[go: up one dir, main page]

WO2012036443A2 - 이핵 메탈로센 화합물 및 이를 이용한 폴리올레핀의 제조방법 - Google Patents

이핵 메탈로센 화합물 및 이를 이용한 폴리올레핀의 제조방법 Download PDF

Info

Publication number
WO2012036443A2
WO2012036443A2 PCT/KR2011/006747 KR2011006747W WO2012036443A2 WO 2012036443 A2 WO2012036443 A2 WO 2012036443A2 KR 2011006747 W KR2011006747 W KR 2011006747W WO 2012036443 A2 WO2012036443 A2 WO 2012036443A2
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
formula
same
group
different
Prior art date
Application number
PCT/KR2011/006747
Other languages
English (en)
French (fr)
Other versions
WO2012036443A3 (ko
Inventor
임경찬
이기수
권헌용
조민석
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Publication of WO2012036443A2 publication Critical patent/WO2012036443A2/ko
Publication of WO2012036443A3 publication Critical patent/WO2012036443A3/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/639Component covered by group C08F4/62 containing a transition metal-carbon bond
    • C08F4/6392Component covered by group C08F4/62 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2410/00Features related to the catalyst preparation, the catalyst use or to the deactivation of the catalyst
    • C08F2410/03Multinuclear procatalyst, i.e. containing two or more metals, being different or not
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound

Definitions

  • the present invention relates to a method for producing a binuclear metallocene compound and polyolefin using the same.
  • the Ziegler-Natta catalyst which is widely applied to existing commercial processes, is characterized by a wide molecular weight distribution of the produced polymer because it is a multi-site catalyst, and the composition of the comonomer is not uniform, thereby limiting the desired physical properties.
  • Metallocene catalysts are single-site catalysts with one type of active site, which have a narrow molecular weight distribution of polymers and greatly control the molecular weight, stereoregularity, crystallinity, and especially the reactivity of comonomers depending on the structure of the catalyst and ligand.
  • the polyolefin polymerized with a metallocene catalyst has a narrow molecular weight distribution, and thus, when used in some products, there is a problem in that the application of the polyolefin polymerized by the extrusion load or the like decreases productivity significantly. Has been trying a lot.
  • a method for preparing a polymerization catalyst is described by supporting two different transition metal catalysts on one supported catalyst. It forms a bimodal distribution polymer by supporting a titanium (Ti) -based Ziegler-Natta catalyst that generates high molecular weight and a zirconium (Zr) -based metallocene catalyst that produces low molecular weight on one support.
  • Ti titanium
  • Zr zirconium
  • Korean Patent Application No. 2003 ⁇ 12308 discloses a method for controlling molecular weight distribution by supporting a dual-nuclear metallocene catalyst and a mononuclear metallocene catalyst on a carrier together with an activator to polymerize by changing the combination of catalysts in the reactor. Is starting.
  • this method has a limitation in realizing the characteristics of each catalyst at the same time, and also has a disadvantage in that the metallocene catalyst portion of the finished catalyst is released and causes fouling during the reaction. .
  • the present invention provides a ligand compound having a novel structure capable of providing various selectivity and activity to a copolymer, a nuclear metallocene compound using the same, and a method for producing the same.
  • the present invention is to provide a method for preparing polyolefin using the dinuclear metallocene compound.
  • the present invention provides a compound represented by Formula 1:
  • Cp and Cp ' are the same as or different from each other, and are each independently selected from the group consisting of cyclopentadienyl, indenyl, 4, 5, 6, 7-tetrahydro-1'indenyl and fluorenyl radicals One, they may be substituted with a hydrocarbon having 1 to 20 carbon atoms;
  • R is the same as or different from each other, and each independently hydrogen, alkyl having 1 to 20 carbon atoms, cycloalkyl having 3 to 20 carbon atoms alkoxy, aryl having 6 to 20 carbon atoms, aryloxy having 6 to 10 carbon atoms, Alkenyl having 2 to 20 carbon atoms, alkylaryl having 7 to 40 carbon atoms, and arylalkyl having 7 to 40 carbon atoms; Aryl alkenyl having 8 to 40 carbon atoms; Or alkynyl having 2 to 10 carbon atoms;
  • Ri and R 2 are the same as or different from each other, and each independently hydrogen, ' alkyl or halogen having 1 to 20 carbon atoms;
  • n and m are each an integer of 1-4.
  • the present invention also provides a dinuclear metallocene compound represented by Formula 5:
  • M are the same as or different from each other, and each independently a Group 4 transition metal
  • Cp and Cp 1 are the same as or different from each other, and are each independently selected from the group consisting of cyclopentadienyl, indenyl, 4, 5, 6, gtetrahydro-1-indenyl and fluorenyl Either functional group, which may be substituted with a hydrocarbon having 1 to 20 carbon atoms;
  • R is the same as or different from each other, and each independently hydrogen, alkyl having 1 to 20 carbon atoms, cycloalkyl having 3 to 20 carbon atoms, alkoxy having 1 to 10 carbon atoms, aryl having 6 to 20 carbon atoms, and aryl having 6 to 10 carbon atoms Oxy, alkenyl having 2 to 20 carbon atoms, alkylaryl having 7 to 40 carbon atoms, arylalkyl having 8 to 40 carbon atoms; Arylalkenyl having 8 to 40 carbon atoms; Or alkynyl having 2 to 10 carbon atoms;
  • Ri and R 2 are the same as or different from each other, and are each independently hydrogen, alkyl having 1 to 20 carbon atoms, or halogen;
  • Q is the same as or different from each other, and each independently a halogen atom; Alkyl having 1 to 20 carbon atoms; Alkenyl having 2 to 10 carbon atoms; Alkyl aryl having 7 to 40 carbon atoms; Arylalkyl having 7 to 40 carbon atoms; Aryl having 6 to 20 carbon atoms; Substituted or unsubstituted alkylidene having 1 to 20 carbon atoms; Substituted or unsubstituted amino group; Alkylalkoxy having 2 to 20 carbon atoms; Or arylalkoxy having 8 to 40 carbon atoms; n and m are each an integer of 1-4.
  • the present invention also provides a metallocene catalyst comprising the dinuclear metallocene compound and a promoter.
  • the present invention provides a method for producing a polyolefin comprising the step of polymerizing at least one lepin monomer in the presence of the metallocene catalyst.
  • the dinuclear metallocene compound according to the present invention is prepared by using a ligand having a novel structure including a silicon atom on both sides of the binuclear structure having a biphenylene group, thereby allowing a heteronuclear structure to change the selectivity and activity of the co-polymer.
  • metallocene catalyst can be provided.
  • the present invention can exhibit a variety of activities and selectivity for the copolymer and change while maintaining the advantages of other homogeneous catalysts in the production of polyolefin using the metallocene catalyst.
  • the catalyst of the present invention can freely adjust the molecular weight distribution according to the mixing ratio with the promoter, it is possible to produce a high-quality polyolefin with excellent productivity having the desired physical properties.
  • the present invention can produce a polyolefin having a desired property and molecular weight distribution, and can control the structure of the polymer more precisely than the conventional supported catalyst and mononuclear metallocene catalyst of the conventional Ziegler-Natta and metallocene compound It is to provide a metallocene compound and a method for producing a polyolefin using the same.
  • a Group 4 metal metallocene catalyst or a mononuclear metallocene catalyst having a conventional biphenylene bridge is present.
  • various substituents can be introduced into silicon to change the structure, thereby synthesizing polymers having properties different from those of the previous catalyst.
  • the present invention is characterized in providing a ligand compound having a novel structure.
  • Cp and Cp ' are the same as or different from each other, and are each independently selected from the group consisting of cyclopentadienyl, indenyl, 4, 5, 6, tetrahydro-1'indenyl and fluorenyl radicals; They may be substituted with a hydrocarbon having 1 to 20 carbon atoms;
  • R is the same as or different from each other, and each independently hydrogen, alkyl of 1 to 20 carbon atoms, cycloalkyl of 3 to 20 carbon atoms, alkoxy of 1 to 10 carbon atoms, aryl of 6 to 20 carbon atoms, aryloxy of 6 to 10 carbon atoms , Alkenyl having 2 to 20 carbon atoms, alkylaryl having 7 to 40 carbon atoms, arylalkyl having 7 to 40 carbon atoms; Aryl alkenyl having 8 to 40 carbon atoms; Or alkynyl having 2 to 10 carbon atoms;
  • Ri and R 2 are the same as or different from each other, and are each independently hydrogen, alkyl having 1 to 20 carbon atoms, or halogen;
  • n and m are each an integer from 1 to 4.
  • the compound of Formula 1 is a ligand compound having a novel structure containing a biphenylene group as a heteronuclear ligand and having a silicon atom bonded to 1 ⁇ 4 positions of both sides of the biphenylene group.
  • the compound of formula 1 of the present invention can be easily changed and controlled by changing the substituents of silicon in a variety of catalyst structure and properties.
  • Cp and Cp ' are each independently cyclopentadienyl
  • R is the same as or different from each other, and each independently represent an alkyl group of 1 to 10 carbon atoms
  • R 2 Are the same or different from each other, each poison It is preferably hydrogen, alkyl having 1 to 20 carbon atoms or cycloalkyl having 3 to 20 carbon atoms, and n and m are each preferably an integer of 1 to 4 carbon atoms.
  • the ligand compound of Formula 1 may represent a structure of Formula 1-1.
  • the structure of the general formula (1) of the present invention is the same or different from each other in the 8 positions of biphenyl group, each independently a specific substituent, preferably alkyl or halogen is substituted, silicon is substituted or alkyl or cycloalkyl group Can be.
  • the ligand compound of Formula 1 may be prepared by reacting the compound represented by Formula 2 and the compound represented by Formula 3:
  • R are the same as or different from each other, and are each independently hydrogen, alkyl having 1 to 20 carbon atoms, cycloalkyl having 3 to 20 carbon atoms, alkoxy having 1 to 10 carbon atoms, aryl having 6 to 20 carbon atoms, and aryloxy having 6 to 10 carbon atoms.
  • X is halogen
  • Ri and R 2 are the same as or different from each other, and are each independently hydrogen, alkyl having 1 to 20 carbon atoms, or halogen;
  • Cp is the same as or different from each other, and each independently is selected from the group consisting of cyclopentadienyl, indenyl, 4, 5, 6, 7-tetrahydro— 1 ′ indenyl and fluorenyl radicals, which are It may be substituted with a hydrocarbon having 1 to 20 carbon atoms;
  • Ml is an alkali metal or MgX, where X is a halogen atom; And n and m are each an integer of 1-4.
  • the conditions are not particularly limited, it may be made by a conventional organic synthesis reaction.
  • the reaction agent may prepare a compound of Chemical Formula 2 by adding a compound of Chemical Formula 2 to a solvent and reacting the cyclopentadienyl salt compound of Chemical Formula 3 at a low temperature.
  • the reaction is carried out in a solvent at a temperature of about -KXrC to about 4CTC for about 1 hour to about 24 hours.
  • the product In order to obtain, the method used for normal organic synthesis can be used, The method is not specifically limited.
  • THF, DMF, etc. may be used as the reaction solvent, and the kind thereof is not limited.
  • the compound of Formula 2 is used as a precursor compound of Formula 1, it can be prepared by a conventional nucleophilic reaction.
  • the compound of Formula 2 may be obtained by reacting a halogen-containing biphenyl compound with alkyllithium to produce a lithium salt, and reacting it with a silane compound and a low silver.
  • the reaction may be performed for about 1 hour to about 24 hours at about -10 (C to about 40 ° C.).
  • the silane compound may be represented by the formula (a), for example, may be dimethyldichlorosilane.
  • R ' is the same as or different from each other, and each independently an alkyl group or halogen atom having 1 to 10 carbon atoms.
  • R ' is the same as or different from each other, and each independently an alkyl group or halogen atom having 1 to 10 carbon atoms.
  • R ' is the same as or different from each other, and each independently an alkyl group or halogen atom having 1 to 10 carbon atoms.
  • R ' is the same as or different from each other, and each independently an alkyl group or halogen atom having 1 to 10 carbon atoms.
  • M is the same as or different from each other, and each independently a Group 4 transition metal
  • Cp and Cp ' are the same as or different from each other, and are each independently selected from the group consisting of cyclopentadienyl, indenyl, 4,5,6,7-tetrahydro-1-indenyl and fluorenyl Any of the functional groups selected, which may be substituted with hydrocarbons having 1 to 20 carbon atoms;
  • R is the same as or different from each other, and each independently hydrogen, alkyl having 1 to 20 carbon atoms, cycloalkyl having 3 to 20 carbon atoms, alkoxy having 1 to 10 carbon atoms, aryl having 6 to 20 carbon atoms, and aryloxy having 6 to 10 carbon atoms , Alkenyl having 2 to 20 carbon atoms, alkylaryl having 7 to 40 carbon atoms, arylalkyl having 7 to 40 carbon atoms; Arylalkenyl having 8 to 40 carbon atoms; Or alkynyl having 2 to 10 carbon atoms;
