WO2012066624A1 - エンジンおよびエンジンの製造方法 - Google Patents
エンジンおよびエンジンの製造方法 Download PDFInfo
- Publication number
- WO2012066624A1 WO2012066624A1 PCT/JP2010/070323 JP2010070323W WO2012066624A1 WO 2012066624 A1 WO2012066624 A1 WO 2012066624A1 JP 2010070323 W JP2010070323 W JP 2010070323W WO 2012066624 A1 WO2012066624 A1 WO 2012066624A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- engine
- groove
- cylinder block
- thermal conductivity
- conductive material
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 239000004020 conductor Substances 0.000 claims abstract description 56
- 239000000463 material Substances 0.000 claims abstract description 56
- 238000002844 melting Methods 0.000 claims abstract description 7
- 230000008018 melting Effects 0.000 claims abstract description 7
- 239000002826 coolant Substances 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 7
- 230000002093 peripheral effect Effects 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 4
- 238000001816 cooling Methods 0.000 description 36
- 239000000843 powder Substances 0.000 description 11
- 238000002485 combustion reaction Methods 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 230000006835 compression Effects 0.000 description 5
- 238000007906 compression Methods 0.000 description 5
- 239000000498 cooling water Substances 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 238000004372 laser cladding Methods 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- 238000005253 cladding Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02F—CYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
- F02F7/00—Casings, e.g. crankcases
- F02F7/0002—Cylinder arrangements
- F02F7/0007—Crankcases of engines with cylinders in line
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/34—Laser welding for purposes other than joining
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23P—METAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
- B23P15/00—Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02F—CYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
- F02F1/00—Cylinders; Cylinder heads
- F02F1/02—Cylinders; Cylinder heads having cooling means
- F02F1/10—Cylinders; Cylinder heads having cooling means for liquid cooling
- F02F2001/104—Cylinders; Cylinder heads having cooling means for liquid cooling using an open deck, i.e. the water jacket is open at the block top face
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05C—INDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
- F05C2251/00—Material properties
- F05C2251/04—Thermal properties
- F05C2251/048—Heat transfer
Definitions
- the present invention relates to an engine and a method for manufacturing the engine.
- Patent Document 1 discloses a cooling device for a multi-cylinder engine that improves the cooling performance of the cylinder head while preventing excessive cooling of the cylinder block.
- Patent Document 2 discloses a method for manufacturing a valve seat using a laser cladding method.
- techniques that are considered to be related to the present invention are disclosed in Patent Documents 3 to 5, for example.
- the engine is cooled to suppress the occurrence of knocking, for example.
- the cooling is performed more than necessary, the cooling loss increases, resulting in a decrease in thermal efficiency, that is, a deterioration in fuel consumption. Therefore, when cooling the engine, it is desirable to improve the cooling performance of the portion where the necessity for cooling is high, thereby improving the cooling performance of the engine and at the same time suppressing the increase in cooling loss.
- an object of the present invention is to provide an engine and an engine manufacturing method capable of improving the cooling performance in a manner capable of suppressing an increase in cooling loss.
- the present invention includes a cylinder block provided with a first cooling medium passage for circulating a cooling medium around a bore, and the cylinder block has an outer side than the bore and the first cooling medium path.
- a predetermined groove on the inside is provided with a first groove having an opening on the deck surface of the cylinder block and having a predetermined depth, and the first groove has higher thermal conductivity than the base material of the cylinder block.
- a first high heat conductive material is provided, material is supplied to the first groove portion, and melted with a laser beam, thereby exposing the first high heat conductive material to the first groove portion on the deck surface. This is the engine that is provided.
- the present invention further includes a gasket provided adjacent to the deck surface and having a high thermal conductivity portion having a higher thermal conductivity than other portions in a portion facing the first groove portion.
- the present invention further includes a cylinder head having an opposing surface that faces the deck surface, and a second groove portion that opens to the opposing surface is provided in a portion of the cylinder head that faces the first groove portion. It is preferable that the second groove portion is provided with a second high thermal conductivity material having a higher thermal conductivity than the base material of the cylinder head.
- the present invention preferably has a configuration in which a second cooling medium passage for circulating the cooling medium is further provided in a portion of the cylinder head adjacent to the second high heat conductive material.
- the predetermined portion is an exhaust side portion of the cylinder block, and the cylinder block is a portion outside the bore and inside the first cooling medium passage. Further, a third groove portion opened in the deck surface of the cylinder block is provided in the intake side portion, and a low thermal conductive material having a lower thermal conductivity than the base material of the cylinder block is provided in the third groove portion. A configuration is preferred.
- the first cooling medium passage is open to the deck surface of the cylinder block.
- the present invention provides a predetermined portion outside the bore and inside the first cooling medium passage among the cylinder blocks provided with the first cooling medium passage for circulating the cooling medium around the bore.
- a first groove portion having a predetermined depth is provided in the deck surface of the cylinder block.
- the cooling performance can be enhanced in a manner that can suppress an increase in cooling loss.
- FIG. 2 is a top view of a main part of the engine according to the first embodiment.
- 1 is a cross-sectional view of a main part of an engine according to a first embodiment.
- FIG. 2 is an enlarged view of a main part of the engine according to the first embodiment. It is a figure which shows typically the formation method of a 1st high heat conductive material. It is a figure which shows the heat transfer rate and surface area ratio of a combustion chamber according to a crank angle.
- FIG. 4 is an enlarged view of a main part of an engine according to a second embodiment.
- FIG. 6 is an enlarged view of a main part of an engine according to a third embodiment. It is an enlarged view of the principal part of the engine of Example 4.
- FIG. 10 is a top view of a main part of an engine according to a fifth embodiment.
- FIG. 10 is an enlarged view of a main part of an engine according to a fifth embodiment.
- FIG. 10 is a top view of a main part of an engine according to a sixth embodiment.
- FIG. 10 is a cross-sectional view of a main part of an engine of Example 6.
- FIG. 1 is a top view of the main part of the engine 1A.
- FIG. 2 is a cross-sectional view of a main part of the engine 1A.
- FIG. 3 is an enlarged view of a main part of the engine 1A.
- FIG. 1 is a top view of the cylinder block 10A and shows a main part of the engine 1A.
- FIG. 2 shows a main part of the engine 1A in the AA section shown in FIG.
- FIG. 3 is an enlarged view of part B shown in FIG. 2 and shows a main part of the engine 1A.
- the engine 1A includes a cylinder block 10A and a cylinder head 20A.
- the cylinder block 10A and the cylinder head 20A form a combustion chamber together with a piston (not shown).
