[go: up one dir, main page]

WO2012050076A1 - Recycled soil, planting soil, lawn top dressing, base course material, and soil for grounds - Google Patents

Recycled soil, planting soil, lawn top dressing, base course material, and soil for grounds Download PDF

Info

Publication number
WO2012050076A1
WO2012050076A1 PCT/JP2011/073304 JP2011073304W WO2012050076A1 WO 2012050076 A1 WO2012050076 A1 WO 2012050076A1 JP 2011073304 W JP2011073304 W JP 2011073304W WO 2012050076 A1 WO2012050076 A1 WO 2012050076A1
Authority
WO
WIPO (PCT)
Prior art keywords
soil
molten slag
dehydrated cake
granules
recycled
Prior art date
Application number
PCT/JP2011/073304
Other languages
French (fr)
Japanese (ja)
Inventor
真輝 川谷
崇司 大藪
Original Assignee
東和スポーツ施設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010229554A external-priority patent/JP4848043B1/en
Application filed by 東和スポーツ施設株式会社 filed Critical 東和スポーツ施設株式会社
Priority to JP2012505529A priority Critical patent/JP5021105B2/en
Priority to CN201180003942XA priority patent/CN102597375A/en
Publication of WO2012050076A1 publication Critical patent/WO2012050076A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C3/00Foundations for pavings
    • E01C3/003Foundations for pavings characterised by material or composition used, e.g. waste or recycled material
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G22/00Cultivation of specific crops or plants not otherwise provided for
    • A01G22/15Leaf crops, e.g. lettuce or spinach 
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C13/00Pavings or foundations specially adapted for playgrounds or sports grounds; Drainage, irrigation or heating of sports grounds
    • E01C13/02Foundations, e.g. with drainage or heating arrangements

