[go: up one dir, main page]

WO2012053643A1 - 電池システム - Google Patents

電池システム Download PDF

Info

Publication number
WO2012053643A1
WO2012053643A1 PCT/JP2011/074322 JP2011074322W WO2012053643A1 WO 2012053643 A1 WO2012053643 A1 WO 2012053643A1 JP 2011074322 W JP2011074322 W JP 2011074322W WO 2012053643 A1 WO2012053643 A1 WO 2012053643A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
battery system
circuit
resistor
discharge
Prior art date
Application number
PCT/JP2011/074322
Other languages
English (en)
French (fr)
Inventor
啓 坂部
二見 基生
亮平 中尾
井上 健士
彰彦 工藤
Original Assignee
日立ビークルエナジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ビークルエナジー株式会社 filed Critical 日立ビークルエナジー株式会社
Priority to US13/879,935 priority Critical patent/US20130271146A1/en
Priority to EP11834482.9A priority patent/EP2632021A1/en
Priority to KR1020137009194A priority patent/KR20130103531A/ko
Publication of WO2012053643A1 publication Critical patent/WO2012053643A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • G01R19/16538Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
    • G01R19/16542Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies for batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a battery system.
  • An assembled battery with multiple secondary batteries connected has the advantage of easily obtaining high voltage, large current, and large power compared to a single battery, so it is practically used as a power storage means for hybrid vehicles, electric vehicles, hybrid railway vehicles, UPSs, etc. It is offered to.
  • the variation in the charge amount of each battery is monitored during use, and the variation in the charge amount is within a predetermined range. It is necessary to control it so that it is within.
  • this control method there is known a method of discharging a battery having a larger charge amount than others through a resistor and a switch.
  • the switch and a measurement circuit for monitoring variation in charge amount are integrated in an IC.
  • the switch is short-circuited, the battery is overdischarged.
  • the switch fails to open, the variation in the charge amount of the battery becomes uncontrollable. Therefore, it is necessary to diagnose whether the switch has failed.
  • Some of the ICs of the battery control device have a function of diagnosing the switch.
  • an IC for diagnosing the charge amount adjustment switch for example, those disclosed in Patent Documents 1 and 2 are known.
  • Japanese Unexamined Patent Publication No. 2005-318750 (see paragraph 0038, FIG. 2)
  • Japanese Unexamined Patent Publication No. 2005-318751 (see paragraph 0039, FIG. 2)
  • the battery system according to the first aspect of the present invention is an assembled battery in which a plurality of batteries are connected in series, and a discharge circuit that is connected in parallel to each of the batteries and discharges each of the batteries.
  • a diagnostic circuit for diagnosing a failure of the discharge switch based on the diagnostic circuit is configured so that the first switch is connected to the first switch based on a comparison result obtained by the comparator when the discharge switch is intermittent. Fault diagnosis can be performed.
  • the battery system according to any one of the first to third aspects may include a voltage measurement circuit that measures the voltage of each of the batteries.
  • a first common part is provided in which at least a part of wiring connecting the battery and the discharge circuit and at least a part of wiring connecting the battery and the voltage measurement circuit are shared. It is preferable.
  • a part of the wiring for connecting the battery and the voltage measurement circuit and at least a part of the wiring for controlling the discharge circuit You may provide the 2nd common part which made these common.
  • a third resistor is provided between the first resistor and the discharge switch, and the first resistor and the third resistor are provided. The comparator may be connected to a connection point with a resistor.
  • the comparator is connected via a fourth resistor from a connection point between the first resistor and the third resistor.
  • the diagnosis circuit can perform a failure diagnosis of the discharge switch when the battery system is activated.
  • the present invention it is possible to provide a battery system capable of diagnosing a discharge switch externally attached to an IC to equalize variation in charge amount without providing a dedicated signal line.
  • the figure which shows schematic structure of the battery control apparatus of one Embodiment, and a battery system using the same The figure explaining IC201
  • the figure which shows the other structure of a battery control apparatus The figure which shows the drive procedure of the switches 311-313 for discharge shown in FIG.
  • the block diagram which shows schematic structure of the battery control apparatus 103 The figure which shows schematic structure of a hybrid type electric vehicle
  • FIG. 1 shows a schematic configuration of a battery control device according to an embodiment and a battery system using the same.
  • the battery system according to the embodiment includes an assembled battery 102 in which a plurality of batteries 101 are electrically connected in series, and a voltage and a temperature of the battery 101 that are electrically connected to each battery 101 and measured.
  • One or a plurality of battery control devices 103 capable of individually discharging the battery, and a battery system control device for exchanging signals via the battery control device 103 and the signal line 104 to estimate the state of the battery 101 and control the discharge.
  • this embodiment shows an example in which a lithium ion battery is used as the battery 101, the type of the battery 101 is not limited to the lithium ion battery.
  • the battery system control device 105 receives the voltage and temperature information of each battery 101 measured by the battery control device 103 via the signal line 104, and estimates the variation in the charge amount of each battery 101 based on this. Thereby, it is possible to calculate the discharge amount of each battery 101 necessary for eliminating the variation in the charge amount of each battery 101.
  • the battery system control device 105 instructs each battery control device 103 to discharge each battery 101 via the signal line 104 based on the calculation result. As described above, the variation in the charge amount of each battery 101 is equalized, and the usable charge / discharge range of the battery 101 can be expanded.
  • FIG. 7 shows a schematic configuration of the battery control apparatus 103 according to the embodiment.
  • the input side terminal of the battery control device 103 is electrically connected to four batteries 101.
  • the positive electrode side and the negative electrode side of each battery 101 are electrically connected to the input circuit 116 of the battery control device 103.
  • the input circuit 116 includes a multiplexer.
  • the power supply circuit 121 is constituted by, for example, a DC / DC converter or the like, converts the power from each battery 101 into a predetermined constant voltage, and supplies it to each circuit in the battery control device 103 as a drive power supply.
  • the voltage from the power supply circuit 121 is supplied as a comparison reference voltage to a comparison circuit for determining the state.
  • the voltage detection circuit 122 has a circuit that converts the voltage between the terminals of each battery 101 into a digital value. Each terminal voltage converted into a digital value is sent to the control circuit 123 and held in the internal storage circuit 125. Such voltage information is used for diagnosis or transmitted to the battery system control device 105 shown in FIG.
  • the control circuit 123 has an arithmetic function, and also includes a storage circuit 125, a power management circuit 124, and a timing control circuit 252 that periodically detects various voltages and performs state diagnosis.
  • the storage circuit 125 is configured by, for example, a register circuit, stores the voltage between the terminals of each battery 101 detected by the voltage detection circuit 122 in association with each battery 101, and sets other detection values in advance. The read address is held at the specified address.
  • the power management circuit 124 is configured to manage the state in the power circuit 121.
  • a communication circuit 127 is connected to the control circuit 123.
  • the control circuit 123 can receive a signal from the outside of the battery control device 103 via the communication circuit 127.
  • a communication command from the battery system control device 105 is received at the RX terminal.
  • the communication command is sent from the communication circuit 127 to the control circuit 123, where the content of the communication command is decoded and processing corresponding to the content of the communication command is performed.
  • the communication command is a communication command for requesting a measured value of the voltage between terminals of each battery 101, a communication command for requesting a discharge operation for adjusting the charging state of each battery 101, and an operation of the battery control device 103 is started. It includes a communication command (Wake UP), a communication command for stopping operation (sleep), a communication command for requesting address setting, and the like.
  • the battery control device 103 includes an IC 201 that controls and diagnoses a discharge circuit provided for each battery 101. Details of the IC 201 will be described later.
  • the IC 201 diagnoses that the discharge circuit is abnormal, it outputs the diagnosis result to the control circuit 123.
