[go: up one dir, main page]

WO2012039331A1 - Glass forming mold, glass forming device, glass forming method, and method for manufacturing photomask substrate - Google Patents

Glass forming mold, glass forming device, glass forming method, and method for manufacturing photomask substrate Download PDF

Info

Publication number
WO2012039331A1
WO2012039331A1 PCT/JP2011/070961 JP2011070961W WO2012039331A1 WO 2012039331 A1 WO2012039331 A1 WO 2012039331A1 JP 2011070961 W JP2011070961 W JP 2011070961W WO 2012039331 A1 WO2012039331 A1 WO 2012039331A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
mold
side plate
ingot
base plate
Prior art date
Application number
PCT/JP2011/070961
Other languages
French (fr)
Japanese (ja)
Inventor
史康 中野
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to JP2012535009A priority Critical patent/JP5812005B2/en
Priority to KR1020137002687A priority patent/KR101865977B1/en
Priority to CN201180032870.1A priority patent/CN102958854B/en
Publication of WO2012039331A1 publication Critical patent/WO2012039331A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B20/00Processes specially adapted for the production of quartz or fused silica articles, not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/02Pure silica glass, e.g. pure fused quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/05Press-mould die materials
    • C03B2215/07Ceramic or cermets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/72Barrel presses or equivalent, e.g. of the ring mould type