Definitions

  • the present invention relates to recycled soil using recycled materials such as waste. Also used for planting soil used for cultivation of plants and vegetables, lawn filler used on the top of lawn for the purpose of enhancing the cushioning property of lawn, roadbed with sidewalk pavement or ground pavement structure It is related to soil for ground used in outdoor facilities such as playground materials used in sports fields such as schools, various stadiums, and parks.
  • Patent Document 1 describes soil for cultivation such as plants and vegetables using a dehydrated cake obtained by recycling waste.
  • Dehydrated cake is a solidified sludge generated from the water purification plant and sewage treatment plant of each municipality, meets certain safety standards, and exhibits neutral pH 7-8 in aqueous solution. Since dehydrated cake is a recycling material that is continuously generated in a large amount in each local government, by using such a material, inexpensive planting soil can be continuously supplied. Moreover, since the amount of waste can be reduced by using recycled materials, the problem of shortage of waste disposal sites is also solved.
  • Recycled soil is expected to be used for a wide range of purposes, such as soil for cultivation of plants and vegetables as described in Patent Document 1, as well as soil for ground and roadbed materials for paving. In many cases, the soil is required to have excellent water retention and water permeability.
  • Patent Document 1 uses a dehydrated cake as a main raw material, and has the feature of being excellent in water retention, but has a problem of low water permeability.
  • the problem to be solved by the present invention is to provide a recycled soil that can be manufactured using a recyclable material that can be stably obtained at low cost, and has both excellent water retention and water permeability.
  • Recycled soil according to the present invention made to solve the above problems is a) A molten slag granule composed of one or more types of molten slag selected from general waste, industrial waste, and steel slag, and having a particle size adjusted to 40 mm or less, b) It is composed of dehydrated cake obtained by dehydrating and drying one or more selected from water sludge, sewage sludge, and paper sludge, and blended with dehydrated cake granules adjusted to a particle size of 40 mm or less. It is characterized by.
  • the recycled soil according to the present invention is blended with molten slag, which is a waste recycling material, like the dehydrated cake.
  • Dehydrated cake has excellent water retention.
  • the molten slag can be adjusted in particle size to an appropriate size, and as a result, an appropriate gap can be generated inside the soil to make the soil with water permeability. For this reason, it can be set as the soil which has water retention and water permeability by mix
  • the particle size is adjusted to 40 mm or less is to obtain a particle size commonly required for planting soil, roadbed material, ground soil and the like, which will be described later.
  • each of the molten slag and the dehydrated cake is blended at least 10% of the entire soil. It is desirable.
  • the molten slag granule and the dehydrated cake granule are desirably blended at a ratio of 3: 7 to 7: 3. More preferably, the molten slag granules and the dehydrated cake granules are blended in a ratio of 3: 7 to 5: 5. Recycled soil blended at such a ratio combines particularly excellent water retention and water permeability.
  • the recycled soil according to the present invention can be suitably used as planting soil for cultivating plants, vegetables and the like.
  • the recycled soil according to the present invention is used as planting soil, the molten slag granule is adjusted to 20 mm or less, and the dehydrated cake granule is adjusted to a particle size of 20 mm or less.
  • the soil for planting needs to contain nutrients necessary for the growth of plants and the like in a well-balanced manner, unlike soil for roads and playgrounds.
  • large pores are formed between the aggregates inside the soil, and small pores are formed inside the aggregates to activate the activities of soil microorganisms and soil small organisms, producing a lot of nutrients necessary for the growth of plants, etc.
  • the soil having such a aggregate structure is excellent in terms of water retention and water permeability, and is suitable for growing plants and the like.
  • the soil for planting according to the present invention is blended with molten slag granules adjusted to a particle size of 20 mm or less and dehydrated cake granules adjusted to a particle size of 20 mm or less, these granules It has pores of a size suitable for growing plants and the like due to the gaps between them.
  • the molten slag granules and the dehydrated cake granules have a aggregate structure.
  • the silt component means a fine particle component such as sand powder or crushed stone powder.
  • Molten slag and dehydrated cake are manufactured in various places throughout the country, and the particle size distribution varies depending on the manufacturing location. If blended with 0% to 20% silt, it compensates for variations in the particle size distribution of molten slag granules and dehydrated cake granules, and has a pore size that is suitable for growing plants. Can be soil.
  • the recycled soil according to the present invention can also be suitably used as a roadbed material used for a roadbed with sidewalk pavement or ground pavement structure.
  • recycled crushed stone has been widely used for roadbed materials.
  • Recycled crushed stone is a concrete by-product or asphalt concrete lumps that are reused after being crushed among construction by-products generated when building structures are demolished.
  • Patent Document 2 proposes a roadbed material made of granulated powder produced by crushing a dehydrated cake and adding a hydraulic binder.
  • blast furnace cement is used as the hydraulic binder, the water in the roadbed layer is brought close to neutrality, the road tree is not adversely affected, and the heat island phenomenon can be suppressed.
  • the blast furnace cement is a cement obtained by mixing Portland cement with fine powder of blast furnace slag, which is a by-product generated from the blast furnace, which is a pig iron manufacturing process in an ironworks.
  • blast furnace cement it is necessary to use Portland cement in addition to the fine powder of blast furnace slag, which is a recycled material.
  • the roadbed material according to the present invention preferably contains 0% to 20% crushed stone or recycled crushed stone with respect to the total amount of the molten slag particle material and the dehydrated cake particle material. Further, it is desirable that the roadbed material according to the present invention is blended with a silt content so that the fine particle content of the entire roadbed material is 3% to 18%.
  • the recycled soil according to the present invention can be suitably used as ground soil.
  • the molten slag granules and the dehydrated cake granules are blended at a ratio of 4: 6 to 6: 4, and the molten slag granules are 9.5 mm or less.
  • the dehydrated cake granule is adjusted to a particle size of 9.5 mm or less, and the silt content is blended so that the total fine particle content is 10% to 18%.
  • the recycled soil according to the present invention dehydrates one or more types of molten slag selected from general waste, industrial waste, and steel slag, and one or more types selected from water sludge, sewage sludge, and paper sludge.
  • the dried dehydrated cake can be produced as a raw material. Therefore, the raw material can be obtained and manufactured stably at a low cost.
  • the recycled soil according to the present invention includes a dehydrated cake granule and a molten slag granule. Therefore, the recycled soil according to the present invention can be adjusted in particle size to an appropriate size, and as a result, an appropriate gap is generated inside the soil, thereby having water permeability.
  • the soil for planting according to the present invention is blended with a dehydrated cake granule having a particle size of 20 mm or less and a molten slag granule having a particle size of 20 mm or less, it has pores between these granules. Accordingly, the planting soil according to the present invention activates the activities of soil microorganisms and soil small organisms, and forms an environment in which many nutrients necessary for the growth of plants and the like are formed. Suitable for Moreover, it is excellent also in water retention and water permeability.
  • the roadbed material according to the present invention has excellent water retention and water permeability, the road surface temperature can be lowered by the heat of vaporization when the water retained inside the roadbed material evaporates, and the heat island phenomenon is suppressed. be able to. Moreover, since the roadbed material according to the present invention does not have strong alkalinity, the roadside tree is not adversely affected.
  • the ground soil according to the present invention similarly has excellent water retention and water permeability.
  • the molten slag granules and the dehydrated cake granules are blended at a ratio of 4: 6 to 6: 4, the molten slag granules are adjusted to 9.5 mm or less, and the dehydrated cake granules are adjusted to a particle size of 9.5 mm or less.
  • the silt content is blended so that the total fine particle content is 10% to 18%, so it has both elasticity suitable for ground soil and excellent compaction.
  • the figure which shows the manufacture procedure of the recycled soil which concerns on one embodiment of this invention The figure which shows the test item and specification of the general characteristic of a soil, and a particle size characteristic.
  • FIG. The figure explaining the test method of the soil characteristic regarding pH value, content of an active ingredient, etc.
  • FIG. The figure which shows the water retention test result of the soil for planting which concerns on Example 1.
  • FIG. 1 The graph which shows the change of the surface temperature of the natural turf grown using the soil for planting concerning Example 1.
  • FIG. The graph which shows the change of the surface temperature of the artificial turf in the test which uses the recycle soil concerning the Example of this invention as an artificial turf filler.
  • FIG. The figure which shows the water retention test result of a roadbed material and volcanic gravel concerning Example 2.
  • FIG. The figure which shows the pavement structure in the comparative test of the heat island phenomenon suppression effect using the roadbed material and crushed stone which concern on Example 2.
  • FIG. 1 The figure which shows transition of the temperature of the surface layer surface in the comparative test of the heat island phenomenon suppression effect using the roadbed material and crushed stone which concern on Example 2.
  • FIG. 1 The figure which shows transition of the temperature of the position 100mm above the surface layer surface in the comparative test of the heat island phenomenon suppression effect using the roadbed material and crushed stone which concern on Example 2.
  • FIG. 1 The figure which shows transition of the temperature difference in the surface of the surface layer in the comparative test of the heat island phenomenon suppression effect using the roadbed material and crushed stone which concern on Example 2.
  • FIG. The figure which shows transition of the temperature difference in a 100-mm upper position from the surface layer surface in the comparative test of the heat island phenomenon suppression effect using the roadbed material and crushed stone which concern on Example 2.
  • FIG. 1 The figure which shows the temperature difference in the specific time in the comparative test of the heat island phenomenon suppression effect using the roadbed material and crushed stone which concern on Example 2.
  • FIG. The figure which shows transition of the temperature of the position 100 mm above the surface layer surface in another comparative test of the heat island phenomenon suppression effect using the roadbed material and crushed stone concerning Example 2.
  • FIG. 1 The figure which shows transition of the temperature difference in the surface of the surface layer in another comparative test of the heat island phenomenon suppression effect using the roadbed material and crushed stone which concern on Example 2.
  • FIG. 1 The figure which shows transition of the temperature difference in 100 mm upper position from the surface of the surface layer in another comparative test of the heat island phenomenon suppression effect using the roadbed material and crushed stone concerning Example 2.
  • Recycled soil of the present invention is composed of one or more types of molten slag selected from general waste, industrial waste, and steel slag, and a molten slag granule adjusted to a particle size of 40 mm or less, water sludge, It is composed of a dehydrated cake obtained by dehydrating and drying one or more selected from sewage sludge and paper sludge, and a dehydrated cake granule adjusted to a particle size of 40 mm or less.
  • Dehydrated cake is a solidified sludge generated from the water purification plant or sewage treatment plant of each municipality, and is supplied stably on a municipal basis.
  • the dehydrated cake meets certain safety standards and is neutral in pH 7-8 in aqueous solution.
  • Molten slag is produced by melting general waste (urban waste), industrial waste, etc. at high temperatures, decomposing and removing heavy metals and harmful substances, and cooling them, resulting in a significant reduction in volume. . By reusing the molten slag, it is possible to circulate resources. Molten slag is also neutral in pH 7-8 in aqueous solution, similar to dehydrated cake.
  • JIS A5031 general waste, sewage sludge or aggregated molten slag aggregate for incineration
  • JIS A5032 general waste, sewage sludge or incinerated ash
  • the molten slag produced at the melt processing facility is a safety standard (elution standard and content standard for hazardous substances (cadmium, lead, hexavalent chromium, arsenic, total mercury, selenium, fluorine, boron)) Meet.
  • a safety standard elution standard and content standard for hazardous substances (cadmium, lead, hexavalent chromium, arsenic, total mercury, selenium, fluorine, boron)
  • Use of such molten slag as a raw material for soil is preferable from the viewpoint of safety.
  • FIG. 1 shows a procedure for manufacturing the recycled soil according to the present embodiment by mixing molten slag and dehydrated cake.
  • FIG. 1 shows a production procedure for adjusting the particle size after blending the molten slag and the dehydrated cake, the particle size may be adjusted before blending the molten slag and the dehydrated cake.
  • the recycled soil according to the present embodiment is composed of molten slag granules and dehydrated cake granules.
  • molten slag and molten slag as raw materials are used.
  • the granular materials are collectively referred to as “molten slag”, and the dehydrated cake and dehydrated cake granules are collectively referred to as “dehydrated cake”. Accordingly, the blending ratio of recycled soil and the like shown in the following examples is the ratio of the molten slag granule and the dehydrated cake granule.
  • the steps enclosed by the broken line are performed as necessary.
  • the raw material is brought in from the gravel collection site when sand powder or the like is added to the recycled soil as a silt component.
  • FIG. 2 shows test items related to general characteristics and particle size characteristics.
  • FIG. 3 shows the test results regarding the general characteristics and particle size characteristics of the recycled soil according to this example.
  • five types of recycled soil were used in which molten slag and dehydrated cake were blended at a ratio of 3: 7 to 8: 2.
  • the upper column of FIG. 3 shows the mixing ratio of molten slag and dehydrated cake of recycled soil (A) to (E) (molten slag: dehydrated cake), and the test date and test result are shown below. From the values of natural moisture content, all of the recycled soils (A) to (E) showed better water retention than the crushed stones and regenerated crushed stones used for comparison.
  • Figure 4 shows the evaluation of water permeability characteristics of recycled soil (A) to (E).
  • the evaluation of water permeability was made based on the results of three simple water permeability tests conducted each time.
  • 200 ml of recycled soil is put in a container, the surface is leveled, and lightly struck 25 times with a wooden stick with a diameter of 25 mm and a length of 180 mm. This was done by measuring the time to penetrate the recycled soil when 150 ml of water was poured.
  • recycled soil (A), (B), and (E) have excellent water permeability equivalent to or better than crushed stone and recycled crushed stone in addition to excellent water retention.
  • recycled soil (A) molten slag: recycled soil containing dehydrated cake in a ratio of 5: 5
  • recycled soil (E) molten slag: recycled soil mixed with dehydrated cake in a ratio of 3: 7) Excellent water retention and water permeability.
  • recycled soil with good water permeability tends to have a low water content ratio.
  • recycled soils (A) and (E) have both excellent water permeability and water content, so if the surface layer contains a large amount of water, it quickly absorbs the water and the surface layer is dry. If it is, it can be said that it has an excellent humidity control property of supplying moisture.
  • Recycled soil (C) had excellent water retention, but its water permeability was inferior to recycled soil (A), (B), (E).
  • water permeability can be improved by mixing silt content such as sand powder and crushed stone powder, which has been conventionally blended in soil, with recycled soil (C).
  • the soil for planting according to Example 1 is composed of one or more types of molten slag selected from general waste, industrial waste, and steel slag, and a molten slag granule having a particle size adjusted to 20 mm or less,
  • molten slag selected from general waste, industrial waste, and steel slag
  • a molten slag granule having a particle size adjusted to 20 mm or less
  • One or a plurality of types selected from water sludge, sewage sludge, and paper sludge are dehydrated and dried, and are blended with dehydrated cake granules whose particle size is adjusted to 20 mm or less.
  • the reason why the particle size of the molten slag granule and the dehydrated cake granule was set to 20 mm or less was that the soil for planting according to Example 1 had a size suitable for growing plants and the like due to the pores between these granules. It is considered to have perforations.
  • the procedure for producing the soil for planting according to Example 1 is almost the same as the procedure for producing the recycled soil shown in FIG. 1, but when performing a density test or the like, a particle size test is also performed as necessary.
  • Example 1 In order to evaluate the characteristics of the soil for planting according to Example 1, a gardenia planting experiment, a natural turf growth test, a lettuce cultivation test, and a Seikoin radish cultivation test were conducted. Each result will be described in turn.
  • the planting experiment of gardenia was carried out by planting gardenia in a planting pot having a diameter of 15 cm and a depth of 25 cm. Planting experiments were conducted for 13 months from December 2009 to December 2010.
  • soil A was prepared by mixing molten slag, dehydrated cake, and sand silt in a ratio of 45:45:10 according to the above-described manufacturing procedure.
  • soil B was mixed with soil A and molten slag at a ratio of 90:10 to increase the ratio of molten slag
  • soil A and molten slag was mixed at a ratio of 80:20 to further increase the ratio of molten slag.
  • Soil C soil A mixed with 20 g of granular chemical fertilizer Wood Ace (trade name; manufactured by Mitsubishi Chemical Aguri Co., Ltd.), soil D, soil A mixed with 40 g of wood ace and soil A, soil A with 60 g of wood ace
  • Each soil F was prepared.
  • Green Foster LT (trade name, manufactured by Toyota Roof Garden Co., Ltd.) was used.
  • Green foster LT is an excellent planting soil having the characteristics shown in FIG.
  • Green Foster LT is referred to as comparative soil 1.
  • FIG. 7 shows changes in the volume of gardenia grown in soil A, soil E, and comparative soil 1. From FIG. 7, it can be seen that soil A and soil E exhibit better characteristics than comparative soil 1 particularly in summer. This is considered to be because soils A and E are particularly excellent in water retention during drying, among various characteristics required for planting soil.
  • FIG. 8 shows a test method for soil properties relating to the pH value and the content of active ingredients
  • FIG. 9 shows the test results for each individual.
  • the result of having done the same test about the molten slag which is a raw material in a present Example, a dewatering cake, and sand powder is shown in FIG.
  • the specific item which shows a remarkable correlation with the result of the said planting experiment is not seen, it is thought that each item has a favorable correlation mutually.
  • the fact that the pH value of each soil is higher than the pH value of the raw material shown in FIG. 10 is due to the high pH value of the water used during the planting experiment.
  • FIG. 11 shows the results of examining the properties of the three-phase distribution, saturated hydraulic conductivity, effective moisture, and particle size composition of the soil collected from the above 11 strains.
  • the soil name in FIG. 11 is based on a triangular coordinate (international law), and classifies soil based on a particle size composition.
  • the particle size composition is expressed as a weight percentage for each predetermined particle size range with respect to the soil excluding gravel (particle size of 2.0 mm or more).
  • the particle size of coarse sand is 0.2 mm to 2.0 mm
  • the particle size of fine sand is 0.02 mm to 0.2 mm
  • the particle size of silt is 0.002 mm to 0.02 mm
  • the particle size of clay is 0.001 mm to 0.002 mm.
  • the soil structure composition confirmation test uses soil A, which is a natural sand soil that is widely used as a soil for planting, and a soil that is mixed with high-quality soil so as to have an aggregate structure suitable for planting. It was compared with soil premix (trade name, manufactured by Ecomax Co., Ltd.).
  • the aggregate structure composition confirmation test was performed by an aggregate analysis method (wet sieving method) based on the soil environment analysis method. The result is shown in FIG.
  • the degree of aggregate formation is a percentage of the ratio of the mass of aggregates larger than the standard particle size divided by the mass of soil particles smaller than the standard particle size, and is a guideline for evaluating the aggregate structure of the soil for planting.
  • Become The soil showing a high degree of aggregate formation has large pores between the aggregates and small pores inside the aggregates, and is excellent in both water permeability and water retention. Moreover, in such soil, the activities of soil microorganisms and small soil animals are likely to be active, and the soil contains a large amount of nutrients necessary for the growth of plants and the like.
  • soil A has the highest numerical value at a standard particle size of 0.10 mm, and has a superior aggregate structure as compared with pure sand soil or soil premix.
  • a water holding capacity comparison test (JGS 0151) of the soil for planting according to this example was performed.
  • the maximum / minimum temperature measured during the test period was 49.0 ° C / 20.5 ° C for soil x, 51.0 ° C / 20.5 ° C for soil y, and 52.5 ° C / 21.5 ° C for comparative soil 2.
  • the largest difference between the surface temperature of the lawn growing in soil x and soil y and the surface temperature of the lawn growing in comparative soil 2 occurred at 12:00 on August 6, 2011, The temperature difference was 3.0 ° C.
  • the surface temperature of the lawn on each soil was 46.5 ° C. for soil x, 45.0 ° C. for soil y, and 48.0 ° C. for comparative soil 2.
  • FIG. 14 is an excerpt of the transition of measured temperature from August 6, 2011 at 8:00 to August 8, 2011 at 10:00. From this, it was confirmed that the soil x and the soil y according to the present example have an excellent heat island suppression effect.
  • the test filler was a two-layer filler in which soil z was spread on artificial grass and then covered with quartz sand.
  • the comparative filler was a filler in which only silica sand, which is a general artificial turf filler, was spread.
  • the silica sand was spread on the soil z because the soil z is closer to black than the silica sand and easily absorbs heat, so the temperature difference caused by the color difference of the filler is avoided. Because.
  • the test period was from 9:00 on July 29, 2011 to 10:00 on August 8, 2011. During this period, the surface temperature of the artificial turf with each filler was measured every 60 minutes.
  • the maximum / minimum temperature measured during the test period was 51.0 ° C / 20.5 ° C for the test filler and 53.5 ° C / 23.5 ° C for the comparative filler.
  • the largest difference in measured temperature occurred between the surface temperature of the artificial turf with the test filler and the surface temperature of the artificial turf with the comparative filler at 15:00 on August 6, 2011.
  • the temperature difference was 4.0 ° C.
  • the surface temperature of the artificial turf coated with the test filler was 45 ° C.
  • the surface temperature of the artificial turf coated with the comparative filler was 49 ° C.
  • FIG. 15 is an excerpt of the transition of the measured temperature from August 6, 2011 at 8:00 to August 8, 2011 at 0:00. From this result, it was confirmed that the soil x according to the present example exhibited the effect of suppressing the heat island phenomenon even when used as a lawn filler.
  • a lettuce cultivation test was conducted using the soil for planting according to this example.
  • the lettuce cultivation test was divided into a preliminary test and a main test.
  • soil c containing soil x ′ and bark compost in a ratio of 85:15
  • comparative soil 3 trade name “freshly picked vegetables” manufactured by Takii Seed Co., Ltd.
  • Comparative soil 3 is mixed with nitrogen, phosphoric acid, and potassium, which are the three elements of fertilizer, as well as trace elements such as magnesium (magnesium), boron, iron, and manganese, and slow-release fertilizer, and is adjusted to weak acidity. It is a high-quality planting soil for planting.
  • soil 8 was weakly acidic (pH 6.84) soil suitable for growing plants and the like by adding bark compost, rice husk and peat moss.
  • the soil used was soil b used in the lettuce growth test, soil 8 with good results in the lettuce growth follow-up test, and comparative soil 3 (trade name “freshly picked vegetables”, manufactured by Takii Seed Co., Ltd.) It is.
  • the soil 8 had a growth situation equivalent to or higher than that of the comparative soil 3. That is, it was confirmed that the planting soil according to the present example was a soil capable of growing plants and the like at the same level or higher as the high-quality planting soil while using recycled materials as the main raw material. .
  • soil x and soil 8 were analyzed in order to examine the effect of adding bark compost, rice husk and peat moss to soil x to make soil 8. The result is shown in FIG. From these comparisons, it was found that the addition of bark compost, rice husk and peat moss changed the pH value to slightly acidic, and the contents of nitrogen, phosphoric acid and potassium increased. These are all conditions suitable for the growth of plants, and the effect of appropriately adding additives to this example was confirmed.
  • the soil for planting according to the present invention may be adjusted with pH by adding a soil improver, if necessary, or supplied with three elements (nitrogen, phosphate, potassium) as fertilizer. It is desirable to adjust the hardness of the soil or the like.
  • soil conditioners include bark compost, rice bran compost, and peat moss blended in the above-described embodiments, rice straw and wheat straw, compost composed of these, livestock manure compost, rice chaff compost, corn cob compost, and tea shells.
  • Organic waste recycling materials that are generated in large amounts on a daily basis, such as residues such as coffee grounds and potatoes, can be used.
  • a roadbed material according to Example 2 is a roadbed material including recycled soil according to the above-described example, and is composed of one or a plurality of types of molten slag selected from general waste, industrial waste, and steel slag. Is composed of molten slag granules adjusted to 40 mm or less, and dehydrated cake obtained by dehydrating and drying one or more selected from water sludge, sewage sludge, and paper sludge, and the particle size is adjusted to 40 mm or less It is a blend of dehydrated cake granules.
  • the procedure for manufacturing the roadbed material according to Example 2 in the factory is the same as the procedure for manufacturing the recycled soil shown in FIG.
  • a roadbed material is manufactured by mixing molten slag and dehydrated cake with existing soil (local soil, natural soil such as true sand or red soil) at an outdoor site
  • the procedure shown in FIG. 18 is performed.
  • the roadbed material manufactured according to the procedure shown in FIG. 1 is checked for moisture content after completion and transported to the site by truck or the like.
  • the total amount of molten slag and dehydrated cake is the same as the existing soil in consideration of the soil quality of the existing soil as in the conventional case where the regenerated crushed stone is mixed into the existing soil. It is better to make it 15% to 50%.
  • the steps enclosed by broken lines are performed as necessary.
  • the raw material is brought in from the gravel collection site when sand powder is mixed with the roadbed material.
  • the sludge described in FIG. 18 is synonymous with the dehydrated cake described above.
  • a roadbed material using recycled soil (A) is referred to as a roadbed material (A)
  • a roadbed material using recycled soil (E) is referred to as a roadbed material (E).
  • the water holding capacity comparison test was performed by the same method as the water holding capacity comparison test of the soil for planting. The result is shown in FIG.
  • the volcanic gravel shows a higher value than the roadbed material (A). This is because the dry weight of the volcanic gravel is lighter than the dry weight of the roadbed material (A), and therefore the amount of volcanic gravel increases when a unit weight (100 g) of roadbed material is collected.
  • a test for evaluating the suppression effect of the heat island phenomenon was conducted using the roadbed material (A).
  • the effect of suppressing the heat island phenomenon is that using the above roadbed material (A) as the roadbed material (Example X) and crushed stone that is the conventional roadbed material under the same surface layer structure (Example X) ( It was evaluated by measuring how much temperature difference occurs between Comparative Example X) at the position 100 mm above the pavement surface and the pavement surface.
  • the roadbed material of Example X or Comparative Example X having a thickness of 100 mm is disposed on the ground surface, and a molten slag of 30 mm thickness is further provided as the sand, and the upper surface layer.
  • the temperature transition was measured and compared at the surface of the interlocking pavement and the position 100 mm above it.
  • FIG. 21 shows the transition of the interlocking pavement surface temperature of Example X and Comparative Example X
  • FIG. 22 shows the transition of the temperature at a position 100 mm above the interlocking pavement surface of Example X and Comparative Example X, respectively.
  • 23 shows the temperature difference between the interlocking pavement surfaces of Example X and Comparative Example X (Comparative Example X-Example X)
  • FIG. 24 shows the position 100 mm above the interlocking pavement surfaces of Example X and Comparative Example X.
  • the temperature difference at (Comparative Example X-Example X) is shown respectively.
  • Example X shows a lower temperature at almost all times within the measurement period.
  • FIG. 25 shows the weather at 10:00 and 16:00 during the measurement period, and the temperature difference between the interlocking pavement surface and 100 mm above (Comparative Example X-Example X). It is considered that the road surface temperature starts to rise around 10:00 and the road temperature starts to fall around 16:00 in the day. It is judged that there is an effect that it is difficult to raise the road surface temperature and it is easy to lower it. That is, it can be evaluated that the roadbed material (A) has a greater effect of suppressing the heat island phenomenon than crushed stone.
  • Example Y has a structure consisting of a 100 mm thick roadbed material (A) disposed on the ground surface and a 100 mm thick surface layer material disposed above it, and Comparative Example Y is 100 mm thick disposed on the ground surface. It has a structure consisting of a crushed stone and a surface layer material with a thickness of 100 mm arranged above it.
  • the surface layer material of Example Y is a mixture of molten slag, dehydrated cake, and sand powder in a ratio of 45:45:10 (hereinafter referred to as “surface layer material Y”) as in the above-described planting soil A. Yes, the surface material of Comparative Example Y is pure sand.
  • FIG. 27 shows the transition of the interlocking pavement surface temperature of Example Y and Comparative Example Y
  • FIG. 28 shows the transition of the temperature at a position 100 mm above the interlocking pavement surface of Example Y and Comparative Example Y, respectively.
  • FIG. 29 shows the temperature difference between the interlocking pavement surfaces of Example Y and Comparative Example Y (Comparative Example Y-Example Y)
  • FIG. 30 shows the position 100 mm above the interlocking pavement surface of Example Y and Comparative Example Y.
  • the temperature difference at (Comparative Example Y-Example Y) is shown respectively.
  • Example Y shows a lower temperature at almost all times within the measurement period.
  • the surface layer material Y used for the surface layer material of Example Y has better water retention than the pure sand soil used for the surface layer material of Comparative Example Y, it is closer to black than the true sand soil and easily absorbs heat. Therefore, in the experiment that the present inventor has conducted in the past, when the roadbed material is recycled crushed stone and the surface layer material is the surface layer material Y, the surface temperature particularly in the sunshine hours is the same as or higher than that of the comparative example Y. The tendency was easy. Nonetheless, Example Y showed a lower temperature transition than Comparative Example Y, and the roadbed material (A) still has a better heat island effect suppression effect than crushed stone, It can be evaluated as excellent as a roadbed material for playgrounds and various stadiums.
  • the optimum water content ⁇ opt of the roadbed material (E) was 18.6%, and the maximum dry density ⁇ dmax was 1.643 g / cm 3 .
  • the optimum water content ratio and the maximum dry density mean the water content ratio and density in a state where the road base material (E) is best tightened when it is compacted.
  • the compacted corn index test was performed using four types of samples 1 to 4 (moisture content: 9.8%, 13.2%, 16.1%, 19.4%) with different moisture content of the roadbed material (E). The result is shown in FIG.
  • the Cone Index represents the soil property that indicates whether the construction machine is good or bad.
  • the cone index corresponds to the contact pressure of each construction machine as shown in FIG. 32, and is used as a scale for determining whether or not the construction machine can travel, and is a standard indicating the firmness of the roadbed material.
  • the cone index qc (kN / m 2 ) is the penetration resistance force that acts on the bottom of the cone when the cone penetrometer is continuously pushed from the ground surface to 5 cm, 7.5 cm and 10 cm at a penetration rate of 1 cm / s ( The average value of kN) is obtained and divided by the bottom area (3.24 cm 2 ) of the tip cone (penetration resistance / bottom area of the tip cone).
  • the roadbed material (E) runs on the dump truck. It can be seen that it is as robust as possible. From the above, it can be said that the roadbed material (E) is sufficiently solid to be used as a roadbed material used in outdoor facilities such as school playgrounds, various stadiums, parks, sidewalks and the like.
  • the above embodiment is premised on the use for roadbed materials used for sidewalk pavements and ground pavement roadbeds, but by mixing recycled crushed stone with them, it can be applied to roads. Can be given.
  • the 95% corrected CBR value was 50.4%.
  • This CBR value exceeds the revised CBR value of 40% for recycled crusher run, which is the lower roadbed material for roads. Therefore, if the recycled crushed stone is mixed with the roadbed material (E), it is possible to provide the solidity that can be used as a roadbed material for parking lots and roads.
  • the roadbed material can be provided with new characteristics by adding sodium chloride, natural rice husk, natural scallop shell, and natural small pumice to the roadbed material of the present invention.
  • sodium chloride When sodium chloride is added to the roadbed material of the present invention, the roadbed material can be prevented from freezing and the growth of weeds can be suppressed.
  • Sodium chloride may be blended in a proportion of 1 m 2 per 2 ⁇ 4 kg. If rice husk or scallop husk is blended, the road base material can be prevented from freezing and the growth of weeds can be prevented, and the water retention and humidity control properties of the road base material can be improved. Furthermore, if pumice is blended, the water retention and humidity control properties of the roadbed material can be further improved.
  • the recycled soil of the present invention can be applied to soil for planting and roadbed materials, as well as surface soil with a ground pavement structure.
  • dehydrated cake granules and molten slag granules are blended in a ratio of 4: 6 to 6: 4, and the particle size of both granules is 9.5 mm or less.
  • a silt such as sand powder or crushed stone powder so that the total fine particle content is 10 to 18%.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Botany (AREA)
  • Environmental Sciences (AREA)
  • Cultivation Of Plants (AREA)
  • Road Paving Structures (AREA)

Abstract

Provided is a recycled soil obtained by combining: a molten slag grain material comprising molten slag of one or more types selected from general waste, industrial waste, and iron and steel slag, and adjusted in a manner such that the grain diameter thereof is 40mm or less; and a dehydrated cake grain material comprising a dehydrated cake obtained by dehydrating and drying one or more types of sludge selected from tap water sludge, sewage sludge, and paper sludge, and adjusted in a manner such that the grain diameter thereof is 40mm or less. It is preferable for the combination ratio of the molten slag and the dehydrated cake to be between 1:9 and 9:1, and even more preferable for the same to be between 3:7 and 7:3. It is possible to use this recycled soil as multipurpose soil, for example, as planting soil, base course material used as the base course in the paving of sidewalks and grounds, and soil for grounds.