  • the control circuit 123 outputs a signal indicating an abnormality of the discharge circuit from the 1-bit transmission terminal FFO of the communication circuit 127.
  • the output abnormal signal is transmitted to the battery system control device 105 via the signal line 104.
  • FIG. 2 is a diagram for explaining the IC 201.
  • the battery control device 103 includes the discharge circuit composed of a series circuit of the discharge switch 202 and the first resistor 203, and the IC 201 that controls and diagnoses the discharge circuit. By disposing the discharge circuit outside the IC 201 in this way, it is possible to prevent damage to the IC 201 due to heat generated by the discharge circuit.
  • an FET is used as a discharge switch
  • the discharge switch is not limited to an FET.
  • one end of the first resistor 203 is electrically connected to one end of the discharge switch 202, and the first resistor 203 The other end is electrically connected to one end of the battery 101.
  • the other end of the discharge switch 202 is electrically connected to the other end of the battery 101.
  • the discharge amount of the battery 101 can be controlled using the discharge switch 202.
  • the value of the first resistor 203 is 12 ⁇ , for example.
  • the battery control device 103 periodically detects the terminal voltages of the plurality of batteries 101 and holds the detected terminal voltages of the batteries 101 in a register.
  • the register is rewritten every time the terminal voltage of each battery 101 is detected.
  • the battery control device 103 reads the terminal voltage of each battery 101 detected and held in the register to control the battery system. Transmit to device 105.
  • the battery system control device 105 calculates the intermediate value by taking the difference between the highest terminal voltage and the lowest terminal voltage among the terminal voltages of each battery 101 transmitted from the battery control device 103. Then, the calculated intermediate value is compared with the terminal voltage of each battery 101 transmitted from the battery control device 103. If the difference between the two is equal to or greater than a predetermined value, the battery 101 is set to the first resistance. The charge state is adjusted by 203, and the discharge time by the first resistor 203 is calculated based on the difference.
  • the battery system control device 105 generates a switching command signal of the discharge switch 202 for discharging the battery 101 as the charge state adjustment target based on the calculated discharge time of the battery 101 as the charge state adjustment target, This switching command signal is transmitted to the battery control device 103 corresponding to the battery 101 whose charge state is to be adjusted.
  • the battery control device 103 Upon receiving the switching command signal, the battery control device 103 generates a switching drive signal based on the switching command signal, and outputs the switching drive signal to the discharge switch 202 for discharging the battery 101 whose charge state is to be adjusted. (ON / OFF) is controlled.
  • the discharge switch 202 corresponding to the battery 101 whose charge state is to be adjusted is on, the battery 101 whose charge state is to be adjusted discharges electric energy to the first resistor 203.
  • the electrical energy charged in the battery 101 whose charge state is to be adjusted is consumed as heat by the first resistor 203, and the charge state (terminal voltage) of the battery 101 whose charge state is to be adjusted is adjusted.
  • the IC 201 includes a comparator 204, a threshold generation circuit 205, a comparison result output 206, a switch control circuit 207, and a terminal 208.
  • the switch control circuit 207 generates a signal for turning on / off the discharge switch 202. As a result, the battery control device 103 can discharge the battery 101 having a larger charge amount than the others and control the variation in the charge amount.
  • the voltage applied to the resistor 203 varies depending on the current flowing through the discharge switch 202.
  • the voltage applied to the comparator 204 also varies depending on the current flowing through the discharge switch 202.
  • the comparator 204 compares the voltage applied to the discharge switch 202 with the output voltage of the threshold generation circuit 205, for example, 2.5 V, and if the latter is larger, the comparison result output 206 is set to true. Outputs false if the former is larger.
  • the rated voltage of the lithium ion battery 101 of one embodiment is 3.6V, and the voltage between both ends does not decrease to 3V or less in a normal state. Therefore, threshold voltage 2.5 V of threshold generation circuit 205 corresponds to the voltage between both ends when lithium ion battery 101 of one embodiment is in an abnormal overdischarge state.
  • FIG. 3 shows an example of the relationship between the operation of the discharge switch 202 and the detected voltage.
  • the voltage applied to the comparator 204 is equal to or greater than the threshold when the discharge switch 202 is off, and false is output to the comparison result output 206.
  • the discharge switch 202 is on, the voltage applied to the comparator 204 is equal to or lower than the threshold value, and true is output to the comparison result output 206.
  • the discharge switch 202 has an open failure, for example, even if the discharge switch 202 is turned on, the voltage applied to the comparator 204 is equal to or higher than the threshold value. Therefore, in this case, the output to the comparison result output 206 remains false regardless of whether the discharge switch 202 is on or off.
  • the discharge switch 202 has a short circuit failure, the voltage applied to the comparator 204 is equal to or lower than the threshold value even when the discharge switch 202 is turned off. For this reason, true is output to the comparison result output 206 regardless of whether the discharge switch 202 is on or off.
  • the comparison result output 206 changes according to the output of the switch control circuit 207, and does not change when the discharge switch 202 fails. Therefore, a failure of the discharge switch 202 can be detected based on the presence or absence of this change.
  • the failure determination of the discharge switch 202 based on the comparison result output 206 may be performed by the control circuit 123 of the battery control device 103 or the battery system control device 105.
  • FIG. 4 shows another configuration of the battery control device 103.
  • the number of parts is increased as compared with the configuration shown in FIG. 2, but the degree of freedom of the discharge switch 202 and the reliability of the system are improved.
  • the second resistor 211 and the third resistor 210 that give a degree of freedom in selecting the discharge switch 202 and the degree of freedom in the design of the switch control circuit 207 are given.
  • a fourth resistor 209 is provided.
  • the third resistor 210 it is possible to freely set the relationship between the discharge current and the threshold value for comparison.
  • the second resistor 211 and the fourth resistor 209 the operating potential of the switch drive circuit 219 and the operating potential of the discharging switch 202 can be adjusted, and the degree of freedom in selecting these switches is increased. can do.
  • the switch control circuit 207 turns off the discharge switch 202 and sets the amount of voltage drop to zero. Thereby, the battery voltage can be accurately measured.
  • the configuration shown in FIG. 4 includes an analog / digital converter 212 and a digital comparator 214 instead of the comparator 204 shown in FIG.
  • the analog / digital converter 212 is connected to the voltage measurement line, and converts the voltage of the battery 101 into a digital value, similar to the voltage detection circuit 122 of FIG.
  • the voltage of the battery 101 converted into a digital value is output from the voltage output 213 to the control circuit 123.
  • the voltage detection circuit 122 can be omitted, and a circuit for performing failure diagnosis of the discharge switch 202 and a circuit for measuring the voltage of the battery 101 can be shared, and the circuit scale can be obtained. Can be reduced.
  • One end of the digital comparator 214 is connected to a connection point between the first resistor 203 and the third resistor 210 via the analog-digital converter 212 and the fourth resistor 209.
  • the threshold generation circuit 205 outputs a digital value in order to correspond to the digital comparator 214.
  • the signal converter 220 converts the comparison result output 206.
  • the output from the signal converter 220 is, for example, a signal that periodically fluctuates at 1 Hz when the comparison result output 206 is false, and a signal that has no periodic fluctuation when true. By doing in this way, it becomes possible to prevent misjudgment due to sticking of signal output or disconnection of signal lines.
  • one end of the switch drive circuit 219 is connected to the input of the analog / digital converter 212, and the other end is connected to the second common unit 216.
  • the second common part 216 is a part in which a part of the voltage measurement line and a part of the wiring for controlling the discharge switch 202 are made common. In this way, the number of IC terminals 208 is reduced. As a result, the chip area of the IC can be reduced.
  • FIG. 5 shows another configuration of the battery control device.
  • a second comparator 217 and a second threshold value generation circuit 218 are added to the configuration shown in FIG.