Definitions

  • the present invention relates to a molding die for glass molding, a glass molding apparatus, a glass molding method, and a photomask substrate manufacturing method.
  • This application claims priority based on Japanese Patent Application No. 2010-210686 for which it applied on September 21, 2010, and uses the content here.
  • the glass lump is pressure-formed at a high temperature using a mold, and then the glass lump is cooled and then taken out of the furnace. It is. During this cooling, a difference in shrinkage due to a temperature drop occurs between the glass and the mold. That is, when a mold having a larger linear expansion coefficient than that of the glass to be molded is used, when the glass and the mold are shrunk during cooling, the outer mold is more than the inner glass due to the difference in linear expansion coefficient. The amount of shrinkage becomes larger. As a result, excessive stress is applied, causing a phenomenon that the mold is damaged or the glass is damaged.
  • aspects according to the present invention provide a mold, a glass molding apparatus, a glass molding method, and a method for manufacturing a photomask substrate that can avoid breakage of glass and a mold body and can mold glass into a desired shape. With the goal.
  • a first aspect of the present invention is a mold main body used for glass heating and pressing, A support member that is arranged so as to be able to contact a movable member in the mold body and is breakable to release stress based on a difference in linear expansion coefficient between the mold body and the glass. It is characterized by being a mold.
  • the second aspect of the present invention has a hollow portion that accommodates the glass ingot, and the hollow portion can be moved up and down inside the base plate, the side plate disposed thereon, and the side plates.
  • a glass molding die configured to be surrounded by a top plate, wherein the base plate is provided with a support member so as to come into contact with the outside of the side plate, The base plate is formed so as to be relatively movable in the outer direction, and is supported by the support member from the outside of the side plate. The support member heats the glass ingot accommodated in the hollow portion.
  • the glass ingot When the glass ingot is deformed by pressure, it has a strength that does not break with a shearing force generated by a load applied from the glass ingot via the side plate, and when the glass ingot deformed by heating and pressing is cooled, the molding is performed.
  • a third aspect of the present invention is characterized in that a glass forming apparatus having the above-described forming mold for glass forming, a heating means and a pressurizing means for the glass ingot is provided.
  • a glass forming method using the glass forming apparatus described above wherein a glass ingot is accommodated in a forming die, and the glass ingot is heated and pressurized by a heating means and a pressing means.
  • the side plate is moved outwardly with respect to the base plate due to a load applied due to a difference in linear expansion coefficient between the mold and the glass ingot.
  • the glass molding method is characterized in that the glass member is moved relative to each other so that a shearing force acts on the supporting member, and the supporting member is broken in accordance with the shearing force.
  • the fifth aspect of the present invention is characterized in that it is a method for producing a photomask substrate having a step of obtaining a glass molded body by using the glass molding method described above.
  • the mold of the aspect of the present invention it is possible to avoid breakage of the glass and the mold body, and to mold the glass into a desired shape.
  • FIG. 3 is a cross-sectional view taken along line AA in FIG. 2. It is sectional drawing which shows the state which deform
  • FIG. 1 is a cross-sectional view showing a glass forming apparatus according to the present embodiment.
  • FIG. 2 is a plan view showing a glass forming mold in the glass forming apparatus of FIG. 3 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 4 is a cross-sectional view showing a state where the glass ingot is deformed in the glass forming mold of FIG.
  • FIG. 5 is a cross-sectional view showing a state in which a pin is broken in the glass forming mold of FIG. 6 to 9 are perspective views showing other examples of a molding die for glass molding.
  • the glass forming apparatus 1 of the present embodiment forms a photomask substrate such as a semiconductor mask, a liquid crystal mask, an optical large lens material, or the like into a desired shape from a synthetic quartz glass ingot manufactured using a silicon compound as a raw material. It is an apparatus for heat forming.
  • the glass forming apparatus 1 includes a heat insulating material 3 provided over the entire inner wall of a metal vacuum chamber 2, and a carbon heater (heating means) provided on the wall of the heat insulating material 3. ) 5.
  • a glass graphite mold 10 (hereinafter referred to as a mold 10) made of carbon graphite is installed in the center of the vacuum chamber 2, and a cylinder (pressurizing means) 4 is provided on the upper part thereof. ing.
  • the forming die 10 is disposed on the pedestal 6 inside the vacuum chamber 2 of the glass forming apparatus 1 and has a bottom portion including a base plate 14 and a bottom plate 17 as shown in FIGS.
  • the mold 10 (mold body) including the base plate 14 and the bottom plate 17 is made of carbon graphite as described above, and is made of a material having a larger linear expansion coefficient than the glass ingot 20A.
  • the linear expansion coefficient of synthetic quartz glass is about 5 ⁇ 10 ⁇ 7 / ° C.
  • the linear expansion coefficient of carbon graphite is about 2 to 5 ⁇ 10 ⁇ 6 / ° C.
  • molding die 10 (mold main body) has the hollow part 19 which accommodates glass ingot 20A,
  • the said hollow part 19 is the baseplate 14 and the baseplate 17, and the side plate 11 arrange
  • the inner sides of the side plates 11 are surrounded by a top plate 13 that can move up and down.
  • the mold 10 (mold body) is provided with a side plate 11 (movable member) formed to be movable relative to the base plate 14.
  • This side plate 11 and the side plate guide 12 fixed with bolts or the like limit the freedom (movement) of the top plate 13 that directly presses the glass ingot 20A to be formed in the vertical direction.
  • a rail 18 is provided on the base plate 14, and the side plate 11 is on the rail 18.
  • the side plate 11 is movable with respect to the base plate 14 in the direction of the rail 18 (that is, the outer direction of the side plate 11).
  • a pin (support member) 15 is disposed so as to contact the side plate 11.
  • the pin 15 supports and restrains the side plate 11 from the outside.
  • a plurality of insertion holes 16 are formed in the base plate 14 along positions that contact the outside of the side plate 11.
  • the pin 15 can be inserted into and removed from the plurality of insertion holes 16.
  • a plurality of pins 15 are arranged for each of the four side plates 11 in the mold 10 arranged in a substantially square shape in plan view.
  • two pins 15 are arranged on each side plate 11.
  • a plurality of pins 15 of the same type may be arranged.
  • the pins 15 may be arranged by combining different materials, shapes, and diameters according to the required strength and the like.
  • the plurality of insertion holes 16 are configured such that all of the insertion holes 16 can correspond to different shapes and diameters (for example, the diameter of the holes is gradually reduced from the surface side). Also good. Or the some insertion hole 16 may be comprised so that the shape and diameter which can be inserted mutually differ.
  • the number of pins 15 to be arranged may be changed for each side plate 11 (that is, the number of pins 15 may be different between one side plate 11 and another side plate 11). .
  • the pin 15 When the glass ingot 20A accommodated in the hollow portion 19 is deformed by heating and pressing, the pin 15 has a strength that does not break due to a shearing force generated by a load applied from the glass ingot 20A through the side plate 11, and is heated.
  • the glass ingot 20B deformed by pressing is cooled, the glass ingot 20B has a strength to break due to a shearing force generated by a load applied due to the difference between the linear expansion coefficient of the mold 10 and the linear expansion coefficient of the glass ingot 20A. is doing.
  • the linear expansion coefficients of the members constituting the mold 10 are all equal. In this case, since the lateral width of the base plate 14 is the largest, the magnitude of the shear force generated during cooling is substantially determined by the difference in the linear expansion coefficient between the base plate 14 and the glass ingot 20A.
  • the pin 15 has a strength that can withstand the pressure acting on the side plate 11 from the deformed glass ingot 20A when the glass ingot 20A accommodated in the hollow portion 19 is deformed by heating and pressing. is doing.
  • the base plate 14 of the mold 10 made of carbon graphite has a larger linear expansion coefficient than the glass ingot 20B. 14 is larger.
  • a load is generated in which the glass ingot 20B having a small shrinkage amount pushes the side plate 11 disposed on the base plate 14 having a large shrinkage amount toward the outside.
  • the pin 15 has such strength that it can be broken by a shearing force generated by the load applied at this time.
  • a load is applied due to the difference in linear expansion coefficient between the glass ingot 20B and the base plate 14 of the mold 10 when the glass ingot 20B is cooled, and the pin 15 is bent by a shearing force generated by the load. As a result, the glass and the mold 10 can be prevented from being damaged.
  • the cylinder (pressurizing means) 4 for directly pressing the top plate 13 is installed on the upper portion of the glass forming apparatus 1.
  • the glass ingot 20 ⁇ / b> A is pressed and molded to an arbitrary thickness.
  • a base plate 14, a bottom plate 17, a side plate 11, and a side plate guide 12 are arranged in combination on the base 6 inside the vacuum chamber 2 in the glass forming apparatus 1. Further, predetermined pins 15 (here, two pins 15 are arranged for each side plate 11) are inserted into insertion holes 16 formed in the base plate 14. Thereby, the shaping
  • the inside of the vacuum chamber 2 is filled with an inert gas. Further, the glass ingot 20 ⁇ / b> A in the hollow portion 19 of the mold 10 is heated by the carbon heater 5, and the temperature is raised to the softening point or higher from the crystallization temperature. At this time, the inside of the glass ingot 20A may be held at a constant temperature until the temperature reaches a uniform temperature.
  • the cylinder 4 When the predetermined temperature is reached, the cylinder 4 is operated to move the top plate 13 downward, and the glass ingot 20A is pressure-molded. In addition, at the time of starting the pressure molding, the mold 10 exhibits expansion according to the environmental temperature. Further, as the pressurization process of the glass ingot 20A progresses, the glass ingot 20A gradually becomes a flat shape and is in close contact with the side plate 11 without any gap.
  • the pressing force of the top plate 13 acts on the side plate 11 as a stress in the outer peripheral direction (outward direction) via the glass ingot 20A.
  • the side plate 11 is difficult to move because the freedom to move outward is restricted by the pins 15.
  • the stress generated by the glass molding is transmitted to the pin 15 through the glass ingot 20 ⁇ / b> A and the side plate 11.
  • the side plate 11 is moved in the outer circumferential direction in which the glass ingot 20A flows due to the force received from the glass ingot 20A at the same time as the restraint is released.
  • the glass ingot 20 ⁇ / b> A flows out of the area surrounded by the side plate 11, and a shape following the inner side surface of the side plate 11 cannot be obtained.
  • the pin 15 needs to be strong enough to withstand the stress generated by the molding of the glass, and is configured to have this.
  • the glass ingot 20 ⁇ / b> A is pressed to the state in close contact with the bottom plate 17, the top plate 13, and the side plate 11 of the mold 10 by the above-described heat and pressure molding, Then, a cooling process is performed. With this cooling, the mold 10 and the glass ingot 20B show shrinkage according to the ambient temperature.
  • the mold 10 has a larger linear expansion coefficient than the glass ingot 20B.
  • the base plate 14 of the mold 10 is larger in the lateral direction than the side plate 11. Therefore, the contraction amount of the base plate 14 becomes relatively large with respect to the side plate 11, and the contraction accompanying cooling becomes remarkable. Accordingly, when viewed relatively, a load is generated in the direction in which the glass ingot 20B expands as it cools, that is, in the direction in which the side plate 11 is pushed outward (outward).
  • the load received by the side plate 11 is transmitted to the pins 15 installed outside the side plate 11.
  • the pin 15 is broken toward the outside as shown in FIG.
  • the side plate 11 is released from the restraint, and at the same time, the side plate 11 moves in the outer circumferential direction (outward direction) in which the glass ingot 20B flows to release the stress.
  • the glass ingot 20B since the glass ingot 20B has already been solidified by cooling, it does not flow out of the area surrounded by the side plates 11. Then, it cools to about room temperature and takes out the shaping
  • the pin (support) that is broken by the stress generated by cooling after molding.
  • a pin 15 (pin-like member, rod-like member) is used as a support member, and the pin 15 can be inserted into and removed from a plurality of insertion holes 16 formed in the base plate 14. Therefore, the strength can be easily changed by changing the number and types of pins 15 to be arranged. For example, in the present embodiment, two pins 15 of the same type are arranged on each side plate. If the number of pins to be arranged is increased, the strength as a whole pin can be increased (in contrast, if the number of pins to be arranged is reduced, the strength as a whole pin can be lowered).
  • the pins when placing multiple pins, use only one with a large diameter, use only a plurality with a small diameter, or use a mixture of one with a large diameter and one with a small diameter.
  • the strength can be changed by mixing a plurality of types with different shapes.
  • positioning a some pin you may arrange
  • the pin 15 that can be inserted into and removed from the insertion hole 16 formed in the base plate 14 is used as the support member. Therefore, the processing after the pin 15 is broken can be simplified. For example, it is only necessary to remove the broken pin 15 from the insertion hole 16 and reinsert the new pin 15 into the insertion hole 16 after the glass is formed. Therefore, the manufacturing efficiency of glass and a photomask substrate can be improved.
  • the load applied to the side plate and the shear force generated on the pin are obtained in advance by dynamic simulation, and the shear force generated by the load during cooling does not break with the shear force generated by the load during molding.
  • the strength of the pin can be determined so as to break with force. If the strength required for the pin is determined in this way, a pin having the required strength can be selected from various pins whose strength has been measured in advance.
  • quartz glass is taken as an example of the glass to be molded and carbon (carbon graphite) is taken as an example of the material of the mold, but the present invention is not limited to this.
  • carbon carbon graphite
  • the material of the mold may be another material that can be used at a high temperature such as alumina (aluminum oxide).
  • the material of the glass and the mold it may be determined in consideration of the glass composition and molding conditions.
  • the linear expansion coefficient of the glass is relatively smaller than the linear expansion coefficient of the material of the mold (particularly the base plate) (conditions in which the support member breaks and the function of the mold of the present invention is exhibited). If it is a combination, the effect of the present embodiment can be obtained.
  • carbon is often preferable because carbon is superior in strength and thermal shock resistance to alumina.
  • carbon graphite is used as the material of the pin 15.
  • a material other than carbon graphite may be used.
  • a material that can be used at a high temperature such as alumina (aluminum oxide) may be used.
  • the pin 15 pin-like member, rod-like member
  • a member other than the pin 15 may be used as long as the member has a necessary strength and can be broken by a predetermined load.
  • the support member other than the pin 15 for example, a plurality of insertion members 115b that can be inserted into and removed from the insertion holes 116 formed in the base plate 114 are formed below the long plate member 115a as shown in FIG. The long plate-like member 115 with an insertion member is mentioned.
  • the long plate-like member 115a contacting the side plate 111 is pressed in the outer peripheral direction (outward) during cooling, so that the long plate-like member 115a is inserted.
  • the portion between the members 115b can be broken.
  • a groove 216 is formed at a position along the side plate 211 in the base plate 214 instead of the insertion hole 16, and a thin plate member 215 that can be inserted into and removed from the groove 216 is used as a support member.
  • a part (contact portion) of the thin plate member 215 is in contact with the side plate 211, and this is pressed in the outer peripheral direction (outward direction) during cooling.
  • another part (insertion portion) of the thin plate member 215 is inserted into the groove 216 and substantially fixed. As a result, the portion between the contact portion and the insertion portion of the thin plate member 215 can be broken.
  • a substantially L-shaped member 315 is a support member.
  • the L-shaped bottom portion 315b of the substantially L-shaped member 315 is fixed to the base plate 314 with its longitudinal direction as the outer peripheral direction (outward direction).
  • a recess 316 for fixing the bottom portion 315b is formed in the base plate 314.
  • the side plate 311 is in contact with the L-shaped upper portion 315a.
  • the substantially L-shaped member 315 is inserted into a recess 316 provided in the base plate 314 and substantially fixed to the base plate 314, and one end of the base portion 315b is used as a base.
  • An upper portion 315a extending in a direction orthogonal to the extending direction of the bottom portion 315b, and one surface of the upper portion 315a is in contact with the side plate 311.
  • the side plate 311 presses the upper portion 315a of the substantially L-shaped member 315 during cooling, so that the space between the L-shaped upper portion 315a and the bottom portion 315b is reduced. The part can be broken.
  • a substantially L-shaped long plate-like member 415 is used as a support member, and an L-shaped bottom portion 415 b of the substantially L-shaped rod-like member 415 is fixed to the base plate 414.
  • a recess 416 for fixing the bottom portion 415b is formed in the base plate 414.
  • the side plate 411 is in contact with the upper portion 415a of the L shape.
  • the substantially L-shaped long plate-like member 415 has a bottom portion 415 b that is inserted into a recess 416 provided in the base plate 414 and substantially fixed to the base plate 414.
  • the bottom side portion 415 b has a long side extending along the side plate 411.
  • the substantially L-shaped long plate-like member 415 has an upper portion 415 a extending with one long side of the bottom portion 415 b as a base, and one surface of the upper portion 415 a is in contact with the side plate 411.
  • the angle between the bottom portion 415b and the upper portion 415a is, for example, 90 °.
  • the present invention is not limited to this.
  • the molding temperature may be equal to or higher than the crystallization temperature of the glass ingot 20A.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

A glass forming mold is provided with: a mold body (10) used to form glass by heating and pressurizing the glass; and a support member (15) disposed so that the support member (15) can come into contact with the movable member (11) of the mold body and capable of being broken in order to relieve stress caused by the difference in linear expansion coefficient between the mold body and the glass.