- a gasket can be provided between the cylinder block 10A and the cylinder head 20A. In this respect, since an appropriate gasket may be used in the engine 1A, the gasket is not illustrated.
- the cylinder block 10 ⁇ / b> A is provided with a bore 11, a first water jacket (hereinafter referred to as W / J) 12, a first groove 13, and a first high thermal conductive material 14.
- a plurality of (in this case, four) bores 11 are provided in series.
- the first W / J 12 is provided in the periphery of the bore 11. Specifically, it is provided so as to surround the entire plurality of bores 11 provided in series.
- the first W / J 12 is open to the deck surface D of the cylinder block 10A. 1st W / J12 distribute
- the first W / J 12 corresponds to the first cooling medium passage.
- the first groove 13 is provided in a predetermined portion of the cylinder block 10A on the outer side of the bore 11 and on the inner side of the first W / J 12.
- the predetermined portion is a portion along the entire circumference of the bore 11.
- the first groove 13 is open to the deck surface D.
- the first groove 13 is provided with a predetermined depth from the deck surface D.
- the predetermined depth can be set in correspondence with the range of the bore 11 wall where the intake air flowing into the combustion chamber is hit. In this case, the predetermined depth can be set to about 30 mm, for example.
- Each of the first groove portions 13 may communicate with each other to form one first groove portion.
- the predetermined portion may be, for example, a portion along a part of the outer periphery of the bore 11.
- the predetermined part may be composed of a plurality of parts.
- the first high thermal conductive material 14 is provided in the first groove 13.
- the first high thermal conductive material 14 is provided by supplying a material to the first groove 13 and melting it with a laser beam.
- the first high thermal conductive material 14 is provided so as to be exposed on the deck surface D. Further, the first groove portion 13 is provided so as to be filled.
- the thermal conductivity of the first high thermal conductive material 14 is higher than the thermal conductivity of the base material of the cylinder block 10A.
- FIG. 4 is a diagram schematically showing a method of forming the first high thermal conductive material 14.
- the laser clad apparatus 50 includes a laser beam supply source 51, a condensing laser 52, a feeder 53, an oscillator 54, and a shield gas nozzle 55.
- the laser beam supply source 51 generates a laser beam.
- the laser beam is, for example, a fiber laser or a CO 2 laser.
- the condensing lens 52 condenses the laser beam.
- the feeder 53 supplies material to the first groove portion 13.
- the oscillator 54 oscillates the laser beam projected from the laser beam supply source 51 via the condenser lens 52 at a high period and irradiates the material supplied by the feeder 53.
- the shield gas nozzle 55 supplies a shield gas that shields the material from outside air.
- the shield gas is, for example, argon gas.
- the laser cladding apparatus 50 provides the first high thermal conductive material 14 by melting and cladding (cladding) the material supplied to the first groove 13 with a laser beam.
- a metal powder having a higher thermal conductivity than the base material of the cylinder block 10A is applied.
- the heat conductivity of the 1st high heat conductive material 14 can be made higher than the heat conductivity of the base material of 10 A of cylinder blocks.
- the base material of the cylinder block 10A is, for example, aluminum die cast, and the material is, for example, copper powder.
- the material may be a powder of an alloy such as a copper alloy or a mixture of metal powders obtained by mixing a plurality of types of metal powders.
- the cylinder block 10A In providing the first high thermal conductive material 14 in the first groove 13, the cylinder block 10A is moved as appropriate. Thereby, the supply position of the material and the irradiation position of the laser beam can be changed.
- the first high thermal conductive material 14 may be provided using a coaxial nozzle capable of supplying a material and irradiating a laser beam, for example. In this case, the material supply position and the laser beam irradiation position can be changed by appropriately moving the coaxial nozzle.
- FIG. 5 is a diagram showing the heat transfer coefficient and surface area ratio of the combustion chamber according to the crank angle.
- FIG. 5 shows that the heat transfer coefficient increases near the top dead center of the compression stroke. And it turns out that the surface area ratio of cylinder head 20A and a piston becomes large in the compression stroke top dead center vicinity. Therefore, it can be seen that the cooling loss has a large influence of the temperature of the cylinder head 20A.
- knocking depends on the compression end temperature. In the intake compression stroke that affects the compression end temperature, it can be seen that the surface area ratio of the wall portion of the bore 11 is large. Therefore, it can be seen that the influence of the temperature of the wall of the bore 11 is large for knocking.
- the first high thermal conductive material 14 is cooled in the first W / J 12 from the upper portion of the bore 11 wall portion that is affected by combustion and becomes particularly hot. Promotes heat transfer to water. The heat transfer can be promoted in this way without particularly increasing the heat transfer from the cylinder head 20A to the cylinder block 10A.
- the engine 1A can improve the cooling performance of the cylinder block 10A while suppressing the cooling performance of the cylinder head 20A that tends to increase the cooling loss. And thereby, it is possible to improve the cooling performance while suppressing an increase in cooling loss. As a result, specifically, improvement in fuel consumption and improvement in knocking can be achieved at the same time.
- the engine 1A when the first high thermal conductive material 14 is provided in the first groove 13, the material is supplied to the first groove 13 and melted by the laser beam. Therefore, the engine 1A can improve the close contact between the first groove 13 and the first high thermal conductive material 14. As a result, heat transfer from the upper part of the wall of the bore 11 can be preferably promoted. Moreover, the heat transfer from the upper part of the bore 11 wall part can be suitably accelerated
- the first high heat conductive material 14 is provided in the first groove portion 13 so as to be exposed on the deck surface D. For this reason, the engine 1A further promotes heat transfer more appropriately by promoting heat transfer from the upper portion of the wall of the bore 11 through the portion exposed to the deck surface D of the first high heat conductive material 14. You can also
- the first W / J 12 is provided so as to open to the deck surface D. For this reason, the engine 1A can cool the 1st high heat conductive material 14 suitably. As a result, heat transfer from the upper part of the wall of the bore 11 can be more suitably promoted.
- FIG. 6 is an enlarged view of a main part of the engine 1B.
- the engine 1B is substantially the same as the engine 1A except that the engine 1B further includes a gasket 30 described below.
- the gasket 30 is provided between the cylinder block 10A and the cylinder head 20A. In this state, it is provided adjacent to the deck surface D.
- the gasket 30 has a high thermal conductivity portion 30a having a higher thermal conductivity than other portions at a portion facing the first groove portion 13.
- the high heat conduction portion 30a is exposed on the surfaces of the cylinder block 10A and the cylinder head 20A.
- copper or a copper alloy can be applied to the high heat conductive portion 30a.
- the portion of the cylinder head 20 ⁇ / b> A that faces the wall portion of the bore 11 tends to be basically lower in temperature than the upper portion of the wall portion of the bore 11.
- the engine 1B can promote heat transfer from the upper portion of the wall of the bore 11 to the cylinder head 20A via the high heat conduction portion 30a.
- the cooling performance of the cylinder block 10A can be further enhanced while suppressing the occurrence of cooling loss.
- FIG. 7 is an enlarged view of a main part of the engine 1C.
- the engine 1C is substantially the same as the engine 1B except that it includes a cylinder head 20B instead of the cylinder head 20A.
- the cylinder head 20B is substantially the same as the cylinder head 20A, except that the second groove 21 and the second high thermal conductive material 22 are further provided. Similar changes can be made to the engine 1A, for example.
- the second groove portion 21 is provided in a portion of the cylinder head 20B that faces the first groove portion 13.
- the second groove portion 21 opens on the facing surface that faces the deck surface D.
- the second high thermal conductive material 22 is provided in the second groove portion 21.
- the thermal conductivity of the second high thermal conductive material 22 is higher than the thermal conductivity of the base material of the cylinder head 20B.
- the second high thermal conductive material 22 is provided by supplying a material to the second groove portion 21 and melting it with a laser beam.
- the second high thermal conductive material 22 can be provided using, for example, a laser cladding apparatus 50.
- the thermal conductivity of the second high thermal conductivity material 22 is made higher than the thermal conductivity of the base material of the cylinder head 20B.
- the base material of the cylinder head 20B is, for example, aluminum die cast, and the material is, for example, copper powder, alloy powder, or a mixture of a plurality of metal powders.
- the engine 1C can promote heat transfer from the received second high heat conductive material 22 to a portion of the cylinder head 20B where the temperature is lower than that of the second high heat conductive material 22.
- the heat drawn from the second high thermal conductive material 22 can be improved to further promote the heat transfer from the upper portion of the wall of the bore 11 to the cylinder head 20B.
- the engine 1C supplies a material to the second groove portion 21 and is melted by a laser beam.
- the engine 1 ⁇ / b> C can improve the close contact between the second groove portion 21 and the second high thermal conductive material 22.
- heat transfer from the upper part of the wall of the bore 11 can be preferably promoted.
- the heat transfer from the upper part of the bore 11 wall part can be suitably accelerated
- FIG. 8 is an enlarged view of a main part of the engine 1D.
- the engine 1D is substantially the same as the engine 1C except that the cylinder head 20C is provided instead of the cylinder head 20B.
- the cylinder head 20C is substantially the same as the cylinder head 20B except that the cylinder head 20C further includes a second W / J 23.
- 2nd W / J23 circulates cooling water.
- the second W / J 23 is provided in a portion adjacent to the second high thermal conductive material 22 in the cylinder head 20C. Therefore, the cooling water flowing through the second W / J 23 comes into contact with the second high heat conductive material 22.
- the engine 1D can improve the heat extraction from the second high heat conductive material 22 by the cooling water flowing through the second W / J 23. As a result, heat transfer from the upper portion of the wall of the bore 11 to the cylinder head 20C can be further promoted. As a result, it is possible to improve the cooling performance while suppressing the increase in cooling loss more suitably as compared with the engine 1C.
- FIG. 9 is a top view of the main part of the engine 1E.
- FIG. 10 is a cross-sectional view of a main part of the engine 1E.
- FIG. 10 shows the engine 1E in the BB cross section shown in FIG.
- the engine 1E is substantially the same as the engine 1A except that a cylinder block 10B is provided instead of the cylinder block 10A. Similar changes can be made to the engines 1B, 1C, and 1D, for example.
- the cylinder block 10B is substantially the same as the cylinder block 10A except that the first groove 13 'is provided instead of the first groove 13 and that the third groove 15 and the low heat conductive material 16 are further provided. Are identical.
- the first groove 13 ' is provided in a predetermined portion outside the bore 11 and inside the first W / J 12 with the exhaust side portion of the cylinder block 10B as a predetermined portion. Except for this point, the first groove 13 ′ is substantially the same as the first groove 13.
- the third groove portion 15 is a portion of the cylinder block 10B that is located outside the bore 11 and inside the W / J 12, and is further provided in a portion on the intake side.
- the third groove portion 15 opens in the deck surface D of the cylinder block 10B.
- the low heat conductive material 16 is provided in the third groove portion 15.
- the thermal conductivity of the low thermal conductive material 16 is lower than the thermal conductivity of the base material of the cylinder block 10B.
- the first groove 13 ′ and the first high thermal conductive material 14 may be provided at least in the exhaust side of the cylinder block 10B. Moreover, the 3rd groove part 15 and the low heat conductive material 16 should just be provided in the part by the side of an intake side at least among cylinder blocks 10B. Further, the first groove portion 13 ′ and the third groove portion 15 may communicate with each other. In this case, the portion where the first high thermal conductive material 14 is provided can be regarded as the first groove 13 '. Further, the portion where the low thermal conductive material 16 is provided can be regarded as the third groove portion 15.
- the low thermal conductive material 16 is provided by supplying a material to the third groove 15 and melting it with a laser beam.
- the low thermal conductive material 16 can be provided using, for example, a laser cladding apparatus 50.
- the thermal conductivity of the low heat conductive material 16 is made lower than the thermal conductivity of the base material of the cylinder block 10B.
- the base material of the cylinder bolock 10B is, for example, aluminum die cast, and the material is, for example, an alloy powder having a lower thermal conductivity than aluminum die cast.
- the material may be another metal powder or a mixture of a plurality of metal powders.
- the exhaust side portion is a portion where the intake air flowing into the cylinder hits.
- the part between the adjacent bores 11 among the upper part of the wall part of the bore 11 becomes a part which is especially easy to become high temperature under the influence of combustion.
- the engine 1E by providing the first high heat conductive material 14 to the exhaust side portion of the cylinder block 10B, it is possible to suitably cool the portions where the necessity for cooling is high. Further, the occurrence of knocking can be suppressed by the cooling effect of the intake air.
- the engine 1E can suppress heat transfer in the intake side portion of the upper portion of the wall of the bore 11 by providing the low heat conductive material 16 in the intake side portion of the cylinder block 10B. As a result, the cooling loss can be reduced. Therefore, the engine 1E promotes heat transfer in a portion where the necessity for cooling is high, while suppressing heat transfer in a portion where the necessity for cooling is relatively low, thereby further increasing the cooling loss as compared with the engine 1A. Can be suppressed.
- FIG. 11 is a top view of the main part of the engine 1F.
- FIG. 12 is a cross-sectional view of a main part of the engine 1F.
- FIG. 12 shows the engine 1F in the CC cross section shown in FIG.
- the engine 1F is substantially the same as the engine 1A except that a cylinder block 10C is provided instead of the cylinder block 10A.
- the cylinder block 10 ⁇ / b> C is substantially the same as the engine 1 ⁇ / b> A except that a cylinder liner 35 is further provided and a first groove 13 ′′ is provided instead of the first groove 13. Similar changes can be made to the engines 1B, 1C, 1D, and 1E, for example.
- the cylinder liner 35 is provided in the cylinder block 10C.
- the cylinder liner 35 forms a bore 11.
- the material of the cylinder liner 35 is, for example, carbon steel.
- the cylinder liner 35 is cast into the cylinder block 10C.
- the cylinder liner 35 may be provided in the cylinder block 10C by press-fitting, for example.
- the first groove portion 13 ′′ is provided in a predetermined portion outside the bore 11 and inside the first W / J 12 with the exhaust side portion of the cylinder block 10C as a predetermined portion. .
- the first groove portion 13 ′′ is provided so as to include a contact surface between the cylinder block 10C and the cylinder liner 35.
- the bore 11 is provided with a predetermined depth from the deck surface D, with a depth corresponding to a range where the intake air flowing into the combustion chamber hits the wall 11 being a predetermined depth. Except for these points, the first groove 13 ′′ is substantially the same as the first groove 13.
- the cylinder block 10C and the cylinder liner 35 are not necessarily in close contact with each other microscopically, but are in contact with each other with a local gap. For this reason, the heat transfer from the cylinder liner 35 to the first W / J 12 is suppressed by the amount of the heat insulating action due to the gap.
- the engine 1F supplies the material to the first groove portion 13 ′′ and melts it with a laser beam, so that the first high thermal conductive material 14 provided in the first groove portion 13 ′′ becomes a cylinder liner. 35 and the cylinder block 10A. For this reason, according to the engine 1F, even when the cylinder liner 35 is provided, it is possible to improve the cooling performance while suitably suppressing an increase in cooling loss.
- the predetermined depth of the first groove portion 13 '' is set in correspondence with the range of the bore 11 wall portion where the intake air flowing into the combustion chamber hits. For this reason, the engine 1F can also suitably suppress the temperature rise of the intake air. As a result, the occurrence of knocking can be more suitably suppressed.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Cylinder Crankcases Of Internal Combustion Engines (AREA)
Abstract
エンジン1Aは、ボア11の周辺部に第1のW/J12が設けられたシリンダブロック10Aを備える。シリンダブロック10Aのうち、ボア11よりも外側、且つ第1のW/J12よりも内側の所定の部分には、シリンダブロック10Aのデッキ面Dに開口し、所定の深さを有する第1の溝部13が設けられている。第1の溝部13には、シリンダブロック10Aの母材よりも熱伝導率が高い第1の高熱伝導材14が設けられている。第1の高熱伝導材14は、第1の溝部13に対して材料を供給し、レーザービームで溶融することで、第1の溝部13にデッキ面Dで露出するように設けられている。
Description
本発明はエンジンおよびエンジンの製造方法に関する。
エンジンでは一般に冷却水による冷却が行われている。また、シリンダヘッドの熱負荷が高くなることも知られている。特許文献1では、シリンダヘッドの冷却性を高める一方で、シリンダブロックの過剰冷却を防止する多気筒エンジンの冷却装置が開示されている。
特許文献2では、レーザークラッド工法を利用したバルブシートの製造方法が開示されている。このほか本発明と関連性があると考えられる技術が例えば特許文献3から5で開示されている。
エンジンの冷却は、例えばノッキングの発生を抑制するために行われる。しかしながら、必要以上に冷却を行うと、冷却損失が増大する結果、熱効率の低下、すなわち燃費の悪化を招くことになる。したがって、エンジンを冷却するにあたっては、冷却の必要性が高い部分の冷却性を高めることで、エンジンの冷却性を高めると同時に冷却損失の増大を抑制することが望ましい。
本発明は上記課題に鑑み、冷却損失の増大を抑制可能な態様で冷却性を高めることが可能なエンジンおよびエンジンの製造方法を提供することを目的とする。
本発明はボアの周辺部に冷却媒体を流通させる第1の冷却媒体通路が設けられたシリンダブロックを備え、前記シリンダブロックのうち、前記ボアよりも外側、且つ前記第1の冷却媒体通路よりも内側の所定の部分に、前記シリンダブロックのデッキ面に開口し、所定の深さを有する第1の溝部を設けるとともに、前記第1の溝部に前記シリンダブロックの母材よりも熱伝導率が高い第1の高熱伝導材を設け、前記第1の溝部に対して材料を供給し、レーザービームで溶融することで、前記第1の溝部に前記第1の高熱伝導材を前記デッキ面で露出するように設けているエンジンである。
また本発明は前記デッキ面に隣接して設けられ、前記第1の溝部に対向する部分に他の部分よりも熱伝導率が高い高熱伝導部を有するガスケットをさらに備える構成であることが好ましい。
また本発明は前記デッキ面に対向する対向面を有するシリンダヘッドをさらに備え、前記シリンダヘッドのうち、前記第1の溝部に対向する部分に、前記対向面に開口した第2の溝部を設けるとともに、前記第2の溝部に前記シリンダヘッドの母材よりも熱伝導率が高い第2の高熱伝導材を設けている構成であることが好ましい。
また本発明は前記シリンダヘッドのうち、前記第2の高熱伝導材に隣接する部分に冷却媒体を流通させる第2の冷却媒体通路をさらに設けている構成であることが好ましい。
また本発明は前記所定の部分が前記シリンダブロックのうち、排気側の部分であり、前記シリンダブロックのうち、前記ボアよりも外側、且つ前記第1の冷却媒体通路よりも内側の部分であって、さらに吸気側の部分に、前記シリンダブロックのデッキ面に開口した第3の溝部を設け、前記シリンダブロックの母材よりも熱伝導率が低い低熱伝導材を前記第3の溝部に設けている構成であることが好ましい。
また本発明は前記第1の冷却媒体通路が、前記シリンダブロックのデッキ面に開口している構成であることが好ましい。
また本発明はボアの周辺部に冷却媒体を流通させる第1の冷却媒体通路が設けられたシリンダブロックのうち、前記ボアよりも外側、且つ前記第1の冷却媒体通路よりも内側の所定の部分に、前記シリンダブロックのデッキ面に開口し、所定の深さを有する第1の溝部を設け、
前記第1の溝部に対して材料を供給し、レーザービームで溶融することで、前記シリンダブロックの母材よりも熱伝導率が高い第1の高熱伝導材を前記デッキ面で露出するように前記第1の溝部に設けるエンジンの製造方法である。
前記第1の溝部に対して材料を供給し、レーザービームで溶融することで、前記シリンダブロックの母材よりも熱伝導率が高い第1の高熱伝導材を前記デッキ面で露出するように前記第1の溝部に設けるエンジンの製造方法である。
本発明によれば、冷却損失の増大を抑制可能な態様で冷却性を高めることができる。
図面を用いて、本発明の実施例について説明する。
図1はエンジン1Aの要部の上面図である。図2はエンジン1Aの要部の断面図である。図3はエンジン1Aの要部の拡大図である。図1はシリンダブロック10Aの上面図でエンジン1Aの要部を示す。図2は図1に示すA-A断面でエンジン1Aの要部を示す。図3は図2に示すB部の拡大図でエンジン1Aの要部を示す。
エンジン1Aはシリンダブロック10Aとシリンダヘッド20Aとを備えている。シリンダブロック10Aとシリンダヘッド20Aとは図示しないピストンとともに燃焼室を形成する。シリンダブロック10Aとシリンダヘッド20Aとの間には、ガスケットを設けることができる。この点、エンジン1Aでは適宜のガスケットを用いてよいため、ガスケットについては図示省略している。
シリンダブロック10Aには、ボア11と、第1のウォータジャケット(以下、W/Jと称す)12と、第1の溝部13と、第1の高熱伝導材14とが設けられている。ボア11は直列に複数(ここでは4つ)設けられている。第1のW/J12はボア11の周辺部に設けられている。具体的には、直列に設けられた複数のボア11全体を囲むようにして設けられている。第1のW/J12はシリンダブロック10Aのデッキ面Dに開口している。第1のW/J12は、冷却媒体である冷却水を流通させる。第1のW/J12は第1の冷却媒体通路に相当する。
第1の溝部13はシリンダブロック10Aのうち、ボア11よりも外側、且つ第1のW/J12よりも内側の所定の部分に設けられている。所定の部分はボア11の全周に沿った部分となっている。第1の溝部13はデッキ面Dに開口している。第1の溝部13はデッキ面Dから所定の深さを有して設けられている。所定の深さはボア11壁部のうち、燃焼室に流入する吸気が当たる範囲に対応させて設定することができる。この場合、所定の深さは例えば30mm程度に設定することができる。
第1の溝部13それぞれは互いに連通することで、1つの第1の溝部を形成してもよい。所定の部分は例えばボア11の外周のうち、一部の部分に沿った部分であってもよい。所定の部分は複数の部分で構成されていてもよい。
第1の高熱伝導材14は、第1の溝部13に設けられている。第1の高熱伝導材14は、第1の溝部13に対して材料を供給し、レーザービームで溶融することで設けられている。第1の高熱伝導材14はデッキ面Dで露出するように設けられている。また、第1の溝部13に充填されるようにして設けられている。第1の高熱伝導材14の熱伝導率はシリンダブロック10Aの母材の熱伝導率よりも高くなっている。
図4は第1の高熱伝導材14の形成方法を模式的に示す図である。レーザークラッド装置50はレーザービーム供給源51と、集光レンザ52と、フィーダ53と、オッシレータ54と、シールドガスノズル55とを備えている。
レーザービーム供給源51はレーザービームを発生させる。レーザービームは例えばファイバーレーザーやCO2レーザーである。集光レンズ52はレーザービームを集光する。フィーダ53は第1の溝部13に対して材料を供給する。オッシレータ54は、レーザービーム供給源51から集光レンズ52を介して投射されたレーザービームを高周期振動させ、フィーダ53が供給した材料に照射する。シールドガスノズル55は材料を外部空気から遮断するシールドガスを供給する。シールドガスは例えばアルゴンガスである。
レーザークラッド装置50は、第1の溝部13に対して供給した材料をレーザービームで溶融し、肉盛り(クラッド)することで、第1の高熱伝導材14を設ける。材料には、シリンダブロック10Aの母材よりも熱伝導率が高い金属の粉末を適用する。これにより、第1の高熱伝導材14の熱伝導率をシリンダブロック10Aの母材の熱伝導率よりも高くすることができる。シリンダブロック10Aの母材は例えばアルミダイキャストであり、材料は例えば銅の粉末である。材料は例えば銅合金などの合金の粉末や、複数の種類の金属粉末を混合した金属粉末の混合物であってもよい。
第1の溝部13に第1の高熱伝導材14を設けるにあたっては、シリンダブロック10Aを適宜移動させる。これにより、材料の供給位置およびレーザービームの照射位置を変えることができる。第1の高熱伝導材14は例えば材料の供給およびレーザービームの照射を行うことが可能な同軸ノズルを用いて設けることもできる。この場合には、同軸ノズルを適宜移動させることで、材料の供給位置およびレーザービームの照射位置を変えることができる。
次にエンジン1Aの作用効果について説明する。図5はクランク角度に応じた燃焼室の熱伝達率および表面積割合を示す図である。図5から、熱伝達率は圧縮行程上死点付近で高まることがわかる。そして、圧縮行程上死点付近では、シリンダヘッド20Aとピストンの表面積割合が大きくなることがわかる。したがって、冷却損失については、シリンダヘッド20Aの温度の影響力が大きいことがわかる。一方、ノッキングは圧縮端温度に依存する。そして、圧縮端温度に影響する吸気圧縮行程では、ボア11壁部の表面積割合が大きいことがわかる。したがって、ノッキングについてはボア11壁部の温度の影響力が大きいことがわかる。
これに対し、エンジン1Aでは第1の高熱伝導材14が、ボア11壁部のうち、燃焼の影響を受けて特に高温になるボア11壁部の上部から、第1のW/J12内の冷却水への伝熱を促進する。そして、このようにして伝熱を促進することは、シリンダヘッド20Aからシリンダブロック10Aへの伝熱を特段増大させることなく行うことができる。
このため、エンジン1Aは冷却損失が増大し易いシリンダヘッド20Aの冷却性が高まることを抑制しつつ、シリンダブロック10Aの冷却性を高めることができる。そしてこれにより、冷却損失の増大を抑制しつつ、冷却性を高めることができる。結果、具体的には燃費の向上とノッキングの改善とを両立して図ることができる。
また、エンジン1Aでは、第1の溝部13に第1の高熱伝導材14を設けるにあたって、第1の溝部13に対して材料を供給し、レーザービームで溶融している。このためエンジン1Aは、第1の溝部13と第1の高熱伝導材14との密着を良好にすることができる。結果、ボア11壁部の上部からの伝熱を好適に促進できる。また、第1の溝部13に第1の高熱伝導材14を充填するように設けることで、ボア11壁部の上部からの伝熱を好適に促進できる。
また、エンジン1Aでは、第1の溝部13に第1の高熱伝導材14をデッキ面Dで露出するように設けている。このためエンジン1Aは、第1の高熱伝導材14のうち、デッキ面Dに露出した部分を介して、ボア11壁部の上部からの伝熱を促進することで、さらに好適に伝熱を促進することもできる。
また、エンジン1Aでは、第1のW/J12をデッキ面Dに開口するように設けている。このため、エンジン1Aは第1の高熱伝導材14を好適に冷却することができる。結果、ボア11壁部の上部からの伝熱をさらに好適に促進することができる。
図6はエンジン1Bの要部の拡大図である。エンジン1Bは、以下に示すガスケット30をさらに備えている点以外、エンジン1Aと実質的に同一である。ガスケット30はシリンダブロック10A、シリンダヘッド20A間に設けられている。そしてこの状態で、デッキ面Dに隣接して設けられている。
ガスケット30は、第1の溝部13に対向する部分に他の部分よりも熱伝導率が高い高熱伝導部30aを有している。高熱伝導部30aはシリンダブロック10A側およびシリンダヘッド20A側の表面で露出している。高熱伝導部30aには例えば銅や銅合金を適用できる。
次にエンジン1Bの作用効果について説明する。ここで、シリンダヘッド20Aのうち、ボア11壁部に対向する部分は、ボア11壁部の上部よりも基本的に温度が低くなる傾向がある。これに対し、エンジン1Bは、高熱伝導部30aを介してボア11壁部の上部からシリンダヘッド20Aへの伝熱を促進できる。そしてこれにより、冷却損失が生じることを抑制しつつ、シリンダブロック10Aの冷却性をさらに高めることができる。結果、エンジン1Aと比較してより好適に冷却損失の増大を抑制しつつ、冷却性を高めることができる。
図7はエンジン1Cの要部の拡大図である。エンジン1Cはシリンダヘッド20Aの代わりにシリンダヘッド20Bを備えている点以外、エンジン1Bと実質的に同一である。シリンダヘッド20Bは第2の溝部21と第2の高熱伝導材22とがさらに設けられている点以外、シリンダヘッド20Aと実質的に同一である。なお、同様の変更を例えばエンジン1Aに対して行うこともできる。
第2の溝部21は、シリンダヘッド20Bのうち、第1の溝部13に対向する部分に設けられている。第2の溝部21は、デッキ面Dに対向する対向面に開口している。第2の高熱伝導材22は第2の溝部21に設けられている。第2の高熱伝導材22の熱伝導率はシリンダヘッド20Bの母材の熱伝導率よりも高くなっている。
第2の高熱伝導材22は、第2の溝部21に対して材料を供給し、レーザービームで溶融することで設けられている。第2の高熱伝導材22は例えばレーザークラッド装置50を用いて設けることができる。このとき、シリンダヘッド20Bの母材よりも熱伝導率が高い金属の粉末を材料に適用することで、第2の高熱伝導材22の熱伝導率をシリンダヘッド20Bの母材の熱伝導率よりも高くすることができる。シリンダヘッド20Bの母材は例えばアルミダイキャストであり、材料は例えば銅の粉末や合金の粉末や複数の金属粉末の混合物である。
次にエンジン1Cの作用効果について説明する。エンジン1Cは、受熱した第2の高熱伝導材22からシリンダヘッド20Bのうち、第2の高熱伝導材22よりも温度が低くなっている部分への伝熱を促進できる。そしてこれにより、第2の高熱伝導材22からの熱の引きを良くすることで、ボア11壁部の上部からシリンダヘッド20Bへの伝熱をさらに促進できる。結果、エンジン1Bと比較してより好適に冷却損失の増大を抑制しつつ、冷却性を高めることができる。
また、エンジン1Cは、第2の溝部21に第2の高熱伝導材22を設けるにあたって、第2の溝部21に対して材料を供給し、レーザービームで溶融している。このためエンジン1Cは、第2の溝部21と第2の高熱伝導材22との密着を良好にすることができる。結果、ボア11壁部の上部からの伝熱を好適に促進できる。また、第2の溝部21に第2の高熱伝導材22を充填するように設けることで、ボア11壁部の上部からの伝熱を好適に促進できる。
図8はエンジン1Dの要部の拡大図である。エンジン1Dはシリンダヘッド20Bの代わりにシリンダヘッド20Cを備えている点以外、エンジン1Cと実質的に同一である。シリンダヘッド20Cは、第2のW/J23をさらに備えている点以外、シリンダヘッド20Bと実質的に同一である。
第2のW/J23は冷却水を流通させる。第2のW/J23は、シリンダヘッド20Cのうち、第2の高熱伝導材22に隣接する部分に設けられている。したがって、第2のW/J23を流通する冷却水は、第2の高熱伝導材22に接触するようになっている。
次にエンジン1Dの作用効果について説明する。エンジン1Dは、第2のW/J23を流通する冷却水によって、第2の高熱伝導材22からの熱の引きを良くすることができる。そしてこれにより、ボア11壁部の上部からシリンダヘッド20Cへの伝熱をさらに促進できる。結果、エンジン1Cと比較してより好適に冷却損失の増大を抑制しつつ、冷却性を高めることができる。
図9はエンジン1Eの要部の上面図である。図10はエンジン1Eの要部の断面図である。図10は図9に示すB-B断面でエンジン1Eを示す。エンジン1Eは、シリンダブロック10Aの代わりにシリンダブロック10Bを備える点以外、エンジン1Aと実質的に同一のものである。なお、同様の変更を例えばエンジン1B、1C、1Dに対して行うこともできる。シリンダブロック10Bは第1の溝部13の代わりに第1の溝部13´が設けられている点と、第3の溝部15および低熱伝導材16がさらに設けられている点以外、シリンダブロック10Aと実質的に同一である。
第1の溝部13´は、シリンダブロック10Bのうち、排気側の部分を所定の部分として、ボア11よりも外側、且つ第1のW/J12よりも内側の所定の部分に設けられている。この点以外、第1の溝部13´は第1の溝部13と実質的に同一である。
第3の溝部15は、シリンダブロック10Bのうち、ボア11よりも外側、且つW/J12よりも内側の部分であって、さらに吸気側の部分に設けられている。第3の溝部15は、シリンダブロック10Bのデッキ面Dに開口している。低熱伝導材16は第3の溝部15に設けられている。低熱伝導材16の熱伝導率はシリンダブロック10Bの母材の熱伝導率よりも低くなっている。
第1の溝部13´と第1の高熱伝導材14とは、シリンダブロック10Bのうち、少なくとも排気側の部分に設けられていればよい。また、第3の溝部15と低熱伝導材16とはシリンダブロック10Bのうち、少なくとも吸気側の部分に設けられていればよい。また、第1の溝部13´と第3の溝部15とは連通していてよい。この場合、第1の高熱伝導材14が設けられている部分を第1の溝部13´とみなすことができる。また、低熱伝導材16が設けられている部分を第3の溝部15とみなすことができる。
低熱伝導材16は、第3の溝部15に対して材料を供給し、レーザービームで溶融することで設けられている。低熱伝導材16は例えばレーザークラッド装置50を用いて設けることができる。このとき、シリンダブロック10Bの母材よりも熱伝導率が低い金属の粉末を材料に適用することで、低熱伝導材16の熱伝導率をシリンダブロック10Bの母材の熱伝導率よりも低くすることができる。シリンダボロック10Bの母材は例えばアルミダイキャストであり、材料は例えばアルミダイキャストよりも熱伝導率が低い合金の粉末である。材料はその他の金属の粉末や、複数の金属粉末の混合物であってもよい。
次にエンジン1Eの作用効果について説明する。ここで、ボア11壁部の上部のうち、排気側の部分は筒内に流入する吸気が当たる部分となっている。また、ボア11壁部の上部のうち、隣り合うボア11同士の間の部分は、燃焼の影響を受けて特に高温になり易い部分となっている。これに対し、エンジン1Eはシリンダブロック10Bのうち、排気側の部分に対して第1の高熱伝導材14を設けることで、これら冷却の必要性が高い部分を好適に冷却できる。また、吸気の冷却効果でノッキングの発生も抑制できる。
一方、エンジン1Eはシリンダブロック10Bのうち、吸気側の部分に低熱伝導材16を設けることで、ボア11壁部の上部のうち、吸気側の部分については伝熱を抑制できる。そしてこれにより、冷却損失の低減を図ることができる。したがって、エンジン1Eは冷却の必要性が高い部分の伝熱を促進する一方、冷却の必要性が相対的に低い部分の伝熱を抑制することで、エンジン1Aと比較してさらに冷却損失の増大を抑制することができる。
図11はエンジン1Fの要部の上面図である。図12はエンジン1Fの要部の断面図である。図12は図11に示すC-C断面でエンジン1Fを示す。エンジン1Fはシリンダブロック10Aの代わりにシリンダブロック10Cを備える点以外、エンジン1Aと実質的に同一である。シリンダブロック10Cは、シリンダライナ35がさらに設けられている点と、第1の溝部13の代わりに第1の溝部13´´が設けられている点以外、エンジン1Aと実質的に同一である。なお、同様の変更を例えばエンジン1B、1C、1D、1Eに対して行うこともできる。
シリンダライナ35はシリンダブロック10Cに設けられている。シリンダライナ35はボア11を形成している。シリンダライナ35の材質は例えば炭素鋼である。シリンダライナ35はシリンダブロック10Cに鋳込まれている。シリンダライナ35は例えば圧入によってシリンダブロック10Cに設けられてもよい。
第1の溝部13´´は、シリンダブロック10Cのうち、排気側の部分を所定の部分として、ボア11よりも外側、且つ第1のW/J12よりも内側の所定の部分に設けられている。第1の溝部13´´はシリンダブロック10Cとシリンダライナ35との接触面を含むように設けられている。また、ボア11壁部のうち、燃焼室に流入する吸気が当たる範囲に対応する深さを所定の深さとして、デッキ面Dから所定の深さを有して設けられている。これらの点以外、第1の溝部13´´は第1の溝部13と実質的に同一である。
次にエンジン1Fの作用効果について説明する。ここで、シリンダブロック10Cとシリンダライナ35とは微視的には必ずしも密着しておらず、局所的に隙間を有しながら互いに接触している。このため、シリンダライナ35から第1のW/J12への伝熱は、隙間による断熱作用が働く分、抑制されることになる。
これに対し、エンジン1Fは第1の溝部13´´に対して材料を供給し、レーザービームで溶融することで、第1の溝部13´´に設ける第1の高熱伝導材14が、シリンダライナ35とシリンダブロック10Aとに密着する。このため、エンジン1Fによればシリンダライナ35を備える場合でも、好適に冷却損失の増大を抑制しつつ、冷却性を高めることができる。
また、エンジン1Fは、第1の溝部13´´が有する所定の深さをボア11壁部のうち、燃焼室に流入する吸気が当たる範囲に対応させて設定している。このため、エンジン1Fは吸気の温度上昇を好適に抑制することもできる。結果、ノッキングの発生をさらに好適に抑制することもできる。
以上、本発明の実施例について詳述したが、本発明はかかる特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
エンジン 1A、1B、1C、1D、1E、1F
シリンダブロック 10A、10B、10C
ボア 11
第1のW/J 12
第1の溝部 13、13´、13´´
第1の高熱伝導材 14
第3の溝部 15
低熱伝導材 16
シリンダヘッド 20A、20B、20C
第2の溝部 21
第2の高熱伝導材 22
第2のW/J 23
ガスケット 30
高熱伝導部 31
シリンダライナ 35
レーザークラッド装置 50
シリンダブロック 10A、10B、10C
ボア 11
第1のW/J 12
第1の溝部 13、13´、13´´
第1の高熱伝導材 14
第3の溝部 15
低熱伝導材 16
シリンダヘッド 20A、20B、20C
第2の溝部 21
第2の高熱伝導材 22
第2のW/J 23
ガスケット 30
高熱伝導部 31
シリンダライナ 35
レーザークラッド装置 50
Claims (7)
- ボアの周辺部に冷却媒体を流通させる第1の冷却媒体通路が設けられたシリンダブロックを備え、
前記シリンダブロックのうち、前記ボアよりも外側、且つ前記第1の冷却媒体通路よりも内側の所定の部分に、前記シリンダブロックのデッキ面に開口し、所定の深さを有する第1の溝部を設けるとともに、前記第1の溝部に前記シリンダブロックの母材よりも熱伝導率が高い第1の高熱伝導材を設け、
前記第1の溝部に対して材料を供給し、レーザービームで溶融することで、前記第1の溝部に前記第1の高熱伝導材を前記デッキ面で露出するように設けているエンジン。 - 請求項1記載のエンジンであって、
前記デッキ面に隣接して設けられ、前記第1の溝部に対向する部分に他の部分よりも熱伝導率が高い高熱伝導部を有するガスケットをさらに備えるエンジン。 - 請求項1または2記載のエンジンであって、
前記デッキ面に対向する対向面を有するシリンダヘッドをさらに備え、
前記シリンダヘッドのうち、前記第1の溝部に対向する部分に、前記対向面に開口した第2の溝部を設けるとともに、前記第2の溝部に前記シリンダヘッドの母材よりも熱伝導率が高い第2の高熱伝導材を設けているエンジン。 - 請求項3記載のエンジンであって、
前記シリンダヘッドのうち、前記第2の高熱伝導材に隣接する部分に冷却媒体を流通させる第2の冷却媒体通路をさらに設けているエンジン。 - 請求項1または2記載のエンジンであって、
前記所定の部分が前記シリンダブロックのうち、排気側の部分であり、
前記シリンダブロックのうち、前記ボアよりも外側、且つ前記第1の冷却媒体通路よりも内側の部分であって、さらに吸気側の部分に、前記シリンダブロックのデッキ面に開口した第3の溝部を設け、
前記シリンダブロックの母材よりも熱伝導率が低い低熱伝導材を前記第3の溝部に設けているエンジン。 - 請求項1から5いずれか1項記載のエンジンであって、
前記第1の冷却媒体通路が、前記シリンダブロックのデッキ面に開口しているエンジン。 - ボアの周辺部に冷却媒体を流通させる第1の冷却媒体通路が設けられたシリンダブロックのうち、前記ボアよりも外側、且つ前記第1の冷却媒体通路よりも内側の所定の部分に、前記シリンダブロックのデッキ面に開口し、所定の深さを有する第1の溝部を設け、
前記第1の溝部に対して材料を供給し、レーザービームで溶融することで、前記シリンダブロックの母材よりも熱伝導率が高い第1の高熱伝導材を前記デッキ面で露出するように前記第1の溝部に設けるエンジンの製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2010/070323 WO2012066624A1 (ja) | 2010-11-16 | 2010-11-16 | エンジンおよびエンジンの製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2010/070323 WO2012066624A1 (ja) | 2010-11-16 | 2010-11-16 | エンジンおよびエンジンの製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012066624A1 true WO2012066624A1 (ja) | 2012-05-24 |
Family
ID=46083590
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/070323 WO2012066624A1 (ja) | 2010-11-16 | 2010-11-16 | エンジンおよびエンジンの製造方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2012066624A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54165602U (ja) * | 1978-05-12 | 1979-11-20 | ||
JPS5620041U (ja) * | 1979-07-23 | 1981-02-21 | ||
JPS5985446A (ja) * | 1982-11-04 | 1984-05-17 | Fuji Heavy Ind Ltd | 多気筒内燃機関のシリンダブロツク |
JPH0441961A (ja) * | 1990-06-04 | 1992-02-12 | Toyota Motor Corp | エンジン用シリンダブロック |
JPH08296417A (ja) * | 1995-04-26 | 1996-11-12 | Yamaha Motor Co Ltd | エンジン用シリンダヘッド |
JP2004197677A (ja) * | 2002-12-19 | 2004-07-15 | Toyota Industries Corp | エンジンのシリンダヘッド |
-
2010
- 2010-11-16 WO PCT/JP2010/070323 patent/WO2012066624A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54165602U (ja) * | 1978-05-12 | 1979-11-20 | ||
JPS5620041U (ja) * | 1979-07-23 | 1981-02-21 | ||
JPS5985446A (ja) * | 1982-11-04 | 1984-05-17 | Fuji Heavy Ind Ltd | 多気筒内燃機関のシリンダブロツク |
JPH0441961A (ja) * | 1990-06-04 | 1992-02-12 | Toyota Motor Corp | エンジン用シリンダブロック |
JPH08296417A (ja) * | 1995-04-26 | 1996-11-12 | Yamaha Motor Co Ltd | エンジン用シリンダヘッド |
JP2004197677A (ja) * | 2002-12-19 | 2004-07-15 | Toyota Industries Corp | エンジンのシリンダヘッド |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8096270B2 (en) | Cylinder block and method for manufacturing the same | |
US7685987B2 (en) | Cylinder liner and method for manufacturing the same | |
US9810174B2 (en) | Constructions for piston thermal management | |
US7895936B2 (en) | Piston with a lightweight construction that is subjected to high thermal stress | |
JP2015511674A (ja) | 軽金属鋳造ピストン | |
US20160123273A1 (en) | Piston for an internal combustion engine | |
JPS59101565A (ja) | シリンダライナ | |
WO2012066624A1 (ja) | エンジンおよびエンジンの製造方法 | |
JP2012117399A (ja) | シリンダブロックの冷却構造、およびシリンダブロックの冷却構造の製造方法 | |
JP2020067045A (ja) | シリンダブロック | |
WO2018198786A1 (ja) | 内燃機関のピストン及び内燃機関のピストン冷却制御方法 | |
CN110454293B (zh) | 用于内燃机的气缸盖 | |
KR100828803B1 (ko) | 과공정 Al-Si합금을 이용한 일체형 알루미늄 라이너를 포함하는 알루미늄 실린더블록 제조 방법 | |
JP6526456B2 (ja) | ディーゼルエンジン | |
JP2020029805A (ja) | シリンダライナ、ブロックの製造方法及びシリンダライナの製造方法 | |
JP6117575B2 (ja) | 鋳造用金型装置 | |
JP7595302B2 (ja) | エンジンブロック、樹脂ブロック及びエンジンブロックの製造方法 | |
KR20210059643A (ko) | 가스 교환 밸브의 밸브 시트 링 및 가스 교환 밸브 | |
JP7675982B2 (ja) | エンジンブロック、樹脂ブロック及びエンジンブロックの製造方法 | |
JP7675983B2 (ja) | エンジンブロック及びエンジンブロックの製造方法 | |
JPS5985446A (ja) | 多気筒内燃機関のシリンダブロツク | |
JP2015522738A (ja) | ピストンとクランクケースとから成る内燃機関用のアッセンブリ | |
JP7134568B2 (ja) | 内燃機関のシリンダの構造 | |
JPH08232758A (ja) | 内燃機関のピストン並びにその製造方法 | |
JPS5870038A (ja) | 内燃機関のピストン |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10859775 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10859775 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |