounds and uses thereof | |
KR100708721B1 (en) | Thin film transistor and flat panel display device having same | |
JP2015199716A (en) | Polycyclic fused ring compound, organic semiconductor material, organic semiconductor device, and organic transistor | |
WO2013031468A1 (en) | Heterocyclic compound and use thereof | |
JP6572473B2 (en) | Organic compounds and their uses | |
JP6592863B2 (en) | Organic compounds and their uses | |
WO2012067139A1 (en) | Compound, field-effect transistor and process for production thereof, solar cell and process for production thereof, organic light-emitting element and process for production thereof, and composition | |
JP2014141416A (en) | Compound, field effect transistor, method of manufacturing the same, solar cell, organic light-emitting element, composition, array for display device, and display device | |
JP2014141414A (en) | Compound, field effect transistor, method of manufacturing the same, solar cell, organic light-emitting element, composition for organic thin film, array for display device, and display device | |
JP2014177405A (en) | Compound, field effect transistor, method of manufacturing the same, solar cell, organic light-emitting element, composition, array for display device, and display device | |
WO2007066466A1 (en) | Organic semiconductor material, organic semiconductor film, organic semiconductor device and organic thin film transistor | |
JP6478279B2 (en) | Organic polycyclic aromatic compounds and uses thereof | |
TW201529580A (en) | Novel condensed polycyclic aromatic compounds and uses thereof | |
JP6478277B2 (en) | Organic polycyclic aromatic compounds and uses thereof | |
JP5252508B2 (en) | ORGANIC SEMICONDUCTOR MATERIAL, ITS MANUFACTURING METHOD, AND USE OF ORGANIC SEMICONDUCTOR MATERIAL |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11841782 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11841782 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |