WO2012057228A1 - フェノール系オリゴマー及びその製造方法 - Google Patents
フェノール系オリゴマー及びその製造方法 Download PDFInfo
- Publication number
- WO2012057228A1 WO2012057228A1 PCT/JP2011/074719 JP2011074719W WO2012057228A1 WO 2012057228 A1 WO2012057228 A1 WO 2012057228A1 JP 2011074719 W JP2011074719 W JP 2011074719W WO 2012057228 A1 WO2012057228 A1 WO 2012057228A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- epoxy resin
- phenol
- allyl group
- substituted
- phenol compound
- Prior art date
Links
- UHOVQNZJYSORNB-UHFFFAOYSA-N c1ccccc1 Chemical compound c1ccccc1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/29—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
- H01L23/293—Organic, e.g. plastic
- H01L23/295—Organic, e.g. plastic containing a filler
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G8/00—Condensation polymers of aldehydes or ketones with phenols only
- C08G8/28—Chemically modified polycondensates
- C08G8/30—Chemically modified polycondensates by unsaturated compounds, e.g. terpenes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C39/00—Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
- C07C39/205—Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic, containing only six-membered aromatic rings as cyclic parts with unsaturation outside the rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C39/00—Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
- C07C39/12—Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings
- C07C39/15—Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings with all hydroxy groups on non-condensed rings, e.g. phenylphenol
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/02—Polycondensates containing more than one epoxy group per molecule
- C08G59/04—Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
- C08G59/06—Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
- C08G59/08—Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols from phenol-aldehyde condensates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/62—Alcohols or phenols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/62—Alcohols or phenols
- C08G59/621—Phenols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G8/00—Condensation polymers of aldehydes or ketones with phenols only
- C08G8/04—Condensation polymers of aldehydes or ketones with phenols only of aldehydes
- C08G8/08—Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
- C08G8/20—Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ with polyhydric phenols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G8/00—Condensation polymers of aldehydes or ketones with phenols only
- C08G8/04—Condensation polymers of aldehydes or ketones with phenols only of aldehydes
- C08G8/08—Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
- C08G8/20—Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ with polyhydric phenols
- C08G8/22—Resorcinol
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/29—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/31—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/29—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
- H01L23/291—Oxides or nitrides or carbides, e.g. ceramics, glass
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/29—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
- H01L23/293—Organic, e.g. plastic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Definitions
- the present invention can be used as a raw material for epoxidized novolac resins, particularly semiconductor encapsulants and underfills.
- the present invention relates to a phenolic oligomer optimum as a curing agent for an epoxy resin used for a material, a method for producing the same, and the like.
- a phenolic curing agent obtained by dissolving a semi-solid or solid phenol novolac resin in a solvent has been used.
- liquid phenol novolak resins allyl group-containing phenol novolak resins (see, for example, Patent Document 1, Patent Document 2, and Patent Document 3), and allylated products of trihydroxyphenylmethane type phenol novolak resins (for example, , See Patent Document 4).
- phenol novolac resin has poor fluidity when used as a sealing material. Those using a solvent to improve the fluidity are not preferable because the solvent remaining in the sealing material after curing causes voids and the like, which adversely affects reliability.
- the allyl group-containing phenol novolac resin has a problem that although the fluidity is good (because it is liquid), the heat resistance of the cured product is not sufficient.
- the trihydroxyphenylmethane type phenol novolac resin has sufficient fluidity.
- the conventional phenol novolac resin has a problem that it cannot achieve both low viscosity and heat resistance of the cured product.
- An object of the present invention is to provide a phenolic oligomer that achieves both low viscosity and high heat resistance of a cured product thereof, a method for producing the same, a curing agent comprising such a phenolic oligomer, an epoxy resin and an epoxy resin composition using these, and this It is providing the sealing material for semiconductors which consists of an epoxy resin composition, an underfill material, etc.
- the present invention has the following configuration.
- the following general formula (1) (Where n is an integer from 0 to 15, R is an allyl group; a1 and a3 are each independently 0, 1, 2 or 3, Each a2 is independently 0, 1 or 2, Each R ′ is independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms or an aryl group, (However, at least one of a1, each a2, and a3 is 2.)
- a phenolic oligomer represented by [2] At least one of the following general formula (2) (Wherein R is an allyl group and a is 0, 1, 2 or 3), and a phenol compound component containing a divalent allyl group-substituted phenol compound, At least one of the following general formula (3)
- a method for producing a phenolic oligomer, comprising a step of reacting an aldehyde compound represented by the formula (wherein R ′ is a hydrogen atom, an alkyl group having 1 to 10 carbon atom
- a phenol compound component at least one of the following general formula (4) (Wherein R is an allyl group and b is 0, 1, 2 or 3).
- [4] The process according to [2] or [3] above, wherein the molar ratio of the phenol compound component to the aldehyde compound is 1.2: 1 to 10: 1.
- [5] The production method according to any one of [2] to [4] above, wherein allyl group-substituted resorcin is included as a phenol compound component.
- a curing agent for epoxy resins comprising the phenolic oligomer according to [1], [10] or [11].
- An epoxy resin composition comprising the phenol oligomer described in [1], [10] or [11] and the epoxy resin described in [13].
- An epoxy resin composition comprising a phenol resin and the epoxy resin according to the above [13].
- a semiconductor element sealing material comprising the epoxy resin composition according to any one of [14] to [16].
- An underfill material for a semiconductor element comprising the epoxy resin composition according to any one of [14] to [16].
- a phenolic oligomer that achieves both low viscosity and high heat resistance of the cured product, a method for producing the same, a curing agent comprising such a phenolic oligomer, an epoxy resin and an epoxy resin composition using these, and this
- a sealing material for semiconductors, an underfill material, and the like made of an epoxy resin composition can be provided.
- the HPLC measurement result of the allyl group substituted resorcin obtained in Synthesis Example 1 is shown.
- the GC analysis result of the sample (sample 1) fractionated by TLC from the isomer mixture of allyl group-substituted resorcinol is shown.
- the GC analysis result of the sample (sample 2) fractionated by TLC from the isomer mixture of an allyl group substituted resorcin is shown.
- the 1 H NMR analysis result of Sample 1 is shown.
- the 1 H NMR analysis result of Sample 2 is shown.
- the GPC chart of the phenolic oligomer obtained in Example 1 is shown.
- the phenolic oligomer of the present invention is represented by the following general formula (1).
- n is an integer from 0 to 15
- R is an allyl group
- a1 and a3 are each independently 0, 1, 2, or 3
- Each a2 is independently 0, 1 or 2
- Each R ′ is independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms or an aryl group, However, at least one of a1, each a2, and a3 is 2. It is preferable that two or more of a1, each a2, and a3 are 2.
- the phenolic oligomer represented by the general formula (1) has 0, 1, 2, or 3, preferably 1, 2, or 3, more preferably 1 or 2, and further preferably 2 allyl groups. It is characterized in that it contains a condensation unit of a substituted divalent phenolic compound (hereinafter also referred to as a divalent allyl group-substituted phenolic compound) and an aldehyde compound.
- a condensation unit of a substituted divalent phenolic compound hereinafter also referred to as a divalent allyl group-substituted phenolic compound
- an aldehyde compound for example, Patent Documents 1 to 4
- the viscosity thereof and a cured product thereof here, the cured product is obtained by adding the phenolic oligomer of the present invention to a curing agent or an epoxy resin.
- the heat resistance of a cured product obtained using a phenolic oligomer compound can be improved (which is intended to be a cured product obtained by using as a
- structural units derived from a divalent phenol compound substituted with two allyl groups (a1, a2, and a3 in the phenolic oligomer represented by the general formula (1) 2) is preferably 50 to 100 mol%, more preferably 60 to 100 mol%, still more preferably 70 to 100 mol%, and still more preferably 80 to 100 mol% in all structural units derived from a divalent phenol compound. It is 100 mol%, more preferably 90 to 100 mol%, still more preferably 95 to 100 mol%.
- a structural unit derived from a divalent phenol compound in which the allyl group is unsubstituted (a1, a2, and a3 are 0). May be contained within a range that does not hinder the heat resistance of the cured product produced by this composition by excessively increasing the viscosity of the phenolic oligomer.
- the polycondensation degree n is preferably 0 to 10, more preferably 0 to 7, and still more preferably 0 to 5. It is.
- a phenol compound component containing a divalent allyl group-substituted phenol compound and a aldehyde compound are subjected to a condensation polymerization reaction, or a dihydric phenol and an aldehyde compound are subjected to a condensation polymerization reaction. Thereafter, there is a method in which at least two allyl substituents are bonded to the structural unit derived from the phenol compound.
- a phenolic compound component containing a divalent allyl group-substituted phenolic compound, an aldehyde compound, A method of subjecting to a polycondensation reaction is preferred.
- the method for producing a phenolic oligomer of the present invention comprises at least one of the following general formula (2) (Wherein R is an allyl group, and a is 0, 1, 2, or 3) and a phenol compound component containing a divalent allyl group-substituted phenol compound, and at least one of the following general formulas Formula (3) (Wherein R ′ is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms or an aryl group) and a step of reacting with the aldehyde compound.
- the production method of the present invention further comprises at least one of the following general formula (4) as a phenol compound component.
- R is an allyl group and b is 0, 1, 2, or 3).
- the viewpoint of ensuring the heat resistance and the viscosity of the obtained phenolic oligomer in a predetermined range is also referred to as a low viscosity viewpoint.
- the mixing ratio of the divalent allyl group-substituted phenol compound represented by the general formula (2) is the total amount of the phenol compound component (at least one divalent allyl group-substituted phenol represented by the general formula (2)).
- the amount of the compound, or the amount of the divalent allyl group-substituted phenol compound represented by at least one general formula (2) and, if present, the at least one general formula (4) Preferably 50 to 100 mol%, more preferably 60 to 100 mol%, still more preferably 70 to 100 mol%, and further to the total amount of monovalent phenolic compounds) 80 to 100 mol% is preferred, more preferably 90 to 100 mol%, more preferably 95 to 100 mol%.
- the phenol compound component other than the divalent allyl group-substituted phenol compound represented by the general formula (2) is represented by the general formula (4).
- the compounding ratio is preferably from 0 to 50 mol%, more preferably from 0 to 40 mol%, still more preferably based on the total amount of the phenolic compound components. It is 0 to 30 mol%, more preferably 0 to 20 mol%, more preferably 0 to 10 mol%, and still more preferably 0 to 5 mol%.
- the production method of the present invention when the amount of the aldehyde compound added relative to the total amount of the phenol compound component is reduced, the obtained phenol oligomer is reduced in molecular weight, and as a result, the viscosity of the phenol oligomer can be reduced. Therefore, in the production method of the present invention, from the viewpoint of low viscosity, from the viewpoint of appropriately securing the glass transition point and mechanical strength of the cured epoxy resin obtained by reacting this phenolic oligomer with an epoxy resin, a phenol compound
- the molar ratio of the total amount of the components to the aldehyde compound is 1.2: 1 to 10: 1, preferably 1.3: 1 to 9: 1, more preferably 1.4: 1 to 8: 1.
- the divalent allyl group-substituted phenolic compound represented by the general formula (2) and the monovalent phenolic compound represented by the general formula (4) used in the production method of the present invention have a phenolic hydroxyl group of phenol. It may be obtained by allyl etherification and then substituting the allyl group with a phenol nucleus by Claisen rearrangement.
- a phenol used as a raw material a monocyclic phenol having one or two phenolic hydroxyl groups in a benzene ring can be used.
- phenol for example, as monohydric phenol, phenol, cresol, ethylphenol, propylphenol, butylphenol, xylenol, butylmethylphenol and the like, and as divalent phenol, resorcin, catechol, hydroquinone and the like can be mentioned.
- divalent phenol resorcin, catechol, hydroquinone and the like
- preferred as raw materials are dihydric phenol resorcin and catechol from the viewpoint of ensuring the heat resistance of the phenolic oligomer of the present invention, and more preferably resorcin.
- the allyl etherification reaction can be performed by a known method. For example, after phenol as a raw material is dissolved in an organic solvent and / or water, an alkali is added to form phenolate, and allyl halides such as allyl chloride, allyl bromide, allyl iodide, etc. are added to this at room temperature to 100 ° C. The reaction can be carried out by reacting for 1 to 10 hours.
- Examples of the organic solvent used here include alcohols such as n-propanol and n-butanol, ketones such as acetone and methyl ethyl ketone, and aprotic polar solvents such as N, N-dimethylformamide and dimethyl sulfoxide.
- alcohols such as n-propanol and n-butanol
- ketones such as acetone and methyl ethyl ketone
- aprotic polar solvents such as N, N-dimethylformamide and dimethyl sulfoxide.
- the allyl group bonded to the hydroxyl group by the Claisen rearrangement is rearranged to the phenol nucleus, and an allyl group-substituted phenol compound can be obtained.
- This allyl group is usually rearranged to the ortho position with respect to the hydroxyl group, but when the ortho position is blocked with a substituent such as an alkyl group, it is said to rearrange to the para position.
- the phenol compound component containing at least one divalent allyl group-substituted phenol compound represented by the general formula (2) used in the production method of the present invention can react as described above from the divalent phenol used as a raw material. It may be a compound obtained through the process, and may be a single compound or a mixture of two or more compounds.
- the monovalent phenol compound represented by the general formula (4) that can be used as a phenol compound component in the production method of the present invention is also a compound obtained from the monovalent phenol as a raw material through the above reaction. It may be a single or a mixture of two or more.
- examples of the monovalent allyl group-substituted phenol compound include allylphenol, diallylphenol, and triallylphenol.
- Divalent allyl group-substituted phenolic compounds include allyl group-substituted catechols such as monoallyl catechol, diallyl catechol, triallyl catechol, allyl group-substituted hydroquinones such as monoallyl hydroquinone, diallyl hydroquinone, triallyl hydroquinone, monoallyl resorcin, diallyl Examples include allyl group-substituted resorcin such as resorcin and triallyl resorcin.
- allyl group-substituted resorcin is preferable, and specifically, monoallyl resorcin, diallyl resorcin, triallyl resorcin, preferably diallyl resorcin.
- a trivalent allyl group-substituted phenol compound (monoallyl pyrogallol, diallyl pyrogallol, etc.) may also be used as long as the effects of the present invention are not impaired.
- a mixture of divalent allyl group-substituted phenolic compounds mainly composed of two isomers of 2,4-diallyl resorcin and 4,6-diallyl resorcin ( A mono- or triallyl-substituted product or the like may be contained as a minor component).
- each isomer can be separated and used alone from a mixture of divalent allyl group-substituted phenolic compounds mainly composed of two kinds of isomers, but the mixture mainly composed of isomers is used as it is. There is no problem even if it is used.
- a mixture containing an isomer as a main component as it is.
- “consisting mainly of two isomers” means that the total amount of the two isomers is 50 to 100 mol%, preferably the total amount of the divalent allyl group-substituted phenolic compound. It means 60 to 100 mol%, more preferably 70 to 100 mol%, further preferably 80 to 100 mol%, particularly preferably 90 to 100 mol%, still more preferably 95 to 100 mol%.
- the phenol compound component used is composed mainly of two isomers of 2,4-diallyl resorcin and 4,6-diallyl resorcin
- a smaller proportion of 6-diallyl resorcin is preferred.
- the proportion of 4,6-diallyl resorcin in the phenol compound component is preferably 5 to 85 mol%, more preferably 10 to 80 mol%, and still more preferably 15 to 75 mol%.
- R 3 is preferably a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, more preferably a hydrogen atom. That is, a more preferable aldehyde compound is formaldehyde.
- the formaldehyde includes a formalin aqueous solution and paraformaldehyde
- the alkyl aldehyde includes hexanal and octanal
- the aromatic aldehyde compound includes benzaldehyde, salicylaldehyde, parahydroxybenzaldehyde, allylphenylaldehyde, and the like.
- the aldehyde compound is preferably an easy-to-handle formalin aqueous solution from the viewpoint of easy handling and low viscosity, and a commercially available 42% formaldehyde aqueous solution can be used as it is.
- the polycondensation reaction can be performed with no catalyst added or with an acid catalyst added.
- the acid catalyst used in the reaction is not particularly limited, and known ones such as hydrochloric acid, succinic acid, sulfuric acid, phosphoric acid, and paratoluenesulfonic acid can be used. These may be used alone or in combination of two or more.
- oxalic acid and hydrochloric acid are preferred among the above from the viewpoint that they can be easily removed.
- the amount used when an acid catalyst is used is preferably 0.001 to 5.5 based on 100 parts by weight of the phenol compound component from the viewpoint of securing an appropriate reaction rate for controlling the reaction.
- the amount is 0 part by weight, more preferably 0.001 to 2.5 parts by weight, still more preferably 0.001 to 2.0 parts by weight.
- the reaction temperature is preferably 50 to 160 ° C., more preferably 70 to 150 ° C., from the viewpoint of ensuring a suitable reaction rate for smoothly reacting the aldehyde compound and controlling the reaction.
- the reaction time varies depending on the reaction temperature and the type and amount of the catalyst used, but is preferably 1 to 24 hours, more preferably 1 to 20 hours, and even more preferably 1 to 16 hours.
- the reaction pressure is usually normal pressure, but there is no problem even if it is carried out under pressure or reduced pressure.
- the unreacted allyl group-substituted phenol compound does not have to be removed.
- unreacted allyl group can be removed under reduced pressure or under heating with an inert gas.
- a method of distilling the group-substituted phenol compound out of the system is common.
- the acid catalyst can be removed by a method such as washing with water in addition to thermal decomposition and removal under reduced pressure.
- the purity of the phenol-based oligomer obtained by the production method of the present invention is preferably 100% by weight from the viewpoint of heat resistance, but considering production efficiency, unreacted substances and Trace amounts of by-products may be contained, in which case the purity of the resulting phenolic oligomer composition is preferably 70 to 100% by weight, more preferably 80 to 100% by weight, still more preferably 90 to 100% by weight. %, More preferably 95 to 100% by weight.
- the purity can be calculated by GPC measurement as described later.
- the phenolic oligomer represented by the general formula (1) of the present invention and the phenolic oligomer obtained by the production method of the present invention have a rotational viscosity by an E-type viscometer at 70 ° C. of 0.01.
- To 100 Pa ⁇ s preferably 0.01 to 50 Pa ⁇ s, more preferably 0.01 to 40 Pa ⁇ s, still more preferably 0.01 to 30 Pa ⁇ s, still more preferably 0.01 to 20 Pa ⁇ s, and still more preferably.
- the phenolic oligomer represented by the general formula (1) of the present invention and the phenolic oligomer obtained by the production method of the present invention preferably have a rotational viscosity by an E-type viscometer at 25 ° C. Is 0.01 to 150 Pa ⁇ s, more preferably 0.01 to 130 Pa ⁇ s, still more preferably 0.01 to 100 Pa ⁇ s, still more preferably 0.01 to 80 Pa ⁇ s, and still more preferably. Is 0.01 to 70 Pa ⁇ s, more preferably 0.01 to 60 Pa ⁇ s.
- the phenol oligomer represented by the general formula (1) of the present invention is obtained by the production method of the present invention, the phenol oligomer is used from the viewpoint of setting the rotational viscosity of the phenol oligomer by the E-type viscometer to the above range.
- the degree of polycondensation n is from 0 to 15, preferably from 0 to 10, more preferably from 0 to 7, and even more preferably from 0 to 4, and the average condensation degree of the phenolic oligomer is from 0 to 5, It is preferable to control the polycondensation reaction so that it is preferably 0 to 4, more preferably 0 to 3.
- a phenol compound component particularly a divalent allyl group-substituted phenol compound and formaldehyde are 1.2: 1 to 10: 1, preferably 1.3: 1 to 9: 1, more preferably 1.
- the degree of condensation polymerization and the average condensation polymerization can be controlled within the above preferred ranges.
- the above degree of condensation polymerization and average degree of condensation polymerization can be determined by GPC measurement as described later.
- the phenolic oligomer represented by the general formula (1) of the present invention and the phenolic oligomer obtained by the production method of the present invention are epoxy resins as they are. It can also be used as a curing agent for binders, coating materials, laminated materials, molding materials and the like.
- the phenolic oligomer of the present invention can be made into an epoxy resin (i) by reacting with epihalohydrin.
- an epoxy resin (i) for example, when epichlorohydrin is used as the epihalohydrin, an excess of epichlorohydrin is added to the phenolic oligomer of the present invention, and sodium hydroxide or
- An example is a method of reacting in the presence of an alkali metal hydroxide such as potassium hydroxide at 50 to 150 ° C., preferably 60 to 120 ° C. for about 1 to 10 hours.
- the amount of epichlorohydrin used is 2 to 15 times mol, preferably 2 to 10 times mol, based on the hydroxyl equivalent of the phenolic oligomer of the present invention.
- the amount of the alkali metal hydroxide to be used is 0.8 to 1.2 times mol, preferably 0.9 to 1.1 times mol, based on the hydroxyl group equivalent of the phenolic oligomer of the present invention.
- excess epichlorohydrin is distilled off after completion of the reaction, the residue is dissolved in an organic solvent such as methyl isobutyl ketone, filtered, washed with water to remove inorganic salts, and then the organic solvent is distilled off. By leaving, the target epoxy resin can be obtained.
- epichlorohydrin As the epihalohydrin to be reacted with the phenolic oligomer of the present invention, epichlorohydrin, ⁇ -methylepichlorohydrin, ⁇ -methylepichlorohydrin, epibromohydrin and the like can be used.
- Epichlorohydrin is preferably used because it is easily available industrially and has good reactivity with the hydroxyl group of the phenolic oligomer of the present invention.
- the epoxy resin composition (I) can be obtained by mixing the phenolic oligomer of the present invention and the epoxy resin (i). A curing accelerator and other additives may be added to the epoxy resin composition (I).
- the epoxy resin composition (II) can be obtained by mixing the epoxy resin (i) and the phenol resin. A curing accelerator and other additives may be added to the epoxy resin composition (II).
- the phenol resin used in the epoxy resin composition (II) has a low viscosity of the epoxy resin (i), so that the viscosity of the epoxy resin composition is also low, so that the phenol novolak resin, the cresol novolak resin, the phenol aralkyl resin.
- Biphenyl aralkyl resin, naphthol novolak resin, cashew novolak resin, allylphenol novolak resin are preferably mentioned, phenol novolak resin, cresol novolak resin, phenol aralkyl resin, biphenyl aralkyl resin, allylphenol novolak resin are more preferable, phenol novolak resin, More preferred are phenol aralkyl resins, biphenyl aralkyl resins, and allylphenol novolac resins.
- the epoxy resin composition (III) can be obtained by mixing the phenol-based oligomer and the epoxy resin (ii).
- the epoxy resin (ii) include glycidyl ether type epoxies such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, cresol novolac type epoxy resin, phenol novolac type epoxy resin, triphenolmethane type epoxy resin, and biphenyl type epoxy resin.
- examples thereof include an epoxy resin having two or more epoxy groups in one molecule, such as a resin, a glycidyl ester type epoxy resin, a glycidyl amine type epoxy resin, and a halogenated epoxy resin. These epoxy resins may be used alone or in combination of two or more.
- the preferred epoxy resin is preferably a bisphenol A type epoxy resin in a liquid state at 70 ° C., more preferably at 25 ° C., preferably 70 ° C., more preferably at 25 ° C. from the viewpoint of reducing the viscosity of the epoxy resin composition.
- Bisphenol F-type epoxy resin A curing accelerator and other additives may be added to the epoxy resin composition (III).
- the epoxy resin composition of the present invention As a curing accelerator that can be added to the epoxy resin compositions (I) to (III) (hereinafter also referred to as “the epoxy resin composition of the present invention”), an epoxy resin and a phenol resin are reacted.
- a known curing accelerator for curing can be used.
- the curing accelerator include organic phosphine compounds and their boron salts, tertiary amines, quaternary ammonium salts, imidazoles and their tetraphenylboron salts, etc. From the viewpoint of increasing viscosity, 2-ethyl-4-methylimidazole in a liquid state at 25 ° C. is preferred.
- an inorganic filler in the epoxy resin composition of the present invention, an inorganic filler, a release agent, a colorant, a coupling agent, a flame retardant, and the like can be added as necessary.
- an inorganic filler when used for semiconductor sealing applications, the addition of an inorganic filler is essential.
- examples of such inorganic fillers include amorphous silica, crystalline silica, alumina, calcium silicate, calcium carbonate, talc, mica, barium sulfate, etc., and particularly amorphous silica and crystalline silica. Etc. are preferable.
- the mixture ratio of these additives may be the same as the ratio in the well-known epoxy resin composition for semiconductor sealing.
- an underfill is a sealing material that seals a gap between the semiconductor element and the circuit board and the periphery of the semiconductor element, or a sealing material that seals only a gap between the semiconductor element and the circuit board.
- the sealing material may be liquid, paste, or solid such as a tablet.
- the epoxy resin composition of the present invention can be cured, for example, by reacting at 100 to 350 ° C. and curing.
- the semiconductor device formed by sealing the semiconductor using the above epoxy resin composition is cured by pouring an underfill material made of the above epoxy resin composition into the gap between the semiconductor and the circuit board.
- the sealing of the semiconductor element includes a step of pouring an underfill material into a gap between the semiconductor element and the circuit board and a step of curing the underfill material, or a gap between the semiconductor element and the circuit board. And a step of injecting a sealing material around the semiconductor and a step of curing the sealing material.
- the obtained allyl group-substituted resorcin has a purity of 93% according to HPLC analysis (see ⁇ Analysis method of allyl group-substituted phenol compound> (1) below), and the ratio of 4,6-diallyl-substituted product is 48% (% is based on peak area).
- allyl etherified resorcin After neutralizing with hydrochloric acid and washing several times with water, the solvent was removed and purified by distillation by reducing the pressure at 150 ° C. to obtain 490.0 parts of allyl etherified resorcin. 490.0 parts of the resulting allyl etherified resorcin was subjected to Claisen rearrangement at 190 ° C. for 4 hours. Of the obtained allyl group-substituted resorcin, 300 parts were distilled and purified using a Vigreux tube at 160 ° C. and a vacuum of 5 mmHg.
- allyl etherified resorcinol After neutralizing with hydrochloric acid and washing several times with water, the solvent was removed and distilled by reducing the pressure at 150 ° C. to obtain allyl etherified resorcinol. 125.0 parts of the allyl etherified resorcinol obtained were subjected to Claisen rearrangement at 185 ° C. for 4.5 hours.
- the obtained allyl group-substituted resorcin was purified by distillation using a Vigreux tube at 160 ° C. and a vacuum degree of 4 mmHg. About 20 parts of the first fraction was removed to obtain 50.0 parts of allyl group-substituted resorcin (divalent allyl group-substituted phenol compound).
- This allyl group-substituted resorcin was a transparent liquid having a purity of 97% according to HPLC analysis (similar to Synthesis Example 1), and the proportion of 4,6-dial
- allyl group-substituted catechol ( 75.4 parts of a divalent allyl group-substituted phenol compound) was obtained.
- the obtained allyl group-substituted catechol was a colorless transparent liquid having a purity of 87% according to HPLC analysis (similar to Synthesis Example 1).
- the obtained phenol oligomer has a purity of 96.2% by weight and a polycondensation degree (n).
- the average polycondensation degree was 0 to 4 and 0.8.
- it was a liquid in 70 degreeC and 25 degreeC, the rotational viscosity of 70 degreeC was 0.54 Pa.s, and the rotational viscosity of 25 degreeC was 89 Pa.s (refer (1)).
- the obtained phenolic oligomer had a purity of 98.5% by weight, a degree of condensation polymerization (n) of 0 to 4, and an average degree of condensation polymerization of 0.6. Met. Moreover, it was liquid at 70 degreeC and 25 degreeC, the rotational viscosity of 70 degreeC was 0.55 Pa.s, and the rotational viscosity of 25 degreeC was 91 Pa.s (same as Example 1).
- the obtained phenolic oligomer had a purity of 69.7% by weight, a degree of condensation polymerization (n) of 0 to 4, and an average degree of condensation polymerization of 0.5, according to gel permeation chromatographic analysis (as in Example 1). Met. Moreover, it was a liquid at 70 degreeC and 25 degreeC, the rotational viscosity of 70 degreeC was 0.05 Pa.s, and the rotational viscosity of 25 degreeC was 1.6 Pa.s (same as Example 1).
- the obtained phenol oligomer was found to have a purity of 98.3% by weight, a polycondensation degree (n) of 0 to 4 and an average polycondensation degree of 0.7 according to gel permeation chromatographic analysis (same as in Example 1). Met. Further, it was liquid at 70 ° C. and 25 ° C., and the rotational viscosity at 70 ° C. was 0.65 Pa ⁇ s, and the rotational viscosity at 25 ° C. was 124 Pa ⁇ s (similar to Example 1).
- the obtained phenolic oligomer had a purity of 95.7% by weight, a degree of condensation polymerization (n) of 0 to 6, and an average degree of condensation polymerization of 1.2. Met. Moreover, it was a liquid at 70 ° C. and a viscous solid at 25 ° C., and the rotational viscosity at 70 ° C. was 14.3 Pa ⁇ s and the rotational viscosity at 25 ° C. was 107 Pa ⁇ s or more (similar to Example 1).
- the obtained phenolic oligomer had a purity of 97.9% by weight, a polycondensation degree (n) of 0 to 4 and an average polycondensation degree of 0.6 according to gel permeation chromatographic analysis (same as in Example 1). Met. Moreover, it was a liquid at 70 degreeC and 25 degreeC, the rotational viscosity of 70 degreeC was 0.32 Pa.s, and the rotational viscosity of 25 degreeC was 32 Pa.s (same as Example 1).
- the obtained phenolic oligomer had a purity of 98.5% by weight, a degree of condensation polymerization (n) of 0 to 4, and an average degree of condensation polymerization of 0.5. Met. Moreover, it was a liquid at 70 degreeC and 25 degreeC, the rotational viscosity of 70 degreeC was 0.28 Pa.s, and the rotational viscosity of 25 degreeC was 26 Pa.s (same as Example 1).
- the obtained phenolic oligomer had a purity of 98.2% by weight, a polycondensation degree n 1 of 0 to 4, and an average polycondensation degree n 2 of 0. It was liquid at 6, 70 ° C. and 25 ° C., and the rotational viscosity at 70 ° C. was 0.51 Pa ⁇ s, and the rotational viscosity at 25 ° C. was 72 Pa ⁇ s.
- the obtained phenolic oligomer had a purity of 98.2% by weight, a degree of condensation polymerization (n) of 0 to 4, and an average degree of condensation polymerization of 0.5, according to gel permeation chromatographic analysis (as in Example 1). Met. Moreover, it was a liquid at 70 degreeC and 25 degreeC, the rotational viscosity of 70 degreeC was 0.25 Pa.s, and the rotational viscosity of 25 degreeC was 25 Pa.s (same as Example 1).
- the obtained resin was solid at 70 ° C. and 25 ° C., and the melt viscosity at 150 ° C. was 10 Pa ⁇ s or more.
- HPLC High performance liquid chromatographic analysis
- FIG. 1 shows the case of Synthesis Example 5 as an example of the HPLC measurement result.
- Each peak has a retention time of about 5.4 minutes in the figure with a 2,4-diallyl-substituted product, A retention time of about 5.9 minutes corresponds to a 4,6-diallyl group substituted product,
- the purity of the allyl group-substituted phenol compound calculated as a ratio of the total value of the two types of peak areas to the total peak area was 96%.
- the ratio of 2,4-diallyl substituted product calculated by dividing each peak area by purity was 77%, and the ratio of 4,6-diallyl group substituted product was 23%.
- FIGS. 2 and 3 show examples of GC analysis results.
- Sample 1 in FIG. 2 has an allyl group-substituted resorcin that has a peak ratio of 97% for the retention time of 97%, and sample 2 in FIG. Obtained.
- FIGS. 4 and 5 show the results of 1 H NMR analysis. In sample 1 of FIG. 4, each peak is one, but in sample 2 of FIG. 5, there are two peaks, and the integration ratio is 21:79, which is approximately the same ratio as the GC analysis result.
- the rotational viscosity / E-type viscometer was a TVH type manufactured by Toki Sangyo Co., Ltd. -About 1.2 ml of the sample (phenolic oligomer obtained in Examples 1 to 9) was put in a cup attached to the E-type viscometer, and this cup was set to a constant temperature bath and liquid feeding device set at a temperature of 25 ° C or 50 ° C ( Set to J25's F25-MP). -Start the measurement of the rotational viscosity of the sample with an E-type viscometer, and read the numerical value of the rotational viscosity at the point where the indicated value of the rotational viscosity is stable.
- Glass transition temperature (Tg) In a mold, a sample (an epoxy resin composition having the composition shown in Tables 3 and 4) cured at 150 ° C. for 5 hours and at 180 ° C. for 8 hours is cut to the following size to prepare a sample. Size: (50 ⁇ 1) ⁇ (40 ⁇ 1) ⁇ (100 ⁇ 1) (length ⁇ width ⁇ height; mm) ⁇ Measurement device: Set sample on TMA-60 (manufactured by SHIMADZU) and measure in N 2 atmosphere. -Rate of temperature increase: measured at 3 ° C / min up to 350 ° C, and the temperature of the inflection point is obtained as the glass transition temperature (Tg). The glass transition temperature is a measure of heat resistance, and the higher the glass transition point, the better the heat resistance.
- GPC gel permeation chromatographic analysis
- Epoxy resins and curing accelerators were added using the phenolic oligomers obtained in Examples 1 to 9 and Comparative Examples 1 to 3 as curing agents to obtain epoxy resin compositions.
- the epoxy resin Epicoat 828EL (bisphenol A liquid epoxy resin, epoxy equivalent 186 g / eq) manufactured by Japan Epoxy Resin Co., Ltd. was used, and 2E4MZ (2-ethyl-4-methylimidazole) manufactured by Shikoku Kasei Co., Ltd. was used as the curing accelerator. ) was used as the curing accelerator. ) was used.
- the epoxy resin composition was blended so that the epoxy group equivalent of the epoxy resin and the hydroxyl group equivalent of the phenolic oligomer were the same.
- the composition of the epoxy resin composition is as shown in Tables 3 and 4.
- the epoxy resin composition is heated to 150 ° C., melted and mixed, cast in a mold heated to 150 ° C. after vacuum defoaming, and cured at 150 ° C. for 5 hours and at 180 ° C. for 8 hours. A cured resin was obtained.
- the physical property characteristics of the obtained cured epoxy resin are shown in Tables 3 and 4 together.
- alpha 1 is a coefficient of linear expansion at a temperature lower than the glass transition point (Tg)
- ⁇ 2 is the linear expansion coefficient of the glass transition point (Tg) or higher.
- each epoxy resin composition produced in the examples is useful as a sealing material or underfill material for semiconductor elements.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Epoxy Resins (AREA)
- Phenolic Resins Or Amino Resins (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
Abstract
Description
〔1〕下記一般式(1)
nは、0~15の整数であり、
Rは、アリル基であり、
a1及びa3は、それぞれ独立に、0、1、2又は3であり、
各a2は、それぞれ独立に、0、1又は2であり、
各R′は、それぞれ独立に、水素原子、炭素数1~10のアルキル基又はアリール基であるが、
但し、a1、各a2、及びa3の少なくとも一つは2である)
で表わされるフェノール系オリゴマー。
〔2〕少なくとも1種の下記一般式(2)
少なくとも1種の下記一般式(3)
〔4〕フェノール化合物成分とアルデヒド化合物とのモル比が、1.2:1~10:1である、上記〔2〕又は〔3〕記載の製造方法。
〔5〕フェノール化合物成分として、アリル基置換レゾルシンを含む、上記〔2〕~〔4〕いずれか記載の製造方法。
〔6〕フェノール化合物成分として、2,4-ジアリルレゾルシンと4,6-ジアリルレゾルシンを主成分として含む、上記〔2〕~〔5〕いずれか記載の製造方法。
〔7〕フェノール化合物成分中の、4,6-ジアリルレゾルシンの割合が、15モル%~75モル%である、上記[6]記載の製造方法。
〔8〕無触媒もしくは酸触媒存在下で反応させる、上記〔2〕~〔7〕いずれか記載の製造方法。
〔9〕フェノール化合物成分として、2価フェノールの水酸基をアリルエーテル化し、次いでクライゼン転位によりアリル基をフェノール核に置換させることにより得られる2価のアリル基置換フェノール化合物を使用する、上記〔2〕~〔8〕いずれか記載の製造方法。
〔10〕上記〔2〕~〔9〕いずれか記載の製造方法により得られるフェノール系オリゴマー。
〔11〕25℃におけるE型粘度計による回転粘度が、0.01~150Pa・sである、請求項〔1〕又は〔10〕記載のフェノール系オリゴマー。
〔12〕上記〔1〕、〔10〕又は〔11〕記載のフェノール系オリゴマーからなる、エポキシ樹脂用硬化剤。
〔13〕上記〔1〕、〔10〕又は〔11〕記載のフェノール系オリゴマーとエピハロヒドリンとの反応により得られるエポキシ樹脂。
〔14〕上記〔1〕、〔10〕又は〔11〕記載のフェノール系オリゴマーと、上記〔13〕記載のエポキシ樹脂とを含有するエポキシ樹脂組成物。
〔15〕フェノール樹脂と、上記〔13〕記載のエポキシ樹脂とを含有するエポキシ樹脂組成物。
〔16〕上記〔1〕、〔10〕又は〔11〕記載のフェノール系オリゴマーと、エポキシ樹脂とを含有するエポキシ樹脂組成物。
〔17〕上記〔14〕~〔16〕いずれか記載のエポキシ樹脂組成物を硬化してなるエポキシ樹脂硬化物。
〔18〕上記〔14〕~〔16〕いずれか記載のエポキシ樹脂組成物からなる半導体素子の封止材。
〔19〕上記〔14〕~〔16〕いずれか記載のエポキシ樹脂組成物からなる半導体素子のアンダーフィル材。
〔20〕上記〔18〕記載の封止材又は上記〔19〕記載のアンダーフィル材を用いて封止された半導体装置。
本発明のフェノール系オリゴマーは、下記一般式(1)で表わされる。
nは、0~15の整数であり、
Rは、アリル基であり、
a1及びa3は、それぞれ独立に0、1、2又は3であり、
各a2は、それぞれ独立に、0、1又は2であり、
各R′は、それぞれ独立に、水素原子、炭素数1~10のアルキル基又はアリール基であるが、
但し、a1、各a2、及びa3の少なくとも一つは2である。a1、各a2、及びa3の二つ以上が2であるのが好ましい。
本発明のフェノール系オリゴマーの製造方法(以下、本発明の製造方法ともいう)は、少なくとも1種の下記一般式(2)
本発明の一般式(1)で表わされるフェノール系オリゴマー及び本発明の製造方法により得られるフェノール系オリゴマー(以下、これらを併せて、「本発明のフェノール系オリゴマー」ともいう)は、そのままエポキシ樹脂の硬化剤としてバインダー、コーティング材、積層材、成形材料等の用途に使用することもできる。
〔アリル基置換レゾルシンの合成〕
温度計、仕込・留出口、冷却器および攪拌機を備えたガラス製4つ口フラスコに水酸化ナトリウム100.0部(2.4モル)とN,N-ジメチルホルムアミド600mlを入れた後、予めN,N-ジメチルホルムアミド500mlで溶解したレゾルシン110.1部(1.0モル)を滴下添加した。その後、塩化アリル191.3部(2.4モル)とN,N-ジメチルホルムアミド300mlを滴下添加し30℃にて6時間反応させた。塩酸で中和し、水洗を数回行った後、150℃にて減圧することで溶媒除去と蒸留を行いアリルエーテル化レゾルシン255.0部を得た。
得られたアリルエーテル化レゾルシン255.0部を190℃にて3時間クライゼン転位させ、アリル基置換レゾルシン(2価のアリル基置換フェノール化合物)250.0部を、黄褐色液体として得た。得られたアリル基置換レゾルシンは、HPLC分析(下記の<アリル基置換フェノール化合物の分析方法>(1)参照)によれば、純度が93%であり、4,6-ジアリル置換体の割合が48%であった(%は、ピーク面積に基づく)。
〔アリル基置換レゾルシンの合成〕
温度計、仕込・留出口、冷却器および攪拌機を備えたガラス製4つ口フラスコに水酸化ナトリウム196.0部(4.8モル)とN,N-ジメチルホルムアミド1200mlを入れた後、予めN,N-ジメチルホルムアミド1000mlで溶解したレゾルシン220.2部(2.0モル)を滴下添加した。その後、塩化アリル382.7部(4.8モル)とN,N-ジメチルホルムアミド600mlを滴下添加し30℃にて6時間反応させた。塩酸で中和し、水洗を数回行った後、150℃にて減圧することで溶媒除去と蒸留精製を行いアリルエーテル化レゾルシン490.0部を得た。
得られたアリルエーテル化レゾルシン490.0部を190℃にて4時間クライゼン転位させた。得られたアリル基置換レゾルシンの内、300部を、ヴィグリュー管を用いて160℃、真空度5mmHgにて蒸留精製を行った。初留の約30部を除去した後、アリル基置換レゾルシン(2価のアリル基置換フェノール化合物)70.0部を得た。
このアリル基置換レゾルシンは、HPLC分析(合成例1と同様)によれば、純度が90%の透明色液体であり、4,6-ジアリル置換体の割合が29%であった。
〔アリル基置換レゾルシンの合成〕
合成例2の蒸留精製の残りを、さらに165℃、真空度5mmHgにて蒸留精製を行い、アリル基置換レゾルシン110.0部を得た。
このアリル基置換レゾルシンは、HPLC分析(合成例1と同様)によれば、純度が89%の透明色液体であり、4,6-ジアリル置換体の割合が43%であった。
〔アリル基置換レゾルシンの合成〕
さらに合成例3の蒸留精製の残りを175℃、真空度3mmHgにて蒸留精製を行い、アリル基置換レゾルシン(2価のアリル基置換フェノール化合物)60.0部を得た。
このアリル基置換レゾルシンは、HPLC分析(合成例1と同様)によれば、純度が88%の透明色液体であり、4,6-ジアリル置換体の割合が65%であった。
〔アリル基置換レゾルシンの合成〕
温度計、仕込・留出口、冷却器および攪拌機を備えたガラス製4つ口フラスコに水酸化ナトリウム49.0部(1.2モル)とN,N-ジメチルホルムアミド300mlを入れた後、予めN,N-ジメチルホルムアミド250mlで溶解したレゾルシン55.1部(0.5モル)を滴下添加した。その後、塩化アリル95.7部(1.2モル)とN,N-ジメチルホルムアミド150mlを滴下添加し30℃にて6時間反応させた。塩酸で中和し、水洗を数回行った後、150℃にて減圧することで溶媒除去と蒸留を行いアリルエーテル化レゾルシンを得た。
得られたアリルエーテル化レゾルシン125.0部を185℃にて4.5時間クライゼン転位させた。得られたアリル基置換レゾルシンを、ヴィグリュー管を用いて160℃、真空度4mmHgにて蒸留精製を行った。初留の約20部を除去し、アリル基置換レゾルシン(2価のアリル基置換フェノール化合物)50.0部を得た。
このアリル基置換レゾルシンは、HPLC分析(合成例1と同様)によれば、純度が97%の透明色液体であり、4,6-ジアリル置換体の割合が23%であった。
〔アリル基置換カテコールの合成〕
温度計、仕込・留出口、冷却器および攪拌機を備えたガラス製4つ口フラスコに炭酸カリウム375.2部(2.7モル)、カテコール100.9部(0.9モル)、アセトン1000mlを入れた後、臭化アリル280.8部(2.3モル)とアセトン260mlを滴下添加し、60℃にて13時間反応させた。その後、アセトン500mlを加えろ過、濃縮し、水洗を数回行った後、80℃にて減圧することでアリルエーテル化カテコールを得た。
上記で得たアリルエーテル化カテコール100.0部にジグライム40.0部と塩化亜鉛2.0部を加え、160℃にて7時間クライゼン転位させた後、蒸留精製を行い、アリル基置換カテコール(2価のアリル基置換フェノール化合物)75.4部を得た。
得られたアリル基置換カテコールは、HPLC分析(合成例1と同様)によれば、純度が87%の無色透明液体であった。
〔フェノール系オリゴマーの合成〕
温度計、仕込・留出口、冷却器および攪拌機を備えたガラス製4つ口フラスコに合成例1で得たアリル基置換レゾルシン28.5部(0.15モル)、42%ホルマリン5.4部(0.08モル)を添加し、100℃にて8時間反応させた。90℃以上の純水63.0部を投入し、水洗した後、120℃まで昇温し、減圧処理にて水、及び未反応成分を除去した。
得られたフェノール系オリゴマーは、ゲル浸透クロマトグラフ分析(下記の<フェノール系オリゴマー及び硬化物の分析方法>(7)参照)によれば、純度96.2重量%、縮重合度(n)が0~4、平均縮重合度が0.8であった。また、70℃及び25℃において液体であり、70℃の回転粘度は0.54Pa・s、25℃の回転粘度は89Pa・sであった(同(1)参照)。
〔フェノール系オリゴマーの合成〕
温度計、仕込・留出口、冷却器および攪拌機を備えたガラス製4つ口フラスコに合成例1で得たアリル基置換レゾルシン57.0部(0.30モル)、42%ホルマリン10.7部(0.15モル)、酸性触媒として蓚酸0.6部を添加し、100℃にて4時間反応させた。90℃以上の純水125.0部を投入し、水洗した後、120℃まで昇温し、減圧処理にて水、及び未反応成分を除去した。
得られたフェノール系オリゴマーは、ゲル浸透クロマトグラフ分析(実施例1と同様)によれば、純度98.5重量%、縮重合度(n)が0~4、平均縮重合度が0.6であった。また、70℃及び25℃において液体であり、70℃の回転粘度は0.55Pa・s、25℃の回転粘度は91Pa・sであった(実施例1と同様)。
〔フェノール系オリゴマーの合成〕
温度計、仕込・留出口、冷却器および攪拌機を備えたガラス製4つ口フラスコに合成例1で得たアリル基置換レゾルシン57.0部(0.30モル)、42%ホルマリン5.4部(0.08モル)、酸性触媒として蓚酸0.6部を添加し、100℃にて4時間反応させた。90℃以上の純水125.0部を投入し、水洗した後、120℃まで昇温し、減圧処理にて水、及び未反応成分を除去した。