Description

ガラス成形用の成形型、ガラス成形装置、ガラス成形方法及びフォトマスク基板の製造方法Mold for glass molding, glass molding apparatus, glass molding method, and photomask substrate manufacturing method
 本発明は、ガラス成形用の成形型、ガラス成形装置、ガラス成形方法及びフォトマスク基板の製造方法に関する。
本願は、2010年9月21日に出願された特願2010-210686号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a molding die for glass molding, a glass molding apparatus, a glass molding method, and a photomask substrate manufacturing method.
This application claims priority based on Japanese Patent Application No. 2010-210686 for which it applied on September 21, 2010, and uses the content here.
 近年、大型のレンズやレチクル、あるいは大型の液晶ディスプレイなど、広い面積の面を有する光学部材を得るため、予め形成されたガラスインゴットなどのガラス塊を加熱加圧成形することにより扁平形状にして面積を拡大する成形方法が利用されている(例えば、特許文献1参照)。 In recent years, in order to obtain an optical member having a large area, such as a large lens or reticle, or a large liquid crystal display, a glass lump such as a pre-formed glass ingot is formed into a flat shape by heating and pressing. A molding method for enlarging the width is used (for example, see Patent Document 1).
特開2004-307265号公報JP 2004-307265 A
 ここで、前記したようなガラス塊を加熱加圧成形する場合には、成形型を使用して高温下でガラス塊を加圧成形した後、当該ガラス塊の冷却を行い、それから炉外へ取り出される。この冷却の際、ガラスと成形型の間には温度降下に伴う収縮量の差が生じる。すなわち、成形対象であるガラスよりも線膨張係数が大きい成形型を使用した場合、冷却時にガラス及び成形型の収縮が起こった際に、線膨張係数の差によって内部のガラスよりも外部の成形型の収縮量の方が大きくなる。その結果、過剰な応力が掛かり、成形型が破損、またはガラスが破損する現象が生じる。 Here, in the case where the above-mentioned glass lump is heat-pressed, the glass lump is pressure-formed at a high temperature using a mold, and then the glass lump is cooled and then taken out of the furnace. It is. During this cooling, a difference in shrinkage due to a temperature drop occurs between the glass and the mold. That is, when a mold having a larger linear expansion coefficient than that of the glass to be molded is used, when the glass and the mold are shrunk during cooling, the outer mold is more than the inner glass due to the difference in linear expansion coefficient. The amount of shrinkage becomes larger. As a result, excessive stress is applied, causing a phenomenon that the mold is damaged or the glass is damaged.
 なお、これらの破損を防ぐ方法として、成形型は、そのサイズが大きいほど高温時からの収縮量が大きくなるため、その収縮量を加味した隙間を型側に設ける方法がある。しかしながら、成形型に隙間を設けることで成形中、粘性体となったガラスが隙間へ入り込み、必要な形状が得られない場合がある。あるいは、成形型の連結部隙間にガラスが入り込み、成形型を破損させてしまう、または、成形型の破損を誘導させてしまう等の問題が生じる場合がある。 As a method for preventing such breakage, there is a method of providing a gap on the mold side in consideration of the amount of shrinkage because the amount of shrinkage from a high temperature increases as the size of the mold increases. However, by providing a gap in the mold, the glass that has become a viscous material enters the gap during molding, and a necessary shape may not be obtained. Alternatively, there may be a problem that glass enters the gap between the connecting portions of the mold and damages the mold or induces damage to the mold.
 本発明に係る態様は、ガラスや成形型本体の破損を回避し、所望の形状にガラスを成形することができる成形型、ガラス成形装置、ガラス成形方法及びフォトマスク基板の製造方法を提供することを目的とする。 Aspects according to the present invention provide a mold, a glass molding apparatus, a glass molding method, and a method for manufacturing a photomask substrate that can avoid breakage of glass and a mold body and can mold glass into a desired shape. With the goal.
本発明の第1の態様は、ガラスの加熱加圧成形に用いられるモールド本体と、
前記モールド本体における可動部材に当接可能に配置され、前記モールド本体と前記ガラスとの間の線膨張係数の差に基づく応力を開放するために破断可能な支持部材と、を備えるガラス成形用の成形型としたことを特徴とする。
A first aspect of the present invention is a mold main body used for glass heating and pressing,
A support member that is arranged so as to be able to contact a movable member in the mold body and is breakable to release stress based on a difference in linear expansion coefficient between the mold body and the glass. It is characterized by being a mold.
 本発明の第2の態様は、ガラスインゴットを収容する中空部を有し、当該中空部を、台板と、その上に配設された側板と、該側板同士の内側を上下動可能にされた天板とで囲むように構成されたガラス成形用の成形型であって、前記台板には、前記側板の外側に当接するように支持部材が配設されていて、前記側板は、前記台板に対して、その外側方向に相対移動可能に形成されていると共に、前記支持部材により前記側板の外側から支持されており、前記支持部材は、前記中空部に収容したガラスインゴットを加熱加圧して変形させる際に、前記ガラスインゴットから前記側板を介して負荷される荷重によって生じる剪断力では破断しない強度を有すると共に、加熱加圧して変形させた前記ガラスインゴットを冷却する際に、前記成形型と前記ガラスインゴットとの線膨張係数の差に起因して負荷される荷重によって生じる剪断力により破断する強度を有するガラス成形用の成形型としたことを特徴とする。 The second aspect of the present invention has a hollow portion that accommodates the glass ingot, and the hollow portion can be moved up and down inside the base plate, the side plate disposed thereon, and the side plates. A glass molding die configured to be surrounded by a top plate, wherein the base plate is provided with a support member so as to come into contact with the outside of the side plate, The base plate is formed so as to be relatively movable in the outer direction, and is supported by the support member from the outside of the side plate. The support member heats the glass ingot accommodated in the hollow portion. When the glass ingot is deformed by pressure, it has a strength that does not break with a shearing force generated by a load applied from the glass ingot via the side plate, and when the glass ingot deformed by heating and pressing is cooled, the molding is performed. Type Characterized in that the mold for glass molding having a strength to break by shearing forces caused by the load applied due to the difference in linear expansion coefficient between the glass ingot.
 また、本発明の第3の態様は、前記したガラス成形用の成形型と、ガラスインゴットの加熱手段及び加圧手段とを有するガラス成形装置としたことを特徴とする。 Further, a third aspect of the present invention is characterized in that a glass forming apparatus having the above-described forming mold for glass forming, a heating means and a pressurizing means for the glass ingot is provided.
 また、本発明の第4の態様は、前記したガラス成形装置を用いたガラス成形方法であって、成形型にガラスインゴットを収容し、加熱手段及び加圧手段により前記ガラスインゴットを加熱加圧して変形させ、変形させた前記ガラスインゴットを冷却する際、前記成形型と前記ガラスインゴットとの線膨張係数の差に起因して負荷される荷重によって、前記台板に対して側板がその外側方向に相対移動し、これにより支持部材に剪断力が作用し、この剪断力に応じて、前記支持部材を破断させるガラス成形方法としたことを特徴とする。 According to a fourth aspect of the present invention, there is provided a glass forming method using the glass forming apparatus described above, wherein a glass ingot is accommodated in a forming die, and the glass ingot is heated and pressurized by a heating means and a pressing means. When cooling the deformed glass ingot, the side plate is moved outwardly with respect to the base plate due to a load applied due to a difference in linear expansion coefficient between the mold and the glass ingot. The glass molding method is characterized in that the glass member is moved relative to each other so that a shearing force acts on the supporting member, and the supporting member is broken in accordance with the shearing force.
 また、本発明の第5の態様は、前記したガラス成形方法を用いてガラス成形体を得る工程を有しているフォトマスク基板の製造方法としたことを特徴とする。 Further, the fifth aspect of the present invention is characterized in that it is a method for producing a photomask substrate having a step of obtaining a glass molded body by using the glass molding method described above.
 本発明の態様の成形型によれば、ガラスや成形型本体の破損を回避し、ガラスを所望の形状に成形することができる。 According to the mold of the aspect of the present invention, it is possible to avoid breakage of the glass and the mold body, and to mold the glass into a desired shape.
本実施の形態に係るガラス成形装置を示す断面図である。It is sectional drawing which shows the glass forming apparatus which concerns on this Embodiment. 図1のガラス成形装置におけるガラス成形用の成形型を示す平面図である。It is a top view which shows the shaping | molding die for glass shaping | molding in the glass shaping | molding apparatus of FIG. 図2のA-A断面図である。FIG. 3 is a cross-sectional view taken along line AA in FIG. 2. 図3のガラス成形用の成形型においてガラスインゴットを変形させた状態を示す断面図である。It is sectional drawing which shows the state which deform | transformed the glass ingot in the shaping | molding die for glass shaping | molding of FIG. 図4のガラス成形用の成形型においてピンが折れた状態を示す断面図である。It is sectional drawing which shows the state in which the pin was broken in the shaping | molding die for glass shaping | molding of FIG. ガラス成形用の成形型の他の例を示す斜視図である。It is a perspective view which shows the other example of the shaping | molding die for glass forming. ガラス成形用の成形型の他の例を示す斜視図である。It is a perspective view which shows the other example of the shaping | molding die for glass forming. ガラス成形用の成形型の他の例を示す斜視図である。It is a perspective view which shows the other example of the shaping | molding die for glass forming. ガラス成形用の成形型の他の例を示す斜視図である。It is a perspective view which shows the other example of the shaping | molding die for glass forming.
 以下、この発明の実施の形態の例について説明する。 Hereinafter, examples of embodiments of the present invention will be described.
 図1は、本実施の形態に係るガラス成形装置を示す断面図である。図2は、図1のガラス成形装置におけるガラス成形用の成形型を示す平面図である。図3は、図2のA-A断面図である。図4は、図3のガラス成形用の成形型においてガラスインゴットを変形させた状態を示す断面図である。図5は、図4のガラス成形用の成形型においてピンが折れた状態を示す断面図である。図6~図9は、ガラス成形用の成形型の他の例を示す斜視図である。 FIG. 1 is a cross-sectional view showing a glass forming apparatus according to the present embodiment. FIG. 2 is a plan view showing a glass forming mold in the glass forming apparatus of FIG. 3 is a cross-sectional view taken along the line AA in FIG. FIG. 4 is a cross-sectional view showing a state where the glass ingot is deformed in the glass forming mold of FIG. FIG. 5 is a cross-sectional view showing a state in which a pin is broken in the glass forming mold of FIG. 6 to 9 are perspective views showing other examples of a molding die for glass molding.
 本実施の形態のガラス成形装置1は、珪素化合物を原料として製造される合成石英ガラスのインゴットから半導体用マスクなどのフォトマスク基板や液晶用マスク、光学用の大型レンズ材料などを所望の形状に加熱成形させる装置である。 The glass forming apparatus 1 of the present embodiment forms a photomask substrate such as a semiconductor mask, a liquid crystal mask, an optical large lens material, or the like into a desired shape from a synthetic quartz glass ingot manufactured using a silicon compound as a raw material. It is an apparatus for heat forming.
 このガラス成形装置1は、図1に示すように、金属製の真空チャンバ2の内壁に、全面にわたって設けられた断熱材3と、当該断熱材3の壁に配設されたカーボンヒータ(加熱手段)5を有する。真空チャンバ2内部の中央部には、カーボングラファイト製のガラス成形用の成形型10(以下、成形型10というものとする)が設置され、その上部にはシリンダ(加圧手段)4を有している。 As shown in FIG. 1, the glass forming apparatus 1 includes a heat insulating material 3 provided over the entire inner wall of a metal vacuum chamber 2, and a carbon heater (heating means) provided on the wall of the heat insulating material 3. ) 5. A glass graphite mold 10 (hereinafter referred to as a mold 10) made of carbon graphite is installed in the center of the vacuum chamber 2, and a cylinder (pressurizing means) 4 is provided on the upper part thereof. ing.
 成形型10は、ガラス成形装置1の真空チャンバ2内部で台座6の上に配置されており、図2~5に示すように、台板14及び底板17を備えた底部を有している。この台板14及び底板17を含めた成形型10(モールド本体)は、前記したようにカーボングラファイト製であり、ガラスインゴット20Aよりも線膨張係数が大きい材質となっている。具体的には、合成石英ガラスの線膨張係数は5×10-7/℃程度、カーボングラファイトの線膨張係数は2~5×10-6/℃程度である。 The forming die 10 is disposed on the pedestal 6 inside the vacuum chamber 2 of the glass forming apparatus 1 and has a bottom portion including a base plate 14 and a bottom plate 17 as shown in FIGS. The mold 10 (mold body) including the base plate 14 and the bottom plate 17 is made of carbon graphite as described above, and is made of a material having a larger linear expansion coefficient than the glass ingot 20A. Specifically, the linear expansion coefficient of synthetic quartz glass is about 5 × 10 −7 / ° C., and the linear expansion coefficient of carbon graphite is about 2 to 5 × 10 −6 / ° C.
 また、成形型10(モールド本体)は、ガラスインゴット20Aを収容する中空部19を有しており、当該中空部19を、台板14及び底板17と、その上に配設された側板11と、この側板11同士の内側を上下動可能にされた天板13とで囲むように構成されている。詳述すると、成形型10(モールド本体)には、台板14に対して相対移動可能に形成された側板11(可動部材)が設置されている。この側板11とボルト等で固定された側板ガイド12が、成形対象であるガラスインゴット20Aを直接プレスする天板13の自由(移動)を上下方向に制限する。なお、本実施の形態では、図2に示すように、台板14にはレール18が設けられており、このレール18に側板11が乗っている。台板14に対して、このレール18の方向(すなわち、側板11の外側方向)に、側板11が移動可能となっている。 Moreover, the shaping | molding die 10 (mold main body) has the hollow part 19 which accommodates glass ingot 20A, The said hollow part 19 is the baseplate 14 and the baseplate 17, and the side plate 11 arrange | positioned on it. The inner sides of the side plates 11 are surrounded by a top plate 13 that can move up and down. More specifically, the mold 10 (mold body) is provided with a side plate 11 (movable member) formed to be movable relative to the base plate 14. This side plate 11 and the side plate guide 12 fixed with bolts or the like limit the freedom (movement) of the top plate 13 that directly presses the glass ingot 20A to be formed in the vertical direction. In the present embodiment, as shown in FIG. 2, a rail 18 is provided on the base plate 14, and the side plate 11 is on the rail 18. The side plate 11 is movable with respect to the base plate 14 in the direction of the rail 18 (that is, the outer direction of the side plate 11).
 また、台板14における側板11の外側には、当該側板11に当接するようにピン(支持部材)15が配設されている。そして、このピン15は、側板11を外側から支持しかつ拘束する。特に、本実施の形態では、図2に示すように、台板14に、側板11の外側に当接する位置に沿って、複数の挿入孔16が形成されている。ピン15は、その複数の挿入孔16に挿脱可能なものとなっている。さらに、本実施の形態では、ピン15は、平面視略方形状に配置された成形型10における4つの側板11それぞれに対して、複数本ずつ配置されるようになっている。ここでは、各側板11に2本ずつピン15が配置されている。 Further, on the outside of the side plate 11 in the base plate 14, a pin (support member) 15 is disposed so as to contact the side plate 11. The pin 15 supports and restrains the side plate 11 from the outside. In particular, in the present embodiment, as shown in FIG. 2, a plurality of insertion holes 16 are formed in the base plate 14 along positions that contact the outside of the side plate 11. The pin 15 can be inserted into and removed from the plurality of insertion holes 16. Furthermore, in the present embodiment, a plurality of pins 15 are arranged for each of the four side plates 11 in the mold 10 arranged in a substantially square shape in plan view. Here, two pins 15 are arranged on each side plate 11.
 また、ピン15は、同じ種類のものを複数配置するようになっていても良い。あるいは、ピン15は、必要な強度等に応じて、異なる材質や形、径のものを組み合わせて配置するようになっていても良い。複数の挿入孔16は、その全ての挿入孔16が異なる形や径に対応可能(例えば、孔の径が表面側から段階的に小さくなるような構成になっている等)に構成されていても良い。あるいは、複数の挿入孔16は、挿入可能な形や径が互いに異なるように構成されていても良い。あるいは、それぞれの側板11毎に、配置するピン15の数を変化させるようになっていても良い(すなわち、ある側板11と別の側板11との間でピン15の数が異なってもよい)。 In addition, a plurality of pins 15 of the same type may be arranged. Alternatively, the pins 15 may be arranged by combining different materials, shapes, and diameters according to the required strength and the like. The plurality of insertion holes 16 are configured such that all of the insertion holes 16 can correspond to different shapes and diameters (for example, the diameter of the holes is gradually reduced from the surface side). Also good. Or the some insertion hole 16 may be comprised so that the shape and diameter which can be inserted mutually differ. Alternatively, the number of pins 15 to be arranged may be changed for each side plate 11 (that is, the number of pins 15 may be different between one side plate 11 and another side plate 11). .
 ピン15は、中空部19に収容したガラスインゴット20Aを加熱加圧して変形させる際に、ガラスインゴット20Aから側板11を介して負荷される荷重によって生じる剪断力では破断しない強度を有すると共に、加熱加圧して変形させたガラスインゴット20Bを冷却する際に、成形型10の線膨張係数とガラスインゴット20Aの線膨張係数との差に起因して負荷される荷重によって生じる剪断力により破断する強度を有している。なお、本実施の形態では成形型10を構成する部材の線膨張係数は全て等しいものとする。この場合、台板14の横幅が最も大きいため、冷却時に生じる剪断力の大きさは台板14とガラスインゴット20Aの線膨張係数の差によって実質的に決定される。 When the glass ingot 20A accommodated in the hollow portion 19 is deformed by heating and pressing, the pin 15 has a strength that does not break due to a shearing force generated by a load applied from the glass ingot 20A through the side plate 11, and is heated. When the glass ingot 20B deformed by pressing is cooled, the glass ingot 20B has a strength to break due to a shearing force generated by a load applied due to the difference between the linear expansion coefficient of the mold 10 and the linear expansion coefficient of the glass ingot 20A. is doing. In the present embodiment, the linear expansion coefficients of the members constituting the mold 10 are all equal. In this case, since the lateral width of the base plate 14 is the largest, the magnitude of the shear force generated during cooling is substantially determined by the difference in the linear expansion coefficient between the base plate 14 and the glass ingot 20A.
 すなわち、ピン15は、中空部19に収容したガラスインゴット20Aを加熱加圧して変形させる際に、変形したガラスインゴット20Aから側板11に対して作用する圧力には、破断しないで耐えられる強度を有している。変形させたガラスインゴット20Bが冷却される際に、そのガラスインゴット20Bよりもカーボングラファイト製の成形型10の台板14の方が線膨張係数が大きいことにより、その横方向の縮み量が台板14の方が大きい。その結果、縮み量の小さいガラスインゴット20Bが縮み量の大きい台板14の上に配置された側板11を外側に向かって相対的に押す荷重が発生する。ピン15はこのときの負荷される荷重によって生じる剪断力により折れるような強度を有する。ガラスインゴット20Bの冷却時の成形型10の台板14との線膨張係数の差により荷重が負荷され、該荷重によって生じる剪断力でピン15が折れるようになっている。その結果、当該ガラスや成形型10が破損することを防止できる。 That is, the pin 15 has a strength that can withstand the pressure acting on the side plate 11 from the deformed glass ingot 20A when the glass ingot 20A accommodated in the hollow portion 19 is deformed by heating and pressing. is doing. When the deformed glass ingot 20B is cooled, the base plate 14 of the mold 10 made of carbon graphite has a larger linear expansion coefficient than the glass ingot 20B. 14 is larger. As a result, a load is generated in which the glass ingot 20B having a small shrinkage amount pushes the side plate 11 disposed on the base plate 14 having a large shrinkage amount toward the outside. The pin 15 has such strength that it can be broken by a shearing force generated by the load applied at this time. A load is applied due to the difference in linear expansion coefficient between the glass ingot 20B and the base plate 14 of the mold 10 when the glass ingot 20B is cooled, and the pin 15 is bent by a shearing force generated by the load. As a result, the glass and the mold 10 can be prevented from being damaged.
 また、ガラス成形装置1の上部には、前記したように、天板13を直接プレスするシリンダ(加圧手段)4が設置されている。このシリンダ4により、ガラスインゴット20Aを任意の厚さまで加圧して成形する。 Further, as described above, the cylinder (pressurizing means) 4 for directly pressing the top plate 13 is installed on the upper portion of the glass forming apparatus 1. With this cylinder 4, the glass ingot 20 </ b> A is pressed and molded to an arbitrary thickness.
 次に、この成形型10及び成形型10を備えたガラス成形装置1によるガラス成形方法及びフォトマスク基板の製造方法について説明する。 Next, a glass molding method and a photomask substrate manufacturing method using the mold 10 and the glass molding apparatus 1 including the mold 10 will be described.
 まず、図1及び図3に示すように、ガラス成形装置1における真空チャンバ2内部の台座6の上に、台板14、底板17、側板11、側板ガイド12を組み合わせて配置する。さらに、所定のピン15(ここでは、1つの側板11に対してピン15を2つずつ配置)を台板14に形成された挿入孔16に挿入する。これにより、側板11を外側からピン15で支持した状態にセットされた成形型10を形成する。また、この成形型10に対して、ガラスインゴット20Aを成形型10の中空部19に配置し、その上部に天板13を配置し、さらに天板13の上面にシリンダ4を当接させる。 First, as shown in FIGS. 1 and 3, a base plate 14, a bottom plate 17, a side plate 11, and a side plate guide 12 are arranged in combination on the base 6 inside the vacuum chamber 2 in the glass forming apparatus 1. Further, predetermined pins 15 (here, two pins 15 are arranged for each side plate 11) are inserted into insertion holes 16 formed in the base plate 14. Thereby, the shaping | molding die 10 set in the state which supported the side plate 11 with the pin 15 from the outer side is formed. Further, the glass ingot 20 </ b> A is disposed in the hollow portion 19 of the mold 10 with respect to the mold 10, the top plate 13 is disposed thereon, and the cylinder 4 is brought into contact with the upper surface of the top plate 13.
 次に、前記したようにセットされたガラス成形装置1の真空チャンバ2内部の排気を行った後、真空チャンバ2内部を不活性ガスで充填する。さらに、カーボンヒータ5により成形型10の中空部19内のガラスインゴット20Aを加熱して、結晶化温度以上軟化点以下に昇温する。このとき、ガラスインゴット20Aの内部が均一の温度となるまで一定の温度で保持させても良い。 Next, after evacuating the inside of the vacuum chamber 2 of the glass forming apparatus 1 set as described above, the inside of the vacuum chamber 2 is filled with an inert gas. Further, the glass ingot 20 </ b> A in the hollow portion 19 of the mold 10 is heated by the carbon heater 5, and the temperature is raised to the softening point or higher from the crystallization temperature. At this time, the inside of the glass ingot 20A may be held at a constant temperature until the temperature reaches a uniform temperature.
 所定の温度に到達したら、シリンダ4を作動させて天板13を下方に移動させて、ガラスインゴット20Aを加圧成形していく。なお、この加圧成形開始時点で、成形型10は環境温度に準じた膨張を示している。また、ガラスインゴット20Aの加圧プロセスの進行に伴い、ガラスインゴット20Aは徐々に扁平形状となり、側板11に実質的に隙間なく密着した状態となる。 When the predetermined temperature is reached, the cylinder 4 is operated to move the top plate 13 downward, and the glass ingot 20A is pressure-molded. In addition, at the time of starting the pressure molding, the mold 10 exhibits expansion according to the environmental temperature. Further, as the pressurization process of the glass ingot 20A progresses, the glass ingot 20A gradually becomes a flat shape and is in close contact with the side plate 11 without any gap.
 天板13によりガラスインゴット20Aを加圧していくに連れて、側板11には、ガラスインゴット20Aを介して天板13の押圧力が外周方向(外方向)の応力として作用する。側板11はピン15によって外方向に移動する自由を拘束されているため移動が困難である。この際、ガラスの成形により発生する応力が、ガラスインゴット20A及び側板11を通じてピン15に伝えられる。ここで、前記した応力によりピン15が折れた場合、側板11は拘束が解かれると同時にガラスインゴット20Aから受ける力によって、ガラスインゴット20Aが流動する外周方向へ移動する。その結果、ガラスインゴット20Aが側板11に囲まれたエリア外に流出し、側板11の内側面に倣った形状が得られないこととなる。このため、ピン15は、ガラスの成形により発生する応力に耐え得る強度が必要であり、これを有するように構成されている。 As the glass ingot 20A is pressurized by the top plate 13, the pressing force of the top plate 13 acts on the side plate 11 as a stress in the outer peripheral direction (outward direction) via the glass ingot 20A. The side plate 11 is difficult to move because the freedom to move outward is restricted by the pins 15. At this time, the stress generated by the glass molding is transmitted to the pin 15 through the glass ingot 20 </ b> A and the side plate 11. Here, when the pin 15 is broken by the stress described above, the side plate 11 is moved in the outer circumferential direction in which the glass ingot 20A flows due to the force received from the glass ingot 20A at the same time as the restraint is released. As a result, the glass ingot 20 </ b> A flows out of the area surrounded by the side plate 11, and a shape following the inner side surface of the side plate 11 cannot be obtained. For this reason, the pin 15 needs to be strong enough to withstand the stress generated by the molding of the glass, and is configured to have this.
 次に、図4に示すように、前記した加熱加圧成形によってガラスインゴット20Aを、成形型10の底板17、天板13及び側板11に密着する状態まで加圧して薄板状のガラスインゴット20Bとした後、冷却工程を行う。この冷却に伴い成形型10とガラスインゴット20Bは環境温度に準じた収縮を示す。ここで、成形型10は、ガラスインゴット20Bに比べ線膨張係数が大きい。さらに、成形型10のうち特に台板14は側板11に比べて横方向の大きさが大きい。そのため、台板14の収縮量が側板11に対して相対的に大きくなり冷却に伴う収縮が顕著になる。従って、相対的に見れば、冷却に従ってガラスインゴット20Bが膨張する方向に、すなわち側板11を外周方向(外方向)へ押し出す方向に荷重が発生する。 Next, as shown in FIG. 4, the glass ingot 20 </ b> A is pressed to the state in close contact with the bottom plate 17, the top plate 13, and the side plate 11 of the mold 10 by the above-described heat and pressure molding, Then, a cooling process is performed. With this cooling, the mold 10 and the glass ingot 20B show shrinkage according to the ambient temperature. Here, the mold 10 has a larger linear expansion coefficient than the glass ingot 20B. Further, in particular, the base plate 14 of the mold 10 is larger in the lateral direction than the side plate 11. Therefore, the contraction amount of the base plate 14 becomes relatively large with respect to the side plate 11, and the contraction accompanying cooling becomes remarkable. Accordingly, when viewed relatively, a load is generated in the direction in which the glass ingot 20B expands as it cools, that is, in the direction in which the side plate 11 is pushed outward (outward).
 側板11が受ける荷重は、側板11の外側に設置されているピン15に伝わる。側板11から与えられる収縮によって発生する応力がピン15の強度限界を超えると、図5に示すように、ピン15は外側に向かって破断する。そして、ピン15の破断と共に側板11は拘束が解かれ、同時に側板11はガラスインゴット20Bが流動される外周方向(外方向)へ移動し応力が開放される。このとき、ガラスインゴット20Bは冷却により既に固化しているため、側板11に囲まれたエリア外へ流出することはない。その後、室温程度まで空冷し真空チャンバ2内から成形型10を取り出し、ガラスの成形が完了する。 The load received by the side plate 11 is transmitted to the pins 15 installed outside the side plate 11. When the stress generated by the contraction applied from the side plate 11 exceeds the strength limit of the pin 15, the pin 15 is broken toward the outside as shown in FIG. As the pin 15 is broken, the side plate 11 is released from the restraint, and at the same time, the side plate 11 moves in the outer circumferential direction (outward direction) in which the glass ingot 20B flows to release the stress. At this time, since the glass ingot 20B has already been solidified by cooling, it does not flow out of the area surrounded by the side plates 11. Then, it cools to about room temperature and takes out the shaping | molding die 10 from the inside of the vacuum chamber 2, and shaping | molding of glass is completed.
 その後、前記したようなガラス成形方法を用いて得たガラス成形体に対し、所定のサイズに加工するための研削加工やスライス加工、端面部をR形状にするための面取り加工、研磨剤等を使用して表面を仕上げ加工するための研磨工程等の加工を適宜行う。その結果、所望のフォトマスク基板を得ることができる。 After that, for the glass molded body obtained by using the glass molding method as described above, grinding and slicing for processing into a predetermined size, chamfering for making the end face into an R shape, an abrasive, etc. Processing such as a polishing step for finishing the surface by using is appropriately performed. As a result, a desired photomask substrate can be obtained.
 以上のように、本実施の形態のガラス成形用の成形型10、ガラス成形装置1、ガラス成形方法及びフォトマスク基板の製造方法によれば、成形後の冷却によって生じる応力により破断するピン(支持部材)15を設置することで、成形対象であるガラスに過剰な応力を加えることなく、また、成形対象であるガラスを破損させることなく応力を開放することができ、また、成形対象であるガラスと成形型10の台板14との線膨張係数差によって生じる応力による成形型10への負荷を最小限に抑えることができ、ガラスを所望の形状に成形できる。 As described above, according to the molding die 10 for glass molding, the glass molding apparatus 1, the glass molding method, and the photomask substrate manufacturing method of the present embodiment, the pin (support) that is broken by the stress generated by cooling after molding. By installing the member 15, the stress can be released without applying excessive stress to the glass to be molded and without damaging the glass to be molded, and the glass to be molded And the load on the mold 10 due to the stress caused by the difference in linear expansion coefficient between the base plate 14 of the mold 10 and the glass can be molded into a desired shape.
 また、本実施の形態では、支持部材としてピン15(ピン状部材、棒状部材)を使用し、このピン15を、台板14に複数形成された挿入孔16に挿脱可能としている。そのため、配置するピン15の数や種類を変えれば簡単にその強度を変えることができる。例えば、本実施の形態では、1つの側板に対して同じ種類のピン15を2つずつ配置している。配置するピンの数を増やせば、ピン全体としての強度を上げることができる(逆に配置するピンの数を減らせば、ピン全体としての強度を下げることができる)。また、複数のピンを配置する際、径の太いもののみを複数使用したり、径の細いもののみを複数使用したり、径の太いものと細いものを混在させて使用したり、さらには径や形の異なる複数種類のものを混在させたりすることで、その強度を変化させることができる。なお、複数のピンを配置する際には、荷重がそれぞれのピンに均等に掛かるように、側板に対して略一列で当接するように配置しても良い。また、複数のピンは、荷重がそれぞれのピンに均等に掛かるように、できるだけ等間隔に配置しても良い。追加的及び/又は代替的に、ピンを非一列配置、又は非等間隔配置にできる。 Further, in the present embodiment, a pin 15 (pin-like member, rod-like member) is used as a support member, and the pin 15 can be inserted into and removed from a plurality of insertion holes 16 formed in the base plate 14. Therefore, the strength can be easily changed by changing the number and types of pins 15 to be arranged. For example, in the present embodiment, two pins 15 of the same type are arranged on each side plate. If the number of pins to be arranged is increased, the strength as a whole pin can be increased (in contrast, if the number of pins to be arranged is reduced, the strength as a whole pin can be lowered). In addition, when placing multiple pins, use only one with a large diameter, use only a plurality with a small diameter, or use a mixture of one with a large diameter and one with a small diameter. The strength can be changed by mixing a plurality of types with different shapes. In addition, when arrange | positioning a some pin, you may arrange | position so that a load may be applied to each pin equally and it may contact | abut with a side plate in a substantially line. Moreover, you may arrange | position a several pin at equal intervals as much as possible so that a load may be applied equally to each pin. Additionally and / or alternatively, the pins can be non-aligned or non-equally spaced.
 また、前記したように本実施の形態では、支持部材として、台板14に形成された挿入孔16に挿脱可能としたピン15を使用している。そのため、ピン15が折れた後の処理を簡単にすることができる。例えば、ガラスの成形後、折れたピン15を挿入孔16から抜き、新しいピン15を挿入孔16に挿入し直すだけで良い。そのため、ガラス及びフォトマスク基板の製造効率を向上できる。 Further, as described above, in the present embodiment, the pin 15 that can be inserted into and removed from the insertion hole 16 formed in the base plate 14 is used as the support member. Therefore, the processing after the pin 15 is broken can be simplified. For example, it is only necessary to remove the broken pin 15 from the insertion hole 16 and reinsert the new pin 15 into the insertion hole 16 after the glass is formed. Therefore, the manufacturing efficiency of glass and a photomask substrate can be improved.
 なお、ピンの強度を決定する際は、例えば、予め力学シミュレーションによって側板にかかる荷重及びピンに生じる剪断力を求め、成形時の荷重によって生じる剪断力では破断せず、冷却時の荷重によって生じる剪断力で破断するようにピンの強度を決定できる。このようにしてピンに必要な強度を決定すれば、あらかじめ強度を測定しておいた種々のピンの内から必要な強度を有するものを選択して使用できる。 When determining the strength of the pin, for example, the load applied to the side plate and the shear force generated on the pin are obtained in advance by dynamic simulation, and the shear force generated by the load during cooling does not break with the shear force generated by the load during molding. The strength of the pin can be determined so as to break with force. If the strength required for the pin is determined in this way, a pin having the required strength can be selected from various pins whose strength has been measured in advance.
 なお、以上説明した実施の形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。 The embodiment described above is described for easy understanding of the present invention, and is not described for limiting the present invention.
 例えば、前記した実施の形態では、成形するガラスとして石英ガラスを例に挙げ、成形型の材質としてカーボン(カーボングラファイト)を例に挙げて説明したが、本発明は、これに限るものではない。例えば、成形する他のガラスとしては、ホウケイ酸ガラスやソーダ石灰ガラスなどが挙げられる。成形型の材質としては、アルミナ(酸化アルミニウム)等の高温で使用可能な他の材質であっても良い。 For example, in the above-described embodiment, quartz glass is taken as an example of the glass to be molded and carbon (carbon graphite) is taken as an example of the material of the mold, but the present invention is not limited to this. For example, borosilicate glass, soda lime glass, etc. are mentioned as other glass to shape | mold. The material of the mold may be another material that can be used at a high temperature such as alumina (aluminum oxide).
 ここで、ガラスと成形型の材質を選択するに当たっては、ガラスの組成や成形条件等を考慮して決定すれば良い。ガラスの線膨張係数が、成形型(特には台板)の材質の線膨張係数よりも相対的に小さいもの(支持部材が破断して本発明の成形型の機能が発揮される条件)である組み合わせとなっていれば本実施の形態の効果を得ることができる。但し、成形型(モールド本体)の材質としては、アルミナよりカーボンの方が強度、耐熱衝撃性が優れているため、カーボンの使用が好ましい場合が多い。 Here, when selecting the material of the glass and the mold, it may be determined in consideration of the glass composition and molding conditions. The linear expansion coefficient of the glass is relatively smaller than the linear expansion coefficient of the material of the mold (particularly the base plate) (conditions in which the support member breaks and the function of the mold of the present invention is exhibited). If it is a combination, the effect of the present embodiment can be obtained. However, as the material of the mold (mold body), carbon is often preferable because carbon is superior in strength and thermal shock resistance to alumina.
 また、本実施の形態では、ピン15の材料としてカーボングラファイトを用いている。ピン15の材料として、カーボングラファイト以外の材料を用いても良く、例えば、アルミナ(酸化アルミニウム)等の高温でも使用できる材料を用いても良い。 In this embodiment, carbon graphite is used as the material of the pin 15. As the material of the pin 15, a material other than carbon graphite may be used. For example, a material that can be used at a high temperature such as alumina (aluminum oxide) may be used.
 また、前記した実施の形態では、支持部材としてピン15(ピン状部材、棒状部材)を使用していたが、本発明はこれに限るものではない。必要な強度を有していて所定の荷重で破断する構成の部材であれば、ピン15以外のものを使用しても良い。ピン15以外の支持部材としては、例えば、図6に示すような、長板状部材115aの下方に、台板114に複数形成された挿入孔116に挿脱可能な複数の挿入部材115bが形成された挿入部材付長板状部材115が挙げられる。この挿入部材付長板状部材115を用いた成形型では、側板111に当接する長板状部材115aが冷却時に外周方向(外方向)に押圧されることで、当該長板状部材115aと挿入部材115bの間の部分が破断可能である。 In the above-described embodiment, the pin 15 (pin-like member, rod-like member) is used as the support member, but the present invention is not limited to this. A member other than the pin 15 may be used as long as the member has a necessary strength and can be broken by a predetermined load. As the support member other than the pin 15, for example, a plurality of insertion members 115b that can be inserted into and removed from the insertion holes 116 formed in the base plate 114 are formed below the long plate member 115a as shown in FIG. The long plate-like member 115 with an insertion member is mentioned. In the mold using the long plate-like member 115 with the insertion member, the long plate-like member 115a contacting the side plate 111 is pressed in the outer peripheral direction (outward) during cooling, so that the long plate-like member 115a is inserted. The portion between the members 115b can be broken.
 また、ピン15以外の他の支持部材としては、図7に示す形態が挙げられる。図7において、挿入孔16の代わりに、台板214における側板211に沿った位置に溝216が形成されており、この溝216に挿脱可能な薄板状部材215が支持部材として用いられる。この薄板状部材215を用いた成形型では、薄板状部材215の一部(当接部)が側板211に当接していて、これが冷却時に外周方向(外方向)に押圧される。また、薄板状部材215の別の一部(挿入部)が溝216に挿入されて実質的に固定される。その結果、薄板状部材215の当接部と挿入部との間の部分が破断可能である。 Further, as a support member other than the pin 15, a form shown in FIG. In FIG. 7, a groove 216 is formed at a position along the side plate 211 in the base plate 214 instead of the insertion hole 16, and a thin plate member 215 that can be inserted into and removed from the groove 216 is used as a support member. In the mold using the thin plate member 215, a part (contact portion) of the thin plate member 215 is in contact with the side plate 211, and this is pressed in the outer peripheral direction (outward direction) during cooling. Further, another part (insertion portion) of the thin plate member 215 is inserted into the groove 216 and substantially fixed. As a result, the portion between the contact portion and the insertion portion of the thin plate member 215 can be broken.
 また、ピン15以外の他の支持部材としては、図8に示す形態が挙げられる。図8において、略L字状部材315が支持部材とされる。一例において、略L字状部材315のL字の底辺部分315bがその長手方向を外周方向(外方向)として台板314に固定される。例えば、台板314にこの底辺部分315bを固定する凹み316が形成されている。また、L字の上部分315aに側板311が当接している。換言すると、一例において、略L字状部材315は、台板314に設けられた凹み316に挿入されて台板314に実質的に固定される底辺部分315bと、底辺部分315bの一端を基部として底辺部分315bの延在方向と直交する方向に延在する上部分315aとを有し、上部分315aの一面が側板311に当接される。この略L字状部材315を用いた成形型では、冷却時に当該略L字状部材315の上部分315aを側板311が押圧することで、L字の上部分315aと底辺部分315bとの間の部分が破断可能である。 Moreover, as a support member other than the pin 15, the form shown in FIG. 8 is mentioned. In FIG. 8, a substantially L-shaped member 315 is a support member. In one example, the L-shaped bottom portion 315b of the substantially L-shaped member 315 is fixed to the base plate 314 with its longitudinal direction as the outer peripheral direction (outward direction). For example, a recess 316 for fixing the bottom portion 315b is formed in the base plate 314. Further, the side plate 311 is in contact with the L-shaped upper portion 315a. In other words, in one example, the substantially L-shaped member 315 is inserted into a recess 316 provided in the base plate 314 and substantially fixed to the base plate 314, and one end of the base portion 315b is used as a base. An upper portion 315a extending in a direction orthogonal to the extending direction of the bottom portion 315b, and one surface of the upper portion 315a is in contact with the side plate 311. In the mold using the substantially L-shaped member 315, the side plate 311 presses the upper portion 315a of the substantially L-shaped member 315 during cooling, so that the space between the L-shaped upper portion 315a and the bottom portion 315b is reduced. The part can be broken.
 また、ピン15以外の他の支持部材としては、図9に示す形態が挙げられる。図9において、略L字状長板状部材415を支持部材とし、当該略L字状棒状部材415のL字の底辺部分415bが台板414に固定されている。例えば、台板414にこの底辺部分415bを固定する凹み416が形成されている。また、L字の上部分415aに側板411が当接している。換言すると、一例において、略L字状長板状部材415は、台板414に設けられた凹み416に挿入されて台板414に実質的に固定される底辺部分415bを有する。底辺部分415bは、側板411に沿って延在する長辺を有する。また、略L字状長板状部材415は、底辺部分415bの1つの長辺を基部として延在する上部分415aを有し、上部分415aの一面が側板411に当接される。底辺部分415bと上部分415aとの間の角度は例えば90°である。この略L字状長板状部材415を用いた成形型では、冷却時に当該略L字状長板状部材415の上部分415aを側板411が押圧することで、上部分415aと底辺部分415bとの間の部分が破断可能である。 Further, as a support member other than the pin 15, a form shown in FIG. In FIG. 9, a substantially L-shaped long plate-like member 415 is used as a support member, and an L-shaped bottom portion 415 b of the substantially L-shaped rod-like member 415 is fixed to the base plate 414. For example, a recess 416 for fixing the bottom portion 415b is formed in the base plate 414. The side plate 411 is in contact with the upper portion 415a of the L shape. In other words, in one example, the substantially L-shaped long plate-like member 415 has a bottom portion 415 b that is inserted into a recess 416 provided in the base plate 414 and substantially fixed to the base plate 414. The bottom side portion 415 b has a long side extending along the side plate 411. The substantially L-shaped long plate-like member 415 has an upper portion 415 a extending with one long side of the bottom portion 415 b as a base, and one surface of the upper portion 415 a is in contact with the side plate 411. The angle between the bottom portion 415b and the upper portion 415a is, for example, 90 °. In the mold using the substantially L-shaped long plate-like member 415, when the side plate 411 presses the upper portion 415a of the substantially L-shaped long plate-like member 415 during cooling, the upper portion 415a, the bottom portion 415b, The part in between can be broken.
 なお、本実施の形態では、結晶化温度以上軟化点温度以下の温度でガラスインゴット20Aを成形する例について説明したがこれに限定されない。成形温度は、ガラスインゴット20Aの結晶化温度以上であればよい。例えば、ガラスインゴット20Aの軟化点より高い温度で成形しても良い。 In the present embodiment, the example in which the glass ingot 20A is formed at a temperature not lower than the crystallization temperature and not higher than the softening point temperature has been described. However, the present invention is not limited to this. The molding temperature may be equal to or higher than the crystallization temperature of the glass ingot 20A. For example, you may shape | mold at temperature higher than the softening point of glass ingot 20A.
 1 ガラス成形装置
 2 真空チャンバ
 3 断熱材
 4 シリンダ(加圧手段)
 5 カーボンヒータ(加熱手段)
 6 台座
 10 ガラス成形用の成形型
 11,111,211,311,411 側板
 12 側板ガイド
 13 天板
 14,114,214,314,414 台板
 15 ピン(支持部材)
 115 挿入部材付長板状部材(支持部材)
 215 薄板状部材(支持部材)
 315 略L字状棒状部材(支持部材)
 415 略L字状長板部材(支持部材)
 16,116 挿入孔
 216 溝
 316,416 凹み
 17 底板
 18 レール
 20A,20B ガラスインゴット
DESCRIPTION OF SYMBOLS 1 Glass forming apparatus 2 Vacuum chamber 3 Heat insulating material 4 Cylinder (pressurizing means)
5 Carbon heater (heating means)
6 Pedestal 10 Mold for glass molding 11, 111, 211, 311, 411 Side plate 12 Side plate guide 13 Top plate 14, 114, 214, 314, 414 Base plate 15 Pin (support member)
115 Long plate member with support member (support member)
215 Thin plate member (support member)
315 substantially L-shaped rod-shaped member (supporting member)
415 substantially L-shaped long plate member (support member)
16, 116 Insertion hole 216 Groove 316, 416 Recess 17 Bottom plate 18 Rail 20A, 20B Glass ingot

Claims (12)

  1.  ガラスの加熱加圧成形に用いられるモールド本体と、
     前記モールド本体における可動部材に当接可能に配置され、前記モールド本体と前記ガラスとの間の線膨張係数の差に基づく応力を開放するために破断可能な支持部材と、
     を備えるガラス成形用の成形型。
    A mold body used for glass heating and pressing,
    A support member that is disposed so as to be able to contact a movable member in the mold body, and is breakable to release stress based on a difference in linear expansion coefficient between the mold body and the glass;
    A mold for forming glass.
  2.  前記モールド本体は、前記支持部材の一部を挿入可能な複数の孔及び/又は複数の溝を有する、請求項1に記載のガラス成形用の成形型。 2. The mold for glass molding according to claim 1, wherein the mold body has a plurality of holes and / or a plurality of grooves into which a part of the support member can be inserted.
  3.  前記支持部材は、加熱加圧工程で前記可動部材を介して負荷される荷重によって生じる剪断力では破断しない強度を有すると共に、冷却工程で前記モールド本体と前記ガラスとの間の線膨張係数の差に起因して負荷される荷重によって生じる剪断力により破断する強度を有する、請求項1又は2に記載のガラス成形用の成形型。 The support member has a strength that is not broken by a shearing force generated by a load applied through the movable member in the heating and pressurizing step, and a difference in linear expansion coefficient between the mold body and the glass in the cooling step. The mold for glass molding according to claim 1 or 2, which has a strength to be broken by a shearing force generated by a load applied due to.
  4.  前記支持部材の材質は、カーボンを含む、請求項1乃至3の何れか一つに記載のガラス成形用の成形型。 The glass mold according to any one of claims 1 to 3, wherein a material of the support member includes carbon.
  5.  前記モールド本体は、
      台板と、
      上下動可能である天板と、
      前記台板上に配置され、前記台板に対して相対移動可能である、前記可動部材としての側板と、
     を有する、請求項1乃至4の何れか一つに記載のガラス成形用の成形型。
    The mold body is
    A base plate,
    A top plate that can move up and down;
    A side plate as the movable member, which is disposed on the base plate and is relatively movable with respect to the base plate;
    The molding die for glass molding according to any one of claims 1 to 4, comprising:
  6.  ガラスインゴットを収容する中空部を有し、当該中空部を、台板と、その上に配設された側板と、該側板同士の内側を上下動可能にされた天板とで囲むように構成されたガラス成形用の成形型であって、
     前記台板には、前記側板の外側に当接するように支持部材が配設されていて、前記側板は、前記台板に対して、その外側方向に相対移動可能に形成されていると共に、前記支持部材により前記側板の外側から支持されており、
     前記支持部材は、
     前記中空部に収容したガラスインゴットを加熱加圧して変形させる際に、前記ガラスインゴットから前記側板を介して負荷される荷重によって生じる剪断力では破断しない強度を有すると共に、
     加熱加圧して変形させた前記ガラスインゴットを冷却する際に、前記成形型と前記ガラスインゴットとの線膨張係数の差に起因して負荷される荷重によって生じる剪断力により破断する強度を有することを特徴とするガラス成形用の成形型。
    It has a hollow portion that accommodates a glass ingot, and is configured to surround the hollow portion with a base plate, a side plate disposed thereon, and a top plate that can move up and down between the side plates. A mold for glass molding,
    A support member is disposed on the base plate so as to contact the outside of the side plate, and the side plate is formed to be movable relative to the base plate in the outer direction, and Supported from the outside of the side plate by a support member;
    The support member is
    When the glass ingot accommodated in the hollow portion is heated and pressed to be deformed, the glass ingot has a strength that does not break with a shearing force generated by a load applied via the side plate from the glass ingot,
    When the glass ingot deformed by heating and pressing is cooled, the glass ingot has a strength to be broken by a shearing force generated by a load applied due to a difference in linear expansion coefficient between the mold and the glass ingot. Characteristic mold for glass molding.
  7.  前記台板には、前記側板の外側に当接する位置に沿って、複数の挿入孔が形成されており、
     前記支持部材は、前記複数の挿入孔に挿脱可能なピンで構成されていることを特徴とする請求項6に記載のガラス成形用の成形型。
    A plurality of insertion holes are formed in the base plate along a position where it contacts the outside of the side plate,
    The said support member is comprised with the pin which can be inserted or removed by these insertion holes, The shaping | molding die for glass forming of Claim 6 characterized by the above-mentioned.
  8.  前記ガラスインゴットは、石英ガラスであることを特徴とする請求項6又は7に記載のガラス成形用の成形型。 The mold for glass molding according to claim 6 or 7, wherein the glass ingot is quartz glass.
  9.  前記成形型は、カーボンで構成されていることを特徴とする請求項6乃至8の何れか一つに記載のガラス成形用の成形型。 The glass mold according to any one of claims 6 to 8, wherein the mold is made of carbon.
  10.  請求項1乃至9の何れか一つに記載のガラス成形用の成形型と、
     ガラスインゴットの加熱手段及び加圧手段とを有することを特徴とするガラス成形装置。
    A mold for glass molding according to any one of claims 1 to 9,
    A glass forming apparatus comprising a heating means and a pressurizing means for a glass ingot.
  11.  請求項10に記載のガラス成形装置を用いたガラス成形方法であって、
     成形型にガラスインゴットを収容し、
     加熱手段及び加圧手段により前記ガラスインゴットを加熱加圧して変形させ、
     変形させた前記ガラスインゴットを冷却する際、前記成形型と前記ガラスインゴットとの線膨張係数の差に起因して負荷される荷重によって、前記台板に対して側板がその外側方向に相対移動し、これにより支持部材に剪断力が作用し、この剪断力に応じて、前記支持部材を破断させることを特徴とするガラス成形方法。
    A glass forming method using the glass forming apparatus according to claim 10,
    A glass ingot is accommodated in the mold,
    The glass ingot is heated and pressurized to be deformed by a heating means and a pressure means,
    When cooling the deformed glass ingot, the side plate moves relative to the base plate in the outer direction due to a load applied due to a difference in linear expansion coefficient between the mold and the glass ingot. Thus, a shearing force acts on the supporting member, and the supporting member is broken according to the shearing force.
  12.  請求項11に記載のガラス成形方法を用いてガラス成形体を得る工程を有していることを特徴とするフォトマスク基板の製造方法。 A method for producing a photomask substrate, comprising a step of obtaining a glass molded body using the glass molding method according to claim 11.
PCT/JP2011/070961 2010-09-21 2011-09-14 Glass forming mold, glass forming device, glass forming method, and method for manufacturing photomask substrate WO2012039331A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012535009A JP5812005B2 (en) 2010-09-21 2011-09-14 Mold for glass molding, glass molding apparatus, glass molding method, and photomask substrate manufacturing method
KR1020137002687A KR101865977B1 (en) 2010-09-21 2011-09-14 Glass forming mold, glass forming device, glass forming method, and method for manufacturing photomask substrate
CN201180032870.1A CN102958854B (en) 2010-09-21 2011-09-14 Glass forming mold, glass forming device, glass forming method, and method for manufacturing photomask substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-210686 2010-09-21
JP2010210686 2010-09-21