Description

リサイクル土壌、植栽用土壌、芝生用充填材、路盤材、及びグラウンド用土壌Recycled soil, planting soil, lawn filler, roadbed material, and ground soil
 本発明は、廃棄物等のリサイクル材を利用したリサイクル土壌に関する。また、植物や野菜等の栽培に用いられる植栽用土壌、芝生のクッション性を高めるなどの目的で芝生の上面にまいて用いられる芝生用充填材、歩道用舗装又はグラウンド舗装構造の路盤に用いられる路盤材、及び学校等の運動場や各種競技場、公園等の屋外施設に用いられるグラウンド用土壌に関する。 The present invention relates to recycled soil using recycled materials such as waste. Also used for planting soil used for cultivation of plants and vegetables, lawn filler used on the top of lawn for the purpose of enhancing the cushioning property of lawn, roadbed with sidewalk pavement or ground pavement structure It is related to soil for ground used in outdoor facilities such as playground materials used in sports fields such as schools, various stadiums, and parks.
 近年、廃棄物のリサイクル材を利用したリサイクル土壌が注目されつつある。そのようなものの1つとして、特許文献1には廃棄物をリサイクルして得た脱水ケーキを利用した植物や野菜等の栽培用土壌が記載されている。 In recent years, the recycling soil using the recycling material of the waste is attracting attention. As one of such things, Patent Document 1 describes soil for cultivation such as plants and vegetables using a dehydrated cake obtained by recycling waste.
 脱水ケーキは、各自治体の浄水場や下水処理場から発生する汚泥などを固化処理したもので、一定の安全性基準を満たしており、水溶液中でpH7~8の中性を示す。
 脱水ケーキは各自治体で継続的にかつ大量に発生するリサイクル材であることから、このような材料を用いることにより、安価な植栽用土壌を継続的に供給することができる。また、リサイクル材の使用により廃棄物の量を低減することができるため、廃棄物処分場の不足問題も解消される。
Dehydrated cake is a solidified sludge generated from the water purification plant and sewage treatment plant of each municipality, meets certain safety standards, and exhibits neutral pH 7-8 in aqueous solution.
Since dehydrated cake is a recycling material that is continuously generated in a large amount in each local government, by using such a material, inexpensive planting soil can be continuously supplied. Moreover, since the amount of waste can be reduced by using recycled materials, the problem of shortage of waste disposal sites is also solved.
特開2007-306844号公報JP 2007-306844 A 特開2005-139880号公報JP 2005-139880 A
 リサイクル土壌は、特許文献1に記載のような植物や野菜等の栽培用土壌のほか、グラウンド用土壌、舗装用の路盤材等、幅広い目的での使用が期待されている。そして、多くの場合、その土壌には優れた保水性と透水性を兼ね備えることが求められる。 Recycled soil is expected to be used for a wide range of purposes, such as soil for cultivation of plants and vegetables as described in Patent Document 1, as well as soil for ground and roadbed materials for paving. In many cases, the soil is required to have excellent water retention and water permeability.
 特許文献1に記載の土壌は脱水ケーキを主たる原料として用いており、保水性に優れるという特長を有する反面、透水性が低いという課題がある。 The soil described in Patent Document 1 uses a dehydrated cake as a main raw material, and has the feature of being excellent in water retention, but has a problem of low water permeability.
 本発明が解決しようとする課題は、低コストで安定的に入手可能なリサイクル材を原料として製造することができ、優れた保水性と透水性とを兼ね備えたリサイクル土壌を提供することである。 The problem to be solved by the present invention is to provide a recycled soil that can be manufactured using a recyclable material that can be stably obtained at low cost, and has both excellent water retention and water permeability.
 上記課題を解決するために成された本発明に係るリサイクル土壌は、
 a) 一般廃棄物、産業廃棄物、及び鉄鋼スラグから選ばれる一種もしくは複数種の溶融スラグから成り、粒径が40mm以下に調整された溶融スラグ粒材と、
 b) 上水汚泥、下水汚泥、及びペーパースラッジから選ばれる一種もしくは複数種を脱水し乾燥させた脱水ケーキから成り、粒径が40mm以下に調整された脱水ケーキ粒材と
を配合してなることを特徴とする。
Recycled soil according to the present invention made to solve the above problems is
a) A molten slag granule composed of one or more types of molten slag selected from general waste, industrial waste, and steel slag, and having a particle size adjusted to 40 mm or less,
b) It is composed of dehydrated cake obtained by dehydrating and drying one or more selected from water sludge, sewage sludge, and paper sludge, and blended with dehydrated cake granules adjusted to a particle size of 40 mm or less. It is characterized by.
 本発明に係るリサイクル土壌は、脱水ケーキと同様に廃棄物のリサイクル材である溶融スラグが配合されてなる。脱水ケーキは保水性に優れている。また、溶融スラグは適宜の大きさに粒度調整を行うことができ、その結果、土壌内部に適宜の間隙を生じさせて透水性を備えた土壌にすることができる。このため、脱水ケーキ粒材と溶融スラグ粒材を配合することにより、保水性と透水性を兼ね備えた土壌とすることができる。ここで粒径を40mm以下に調整するのは、後述する植栽用土壌、路盤材、グラウンド用土壌などに共通して求められる粒径にするためである。目的を限定して使用する場合には、後述するように、それぞれの目的に適した大きさの粒径に調整することが望ましい。
 なお、脱水ケーキが有する優れた保水性と、溶融スラグを粒度調整することにより得られる優れた透水性とを兼ね備えるためには、溶融スラグと脱水ケーキがそれぞれ少なくとも土壌全体の10%以上配合されていることが望ましい。
The recycled soil according to the present invention is blended with molten slag, which is a waste recycling material, like the dehydrated cake. Dehydrated cake has excellent water retention. In addition, the molten slag can be adjusted in particle size to an appropriate size, and as a result, an appropriate gap can be generated inside the soil to make the soil with water permeability. For this reason, it can be set as the soil which has water retention and water permeability by mix | blending a dewatering cake granule and a molten slag granule. The reason why the particle size is adjusted to 40 mm or less is to obtain a particle size commonly required for planting soil, roadbed material, ground soil and the like, which will be described later. When the purpose is limited, it is desirable to adjust the particle size to a size suitable for each purpose, as will be described later.
In order to combine the excellent water retention property of the dehydrated cake and the excellent water permeability obtained by adjusting the particle size of the molten slag, each of the molten slag and the dehydrated cake is blended at least 10% of the entire soil. It is desirable.
 本発明に係るリサイクル土壌は、前記溶融スラグ粒材と前記脱水ケーキ粒材が3:7~7:3の比率で配合されていることが望ましい。また、前記溶融スラグ粒材と前記脱水ケーキ粒材が3:7~5:5の比率で配合されていることがさらに望ましい。このような比率で配合されてなるリサイクル土壌は、特に優れた保水性と透水性とを兼ね備える。 In the recycled soil according to the present invention, the molten slag granule and the dehydrated cake granule are desirably blended at a ratio of 3: 7 to 7: 3. More preferably, the molten slag granules and the dehydrated cake granules are blended in a ratio of 3: 7 to 5: 5. Recycled soil blended at such a ratio combines particularly excellent water retention and water permeability.
 本発明に係るリサイクル土壌は、植物や野菜等を栽培するための植栽用土壌として好適に用いることができる。
 本発明に係るリサイクル土壌を植栽用土壌として用いる場合には、前記溶融スラグ粒材を20mm以下に調整し、前記脱水ケーキ粒材を粒径20mm以下に調整する。
The recycled soil according to the present invention can be suitably used as planting soil for cultivating plants, vegetables and the like.
When the recycled soil according to the present invention is used as planting soil, the molten slag granule is adjusted to 20 mm or less, and the dehydrated cake granule is adjusted to a particle size of 20 mm or less.
 植栽用土壌は、道路や運動場用の土壌と異なり、植物等の生育に必要な栄養素をバランス良く含む必要がある。そのためには、土壌内部の団粒間に大きな孔げきを、団粒内部に小さな孔げきを形成して土壌微生物や土壌小生物の活動を活性化し、植物等の生育に必要な栄養素が多く生成されるように環境を整える必要がある。このような団粒構造を有する土壌は、保水性及び透水性の面でも優れており、植物等の生育に適している。 The soil for planting needs to contain nutrients necessary for the growth of plants and the like in a well-balanced manner, unlike soil for roads and playgrounds. For this purpose, large pores are formed between the aggregates inside the soil, and small pores are formed inside the aggregates to activate the activities of soil microorganisms and soil small organisms, producing a lot of nutrients necessary for the growth of plants, etc. It is necessary to prepare the environment so that The soil having such a aggregate structure is excellent in terms of water retention and water permeability, and is suitable for growing plants and the like.
 本発明に係る植栽用土壌は、粒径が20mm以下に調整された溶融スラグ粒材と、粒径が20mm以下に調整された脱水ケーキ粒材とを配合しているため、これらの粒材間の孔げきにより植物等の育成に適した大きさの孔げきを有する。 Since the soil for planting according to the present invention is blended with molten slag granules adjusted to a particle size of 20 mm or less and dehydrated cake granules adjusted to a particle size of 20 mm or less, these granules It has pores of a size suitable for growing plants and the like due to the gaps between them.
 前記溶融スラグ粒材及び前記脱水ケーキ粒材は団粒構造を有することが望ましい。団粒構造を有する植栽用土壌にするためには、前記溶融スラグ粒材及び前記脱水ケーキ粒材の総量に対して、0%~20%のシルト分を配合することが望ましい。シルト分とは、例えば砂粉や砕石粉などの細粒分を意味する。 It is desirable that the molten slag granules and the dehydrated cake granules have a aggregate structure. In order to obtain a planting soil having a aggregate structure, it is desirable to add 0% to 20% of silt with respect to the total amount of the molten slag granules and the dehydrated cake granules. The silt component means a fine particle component such as sand powder or crushed stone powder.
 溶融スラグや脱水ケーキは全国各所で製造されており、製造場所によって粒径分布などにばらつきがある。0%~20%のシルト分を配合すれば、溶融スラグ粒材や脱水ケーキ粒材の粒径分布などのばらつきを補って、植物等の育成に適した大きさの孔げきを有する植栽用土壌とすることができる。 Molten slag and dehydrated cake are manufactured in various places throughout the country, and the particle size distribution varies depending on the manufacturing location. If blended with 0% to 20% silt, it compensates for variations in the particle size distribution of molten slag granules and dehydrated cake granules, and has a pore size that is suitable for growing plants. Can be soil.
 本発明に係るリサイクル土壌は、歩道用舗装又はグラウンド舗装構造の路盤に用いられる路盤材としても好適に用いることができる。 The recycled soil according to the present invention can also be suitably used as a roadbed material used for a roadbed with sidewalk pavement or ground pavement structure.
 従来、路盤材には再生砕石が広く用いられてきた。再生砕石とは、建築構造物を解体したときなどに発生する建設副産物のうち、コンクリート塊やアスファルトコンクリート塊を破砕して再利用したものである。しかし、再生砕石を原料とした場合、路盤材を低コストで製作することができる反面、強アルカリ性を有し(pH=12.5程度)、街路樹や土壌からしみ出す排水に悪影響を与えてしまう。 Conventionally, recycled crushed stone has been widely used for roadbed materials. Recycled crushed stone is a concrete by-product or asphalt concrete lumps that are reused after being crushed among construction by-products generated when building structures are demolished. However, when recycled crushed stone is used as a raw material, roadbed materials can be produced at low cost, but they have strong alkalinity (pH = 12.5), and have an adverse effect on drainage that exudes from roadside trees and soil.
 また、ヒートアイランド現象を抑制することを目的とした路盤材の開発も進められている。保水性の高い路盤材を用いて、路盤材に保持された水分が蒸発する際の気化熱によって路面温度を低下させることが検討されている。このような路盤材として、特許文献2には、脱水ケーキを解砕し、水硬性バインダーを加えて製造した造粒粉からなる路盤材が提案されている。 Also, the development of roadbed materials aimed at suppressing the heat island phenomenon is underway. It has been studied to reduce the road surface temperature by heat of vaporization when the water retained in the roadbed material evaporates using the roadbed material having high water retention. As such a roadbed material, Patent Document 2 proposes a roadbed material made of granulated powder produced by crushing a dehydrated cake and adding a hydraulic binder.
 特許文献2に記載の路盤材では、水硬性バインダーとして高炉セメントを用いれば、路盤層の水を中性に近づけて、街路樹などに悪影響を及ぼさず、かつヒートアイランド現象を抑制することができる。高炉セメントとは、製鉄所の銑鉄製造工程である高炉から生成する副産物である高炉スラグの微粉末とポルトランドセメントを混合したセメントである。しかし、高炉セメントを使用すると、リサイクル材である高炉スラグの微粉末以外にポルトランドセメントを使用する必要がある。 In the roadbed material described in Patent Document 2, if blast furnace cement is used as the hydraulic binder, the water in the roadbed layer is brought close to neutrality, the road tree is not adversely affected, and the heat island phenomenon can be suppressed. The blast furnace cement is a cement obtained by mixing Portland cement with fine powder of blast furnace slag, which is a by-product generated from the blast furnace, which is a pig iron manufacturing process in an ironworks. However, when blast furnace cement is used, it is necessary to use Portland cement in addition to the fine powder of blast furnace slag, which is a recycled material.
 本発明に係る路盤材は、溶融スラグ粒材及び脱水ケーキ粒材の総量に対して、0%~20%の砕石又は再生砕石が配合されていることが望ましい。また、本発明に係る路盤材は、路盤材全体の細粒分が3%~18%となるようにシルト分が配合されていることが望ましい。 The roadbed material according to the present invention preferably contains 0% to 20% crushed stone or recycled crushed stone with respect to the total amount of the molten slag particle material and the dehydrated cake particle material. Further, it is desirable that the roadbed material according to the present invention is blended with a silt content so that the fine particle content of the entire roadbed material is 3% to 18%.
 本発明に係るリサイクル土壌は、グラウンド土壌としても好適に用いることができる。
 本発明に係るリサイクル土壌をグラウンド用土壌として用いる場合には、前記溶融スラグ粒材と前記脱水ケーキ粒材を4:6~6:4の比率で配合し、前記溶融スラグ粒材を9.5mm以下に調整し、前記脱水ケーキ粒材を粒径9.5mm以下に調整するとともに、全体の細粒分が10%~18%となるようにシルト分を配合する。
The recycled soil according to the present invention can be suitably used as ground soil.
When the recycled soil according to the present invention is used as ground soil, the molten slag granules and the dehydrated cake granules are blended at a ratio of 4: 6 to 6: 4, and the molten slag granules are 9.5 mm or less. The dehydrated cake granule is adjusted to a particle size of 9.5 mm or less, and the silt content is blended so that the total fine particle content is 10% to 18%.
 本発明に係るリサイクル土壌は、一般廃棄物、産業廃棄物、及び鉄鋼スラグから選ばれる一種もしくは複数種の溶融スラグと、上水汚泥、下水汚泥、及びペーパースラッジから選ばれる一種もしくは複数種を脱水し乾燥させた脱水ケーキを原料として製造することができる。従って、低コストで安定的に原料を入手して製造することができる。
 また、本発明に係るリサイクル土壌は、脱水ケーキ粒材に溶融スラグ粒材が配合されて成る。そのため、本発明に係るリサイクル土壌は、適宜の大きさに粒度調整を行うことができ、その結果、土壌内部に適宜の間隙が生じることによって透水性を兼ね備える。
The recycled soil according to the present invention dehydrates one or more types of molten slag selected from general waste, industrial waste, and steel slag, and one or more types selected from water sludge, sewage sludge, and paper sludge. The dried dehydrated cake can be produced as a raw material. Therefore, the raw material can be obtained and manufactured stably at a low cost.
In addition, the recycled soil according to the present invention includes a dehydrated cake granule and a molten slag granule. Therefore, the recycled soil according to the present invention can be adjusted in particle size to an appropriate size, and as a result, an appropriate gap is generated inside the soil, thereby having water permeability.
 本発明に係る植栽用土壌は、粒径が20mm以下の脱水ケーキ粒材と、粒径が20mm以下の溶融スラグ粒材とを配合したため、これらの粒材間に孔げきを有する。従って、本発明に係る植栽用土壌は、土壌微生物や土壌小生物の活動を活性化し、植物等の生育に必要な栄養素が多く生成されるような環境が形成されるため、植物等の育成に適している。また、保水性及び透水性にも優れる。 Since the soil for planting according to the present invention is blended with a dehydrated cake granule having a particle size of 20 mm or less and a molten slag granule having a particle size of 20 mm or less, it has pores between these granules. Accordingly, the planting soil according to the present invention activates the activities of soil microorganisms and soil small organisms, and forms an environment in which many nutrients necessary for the growth of plants and the like are formed. Suitable for Moreover, it is excellent also in water retention and water permeability.
 本発明に係る路盤材は、優れた保水性と透水性とを有するため、路盤材内部に保持された水分が蒸発する際の気化熱によって路面温度を低下させることができ、ヒートアイランド現象を抑制することができる。
 また、本発明に係る路盤材は強アルカリ性を有さないことから、街路樹に悪影響を及ぼすことがない。
Since the roadbed material according to the present invention has excellent water retention and water permeability, the road surface temperature can be lowered by the heat of vaporization when the water retained inside the roadbed material evaporates, and the heat island phenomenon is suppressed. be able to.
Moreover, since the roadbed material according to the present invention does not have strong alkalinity, the roadside tree is not adversely affected.
 本発明に係るグラウンド用土壌も同様に、優れた保水性と透水性とを有する。また、溶融スラグ粒材と前記脱水ケーキ粒材を4:6~6:4の比率で配合し、前記溶融スラグ粒材を9.5mm以下に調整し、前記脱水ケーキ粒材を粒径9.5mm以下に調整するとともに、全体の細粒分が10%~18%となるようにシルト分を配合しているため、グラウンド用土壌に適した弾力性と、優れた締固め度を兼ね備える。 The ground soil according to the present invention similarly has excellent water retention and water permeability. Also, the molten slag granules and the dehydrated cake granules are blended at a ratio of 4: 6 to 6: 4, the molten slag granules are adjusted to 9.5 mm or less, and the dehydrated cake granules are adjusted to a particle size of 9.5 mm or less. In addition, the silt content is blended so that the total fine particle content is 10% to 18%, so it has both elasticity suitable for ground soil and excellent compaction.
本発明の一実施の形態に係るリサイクル土壌の製造手順を示す図。The figure which shows the manufacture procedure of the recycled soil which concerns on one embodiment of this invention. 土壌の一般特性及び粒度特性の試験項目及び規格を示す図。The figure which shows the test item and specification of the general characteristic of a soil, and a particle size characteristic. 本発明の実施例に係るリサイクル土壌の一般特性及び粒度特性の試験結果を示す図。The figure which shows the test result of the general characteristic and particle size characteristic of the recycling soil which concern on the Example of this invention. 本発明の実施例に係るリサイクル土壌の透水特性に関する評価結果を示す図。The figure which shows the evaluation result regarding the water permeability characteristic of the recycle soil concerning the Example of this invention. クチナシの植栽実験における比較土壌として用いたグリーンフォスターLTの特性を説明する図。The figure explaining the characteristic of the green foster LT used as the comparison soil in the planting experiment of gardenia. 実施例1に係る植栽用土壌を用いてクチナシを植栽した実験結果を示す図。The figure which shows the experimental result which planted gardenia using the soil for planting which concerns on Example 1. FIG. 実施例1に係る植栽用土壌を用いてクチナシを植栽した実験結果を示すグラフ。The graph which shows the experimental result which planted gardenia using the soil for planting concerning Example 1. FIG. pH値や有効成分の含有量等に関する土壌特性の試験方法を説明する図。The figure explaining the test method of the soil characteristic regarding pH value, content of an active ingredient, etc. 実施例1に係る植栽用土壌のpH値や有効成分の含有量等に関する試験結果を示す図。The figure which shows the test result regarding the pH value of the soil for planting which concerns on Example 1, content of an active ingredient, etc. 実施例1に係る植栽用土壌の原料である溶融スラグ、脱水ケーキ、及び砂粉のpH値や有効成分の含有量等に関する試験結果を示す図。The figure which shows the test result regarding the pH value, content of an active ingredient, etc. of the molten slag which is the raw material of the soil for planting which concerns on Example 1, dehydrated cake, and sand powder. 実施例1に係る植栽用土壌の三相分布、飽和透水係数、有効水分、粒径組成に関する特性を調べた結果を示す図。The figure which shows the result of having investigated the characteristic regarding the three-phase distribution of the soil for planting which concerns on Example 1, a saturated hydraulic conductivity, an effective water | moisture content, and a particle size composition. 実施例1に係る植栽用土壌の団粒構造組成確認試験の結果を示す図。The figure which shows the result of the aggregate structure confirmation test of the soil for planting which concerns on Example 1. FIG. 実施例1に係る植栽用土壌の保水力比較試験結果を示す図。The figure which shows the water retention test result of the soil for planting which concerns on Example 1. FIG. 実施例1に係る植栽用土壌を用いて育成した天然芝の表面温度の変化を示すグラフ。The graph which shows the change of the surface temperature of the natural turf grown using the soil for planting concerning Example 1. FIG. 本発明の実施例に係るリサイクル土壌を人工芝充填材として使用した試験での人工芝の表面温度の変化を示すグラフ。The graph which shows the change of the surface temperature of the artificial turf in the test which uses the recycle soil concerning the Example of this invention as an artificial turf filler. レタスの生育試験に使用した土壌1~11の添加物及び土壌特性を示す図。The figure which shows the additive and soil characteristic of the soil 1-11 used for the growth test of lettuce. 土壌xと土壌8の土壌分析結果を説明する図。The figure explaining the soil analysis result of soil x and soil 8. 実施例2に係る路盤材の製造手順の一例を示す図。The figure which shows an example of the manufacture procedure of the roadbed material which concerns on Example 2. FIG. 実施例2に係る路盤材と火山砂利の保水力比較試験結果を示す図。The figure which shows the water retention test result of a roadbed material and volcanic gravel concerning Example 2. FIG. 