  • the discharge switches 311, 312, and 313 by operating the discharge switches 311, 312, and 313 in an appropriate order, it is possible to detect disconnection of the wirings 302 and 303 in addition to detecting the failure of the discharge switches 311, 312, and 313. Furthermore, it becomes possible to distinguish overdischarge of the battery 101 and short circuit of the discharge switches 311 to 313 using the output of the second comparator 217.
  • each of the discharge switches 311, 312, and 313 is electrically connected between the wirings 301 to 304 that connect the battery control device 103 and the assembled battery 102 and the first resistor 203.
  • the comparator 204 can compare the voltage of the battery 101 and the voltage of the threshold value generation circuit 205 regardless of whether the discharging switch 311 is on or off.
  • one end of the discharge switch 311 may be electrically connected between the first resistor 203 and the IC 201 as in the configuration shown in FIG. Thereby, the heat-generating part by discharge is disperse
  • the IC 201 drives the discharge switches 311 to 313 via the switch control circuit 207 in the order shown in FIG. 6, for example, to diagnose the failure of the discharge switches 311 to 313 and detect the disconnection of the wirings 302 to 303. I do.
  • the diagnosis method of the discharge switches 311 to 313 is the same as that of the other configurations. In the disconnection detection, for example, when the process proceeds from step 3 to step 4, the comparison result output 322 remains true. When the process further proceeds to step 5, the comparison result output 323 becomes false. Diagnose that it is disconnected.
  • the configuration shown in FIG. 5 includes a second comparator 217 and a second threshold value generation circuit 218 in addition to the configuration shown in FIG.
  • the output of the second threshold value generation circuit 218 is set to about half that of the threshold value generation circuit 205, for example, it becomes possible to detect whether a voltage change has occurred due to the change of the discharge switches 311 to 313. This makes it possible to distinguish between a short-circuit failure in the discharge switches 311 to 313 and a disconnection in the wirings 302 to 303.
  • the comparison result output 322 is true in Step 3 and 332 is false, it is diagnosed that the discharge switch 312 is short-circuited. Conversely, when both the comparison result outputs 322 and 332 are true, it is diagnosed that the wiring 302 is disconnected.
  • the driving of the discharging switch as shown in FIG. 6 may be performed at any point in time when the system is activated or terminated, or during the operation of the system.
  • the system user can confirm the presence or absence of an abnormality before operating the system in earnest, and can use it with peace of mind.
  • the process at the end for example, it is possible to check whether or not the discharge switch is short-circuited, and it is possible to determine whether the system may be left for a long period of time.
  • it during the operation of the system for example, it is possible to confirm the presence or absence of disconnection, and to confirm that the voltage of each battery 101 can be read correctly.
  • the battery system of the present invention uses various power storage means such as a power source for transportation such as a hybrid vehicle, an electric vehicle, and a hybrid railway vehicle, a power source for portable devices such as a power tool and a notebook computer, and a backup power source such as a UPS. Can be used for equipment.
  • a power source for transportation such as a hybrid vehicle, an electric vehicle, and a hybrid railway vehicle
  • a power source for portable devices such as a power tool and a notebook computer
  • a backup power source such as a UPS.
  • FIG. 8 is a diagram showing a schematic configuration of a hybrid electric vehicle to which the battery system of the present invention is applied.
  • the vehicle 1000 is equipped with an engine 1120, a first rotating electrical machine 1200, a second rotating electrical machine 1202, and a battery 1180.
  • the battery 1180 employs the battery system described above, and includes the assembled battery 102 and the battery control device 103.
  • the battery 1180 supplies DC power to the rotating electrical machines 1200 and 1202 via the power converter 1600 when the driving force by the rotating electrical machines 1200 and 1202 is required, and receives DC power from the rotating electrical machines 1200 and 1202 during regenerative travel. . Transfer of DC power between the battery 1180 and the rotating electrical machines 1200 and 1202 is performed via the power converter 1600.
  • the vehicle is equipped with a battery that supplies low-voltage power (for example, 14 volt system power) and supplies DC power to a control circuit described below.
  • Rotational torque generated by the engine 1120 and the rotating electrical machines 1200 and 1202 is transmitted to the front wheels 1110 via the transmission 1130 and the differential gear 1160.
  • the transmission 1130 is controlled by a transmission control device 1134
  • the engine 1120 is controlled by an engine control device 1124.
  • the battery 1180 is controlled by the battery system control device 105.
  • Transmission control device 1134, engine control device 1124, battery system control device 105, power conversion device 1600, and integrated control device 1170 are connected by communication line 1174.
  • the integrated control device 1170 is a higher-level control device than the transmission control device 1134, the engine control device 1124, the power conversion device 1600, and the battery system control device 105.
  • Information representing each state of 1600 and the battery system control device 105 is received from each of them via the communication line 1174.
  • the integrated control device 1170 calculates a control command for each control device based on the acquired information. The calculated control command is transmitted to each control device via the communication line 1174.
  • the battery system control device 105 outputs the charge / discharge status of the battery 1180 and the status of each unit cell battery constituting the battery 1180 to the integrated control device 1170 via the communication line 1174.
  • integrated control device 1170 determines that charging of battery 1180 is necessary based on information from battery system control device 105, integrated control device 1170 issues an instruction for power generation operation to power conversion device 1600.
  • the integrated control device 1170 mainly manages the output torque of the engine 1120 and the rotating electrical machines 1200 and 1202, and calculates the total torque and torque distribution ratio between the output torque of the engine 1120 and the output torque of the rotating electrical machines 1200 and 1202.
  • a control command based on the calculation processing result is transmitted to the transmission control device 1134, the engine control device 1124, and the power conversion device 1600.
  • the power conversion device 1600 controls the rotating electrical machines 1200 and 1202 so as to generate torque output or generated power according to the command.
  • Power converter 1600 is provided with a power semiconductor that constitutes an inverter for operating rotating electric machines 1200 and 1202.
  • the power conversion device 1600 controls the switching operation of the power semiconductor based on a command from the integrated control device 1170. By the switching operation of the power semiconductor, the rotating electric machines 1200 and 1202 are operated as an electric motor or a generator.
  • the power conversion device 1600 converts the DC power supplied by controlling the switching operation of the power semiconductor into three-phase AC power, and supplies the three-phase AC power to the rotating electrical machines 1200 and 1202.
  • the rotating electrical machines 1200 and 1202 are operated as a generator, the rotors of the rotating electrical machines 1200 and 1202 are rotationally driven by a rotational torque applied from the outside, and the stator windings of the rotating electrical machines 1200 and 1202 are three-phased. AC power is generated.
  • the generated three-phase AC power is converted into DC power by the power converter 1600, and the DC power is supplied to the high voltage battery 1180, whereby the battery 1180 is charged.
  • a battery pack 102 in which a plurality of batteries 101 are electrically connected in series, and a discharge circuit that is electrically connected in parallel with each battery 101 and discharges each battery 101, and includes a first resistor 203. And a discharge circuit in which the discharge switch 202 is electrically connected in series, comparators 204 and 214 for comparing the voltage of each battery 101 with a predetermined voltage via the first resistor 203, and a comparator 204 , 214 is provided with a diagnosis circuit (103 or 105) for diagnosing a failure of the discharge switch 202 based on the comparison result, the discharge switch 202 that is externally attached to the IC and equalizes the variation in charge amount is provided.
  • the magnitude of the flowing current can be determined by the comparators 204 and 214 built in the IC. Furthermore, since the wiring required for the comparators 204 and 214 and the existing wiring required for battery voltage measurement and overdischarge determination can be made common, the diagnosis of the discharge switch 202 can be realized without increasing the number of pins of the IC. It becomes possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

ICに外付けされた充電量のばらつきを均等化する放電用スイッチの診断を専用の信号線を設けることなく実現可能な電池システムを提供する。電池システムは、複数の電池が直列に接続された組電池と、それぞれの電池と並列に接続されてそれぞれの電池の放電を行う放電回路であって、第一の抵抗と放電用スイッチとが直列に接続された放電回路と、第一の抵抗を介してそれぞれの電池の電圧を所定の電圧と比較する比較器と、比較器による比較結果に基づいて放電用スイッチの故障診断を行う診断回路とを備える。

Description

電池システム
 本発明は電池システムに関する。
 二次電池を複数個接続した組電池は、単電池に比べ高電圧や大電流、大電力を得やすいという利点があるため、ハイブリッド自動車や電気自動車、ハイブリッド鉄道車両、UPSなどの蓄電手段として実用に供されている。
 組電池を構成する各二次電池の特性には製造時などで生じるばらつきが存在するため、電池の種類によっては使用時に各電池の充電量のばらつきを監視し、充電量のばらつきが所定の範囲内に収まるように制御する必要がある。この制御方法としては、充電量が他より多い電池を抵抗およびスイッチを介して放電する方式が知られている。この方式を用いた電池制御装置では、部品点数を削減するため前記スイッチや充電量のばらつきを監視するための計測回路をICに集積することが行われている。ところが、前記スイッチが短絡故障した場合には、電池を過放電させてしまう。また、前記スイッチが開放故障した場合には、電池の充電量のばらつきを制御不能となる。そのため、前記スイッチが故障していないかどうかを診断する必要がある。電池制御装置の前記ICの中には、前記スイッチを診断する機能を持つものがある。尚、充電量調整用スイッチを診断するICとしては、例えば特許文献1,2に開示されたものが知られている。
日本国特開2005-318750号公報(段落0038,図2参照) 日本国特開2005-318751号公報(段落0039,図2参照)
 ところで、近年、電池の容量が増大しており、充電量のばらつきを均等化するための放電に必要な電流量が増加している。このため、前記スイッチをICに集積することが困難になり、スイッチをICに外付けする必要が出てきた。しかしながら、スイッチの診断を行うには専用の信号線を設ける必要が有り、ICのピン数が増えてしまうという問題がある。ICのピン数が増えると、コストの増大やハンダ付け箇所増大による信頼性の低下、基板面積の増大が生じるため、ICのピン数は極力減らす必要がある。
 本発明の第1の態様による電池システムは、複数の電池が直列に接続された組電池と、それぞれの前記電池と並列に接続されてそれぞれの前記電池の放電を行う放電回路であって、第一の抵抗と放電用スイッチとが直列に接続された放電回路と、前記第一の抵抗を介してそれぞれの前記電池の電圧を所定の電圧と比較する比較器と、前記比較器による比較結果に基づいて前記放電用スイッチの故障診断を行う診断回路とを備える。
 本発明の第2の態様によると、第1の態様の電池システムにおいて、前記診断回路は、前記放電用スイッチの断続を行ったときの前記比較器による比較結果に基づいて前記第一のスイッチの故障診断を行うことができる。
 本発明の第3の態様によると、第2の態様の電池システムにおいて、前記診断回路は、前記放電用スイッチの断続を行ったときに前記比較器の出力が変化しなかった場合は前記放電用スイッチの故障と診断することが好ましい。
 本発明の第4の態様によると、第1~第3いずれかの態様の電池システムは、それぞれの前記電池の電圧を計測する電圧計測回路を備えてもよい。この電池システムにおいて、前記電池と前記放電回路とを接続する配線の少なくとも一部と、前記電池と前記電圧計測回路とを接続する配線の少なくとも一部とを共通化した第一の共通部を設けることが好ましい。
 本発明の第5の態様によると、第4の態様の電池システムにおいて、前記電池と前記電圧計測回路とを接続する配線の少なくとも一部と、前記放電回路を制御するための配線の少なくとも一部とを共通化した第二の共通部を設けてもよい。
 本発明の第6の態様によると、第5の態様の電池システムにおいて、前記第一の共通部と前記第二の共通部との間に第二の抵抗を設けることが好ましい。
 本発明の第7の態様によると、第6の態様の電池システムにおいて、前記第一の抵抗と前記放電用スイッチとの間に第三の抵抗を設け、前記第一の抵抗と前記第三の抵抗との接続点に前記比較器を接続してもよい。
 本発明の第8の態様によると、第7の態様の電池システムにおいて、前記第一の抵抗と前記第三の抵抗との接続点から第四の抵抗を介して前記比較器を接続することが好ましい。
 本発明の第9の態様によると、第1~第8いずれかの態様の電池システムにおいて、前記診断回路は、電池システムの起動時に前記放電用スイッチの故障診断を行うことができる。
 本発明の第10の態様によると、第1~第9いずれかの態様の電池システムにおいて、前記比較器の前記所定の電圧に、前記電池が過放電状態のときの電圧を設定することが好ましい。
 本発明によれば、ICに外付けされた、充電量のばらつきを均等化する放電用スイッチの診断を、専用の信号線を設けることなく実現可能な電池システムを提供することができる。
一実施の形態の電池制御装置とそれを用いた電池システムの概略構成を示す図 IC201を説明する図 放電用スイッチ202の動作と検知電圧の関係を示す図 電池制御装置103の他の構成を示す図 電池制御装置の他の構成を示す図 図5に示す放電用スイッチ311~313の駆動手順を示す図 電池制御装置103の概略構成を示すブロック図 ハイブリッド型電気自動車の概略構成を示す図
 以下に本発明の実施の形態を添付図面に基づいて説明する。図1は、一実施の形態の電池制御装置とそれを用いた電池システムの概略構成を示す。一実施の形態の電池システムは、複数個の電池101を電気的に直列に接続した組電池102と、各電池101に電気的に接続されて電池101の電圧や温度を計測し、各電池101を個別に放電可能な一個または複数個の電池制御装置103と、この電池制御装置103と信号線104を介して信号の授受を行い、電池101の状態推定や放電の制御を行う電池システム制御装置105とから構成される。この一実施の形態では電池101としてリチウムイオン電池を用いた例を示すが、電池101の種別はリチウムイオン電池に限定されるものではない。
 電池システム制御装置105は、電池制御装置103が計測した各電池101の電圧や温度情報を信号線104を介して受信し、これに基づき各電池101の充電量のばらつきを推定する。これにより、各電池101の充電量のばらつきをなくすために必要な各電池101の放電量を計算できる。電池システム制御装置105は、この計算結果に基づき信号線104を介して各電池制御装置103に対し各電池101を放電する指示を出す。以上により、各電池101の充電量のばらつきが均等化され、使用可能な電池101の充放電範囲を広げることが可能となる。
 図7は一実施の形態の電池制御装置103の概略構成を示す。図7に示す例では、電池制御装置103の入力側端子は、4つの電池101に電気的に接続されている。各電池101の正極側および負極側は、電池制御装置103の入力回路116に電気的に接続されている。この入力回路116は、マルチプレクサを含む。電源回路121は、たとえばDC/DCコンバータ等で構成され、各電池101からの電力を所定の定電圧に変換し、電池制御装置103内の各回路に駆動電源として供給する。また、電源回路121からの電圧は、状態を判断するための比較回路に比較基準電圧として供給される。
 電圧検出回路122は、各電池101の端子間電圧をデジタル値に変換する回路を有している。デジタル値に変換された各端子間電圧は制御回路123に送られ、内部の記憶回路125に保持される。これらの電圧情報は診断などに利用されたり、図1に示す電池システム制御装置105に信号線104を介して送信されたりする。
 制御回路123は、演算機能を有すると共に、記憶回路125、電源管理回路124、各種電圧の検知や状態診断を周期的に行うタイミング制御回路252を有している。記憶回路125は、例えばレジスタ回路で構成されており、電圧検出回路122で検出した各電池101の各端子間電圧を各電池101に対応づけて記憶し、また、その他の検出値を、予め定められたアドレスに読出し可能に保持する。電源管理回路124は、電源回路121における状態を管理するように構成されている。
 制御回路123には、通信回路127が接続されている。制御回路123は、この通信回路127を介して当該電池制御装置103の外部から信号を受信することができる。例えば、電池システム制御装置105からの通信コマンドを、RX端子で受信する。通信コマンドは通信回路127から制御回路123に送られ、ここで通信コマンドの内容が解読され、通信コマンド内容に応じた処理が行われる。例えば通信コマンドは、各電池101の端子間電圧の計測値を要求する通信コマンド、各電池101の充電状態を調整するための放電動作を要求する通信コマンド、当該電池制御装置103の動作を開始する通信コマンド(Wake UP)、動作を停止する通信コマンド(スリープ)、アドレス設定を要求する通信コマンド、等を含んでいる。
 図7に示す一番上の電池101の正極側は、第一の抵抗203を介して電池制御装置103の放電用スイッチ202の一端に電気的に接続されている。放電用スイッチ202の他端は、対応する前記電池101の負極側に電気的に接続されている。第一の抵抗203と放電用スイッチ202との直列回路は、放電回路を構成している。同様に、他の電池101に対しても、放電用スイッチ202と第1の抵抗203の直列回路から成る放電回路が設けられている。電池制御装置103には、各電池101に対して設けられた放電回路の制御と診断を行うIC201を備えている。IC201の詳細は後述する。
 IC201は放電回路が異常であると診断すると、その診断結果を制御回路123に出力する。制御回路123は、放電回路の異常を表す信号を通信回路127の1ビット送信端子FFOから出力する。出力された異常信号は、信号線104を介して電池システム制御装置105へと送信される。
 図2はIC201を説明する図である。上述したように、電池制御装置103は、放電用スイッチ202と第一の抵抗203の直列回路から成る放電回路と、この放電回路の制御と診断を行うIC201とを備えている。このようにIC201の外部に放電回路を設置することによって、放電回路の発熱によるIC201の破損を防ぐことができる。なお、この一実施の形態では放電用スイッチにFETを用いた例を示すが、放電用スイッチはFETに限定されない。
 放電用スイッチ202と第一の抵抗203とが電気的に直列に接続された放電回路において、第一の抵抗203の一端は放電用スイッチ202の一端と電気的に接続され、第一の抵抗203の他端は電池101の一端に電気的に接続されている。また、放電用スイッチ202の他端は電池101の他端に電気的に接続されている。このような構成とすることによって、放電用スイッチ202を用いて電池101の放電量を制御することが可能となる。また、第一の抵抗203により放電電流量を制限しながら、電池101の充電エネルギーを熱に変換して放出することが可能となる。第一の抵抗203の値は例えば12Ωである。
 尚、ハイブリッド自動車の作動中(電池システムを電源とする電動発電機の作動中)、電池システムの起動中(無負荷状態)や作動中(負荷状態)において行われる、電気的に直列に接続された複数の電池101の充電状態(端子電圧)の均等化調整は、例えば次のような手順によって実施される。
 まず、電池制御装置103では、複数の電池101のそれぞれの端子電圧を周期的に検出し、この検出された各電池101の端子電圧をレジスタに保持している。レジスタは、各電池101の端子電圧が検出されるごとに書き換えられる。電池システム制御装置105から各電池101の端子電圧の送信要求指令信号が送信されると、電池制御装置103は、検出されてレジスタに保持されている各電池101の端子電圧を読み出して電池システム制御装置105に送信する。
 次に、電池システム制御装置105は、電池制御装置103から送信されてきた各電池101の端子電圧のうちの最高端子電圧と最低端子電圧との差分をとってその中間値を演算する。そして、この演算された中間値と、電池制御装置103から送信されてきた各電池101の端子電圧とを比較し、両者の差分が所定値以上の場合には、その電池101を第一の抵抗203による充電状態調整対象とすると共に、その差分に基づいて第一の抵抗203による放電時間を演算する。そして、電池システム制御装置105は、演算された充電状態調整対象の電池101の放電時間に基づいて、充電状態調整対象の電池101を放電させるための放電用スイッチ202のスイッチング指令信号を生成し、このスイッチング指令信号を、充電状態調整対象の電池101に対応する電池制御装置103に送信する。
 スイッチング指令信号を受けた電池制御装置103は、スイッチング指令信号に基づいてスイッチング駆動信号を生成して、充電状態調整対象の電池101を放電させるための放電用スイッチ202に出力し、そのスイッチの駆動(オンオフ)を制御する。これにより、充電状態調整対象の電池101に対応する放電用スイッチ202がオンしている間、充電状態調整対象の電池101は第一の抵抗203に対して電気エネルギーを放電する。この放電により、充電状態調整対象の電池101に充電された電気エネルギーが第一の抵抗203によって熱として消費され、充電状態調整対象の電池101の充電状態(端子電圧)が調整される。
 IC201は比較器204、しきい値生成回路205、比較結果出力206、スイッチ制御回路207、端子208を備えている。スイッチ制御回路207は放電用スイッチ202をオン・オフするための信号を生成する。これにより、電池制御装置103は充電量が他より多い電池101を放電し、充電量のばらつきを制御することが可能となる。
 ここで、抵抗203にかかる電圧は放電用スイッチ202に流れる電流により変化する。このため、比較器204にかかる電圧も放電用スイッチ202に流れる電流により変化する。比較器204は、放電用スイッチ202にかかっている電圧と、しきい値生成回路205の出力電圧、例えば2.5Vとを比較し、後者の方が大きかった場合に比較結果出力206に真を出力、前者の方が大きかった場合に偽を出力する。なお、一実施の形態のリチウムイオン電池101の定格電圧は3.6Vであり、正常な状態では両端間電圧が3V以下に低下することはない。したがって、しきい値生成回路205のしきい値電圧2.5Vは、一実施の形態のリチウムイオン電池101が異常な過放電状態のときの両端間電圧に相当する。
 図3に放電用スイッチ202の動作と検知電圧の関係の一例を示す。放電用スイッチ202が正常に動作しているとき、比較器204にかかる電圧は放電用スイッチ202がオフのときはしきい値以上となり、比較結果出力206に偽が出力される。放電用スイッチ202がオンのときは比較器204にかかる電圧はしきい値以下となり、比較結果出力206に真が出力される。
 一方、放電用スイッチ202が例えば開放故障している場合は、放電用スイッチ202がオンしても比較器204にかかる電圧はしきい値以上となる。このため、この場合は放電用スイッチ202のオン、オフに関わらず比較結果出力206への出力は偽のままとなる。また、放電用スイッチ202が短絡故障している場合は、放電用スイッチ202をオフにしても比較器204にかかる電圧はしきい値以下となる。このため、放電用スイッチ202のオン・オフに関わらず比較結果出力206へ真が出力される。
 このように、電池システムが正常に動作しているとき、この比較結果出力206はスイッチ制御回路207の出力に応じて変化し、放電用スイッチ202が故障した場合は変化しない。そこで、この変化の有無により放電用スイッチ202の故障を検出できる。この比較結果出力206に基づく放電用スイッチ202の故障判定は、電池制御装置103の制御回路123で実施してもよいし、電池システム制御装置105で実施してもよい。
 図4は電池制御装置103の他の構成を示す。この構成は図2に示す構成より部品点数は増加するが、放電用スイッチ202の自由度やシステムの信頼性が向上している。
 図4に示す構成では、図2に示す構成に加え、放電用スイッチ202の選択に自由度を与える第二の抵抗211および第三の抵抗210や、スイッチ制御回路207の設計に自由度を与える第四の抵抗209を有する。このように、第三の抵抗210を設けることによって、放電電流と比較のためのしきい値との関係を自由に設定することが可能となる。また、第二の抵抗211と第四の抵抗209を設けることによって、スイッチ駆動回路219の動作電位や放電用スイッチ202の動作電位を調整することが可能となり、これらスイッチの選択の自由度を大きくすることができる。
 また、電池の放電経路の一部と電池の電圧計測線の一部が第一の共通部215として共通化されており、配線の本数が減っている。このような構成では、電池電圧の計測時に放電用スイッチ202がオンになっていると、第一の抵抗203に生じる電圧降下により正確な電池電圧の計測が困難になる。そこで、電池電圧を計測する場合はスイッチ制御回路207により放電用スイッチ202をオフにし、電圧降下量を0にする。これにより、電池電圧を正確に計測することが可能となる。
 図4に示す構成では、図2に示す比較器204に代えてアナログ・デジタル変換器212とデジタルコンパレータ214を備えている。アナログ・デジタル変換器212は、上記電圧計測線に接続されており、図7の電圧検出回路122と同様に、電池101の電圧をデジタル値に変換する。デジタル値に変換された電池101の電圧は、電圧出力213から制御回路123へ出力される。これにより、電池制御装置103において、電圧検出回路122を省略して、放電用スイッチ202の故障診断を行う回路と、電池101の電圧を計測する回路とを共通化することが可能となり、回路規模を減らすことが可能となる。デジタルコンパレータ214の一端は、アナログ・デジタル変換器212および第四の抵抗209を介して、第一の抵抗203と第三の抵抗210の接続点に接続されている。しきい値生成回路205は、デジタルコンパレータ214に対応するため、デジタル値を出力する。
 信号変換器220は比較結果出力206を変換するものである。信号変換器220からの出力は、例えば比較結果出力206が偽の時は1Hzで周期的に変動する信号、真の時は周期的変動の無い信号である。このようにすることで信号出力の張り付きや、信号線の断線による誤判断を防ぐことが可能となる。
 また、図4に示す構成によれば、スイッチ駆動回路219の一端をアナログ・デジタル変換器212の入力に接続し、他端を第二の共通部216に接続している。第二の共通部216は、上記電圧計測線の一部と、放電用スイッチ202を制御するための配線の一部とが共通化されたものである。こうすることで、ICの端子208の数を削減している。これにより、ICのチップ面積を削減可能としている。
 図5は電池制御装置の他の構成を示す。この構成は、図2に示す構成に対して第二の比較器217と第二のしきい値生成回路218を追加したものである。この構成において、放電用スイッチ311、312、313を適切な順番で動作させることによって、放電用スイッチ311、312、313の故障検知に加え配線302、303の断線検知も可能となる。さらに、第二の比較器217の出力を用いて電池101の過放電と放電用スイッチ311~313の短絡とを区別することが可能となる。
 図5に示す構成では、放電用スイッチ311、312、313の一端は、電池制御装置103と組電池102を結ぶ配線301~304と、第一の抵抗203との間に電気的に接続される。これにより、例えば比較器204は放電用スイッチ311のオン・オフに関係なく、電池101の電圧としきい値生成回路205の電圧を比較することができる。なお、図4に示す構成のように、放電用スイッチ311の一端を第一の抵抗203とIC201との間に電気的に接続してもよい。これにより、放電による発熱部位が分散され、熱的要求が緩和される。
 図5に示す構成では、IC201はスイッチ制御回路207を介して放電用スイッチ311~313を例えば図6に示す順番で駆動し、放電用スイッチ311~313の故障診断や配線302~303の断線検知を行う。放電用スイッチ311~313の診断方法は、他の構成と同様である。断線検知は、例えばステップ3からステップ4に進んだときに、比較結果出力322が真のままであり、更にステップ5に進んだときに、比較結果出力323が偽となった場合、配線302が断線していると診断する。
 また、図5に示す構成では、図4に示す構成に加え、第二の比較器217と第二のしきい値生成回路218を備えている。第二のしきい値生成回路218の出力を、例えばしきい値生成回路205の約半分とすることによって、放電用スイッチ311~313の変化により電圧変動が起きたか検知可能となる。これにより、放電用スイッチ311~313の短絡故障と、配線302~303の断線とを区別することが可能となる。上述した例では、例えばステップ3において比較結果出力322が真、332が偽の場合、放電用スイッチ312の短絡故障であると診断する。逆に、比較結果出力322、332が共に真の場合、配線302が断線していると診断する。
 なお、図6に示すような放電用スイッチの駆動は、システムの起動時や終了時、システムの動作中のいずれの時点に行ってもよい。同駆動を起動時に行うことで、システムの使用者はシステムを本格動作させる前に異常の有無を確認し、安心して使用することが可能となる。また、終了時に行うことで、例えば放電用スイッチの短絡有無を確認することができ、システムを長期放置しても良いか判断可能となる。そして、システムの動作中に行うことで、例えば断線の有無を確認し、各電池101の電圧を正しく読める状態にあることを確認可能となる。
 本発明の電池システムは、ハイブリッド自動車や電気自動車、ハイブリッド鉄道車両などの交通手段用電源、電動工具、ノートパソコンなどの携帯機器用電源、UPSなどのバックアップ電源等、組蓄電手段を利用する様々な機器に対し用いることができる。
 図8は、本発明の電池システムが適用されたハイブリッド型電気自動車の概略構成を示す図である。車両1000には、エンジン1120と第1の回転電機1200と第2の回転電機1202とバッテリ1180とが搭載されている。バッテリ1180には上述した電池システムが採用され、組電池102および電池制御装置103が含まれている。バッテリ1180は、回転電機1200,1202による駆動力が必要な場合には電力変換装置1600を介して回転電機1200,1202に直流電力を供給し、回生走行時には回転電機1200,1202から直流電力を受ける。バッテリ1180と回転電機1200,1202との間の直流電力の授受は、電力変換装置1600を介して行われる。また、図示していないが、車両には低電圧電力(例えば、14ボルト系電力)を供給するバッテリが搭載されており、以下に説明する制御回路に直流電力を供給する。
 エンジン1120および回転電機1200,1202による回転トルクは、変速機1130とデファレンシャルギア1160を介して前輪1110に伝達される。変速機1130は変速機制御装置1134により制御され、エンジン1120はエンジン制御装置1124により制御される。バッテリ1180は、電池システム制御装置105により制御される。変速機制御装置1134、エンジン制御装置1124、電池システム制御装置105、電力変換装置1600および統合制御装置1170は、通信回線1174によって接続されている。
 統合制御装置1170は、変速機制御装置1134,エンジン制御装置1124,電力変換装置1600および電池システム制御装置105よりも上位の制御装置であり、変速機制御装置1134,エンジン制御装置1124,電力変換装置1600および電池システム制御装置105の各状態を表す情報を、通信回線1174を介してそれらからそれぞれ受け取る。統合制御装置1170は、取得したそれらの情報に基づき各制御装置の制御指令を演算する。演算された制御指令は通信回線1174を介してそれぞれの制御装置へ送信される。
 電池システム制御装置105は、バッテリ1180の充放電状況やバッテリ1180を構成する各単位セル電池の状態を、通信回線1174を介して統合制御装置1170に出力する。統合制御装置1170は、電池システム制御装置105からの情報に基づいてバッテリ1180の充電が必要と判断すると、電力変換装置1600に発電運転の指示を出す。また、統合制御装置1170は、主に、エンジン1120および回転電機1200,1202の出力トルクの管理、エンジン1120の出力トルクと回転電機1200,1202の出力トルクとの総合トルクやトルク分配比の演算処理を行い、その演算処理結果に基づく制御指令を、変速機制御装置1134,エンジン制御装置1124および電力変換装置1600へ送信する。電力変換装置1600は、統合制御装置1170からのトルク指令に基づき、指令通りのトルク出力あるいは発電電力が発生するように回転電機1200,1202を制御する。
 電力変換装置1600には、回転電機1200,1202を運転するためのインバータを構成するパワー半導体が設けられている。電力変換装置1600は、統合制御装置1170からの指令に基づきパワー半導体のスイッチング動作を制御する。このパワー半導体のスイッチング動作により、回転電機1200,1202は電動機としてあるいは発電機として運転される。
 回転電機1200,1202を電動機として運転する場合は、高電圧のバッテリ1180からの直流電力が電力変換装置1600のインバータの直流端子に供給される。電力変換装置1600は、パワー半導体のスイッチング動作を制御して供給された直流電力を3相交流電力に変換し、回転電機1200,1202に供給する。一方、回転電機1200,1202を発電機として運転する場合には、回転電機1200,1202の回転子が外部から加えられる回転トルクで回転駆動され、回転電機1200,1202の固定子巻線に3相交流電力が発生する。発生した3相交流電力は電力変換装置1600で直流電力に変換され、その直流電力が高電圧のバッテリ1180に供給されることにより、バッテリ1180が充電される。
 なお、上述した実施の形態とそれらの変形例において、実施の形態どうし、または実施の形態と変形例とのあらゆる組み合わせが可能である。
 上述した実施の形態とその変形例によれば以下のような作用効果を奏することができる。複数の電池101が電気的に直列に接続された組電池102と、それぞれの電池101と電気的に並列に接続されてそれぞれの電池101の放電を行う放電回路であって、第一の抵抗203と放電用スイッチ202とが電気的に直列に接続された放電回路と、第一の抵抗203を介してそれぞれの電池101の電圧を所定の電圧と比較する比較器204,214と、比較器204,214による比較結果に基づいて放電用スイッチ202の故障診断を行う診断回路(103または105)とを備えたので、ICに外付けされた、充電量のばらつきを均等化する放電用スイッチ202に流れている電流の大小を、ICに内蔵した比較器204,214により判断できるようになる。さらに、比較器204,214に必要な配線と、電池電圧の計測や過放電の判定に必要な既存配線とを共通化できるため、放電用スイッチ202の診断がICのピン数を増やすことなく実現可能となる。
 次の優先権基礎出願の開示内容は引用文としてここに組み込まれる。
 日本国特許出願2010年第236472号(2010年10月21日出願)

Claims (10)

  1.  複数の電池が直列に接続された組電池と、
     それぞれの前記電池と並列に接続されてそれぞれの前記電池の放電を行う放電回路であって、第一の抵抗と放電用スイッチとが直列に接続された放電回路と、
     前記第一の抵抗を介してそれぞれの前記電池の電圧を所定の電圧と比較する比較器と、
     前記比較器による比較結果に基づいて前記放電用スイッチの故障診断を行う診断回路とを備える電池システム。
  2.  請求項1に記載の電池システムにおいて、
     前記診断回路は、前記放電用スイッチの断続を行ったときの前記比較器による比較結果に基づいて前記第一のスイッチの故障診断を行う電池システム。
  3.  請求項2に記載の電池システムにおいて、
     前記診断回路は、前記放電用スイッチの断続を行ったときに前記比較器の出力が変化しなかった場合は前記放電用スイッチの故障と診断する電池システム。
  4.  請求項1~3のいずれか一項に記載の電池システムにおいて、
     それぞれの前記電池の電圧を計測する電圧計測回路を備え、
     前記電池と前記放電回路とを接続する配線の少なくとも一部と、前記電池と前記電圧計測回路とを接続する配線の少なくとも一部とを共通化した第一の共通部を設けた電池システム。
  5.  請求項4に記載の電池システムにおいて、
     前記電池と前記電圧計測回路とを接続する配線の少なくとも一部と、前記放電回路を制御するための配線の少なくとも一部とを共通化した第二の共通部を設けた電池システム。
  6.  請求項5に記載の電池システムにおいて、
     前記第一の共通部と前記第二の共通部との間に第二の抵抗を設けた電池システム。
  7.  請求項6に記載の電池システムにおいて、
     前記第一の抵抗と前記放電用スイッチとの間に第三の抵抗を設け、前記第一の抵抗と前記第三の抵抗との接続点に前記比較器を接続した電池システム。
  8.  請求項7に記載の電池システムにおいて、
     前記第一の抵抗と前記第三の抵抗との接続点から第四の抵抗を介して前記比較器を接続した電池システム。
  9.  請求項1~8のいずれか一項に記載の電池システムにおいて、
     前記診断回路は、電池システムの起動時に前記放電用スイッチの故障診断を行う電池システム。
  10.  請求項1~9のいずれか一項に記載の電池システムにおいて、
     前記比較器の前記所定の電圧に、前記電池が過放電状態のときの電圧を設定する電池システム。
PCT/JP2011/074322 2010-10-21 2011-10-21 電池システム WO2012053643A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/879,935 US20130271146A1 (en) 2010-10-21 2011-10-21 Battery system
EP11834482.9A EP2632021A1 (en) 2010-10-21 2011-10-21 Battery system
KR1020137009194A KR20130103531A (ko) 2010-10-21 2011-10-21 전지 시스템

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-236472 2010-10-21
JP2010236472A JP2012090474A (ja) 2010-10-21 2010-10-21 電池システム

Publications (1)

Publication Number Publication Date
WO2012053643A1 true WO2012053643A1 (ja) 2012-04-26

Family

ID=45975350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074322 WO2012053643A1 (ja) 2010-10-21 2011-10-21 電池システム

Country Status (5)

Country Link
US (1) US20130271146A1 (ja)
EP (1) EP2632021A1 (ja)
JP (1) JP2012090474A (ja)
KR (1) KR20130103531A (ja)
WO (1) WO2012053643A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014076839A1 (ja) * 2012-11-19 2014-05-22 新神戸電機株式会社 蓄電池電圧平準化装置および蓄電池状態監視システム
CN108702011A (zh) * 2016-02-23 2018-10-23 大陆汽车有限公司 具有电压平衡电路的电池组系统、用于识别电压平衡电路和电池电压测量的出故障的状态的方法
US12034322B2 (en) 2019-01-24 2024-07-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and operating method of semiconductor device