Publications (1)

Publication Number Publication Date
WO2012039331A1 true WO2012039331A1 (en) 2012-03-29

Family

ID=45873819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070961 WO2012039331A1 (en) 2010-09-21 2011-09-14 Glass forming mold, glass forming device, glass forming method, and method for manufacturing photomask substrate

Country Status (5)

Country Link
JP (1) JP5812005B2 (en)
KR (1) KR101865977B1 (en)
CN (1) CN102958854B (en)
TW (1) TWI498289B (en)
WO (1) WO2012039331A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012250867A (en) * 2011-06-01 2012-12-20 Asahi Glass Co Ltd Method for molding quartz glass
US9027365B2 (en) 2013-01-08 2015-05-12 Heraeus Quartz America Llc System and method for forming fused quartz glass
JP2016153878A (en) * 2015-02-12 2016-08-25 パナソニックIpマネジメント株式会社 Light source device and projection-type display device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101804394B1 (en) * 2017-01-09 2017-12-04 한동희 Glass foaming apparatus
CN109020165B (en) * 2018-08-01 2021-09-10 浙江千玉装饰科技股份有限公司 Production process of colored glaze
JP7294887B2 (en) * 2019-05-30 2023-06-20 矢崎エナジーシステム株式会社 Flat glass manufacturing method
CN112208119A (en) * 2020-08-14 2021-01-12 中国人民解放军总参谋部第六十研究所 Thermal deformation self-adaptive forming die for helicopter blade and using method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08208250A (en) * 1994-10-27 1996-08-13 Shinetsu Quartz Prod Co Ltd Molds for producing quartz glass moldings
JP2002053332A (en) * 2000-08-10 2002-02-19 Nikon Corp Method and device for molding synthetic quartz glass
JP2006001821A (en) * 2004-06-21 2006-01-05 Nikon Corp Apparatus and method of forming quartz glass

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002053330A (en) * 2000-08-10 2002-02-19 Nikon Corp Method for molding synthetic quartz glass and synthetic quartz glass
KR100507676B1 (en) * 2003-02-28 2005-08-09 주식회사 새빛 An aparatus for manufacturing quartz glass
TW200502183A (en) * 2003-04-07 2005-01-16 Nikon Corp Molding apparatus and method of quartz glass
JP4281397B2 (en) 2003-04-07 2009-06-17 株式会社ニコン Quartz glass molding equipment
JP4835998B2 (en) * 2004-07-02 2011-12-14 株式会社ニコン Method of forming quartz glass
JP5064238B2 (en) * 2006-01-30 2012-10-31 東芝機械株式会社 Mold for glass element molding
JP2008001568A (en) * 2006-06-23 2008-01-10 Fujinon Corp Glass molding apparatus and glass molding method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08208250A (en) * 1994-10-27 1996-08-13 Shinetsu Quartz Prod Co Ltd Molds for producing quartz glass moldings
JP2002053332A (en) * 2000-08-10 2002-02-19 Nikon Corp Method and device for molding synthetic quartz glass
JP2006001821A (en) * 2004-06-21 2006-01-05 Nikon Corp Apparatus and method of forming quartz glass

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012250867A (en) * 2011-06-01 2012-12-20 Asahi Glass Co Ltd Method for molding quartz glass
US9027365B2 (en) 2013-01-08 2015-05-12 Heraeus Quartz America Llc System and method for forming fused quartz glass
JP2016153878A (en) * 2015-02-12 2016-08-25 パナソニックIpマネジメント株式会社 Light source device and projection-type display device

Also Published As

Publication number Publication date
JP5812005B2 (en) 2015-11-11
CN102958854A (en) 2013-03-06
TWI498289B (en) 2015-09-01
CN102958854B (en) 2015-03-25
KR101865977B1 (en) 2018-06-08
KR20130112029A (en) 2013-10-11
TW201217279A (en) 2012-05-01
JPWO2012039331A1 (en) 2014-02-03

Similar Documents

Publication Publication Date Title
JP5812005B2 (en) Mold for glass molding, glass molding apparatus, glass molding method, and photomask substrate manufacturing method
US10252930B2 (en) Bent glass plate for optical use and fabrication method thereof
JP7511108B2 (en) 3D cover glass and its molding die
KR20150082253A (en) Method for manufacturing cover glass for display and device for manufacturing cover glass for display
TWI557082B (en) Plate glass forming method and forming mold
KR20150082252A (en) Method for manufacturing cover glass for display and device for manufacturing cover glass for display
WO2016067829A1 (en) Curved plate glass molding method
KR20170103739A (en) Glass plate and manufacturing method therefor
JP4419701B2 (en) Quartz glass molding equipment
JP2004307265A (en) Molding apparatus for quartz glass
JP5292994B2 (en) Method and apparatus for forming quartz glass
JP4409985B2 (en) Press molding apparatus, press molding method and molded product
JP6603598B2 (en) Mold and press molding method
JP2011236101A (en) Mold for forming cylindrical quartz glass and forming method using the same
JP6622545B2 (en) Glass forming apparatus and glass forming method
JP5121610B2 (en) Optical element molding method and optical element molding material
JP7128173B2 (en) Thermoforming jig and thermoforming apparatus using the same
JP2006256922A (en) Annealing apparatus and annealing method for glass substrate
JP6329879B2 (en) Quartz glass molding method
JP2013129547A (en) Method for molding microlens array
JP6162623B2 (en) Weight stone, quartz glass molding apparatus and quartz glass molding method
JP2014108912A (en) Mold material, and production method of quartz glass molding using mold material
JP2023035956A (en) Glass molding and production method thereof
JP2010214624A (en) Method for manufacturing cavity insert for transfer mold, cavity insert for transfer mold, and cavity insert member for transfer mold used for them
JP2022102669A (en) Heat molding jig, heat molding device and heat molding method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180032870.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11826777

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012535009

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20137002687

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11826777

Country of ref document: EP

Kind code of ref document: A1