  • Ri and 3 ⁇ 4 are the same as or different from each other, and are each independently hydrogen, alkyl having 1 to 20 carbon atoms or halogen;
  • Q is the same as or different from each other, and each independently a halogen atom; Carbon number
  • the 'hydrocarbyl' referred to in the present invention is a monovalent functional group in which hydrogen atoms are removed from hydrocarbon, and may include ethyl, phenyl, and the like.
  • Cp and Cp ' are each independently cyclopentadienyl
  • R is the same or different from each other, each independently represent an alkyl group having 1 to 10 carbon atoms
  • R 2 is the same or different from each other
  • Each independently hydrogen, alkyl having 1 to 20 carbon atoms or cycloalkyl having 3 to 20 carbon atoms, and n and m may each be an integer of 1 to 4;
  • the dinuclear metallocene compound represented by Chemical Formula 5 may be a compound represented by Chemical Formula 5-1.
  • the dinuclear metallocene compound of Formula 5 may be prepared using a ligand compound represented by Formula 1 and a metallocene compound of Formula 4 below:
  • M is the same as or different from each other, and each independently a Group 4 transition metal
  • Cp and Cp 1 are the same as or different from each other, and are each independently selected from the group consisting of cyclopentadienyl, indenyl, 4, 5, 6 / 7-tetrahydro-1'indenyl and fluorenyl Any of the functional groups selected, which may be substituted with hydrocarbons having 1 to 20 carbon atoms;
  • R is the same as or different from each other, and each independently hydrogen, alkyl of 1 to 20 carbon atoms, cycloalkyl of 3 to 20 carbon atoms, alkoxy of 1 to 10 carbon atoms, aryl of 6 to 20 carbon atoms, aryloxy of 6 to 10 carbon atoms , Alkenyl having 2 to 20 carbon atoms, alkylaryl having 7 to 40 carbon atoms, arylalkyl having 8 to 40 carbon atoms; Carbon number Arylalkenyl of 8 to 40; Or alkynyl having 2 to 10 carbon atoms;
  • Q is the same as or different from each other, and each independently a halogen atom; Alkyl having 1 to 20 carbon atoms; Alkenyl having 2 to 10 carbon atoms; Alkyl aryl having 7 to 40 carbon atoms; Arylalkyl having 7 to 40 carbon atoms; Aryl having 6 to 20 carbon atoms; Substituted or unsubstituted alkylidene having 1 to 20 carbon atoms; Substituted or unsubstituted amino group; Alkylalkoxy having 2 to 20 carbon atoms; Or arylalkoxy having 7 to 40 carbon atoms; p is 0 or 1; And
  • n and m are each an integer of 1-4.
  • Such a heteronuclear metallocene compound according to the present invention may be prepared by binding a compound having a cyclopentadienyl group to a ligand bound in a metallocene compound of Formula 1 as two metals bonded to one compound.
  • the dinuclear metallocene compound of Formula 5 is prepared by dissolving the compound of Formula 1 in an organic solvent to form lithium salt by reacting alkyllithium. Thereafter, the lithium salt is reacted with a metallocene compound of Chemical Formula 4 at low temperature (eg, about ⁇ 78 ° C.) to obtain a binuclear metallocene compound of Chemical Formula 5 .
  • the reaction molar ratio of the ligand compound represented by Formula 1 and the metallocene compound of Formula 4 may be about 1: 1.8 to 2.2, and more preferably about 1: 2.
  • the reaction for the preparation of the compound of Formula 5 may use a conventional organic synthesis method well known to those skilled in the art, the conditions are not particularly limited.
  • the reaction may proceed for about 1 hour to about 24 hours at a temperature of about -ioo ° C to about 4o ° C.
  • the binuclear metallocene compound of Formula 5 prepared in this manner has a novel structure, and has the properties of binuclear metallocene including biphenylene group and silicon atom, and has easy properties of ligand structure modification.
  • a metallocene catalyst including a dinuclear metallocene compound of Formula 5 and a promoter prepared by the above method may be provided.
  • the promoter is used to activate the dinuclear metallocene compound, and may be supported together with the binuclear metallocene compound and the carrier.
  • Such cocatalyst is not particularly limited as long as it is an organometallic compound including a Group 13 metal, and can be used when polymerizing olepin under a general metallocene catalyst.
  • the promoter may be used at least one selected from the group consisting of compounds represented by the following formulas (6) to (8).
  • R 3 are the same as or different from each other, and each independently a halogen radical, a hydrocarbyl radical having 1 to 20 carbon atoms, or a hydrocarbyl radical having 1 to 20 carbon atoms substituted with halogen, and c is an integer of 2 or more.
  • D is aluminum or boron
  • R 4 is hydrocarbyl having 1 to 20 carbon atoms or hydrocarbyl having 1 to 20 carbon atoms substituted with halogen
  • L is a neutral Lewis base
  • [LH] + is a Bronsted acid
  • Z is boron or aluminum in the + 3 type oxidation state
  • each E is independently a hydrocarbyl having 1 to 20 halogen atoms
  • the compound represented by Formula 6 may be methyl aluminoxane (MAO), ethyl aluminoxane, isobutyl aluminoxane, butyl aluminoxane.
  • MAO methyl aluminoxane
  • ethyl aluminoxane ethyl aluminoxane
  • isobutyl aluminoxane butyl aluminoxane.
  • alkyl metal compound represented by the formula (6) for example, trimeth Tyl aluminum, triethyl aluminum, triisobutyl aluminum, tripropyl aluminum, tributyl aluminum, dimethyl chloro aluminum, dimethyl isobutyl aluminum, dimethyl ethyl aluminum, diethyl chloro aluminum, triisopropyl aluminum, tri-sbutyl Aluminum, Tricyclopentyl Aluminum, Tripentyl Aluminum, Triisopentyl Aluminum, Trinuclear Aluminium, Ethyl Dimethyl Aluminum, Methyl Diethyl Aluminum, Triphenyl Aluminum, Tri-P-allyl Aluminum, Dimethyl Aluminum methoxide, Dimethyl Aluminum Ethoxy Seed, trimethyl boron, triethyl boron, triisobutyl boron, tripropyl boron, tributyl boron and the like.
  • the promoter is about 100 to about the nucleus metallocene compound
  • the promoter may comprise a Group 13 metal in a molar ratio of about 1: 1 to 10,000 moles of ⁇ contained in the nucleus metallocene compound, more preferably about 1: 100 to 5,000 molar ratio And, most preferably, may be included in a molar ratio of about 1: 500 to 3,000.
  • a Group 13 metal in a molar ratio of about 1: 1 to 10,000 moles of ⁇ contained in the nucleus metallocene compound, more preferably about 1: 100 to 5,000 molar ratio
  • most preferably, may be included in a molar ratio of about 1: 500 to 3,000.
  • the amount of the activator is relatively small, and thus the activity of the catalyst composition generated due to the incomplete activation of the metal compound is reduced. Although the activation of the metal compound is completely completed, the excess amount of the activator may cause the unit cost of the catalyst composition to be less economical or to reduce the purity of the resulting polymer.
  • the metallocene catalyst in the present invention is silica, silica-alumina and It may further comprise any one carrier selected from the group consisting of silica-magnesia.
  • the carrier may be dried at high temperatures, which are typically
  • the amount of the hydroxy group can be controlled by the method and conditions for preparing the carrier or the drying conditions (temperature, time, drying room, etc.).
  • the amount of the hydroxy group is preferably about 0.1 to 10 mmol / g, more preferably about 0.1 to 1 mmol / g, still more preferably about 0.1 to 0.5 mmol / g.
  • a highly reactive siloxane group participating in the support may be used while a chemically removed hydroxy group is preserved.
  • the method for preparing a metallocene catalyst in the present invention may be prepared by a method of supporting a cocatalyst first on a carrier and then supporting a binuclear metallocene compound on the carrier.
  • the nucleated metallocene compound and the promoter can be reacted to obtain an activated supported metallocene catalyst, and the activated supported metallocene catalyst adds another kind of metallocene compound to the promoter as necessary.
  • the metallocene catalyst of the present invention has a catalytic activity of about 0.5xlO— s gPE / moI Cat.h to 5C lCr 6 gPE / mol Cat.h.
  • a method for producing a polyolefin comprising the step of polymerizing at least one or more olefin resin in the presence of a metallocene catalyst using the dinuclear metallocene compound.
  • the polymerization reaction can be carried out by homopolymerization with one olepin monomer or copolymerization with two or more monomers using one continuous slurry polymerization reaction reactor, loop slurry reaction reactor, gas phase reactor or solution reaction reactor.
  • Olefin monomers which can be polymerized using the metallocene catalyst of the present invention include ethylene, propylene, alpha olefins, cyclic olefins, and the like, and diene olefin resins or triene olefin resin monomers having two or more double bonds are also polymerized. This is possible.
  • the preparation of the polyolefin can proceed with polymerization while supplying the metallocene catalyst, the ethylene monomer, and the alpha olefin copolymer comonomer having 4 or more carbon atoms.
  • the olepin monomers are ethylene, propylene, 1-butene, 1-pentene, 1-nuxene, 4-methyl-1 pentene, 1-octene, 1-decene, 1-dodecene, 1-tetratedecene, It may be at least one member selected from the group consisting of 1—nuxadecene, 1-octadecene, 1-eicosene, and combinations thereof.
  • the metallocene catalyst of the present invention may be used by itself for olefin polymerization.
  • the metallocene catalyst may be prepared by using a prepolymerized catalyst by contacting an olefinic monomer such as ethylene propylene, 1-butene, 1'nucleene 1'octene, or the like.
  • an aliphatic hydrocarbon solvent having 5 to 12 carbon atoms suitable for an olefin polymerization process for example, isobutane, pentane, nucleic acid, heptane, nonane, decane and their It is also possible to inject it in the form of a slurry by distilling it into an isomer, an aromatic hydrocarbon solvent such as toluene and benzene, or a hydrocarbon solvent substituted with chlorine atoms such as dichloromethane and chlorobenzene.
  • the solvent used herein is preferably used after a small amount of aluminum treatment to remove a small amount of water, air and the like acting as a catalyst poison.
  • the polymerization of the polyolefin is preferably performed by reacting at a temperature of about 25 to 50 CTC and about 1 to 100 kgf / cm 2 for about 1 to 24 hours.
  • the polymerization temperature is more preferably about 25 to 20 CTC, most preferably about 50 to 100 ° C.
  • the reaction pressure is more preferably about 1 to 50 kgf / cm 2 , and most preferably about 5 to 40 kgf / cm 2 .
  • the polyolefin prepared by this method may have a weight average molecular weight of about 100 to 1,000,000, more preferably about 1,000 to 100,000.
  • the thin polyolefin has a number average molecular weight range of about 100 to 20,000, and more preferably 1,000 to 20,000. Therefore, the molecular weight distribution (Mw / Mn) of the polyolefin can be about 1 to 50.
  • the resulting colorless solid was dissolved in 40 ml of THF, and the temperature of the reaction vessel was lowered to -78 ° C. 11.6 mK96 mmol) of dimethyldichlorosilane was quickly added dropwise to this reaction container using a syringe. After stirring for 2 hours at -78 ° C. After slowly stirring the reaction at room temperature, it was stirred for another 15 hours. After 15 hours, all solvents were removed in vacuo and 40 ml of nucleic acid was added to attempt extraction of the product. Only the solution was filtered through a Celite filter and a clear, colorless solution was obtained. The solution was left for several hours in a steam store (-15 ° C) to give a colorless solid. 3.8 g of a compound of Formula 2 could be obtained.
  • the polymerization time was 15 minutes (Example 4), and the polymerization time of the ethylene / 1-octene copolymer was fixed at 40 minutes (Example 5).
  • the catalyst used was 5 ⁇ , the polymerization pressure of ethylene was 1 atm, and 50 ml of toluene was used as the polymerization solvent. That is, a 250 ml flask containing a stir bar, MAO and toluene was immersed in a water bath or oil bath set to the polymerization temperature. I did it. Then, ethylene polymerization was started by adding the catalyst using a syringe.
  • the polymerization was carried out using a [TMSCp] 2 ZrCl 2 catalyst of similar structure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