得られたフェノール系オリゴマーは、ゲル浸透クロマトグラフ分析(実施例1と同様)によれば、純度69.7重量%、縮重合度(n)が0~4、平均縮重合度が0.5であった。また、70℃及び25℃において液体であり、70℃の回転粘度は0.05Pa・s、25℃の回転粘度は1.6Pa・sであった(実施例1と同様)。
〔フェノール系オリゴマーの合成〕
温度計、仕込・留出口、冷却器および攪拌機を備えたガラス製4つ口フラスコに合成例1で得たアリル基置換レゾルシン16.7部(0.08モル)、42%ホルマリン4.2部(0.05モル)、酸性触媒として濃塩酸0.2部を添加し、100℃にて1時間反応させた。90℃以上の純水50.0部を投入し、水洗した後、120℃まで昇温し、減圧処理にて水、及び未反応成分を除去した。
得られたフェノール系オリゴマーは、ゲル浸透クロマトグラフ分析(実施例1と同様)によれば、純度98.3重量%、縮重合度(n)が0~4、平均縮重合度が0.7であった。また、70℃及び25℃において液体であり、70℃の回転粘度は0.65Pa・s、25℃の回転粘度は124Pa・sであった(実施例1と同様)。
〔フェノール系オリゴマーの合成〕
温度計、仕込・留出口、冷却器および攪拌機を備えたガラス製4つ口フラスコに合成例6で得たアリル基置換カテコール380.0部(2.00モル)、42%ホルマリン7.1部(0.1モル)、酸性触媒として蓚酸7.6部を添加し、100℃にて24時間反応させた。90℃以上の純水500.0部を投入し、水洗した後、180℃まで昇温、脱水し、減圧-スチーミング処理にて未反応成分を除去した。
得られたフェノール系オリゴマーは、ゲル浸透クロマトグラフ分析(実施例1と同様)によれば、純度95.7重量%、縮重合度(n)が0~6、平均縮重合度が1.2であった。また、70℃において液体、25℃において粘ちょうな固体であり、70℃の回転粘度は14.3Pa・s、25℃の回転粘度は107Pa・s以上であった(実施例1と同様)。
〔フェノール系オリゴマーの合成〕
温度計、仕込・留出口、冷却器および攪拌機を備えたガラス製4つ口フラスコに合成例3で得たアリル基置換レゾルシン57.0部(0.30モル)、42%ホルマリン10.7部(0.15モル)、酸性触媒として蓚酸0.6部を添加し、100℃にて4時間反応させた。90℃以上の純水125.0部を投入し、水洗した後、120℃まで昇温し、減圧処理にて水、及び未反応成分を除去した。
得られたフェノール系オリゴマーは、ゲル浸透クロマトグラフ分析(実施例1と同様)によれば、純度97.9重量%、縮重合度(n)が0~4、平均縮重合度が0.6であった。また、70℃及び25℃において液体であり、70℃の回転粘度は0.32Pa・s、25℃の回転粘度は32Pa・sであった(実施例1と同様)。
〔フェノール系オリゴマーの合成〕
温度計、仕込・留出口、冷却器および攪拌機を備えたガラス製4つ口フラスコに合成例2で得たアリル基置換レゾルシン57.0部(0.30モル)、42%ホルマリン10.7部(0.15モル)、酸性触媒として蓚酸0.6部を添加し、100℃にて4時間反応させた。90℃以上の純水125.0部を投入し、水洗した後、120℃まで昇温し、減圧処理にて水、及び未反応成分を除去した。
得られたフェノール系オリゴマーは、ゲル浸透クロマトグラフ分析(実施例1と同様)によれば、純度98.5重量%、縮重合度(n)が0~4、平均縮重合度が0.5であった。また、70℃及び25℃において液体であり、70℃の回転粘度は0.28Pa・s、25℃の回転粘度は26Pa・sであった(実施例1と同様)。
〔フェノール系オリゴマーの合成〕
温度計、仕込・留出口、冷却器および攪拌機を備えたガラス製4つ口フラスコに合成例4で得たアリル基置換レゾルシン45.6部(0.24モル)、42%ホルマリン8.6部(0.12モル)、酸性触媒として蓚酸0.5部を添加し、100℃にて4時間反応させた。90℃以上の純水100.0部を投入し、水洗した後、120℃まで昇温し、減圧処理にて水、及び未反応成分を除去した。
得られたフェノール系オリゴマーは、ゲル浸透クロマトグラフ分析(実施例1と同様)によれば、純度98.2重量%、縮重合度n1が0~4、平均縮重合度n2が0.6、70℃及び25℃において液体であり、70℃の回転粘度は0.51Pa・s、25℃の回転粘度は72Pa・sであった。
〔フェノール系オリゴマーの合成〕
温度計、仕込・留出口、冷却器および攪拌機を備えたガラス製4つ口フラスコに合成例5で得たアリル基置換レゾルシン41.8部(0.22モル)、42%ホルマリン7.9部(0.11モル)、酸性触媒として蓚酸0.4部を添加し、100℃にて4時間反応させた。90℃以上の純水100.0部を投入し、水洗した後、120℃まで昇温し、減圧処理にて水、及び未反応成分を除去した。
得られたフェノール系オリゴマーは、ゲル浸透クロマトグラフ分析(実施例1と同様)によれば、純度98.2重量%、縮重合度(n)が0~4、平均縮重合度が0.5であった。また、70℃及び25℃において液体であり、70℃の回転粘度は0.25Pa・s、25℃の回転粘度は25Pa・sであった(実施例1と同様)。
温度計、仕込・留出口、冷却器および攪拌機を備えたガラス製4つ口フラスコにo-アリルフェノール670部(5.0モル)、42%ホルマリン71.4部(1.0モル)、酸性触媒として蓚酸6.7部を添加し、100℃にて5時間反応させ、90℃以上の純水00部を投入し、水洗した。その後165℃まで昇温して脱水し、減圧処理にて未反応成分を除去した。得られたフェノール系化合物組成物は70℃及び25℃において液体であり、70℃の回転粘度は0.07Pa・s、25℃の回転粘度は1.7Pa・sであった(実施例1と同様)。
先行技術文献として挙げた、特許文献4の実施例に基づき、ポリアルケニル化合物(トリス(ヒドロキシアリルフェニル)メタン型フェノールノボラック樹脂)を合成した。
<トリス(ヒドロキシフェニル)メタン型フェノールノボラック樹脂の合成>
温度計、仕込み・留出口、冷却器および攪拌機を備えたガラス製4つ口フラスコにフェノール400部(4.26モル)、サリチルアルデヒド47.2部(0.38モル)、及びパラトルエンスルホン酸1.0部を入れ、窒素気流下にて130℃にて反応させ、95℃まで冷却した。25%水酸化ナトリウム水溶液にて中和を行った後、90℃以上の純水400.0部を投入し、水洗した。その後、内温を150℃まで昇温し、減圧-スチーミング処理にて未反応成分を除去した。得られた樹脂は70℃及び25℃において固形であり、150℃における溶融粘度は0.9Pa・sであった。
温度計、仕込・留出口、冷却器および攪拌機を備えたガラス製4つ口フラスコに上記で製造したトリス(ヒドロキシフェニル)メタン型フェノールノボラック樹脂100.0部、2-プロパノール250.0部を入れ、均一となるまで溶解した後、水酸化ナトリウム40.7部(1.02モル)を入れ、1時間攪拌を継続した。塩化アリル79.6部(1.02モル)を10分間で滴下添加した後、75℃にて5時間反応させ、アリルエーテル化させた。2-プロパノールを除去した後、副生した食塩を90℃以上の純水500.0部を投入し、水洗した。190℃まで昇温・脱水し、6時間クライゼン転位を行った。得られた樹脂は70℃において液体であり、25℃において半固体であり、70℃の回転粘度は1.1Pa・s、25℃における回転粘度は107Pa・s以上であった(実施例1と同様)。
<レゾルシンノボラック樹脂の合成>
温度計、仕込み・留出口、冷却器および攪拌機を備えたガラス製4つ口フラスコにレゾルシン660部(6.00モル)、42%ホルマリン42.4部(0.60モル)、酸性触媒として蓚酸0.2部を添加し、100℃にて5時間反応させた。90℃以上の純水500.0部を投入し、水洗した後、170℃まで昇温、脱水し、減圧-スチーミング処理にて未反応成分を除去した。得られたレゾルシンノボラック樹脂は固形であり、150℃における溶融粘度は0.07Pa・sであった。
温度計、仕込・留出口、冷却器および攪拌機を備えたガラス製4つ口フラスコに上記で製造したレゾルシン50.0部、2-プロパノール100.0部を入れ、均一となるまで溶解した後、水酸化ナトリウム36.5部(0.91モル)を入れ、1時間攪拌を継続した。塩化アリル75.0部(0.96モル)を10分間で滴下添加した後、60℃にて5時間反応させ、アリルエーテル化させた。2-プロパノールを除去した後、副生した食塩を90℃以上の純水500.0部を投入し、水洗した。190℃まで昇温・脱水し、6時間クライゼン転位を行った。得られた樹脂は70℃及び25℃において固体であり、150℃における溶融粘度は10Pa・s以上であった。
(1)HPLC
下記条件において、高速液体クロマトグラフ分析(HPLC)を行い、アリル基置換フェノール化合物の純度と、2,4-位アリル基置換体と4,6-位アリル基置換体の異性体割合を求める。
・カラム:ODS-80Ts 250×4.6mm
・検出方法:可視検出器(UV 254nm)
・移動相:アセトニトリル/水=60/40
・流速:1.0ml/min
・カラム温度:40℃
・サンプル調整:サンプル液を0.2gはかり取り、アセトニトリル40gで稀釈し、20μL打ち込み
図1にHPLC測定結果の1例として合成例5の場合を挙げた。各ピークは図中の
保持時間約5.4分が2,4-ジアリル置換体、
保持時間約5.9分が4,6-ジアリル基置換体に対応し、
全ピーク面積に対する前記2種のピーク面積の合計値の割合として算出したアリル基置換フェノール化合物の純度は96%であった。
また、各ピーク面積を純度で割ることによって算出した2,4-ジアリル置換体の割合は77%で、4,6-ジアリル基置換体の割合は23%であった。
アリル基置換フェノール化合物(アリル基置換レゾルシン)を下記条件にて薄層クロマトグラフィー(TLC)で分取して2種のサンプルを得た。
TLC分取条件
・TLC 1mm(Silica gel 60 F254 PLC Plates)
・展開溶媒 : ヘキサン/酢酸エチル=2/1
次に2種のサンプルをGC及び1H NMR分析することでアリル基置換レゾルシンの異性体の同定を行った。
GC分析条件
・カラム:G-100 1.2mm I.D.×40m、膜厚 1.0 μm・カラム温度・昇温条件:100℃開始で、4℃/minにて200℃まで昇温し15min保持
・インジェクション・ディテクション温度:250℃
・ガス圧力:He=100kPa、Air=50kPa、H2=65kPa
・サンプル調整:反応液をフィルターろ過後、0.1μL打ち込み
図2,3にGC分析結果の例を挙げた。
図2のサンプル1では保持時間約17分のピーク割合が97%のアリル基置換レゾルシンが、図3のサンプル2では保持時間約17分が21%と19分が79%のアリル基置換レゾルシンが得られた。
更に図4、5にそれらの1H NMR分析結果を挙げた。
図4のサンプル1では各ピークは1ヶずつであるが、図5のサンプル2ではピークが2本ずつあり、それぞれの積分比がGC分析結果とほぼ同割合の21:79であった。
(1)回転粘度
・E型粘度計は東機産業社製TVH型を使用した。
・試料(実施例1~9で得たフェノール系オリゴマー)約1.2mlをE型粘度計付属のカップに入れ、このカップを、温度25℃又は50℃に設定した恒温槽兼送液装置(Julabo社製F25-MP)にセットする。
・E型粘度計で上記試料の回転粘度の計測を開始し、回転粘度の指示値が安定した点での回転粘度の数値を読み取る。
(概要;塩化アセチルでアセチル化を行い、過剰の塩化アセチルを水で分解しアルカリで滴定する方法)
・試料(実施例1~9で得たフェノール系オリゴマー)1gを精秤し、1,4-ジオキサン10mlを加え溶解する。
・溶解を確認後、1.5mol/Lの塩化アセチル/無水トルエン溶液10mlを加え、0℃まで冷却する。