実施例2に係る路盤材と砕石を用いたヒートアイランド現象抑制効果の比較試験における舗装構造を示す図。The figure which shows the pavement structure in the comparative test of the heat island phenomenon suppression effect using the roadbed material and crushed stone which concern on Example 2. FIG. 実施例2に係る路盤材と砕石を用いたヒートアイランド現象抑制効果の比較試験における、表層表面の温度の推移を示す図。The figure which shows transition of the temperature of the surface layer surface in the comparative test of the heat island phenomenon suppression effect using the roadbed material and crushed stone which concern on Example 2. FIG. 実施例2に係る路盤材と砕石を用いたヒートアイランド現象抑制効果の比較試験における、表層表面から100mm上方位置の温度の推移を示す図。The figure which shows transition of the temperature of the position 100mm above the surface layer surface in the comparative test of the heat island phenomenon suppression effect using the roadbed material and crushed stone which concern on Example 2. FIG. 実施例2に係る路盤材と砕石を用いたヒートアイランド現象抑制効果の比較試験における、表層表面での温度差の推移を示す図。The figure which shows transition of the temperature difference in the surface of the surface layer in the comparative test of the heat island phenomenon suppression effect using the roadbed material and crushed stone which concern on Example 2. FIG. 実施例2に係る路盤材と砕石を用いたヒートアイランド現象抑制効果の比較試験における、表層表面から100mm上方位置での温度差の推移を示す図。The figure which shows transition of the temperature difference in a 100-mm upper position from the surface layer surface in the comparative test of the heat island phenomenon suppression effect using the roadbed material and crushed stone which concern on Example 2. FIG. 実施例2に係る路盤材と砕石を用いたヒートアイランド現象抑制効果の比較試験における、特定時刻での温度差を示す図。The figure which shows the temperature difference in the specific time in the comparative test of the heat island phenomenon suppression effect using the roadbed material and crushed stone which concern on Example 2. FIG. 実施例2に係る路盤材と砕石を用いたヒートアイランド現象抑制効果の別の比較試験における舗装構造を示す図。The figure which shows the pavement structure in another comparative test of the heat island phenomenon suppression effect using the roadbed material and crushed stone which concern on Example 2. FIG. 実施例2に係る路盤材と砕石を用いたヒートアイランド現象抑制効果の別の比較試験における、表層表面の温度の推移を示す図。The figure which shows transition of the temperature of the surface of the surface layer in another comparative test of the heat island phenomenon suppression effect using the roadbed material and crushed stone which concern on Example 2. FIG. 実施例2に係る路盤材と砕石を用いたヒートアイランド現象抑制効果の別の比較試験における、表層表面から100mm上方位置の温度の推移を示す図。The figure which shows transition of the temperature of the position 100 mm above the surface layer surface in another comparative test of the heat island phenomenon suppression effect using the roadbed material and crushed stone concerning Example 2. FIG. 実施例2に係る路盤材と砕石を用いたヒートアイランド現象抑制効果の別の比較試験における、表層表面での温度差の推移を示す図。The figure which shows transition of the temperature difference in the surface of the surface layer in another comparative test of the heat island phenomenon suppression effect using the roadbed material and crushed stone which concern on Example 2. FIG. 実施例2に係る路盤材と砕石を用いたヒートアイランド現象抑制効果の別の比較試験における、表層表面から100mm上方位置での温度差の推移を示す図。The figure which shows transition of the temperature difference in 100 mm upper position from the surface of the surface layer in another comparative test of the heat island phenomenon suppression effect using the roadbed material and crushed stone concerning Example 2. FIG. 実施例2に係る路盤材のコーン指数試験結果を示す図。The figure which shows the cone index test result of the roadbed material which concerns on Example 2. FIG. 建設機械の走行に必要なコーン指数を示す図。The figure which shows the cone index required for driving | running | working of a construction machine.
 本発明のリサイクル土壌は、一般廃棄物、産業廃棄物、及び鉄鋼スラグから選ばれる一種もしくは複数種の溶融スラグから成り、粒径が40mm以下に調整された溶融スラグ粒材と、上水汚泥、下水汚泥、及びペーパースラッジから選ばれる一種もしくは複数種を脱水し乾燥させた脱水ケーキから成り、粒径が40mm以下に調整された脱水ケーキ粒材とを配合したものである。 Recycled soil of the present invention is composed of one or more types of molten slag selected from general waste, industrial waste, and steel slag, and a molten slag granule adjusted to a particle size of 40 mm or less, water sludge, It is composed of a dehydrated cake obtained by dehydrating and drying one or more selected from sewage sludge and paper sludge, and a dehydrated cake granule adjusted to a particle size of 40 mm or less.
 脱水ケーキは、各自治体の浄水場や下水処理場などから発生する汚泥を固化処理したものであり、自治体単位で安定的に供給されている。脱水ケーキは一定の安全性基準を満たしており、水溶液中でpH7~8の中性を示す。 Dehydrated cake is a solidified sludge generated from the water purification plant or sewage treatment plant of each municipality, and is supplied stably on a municipal basis. The dehydrated cake meets certain safety standards and is neutral in pH 7-8 in aqueous solution.
 溶融スラグは、一般廃棄物(都市ごみ)や産業廃棄物などを高温で融解し、重金属や有害物質を分解、除去した後に冷却して生産されるものであり、大幅に減容量化されている。この溶融スラグを再利用することで資源の循環を図ることができる。溶融スラグも、脱水ケーキと同様、水溶液中でpH7~8の中性を示す。 Molten slag is produced by melting general waste (urban waste), industrial waste, etc. at high temperatures, decomposing and removing heavy metals and harmful substances, and cooling them, resulting in a significant reduction in volume. . By reusing the molten slag, it is possible to circulate resources. Molten slag is also neutral in pH 7-8 in aqueous solution, similar to dehydrated cake.
 一般廃棄物の溶融処理施設は全国に多数存在し、年間100万トン以上の溶融スラグが生産されており、現在及び将来にわたって安定的に供給されることが予想される。溶融処理施設で処理される溶融スラグはJIS A5031(一般廃棄物、下水汚泥又はそれらの焼却灰を溶融固化したコンクリート用溶融スラグ骨材)及びJIS A5032(一般廃棄物、下水汚泥又はそれらの焼却灰を溶融固化した道路用溶融スラグ)の規定に基づき、品質管理が行われている。従って、溶融処理施設で生産される溶融スラグは、安全性に係る基準(有害物質(カドミウム、鉛、六価クロム、ヒ素、総水銀、セレン、フッ素、ホウ素)の溶出量基準、含有量基準)を満たしている。このような溶融スラグを土壌の原料として用いることは、安全性の点で好ましい。 多数 There are many municipal waste melting treatment facilities throughout the country, and over 1 million tons of molten slag is produced annually, and is expected to be supplied stably in the present and future. The molten slag treated at the melting facility is JIS A5031 (general waste, sewage sludge or aggregated molten slag aggregate for incineration) and JIS A5032 (general waste, sewage sludge or incinerated ash) Quality control is performed based on the provisions of molten slag for roads). Therefore, the molten slag produced at the melt processing facility is a safety standard (elution standard and content standard for hazardous substances (cadmium, lead, hexavalent chromium, arsenic, total mercury, selenium, fluorine, boron)) Meet. Use of such molten slag as a raw material for soil is preferable from the viewpoint of safety.
 図1に溶融スラグと脱水ケーキとを混合して本実施の形態に係るリサイクル土壌を製造する手順を示す。図1には、溶融スラグと脱水ケーキとを配合した後に粒度調整を行う製造手順を示したが、溶融スラグと脱水ケーキとを配合する前に粒度調整を行ってもよい。
 本実施例に係るリサイクル土壌は、溶融スラグ粒材及び脱水ケーキ粒材からなるが、製造工程のどの段階で粒度調整を行っても良いため、以降の説明では、原料となる溶融スラグと溶融スラグ粒材を総称して「溶融スラグ」、脱水ケーキ及び脱水ケーキ粒材を総称して「脱水ケーキ」と呼ぶ。従って、以下の実施例に示したリサイクル土壌等の配合比率は、いずれも溶融スラグ粒材と脱水ケーキ粒材の比率である。
FIG. 1 shows a procedure for manufacturing the recycled soil according to the present embodiment by mixing molten slag and dehydrated cake. Although FIG. 1 shows a production procedure for adjusting the particle size after blending the molten slag and the dehydrated cake, the particle size may be adjusted before blending the molten slag and the dehydrated cake.
The recycled soil according to the present embodiment is composed of molten slag granules and dehydrated cake granules. However, since the particle size may be adjusted at any stage of the manufacturing process, in the following description, molten slag and molten slag as raw materials are used. The granular materials are collectively referred to as “molten slag”, and the dehydrated cake and dehydrated cake granules are collectively referred to as “dehydrated cake”. Accordingly, the blending ratio of recycled soil and the like shown in the following examples is the ratio of the molten slag granule and the dehydrated cake granule.
 図1において破線で囲んだ工程(砂利採取場からの原料の搬入、脱水ケーキ乾燥粉砕、砂粉乾燥粉砕)は、必要に応じて行う。例えば、砂利採取場からの原料の搬入は、リサイクル土壌にシルト分として砂粉等を配合する場合に行う。
 また、図1において二点鎖線で囲んだ工程(配合試験(土質試験))は、毎回行う必要はない。つまり、配合材料である溶融スラグ、脱水ケーキ、砂粉等の性質が同じである場合には省略することができる。
In FIG. 1, the steps enclosed by the broken line (carrying raw materials from the gravel collection site, dewatered cake dry pulverization, sand powder dry pulverization) are performed as necessary. For example, the raw material is brought in from the gravel collection site when sand powder or the like is added to the recycled soil as a silt component.
Moreover, it is not necessary to perform the process (mixing test (soil test)) surrounded by the two-dot chain line in FIG. 1 every time. That is, it can be omitted when the properties of the compounded material such as molten slag, dehydrated cake, and sand powder are the same.
 図1に示す手順に従って溶融スラグ、脱水ケーキの混合比率を変えて製造したリサイクル土壌の一般特性、粒度特性について調べた。図2に一般特性、粒度特性に関する試験項目を示す。 The general characteristics and particle size characteristics of recycled soil produced by changing the mixing ratio of molten slag and dehydrated cake according to the procedure shown in FIG. FIG. 2 shows test items related to general characteristics and particle size characteristics.
 図3に本実施例に係るリサイクル土壌の一般特性、粒度特性に関する試験結果を示す。試験では、溶融スラグと脱水ケーキを3:7~8:2の比率で配合した、5種類のリサイクル土壌を用いた。図3の上欄にリサイクル土壌(A)~(E)の溶融スラグと脱水ケーキの混合比率(溶融スラグ:脱水ケーキ)を、その下に試験日、試験結果を示している。自然含水比の数値から、リサイクル土壌(A)~(E)のいずれもが、比較に用いた砕石や再生砕石より優れた保水性を示しており、リサイクル土壌(A)~(C)、(E)(溶融スラグと脱水ケーキとを3:7~7:3の比率で配合したもの)が特に優れた保水性の目安となる10%以上の自然含水比を有していることが分かる。 FIG. 3 shows the test results regarding the general characteristics and particle size characteristics of the recycled soil according to this example. In the test, five types of recycled soil were used in which molten slag and dehydrated cake were blended at a ratio of 3: 7 to 8: 2. The upper column of FIG. 3 shows the mixing ratio of molten slag and dehydrated cake of recycled soil (A) to (E) (molten slag: dehydrated cake), and the test date and test result are shown below. From the values of natural moisture content, all of the recycled soils (A) to (E) showed better water retention than the crushed stones and regenerated crushed stones used for comparison. Recycled soils (A) to (C), ( It can be seen that E) (a mixture of molten slag and dehydrated cake in a ratio of 3: 7 to 7: 3) has a natural water content of 10% or more, which is a particularly good measure of water retention.
 図4にリサイクル土壌(A)~(E)の透水特性に関する評価を示す。透水特性の評価は、簡易透水比較試験を3回ずつ行った結果に基づき判定した。簡易透水比較試験は、200mlのリサイクル土壌を容器に入れ、表面を均して、直径25mm、長さ180mmの木製の棒で軽く25回突いてから、その上にろ紙を置き、ろ紙の上から150mlの水を注いだときにリサイクル土壌を浸透する時間を計測することにより行った。 Figure 4 shows the evaluation of water permeability characteristics of recycled soil (A) to (E). The evaluation of water permeability was made based on the results of three simple water permeability tests conducted each time. In the simple water permeation comparison test, 200 ml of recycled soil is put in a container, the surface is leveled, and lightly struck 25 times with a wooden stick with a diameter of 25 mm and a length of 180 mm. This was done by measuring the time to penetrate the recycled soil when 150 ml of water was poured.
 図3及び図4の結果から、リサイクル土壌(A), (B), (E)は、優れた保水性に加え、砕石や再生砕石と同等以上の優れた透水性を有していることが分かる。特に、リサイクル土壌(A)(溶融スラグ:脱水ケーキを5:5の比率で配合したリサイクル土壌)及びリサイクル土壌(E)(溶融スラグ:脱水ケーキを3:7の比率で配合したリサイクル土壌)が優れた保水性、透水性を示した。
 一般的に、透水性が良い(透水速度が速い)リサイクル土壌は含水比が小さくなる傾向がある。しかし、これらのリサイクル土壌(A), (E)は透水性及び含水性の両方が優れていることから、表層が大量に水分を含んでいる場合には速やかに水分を吸収し、表層が乾燥している場合には水分を供給するという、優れた調湿性を備えていると言える。
 リサイクル土壌(C)は、優れた保水性を有するものの、リサイクル土壌(A), (B), (E)に比べて透水性が劣る結果となった。しかし、従来から土壌に配合して用いられている砂粉や砕石粉などのシルト分をリサイクル土壌(C)に混合することにより透水性を向上させることができる。
From the results shown in FIGS. 3 and 4, recycled soil (A), (B), and (E) have excellent water permeability equivalent to or better than crushed stone and recycled crushed stone in addition to excellent water retention. I understand. In particular, recycled soil (A) (molten slag: recycled soil containing dehydrated cake in a ratio of 5: 5) and recycled soil (E) (molten slag: recycled soil mixed with dehydrated cake in a ratio of 3: 7) Excellent water retention and water permeability.
In general, recycled soil with good water permeability (fast water permeability) tends to have a low water content ratio. However, these recycled soils (A) and (E) have both excellent water permeability and water content, so if the surface layer contains a large amount of water, it quickly absorbs the water and the surface layer is dry. If it is, it can be said that it has an excellent humidity control property of supplying moisture.
Recycled soil (C) had excellent water retention, but its water permeability was inferior to recycled soil (A), (B), (E). However, water permeability can be improved by mixing silt content such as sand powder and crushed stone powder, which has been conventionally blended in soil, with recycled soil (C).
 実施例1に係る植栽用土壌は、一般廃棄物、産業廃棄物、及び鉄鋼スラグから選ばれる一種もしくは複数種の溶融スラグから成り、粒径が20mm以下に調整された溶融スラグ粒材と、上水汚泥、下水汚泥、及びペーパースラッジから選ばれる一種もしくは複数種を脱水し乾燥させた脱水ケーキから成り、粒径が20mm以下に調整された脱水ケーキ粒材とを配合したものである。溶融スラグ粒材と脱水ケーキ粒材の粒径を20mm以下としたのは、これらの粒材間の孔げきにより、実施例1に係る植栽用土壌が植物等の育成に適した大きさの孔げきを有するように考慮したものである。 The soil for planting according to Example 1 is composed of one or more types of molten slag selected from general waste, industrial waste, and steel slag, and a molten slag granule having a particle size adjusted to 20 mm or less, One or a plurality of types selected from water sludge, sewage sludge, and paper sludge are dehydrated and dried, and are blended with dehydrated cake granules whose particle size is adjusted to 20 mm or less. The reason why the particle size of the molten slag granule and the dehydrated cake granule was set to 20 mm or less was that the soil for planting according to Example 1 had a size suitable for growing plants and the like due to the pores between these granules. It is considered to have perforations.
 実施例1に係る植栽用土壌を製造する手順は、図1に示したリサイクル土壌を製造する手順とほぼ同じであるが、密度試験等を行う際に、必要に応じて粒度試験も行う。 The procedure for producing the soil for planting according to Example 1 is almost the same as the procedure for producing the recycled soil shown in FIG. 1, but when performing a density test or the like, a particle size test is also performed as necessary.
 実施例1に係る植栽用土壌の特性を評価するため、クチナシの植栽実験、天然芝の生育試験、レタスの栽培試験、聖護院大根の栽培試験を行った。それぞれの結果を順に説明する。 In order to evaluate the characteristics of the soil for planting according to Example 1, a gardenia planting experiment, a natural turf growth test, a lettuce cultivation test, and a Seikoin radish cultivation test were conducted. Each result will be described in turn.
 クチナシの植栽実験は、直径15cm、深さ25cmの植栽用ポットにクチナシを定植して行った。植栽実験は2009年12月~2010年12月の13ヶ月間にわたって実施した。 The planting experiment of gardenia was carried out by planting gardenia in a planting pot having a diameter of 15 cm and a depth of 25 cm. Planting experiments were conducted for 13 months from December 2009 to December 2010.
 植栽実験に使用する土壌として、上述した製造手順により、溶融スラグと脱水ケーキと砂シルトを45:45:10の比率で混合した土壌Aを用意した。また、土壌Aと溶融スラグを90:10の比率で混合して溶融スラグの比率を高めた土壌B、土壌Aと溶融スラグを80:20の割合で混合して溶融スラグの比率を更に高めた土壌C、土壌Aに粒状の化学肥料であるウッドエース(商品名。三菱化学アグリ株式会社製)20gを混合した土壌D、土壌Aにウッドエース40gを混合した土壌E、土壌Aにウッドエース60gを混合した土壌Fをそれぞれ用意した。さらに、比較用の植栽用土壌として、グリーンフォスターLT(商品名。トヨタルーフガーデン株式会社製)を用いた。グリーンフォスターLTは、図5に示すような特性を持つ、優れた植栽用土壌である。以下、グリーンフォスターLTを比較土壌1とする。 As soil used for the planting experiment, soil A was prepared by mixing molten slag, dehydrated cake, and sand silt in a ratio of 45:45:10 according to the above-described manufacturing procedure. In addition, soil B was mixed with soil A and molten slag at a ratio of 90:10 to increase the ratio of molten slag, and soil A and molten slag was mixed at a ratio of 80:20 to further increase the ratio of molten slag. Soil C, soil A mixed with 20 g of granular chemical fertilizer Wood Ace (trade name; manufactured by Mitsubishi Chemical Aguri Co., Ltd.), soil D, soil A mixed with 40 g of wood ace and soil A, soil A with 60 g of wood ace Each soil F was prepared. Furthermore, as a soil for planting for comparison, Green Foster LT (trade name, manufactured by Toyota Roof Garden Co., Ltd.) was used. Green foster LT is an excellent planting soil having the characteristics shown in FIG. Hereinafter, Green Foster LT is referred to as comparative soil 1.
 土壌A~土壌F、比較土壌1のそれぞれについて5株ずつ、全35株を栽培し、1ヶ月ごとに体積を測定した。体積は、水平方向に広がる枝葉のうち一番長く広がる部分の長さを長径、それに対する直角方向の幅のうち最も広いところの長さを短径とし、長径、短径、及び樹高の積とした。各月の測定結果を図6に示す。併せて各株の個体番号を図6に示す。 For each of soil A to soil F and comparative soil 1, 5 strains were cultivated in total, and the volume was measured every month. The volume is defined as the product of the major axis, minor axis, and tree height. did. The measurement results for each month are shown in FIG. In addition, the individual number of each strain is shown in FIG.
 上記測定結果を元に、各土壌で育成した5株の体積平均を算出し、植栽当初の体積平均を差し引いて各月の成長分を算出した。土壌A~Fのいずれに関しても、比較土壌1と同程度以上の良好なクチナシの育成結果を得ることができた。図7に土壌A、土壌Eと比較土壌1におけるクチナシの成長分の体積の推移を示す。
 図7から、土壌A、土壌Eは、特に夏場において比較土壌1よりも良好な特性を発揮していることが分かる。これは、土壌A, Eが、植栽用土壌に求められる種々の特性の中でも、乾燥時の保水力が特に優れていることによるものと考えられる。
Based on the above measurement results, the volume average of 5 strains grown in each soil was calculated, and the growth average of each month was calculated by subtracting the volume average at the beginning of planting. For any of the soils A to F, good gardenia growth results comparable to or higher than those of the comparative soil 1 were obtained. FIG. 7 shows changes in the volume of gardenia grown in soil A, soil E, and comparative soil 1.
From FIG. 7, it can be seen that soil A and soil E exhibit better characteristics than comparative soil 1 particularly in summer. This is considered to be because soils A and E are particularly excellent in water retention during drying, among various characteristics required for planting soil.
 植栽実験終了後、全35株のうち11株から採土して土壌特性を調べた。pH値や有効成分の含有量等に関する土壌特性の試験方法を図8に、各個体の試験結果を図9に示す。また、本実施例における原料である溶融スラグと脱水ケーキと砂粉について同じ試験を行った結果を図10に示す。上記植栽実験の結果と顕著な相関を示す特定の項目は見られないが、各項目が相互に良好な相関を有しているものと考えられる。なお、図10に示した原料のpH値に対して、各土壌のpH値が高くなっているのは、植栽実験中に使用した水のpH値が高かったことに起因している。 After the planting experiment was completed, soil was collected from 11 of the 35 strains and examined for soil characteristics. FIG. 8 shows a test method for soil properties relating to the pH value and the content of active ingredients, and FIG. 9 shows the test results for each individual. Moreover, the result of having done the same test about the molten slag which is a raw material in a present Example, a dewatering cake, and sand powder is shown in FIG. Although the specific item which shows a remarkable correlation with the result of the said planting experiment is not seen, it is thought that each item has a favorable correlation mutually. The fact that the pH value of each soil is higher than the pH value of the raw material shown in FIG. 10 is due to the high pH value of the water used during the planting experiment.
 さらに、上記11株から採土した土壌の三相分布、飽和透水係数、有効水分、粒径組成に関する特性を調べた結果を図11に示す。なお、図11中の土性名は三角座標(国際法)に基づくものであり、粒度組成に基づき土壌を分類したものである。粒径組成は、礫(粒径2.0mm以上)を除いた土壌に関する、所定の粒径範囲毎の重量百分率で示される。なお、粗砂の粒径は0.2mm~2.0mm、細砂の粒径は0.02mm~0.2mm、シルトの粒径は0.002mm~0.02mm、粘土の粒径は0.001mm~0.002mmである。 Furthermore, FIG. 11 shows the results of examining the properties of the three-phase distribution, saturated hydraulic conductivity, effective moisture, and particle size composition of the soil collected from the above 11 strains. In addition, the soil name in FIG. 11 is based on a triangular coordinate (international law), and classifies soil based on a particle size composition. The particle size composition is expressed as a weight percentage for each predetermined particle size range with respect to the soil excluding gravel (particle size of 2.0 mm or more). The particle size of coarse sand is 0.2 mm to 2.0 mm, the particle size of fine sand is 0.02 mm to 0.2 mm, the particle size of silt is 0.002 mm to 0.02 mm, and the particle size of clay is 0.001 mm to 0.002 mm.