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5787997B2 (ja) 2011-05-31 2015-09-30 日立オートモティブシステムズ株式会社 電池システム監視装置
JP5790598B2 (ja) * 2012-07-05 2015-10-07 株式会社デンソー 組電池の制御装置
JP6136820B2 (ja) * 2013-09-27 2017-05-31 株式会社Gsユアサ 電池監視装置、蓄電装置および電池監視方法
CN105706328B (zh) * 2013-10-29 2018-11-02 三菱电机株式会社 放电电路的故障诊断装置及故障诊断方法
KR101678277B1 (ko) * 2014-10-06 2016-11-21 주식회사 엘지화학 스위치 열화 검출 장치 및 방법
JP6392088B2 (ja) * 2014-11-13 2018-09-19 株式会社日立製作所 無線電池システム並びにこれに用いるセルコントローラ及びバッテリコントローラ
CN104965178A (zh) * 2015-07-01 2015-10-07 上海玖行能源科技有限公司 锂电池管理系统
JP6898122B2 (ja) * 2017-03-23 2021-07-07 株式会社マキタ 充電器
KR102490869B1 (ko) * 2017-06-08 2023-01-20 삼성에스디아이 주식회사 배터리 팩 진단 장치 및 방법
GB2551081B (en) 2017-08-18 2018-12-19 O2Micro Inc Fault detection for battery management systems
KR102256598B1 (ko) 2017-11-29 2021-05-26 주식회사 엘지에너지솔루션 배터리 팩
KR102412313B1 (ko) * 2018-07-17 2022-06-22 주식회사 엘지에너지솔루션 스위치 진단 장치 및 방법
US20200028219A1 (en) * 2018-07-19 2020-01-23 Navitas Solutions, Inc. Fault-tolerant electronic battery sensing
CN112009309B (zh) * 2019-05-13 2022-05-03 北京车和家信息技术有限公司 一种均衡电路及其设计方法和电池管理系统
IL269118A (en) * 2019-09-04 2021-03-25 Irp Nexus Group Ltd Power distribution unit with regeneration capabilities
CN112072797B (zh) * 2020-09-17 2021-04-23 江苏工程职业技术学院 一种并网逆变器向微电网提供辅助服务的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040155629A1 (en) * 2003-02-10 2004-08-12 Denso Corporation Apparatus for discharging a combination battery consisting of a plurality of secondary batteries
US20050242667A1 (en) * 2004-04-30 2005-11-03 Akihiko Emori Multi-series battery control system
JP2005318751A (ja) 2004-04-30 2005-11-10 Shin Kobe Electric Mach Co Ltd 多直列電池制御システム
EP1936777A2 (en) * 2006-12-18 2008-06-25 Nissan Motor Ltd. Abnormality Diagnostic Device
WO2010038347A1 (ja) * 2008-09-30 2010-04-08 パナソニック株式会社 電池均等化回路、及び電池電源装置
JP2010236472A (ja) 2009-03-31 2010-10-21 Chugoku Electric Power Co Inc:The 燃焼システム、燃焼方法
JP2011078275A (ja) * 2009-10-01 2011-04-14 Shindengen Electric Mfg Co Ltd 充電制御装置の故障検出装置、および充電制御装置における故障検出方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3797254B2 (ja) * 2002-03-22 2006-07-12 新神戸電機株式会社 二次電池の容量調整方式
US7825627B2 (en) * 2006-07-17 2010-11-02 O2Micro International Limited Monitoring battery cell voltage
JP5076812B2 (ja) * 2006-12-18 2012-11-21 日産自動車株式会社 異常診断装置
JP2009195035A (ja) * 2008-02-14 2009-08-27 Toshiba Corp 電源装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040155629A1 (en) * 2003-02-10 2004-08-12 Denso Corporation Apparatus for discharging a combination battery consisting of a plurality of secondary batteries
US20050242667A1 (en) * 2004-04-30 2005-11-03 Akihiko Emori Multi-series battery control system
JP2005318751A (ja) 2004-04-30 2005-11-10 Shin Kobe Electric Mach Co Ltd 多直列電池制御システム
JP2005318750A (ja) 2004-04-30 2005-11-10 Shin Kobe Electric Mach Co Ltd 多直列電池制御システム
EP1936777A2 (en) * 2006-12-18 2008-06-25 Nissan Motor Ltd. Abnormality Diagnostic Device
WO2010038347A1 (ja) * 2008-09-30 2010-04-08 パナソニック株式会社 電池均等化回路、及び電池電源装置
JP2010236472A (ja) 2009-03-31 2010-10-21 Chugoku Electric Power Co Inc:The 燃焼システム、燃焼方法
JP2011078275A (ja) * 2009-10-01 2011-04-14 Shindengen Electric Mfg Co Ltd 充電制御装置の故障検出装置、および充電制御装置における故障検出方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014076839A1 (ja) * 2012-11-19 2014-05-22 新神戸電機株式会社 蓄電池電圧平準化装置および蓄電池状態監視システム
JPWO2014076839A1 (ja) * 2012-11-19 2017-01-05 日立化成株式会社 蓄電池電圧平準化装置および蓄電池状態監視システム
CN108702011A (zh) * 2016-02-23 2018-10-23 大陆汽车有限公司 具有电压平衡电路的电池组系统、用于识别电压平衡电路和电池电压测量的出故障的状态的方法
CN108702011B (zh) * 2016-02-23 2022-03-11 大陆汽车有限公司 具有电压平衡电路的电池组系统、用于识别电压平衡电路和电池电压测量的出故障的状态的方法
US12034322B2 (en) 2019-01-24 2024-07-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and operating method of semiconductor device

Also Published As

Publication number Publication date
US20130271146A1 (en) 2013-10-17
KR20130103531A (ko) 2013-09-23
JP2012090474A (ja) 2012-05-10
EP2632021A1 (en) 2013-08-28

Similar Documents

Publication Publication Date Title
WO2012053643A1 (ja) 電池システム
US8655535B2 (en) Electric vehicle and method for controlling same
JP5808418B2 (ja) 電池監視装置、電池監視システム
JP5127383B2 (ja) 電池用集積回路および該電池用集積回路を使用した車両用電源システム
JP5666664B2 (ja) 多直列電池制御システム
TWI550985B (zh) 用於安全和效能最佳化控制之大型電動載具的電池系統
JP5373120B2 (ja) バッテリーパック電流測定部の異常診断方法及び装置
EP2812975B1 (en) Power storage device, power system and electric vehicle
JP4987581B2 (ja) 電池制御装置
CN102148395B (zh) 电池控制装置和电池系统
KR101504274B1 (ko) 전기 접촉기 진단 장치 및 방법
JP5854242B2 (ja) 電動車両を用いた電力供給装置
WO2010109956A1 (ja) 蓄電装置
JP4825733B2 (ja) 組電池用電池寿命計測システム
JP2009089487A (ja) 電池セル用の集積回路および前記集積回路を使用した車両用電源システム
TW200404397A (en) DC backup power supply device and method for diagnosing the same
JP5448661B2 (ja) 電池制御装置および電力装置
JP2013003138A (ja) 電気自動車又はハイブリッド電気自動車用試験システム
JP2009089488A (ja) 車両用直流電源装置
JP2012181141A (ja) 電圧測定装置および電圧測定システム
JP2013085363A (ja) 電池状態管理装置、電池状態管理方法
EP3907813B1 (en) Temperature measuring apparatus, battery apparatus including the same and temperature measuring method
KR102314351B1 (ko) 배터리 관리 시스템의 수명 관리 시스템 및 방법
WO2004034074A1 (ja) バッテリ管理方法および装置
JP2014009946A (ja) 電池監視装置およびその故障診断方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11834482

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137009194

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011834482

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13879935

Country of ref document: US