・ピリジン2mlを加え、60±1℃のウォーターバス中で1時間反応させる。
・反応後、冷却し純水25mlを加え、よく混合させることで塩化アセチルを分解させる。
・アセトン25mlと、フェノールフタレインを加える。
・1mol/Lの水酸化カリウム水溶液を用いて、試料溶液が赤紫色に呈色するまで滴定を行う。
・ブランク(試料なし)について上記操作にて同時に測定を行う。
次式により計算し、求める。
OH当量[g/eq.]=(1000×W)/(f×(B-A))
ここでW、f、B、Aは、それぞれ以下のとおりである。
W:試料重量[g]
f:1mol/Lの水酸化カリウム水溶液のファクター=1.002
B:ブランク測定に要した1mol/Lの水酸化カリウム水溶液の量[ml]
A:試料測定に要した1mol/Lの水酸化カリウム水溶液の量[ml]
・金型中で、試料(表3及び4に示す組成を有する、エポキシ樹脂組成物)を、150℃で5時間、180℃で8時間硬化させてサンプルを成型する。
サイズ;(Φ50±1)×(3±0.2)(径×厚;mm)
・サンプルの表面を良く拭き取り、試料重量を測定する。
・サンプルを100mlのサンプル瓶に入れ、純水を80mlを加える。
・95℃の熱風循環式乾燥器中にて、24時間吸水させる。
・その後、乾燥器より取り出し、低温恒温水槽に浸けて25℃に冷却する。
・冷却後、表面に付着した水分を良く拭き取り重量を測定する。
・次式により計算し、吸水率を求める。
吸水率[%]=((B-A)/A)×100
A:吸水前重量[g]
B:吸水後重量[g]
・金型中で、150℃で5時間、180℃で8時間硬化させた試料(表3及び4に示す組成を有する、エポキシ樹脂組成物)を下記サイズにカットしてサンプルを作成する。
サイズ;(50±1)×(40±1)×(100±1)(縦×横×高;mm)
・測定装置;TMA-60(SHIMADZU製)に試料をセットし、N2雰囲気にて測定。
・昇温速度;3℃/分で350℃まで測定し、変曲点の温度を求めガラス転移温度(Tg)とする。
ガラス転移温度は、耐熱性の尺度であり、ガラス転移点が高いほど耐熱性に優れる。
・試料(表3及び4に示す組成を有するエポキシ樹脂組成物)を試験管に入れて、150℃のオイルバスに浸し、1秒間に1回の間隔で、前記エポキシ樹脂組成物をガラス棒で撹拌した。前記撹拌の抵抗が大きくなった時間をゲルタイムとして計測した。
・金型中で、150℃で5時間、180℃で8時間硬化させた試料(表3及び4に示す組成を有するエポキシ樹脂組成物)を下記サイズにカットしてサンプルを作成する。
・サイズ;(75±1)×(6±1)×(4±1)(縦×横×厚;mm)
・測定装置;オートグラフ (型式;AG-5000D SHIMADZU製)
ヘッドスピード;2.0mm/分、2点間距離;50mm、室温下にて圧縮曲げ試験を
行う。
下記条件において、ゲル浸透クロマトグラフ分析(GPC)を行い、フェノール系オリゴマーの縮重合度(n)とフェノール系オリゴマーの平均縮重合度を求める。
・装置:東ソー社製ゲルパーミエーションクロマトグラフ(HLC-8020)
・カラム:東ソー社製TSKgel G2000HXLを4本、G3000HXLおよびG4000HXLを各1本を直列に連結
・溶離液:テトラヒドロフラン
・溶離液流量:1.0mL/分
・カラム温度:40℃
・検出方法:可視検出器(UV)
・検量線:標準ポリスチレン物質を用いて作成
図6にGPC測定結果の1例として実施例1の場合を挙げた。各ピークは図中の
保持時間約50.5分がn=0、
保持時間約48.5分がn=1、
保持時間約47.0分がn=2、
保持時間約46.1分がn=3、及び
保持時間約45.3分がn=4に対応し、
各ピークの面積と対応する縮重合度(n)を掛けた数値の合計値をピーク合計面積で割ることによって算出した平均縮重合度は0.8であった。
また、n=0~4の各ピークの面積の合計値をピーク合計面積で割ることによって算出した純度は、96.2%であった。
表2において、E型粘度が固形及び半固形とは、25℃又は70℃でフェノール系化合物が溶解していないため、粘度が測定できなかったことを表す。
また、前記エポキシ樹脂組成物を150℃に加熱し、溶融混合し、真空脱泡後150℃に加熱された金型に注形し、150℃で5時間、180℃で8時間硬化させ、エポキシ樹脂硬化物を得た。得られたエポキシ樹脂硬化物の物性特性を表3及び4に併せて示す。
表3及び4において、α1はガラス転移点(Tg)以下の温度での線膨張係数であり、α2はガラス転移点(Tg)以上の温度での線膨張係数である。
Claims (20)
- フェノール化合物成分とアルデヒド化合物とのモル比が、1.2:1~10:1である、請求項2又は3記載の製造方法。
- フェノール化合物成分として、アリル基置換レゾルシンを含む、請求項2~4いずれか1項記載の製造方法。
- フェノール化合物成分として、2,4-ジアリルレゾルシンと4,6-ジアリルレゾルシンを主成分として含む、請求項2~5いずれか1項記載の製造方法。
- フェノール化合物成分中の、4,6-ジアリルレゾルシンの割合が、15モル%~75モル%である、請求項6記載の製造方法。
- 無触媒もしくは酸触媒存在下で反応させる、請求項2~7いずれか1項記載の製造方法。
- フェノール化合物成分として、2価フェノールの水酸基をアリルエーテル化し、次いでクライゼン転位によりアリル基をフェノール核に置換させることにより得られる2価のアリル基置換フェノール化合物を使用する、請求項2~8いずれか1項記載の製造方法。
- 請求項2~9いずれか1項記載の製造方法により得られるフェノール系オリゴマー。
- 25℃におけるE型粘度計による回転粘度が、0.01~150Pa・sである、請求項1又は10記載のフェノール系オリゴマー。
- 請求項1、10又は11記載のフェノール系オリゴマーからなる、エポキシ樹脂用硬化剤。
- 請求項1、10又は11記載のフェノール系オリゴマーとエピハロヒドリンとの反応により得られるエポキシ樹脂。
- 請求項1、10又は11記載のフェノール系オリゴマーと、請求項13記載のエポキシ樹脂とを含有するエポキシ樹脂組成物。
- フェノール樹脂と、請求項13記載のエポキシ樹脂とを含有するエポキシ樹脂組成物。
- 請求項1、10又は11記載のフェノール系オリゴマーと、エポキシ樹脂とを含有するエポキシ樹脂組成物。
- 請求項14~16いずれか1項記載のエポキシ樹脂組成物を硬化してなるエポキシ樹脂硬化物。
- 請求項14~16いずれか1項記載のエポキシ樹脂組成物からなる半導体素子の封止材。
- 請求項14~16いずれか1項記載のエポキシ樹脂組成物からなる半導体素子のアンダーフィル材。
- 請求項18記載の封止材又は請求項19記載のアンダーフィル材を用いて封止された半導体装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020137013297A KR20140033313A (ko) | 2010-10-26 | 2011-10-26 | 페놀계 올리고머 및 그의 제조 방법 |
CN201180051134.0A CN103180355B (zh) | 2010-10-26 | 2011-10-26 | 酚类低聚物及其制备方法 |
US13/882,052 US20130307167A1 (en) | 2010-10-26 | 2011-10-26 | Phenolic oligomer and method for producing the same |
JP2012540916A JP5774021B2 (ja) | 2010-10-26 | 2011-10-26 | フェノール系オリゴマー及びその製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010239839 | 2010-10-26 | ||
JP2010-239839 | 2010-10-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012057228A1 true WO2012057228A1 (ja) | 2012-05-03 |
Family
ID=45993933
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/074719 WO2012057228A1 (ja) | 2010-10-26 | 2011-10-26 | フェノール系オリゴマー及びその製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20130307167A1 (ja) |
JP (1) | JP5774021B2 (ja) |
KR (1) | KR20140033313A (ja) |
CN (1) | CN103180355B (ja) |
WO (1) | WO2012057228A1 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013237780A (ja) * | 2012-05-15 | 2013-11-28 | Hitachi Chemical Co Ltd | フェノール化合物、その製造方法、樹脂組成物及び電子部品装置 |
JP2013253195A (ja) * | 2012-06-08 | 2013-12-19 | Namics Corp | エポキシ樹脂組成物 |
WO2014017236A1 (ja) * | 2012-07-25 | 2014-01-30 | Dic株式会社 | ラジカル硬化性化合物、ラジカル硬化性化合物の製造方法、ラジカル硬化性組成物、その硬化物、及びレジスト材料用組成物 |
JP2014101299A (ja) * | 2012-11-19 | 2014-06-05 | Meiwa Kasei Kk | ジアリルレゾルシンの製造方法 |
JP2015117374A (ja) * | 2013-11-15 | 2015-06-25 | 明和化成株式会社 | マレイミド化合物含有樹脂組成物、それを硬化させた硬化物、硬化物の製造方法、及び繊維強化樹脂成形体 |
WO2016002704A1 (ja) * | 2014-07-01 | 2016-01-07 | 明和化成株式会社 | アリルエーテル変性ビフェニルアラルキルノボラック樹脂、アリル変性ビフェニルアラルキルノボラック樹脂、その製造方法、及びそれを用いた組成物 |
JP2016216708A (ja) * | 2015-05-20 | 2016-12-22 | 信越化学工業株式会社 | 液状樹脂組成物 |
JP2017039944A (ja) * | 2016-10-05 | 2017-02-23 | 日立化成株式会社 | フェノール化合物、その製造方法、樹脂組成物及び電子部品装置 |
US20210403786A1 (en) * | 2019-03-28 | 2021-12-30 | Fujifilm Corporation | Composition and thermally conductive material |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106317356B (zh) * | 2016-09-08 | 2018-05-15 | 沈阳化工大学 | 一种苊式多苯基共聚烯丙基酚醛活性稀释树脂及其制备方法 |
CN106496477B (zh) * | 2016-09-21 | 2018-08-07 | 沈阳化工大学 | 一种苊式多苯基共聚腰果酚甲醛发泡树脂及其制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4884181A (ja) * | 1972-01-26 | 1973-11-08 | ||
JPS5035229A (ja) * | 1972-01-26 | 1975-04-03 | ||