 さらに、本実施例に係る植栽用土壌が有する特性を評価するため、団粒構造組成確認試験、及び保水力比較試験を行った。 Furthermore, in order to evaluate the characteristics of the soil for planting according to this example, a nodule structure composition confirmation test and a water holding capacity comparison test were performed.
 団粒構造組成確認試験には土壌Aを使用し、植栽用土壌として広く用いられる天然土である真砂土、及び植栽に適した団粒構造を有するように良質土を混合した土壌であるソイルプレミックス(商品名。株式会社エコマックス製)と比較した。団粒構造組成確認試験は、土壌環境分析法に基づく団粒分析法(湿式篩別法)により行った。その結果を図12に示す。 The soil structure composition confirmation test uses soil A, which is a natural sand soil that is widely used as a soil for planting, and a soil that is mixed with high-quality soil so as to have an aggregate structure suitable for planting. It was compared with soil premix (trade name, manufactured by Ecomax Co., Ltd.). The aggregate structure composition confirmation test was performed by an aggregate analysis method (wet sieving method) based on the soil environment analysis method. The result is shown in FIG.
 団粒化度は、基準粒径以上の団粒の質量を基準粒径以下の土粒子の質量で除した割合をパーセント表示したものであり、植栽用土壌の団粒構造を評価する目安となる。高い団粒化度を示す土壌は、団粒間に大きな孔げきを、団粒内部に小さな孔げきを有しており、透水性、保水性の両方において優れている。また、このような土壌では、土壌微生物や土壌小動物の活動が活発になりやすく、植物等の成長に必要な栄養素を多く含む土壌となる。図12に示すように、土壌Aは基準粒径0.10mmにおいて最も高い数値を示しており、真砂土やソイルプレミックスに比べて優れた団粒構造を有している。 The degree of aggregate formation is a percentage of the ratio of the mass of aggregates larger than the standard particle size divided by the mass of soil particles smaller than the standard particle size, and is a guideline for evaluating the aggregate structure of the soil for planting. Become. The soil showing a high degree of aggregate formation has large pores between the aggregates and small pores inside the aggregates, and is excellent in both water permeability and water retention. Moreover, in such soil, the activities of soil microorganisms and small soil animals are likely to be active, and the soil contains a large amount of nutrients necessary for the growth of plants and the like. As shown in FIG. 12, soil A has the highest numerical value at a standard particle size of 0.10 mm, and has a superior aggregate structure as compared with pure sand soil or soil premix.
 続いて、本実施例に係る植栽用土壌の保水力比較試験(JGS 0151)を行った。保水力比較試験には、上記したクチナシの植栽実験に用いた土壌Aを使用し、真砂土と比較した。保水力比較試験は、加圧板法によりpF=2.0、遠心法によりpF=4.0の圧力を加えた状態で、それぞれの含水率を測定することにより行った。図13に示すとおり、pF=2.0、pF=4.0のいずれの測定においても土壌Aは真砂土よりも優れた保水力を有していることが分かる。 Subsequently, a water holding capacity comparison test (JGS 0151) of the soil for planting according to this example was performed. In the water holding capacity comparison test, the soil A used in the above-mentioned gardenia planting experiment was used and compared with the true sand soil. The water holding capacity comparison test was performed by measuring the water content in a state where pF = 2.0 was applied by the pressure plate method and pF = 4.0 was applied by the centrifugal method. As shown in FIG. 13, it is understood that soil A has a water holding power superior to that of true sand soil in both measurements of pF = 2.0 and pF = 4.0.
 次に、本実施例に係る植栽用土壌を用いて行った天然芝の生育試験について説明する。この試験では、2011年4月に天然芝の種をまき、その後2011年8月までその生育状況を観察した。用いた土壌は、溶融スラグと脱水ケーキを5:5の比率で配合した土壌x、土壌xとバーク堆肥を9:1の比率で配合した土壌y、真砂土とバーク堆肥を9:1の比率で配合した比較土壌2、の3種類である。比較土壌2は、芝生等の生育に用いられる一般的な土壌である。 Next, the growth test of natural turf performed using the planting soil according to this example will be described. In this test, natural grass was seeded in April 2011, and then its growth was observed until August 2011. The soil used is soil x in which molten slag and dehydrated cake are mixed at a ratio of 5: 5, soil y in which soil x and bark compost are mixed in a ratio of 9: 1, and ratio of true sand and bark compost in a ratio of 9: 1. 3 types of comparative soil 2 formulated with Comparative soil 2 is a general soil used for the growth of lawn and the like.
 天然芝の生育試験の結果を説明する。土壌x、土壌y、比較土壌2のいずれにおいても天然芝は順調に生育した。そこで、2011年7月に全ての土壌で生育している天然芝を草丈3cmで刈り取り、さらに1ヶ月間、生育状況を確認した。その結果、土壌y、土壌x、比較土壌2の順に、生育した天然芝の密度が高くなり、芝目の青さも濃くなった。このことから、リサイクル材を原料とする本実施例の土壌x、土壌yが、一般的な植栽用土壌として用いられる比較土壌2と同等以上の土壌特性を有していることが確認できた。 Explain the results of a natural turf growth test. Natural turf grew smoothly in soil x, soil y, and comparative soil 2. Therefore, in July 2011, natural turf growing on all soils was cut at a height of 3 cm, and the growth status was confirmed for another month. As a result, the density of the grown natural turf increased in the order of soil y, soil x, and comparative soil 2, and the blueness of the turf was also increased. From this, it was confirmed that the soil x and soil y of the present example using recycled materials as raw materials have soil characteristics equivalent to or better than the comparative soil 2 used as a general planting soil. .
 また、天然芝の生育試験と並行して、ヒートアイランド現象の抑制効果を検証する試験を行った。試験期間は、2011年7月30日14時~2011年8月8日10時であり、この間、60分ごとにそれぞれの土壌で生育している芝生の表面温度を測定した。 In parallel with the natural turf growth test, a test was conducted to verify the suppression effect of the heat island phenomenon. The test period was from 14:00 on July 30, 2011 to 10:00 on August 8, 2011. During this period, the surface temperature of the lawn growing on each soil was measured every 60 minutes.
 ヒートアイランド現象の抑制試験結果を説明する。試験期間中に測定した最高温度/最低温度は、土壌xで49.0℃/20.5℃、土壌yで51.0℃/20.5℃、比較土壌2で52.5℃/21.5℃であった。土壌x、土壌yで生育している芝生の表面温度と、比較土壌2で生育している芝生の表面温度の間に最も大きな差が生じたのは2011年8月6日12時であり、その温度差は3.0℃であった。このとき、各土壌上の芝生の表面温度は、土壌xで46.5℃、土壌yで45.0℃、比較土壌2で48.0℃であった。図14は2011年8月6日8時~2011年8月8日10時の測定温度の推移を抜粋したものである。このことから、本実施例に係る土壌x、土壌yが優れたヒートアイランド抑制効果を兼ね備えていることが確認できた。 Explain the results of the heat island phenomenon suppression test. The maximum / minimum temperature measured during the test period was 49.0 ° C / 20.5 ° C for soil x, 51.0 ° C / 20.5 ° C for soil y, and 52.5 ° C / 21.5 ° C for comparative soil 2. The largest difference between the surface temperature of the lawn growing in soil x and soil y and the surface temperature of the lawn growing in comparative soil 2 occurred at 12:00 on August 6, 2011, The temperature difference was 3.0 ° C. At this time, the surface temperature of the lawn on each soil was 46.5 ° C. for soil x, 45.0 ° C. for soil y, and 48.0 ° C. for comparative soil 2. FIG. 14 is an excerpt of the transition of measured temperature from August 6, 2011 at 8:00 to August 8, 2011 at 10:00. From this, it was confirmed that the soil x and the soil y according to the present example have an excellent heat island suppression effect.
 また、上記試験と並行して、溶融スラグと脱水ケーキを9:1の比率で配合した土壌zを人工芝充填材(目砂)として使用した場合のヒートアイランド現象の抑制効果を検証する試験を行った。試験充填材は、土壌zを人工芝にまいた後、その上部に珪砂をかぶせた二層構造の充填材とした。また、比較充填材は、一般的な人工芝充填材である珪砂のみをまいた充填材とした。試験充填材において、土壌zの上に珪砂をまいたのは、土壌zが珪砂よりも黒色に近く、熱を吸収しやすいため、充填材の色の差によって温度差が生じてしまうことを避けるためである。試験期間は、2011年7月29日8時~2011年8月8日10時であり、この間、60分ごとにそれぞれの充填材をまいた人工芝の表面温度を測定した。 In parallel with the above test, a test was conducted to verify the effect of suppressing the heat island phenomenon when soil z containing 9: 1 ratio of molten slag and dehydrated cake was used as artificial turf filler (mesh sand). It was. The test filler was a two-layer filler in which soil z was spread on artificial grass and then covered with quartz sand. Moreover, the comparative filler was a filler in which only silica sand, which is a general artificial turf filler, was spread. In the test filler, the silica sand was spread on the soil z because the soil z is closer to black than the silica sand and easily absorbs heat, so the temperature difference caused by the color difference of the filler is avoided. Because. The test period was from 9:00 on July 29, 2011 to 10:00 on August 8, 2011. During this period, the surface temperature of the artificial turf with each filler was measured every 60 minutes.
 上記試験の結果を説明する。試験期間中に測定した最高温度/最低温度は、試験充填材で51.0℃/20.5℃、比較充填材で53.5℃/23.5℃であった。試験充填材をまいた人工芝の表面温度と、比較充填材をまいた人工芝の表面温度の間に測定温度に最も大きな差が生じたのは2011年8月6日15時であり、その温度差は4.0℃であった。このとき、試験充填材をまいた人工芝の表面温度は45℃、比較充填材をまいた人工芝の表面温度は49℃であった。図15は2011年8月6日8時~2011年8月8日0時の測定温度の推移を抜粋したものである。この結果から、本実施例に係る土壌xは、芝生充填材として用いてもヒートアイランド現象抑制効果を発揮することが確認できた。 Explain the results of the above test. The maximum / minimum temperature measured during the test period was 51.0 ° C / 20.5 ° C for the test filler and 53.5 ° C / 23.5 ° C for the comparative filler. The largest difference in measured temperature occurred between the surface temperature of the artificial turf with the test filler and the surface temperature of the artificial turf with the comparative filler at 15:00 on August 6, 2011. The temperature difference was 4.0 ° C. At this time, the surface temperature of the artificial turf coated with the test filler was 45 ° C., and the surface temperature of the artificial turf coated with the comparative filler was 49 ° C. FIG. 15 is an excerpt of the transition of the measured temperature from August 6, 2011 at 8:00 to August 8, 2011 at 0:00. From this result, it was confirmed that the soil x according to the present example exhibited the effect of suppressing the heat island phenomenon even when used as a lawn filler.
 さらに、本実施例に係る植栽用土壌を用いてレタスの栽培試験を行った。レタスの栽培試験は、予備試験と本試験の2回に分けて行った。まず、予備試験では、2011年4月にレタスの種をまき、2011年8月までその生育状況を観察した。用いた土壌は、天然芝の生育試験と同じく溶融スラグと脱水ケーキを5:5の比率で配合した土壌x、土壌xとバーク堆肥を85:15の比率で配合した土壌a、溶融スラグ及び脱水ケーキ並びに砂粉を45:45:10の比率で配合した土壌x'とバーク堆肥を9:1の比率で配合した土壌b、土壌x'とバーク堆肥を85:15の比率で配合した土壌c、土壌x'とバーク堆肥を8:2の比率で配合した土壌d、及び比較土壌3(商品名「獲れたて野菜」。タキイ種苗株式会社製)である。比較土壌3は、肥料の三要素である窒素、リン酸、カリウムのほか、苦土(マグネシウム)、ホウ素、鉄、マンガン等の微量要素、及び緩効性肥料が配合され、弱酸性に調整された、高品質な植栽用培養土である。 Furthermore, a lettuce cultivation test was conducted using the soil for planting according to this example. The lettuce cultivation test was divided into a preliminary test and a main test. First, in a preliminary test, we sown lettuce seeds in April 2011 and observed their growth until August 2011. The soil used was the same as in the natural turf growth test: soil x containing molten slag and dehydrated cake in a ratio of 5: 5, soil a containing soil x and bark compost in a ratio of 85:15, molten slag and dehydrated Soil x ′ containing cake and sand powder in a ratio of 45:45:10 and soil b containing bark compost in a ratio of 9: 1, soil c containing soil x ′ and bark compost in a ratio of 85:15 , Soil d in which soil x ′ and bark compost are mixed at a ratio of 8: 2, and comparative soil 3 (trade name “freshly picked vegetables” manufactured by Takii Seed Co., Ltd.). Comparative soil 3 is mixed with nitrogen, phosphoric acid, and potassium, which are the three elements of fertilizer, as well as trace elements such as magnesium (magnesium), boron, iron, and manganese, and slow-release fertilizer, and is adjusted to weak acidity. It is a high-quality planting soil for planting.
 レタスの栽培予備試験の結果を説明する。土壌x及び土壌a~土壌dの全てにおいて、比較土壌3と同等以上の数の発芽が観察された。しかし、試験を終了した8月の時点では、土壌a、土壌b、及び土壌cで育成したレタスが一部収穫可能な程度まで生育したものの、比較土壌3の生育状況には及ばなかった。 Explain the results of the preliminary cultivation test for lettuce. In all of soil x and soil a to soil d, germination of the same number or more as that of comparative soil 3 was observed. However, at the end of August when the test was completed, lettuce grown on soil a, soil b, and soil c grew to a level that could be harvested, but did not reach the growth status of comparative soil 3.
 予備試験終了時点で、土壌cで生育したレタスの根と比較土壌3で生育したレタスの根を比較した。その結果、土壌cで生育したレタスの根は、比較土壌3で生育したレタスの根ほど広がりがないことが確認された。これは、日数の経過に伴って土壌が固く締まりすぎてしまい、根の生育が進まなかったことによるものと推察した。 At the end of the preliminary test, lettuce roots grown on soil c and lettuce roots grown on comparative soil 3 were compared. As a result, it was confirmed that the lettuce roots grown in the soil c were not as wide as the lettuce roots grown in the comparative soil 3. This was presumed to be due to the fact that the soil became too tight with the passage of days and the root growth did not progress.
 次いで、予備試験の結果を考慮し、改良した土壌を用いて本試験を行った。本試験では、土壌が締まりすぎないように考慮し、リサイクル材であるバーク堆肥及びもみがら、土壌改良剤であるピートモスやパーライト、化学肥料であるマグァンプK(商品名。株式会社ハイポネックスジャパン製)を土壌xに適宜添加した、新たな土壌1~土壌11を用意して、2011年7月の1ヶ月間、レタスを栽培した。土壌1~土壌11は、それぞれ5,000gの土壌xに適宜の添加物を配合したものである。各土壌の添加物及び添加量、並びに土壌特性を図16に示す。これらの土壌におけるレタスの生育状況を観察したところ、土壌8において、最もレタスが大きく生育した。これは、土壌8の重量が他の土壌に比べて比較的軽いために、先の試験で用いた土壌x及び土壌a~土壌dに比べて根の広がりが良くなったことによるものと考えられる。また、土壌8はバーク堆肥、もみがら、ピートモスを配合したことにより植物等の育成に適した弱酸性(pH6.84)の土壌になった。 Next, in consideration of the results of the preliminary test, this test was performed using the improved soil. In this test, taking into account that the soil does not become too tight, recycled compost and bark compost, and soil improvement agent peat moss and perlite, chemical fertilizer Magamp K (trade name, manufactured by Hyponex Japan Co., Ltd.) New soils 1 to 11 were added as appropriate to soil x, and lettuce was cultivated for one month in July 2011. Soil 1 to soil 11 are each made by mixing 5,000 g of soil x with appropriate additives. The additive and addition amount of each soil and the soil characteristics are shown in FIG. When the growth state of lettuce in these soils was observed, the largest amount of lettuce grew in soil 8. This is thought to be due to the fact that the weight of soil 8 is relatively light compared to other soils, so that the root spread is improved compared to soil x and soil a to soil d used in the previous test. . Moreover, soil 8 became weakly acidic (pH 6.84) soil suitable for growing plants and the like by adding bark compost, rice husk and peat moss.
 さらに、2011年9月の1ヶ月間、聖護院大根の育成試験を行った。使用した土壌は、レタスの生育試験に使用した土壌b、レタス生育追試験で良好な結果が得られた土壌8、及び比較土壌3(商品名「獲れたて野菜」。タキイ種苗株式会社製)である。1ヶ月間観察した結果、土壌8では、比較土壌3と同等以上の生育状況が確認できた。即ち、本実施例に係る植栽用土壌は、リサイクル材を主原料としつつも、高品質な植栽用培養土と同等以上に植物等を生育させることができる土壌であることが確認できた。 In addition, we conducted a nurturing test of Seigoin Daikon for one month in September 2011. The soil used was soil b used in the lettuce growth test, soil 8 with good results in the lettuce growth follow-up test, and comparative soil 3 (trade name “freshly picked vegetables”, manufactured by Takii Seed Co., Ltd.) It is. As a result of observation for one month, it was confirmed that the soil 8 had a growth situation equivalent to or higher than that of the comparative soil 3. That is, it was confirmed that the planting soil according to the present example was a soil capable of growing plants and the like at the same level or higher as the high-quality planting soil while using recycled materials as the main raw material. .
 ここで、土壌xにバーク堆肥、もみがら、ピートモスを添加して土壌8とした効果を調べるため、土壌xと土壌8の土壌分析を行った。その結果を図17に示す。これらの比較から、バーク堆肥、もみがら、ピートモスの添加によって、pH値が弱酸性に変化し、また、窒素、リン酸、カリウムの含有量が増加していることが分かった。これらは、いずれも植物の生育に適した条件であり、本実施例に適宜添加物を配合することによる効果が確認された。 Here, soil x and soil 8 were analyzed in order to examine the effect of adding bark compost, rice husk and peat moss to soil x to make soil 8. The result is shown in FIG. From these comparisons, it was found that the addition of bark compost, rice husk and peat moss changed the pH value to slightly acidic, and the contents of nitrogen, phosphoric acid and potassium increased. These are all conditions suitable for the growth of plants, and the effect of appropriately adding additives to this example was confirmed.
 本実施例に係る植栽用土壌の原料となる溶融スラグや脱水ケーキは、全国の溶融化施設や固化処理場で製造されるため、粒度分布のほか成分などにもばらつきがある。従って、本発明に係る植栽用土壌には、必要に応じて土壌改良材を配合してpHの調整を行ったり、肥料分である三要素(窒素・リン酸・カリウム)の供給を行ったり、あるいは土壌の硬さ等を調整したりすることが望ましい。
 そのような土壌改良材としては、上述の実施例で配合したバーク堆肥やもみがら堆肥、ピートモス等のほか、稲わら及び麦わら、これらからなる堆肥、家畜糞堆肥、もみがら堆肥、コーンコブ堆肥、茶殻やコーヒーかす等の残渣や粕類など、日常的に大量に発生する有機性廃棄物のリサイクル材を用いることができる。
Since the molten slag and dehydrated cake used as the raw material for the planting soil according to the present embodiment are manufactured at melting facilities and solidification treatment plants throughout the country, there are variations in the components in addition to the particle size distribution. Therefore, the soil for planting according to the present invention may be adjusted with pH by adding a soil improver, if necessary, or supplied with three elements (nitrogen, phosphate, potassium) as fertilizer. It is desirable to adjust the hardness of the soil or the like.
Examples of such soil conditioners include bark compost, rice bran compost, and peat moss blended in the above-described embodiments, rice straw and wheat straw, compost composed of these, livestock manure compost, rice chaff compost, corn cob compost, and tea shells. Organic waste recycling materials that are generated in large amounts on a daily basis, such as residues such as coffee grounds and potatoes, can be used.
 実施例2に係る路盤材は、上記実施例に係るリサイクル土壌を含む路盤材であって、一般廃棄物、産業廃棄物、及び鉄鋼スラグから選ばれる一種もしくは複数種の溶融スラグから成り、粒径が40mm以下に調整された溶融スラグ粒材と、上水汚泥、下水汚泥、及びペーパースラッジから選ばれる一種もしくは複数種を脱水し乾燥させた脱水ケーキから成り、粒径が40mm以下に調整された脱水ケーキ粒材とを配合したものである。 A roadbed material according to Example 2 is a roadbed material including recycled soil according to the above-described example, and is composed of one or a plurality of types of molten slag selected from general waste, industrial waste, and steel slag. Is composed of molten slag granules adjusted to 40 mm or less, and dehydrated cake obtained by dehydrating and drying one or more selected from water sludge, sewage sludge, and paper sludge, and the particle size is adjusted to 40 mm or less It is a blend of dehydrated cake granules.
 実施例2に係る路盤材を工場で製造する手順は、図1に示したリサイクル土壌を製造する手順と同様である。一方、屋外の現場で溶融スラグと脱水ケーキを既存の土壌(現地土。真砂土や赤土等の天然土)に混ぜ込んで路盤材を製造する場合には、図18に示す手順で行う。図1に示した手順で製造された路盤材は、完成後に含水比の確認を行い、トラック等で現地まで運搬する。図18の方法により路盤材を製造する場合には、既存の土壌に再生砕石を混ぜ込んで路盤材としていた従来と同様、既存土壌の土質を考慮し、溶融スラグ及び脱水ケーキの総量が既存土壌の15%~50%となるようにするとよい。 The procedure for manufacturing the roadbed material according to Example 2 in the factory is the same as the procedure for manufacturing the recycled soil shown in FIG. On the other hand, when a roadbed material is manufactured by mixing molten slag and dehydrated cake with existing soil (local soil, natural soil such as true sand or red soil) at an outdoor site, the procedure shown in FIG. 18 is performed. The roadbed material manufactured according to the procedure shown in FIG. 1 is checked for moisture content after completion and transported to the site by truck or the like. When the roadbed material is manufactured by the method of FIG. 18, the total amount of molten slag and dehydrated cake is the same as the existing soil in consideration of the soil quality of the existing soil as in the conventional case where the regenerated crushed stone is mixed into the existing soil. It is better to make it 15% to 50%.
 図1及び図18において破線で囲んだ工程(砂利採取場からの原料の搬入、スラッジ乾燥粉砕、砂粉乾燥粉砕)は、必要に応じて行う。例えば、砂利採取場からの原料の搬入は、路盤材に砂粉を配合する場合に行う。なお、図18に記載のスラッジは、上記した脱水ケーキと同義である。
 また、図1において二点鎖線で囲んだ工程(配合試験(土質試験))は、毎回行う必要はない。つまり、配合材料である溶融スラグ、脱水ケーキ、砂粉等の性質が同じである場合には省略することができる。一方、図18に示す手順により、溶融スラグ、脱水ケーキを既存の土壌に混ぜ込んで路盤材を製造する場合は、現場ごとに既存の土壌の性質が異なることが予想されるため、現場が変わるごとに配合試験を行う。