본 발명은 공중합체에 대하여 다양한 선택성과 활성을 제공할 수 있는 새로운 구조의 이핵 메탈로센 화합물과 그 제조방법 및 상기 이핵 메탈로센 화합물을 이용한 폴리올레핀의 제조방법에 관한 것이다.

Description

【명세서】
【발명의 명칭】
이핵 메탈로센 화합물 및 이를 이용한 폴리을레핀의 제조방법
【기술분야】
본 발명은 이핵 메탈로센 화합물 및 이를 이용한 폴리을레핀의 제조방 법에 관한 것이다.
【발명의 .배경이 되는 기술】
기존의 상업 프로세스에 널리 적용되는 지글러 -나타 촉매는 다활성점 촉매이기 때문에 생성 고분자의 분자량 분포가 넓은 것이 특징이며 공단량체의 조성 분포가 균일하지 않아 원하는 물성 확보에 한계가 있다.
반면, 메탈로센 촉매는 하나의 종류의 활성점을 가진 단일 활성점 촉매 로 생성 중합체의 분자량 분포가 좁고 촉매와 리간드의 구조에 따라 분자량, 입체 규칙도, 결정화도, 특히 공단량체의 반응성을 대폭 조절할 수 있는 장점이 있다. 그러나, 메탈로센 촉매로 중합한 폴리올레핀은 분자량 분포가 좁아 일부 제품에 웅용할 경우, 압출부하 등의 영향으로 생산성이 현저히 떨어지는 등 현 장적용이 어려운 문제가 있어 이와 관련된 폴리올레핀의 분자량 분포를 조절하 려는 노력을 많이 해왔다.
. 이를 위해, 단핵 메탈로센 화합물과 이핵 메탈로센 화합물을 이용한 방 법이 알려져 있다.
단핵 메탈로센 화합물에 대한 예를 들면, 미국 특허 제 5,032,562호에는 TKR2011/006747 두 개의 상이한 전이금속 촉매를 한 개의 담지 촉매 상에 지지시켜 중합 촉매 를 제조하는 방법이 기재되어 있다. 이는 고분자량을 생성하는 티타늄 (Ti) 계열 의 지글러 -나타 촉매와 저분자량을 생성하는 지르코늄 (Zr) 계열의 메탈로센 촉 매를 하나의 지지체에 담지시켜 이정 분산 (bimodal distribution) 고분자를 생 성하는 방법으로써, 담지 과정이 복잡하고ᅳ 조촉매로 언해 중합체의 형상 (morphology)이 나빠지는 단점이 있다.
또한, 이핵 메탈로센 화합물을 이용하여 공중합시 촉매의 공중합체 선 택성, 활성 등을 변화시키고자 하는 연구가 보고되어 있으며, 일부 메탈로센 촉 매의 경우 공중합체 병합 (incorporation) 및 활성이 높아지는 경우가 보고되어 있다.
예들 들어, 대한민국 특허출원 제 2003ᅳ 12308호에는 담체에 이중핵 메 탈로센 촉매와 단일핵 메탈로센 촉매를 활성화제와 함께 담지하여 반응기 내 촉매의 조합을 변화시키며 중합함으로써 분자량 분포를 제어하는 방안을 개시 하고 있다. 그러나, 이러한 방법은 각각의 촉매의 특성을 동시에 구현하기에 한계가 있으며, 또한 완성된 촉매의 담체.성분에서 메탈로센 촉매 부분이 유리 되어 반웅기에 파울링 (fouling)을 유발하는 단점이 있다.
또한, 바이페닐렌 브릿지를 가지는 4족 금속 메탈로센 촉매의 합성법과 이 촉매를 이용한 에틸렌과 스타이렌의 중합에 대해 보고되고 있다 (Organometallics, 2005, 24, 3618). 상기 방법에 따르면, 단핵 메탈로센 촉매 에 비해 촉매의 활성이 높고 얻어진 고분자의 분자량이 크다고 기재하고 있다. 또 다른 방법은 4족 이핵 메탈로센 촉매의 브릿지 구조를 변환하여 촉매의 반 웅성 에 변화를 줄 수 있다는 보고가 된 바 있다 (Eur. Polym, J. 2007, 43, 1436).
하지만, 상기 방법들을 이용하게 되면, 이 전에 보고된 바이 페닐렌 브릿 지를 가지는 4족 금속 메탈로센 촉매의 경우 치환기의 첨가 및 구조의 변경에 문제가 있으므로, 을레핀 제조에 유용한 새로은 메탈로센 촉매의 개발이 필요 한 실정 이다.
【발명의 내용】 '
【해결하고자 하는 과제】
본 발명은 공중합체에 대하여 다양한 선택성과 활성을 제공할 수 있는 새로운 구조의 리간드 화합물과, 이를 이용한 이 핵 메탈로센 화합물 및 그 제 조방법을 제공하는 것 이다.
또한 본 발명은 상기 이핵 메탈로센 화합물을 이용한 폴리을레핀의 제 조방법을 제공하고자 한다.
【과제의 해결 수단】
본 발명은 하기 화학식 1로 표시되는 화합물을 제공한다:
[화학식 1 ] (Cp)(R)2Si Si(R)2(Cp') 상기 화학식 1에서,
Cp 및 Cp'는 서로 동일하거나 상이하고, 각각 독립 적으로 시클로펜타디 에닐, 인데닐, 4,5,6,7-테트라하이드로 -1ᅳ인데닐 및 플루오레닐 라디칼로 이루 어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소 로 치환될 수 있으며 ;
R은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬, 탄소수 3 내지 20의 시클로알킬 탄소수 1 내지 10의 알콕시, 탄 소수 6 내지 20의 아릴, 탄소수 6 내지 10의 아릴옥시, 탄소수 2 내지 20의 알케닐, 탄소수 7 내지 40의 알킬아릴, 탄소수 7 내지 40의 아릴알킬 ; 탄소수 8 내지 40의 아릴알케닐 ; 또는 탄소수 2 내지 10의 알키 닐이고;
Ri 및 R2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, '탄소수 1 내지 20의 알킬 또는 할로겐이고; 및
n 및 m은 각각 1 내지 4의 정수이다.
또한 본 발명은 화학식 5로 표시 되는 이핵 메탈로센 화합물을 제공한 다:
[화학식 5] 2011/006747
Figure imgf000006_0001
상기 식에서,
M은 서로 동일하거나 상이하고, 각각 독립적으로 4족 전이금속이고;
Cp 및 Cp1는 서로 동일하거나 상이하고, 각각 독립적으로 시클로펜타디 에닐, 인데닐, 4,5,6,그테트라하이드로 - 1-인데닐 및 폴루오레닐 (fluorenyl)로 이 루어진 군으로부터 선택된 어느 하나의 작용기 이고, 이들은 탄소수 1 내지 20 의 탄화수소로 치환될 수 있으며 ;
R은 서로 동일하거나 상이하고, 각각 독립 적으로 수소, 탄소수 1 내지 20의 알킬, 탄소수 3 내지 20의 시클로알킬, 탄소수 1 내지 10의 알콕시, 탄 소수 6 내지 20의 아릴, 탄소수 6 내지 10의 아릴옥시, 탄소수 2 내지 20의 알케닐, 탄소수 7 내지 40의 알킬아릴, 탄소수 Ί 내지 40의 아릴알킬 ; 탄소수 8 내지 40의 아릴알케닐; 또는 탄소수 2 내지 10의 알키 닐이고;
Ri 및 R2는 서로 동알하거나 상이하고, 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬 또는 할로겐이고;
Q는 서로 동일하거나 상이 하고, 각각 독립 적으로 할로겐 원자; 탄소수 1 내지 20의 알킬 ; 탄소수 2 내지 10의 알케닐 ; 탄소수 7 내지 40의 알킬아 릴 ; 탄소수 7 내지 40의 아릴알킬; 탄소수 6 내지 20의 아릴 ; 치환되거나 치환 되지 않은 탄소수 1 내지 20의 알킬리 덴; 치환되거나 치환되지 않은 아미노기 ; 탄소수 2 내지 20의 알킬알콕시; 또는 탄소수 Ί 내지 40의 아릴알콕시이고; n 및 m은 각각 1 내지 4의 정수이다.
또한 본 발명은 상기 이핵 메탈로센 화합물 및 조촉매를 포함하는 메탈 로센 촉매를 제공한다.
또한 본 발명은 상기 메탈로센 촉매 존재 하에, 적어도 1종 이상의 을 레핀 단량체를 중합시키는 단계를 포함하는 폴리올레핀의 제조방법을 제공한 다.
【발명의 효과】
본 발명에 따론 이핵 메탈로센 화합물은 바이페닐렌기를 갖는 이핵 구 조의 양쪽에 실리콘 원자를 포함한 신규한 구조의 리간드를 이용하여 제조함으 로써, 공증합체에 대한 선택성과 활성을 변화시킬 수 있는 이핵 구조의 메탈로 센 촉매를 제공할 수 있다. 또한, 본 발명은 상기 메탈로센 촉매를 이용하여 폴리을레핀 제조시 다른 균일계 촉매의 장점을 그대로 가지면서 공중합체에 대 한 다양한 활성과 선택성을 나타내고 변화를 줄 수 있다. 또한 본 발명의 촉 매는 조촉매와의 흔합비에 따라 분자량 분포를 자유롭게 조절하여, 원하는 물 성을 가지는 생산성이 뛰어난 고품질의 폴리을레핀을 생산할 수 있다.
【발명을 실시하기 위한 구체적인 내용】 이하에서 본 발명을 상세하게 설명 한다.
본 발명은 원하는 성 질과 분자량 분포를 가지는 폴리올레핀을 생산할 수 있으며 , 종래의 지글러 -나타와 메탈로센 화합물의 흔성 담지 촉매 및 단핵 메 탈로센 촉매보다 더 정밀하게 고분자의 구조를 제어할 수 있는 이핵 메탈로 센 화합물과 이를 이용한 폴리올레핀의 제조방법을 제공하는 것 이다.
특히, 본 발명의 이핵 메탈로센 화합물의 경우, 바이페닐렌 양쪽에 실리 콘이 바로 결합된 구조를 가짐으로써, 기존의 바이페닐 렌 브릿지를 가지는 4족 금속 메탈로센 촉매나 단핵 메탈로센 촉매에 비 해, 다양한 치환체를 실리콘에 도입하여 구조를 변화시킬 수 있어 이전의 촉매와 다른 특성을 가지는 고분자 를 합성할 수 있다.
이 러한 이핵 메탈로센 화합물을 제공하기 위해, 본 발명은 신규한 구조 의 리간드 화합물을 제공하는 특징 이 있다.
따라서, 본 발명의 일 구현예에 따르면, 하기 화학식 1로 표시되는 화합 물을 제공한다:
[화학식 1]
Figure imgf000008_0001
상기 화학식 1에서, Cp 및 Cp'는 서로 동일하거나 상이하고, 각각 독립적으로 시클로펜타디 에닐, 인데닐, 4,5,6,그테트라하이드로 - 1ᅳ인데닐 및 플루오레닐 라디칼로 이루 어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소 로 치환될 수 있으며 ;
R은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬, 탄소수 3 내지 20의 시클로알킬, 탄소수 1 내지 10의 알콕시, 탄 소수 6 내지 20의 아릴, 탄소수 6 내지 10의 아릴옥시 , 탄소수 2 내지 20의 알케닐, 탄소수 7 내지 40의 알킬아릴, 탄소수 7 내지 40의 아릴알킬 ; 탄소수 8 내지 40의 아릴알케닐 ; 또는 탄소수 2 내지 10의 알키 닐이고;
Ri 및 R2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬 또는 할로겐이고; 및
- n 및 m은 각각 1 내지 4의 정수이다.
본 발명에서 상기 화학식 1의 화합물은 구조 증에 이핵 리 간드로서 바 이페닐렌기를 포함하고, 또한 바이페닐렌기의 양쪽의 1ᅳ 4위치에 실리콘 원자가 결합되 어 있는 신규한 구조의 리 간드 화합물이다. 또한, 본 발명의 화학식 1의 화합물은 실리콘의 치환기를 다양하게 변경하여 촉매 구조 및 특성의 변화를 용이하게 변경 및 조절할 수 있다.
이 때 상기 화학식 1의 리간드 화합물에서, Cp 및 Cp'은 각각 독립적으 로 시클로펜타디에 닐이고, R은 서로 동일하거나 상이하고, 각각 독립적으로 탄 소수 1 내지 10의 알킬기 이고, 및 R2는 서로 동일하거나 상이하고, 각각 독 립 적으로 수소, 탄소수 1 내지 20의 알킬 또는 탄소수 3 내지 20의 시클로알 킬이고, n 및 m은 각각 1 내지 4의 정수인 것이 바람직하다. 보다 바람직하게, 상기 화학식 1의 리간드 화합물은 하기 화학식 1-1의 구조를 나타낼 수 있다.
[화학식 1ᅳ 1 ]
Figure imgf000010_0001
또한, 본 발명 의 화학식 1의 구조는 바이페닐기 8개 위 치에 서로 동일 하거나 상이하고, 각각 독립적으로 특정 치환기, 바람직하게 알킬 또는 할로겐 이 치환되고, 실리콘에 는 알킬 또는 시클로알킬기가 치환된 구조일 수 있다. 이 때, 상기 화학식 1의 리 간드 화합물은 하기 화학식 2로 표시되는 화 합물과 화학식 3으로 표시되는 화합물을 반웅시 켜 제조될 수 있다:
[화학식 2]
Figure imgf000010_0002
[화학식 3]
(Cp)Ml
상기 화학식 2 및 3에서, R은 서로 동일하거나 상이 하고, 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬, 탄소수 3 내지 20의 시클로알킬, 탄소수 1 내지 10의 알콕시 , 탄 소수 6 내지 20의 아릴, 탄소수 6 내지 10의 아릴옥시, 탄소수 2 내지 20의 알케닐, 탄소수 7 내지 40의 알킬아릴, 탄소수 7 내지 40의 아릴알킬 ; 탄소수 8 내지 40의 아릴알케닐 ; 또는 탄소수 2 내지 10의 알키 닐이고;
X는 할로겐이고,
Ri 및 R2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬 또는 할로겐이고;
Cp는 서로 동일하거나 상이하고, 각각 독립적으로 시클로펜타디 에 닐, 인데닐, 4,5,6,7-테트라하이드로— 1ᅳ인데닐 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소로 치 환될 수 있으며 ;
Ml은 알칼리 금속 또는 MgX이 고 (여기서 X는 할로겐 원자임 ); 및 n 및 m은 각각 1 내지 4의 정수이다.
본 발명에서 상기 화학식 1의 리간드 화합물을 제조시, 그 조건은 특별 히 한정되지 않고, 통상의 유기 합성 반웅에 의해 이루어 질 수 있다. 예를 들 어, 상기 반웅은 화학식 2의 화합물을 용매에 넣고, 저온에서 화학식 3의 사이 클로펜타디에 닐염 화합물을 반웅시 켜 화학식 2의 화합물을 제조할 수 있다. 바람직하게 , 상기 반응은 용매하에 약 -KXrC 내지 약 4CTC의 온도에서 약 1 시간 내지 약 24시간 동안 진행하는 것이 바람직하다. 반웅 완료후 생성물을 얻기 위해, 통상의 유기합성에 사용되는 방법을 사용할 수 있으며 , 그 방법이 특별히 한정되는 것은 아니다. 또한 상기 반응용매로는 THF, DMF 등을 사용 할 수 있고, 그 종류가 한정되지는 않는다.
여기서, 상기 화학식 2의 화합물은 화학식 1의 전구체 화합물로 사용되 며, 통상의 친핵성 반웅에 의해 제조될 수 있다. 예를 들어, 상기 화학식 2의 화합물은 할로겐함유 바이페닐 화합물과 알킬리튬을 반웅시켜 리튬염을 제조하 고, 이를 실란화합물과 저은에서 반웅시켜 얻어질 수 있다. 이때, 상기 화학식 2의 화합물을 제조시, 약 -10( C 내지 약 40°C의 은도에서 약 1시간 내지 약 24시간 동안 반웅을 진행할 수 있다.
상기 실란화합물은 하기 화학식 a로 표시되는 것을 사용할 수 있고, 예 를 들어 디메틸디클로로실란일 수 있다.
[화학식 a] ·
Si(R')4
상기 식에서, R'은 서로 동일하거나 상이하고, 각각 독립적으로 탄소수 1 내지 10의 알킬기 또는 할로겐 원자이다. 한편, 본 발명의 다른 구현예에 따르면, 상기 화학식 1의 리간드 화합물 을 이용하여 얻어진 하기 화학식 5로 표시되는 이핵 메탈로센 화합물을 제공한 다.
[화학식 5] (Cp')(Q)2M(Cp)(R)2Si Si( )2(Cp')M(Q)2(Cp) 상기 식에서, .
M은 서로 동일하거나 상이하고, 각각 독립적으로 4족 전이금속이고;
Cp 및 Cp'는 서로 동일하거나 상이하고, 각각 독립적으로 시클로펜타디 에닐, 인데닐, 4,5,6,7-테트라하이드로 -1-인데닐 및 폴루오레닐 (fluorenyl)로 이 루어진 군으로부터 선택된 어느 하나의 작용기 이고, 이들은 탄소수 1 내지 20 의 탄화수소로 치환될 수 있으며 ;
R은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬, 탄소수 3 내지 20의 시클로알킬, 탄소수 1 내지 10의 알콕시, 탄 소수 6 내지 20의 아릴, 탄소수 6 내지 10의 아릴옥시, 탄소수 2 내지 20의 알케닐, 탄소수 7 내지 40의 알킬아릴, 탄소수 7 내지 40의 아릴알킬 ; 탄소수 8 내지 40의 아릴알케닐; 또는 탄소수 2 내지 10의 알키 닐이고;
Ri 및 ¾는 서로 동일하거나 상이하고, 각각 독립 적으로 수소, 탄소수 1 내지 20의 알킬 또는 할로겐이고;
Q는 서로 동일하거나 상이하고, 각각 독립 적으로 할로겐 원자; 탄소수
1 내지 20의 알킬 ; 탄소수 2 내지 10의 알케닐 ; 탄소수 7 내지 40의 알킬아 릴 ; 탄소수 7 내지 40의 아릴알킬 ; 탄소수 6 내지 20의 아릴; 치환되거나 치환 되지 않은 탄소수 1 내지 20의 알킬리 덴 ; 치환되거나 치환되지 않은 아미노기 ; ^소수 2 내지 20의 알킬 ¾콕시; 또는 탄소수 7 내지 40의 아릴알콕시이고; n 및 m은 각각 1 내지 4의 정수이다.
이때 본 발명에서 언급하는 상기 '하이드로카르빌'은 하이드로카르본으 로부터 수소 원자를 제거한 형태의 1가 작용기로서, 에틸, 페닐 등을 포함할 수 있다.
또한, 상기 화학식 5에서 Cp 및 Cp'은 각각 독립적으로 시클로펜타디에 닐이고, R은 서로 동일하거나 상이하고, 각각 독립적으로 탄소수 1 내지 10의 알킬기이고, 및 R2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 탄 소수 1 내지 20의 알킬 또는 탄소수 3 내지 20의 시클로알킬이고, n 및 m은 각각 1 내지 4의 정수일 수 있다.
더욱 바람직하게, 본 발명에서 상기 화학식 5로 표시되는 이핵 메탈로 센 화합물은 하기 화학식 5-1로 표시되는 화합물일 수 있다.
[화학식 5-1]
Figure imgf000014_0001
또한 상기 화학식 5의 이핵 메탈로센 화합물은 하기 화학식 1로 표시 되 는 리간드 화합물 및 하기 화학식 4의 메탈로센 화합물을 이용하여 제조될 수 있다:
[화학식 1 ]
Figure imgf000015_0001
[화학식 4]
Figure imgf000015_0002
상기 식에서,
M은 서로 동일하거나 상이하고, 각각 독립적으로 4족 전이금속이고;
Cp 및 Cp1는 서로 동일하거나 상이하고, 각각 독립적으로 시클로펜타디 에닐, 인데닐, 4,5,6/7-테트라하이드로 -1ᅳ인데닐 및 플루오레닐 (fluorenyl)로 이 루어진 군으로부터 선택된 어느 하나의 작용기 이고, 이들은 탄소수 1 내지 20 의 탄화수소로 치환될 수 있으며 ;
R은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬, 탄소수 3 내지 20의 시클로알킬, 탄소수 1 내지 10의 알콕시, 탄 소수 6 내지 20의 아릴, 탄소수 6 내지 10의 아릴옥시, 탄소수 2 내지 20의 알케닐, 탄소수 7 내지 40의 알킬아릴, 탄소수 Ί 내지 40의 아릴알킬 ; 탄소수 8 내지 40의 아릴알케닐; 또는 탄소수 2 내지 10의 알키닐이고;
Q는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐 원자; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 10의 알케닐; 탄소수 7 내지 40의 알킬아 릴; 탄소수 7 내지 40의 아릴알킬; 탄소수 6 내지 20의 아릴; 치환되거나 치환 되지 않은 탄소수 1 내지 20의 알킬리덴; 치환되거나 치환되지 않은 아미노기; 탄소수 2 내지 20의 알킬알콕시; 또는 탄소수 7 내지 40의 아릴알콕시이고; p는 0 또는 1이고; 및
n 및 m은 각각 1 내지 4의 정수이다.
이러한 본 발명에 따른 이핵 메탈로센 화합물은 하나의 화합물에 두개 의 금속이 결합된 형태로서, 화학식 1의 메탈로센 화합물 중에 결합된 리간드 에 사이클로펜타디에닐기를 갖는 화합물을 결합시켜 제조될 수 있다. 바람직 하게, 상기 화학식 5의 이핵 메탈로센 화합물은 화학식 1의 화합물을 유기용매 에 녹인후 알킬리튬을 반웅시켜 리튬염을 제조한다. 이후, 상기 리튬염을 화학 식 4의 메탈로센 화합물과 저온 (예를 들면, 약 -78°C)에서 반웅시키면 화학식 5의 이핵 메탈로센 화합물을 얻을 수 있다.
상기 화학식 1로 표시되는 리간드 화합물 및 하기 화학식 4의 메탈로센 화합물의 반응 몰비는 약 1: 1.8 내지 2.2일 수 있으며, 더욱 바람직하게는 약 1:2로 한다. 이때, 상기 반웅몰비를 벗어나 몰비를 달리하는 경우 화학식 5 또는 5-1의 메탈로센 화합물 외에 다른 화합물도 생성되므로, 중합시 원하는 결과를 얻을 수 없다. , 이때, 상기 화학식 5의 화합물의 제조를 위한 반웅은 이 분야의 당업자 들에게 잘 알려진 통상의 유기 합성 방법을 사용할 수 있으므로 그 조건이 특 별히 한정되지 않는다. 바람직하게, 상기 반웅은 약 -ioo°c 내지 약 4o°c의 온도에서 약 1시간 내지 약 24시간 동안-진행할 수 있다.
이러한 방법으로 제조된 화학식 5의 이핵 메탈로센 화합물은 신규한 구 조를 가지며, 바이페닐렌기와 실리콘원자를 포함하여 이핵 메탈로센의 특성을 가지면서 리간드 구조의 변형이 용이한 특성을 가지게 된다. 또한 본 발명의 다른 구현예에 따르면, 상기 방법으로 제조된 화학식 5 의 이핵 메탈로센 화합물 및 조촉매를 포함하는 메탈로센 촉매가 제공될 수 있 다.
상기 조촉매는 상기 이핵 메탈로센 화합물을 활성화하기 위하여 사용하 며, 이핵 메탈로센 화합물과 담체에 함께 담지될 수 있다.
이러한 조촉매는 13족 금속을 포함하는 유기 금속 화합물로서, 일반적 인 메탈로센 촉매 하에 을레핀을 중합할 때 사용될 수 있는 것이라면 특별히 한정되는 것은 아니다.
바람직하게, 상기 조촉매는 하기 화학식 6 내지 8로 표시되는 화합물들 로 이루어진 군에서 선택된 1종 이상을 사용할 수 있다.
[화학식 6]
_[A1(R3)ᅳ이 c- 상기 화학식 6에서, R3은 서로 동일하거나 상이하고, 각각 독립 적으로 할로겐 라디칼, 탄소수 1 내지 20의 하이드로카빌 라디칼, 또는 할로겐으로 치 환된 탄소수 1 내지 20의 하이드로카빌 라디칼이고, c는 2 이상의 정수이며,
[화학식 7]
D(R4)3
상기 화학식 7에서,
D는 알루미늄 또는 보론이고, R4는 탄소수 1 내지 20의 하이드로카빌 또는 할로겐으로 치환된 탄소수 1 내지 20의 하이드로카빌이고,
[화학식 8]
[L-H]+ [Ζ(Ε)4Γ
상기 화학식 8에서,
L은 중성 루이스 염기 이고, [L-H]+는 브론스테드 산이며 , Z는 + 3 형식 산화 상태의 붕소 또는 알루미늄이고, E는 각각 독립적으로 1 이상의 수소 원 자가 할로겐 탄소수 1 내지 20의 하이드로카빌, 알콕시 작용기 또는 페녹시 작용기로 치환 또는 비 치환된 탄소수 6 내지 20의 아릴기 또는 탄소수 1 내지 20의 알킬기 이 다.
상기 화학식 6으로 표시되는 화합물로는, 예를 들어 메틸알루미녹산 (MAO), 에틸알루미녹산, 이소부틸알루미녹산, 부틸알루미녹산 등이 될 수 있 다.
상기 화학식 6으로 표시 되는 알킬 금속 화합물로는, 예를 들어 트리 메 틸알루미늄, 트리에틸알루미늄, 트리이소부틸알루미늄, 트리프로필알루미늄, 트 리부틸알루미늄, 디메틸클로로알루미늄, 디메틸이소부틸알루미늄, 디메틸에틸알 루미늄, 디에틸클로로알루미늄, 트리이소프로필알루미늄, 트리 -sᅳ부틸알루미늄, 트리씨클로펜틸알루미늄, 트리펜틸알루미늄, 트리이소펜틸알루미늄, 트리핵실알 루미늄, 에틸디메틸알루미늄, 메틸디에틸알루미늄, 트리페닐알루미늄, 트리 -P- 를릴알루미늄, 디메틸알루미늄메톡시드, 디메틸알루미늄에톡시드, 트리메틸보론, 트리에틸보론, 트리이소부틸보론, 트리프로필보론, 트리부틸보론 등일 수 있다. 상기 화학식 7로 표시되는 화합물로는, 예를 들어 트리에틸암모니움테 트라페닐보론, 트리부틸암모니움테트라페닐보론, 트리메틸암모니움테트라페닐보 론, 트리프로필암모니움테트라페닐보론, 트리메틸암모니움테트라 (pᅳ를릴)보론, 트리프로필암모니움테트라 (P-를릴)보론, 트리에틸암모니움테트라 (ο,ρ-디메틸페 닐)보론, 트리메틸암모니움테트라 (ο,ρ-디메틸페닐)보론, 트리부틸암모니움테트 라 (Ρ-트리플루오로메틸페닐)보론, 트리메틸암모니움테트라 (Ρ-트리플로로메틸페 닐)보론, 트리부틸암모니움테트라펜타플루오로페닐보론, Ν,Ν-디에틸아닐리니움 테트라페닐보론, Ν,Ν-디에틸아닐리니움테트라페닐보론, Ν,Ν-디에틸아닐리니움 테트라펜타플루오로페닐보론, 디에틸암모니움테트라펜타플루오로페닐보론, 트리 페닐포스포늄테트라페닐보론, 트리메틸포스포늄테트라페닐보론, 트리에틸암모니 움테트라페닐알루미늄, 트리부틸암모니움테트라페닐알루미늄, 트리메틸암모니움 테트라페닐알루미늄, 트리프로필암모니움테트라페닐알루미늄, 트리메틸암모니움 테트라 (Ρ-틀릴)알루미늄, 트리프로필암모니움테트라 (Ρ-를릴)알루미늄 트리에틸 암모니움테트라 (ο,ρ-디 메틸페닐)알루미늄, 트리부틸암모니움테트라 (Ρ-트리플루 오로메틸페닐)알루미늄, 트리 메틸암모니움테트라 (ρᅳ트리플루오로메틸페닐)알루 미늄,트리부틸암모니움테트라펜타플루오로페닐알루미늄, Ν,Ν-디 에 틸아닐리 니움 테트라페닐알루미늄, Ν,Ν-디에 틸아닐리 니움테트라페닐알루미늄, Ν,Ν-디 에틸아 닐리니움테트라펜타폴로로페닐알루미늄 디에 틸암모니움테트라펜타플루오로페 닐알루미늄, 트리 페닐포스포늄테트라페닐알루미늄, 트리 메틸포스포늄테트라페닐 알루미늄, 트리 페닐카보니움테트라페닐보론, 트리페닐카보니움테트라페닐알루미 늄, 트리페닐카보니움테트라 (13_트리플로로메틸페닐)보론, 트리페닐카보니움테트 라펜타플루오로페닐보론 등일 수 있다.
또한 상기 조촉매는 상기 이 핵 메탈로센 화합물에 대하여 약 100 내지
1,000,000 몰%로 포함될 수 있다. 바람직하게, 상기 조촉매는 상기 이 핵 메 탈로센 화합물에 함유된 Μ에 대하여 13족 금속이 약 1: 1 내지 10,000의 몰 비로 포함할 수 있고, 보다 바람직하게는 약 1 : 100 내지 5,000의 몰비 이 고, 가장 바람직하게 약 1 : 500 내지 3,000의 몰비로 포함할 수 있다. 이때, 상기
13족 금속의 몰비가 약 1: 1 미만이면 활성제의 양이 상대적으로 적 어 금속 화 합물의 활성화가 완전히 이루어지지 못해 생성되는 촉매 조성물의 활성도가 떨 어지는 문제가 있고, 약 1: 10,000을 초과하면 금속 화합물의 활성화가 완전히 이루어지지만 남아있는 과량의 활성화제로 촉매 조성물의 단가가 경 제적 이지 못하거나 생성되는 고분자의 순도가 떨어지 게 된다.
또한 본 발명에서 상기 메탈로센 촉매는 실리카, 실리카-알루미나 및 실리카-마그네시아로 이루어진 군에서 선택된 어느 하나의 담체를 더 포함할 수 있다. 상기 담체는 고온에서 건조된 것일 수 있고, 이들은 통상적으로
Na20, K2CO3, BaS04 및 Mg(N03)2 등의 산화물, 탄산염, 황산염, 질산염 성분 을 포함할 수 있다.
상기 담체 표면의 히드록시기 (-OH)의 양은 가능하면 적을수록 좋으나 모든 히드록시기를 제거하는 것은 현실적으로 어렵다. 상기 히드록시기의 양은 담체의 제조방법 및 조건 또는 건조 조건 (온도, 시간, 건조 방 등) 등에 의해 조절할 수 있다. 상기 히드톡시기의 양은 약 0.1 내지 10 mmol/g이 바람직하 고, 보다 바람직하게는 약 0.1 내지 1 mmol/g 이고, 더욱 바람직하게는 약 0.1 내지 0.5 mmol/g 이다. 건조 후에 잔존하는 약간의 히드록시기에 의한 부반웅 을 줄이기 위해 담지에 참여하는 반응성이 큰 실록산기는 보존하면서 이 히드 록시기를 화학적으로 제거한 담체를 이용할 수도 있다.
또한 본 발명에서 메탈로센 촉매의 제조방법은, 담체에 조촉매를 먼저 담지시킨 후, 이핵 메탈로센 화합물을 담체에 담지하는 방법으로 제조할 수 있 다.
이렇게 함으로써, 이핵 메탈로센 화합물과 조촉매를 반웅시켜 활성화된 담지 메탈로센 촉매를 얻을 수 있으며, 상기 활성화된 담지 메탈로센 촉매는 필요에 따라 다른 종류의 메탈로센 화합물을 조촉매에 추가로 담지시킬 수 있 - 다.
이러한 본 발명의 메탈로센 촉매는 촉매 활성이 약 0.5xlO—sgPE/moI Cat · h 내지 5C lCr6gPE/mol Cat · h일 수 있다. 또한 본 발명의 또 다른 구현예에 따르면 상기 이핵 메탈로센 화합물 을 이용한 메탈로센 촉매 존재 하에, 적어도 1종 이상의 을레핀 단량체를 중합 시키는 단계를 포함하는 폴리올레핀의 제조방법을 제공한다.
상기 중합 반웅은 하나의 연속식 슬러리 중합 반웅기, 루프 슬러리 반 웅기, 기상 반응기 또는 용액 반웅기를 이용하여, 하나의 을레핀 단량체로 호모 중합하거나 또는 2종 이상의 단량체로 공중합여 진행할 수 있다.
본 발명의 메탈로센 촉매를 이용하여 중합 가능한 올레핀계 단량체는 에틸렌, 프로필렌, 알파 올레핀, 사이클릭 올레핀 등이 있으며, 이중 결합을 2 개 이상 가지고 있는 디엔 을레핀계 단량체 또는 트리엔 을레핀계 단량체 등도 중합이 가능하다.
예를 들어, 상기 폴리을레핀의 제조는 상기 메탈로센 촉매와 에틸렌 단 량체 및 탄소수가 4개 이상인 알파을레핀 공단량체를 공급하면서 중합올 진행 할 수 있다.
바람직하게, 상기 을레핀 단량체는 에틸렌, 프로필렌, 1-부텐, 1ᅳ펜텐, 1-핵센, 4-메틸 -1ᅳ펜텐, 1-옥텐, 1-데센, 1-도데센, 1ᅳ테트라데센, 1—핵사데센, 1-옥타데센, 1-에이코센, 및 이들의 흔합물로 이루어진 군에서 선택되는 1종 이상일 수 있다.
또한 본 발명의 메탈로센 촉매는 그 자체로 올레핀 중합에 사용될 수도 있고, 또는 상기 메탈로센 촉매를 에틸렌 프로필렌, 1-부텐, 1ᅳ핵센 1ᅳ옥텐 등 과 같은 올레핀계 단량체와 접촉시켜 예비 증합 (prepolymerization)된 촉매로 제조하여 사용할 수도 있다.
또한, 본 발명의 메탈로센 촉매는 예비중합을 거치지 않고 사용될 경우, 올레핀 중합 공정에 적합한 탄소수 5 내지 12의 지방족 탄화수소 용매, 예를 들면 아이소부탄, 펜탄, 핵산, 헵탄, 노난, 데칸 및 이들의 이성질체와 를루엔, 벤젠과 같은 방향족 탄화수소 용매, 디클로로메탄, 클로로벤젠과 같은 염소 원 자로 치환된 탄화수소 용매 등에 슬러리 형태로 회석하여 주입할 수도 있다. 여기에 사용되는 용매는 소량의 알루미늄 처리를 하여 촉매독으로 작용하는 소 량의 물, 공기 등을 제거하고 사용하는 것이 바람직하다.
상기 폴리올레핀의 중합은 약 25 내지 50CTC의 온도 및 약 1 내지 100 kgf/cm2에서 약 1 내지 24시간 동안 반웅시켜 수행하는 것이 바람직하다. 상기 중합 온도는 약 25 내지 20CTC가 더욱 바람직하고, 약 50 내지 100 °C가 가장 바람직하다. 또한, 반웅 압력은 약 1 내지 50 kgf/cm2가 더욱 바람직하 고, 약 5 내지 40 kgf/cm2가 가장 바람직하다.
이러한 방법으로 제조된 상기 폴리올레핀은 중량평균분자량이 약 100 내지 1,000,000이고, 보다 바람직하게 약 1,000 내지 100,000일 수 있다. 또 한 싱기 폴리올레핀은 수평균분자량 범위가 약 100 내지 20,000이고, 보다 바 람직하게 1,000 내지 20,000일 수 있다. 따라서, 상기 폴리을레핀의 분자량 분포 (Mw/Mn)가 약 1 내지 50일 수 있다. KR2011/006747
이하, 발명의 구체적인 실시예를 통해, 발명의 작용 및 효과를 보다 상 세히 상술하기로 한다. 다만, 이러한 실시예는 발명의 예시로 제시된 것에 불 과하며, 이에 의해 발명의 권리범위가 정해지는 것은 아니다. 실시예 1: 리간드 전구체의 합성
250 ml 풀라스크에 5g(16mmol)의 디브로모바이페닐과 교반바를 넣고, 40ml의 Et20를 가하여 완전히 녹였다. 이 반웅용기를 0 °C로 냉각시킨 후 주 사기를 이용하여 12.8mK32 mmol)의 n-BuLi을 한 방울씩 천천히 가하였다. 적가가 끝난 반웅용기를 2시간 이상 0 °C에서 교반한 후, 서서히 상은으로 온 도를 을렸고 이후 상온에서 6시간 동안 추가로 반웅시켰다. 노란색의 용액을 캐뉼라 (cannula)를 이용하여 제거하고, 남은 고체를 20ml의 핵산으로 세번 세 척해준 후, 진공 하에서 건조하여 무색의 고체를 얻었다. 얻어진 무색의 고체 를 40ml의 THF에 녹인 후, -78 °C로 반웅 용기의 온도를 낮추었다. 이 반옹 용기에 주사기를 이용하여 11.6mK96 mmol)의 디메틸디클로로실란을 빠르게 적가하였다. -78 °C에서 2시간 교반한 후, 서서히 상온으로 반웅은도를 을린 후, 다시 15시간 동안 교반시켰다. 15시간 후 모든 용매를 진공하에서 제거한 후 40 ml의 핵산을 넣어 생성물의 추출을 시도하였다. 용액만을 셀라이트 (Cellite) 필터를 통해 걸렀더니 무색의 깨끗한 용액을 얻을 수 있었다. 이 용 액을 넁장고 (-15 °C)에서 수 시간 동안 방치하였더니, 무색의 고체 상태로 하 기 화학식 2의 화합물을 3.8g 얻을 수 있었다.
[화학식 2]
Figure imgf000025_0001
수율 = 70%, colorless solid
:H NMR (CDCls, 300.13 MHz, ppm): δ 7.73(d, 2H, J = 8.1 Hz, Ph), 7.65 (d, 2H, J = 7.6 Hz, Ph), 0.72(sᅳ 12H, SiMe2).
13C {¾} NMR (CDC13, 75.46 MHz, ppm): δ 142.3, 135.4, 133.8, 126.9,
2.12 실시예 2: 리간드의 합성
250 ml 플라스크에 2g(5.9mmol)의 화합물 2와 교반바를 넣고, 30ml의 THF를 가하여 녹였다. 이 반웅용기를 ᅳ 78 'C로 냉각시킨 후 주사기를 이용하 여 5.9ml(11.8 mmol)의 NaCp를 빠르게 가하였다. 적가가 끝난 반웅용기를 2 시 간 동안 -78°C에서 교반한 후, 서서히 상온으로 온도를 올렸고, 이후 상온에 서 8시간 동안 추가로 반웅시켰다. 이후 반웅 용기에 물을 조심스럽게 가하였 고, Et20를 이용하여 생성물을 추출하였다. 추출한 용액을 MgS04를 이용하여 건조시 키고 필터한 후 감압하여 용매를 제거하였더니, 옅은 갈색의 액체로 하 기 화학식 1 -1의 화합물을 4.7g 얻을 수 있었다. [화학식 1- 1 ]
Figure imgf000026_0001
수율 = 80%, light brown solid
NMR (CDC13, 300.13 MHz, ppm): δ 7.65 (m, 8H, Ph), 6.52(s, 8H, Cp-H), 3.63(s, 2H, Cp-H), 0.20(s, 12H, SiMe2). 실시예 3: 촉매의 합성
250 ml 플라스크에 lg(2.5mmol)의 화합물 1ᅳ 1과 교반바를 넣고, 30ml 의 Et20를 가하여 완전히 녹였다. 이 반웅용기를 ᅳ 78 °C로 냉각시 킨 후 주사기 를 이용하여 2.2ml(5.5 mmol)의 n-BuLi를 천천히 가하였다. 적가가 끝난 반 웅용기를 1시간 동안 ᅳ 78 °C에서 교반한 후, 서서히 상온으로 온도를 을렸고, 이후 상온에서 6시 간 동안 추가로 반웅시켰다. 캐뉼라를 이용하여 용액을 모두 제거 한 후 남은 고체를 20ml의 핵산으로 세번 세척해준 후 진공 하에서 건조 하였더니, 무색의 고체를 얻을 수 있었다. 얻은 무색의 고체 0.41g(lmmol)과 0.262g(lmmol)의 CpZrC13 및 교반바를 250ml의 플라스크에 함께 넣고, -78 °C로 반웅용기를 넁각시 킨 후에 40ml의 THF를 서서히 가하였다. -78 °C 에서 반웅용기를 1시간 교반한 후, 서서히 상온으로 을렸고, 이후 상온에서 15 시간 동안 추가로 교반시켰다. 15시 간 후, 반웅 흔합물을 셀라이트 필터를 통 해 걸렀더 니, 깨끗한 갈색의 용액을 얻을 수 있었다. 이 용액에 Et20를 사용하 여 두층으로 분리시 켜 냉장고 (-15 °C)에서 몇 일간 방치하였더니, 열은 갈색의 고체 상태로 하기 화학식 5ᅳ 1의 화합물을 0.528g 얻을 수 있었다.
[화학식 5ᅳ 1 ]
Figure imgf000027_0001
수율 = 61%, brown solid
¾ NMR (CDC13> 300.13 MHz, ppm): δ 7.59(s, 8H, Ph), 6.74(m, 4H, Cp), 6.54(m, 4H, Cp), 6.28(m, 10H, Cp), 0.62(s, 12H, SiMe2).
13C ^H} NMR (CDCls, 75.46 MHz, ppm): δ 134.6, 134.0, 126.6, 125.3, 120.1, 118.1, 116.1, 116.0, -1.742 실시예 4 및 5: 촉매를 이용한 중합
합성 한 이핵 화합물 5-1의 촉매 활성과 중합 조건에 따른 영향력에 대 해 자세히 알아보고자, 다양한 중합온도 (50, 70, 90 °C) 및 Al/Zr비 (500, 1000, 2000)에서 에틸렌 중합 및 에틸렌八 -옥텐 공중합을 수행하였다.
에틸렌 중합인 경우의 중합시간은 15분으로 하였고 (실시예 4), 에틸렌 /1-옥텐 공중합의 중합시간은 40분으로 고정시켰다 (실시예 5).
사용한 촉매는 5 μπιοΐ로 하였고, 에틸렌의 중합 압력은 1기압으로 하였 으며, 중합용매는 를루엔 50ml를 사용하였다. 즉, 교반바와 MAO 및 를루엔이 들어 있는 250ml 플라스크를 중합온도에 맞추어져 있는 수조 (water bath) 또 는 오일조 (oil bath)에 담그었다.1기압의 에틸렌으로 중합용기를 채우면서 교반 을 충분히 해주었다. 그런 후, 촉매를 주사기를 이용하여 가함으로써, 에틸렌 중합을 시작하였다.
에틸렌 /1ᅳ옥텐 공중합의 경우에는 중합 용매인 틀루엔 45ml와 1ᅳ옥텐 10ml를 같이 넣어주었다. 정해진 중합시간이 흐른 뒤에 에틸렌 기체의 압력훌 멈추고, 소량의 10%의 HC1/메탄올 용매를 중합용기에 가함으로써 증합을 종결 시켰다. 이후 과량의 메탄올을 가하여 고분자를 침전시켰고, 얻어진 고분자를 필터를 통해 여과하여 거른 후 추가적으로 과량의 메탄올로 서너번 씻어주었다. 40 °C의 진공오븐 하에서 12시간 동안 말려 원하는 고분자를 얻을 수 있었다. 이후 얻어진 실시예 4의 고분자에 대하여 각 조건에 따른 물성을 측정 하였고, 그 결과는 다음 표 1과 같다. (실험 조건: [Cat]二 5 ymol, 를루엔 = 50 mL, 압력 二 lbar, 시간 = 15분)
또한 얻어진 실시예 .5의 고분자에 대하여 각 조건에 따른 물성을 측정 하였고, 그 결과는 다음 표 2와 같다. (실험 조건: [Cat] = 5 umol, 를루엔 +1ᅳ옥 텐 = 55 mL(l -옥텐 =10mL), 압력 二 lbar, 시 간 = 40분)
또한, 분자량 및 분자량 분포는 워 터스 (Waters)사에서 제조한 150CV+ 를 이용하여 GPC(gel permeation chromatography) 분석하여 얻었다. 분석온 도는 140 °C 이 었고 트리클로로벤젠 (trichlorobenzene)을 용매로 사용하였고, 폴리스티 렌으로 표준화하여 수평균분자량 (Mn) 및 중량평균분자량 (Mw)을 구했 다. 분자량 분포 (Polydispersity index, PDI)는 중량평균분자량을 수평균 분자 량으로 나누어 구하였다. 비교예 1
비슷한 구조의 [TMSCp]2ZrCl2 촉매를 사용하여 중합을 진행하엿다.
[MAO]/[Cat] = 600 / 1, 반웅은도는 90 °C 이며, 그외의 조건은 실시 예 4와 동 일하게 하였다. 얻어진 결과는 표 1에 나타내었다. .
/ OAV f39s0z//:d00nosMl> /-s.97
Figure imgf000030_0001
【표 2】
Figure imgf000031_0001
상기 표 1 및 2의 결과를 통해, 본 발명에 따른 경우, 바이페닐렌기를 갖는 이핵 구조의 양쪽에 실리콘 원자를 포함한 신규한 구조의 리간드를 이용 한 메탈로센 촉매를 이용하므로, 공중합체에 대한 선택성과 활성을 변화시킬 수 있음을 확인할 수 있다. 또한, 본 발명의 촉매는 조촉매와의 흔합비를 변경 함에 따라 분자량 분포도 용이하게 조절 가능함을 확인할 수 있고, 이에 따라 원하는 물성을 갖는 생산성이 뛰어난 고품질의 폴리올레핀을 제조할 수 있다.

Claims

【특허 청구범위】 【청구항 11 하기 화학식 1로 표시 되는 화합물:
[화학식 1 ]
Figure imgf000032_0001
상기 화학식 1에서,
Cp 및 Cp1는 서로 동일하거나 상이하고, 각각 독립적으로 시클로펜타디 에 닐, 인데닐, 4,5,6,7—테트라하이드로— 1-인데닐 및 플루오레닐 라디칼로 이루 어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소 로 치환될 수 있으몌,
R은 서로 동일하거나 상이하고, 각각 독립 적으로 수소, 탄소수 1 내지 20의 알킬, 탄소수 3 내지 20의 시클로알킬, 탄소수 1 내지 10의 알콕시, 탄 소수 6 내지 20의 아릴, 탄소수 6 내지 10의 아릴옥시, 탄소수 2 내지 20의 알케닐, 탄소수 7 내지 40의 알킬아릴, 탄소수 7 내지 40의 아릴알킬 ; 탄소수 8 내지 40의 아릴알케닐; 또는 탄소수 2 내지 10의 알키 닐이고;
Ri 및 R2는 서로 동일하거나 상이하고, 각각 독립 적으로 수소, 탄소수 1 내지 20의 알킬 또는 할로겐이고; 및 n 및 m은 각각 1 내지 4의 정수이다.
【청구항 2】
제 1항에 있어서, 상기 화학식 1에서 Cp 및 Cp1은 각각 독립적으로 시클로펜타디에 닐이고, R은 서로 동일하거나 상이하고, 각각 독립적으로 탄소수 1 내지 10의 알킬기 이고, 및 R2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬 또는 탄소수 3 내지 20의 시클로알킬이고, n 및 m은 각각 1 내지 4의 정수인 메탈로센 화합물.
[청구항 3】
제 1항에 있어서, 상기 메탈로센 화합물은 하기 화학식 1-1로 표시되는 것 인 메탈로센 화합물:
[화학식 1ᅳ 1 ]
Figure imgf000033_0001
【청구항 4】
화학식 5로 표시 되는 이핵 메탈로센 화합물:
[화학식 5]
Figure imgf000034_0001
상기 식에서,
M은 서로 동일하거나 상이하고, 각각 독립적으로 4족 전이금속이고;
Cp 및 Cp1는 서로 동일하거나 상이하고, 각각 독립적으로 시클로펜타디 에 닐, 인데닐, 4,5,6,7-테트라하이드로 -1-인데닐 및 플루오레닐 (fluorenyl)로 이 루어진 군으로부터 선택된 어느 하나의 작용기 이고, 이들은 탄소수 1 내지 20 의 탄화수소로 치환될 수 있으며 ;
R은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬, 탄소수 3 내지 20의 . 시클로알킬, 탄소수 1 내지 10의 알콕시, 탄 소수 6 내지 20의 아릴, 탄소수 6 내지 10의 아릴옥시, 탄소수 2 내지 20의 알케닐, 탄소수 7 내지 40의 알킬아릴 탄소수 7 내지 40의 아릴알킬; 탄소수 8 내지 40의 아릴알케닐 ; 또는 탄소수 2 내지 10의 알키 닐이고;
Ri 및 R2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬 또는 할로겐이고;
Q는 서로 동일하거나 상이하고, 각각 독립 적으로 할로겐 원자; 탄소수
1 내지 20의 알킬; 탄소수 2 내지 10의 알케닐 ; 탄소수 7 내지 40의 알킬아 릴; 탄소수 7 내지 40의 아릴알킬 ; 탄소수 6 내지 20의 아릴; 치환되거나 치환 되지 않은 탄소수 1 내지 20의 알킬리 덴; 치환되거나 치환되지 않은 아미노기 ; 탄소수 2 내지 20의 알킬알콕시 ; 또는 탄소수 7 내지 40의 아릴알콕시 이고; n 및 m은 각각 1 내지 4의 정수이다.
【청구항 5】
제 4항에 있어서, 상기 화학식 5에서 Cp 및 Cp1은 각각 독립적으로 시클로펜타디에 닐이고, R은 서로 동일하거나 상이하고, 각각 독립적으로 탄소수 1 내지 10의 알킬기 이고, 및 R2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬 또는 탄소수 3 내지 20의 시클로알킬이고 , η 및 m은 각각 1 내지 4의 정수인, 이 핵 메탈로센 화합물.
【청구항 6】
게 4항에 있어서, 상기 화학식 5로 표시되는 화합물은 하기 화학식
5—1로 표시되는 것 인 이핵 메탈로센 화합물.
[화학식 5-1 ]
Figure imgf000035_0001
【청구항 7】 제 4항 내지 제 6항 중 어느 한 항에 따른 이핵 메탈로센 화합물 및 조촉매를 포함하는 메탈로센 촉매.
【청구항 8】
제 7항에 있어서, 상기 메탈로센 촉매는 실리카, 실리카-알루미나 및 실리카-마그네시아로 이루어진 군에서 선택된 어느 하나의 담체를 더 포함하는 메탈로센 촉매.
[청구항 9】
제 7항에 있어서, 상기 조촉매는 13족 금속을 포함하고, 상기 이핵 메탈로센 화합물에 함유된 M에 대하여 13족 금속이 1: 1 내지 10,000의 몰비로 포함하는 폴리올레핀 중합용 흔성 담지 메탈로센 촉매.
【청구항 10】
제 7항에 있어서, 상기 조촉매는 하기 화학식 6 내지 8로 표시되는 화합물들로 이루어진 군에서 선택된 1종 이상인 메탈로센 촉매:
[화학식 6]
-[Al(R3)-0]c- 상기 화학식 6에서, R3은 서로 동일하거나 상이하고, 각각 독립적으로 할로겐 라디칼, 탄소수 1 내지 20의 하이드로카빌 라디칼, 또는 할로겐으로 치 환된 탄소수 1 내지 20의 하이드로카빌 라디칼이고ᅳ c는 2 이상의 정수이몌
[화학식 7]
D(R4)3 상기 화학식 7에서,
D는 알투미늄 또는 보론이고, R4는 탄소수 1 내지 20의 하이드로카빌 또는 할로겐으로 치환된 탄소수 1 내지 20의 하이드로카빌이고,
[화학식 8]
[L— Η]+ [Ζ(Ε)4Γ ᅳ
상기 화학식 8에서,
L은 중성 루이스 염 기 이고, [L-H]+는 브론스테드 산이며, Z는 + 3 형식 산화 상태의 붕소 또는 알루미늄이고, E는 각각 독립적으로 1 이상의 수소 원 자가 할로겐, 탄소수 1 내지 20의 하이드로카빌, 알콕시 작용기 또는 페녹시 작용기로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기 또는 탄소수 1 내지 20의 알킬기 이다.
【청구항 111
제 7항 내지 제 10항 중 어느 한 항에 따른 메탈로센 촉매 존재 하에 , 적 어도 1종 이상의 올레핀 단량체를 중합시 키는 단계를 포함하는 폴리을레핀의 제조방법 .
【청구항 12】
게 11항에 있어서, 상기 폴리을레핀의 중합은 25 내지 500°C의 온도 및 1 내지 100 kgf/cm2에서 1 내지 24시간 동안 반웅시 켜 수행하는 폴리을레핀의 제조방법 .
【청구항 13】 제 11항에 있어서, 상기 을레핀 단량체는 에 틸펜, 1-부텐, 1-펜텐, 1-핵센, 4-메틸— 1-펜텐, 1-옥텐, 1-데센, 1-도데센, 1ᅳ테트라데센, 1-핵사데센, 1-옥타데센, 1-에 이코센, 및 이들의 흔합물로 이루어진 군에서 선택되는 1종 이상인 폴리올레핀의 제조방법 .
【청구항 14】
제 11 항에 있어서 , 상기 폴리을레핀은 분자량 분포 (Mw/Mn)가 1 내지 50인 폴리올레핀의 제조방법 .
PCT/KR2011/006747 2010-09-14 2011-09-09 이핵 메탈로센 화합물 및 이를 이용한 폴리올레핀의 제조방법 WO2012036443A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20100090039 2010-09-14
KR10-2010-0090039 2010-09-14

Publications (2)

Publication Number Publication Date
WO2012036443A2 true WO2012036443A2 (ko) 2012-03-22
WO2012036443A3 WO2012036443A3 (ko) 2012-06-14

Family

ID=45818316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/006747 WO2012036443A2 (ko) 2010-09-14 2011-09-09 이핵 메탈로센 화합물 및 이를 이용한 폴리올레핀의 제조방법

Country Status (3)

Country Link
US (1) US20120071615A1 (ko)
KR (1) KR20120028269A (ko)
WO (1) WO2012036443A2 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2998308B1 (en) 2013-06-25 2017-11-29 LG Chem, Ltd. Binucleate metallocene compound and method for preparing same
CN105308059B (zh) * 2013-06-25 2018-05-18 株式会社Lg化学 催化剂组合物、其制备方法及使用其制备聚烯烃的方法
KR101642592B1 (ko) * 2013-10-30 2016-07-25 주식회사 엘지화학 봉지재 필름
KR102174436B1 (ko) * 2017-08-17 2020-11-04 주식회사 엘지화학 불용성 안료 화합물의 정성분석방법
WO2020106107A1 (ko) * 2018-11-22 2020-05-28 주식회사 엘지화학 전이금속 화합물 및 이를 포함하는 촉매 조성물
KR102531561B1 (ko) * 2018-11-22 2023-05-15 주식회사 엘지화학 전이금속 화합물 및 이를 포함하는 촉매 조성물

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003268069A (ja) * 2002-03-15 2003-09-25 Sumitomo Bakelite Co Ltd 難燃性エポキシ樹脂組成物およびそれを用いた半導体封止材料並びに半導体装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003268069A (ja) * 2002-03-15 2003-09-25 Sumitomo Bakelite Co Ltd 難燃性エポキシ樹脂組成物およびそれを用いた半導体封止材料並びに半導体装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PLENIO, H.: 'Polycyclopentadienyls: Synthesis of Arylsilylcyclopentadienyl Compounds and Their Complexes with Tungsten.' J. ORGANOMETTALIC CHEM. vol. 435, 1992, pages 21 - 28 *

Also Published As

Publication number Publication date
WO2012036443A3 (ko) 2012-06-14
US20120071615A1 (en) 2012-03-22
KR20120028269A (ko) 2012-03-22

Similar Documents

Publication Publication Date Title
EP3421506B1 (en) Metallocene supported catalyst and method for producing polypropylene using same
US11767377B2 (en) Metallocene-supported catalyst and method of preparing polyolefin using the same
KR101492571B1 (ko) 혼성 담지 메탈로센 촉매와 그 제조방법
JP6440832B2 (ja) メタロセン化合物、メタロセン担持触媒およびこれを用いるポリオレフィンの製造方法
WO2017146375A1 (ko) 혼성 담지 메탈로센 촉매 및 이를 이용한 폴리올레핀의 제조 방법
WO2015047030A1 (ko) 프로필렌-1-부텐 공중합체의 제조방법 및 이로부터 수득되는 프로필렌-1-부텐 공중합체
KR101725351B1 (ko) 혼성 담지 메탈로센 촉매의 제조방법 및 이를 이용하여 제조된 혼성 담지 메탈로센 촉매
WO2012036443A2 (ko) 이핵 메탈로센 화합물 및 이를 이용한 폴리올레핀의 제조방법
KR102028736B1 (ko) 혼성 담지 메탈로센 촉매의 제조방법 및 이를 이용하여 제조된 혼성 담지 메탈로센 촉매
KR101737568B1 (ko) 혼성 담지 촉매 및 이를 이용하는 올레핀계 중합체의 제조방법
KR101723488B1 (ko) 폴리프로필렌의 제조방법 및 이로부터 수득되는 폴리프로필렌
CN108290971B (zh) 金属茂负载型催化剂及使用该催化剂制备聚烯烃的方法
JP6453483B2 (ja) メタロセン担持触媒およびこれを用いるポリオレフィンの製造方法
JP7214300B2 (ja) 遷移金属化合物、触媒組成物およびそれを用いたポリプロピレンの製造方法
CN108026199B (zh) 制备负载型混杂茂金属催化剂的方法以及使用该方法制备的负载型混杂茂金属催化剂
KR102228069B1 (ko) 혼성 담지 메탈로센 촉매의 제조방법
KR20160069251A (ko) 담지 촉매 및 이를 이용하는 올레핀계 중합체의 제조방법
WO2016195424A1 (ko) 메탈로센 담지 촉매 및 이를 이용하는 폴리올레핀의 제조 방법
KR100615460B1 (ko) 메탈로센 촉매 및 이를 이용한 폴리올레핀 왁스의 제조방법
KR102418590B1 (ko) 혼성 담지 메탈로센 촉매의 제조방법, 및 상기 혼성 담지 메탈로센 촉매를 이용한 폴리프로필렌의 제조 방법
WO2016204457A1 (ko) 폴리올레핀의 제조 방법
WO2015056974A1 (ko) 혼성 담지 메탈로센 촉매의 제조방법
KR20150029222A (ko) 이핵 메탈로센 화합물, 및 이의 제조방법
KR20170073473A (ko) 바이메탈 메탈로센 화합물, 이의 제조방법, 촉매 조성물 및 이를 이용한 폴리올레핀의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11825403

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11825403

Country of ref document: EP

Kind code of ref document: A2