JPS51132235A (en) * | 1975-04-12 | 1976-11-17 | Yokohama Rubber Co Ltd:The | An adhesive for fibers |
JPS528085A (en) * | 1975-06-06 | 1977-01-21 | Yokohama Rubber Co Ltd:The | Method for adhering aromatic polyamide fibers |
JP2000143774A (ja) * | 1998-11-17 | 2000-05-26 | Toshiba Chem Corp | 液状封止用樹脂組成物 |
JP2005075866A (ja) * | 2003-08-29 | 2005-03-24 | Tomoegawa Paper Co Ltd | 半導体装置用接着シート |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3817778A (en) * | 1971-07-02 | 1974-06-18 | Monsanto Co | Bonding fibers to rubber with unsaturate-resorcinol polymers |
US4877859A (en) * | 1987-03-24 | 1989-10-31 | Daikin Industries, Ltd. | Fluorine-containing novolak resin and derivative thereof |
US5618984A (en) * | 1994-06-24 | 1997-04-08 | Mitsui Toatsu Chemicals, Inc. | Phenol aralkyl resins, preparation process thereof and epoxy resin compositions |
JPH08199040A (ja) * | 1995-01-26 | 1996-08-06 | Dainippon Ink & Chem Inc | 合成樹脂組成物 |
US5859153A (en) * | 1996-06-21 | 1999-01-12 | Minnesota Mining And Manufacturing Company | Novolak compounds useful as adhesion promoters for epoxy resins |
JP4994305B2 (ja) * | 2008-06-03 | 2012-08-08 | 横浜ゴム株式会社 | 高熱伝導性エポキシ樹脂系組成物 |
-
2011
- 2011-10-26 WO PCT/JP2011/074719 patent/WO2012057228A1/ja active Application Filing
- 2011-10-26 CN CN201180051134.0A patent/CN103180355B/zh active Active
- 2011-10-26 JP JP2012540916A patent/JP5774021B2/ja active Active
- 2011-10-26 KR KR1020137013297A patent/KR20140033313A/ko not_active Withdrawn
- 2011-10-26 US US13/882,052 patent/US20130307167A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4884181A (ja) * | 1972-01-26 | 1973-11-08 | ||
JPS5035229A (ja) * | 1972-01-26 | 1975-04-03 | ||
JPS51132235A (en) * | 1975-04-12 | 1976-11-17 | Yokohama Rubber Co Ltd:The | An adhesive for fibers |
JPS528085A (en) * | 1975-06-06 | 1977-01-21 | Yokohama Rubber Co Ltd:The | Method for adhering aromatic polyamide fibers |
JP2000143774A (ja) * | 1998-11-17 | 2000-05-26 | Toshiba Chem Corp | 液状封止用樹脂組成物 |
JP2005075866A (ja) * | 2003-08-29 | 2005-03-24 | Tomoegawa Paper Co Ltd | 半導体装置用接着シート |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013237780A (ja) * | 2012-05-15 | 2013-11-28 | Hitachi Chemical Co Ltd | フェノール化合物、その製造方法、樹脂組成物及び電子部品装置 |
JP2013253195A (ja) * | 2012-06-08 | 2013-12-19 | Namics Corp | エポキシ樹脂組成物 |
WO2014017236A1 (ja) * | 2012-07-25 | 2014-01-30 | Dic株式会社 | ラジカル硬化性化合物、ラジカル硬化性化合物の製造方法、ラジカル硬化性組成物、その硬化物、及びレジスト材料用組成物 |
CN104487412A (zh) * | 2012-07-25 | 2015-04-01 | Dic株式会社 | 自由基固化性化合物、自由基固化性化合物的制造方法、自由基固化性组合物、其固化物、以及抗蚀材料用组合物 |
JP2014101299A (ja) * | 2012-11-19 | 2014-06-05 | Meiwa Kasei Kk | ジアリルレゾルシンの製造方法 |
JP2015117374A (ja) * | 2013-11-15 | 2015-06-25 | 明和化成株式会社 | マレイミド化合物含有樹脂組成物、それを硬化させた硬化物、硬化物の製造方法、及び繊維強化樹脂成形体 |
WO2016002704A1 (ja) * | 2014-07-01 | 2016-01-07 | 明和化成株式会社 | アリルエーテル変性ビフェニルアラルキルノボラック樹脂、アリル変性ビフェニルアラルキルノボラック樹脂、その製造方法、及びそれを用いた組成物 |
JP2016216708A (ja) * | 2015-05-20 | 2016-12-22 | 信越化学工業株式会社 | 液状樹脂組成物 |
JP2017039944A (ja) * | 2016-10-05 | 2017-02-23 | 日立化成株式会社 | フェノール化合物、その製造方法、樹脂組成物及び電子部品装置 |
US20210403786A1 (en) * | 2019-03-28 | 2021-12-30 | Fujifilm Corporation | Composition and thermally conductive material |
Also Published As
Publication number | Publication date |
---|---|
KR20140033313A (ko) | 2014-03-18 |
US20130307167A1 (en) | 2013-11-21 |
CN103180355B (zh) | 2015-08-05 |
JPWO2012057228A1 (ja) | 2014-05-12 |
JP5774021B2 (ja) | 2015-09-02 |
CN103180355A (zh) | 2013-06-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5774021B2 (ja) | フェノール系オリゴマー及びその製造方法 | |
JP6233307B2 (ja) | フェノール樹脂組成物 | |
JP2008189708A (ja) | 低溶融粘度フェノールノボラック樹脂、その製造方法およびそれを用いたエポキシ樹脂硬化物 | |
KR20110109939A (ko) | 다가 히드록시수지, 에폭시수지, 그들의 제조법, 그들을 사용한 에폭시수지 조성물 및 경화물 | |
KR101989836B1 (ko) | 페놀 수지 및 열경화성 수지 조성물 | |
WO2011013571A1 (ja) | フェノール系化合物及びその製造方法 | |
JP6799370B2 (ja) | 多価ヒドロキシ樹脂、エポキシ樹脂、それらの製造方法、エポキシ樹脂組成物及びその硬化物 | |
JP6476527B2 (ja) | 液状多価ヒドロキシ樹脂、その製造方法、エポキシ樹脂用硬化剤、エポキシ樹脂組成物、その硬化物およびエポキシ樹脂 | |
JP2015089940A (ja) | 多価ヒドロキシ樹脂、その製造方法、エポキシ樹脂用硬化剤、エポキシ樹脂組成物、硬化物 | |
JP5476762B2 (ja) | フェノール樹脂、該樹脂の製造方法及び該樹脂を含むエポキシ樹脂組成物、ならびにその硬化物 | |
JP4188022B2 (ja) | 多価ヒドロキシ樹脂、エポキシ樹脂、それらの製造法、それらを用いたエポキシ樹脂組成物及び硬化物 | |
JP2010180400A (ja) | ノボラック樹脂および熱硬化性樹脂組成物 | |
KR101609014B1 (ko) | 에폭시 수지 조성물, 이 에폭시 수지 조성물의 제조 방법 및 그의 경화물 | |
JP5139914B2 (ja) | 多価ヒドロキシ樹脂、エポキシ樹脂、それらの製造法、それらを用いたエポキシ樹脂組成物及び硬化物 | |
TW201313769A (zh) | 環氧樹脂、環氧樹脂組成物、及其之硬化物 | |
JP2001114863A (ja) | エポキシ樹脂組成物及びその硬化物 | |
JP5433294B2 (ja) | ジヒドロキシナフタレン系重合体、その製造方法およびその用途 | |
TWI516519B (zh) | 苯酚系寡聚物及其製造方法 | |
JP2823455B2 (ja) | 新規エポキシ樹脂及びその製造方法 | |
JP4667753B2 (ja) | エポキシ樹脂の製造方法、エポキシ樹脂組成物及び硬化物 | |
JP2002294026A (ja) | 液状フェノールノボラック樹脂組成物 | |
KR20150040752A (ko) | 열경화성 수지 조성물 및 이것을 경화해서 얻어지는 경화물 | |
WO2015060307A1 (ja) | フェノール樹脂、エポキシ樹脂、エポキシ樹脂組成物、プリプレグ、およびその硬化物 | |
JP6519917B2 (ja) | エポキシ樹脂および熱硬化性樹脂組成物 | |
JP2012097229A (ja) | エポキシ樹脂用硬化剤組成物の製造方法、及び熱硬化性成形材料の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11836361 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2012540916 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20137013297 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13882052 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11836361 Country of ref document: EP Kind code of ref document: A1 |