1 and 18, the steps enclosed by broken lines (carrying in raw materials from the gravel collection site, sludge drying and grinding, sand powder drying and grinding) are performed as necessary. For example, the raw material is brought in from the gravel collection site when sand powder is mixed with the roadbed material. In addition, the sludge described in FIG. 18 is synonymous with the dehydrated cake described above.
Moreover, it is not necessary to perform the process (mixing test (soil test)) surrounded by the two-dot chain line in FIG. 1 every time. That is, it can be omitted when the properties of the compounded material such as molten slag, dehydrated cake, and sand powder are the same. On the other hand, when the roadbed material is manufactured by mixing molten slag and dehydrated cake into the existing soil according to the procedure shown in FIG. 18, the site changes because the properties of the existing soil are expected to differ from site to site. Each time a compounding test is performed.
 上述したリサイクル土壌の試験において、優れた保水性と透水性を示したリサイクル土壌(A)及びリサイクル土壌(E)を路盤材として用いる場合の性能を評価するために、各種の試験を行った。以下、リサイクル土壌(A)を用いた路盤材を路盤材(A)、リサイクル土壌(E)を用いた路盤材を路盤材(E)とする。 In the above-mentioned test of recycled soil, various tests were performed in order to evaluate the performance when using recycled soil (A) and recycled soil (E) that showed excellent water retention and water permeability as roadbed materials. Hereinafter, a roadbed material using recycled soil (A) is referred to as a roadbed material (A), and a roadbed material using recycled soil (E) is referred to as a roadbed material (E).
 まず、路盤材(A)について、従来から用いられている路盤材である火山砂利について保水力比較試験(JGS 0151)を行った。火山砂利は、砕石や再生砕石に比べて優れた保水力を有する一方、主たる産地が九州地方であるため、首都圏や近畿圏等、九州以外の地域の路盤材に用いる場合には運搬コストがかかるため、高価な路盤材である。 First, for roadbed material (A), a water retention test (JGS 0151) was conducted on volcanic gravel, which has been used in the past. While volcanic gravel has superior water retention capacity compared to crushed stone and reclaimed crushed stone, the main production area is the Kyushu region, so when used for roadbed materials in areas other than Kyushu, such as the Tokyo metropolitan area and Kinki area, transportation costs are low. Therefore, it is an expensive roadbed material.
 保水力比較試験は、植栽用土壌の保水力比較試験と同じ方法により行った。その結果を図19に示す。単位体積(100ml)あたりの含水率において、pF=2.0では火山砂利の方が高い含水率を有するものの、pF=4.0では路盤材(A)の方が火山砂利よりも高い含水率を有しており、火山砂利よりも優れた保水力を有することを示している。
 なお、pF=4.0の圧力を加えた状態での単位重量(100g)あたりの含水率に関しては、路盤材(A)よりも火山砂利の方が高い数値を示している。これは火山砂利の乾燥重量の方が路盤材(A)の乾燥重量よりも軽いため、単位重量(100g)の路盤材を採取した場合に火山砂利の量の方が多くなることに起因する。実際には、路盤材が決められた場所(体積)内で使用されることを考慮すれば、pF=4.0の圧力下では、単位体積あたりの含水率が高い数値を示す路盤材(A)の方が火山砂利よりも高い保水力を有していると言える。
The water holding capacity comparison test was performed by the same method as the water holding capacity comparison test of the soil for planting. The result is shown in FIG. In terms of moisture content per unit volume (100 ml), volcanic gravel has a higher moisture content at pF = 2.0, while roadbed material (A) has a higher moisture content than volcanic gravel at pF = 4.0. It shows that it has better water holding capacity than volcanic gravel.
In addition, regarding the moisture content per unit weight (100 g) with the pressure of pF = 4.0 applied, the volcanic gravel shows a higher value than the roadbed material (A). This is because the dry weight of the volcanic gravel is lighter than the dry weight of the roadbed material (A), and therefore the amount of volcanic gravel increases when a unit weight (100 g) of roadbed material is collected. Actually, considering that the roadbed material is used in the determined location (volume), the roadbed material (A) showing a high value of moisture content per unit volume under the pressure of pF = 4.0. It can be said that has higher water retention capacity than volcanic gravel.
 路盤材(A)のpH値を測定したところ、pH=6.94であった。従って、路盤材(A)を用いる場合には、強アルカリ性を示す再生砕石を路盤材に用いたときのように、街路樹等に悪影響を与える心配がない。 When the pH value of the roadbed material (A) was measured, it was pH = 6.94. Therefore, when the roadbed material (A) is used, there is no fear of adversely affecting the roadside trees or the like unlike the case where the recycled crushed stone showing strong alkalinity is used as the roadbed material.
 路盤材(A)を用いて、ヒートアイランド現象の抑制効果を評価する試験を行った。ヒートアイランド現象の抑制効果は、表層等の構造を同一にした条件において、路盤材に上記路盤材(A)を用いたもの(実施例X)と、従来の路盤材である砕石を用いたもの(比較例X)の間で、舗装表面及び舗装表面から100mm上方位置でどの程度の温度差が生じるかを測定することにより評価した。具体的には、図20に示すように、地表面上に100mm厚の上記実施例X又は比較例Xの路盤材を配し、その上方に敷砂として30mm厚の溶融スラグ、更に上方の表層に70mm厚のインターロッキング舗装を施した構造で、インターロッキング舗装表面及びその上方100mm位置での温度推移を測定して比較した。 A test for evaluating the suppression effect of the heat island phenomenon was conducted using the roadbed material (A). The effect of suppressing the heat island phenomenon is that using the above roadbed material (A) as the roadbed material (Example X) and crushed stone that is the conventional roadbed material under the same surface layer structure (Example X) ( It was evaluated by measuring how much temperature difference occurs between Comparative Example X) at the position 100 mm above the pavement surface and the pavement surface. Specifically, as shown in FIG. 20, the roadbed material of Example X or Comparative Example X having a thickness of 100 mm is disposed on the ground surface, and a molten slag of 30 mm thickness is further provided as the sand, and the upper surface layer. The temperature transition was measured and compared at the surface of the interlocking pavement and the position 100 mm above it.
 温度測定は2010年9月1日10時から2010年9月10日8時までの間、1時間ごとに行った。図21に、実施例Xと比較例Xのインターロッキング舗装表面温度の推移を、図22に実施例Xと比較例Xのインターロッキング舗装面から100mm上方位置における温度の推移を、それぞれ示す。また、図23に実施例Xと比較例Xのインターロッキング舗装表面における温度差(比較例X-実施例X)を、図24に実施例Xと比較例Xのインターロッキング舗装面から100mm上方位置における温度差(比較例X-実施例X)を、それぞれ示す。図23及び図24から明らかなように、測定期間内のほぼ全ての時間において、実施例Xの方が低い温度を示している。 Temperature measurement was performed every hour from 10:00 on September 1, 2010 to 8:00 on September 10, 2010. FIG. 21 shows the transition of the interlocking pavement surface temperature of Example X and Comparative Example X, and FIG. 22 shows the transition of the temperature at a position 100 mm above the interlocking pavement surface of Example X and Comparative Example X, respectively. 23 shows the temperature difference between the interlocking pavement surfaces of Example X and Comparative Example X (Comparative Example X-Example X), and FIG. 24 shows the position 100 mm above the interlocking pavement surfaces of Example X and Comparative Example X. The temperature difference at (Comparative Example X-Example X) is shown respectively. As is clear from FIG. 23 and FIG. 24, Example X shows a lower temperature at almost all times within the measurement period.
 特に、晴れた日の10時と16時に顕著な温度差が確認された。図25に測定期間中の10時と16時の天候と、インターロッキング舗装表面及びその100mm上方における温度差(比較例X-実施例X)を示す。一日の中で、10時頃は路面温度が上昇し始める時間帯、16時頃は路面温度が下降し始める時間帯であると考えられることから、路盤材(A)には砕石に比べて路面温度を上げにくく、また下げやすくする効果があるものと判断される。即ち、砕石に比べて、路盤材(A)が大きなヒートアイランド現象の抑制効果を有しているものと評価できる。 Especially, a remarkable temperature difference was confirmed at 10:00 and 16:00 on a sunny day. FIG. 25 shows the weather at 10:00 and 16:00 during the measurement period, and the temperature difference between the interlocking pavement surface and 100 mm above (Comparative Example X-Example X). It is considered that the road surface temperature starts to rise around 10:00 and the road temperature starts to fall around 16:00 in the day. It is judged that there is an effect that it is difficult to raise the road surface temperature and it is easy to lower it. That is, it can be evaluated that the roadbed material (A) has a greater effect of suppressing the heat island phenomenon than crushed stone.
 ヒートアイランド現象の抑制効果を評価する試験は、上記とは別の構造(図26に示す実施例Yと比較例Y)でも行った。温度測定期間や測定間隔、測定位置は上記試験と同じである。実施例Yは、地表面上に配した100mm厚の路盤材(A)と、その上方に配した100mm厚の表層材からなる構造を有し、比較例Yは地表面上に配した100mm厚の砕石と、その上方に配した100mm厚の表層材からなる構造を有している。実施例Yの表層材は、上述の植栽用土壌Aと同じく溶融スラグ及び脱水ケーキ並びに砂粉を45:45:10の比率で配合したもの(以下、「表層材Y」とする。)であり、比較例Yの表層材は真砂土である。 The test for evaluating the suppression effect of the heat island phenomenon was also performed with a structure different from the above (Example Y and Comparative Example Y shown in FIG. 26). The temperature measurement period, measurement interval, and measurement position are the same as in the above test. Example Y has a structure consisting of a 100 mm thick roadbed material (A) disposed on the ground surface and a 100 mm thick surface layer material disposed above it, and Comparative Example Y is 100 mm thick disposed on the ground surface. It has a structure consisting of a crushed stone and a surface layer material with a thickness of 100 mm arranged above it. The surface layer material of Example Y is a mixture of molten slag, dehydrated cake, and sand powder in a ratio of 45:45:10 (hereinafter referred to as “surface layer material Y”) as in the above-described planting soil A. Yes, the surface material of Comparative Example Y is pure sand.
 図27に、実施例Yと比較例Yのインターロッキング舗装表面温度の推移を、図28に実施例Yと比較例Yのインターロッキング舗装面から100mm上方位置における温度の推移を、それぞれ示す。また、図29に実施例Yと比較例Yのインターロッキング舗装表面における温度差(比較例Y-実施例Y)を、図30に実施例Yと比較例Yのインターロッキング舗装面から100mm上方位置における温度差(比較例Y-実施例Y)を、それぞれ示す。図29及び図30から明らかなように、この試験でも、測定期間内のほぼ全ての時間において実施例Yの方が低い温度を示している。 FIG. 27 shows the transition of the interlocking pavement surface temperature of Example Y and Comparative Example Y, and FIG. 28 shows the transition of the temperature at a position 100 mm above the interlocking pavement surface of Example Y and Comparative Example Y, respectively. FIG. 29 shows the temperature difference between the interlocking pavement surfaces of Example Y and Comparative Example Y (Comparative Example Y-Example Y), and FIG. 30 shows the position 100 mm above the interlocking pavement surface of Example Y and Comparative Example Y. The temperature difference at (Comparative Example Y-Example Y) is shown respectively. As is clear from FIGS. 29 and 30, even in this test, Example Y shows a lower temperature at almost all times within the measurement period.
 実施例Yの表層材に用いた表層材Yは、比較例Yの表層材に用いた真砂土よりも保水性が優れるものの、真砂土よりも黒色に近く、熱を吸収しやすい。そのため、本発明者が以前行った実験では、路盤材を再生砕石とし、表層材を表層材Yとした場合、特に日照時間帯の表面温度が比較例Yと同程度、或いはそれよりも上昇しやすい傾向を示した。それにもかかわらず、実施例Yの方が比較例Yよりも低い温度推移を示したことは、やはり路盤材(A)の方が砕石よりも優れたヒートアイランド現象の抑制効果を有しており、運動場や各種競技場の路盤材として優れていると評価できる。
 なお、運動場等の表層材の表面に人工芝を設置すると、温度が上昇し易くなることが知られており、条件によっては表面温度が60℃~70℃にも達する。このような運動場の路盤材として上記路盤材(A)を用いても、ヒートアイランド現象の抑制効果は有効であると期待できる。
Although the surface layer material Y used for the surface layer material of Example Y has better water retention than the pure sand soil used for the surface layer material of Comparative Example Y, it is closer to black than the true sand soil and easily absorbs heat. Therefore, in the experiment that the present inventor has conducted in the past, when the roadbed material is recycled crushed stone and the surface layer material is the surface layer material Y, the surface temperature particularly in the sunshine hours is the same as or higher than that of the comparative example Y. The tendency was easy. Nonetheless, Example Y showed a lower temperature transition than Comparative Example Y, and the roadbed material (A) still has a better heat island effect suppression effect than crushed stone, It can be evaluated as excellent as a roadbed material for playgrounds and various stadiums.
In addition, it is known that when artificial turf is installed on the surface of a surface material such as a sports field, the temperature is likely to rise. Depending on the conditions, the surface temperature reaches 60 ° C to 70 ° C. Even if the above-mentioned roadbed material (A) is used as the roadbed material for such a playground, the effect of suppressing the heat island phenomenon can be expected to be effective.
 続いて、路盤材(E)を用いて、突き固めによる土の締固め試験(JIS A1210, JGS 0711:試験方法E-bにより実施)及び締固めた土のコーン指数試験(JIS A1228, JGS 0716)を行い、その締固め特性を評価した。 Subsequently, using the roadbed material (E), a soil compaction test by tamping (JIS A1210, JGS-0711: conducted by test method Eb) and a compacted soil cone index test (JIS A1228, JGS 0716) And compaction properties were evaluated.
 突き固めによる土の締固め試験の結果、路盤材(E)の最適含水比ωoptは18.6%、最大乾燥密度ρdmaxは1.643g/cm3であった。最適含水比、及び最大乾燥密度とは、路盤材(E)を締め固めたとき、最も良く締まる状態の含水比、及び密度をいう。 As a result of the compaction test of the soil by tamping, the optimum water content ω opt of the roadbed material (E) was 18.6%, and the maximum dry density ρ dmax was 1.643 g / cm 3 . The optimum water content ratio and the maximum dry density mean the water content ratio and density in a state where the road base material (E) is best tightened when it is compacted.
 締固めた土のコーン指数試験は、路盤材(E)の含水率を変えた4種類の試料1~4(含水率:9.8%、13.2%、16.1%、19.4%)を用いて行った。その結果を図31に示す。コーン指数は建設機械の走行性の良し悪しを示す土の性質を表すものである。コーン指数は、図32に示すように各建設機械の接地圧に対応し、それらの建設機械が走行できるかどうかを判定する尺度として用いられており、路盤材の堅固性を表す目安となる。コーン指数qc(kN/m2)は、コーンペネトロメーターを1cm/sの貫入速度で地表面から5cm,7.5cm 及び10cmのところまで連続的に押し込んだ時にコーン底面に作用する貫入抵抗力(kN)の平均値を求め、それを先端コーンの底面積(3.24cm2)で除する(貫入抵抗力/先端コーンの底面積)ことにより求められる。図31に示すように、路盤材(E)の全ての試料1~4のコーン指数が図32に示すダンプトラックのコーン指数を上回っていることから、路盤材(E)はダンプトラックの走行が可能な程度の堅固性を有していることが分かる。
 以上より、路盤材(E)は学校等の運動場、各種競技場、公園、歩道等の屋外施設において用いる路盤材として用いるには十分な堅固性を備えているといえる。
The compacted corn index test was performed using four types of samples 1 to 4 (moisture content: 9.8%, 13.2%, 16.1%, 19.4%) with different moisture content of the roadbed material (E). The result is shown in FIG. The Cone Index represents the soil property that indicates whether the construction machine is good or bad. The cone index corresponds to the contact pressure of each construction machine as shown in FIG. 32, and is used as a scale for determining whether or not the construction machine can travel, and is a standard indicating the firmness of the roadbed material. The cone index qc (kN / m 2 ) is the penetration resistance force that acts on the bottom of the cone when the cone penetrometer is continuously pushed from the ground surface to 5 cm, 7.5 cm and 10 cm at a penetration rate of 1 cm / s ( The average value of kN) is obtained and divided by the bottom area (3.24 cm 2 ) of the tip cone (penetration resistance / bottom area of the tip cone). As shown in FIG. 31, since the cone index of all samples 1 to 4 of the roadbed material (E) exceeds the cone index of the dump truck shown in FIG. 32, the roadbed material (E) runs on the dump truck. It can be seen that it is as robust as possible.
From the above, it can be said that the roadbed material (E) is sufficiently solid to be used as a roadbed material used in outdoor facilities such as school playgrounds, various stadiums, parks, sidewalks and the like.
 上記の実施例は、歩道用舗装及びグラウンド舗装構造の路盤に用いられる路盤材に用いることを前提としたものであるが、これに再生砕石を混合することにより、道路にも適用可能な堅固性を持たせることができる。 The above embodiment is premised on the use for roadbed materials used for sidewalk pavements and ground pavement roadbeds, but by mixing recycled crushed stone with them, it can be applied to roads. Can be given.
 上記路盤材(E)に再生砕石を混合することによる路盤材の堅固性向上の効果を検証した。この検証では、路盤材(E)と再生砕石とを80:20の割合で混合した路盤材(E')を用い、上述の土の締固め試験(JIS A1210, JGS 0711:試験方法E-bにより実施)と、CBR試験(JIS A1211, JGS 0721)を行った。
 突き固めによる土の締固め試験の結果、路盤材(E')の最適含水比ωoptは12.5%、最大乾燥密度ρdmaxは1.789g/cm3であった。また、CBR試験の結果、95%修正CBR値は50.4%となった。このCBR値は道路用の下層路盤材である再生クラッシャランの修正CBR値である40%を超えるものである。従って、路盤材(E)に再生砕石を混合すれば、駐車場や道路用の路盤材としても使用可能な堅固性を持たせることができる。
The effect of improving the firmness of the roadbed material by mixing recycled crushed stone with the above roadbed material (E) was verified. In this verification, the above-mentioned soil compaction test (JIS A1210, JGS 0711: Test method Eb) was performed using roadbed material (E ') in which roadbed material (E) and recycled crushed stone were mixed at a ratio of 80:20. ) And the CBR test (JIS A1211, JGS 0721).
As a result of the compaction test of soil by tamping, the optimum water content ω opt of the roadbed material (E ′) was 12.5%, and the maximum dry density ρ dmax was 1.789 g / cm 3 . As a result of the CBR test, the 95% corrected CBR value was 50.4%. This CBR value exceeds the revised CBR value of 40% for recycled crusher run, which is the lower roadbed material for roads. Therefore, if the recycled crushed stone is mixed with the roadbed material (E), it is possible to provide the solidity that can be used as a roadbed material for parking lots and roads.
 従来の路盤材と同様、本発明の路盤材にも塩化ナトリウムや天然蛎殻、天然ホタテ殻、天然小粒軽石を配合すれば、路盤材に新たな特性を持たせることができる。
 本発明の路盤材に塩化ナトリウムを配合すれば、路盤材の凍結を防止するとともに、雑草の生育を抑制することができる。塩化ナトリウムは1m2あたり2~4kgの割合で配合すると良い。また、蛎殻やホタテ殻を配合すれば、路盤材の凍結を防止し、雑草の生育を抑制することに加え、路盤材の保水性、調湿性を向上させることもできる。さらに、軽石を配合すれば、路盤材の保水性、調湿性を更に向上させることができる。
As with the conventional roadbed material, the roadbed material can be provided with new characteristics by adding sodium chloride, natural rice husk, natural scallop shell, and natural small pumice to the roadbed material of the present invention.
When sodium chloride is added to the roadbed material of the present invention, the roadbed material can be prevented from freezing and the growth of weeds can be suppressed. Sodium chloride may be blended in a proportion of 1 m 2 per 2 ~ 4 kg. If rice husk or scallop husk is blended, the road base material can be prevented from freezing and the growth of weeds can be prevented, and the water retention and humidity control properties of the road base material can be improved. Furthermore, if pumice is blended, the water retention and humidity control properties of the roadbed material can be further improved.
変形例Modified example
 本発明のリサイクル土壌は植栽用土壌、路盤材の他、グラウンド舗装構造の表層土にも適用可能である。このようなグラウンド用土壌として用いる場合には、脱水ケーキ粒材と溶融スラグ粒材を4:6~6:4の比率で配合し、且つ、両粒材の粒径を9.5mm以下となるように調整すると共に、全体の細粒分が10~18%となるように砂粉や砕石粉などのシルト分を配合することが好ましい。
 更に、グラウンド用土壌として用いる場合は、全体の90%以上が粒径2mm以下となるように調整すると良く、更にまた、脱水ケーキ粒材と溶融スラグ粒材を5:5の比率で配合すると良い。
 上記のように調整することにより、グラウンド用土壌に適した弾力性を有し、優れた締め固め度を兼ね備えた、理想的なグラウンド用土壌とすることができる。
 また、上記路盤材と同様に、塩化ナトリウムや天然蛎殻、天然ホタテ殻、天然小粒軽石を配合することにより、凍結防止、雑草の生育の抑制、保水性・調湿性向上といった機能性を付加することができる。
The recycled soil of the present invention can be applied to soil for planting and roadbed materials, as well as surface soil with a ground pavement structure. When used as such ground soil, dehydrated cake granules and molten slag granules are blended in a ratio of 4: 6 to 6: 4, and the particle size of both granules is 9.5 mm or less. It is preferable to add a silt such as sand powder or crushed stone powder so that the total fine particle content is 10 to 18%.
Furthermore, when used as soil for ground, it is better to adjust so that 90% or more of the total particle size is 2 mm or less, and it is also advisable to mix dehydrated cake granules and molten slag granules in a ratio of 5: 5. .
By adjusting as described above, it is possible to obtain an ideal ground soil having elasticity suitable for the ground soil and having an excellent degree of compaction.
In addition, similar to the above-mentioned roadbed material, by adding sodium chloride, natural rice husk, natural scallop shell, natural small pumice, it adds functionality such as anti-freezing, suppression of weed growth, and improvement of water retention and humidity control. be able to.

Claims (18)

  1.  a) 一般廃棄物、産業廃棄物、及び鉄鋼スラグから選ばれる一種もしくは複数種の溶融スラグから成り、粒径が40mm以下に調整された溶融スラグ粒材と、
     b) 上水汚泥、下水汚泥、及びペーパースラッジから選ばれる一種もしくは複数種を脱水し乾燥させた脱水ケーキから成り、粒径が40mm以下に調整された脱水ケーキ粒材とを配合して
    なるリサイクル土壌。
    a) A molten slag granule composed of one or more types of molten slag selected from general waste, industrial waste, and steel slag, and having a particle size adjusted to 40 mm or less,
    b) Recycling consisting of dehydrated cake made by dewatering and drying one or more selected from water sludge, sewage sludge, and paper sludge, and dehydrated cake granules adjusted to a particle size of 40 mm or less soil.
  2.  前記溶融スラグ粒材と前記脱水ケーキ粒材が1:9~9:1の比率で配合されていることを特徴とする請求項1に記載のリサイクル土壌。 The recycled soil according to claim 1, wherein the molten slag granules and the dehydrated cake granules are blended in a ratio of 1: 9 to 9: 1.
  3.  前記溶融スラグ粒材と前記脱水ケーキ粒材が3:7~7:3の比率で配合されていることを特徴とする請求項1又は2に記載のリサイクル土壌。 The recycled soil according to claim 1 or 2, wherein the molten slag granules and the dehydrated cake granules are blended in a ratio of 3: 7 to 7: 3.
  4.  請求項1~3のいずれかに記載のリサイクル土壌を含む植栽用土壌であって、
     前記溶融スラグ粒材が粒径20mm以下に調整されており、前記脱水ケーキ粒材が粒径20mm以下に調整されていることを特徴とする植栽用土壌。
    A soil for planting comprising the recycled soil according to any one of claims 1 to 3,
    A soil for planting, wherein the molten slag granule is adjusted to a particle size of 20 mm or less, and the dehydrated cake granule is adjusted to a particle size of 20 mm or less.
  5.  前記溶融スラグ粒材及び前記脱水ケーキ粒材が団粒構造を有していることを特徴とする請求項4に記載の植栽用土壌。 The planting soil according to claim 4, wherein the molten slag granule and the dehydrated cake granule have a aggregate structure.
  6.  前記溶融スラグ粒材と前記脱水ケーキ粒材の総量に対して、0%~20%のシルト分が配合されていることを特徴とする請求項4又は5に記載の植栽用土壌。 The planting soil according to claim 4 or 5, wherein a silt content of 0% to 20% is blended with respect to a total amount of the molten slag granules and the dehydrated cake granules.
  7.  バーク堆肥、もみがら堆肥、及びピートモスのうちの少なくとも1つが混合されていることを特徴とする請求項4~6のいずれかに記載の植栽用土壌。 The planting soil according to any one of claims 4 to 6, wherein at least one of bark compost, rice bran compost, and peat moss is mixed.
  8.  有機性廃棄物のリサイクル材が混合されていることを特徴とする請求項から4~7のいずれかに記載の植栽用土壌。 The planting soil according to any one of claims 4 to 7, wherein a recycling material of organic waste is mixed.
  9.  請求項1又は2に記載のリサイクル土壌を含む芝生用充填材。 A lawn filler containing the recycled soil according to claim 1 or 2.
  10.  歩道用舗装又はグラウンド舗装構造の路盤に用いられる、請求項1~3のいずれかに記載のリサイクル土壌を含む路盤材。 The roadbed material containing recycled soil according to any one of claims 1 to 3, which is used for a roadbed having a pavement for a sidewalk or a ground pavement.
  11.  前記溶融スラグ粒材と前記脱水ケーキ粒材の総量に対して、0%~20%の砕石又は再生砕石が配合されていることを特徴とする請求項10に記載の路盤材。 The roadbed material according to claim 10, wherein 0% to 20% of crushed stone or regenerated crushed stone is blended with respect to a total amount of the molten slag particle material and the dehydrated cake particle material.
  12.  全体の細粒分が3%~18%となるようにシルト分が配合されていることを特徴とする請求項10又は11に記載の路盤材。 The roadbed material according to claim 10 or 11, wherein the silt content is blended so that the total fine particle content is 3% to 18%.
  13.  前記溶融スラグ粒材及び前記脱水ケーキ粒材の総量が既存土の15%~50%となるように、該既存土が配合されていることを特徴とする請求項10~12のいずれかに記載の路盤材。 The existing soil is blended so that the total amount of the molten slag granules and the dehydrated cake granules is 15% to 50% of the existing soil. Roadbed material.
  14.  塩化ナトリウム、天然蛎殻、天然ホタテ殻、及び天然小粒軽石のうちの少なくとも1つが配合されていることを特徴とする請求項10~13のいずれかに記載の路盤材。 The roadbed material according to any one of claims 10 to 13, wherein at least one of sodium chloride, natural rice husk, natural scallop shell, and natural small pumice is blended.
  15.  請求項1~3のいずれかに記載のリサイクル土壌を含むグラウンド用土壌であって、
     前記溶融スラグ粒材と前記脱水ケーキ粒材が4:6~6:4の比率で配合され、前記溶融スラグ粒材が粒径9.5mm以下に調整され、前記脱水ケーキ粒材が粒径9.5mm以下に調整されるとともに、全体の細粒分が10%~18%となるようにシルト分が配合されることを特徴とするグラウンド用土壌。
    A ground soil containing the recycled soil according to any one of claims 1 to 3,
    The molten slag granules and the dehydrated cake granules are blended in a ratio of 4: 6 to 6: 4, the molten slag granules are adjusted to a particle size of 9.5 mm or less, and the dehydrated cake granules are 9.5 mm in diameter. A soil for ground characterized by being adjusted to the following and blended with silt so that the total fine grain content is 10% to 18%.
  16.  全体の90%以上が粒径2mm以下となるように調整されていることを特徴とする請求項15に記載のグラウンド用土壌。 The ground soil according to claim 15, wherein 90% or more of the whole is adjusted to have a particle diameter of 2 mm or less.
  17.  前記溶融スラグ粒材及び前記脱水ケーキ粒材の総量に対して、1.5倍量~4倍量の天然土が配合されていることを特徴とする請求項15又は16に記載のグランド用土壌。 The soil for ground according to claim 15 or 16, wherein 1.5 to 4 times the amount of natural soil is blended with respect to the total amount of the molten slag granules and the dehydrated cake granules.
  18.  塩化ナトリウム、天然蛎殻、天然ホタテ殻、及び天然小粒軽石のうちの少なくとも1つが配合されていることを特徴とする請求項15~17のいずれかに記載のグラウンド用土壌。 The ground soil according to any one of claims 15 to 17, wherein at least one of sodium chloride, natural rice husk, natural scallop shell, and natural small pumice is blended.
PCT/JP2011/073304 2010-10-12 2011-10-11 Recycled soil, planting soil, lawn top dressing, base course material, and soil for grounds WO2012050076A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012505529A JP5021105B2 (en) 2010-10-12 2011-10-11 Soil for planting
CN201180003942XA CN102597375A (en) 2010-10-12 2011-10-11 Recycled soil, planting soil, lawn top dressing, base course material, and soil for grounds

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010229554A JP4848043B1 (en) 2010-10-12 2010-10-12 Roadbed material
JP2010-229554 2010-10-12
JP2011-083417 2011-04-05
JP2011083417 2011-04-05

Publications (1)

Publication Number Publication Date
WO2012050076A1 true WO2012050076A1 (en) 2012-04-19

Family

ID=45938305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073304 WO2012050076A1 (en) 2010-10-12 2011-10-11 Recycled soil, planting soil, lawn top dressing, base course material, and soil for grounds

Country Status (3)

Country Link
JP (1) JP5021105B2 (en)
CN (1) CN102597375A (en)
WO (1) WO2012050076A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017212900A (en) * 2016-05-31 2017-12-07 Lol株式会社 Soil regenerating method and regenerated soil
JP2020122142A (en) * 2019-01-30 2020-08-13 株式会社ハイクレー Planting soil-improving material, planting soil, method for manufacturing planting soil, and planting method
JP2021067083A (en) * 2019-10-23 2021-04-30 日鉄エンジニアリング株式会社 Vegetation sandbag
MA60167A1 (en) * 2023-05-02 2024-11-29 Abdessamad GHACHA Process for producing planting soil containing sludge generated by wastewater treatment plants.

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150072427A (en) * 2012-11-19 2015-06-29 도요 고무 고교 가부시키가이샤 Artificial soil medium
CN105350630B (en) * 2015-11-14 2017-06-06 常州大学 A rapid infiltration and reuse technology of urban rainwater
JP7282330B2 (en) * 2019-10-23 2023-05-29 日鉄エンジニアリング株式会社 Vegetation base material

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05227833A (en) * 1992-02-21 1993-09-07 Nippon Cement Co Ltd Culture soil for agriculture and horticulture
JPH10266109A (en) * 1997-03-27 1998-10-06 Hasegawa Taiiku Shisetsu Kk Paving method, and modifier for paving soil or banking
JPH1161120A (en) * 1997-08-25 1999-03-05 Setsuichi Kasai Production of soil improver
JP2002084881A (en) * 2000-09-12 2002-03-26 Takeshi Nao Plant-raising culture soil
JP2007314352A (en) * 2006-05-23 2007-12-06 Chubu Recycle Kk Method of manufacturing crystalline molten slag
JP2007327216A (en) * 2006-06-07 2007-12-20 Tokiwa Kogyo Co Ltd Sand, manufacturing method for it, and artificial lawn using it as joint sand
JP2009061438A (en) * 2007-09-04 2009-03-26 Towa Sports Shisetsu Kk Manufacturing method of recycling mixed soil
JP2010043418A (en) * 2008-08-11 2010-02-25 Japan Racing Association Construction method for surface layer body, surface layer body, and reprocessing method for surface layer body
JP4482607B1 (en) * 2009-05-29 2010-06-16 東和スポーツ施設株式会社 Soil for ground

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007306844A (en) * 2006-05-18 2007-11-29 Kawasaki Plant Systems Ltd Method for producing greening material using waste material, and greening material

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05227833A (en) * 1992-02-21 1993-09-07 Nippon Cement Co Ltd Culture soil for agriculture and horticulture
JPH10266109A (en) * 1997-03-27 1998-10-06 Hasegawa Taiiku Shisetsu Kk Paving method, and modifier for paving soil or banking
JPH1161120A (en) * 1997-08-25 1999-03-05 Setsuichi Kasai Production of soil improver
JP2002084881A (en) * 2000-09-12 2002-03-26 Takeshi Nao Plant-raising culture soil
JP2007314352A (en) * 2006-05-23 2007-12-06 Chubu Recycle Kk Method of manufacturing crystalline molten slag
JP2007327216A (en) * 2006-06-07 2007-12-20 Tokiwa Kogyo Co Ltd Sand, manufacturing method for it, and artificial lawn using it as joint sand
JP2009061438A (en) * 2007-09-04 2009-03-26 Towa Sports Shisetsu Kk Manufacturing method of recycling mixed soil
JP2010043418A (en) * 2008-08-11 2010-02-25 Japan Racing Association Construction method for surface layer body, surface layer body, and reprocessing method for surface layer body
JP4482607B1 (en) * 2009-05-29 2010-06-16 東和スポーツ施設株式会社 Soil for ground

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017212900A (en) * 2016-05-31 2017-12-07 Lol株式会社 Soil regenerating method and regenerated soil
JP2020122142A (en) * 2019-01-30 2020-08-13 株式会社ハイクレー Planting soil-improving material, planting soil, method for manufacturing planting soil, and planting method
JP7371831B2 (en) 2019-01-30 2023-10-31 株式会社ハイクレー Planting soil improvement material, planting soil, method for producing planting soil, and planting method
JP2021067083A (en) * 2019-10-23 2021-04-30 日鉄エンジニアリング株式会社 Vegetation sandbag
JP7250280B2 (en) 2019-10-23 2023-04-03 日鉄エンジニアリング株式会社 vegetation sandbag
MA60167A1 (en) * 2023-05-02 2024-11-29 Abdessamad GHACHA Process for producing planting soil containing sludge generated by wastewater treatment plants.
MA60167B1 (en) * 2023-05-02 2025-02-28 Abdessamad GHACHA Process for producing planting soil containing sludge generated by wastewater treatment plants

Also Published As

Publication number Publication date
JP5021105B2 (en) 2012-09-05
JPWO2012050076A1 (en) 2014-02-24
CN102597375A (en) 2012-07-18

Similar Documents

Publication Publication Date Title
JP5021105B2 (en) Soil for planting
JP5342799B2 (en) Herbicidal material, herbicidal solidifying material, and construction method thereof
CN103461084B (en) Afforesting matrix for improving stone-pit waste muck and preparation method and application of afforesting matrix
CN109287386A (en) A football field lawn constructed by using construction waste and construction method
JP5800259B2 (en) Soil material
KR100998054B1 (en) Vegetation base material for slope recording and slope recording method using the same
KR101294244B1 (en) Greenification composition containing plant fiber, preparation thereof and mehthod for greenifying using the same
Haynes et al. Formulation and use of manufactured soils: A major use for organic and inorganic wastes
CN111233570A (en) Sand gravel soil modifier
JP4204543B2 (en) Civil engineering materials and construction methods
KR200417955Y1 (en) Landscaping vegetation for forensic landscaping and its manufacturing method
JP4848043B1 (en) Roadbed material
CN112262698A (en) All-covering soil layer structure constructed by greening plant wastes and used for healthy growth of tree root systems
CN107044079B (en) Plant raw foam type asphaltic road-mix surface course structure
RU2423812C1 (en) Method to improve agrophysical properties of soil
JP2011188759A (en) Lawn vegetation base material, method for producing the same, and lawn vegetation base
DE202017001062U1 (en) Volcanic rock grit for gardening / landscaping and agricultural applications
JP2011250739A (en) Culture soil for plant cultivation
JP2006254894A (en) Method for producing construction material/soil conditioner using binder of sawdust powder (pulverized material/chip of thinning)/compost/charcoal/starch as main raw material, and method for use thereof
Friedrich Selecting the proper components for a green roof growing media
CN103962054B (en) A kind of air slaking powdery feldspathic sandstone prilling process
KR102290486B1 (en) Green soil excellent in moisturizing and its manufacturing method
CN114622534B (en) Water-retaining material for preventing water and soil loss and preparation method thereof
CN112868495B (en) Treatment method of kaolin deep processing waste residue
KR20000055278A (en) A method for making the green using grass distributer

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180003942.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2012505529

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11832511

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11832511

Country of ref document: EP

Kind code of ref document: A1